CINXE.COM

Search results for: hierarchical Bayesian framework

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: hierarchical Bayesian framework</title> <meta name="description" content="Search results for: hierarchical Bayesian framework"> <meta name="keywords" content="hierarchical Bayesian framework"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="hierarchical Bayesian framework" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="hierarchical Bayesian framework"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5835</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: hierarchical Bayesian framework</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5835</span> Spatial Econometric Approaches for Count Data: An Overview and New Directions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paula%20Sim%C3%B5es">Paula Simões</a>, <a href="https://publications.waset.org/abstracts/search?q=Isabel%20Nat%C3%A1rio"> Isabel Natário</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reviews a number of theoretical aspects for implementing an explicit spatial perspective in econometrics for modelling non-continuous data, in general, and count data, in particular. It provides an overview of the several spatial econometric approaches that are available to model data that are collected with reference to location in space, from the classical spatial econometrics approaches to the recent developments on spatial econometrics to model count data, in a Bayesian hierarchical setting. Considerable attention is paid to the inferential framework, necessary for structural consistent spatial econometric count models, incorporating spatial lag autocorrelation, to the corresponding estimation and testing procedures for different assumptions, to the constrains and implications embedded in the various specifications in the literature. This review combines insights from the classical spatial econometrics literature as well as from hierarchical modeling and analysis of spatial data, in order to look for new possible directions on the processing of count data, in a spatial hierarchical Bayesian econometric context. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spatial%20data%20analysis" title="spatial data analysis">spatial data analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20econometrics" title=" spatial econometrics"> spatial econometrics</a>, <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20hierarchical%20models" title=" Bayesian hierarchical models"> Bayesian hierarchical models</a>, <a href="https://publications.waset.org/abstracts/search?q=count%20data" title=" count data"> count data</a> </p> <a href="https://publications.waset.org/abstracts/35788/spatial-econometric-approaches-for-count-data-an-overview-and-new-directions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35788.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">593</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5834</span> Forecasting Models for Steel Demand Uncertainty Using Bayesian Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Watcharin%20Sangma">Watcharin Sangma</a>, <a href="https://publications.waset.org/abstracts/search?q=Onsiri%20Chanmuang"> Onsiri Chanmuang</a>, <a href="https://publications.waset.org/abstracts/search?q=Pitsanu%20Tongkhow"> Pitsanu Tongkhow</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A forecasting model for steel demand uncertainty in Thailand is proposed. It consists of trend, autocorrelation, and outliers in a hierarchical Bayesian frame work. The proposed model uses a cumulative Weibull distribution function, latent first-order autocorrelation, and binary selection, to account for trend, time-varying autocorrelation, and outliers, respectively. The Gibbs sampling Markov Chain Monte Carlo (MCMC) is used for parameter estimation. The proposed model is applied to steel demand index data in Thailand. The root mean square error (RMSE), mean absolute percentage error (MAPE), and mean absolute error (MAE) criteria are used for model comparison. The study reveals that the proposed model is more appropriate than the exponential smoothing method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forecasting%20model" title="forecasting model">forecasting model</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20demand%20uncertainty" title=" steel demand uncertainty"> steel demand uncertainty</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20Bayesian%20framework" title=" hierarchical Bayesian framework"> hierarchical Bayesian framework</a>, <a href="https://publications.waset.org/abstracts/search?q=exponential%20smoothing%20method" title=" exponential smoothing method"> exponential smoothing method</a> </p> <a href="https://publications.waset.org/abstracts/10196/forecasting-models-for-steel-demand-uncertainty-using-bayesian-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10196.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5833</span> Investigation of Compressive Strength of Fly Ash-Based Geopolymer Bricks with Hierarchical Bayesian Path Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ersin%20Sener">Ersin Sener</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Demir"> Ibrahim Demir</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Aykut%20Karaboga"> Hasan Aykut Karaboga</a>, <a href="https://publications.waset.org/abstracts/search?q=Kadir%20Kilinc"> Kadir Kilinc</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bayesian methods, which have very wide range of applications, are implemented to the data obtained from the production of F class fly ash-based geopolymer bricks’ experimental design. In this study, dependent variable is compressive strength, independent variables are treatment type (oven and steam), treatment time, molding time, temperature, water absorbtion ratio and density. The effect of independent variables on compressive strength is investigated. There is no difference among treatment types, but there is a correlation between independent variables. Therefore, hierarchical Bayesian path analysis is applied. In consequence of analysis we specified that treatment time, temperature and density effects on compressive strength is higher, molding time, and water absorbtion ratio is relatively low. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=experimental%20design" title="experimental design">experimental design</a>, <a href="https://publications.waset.org/abstracts/search?q=F%20class%20fly%20ash" title=" F class fly ash"> F class fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=geopolymer%20bricks" title=" geopolymer bricks"> geopolymer bricks</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20Bayesian%20path%20analysis" title=" hierarchical Bayesian path analysis"> hierarchical Bayesian path analysis</a> </p> <a href="https://publications.waset.org/abstracts/50683/investigation-of-compressive-strength-of-fly-ash-based-geopolymer-bricks-with-hierarchical-bayesian-path-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50683.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5832</span> Detection of Change Points in Earthquakes Data: A Bayesian Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20A.%20Al-Awadhi">F. A. Al-Awadhi</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Al-Hulail"> D. Al-Hulail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we applied the Bayesian hierarchical model to detect single and multiple change points for daily earthquake body wave magnitude. The change point analysis is used in both backward (off-line) and forward (on-line) statistical research. In this study, it is used with the backward approach. Different types of change parameters are considered (mean, variance or both). The posterior model and the conditional distributions for single and multiple change points are derived and implemented using BUGS software. The model is applicable for any set of data. The sensitivity of the model is tested using different prior and likelihood functions. Using Mb data, we concluded that during January 2002 and December 2003, three changes occurred in the mean magnitude of Mb in Kuwait and its vicinity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multiple%20change%20points" title="multiple change points">multiple change points</a>, <a href="https://publications.waset.org/abstracts/search?q=Markov%20Chain%20Monte%20Carlo" title=" Markov Chain Monte Carlo"> Markov Chain Monte Carlo</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20magnitude" title=" earthquake magnitude"> earthquake magnitude</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20Bayesian%20mode" title=" hierarchical Bayesian mode"> hierarchical Bayesian mode</a> </p> <a href="https://publications.waset.org/abstracts/21451/detection-of-change-points-in-earthquakes-data-a-bayesian-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21451.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5831</span> A Bayesian Hierarchical Poisson Model with an Underlying Cluster Structure for the Analysis of Measles in Colombia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ana%20Corberan-Vallet">Ana Corberan-Vallet</a>, <a href="https://publications.waset.org/abstracts/search?q=Karen%20C.%20Florez"> Karen C. Florez</a>, <a href="https://publications.waset.org/abstracts/search?q=Ingrid%20C.%20Marino"> Ingrid C. Marino</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20D.%20Bermudez"> Jose D. Bermudez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In 2016, the Region of the Americas was declared free of measles, a viral disease that can cause severe health problems. However, since 2017, measles has reemerged in Venezuela and has subsequently reached neighboring countries. In 2018, twelve American countries reported confirmed cases of measles. Governmental and health authorities in Colombia, a country that shares the longest land boundary with Venezuela, are aware of the need for a strong response to restrict the expanse of the epidemic. In this work, we apply a Bayesian hierarchical Poisson model with an underlying cluster structure to describe disease incidence in Colombia. Concretely, the proposed methodology provides relative risk estimates at the department level and identifies clusters of disease, which facilitates the implementation of targeted public health interventions. Socio-demographic factors, such as the percentage of migrants, gross domestic product, and entry routes, are included in the model to better describe the incidence of disease. Since the model does not impose any spatial correlation at any level of the model hierarchy, it avoids the spatial confounding problem and provides a suitable framework to estimate the fixed-effect coefficients associated with spatially-structured covariates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20analysis" title="Bayesian analysis">Bayesian analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=cluster%20identification" title=" cluster identification"> cluster identification</a>, <a href="https://publications.waset.org/abstracts/search?q=disease%20mapping" title=" disease mapping"> disease mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20estimation" title=" risk estimation"> risk estimation</a> </p> <a href="https://publications.waset.org/abstracts/115292/a-bayesian-hierarchical-poisson-model-with-an-underlying-cluster-structure-for-the-analysis-of-measles-in-colombia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115292.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5830</span> Bayesian Prospective Detection of Small Area Health Anomalies Using Kullback Leibler Divergence </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chawarat%20Rotejanaprasert">Chawarat Rotejanaprasert</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Lawson"> Andrew Lawson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Early detection of unusual health events depends on the ability to detect rapidly any substantial changes in disease, thus facilitating timely public health interventions. To assist public health practitioners to make decisions, statistical methods are adopted to assess unusual events in real time. We introduce a surveillance Kullback-Leibler (SKL) measure for timely detection of disease outbreaks for small area health data. The detection methods are compared with the surveillance conditional predictive ordinate (SCPO) within the framework of Bayesian hierarchical Poisson modeling and applied to a case study of a group of respiratory system diseases observed weekly in South Carolina counties. Properties of the proposed surveillance techniques including timeliness and detection precision are investigated using a simulation study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayesian" title="Bayesian">Bayesian</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial" title=" spatial"> spatial</a>, <a href="https://publications.waset.org/abstracts/search?q=temporal" title=" temporal"> temporal</a>, <a href="https://publications.waset.org/abstracts/search?q=surveillance" title=" surveillance"> surveillance</a>, <a href="https://publications.waset.org/abstracts/search?q=prospective" title=" prospective"> prospective</a> </p> <a href="https://publications.waset.org/abstracts/52142/bayesian-prospective-detection-of-small-area-health-anomalies-using-kullback-leibler-divergence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52142.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5829</span> An Exploratory Sequential Design: A Mixed Methods Model for the Statistics Learning Assessment with a Bayesian Network Representation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhidong%20Zhang">Zhidong Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study established a mixed method model in assessing statistics learning with Bayesian network models. There are three variants in exploratory sequential designs. There are three linked steps in one of the designs: qualitative data collection and analysis, quantitative measure, instrument, intervention, and quantitative data collection analysis. The study used a scoring model of analysis of variance (ANOVA) as a content domain. The research study is to examine students’ learning in both semantic and performance aspects at fine grain level. The ANOVA score model, y = α+ βx1 + γx1+ ε, as a cognitive task to collect data during the student learning process. When the learning processes were decomposed into multiple steps in both semantic and performance aspects, a hierarchical Bayesian network was established. This is a theory-driven process. The hierarchical structure was gained based on qualitative cognitive analysis. The data from students’ ANOVA score model learning was used to give evidence to the hierarchical Bayesian network model from the evidential variables. Finally, the assessment results of students’ ANOVA score model learning were reported. Briefly, this was a mixed method research design applied to statistics learning assessment. The mixed methods designs expanded more possibilities for researchers to establish advanced quantitative models initially with a theory-driven qualitative mode. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exploratory%20sequential%20design" title="exploratory sequential design">exploratory sequential design</a>, <a href="https://publications.waset.org/abstracts/search?q=ANOVA%20score%20model" title=" ANOVA score model"> ANOVA score model</a>, <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20network%20model" title=" Bayesian network model"> Bayesian network model</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20methods%20research%20design" title=" mixed methods research design"> mixed methods research design</a>, <a href="https://publications.waset.org/abstracts/search?q=cognitive%20analysis" title=" cognitive analysis"> cognitive analysis</a> </p> <a href="https://publications.waset.org/abstracts/102367/an-exploratory-sequential-design-a-mixed-methods-model-for-the-statistics-learning-assessment-with-a-bayesian-network-representation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102367.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5828</span> Risk Factors for Defective Autoparts Products Using Bayesian Method in Poisson Generalized Linear Mixed Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pitsanu%20Tongkhow">Pitsanu Tongkhow</a>, <a href="https://publications.waset.org/abstracts/search?q=Pichet%20Jiraprasertwong"> Pichet Jiraprasertwong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research investigates risk factors for defective products in autoparts factories. Under a Bayesian framework, a generalized linear mixed model (GLMM) in which the dependent variable, the number of defective products, has a Poisson distribution is adopted. Its performance is compared with the Poisson GLM under a Bayesian framework. The factors considered are production process, machines, and workers. The products coded RT50 are observed. The study found that the Poisson GLMM is more appropriate than the Poisson GLM. For the production Process factor, the highest risk of producing defective products is Process 1, for the Machine factor, the highest risk is Machine 5, and for the Worker factor, the highest risk is Worker 6. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=defective%20autoparts%20products" title="defective autoparts products">defective autoparts products</a>, <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20framework" title=" Bayesian framework"> Bayesian framework</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20linear%20mixed%20model%20%28GLMM%29" title=" generalized linear mixed model (GLMM)"> generalized linear mixed model (GLMM)</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20factors" title=" risk factors "> risk factors </a> </p> <a href="https://publications.waset.org/abstracts/10195/risk-factors-for-defective-autoparts-products-using-bayesian-method-in-poisson-generalized-linear-mixed-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10195.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">570</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5827</span> A Survey on Taxpayer&#039;s Compliance in Prospect Theory Structure Using Hierarchical Bayesian Approach </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sahar%20Dehghan">Sahar Dehghan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yeganeh%20Mousavi%20Jahromi"> Yeganeh Mousavi Jahromi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghahraman%20Abdoli"> Ghahraman Abdoli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since tax revenues are one of the most important sources of government revenue, it is essential to consider increasing taxpayers' compliance. One of the factors that can affect the taxpayers' compliance is the structure of the crimes and incentives envisaged in the tax law. In this research, by using the 'prospect theory', the effects of changes in the rate of crimes and the tax incentive in the direct tax law on the taxpayer’s compliance behavior have been investigated. To determine the preferences and preferences of taxpayer’s in the business sector and their degree of sensitivity to fines and incentives, a questionnaire with mixed gamble structure is designed. Estimated results using the Hierarchical Bayesian method indicate that the taxpayer’s that have been tested in this study are more sensitive to the incentives in the direct tax law, and the tax administration can use this to increase the level of collected tax and increase the level of compliance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tax%20compliance" title="tax compliance">tax compliance</a>, <a href="https://publications.waset.org/abstracts/search?q=prospect%20theory" title=" prospect theory"> prospect theory</a>, <a href="https://publications.waset.org/abstracts/search?q=value%20function" title=" value function"> value function</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20gamble" title=" mixed gamble "> mixed gamble </a> </p> <a href="https://publications.waset.org/abstracts/99503/a-survey-on-taxpayers-compliance-in-prospect-theory-structure-using-hierarchical-bayesian-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99503.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5826</span> Optimal Bayesian Control of the Proportion of Defectives in a Manufacturing Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Viliam%20Makis">Viliam Makis</a>, <a href="https://publications.waset.org/abstracts/search?q=Farnoosh%20Naderkhani"> Farnoosh Naderkhani</a>, <a href="https://publications.waset.org/abstracts/search?q=Leila%20Jafari"> Leila Jafari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present a model and an algorithm for the calculation of the optimal control limit, average cost, sample size, and the sampling interval for an optimal Bayesian chart to control the proportion of defective items produced using a semi-Markov decision process approach. Traditional p-chart has been widely used for controlling the proportion of defectives in various kinds of production processes for many years. It is well known that traditional non-Bayesian charts are not optimal, but very few optimal Bayesian control charts have been developed in the literature, mostly considering finite horizon. The objective of this paper is to develop a fast computational algorithm to obtain the optimal parameters of a Bayesian p-chart. The decision problem is formulated in the partially observable framework and the developed algorithm is illustrated by a numerical example. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20control%20chart" title="Bayesian control chart">Bayesian control chart</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-Markov%20decision%20process" title=" semi-Markov decision process"> semi-Markov decision process</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20control" title=" quality control"> quality control</a>, <a href="https://publications.waset.org/abstracts/search?q=partially%20observable%20process" title=" partially observable process"> partially observable process</a> </p> <a href="https://publications.waset.org/abstracts/49751/optimal-bayesian-control-of-the-proportion-of-defectives-in-a-manufacturing-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49751.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5825</span> Factorization of Computations in Bayesian Networks: Interpretation of Factors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Linda%20Smail">Linda Smail</a>, <a href="https://publications.waset.org/abstracts/search?q=Zineb%20Azouz"> Zineb Azouz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Given a Bayesian network relative to a set I of discrete random variables, we are interested in computing the probability distribution P(S) where S is a subset of I. The general idea is to write the expression of P(S) in the form of a product of factors where each factor is easy to compute. More importantly, it will be very useful to give an interpretation of each of the factors in terms of conditional probabilities. This paper considers a semantic interpretation of the factors involved in computing marginal probabilities in Bayesian networks. Establishing such a semantic interpretations is indeed interesting and relevant in the case of large Bayesian networks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20networks" title="Bayesian networks">Bayesian networks</a>, <a href="https://publications.waset.org/abstracts/search?q=D-Separation" title=" D-Separation"> D-Separation</a>, <a href="https://publications.waset.org/abstracts/search?q=level%20two%20Bayesian%20networks" title=" level two Bayesian networks"> level two Bayesian networks</a>, <a href="https://publications.waset.org/abstracts/search?q=factorization%20of%20computation" title=" factorization of computation"> factorization of computation</a> </p> <a href="https://publications.waset.org/abstracts/18829/factorization-of-computations-in-bayesian-networks-interpretation-of-factors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18829.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">529</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5824</span> Bayesian Meta-Analysis to Account for Heterogeneity in Studies Relating Life Events to Disease </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elizabeth%20Stojanovski">Elizabeth Stojanovski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Associations between life events and various forms of cancers have been identified. The purpose of a recent random-effects meta-analysis was to identify studies that examined the association between adverse events associated with changes to financial status including decreased income and breast cancer risk. The same association was studied in four separate studies which displayed traits that were not consistent between studies such as the study design, location and time frame. It was of interest to pool information from various studies to help identify characteristics that differentiated study results. Two random-effects Bayesian meta-analysis models are proposed to combine the reported estimates of the described studies. The proposed models allow major sources of variation to be taken into account, including study level characteristics, between study variance, and within study variance and illustrate the ease with which uncertainty can be incorporated using a hierarchical Bayesian modelling approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=random-effects" title="random-effects">random-effects</a>, <a href="https://publications.waset.org/abstracts/search?q=meta-analysis" title=" meta-analysis"> meta-analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Bayesian" title=" Bayesian"> Bayesian</a>, <a href="https://publications.waset.org/abstracts/search?q=variation" title=" variation"> variation</a> </p> <a href="https://publications.waset.org/abstracts/100263/bayesian-meta-analysis-to-account-for-heterogeneity-in-studies-relating-life-events-to-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100263.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5823</span> Bayesian Estimation of Hierarchical Models for Genotypic Differentiation of Arabidopsis thaliana</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gautier%20Viaud">Gautier Viaud</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul-Henry%20Courn%C3%A8de"> Paul-Henry Cournède</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plant growth models have been used extensively for the prediction of the phenotypic performance of plants. However, they remain most often calibrated for a given genotype and therefore do not take into account genotype by environment interactions. One way of achieving such an objective is to consider Bayesian hierarchical models. Three levels can be identified in such models: The first level describes how a given growth model describes the phenotype of the plant as a function of individual parameters, the second level describes how these individual parameters are distributed within a plant population, the third level corresponds to the attribution of priors on population parameters. Thanks to the Bayesian framework, choosing appropriate priors for the population parameters permits to derive analytical expressions for the full conditional distributions of these population parameters. As plant growth models are of a nonlinear nature, individual parameters cannot be sampled explicitly, and a Metropolis step must be performed. This allows for the use of a hybrid Gibbs--Metropolis sampler. A generic approach was devised for the implementation of both general state space models and estimation algorithms within a programming platform. It was designed using the Julia language, which combines an elegant syntax, metaprogramming capabilities and exhibits high efficiency. Results were obtained for Arabidopsis thaliana on both simulated and real data. An organ-scale Greenlab model for the latter is thus presented, where the surface areas of each individual leaf can be simulated. It is assumed that the error made on the measurement of leaf areas is proportional to the leaf area itself; multiplicative normal noises for the observations are therefore used. Real data were obtained via image analysis of zenithal images of Arabidopsis thaliana over a period of 21 days using a two-step segmentation and tracking algorithm which notably takes advantage of the Arabidopsis thaliana phyllotaxy. Since the model formulation is rather flexible, there is no need that the data for a single individual be available at all times, nor that the times at which data is available be the same for all the different individuals. This allows to discard data from image analysis when it is not considered reliable enough, thereby providing low-biased data in large quantity for leaf areas. The proposed model precisely reproduces the dynamics of Arabidopsis thaliana’s growth while accounting for the variability between genotypes. In addition to the estimation of the population parameters, the level of variability is an interesting indicator of the genotypic stability of model parameters. A promising perspective is to test whether some of the latter should be considered as fixed effects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bayesian" title="bayesian">bayesian</a>, <a href="https://publications.waset.org/abstracts/search?q=genotypic%20differentiation" title=" genotypic differentiation"> genotypic differentiation</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20models" title=" hierarchical models"> hierarchical models</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20growth%20models" title=" plant growth models"> plant growth models</a> </p> <a href="https://publications.waset.org/abstracts/72899/bayesian-estimation-of-hierarchical-models-for-genotypic-differentiation-of-arabidopsis-thaliana" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72899.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5822</span> Regular or Irregular: An Investigation of Medicine Consumption Pattern with Poisson Mixture Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lichung%20Jen">Lichung Jen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi%20Chun%20Liu"> Yi Chun Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuan-Wei%20Lee"> Kuan-Wei Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fruitful data has been accumulated in database nowadays and is commonly used as support for decision-making. In the healthcare industry, hospital, for instance, ordering pharmacy inventory is one of the key decision. With large drug inventory, the current cost increases and its expiration dates might lead to future issue, such as drug disposal and recycle. In contrast, underestimating demand of the pharmacy inventory, particularly standing drugs, affects the medical treatment and possibly hospital reputation. Prescription behaviour of hospital physicians is one of the critical factor influencing this decision, particularly irregular prescription behaviour. If a drug’s usage amount in the month is irregular and less than the regular usage, it may cause the trend of subsequent stockpiling. On the contrary, if a drug has been prescribed often than expected, it may result in insufficient inventory. We proposed a hierarchical Bayesian mixture model with two components to identify physicians’ regular/irregular prescription patterns with probabilities. Heterogeneity of hospital is considered in our proposed hierarchical Bayes model. The result suggested that modeling the prescription patterns of physician is beneficial for estimating the order quantity of medication and pharmacy inventory management of the hospital. Managerial implication and future research are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20Bayesian%20model" title="hierarchical Bayesian model">hierarchical Bayesian model</a>, <a href="https://publications.waset.org/abstracts/search?q=poission%20mixture%20model" title=" poission mixture model"> poission mixture model</a>, <a href="https://publications.waset.org/abstracts/search?q=medicines%20prescription%20behavior" title=" medicines prescription behavior"> medicines prescription behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=irregular%20behavior" title=" irregular behavior"> irregular behavior</a> </p> <a href="https://publications.waset.org/abstracts/106808/regular-or-irregular-an-investigation-of-medicine-consumption-pattern-with-poisson-mixture-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5821</span> Estimating the Probability of Winning the Best Actor/Actress Award Conditional on the Best Picture Nomination with Bayesian Hierarchical Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Svetlana%20K.%20Eden">Svetlana K. Eden</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Movies and TV shows have long become part of modern culture. We all have our preferred genre, story, actors, and actresses. However, can we objectively discern good acting from the bad? As laymen, we are probably not objective, but what about the Oscar academy members? Are their votes based on objective measures? Oscar academy members are probably also biased due to many factors, including their professional affiliations or advertisement exposure. Heavily advertised films bring more publicity to their cast and are likely to have bigger budgets. Because a bigger budget may also help earn a Best Picture (BP) nomination, we hypothesize that best actor/actress (BA) nominees from BP-nominated movies would have higher chances of winning the award than those BA nominees from non-BP-nominated films. To test this hypothesis, three Bayesian hierarchical models are proposed, and their performance is evaluated. The results from all three models largely support our hypothesis. Depending on the proportion of BP nominations among BA nominees, the odds ratios (estimated over expected) of winning the BA award conditional on BP nomination vary from 2.8 [0.8-7.0] to 4.3 [2.0, 15.8] for actors and from 1.5 [0.0, 12.2] to 5.4 [2.7, 14.2] for actresses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oscar" title="Oscar">Oscar</a>, <a href="https://publications.waset.org/abstracts/search?q=best%20picture" title=" best picture"> best picture</a>, <a href="https://publications.waset.org/abstracts/search?q=best%20actor%2Factress" title=" best actor/actress"> best actor/actress</a>, <a href="https://publications.waset.org/abstracts/search?q=bias" title=" bias"> bias</a> </p> <a href="https://publications.waset.org/abstracts/121657/estimating-the-probability-of-winning-the-best-actoractress-award-conditional-on-the-best-picture-nomination-with-bayesian-hierarchical-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121657.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5820</span> Digital Geography and Geographic Information System in Schools: Towards a Hierarchical Geospatial Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mary%20Fargher">Mary Fargher</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper examines the opportunities of using a more hierarchical approach to geospatial enquiry in using GIS in school geography. A case is made that it is not just the lack of teacher technological knowledge that is stopping some teachers from using GIS in the classroom but that there is a gap in their understanding of how to link GIS use more specifically to the pedagogy of teaching geography with GIS. Using a hierarchical approach to geospatial enquiry as a theoretical framework, the analysis shows clearly how concepts of spatial distribution, interaction, relation, comparison, and temporal relationships can be used by teachers more explicitly to capitalise on the analytical power of GIS and to construct what can be interpreted as powerful geographical knowledge. An exemplar illustrating this approach on the topic of geo-hazards is then presented for critical analysis and discussion. Recommendations are then made for a model of progression for geography teacher education with GIS through hierarchical geospatial enquiry that takes into account beginner, intermediate, and more advanced users. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20geography" title="digital geography">digital geography</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=education" title=" education"> education</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20geospatial%20enquiry" title=" hierarchical geospatial enquiry"> hierarchical geospatial enquiry</a>, <a href="https://publications.waset.org/abstracts/search?q=powerful%20geographical%20knowledge" title=" powerful geographical knowledge"> powerful geographical knowledge</a> </p> <a href="https://publications.waset.org/abstracts/125215/digital-geography-and-geographic-information-system-in-schools-towards-a-hierarchical-geospatial-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125215.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5819</span> Optimal Bayesian Chart for Controlling Expected Number of Defects in Production Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Makis">V. Makis</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Jafari"> L. Jafari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we develop an optimal Bayesian chart to control the expected number of defects per inspection unit in production processes with long production runs. We formulate this control problem in the optimal stopping framework. The objective is to determine the optimal stopping rule minimizing the long-run expected average cost per unit time considering partial information obtained from the process sampling at regular epochs. We prove the optimality of the control limit policy, i.e., the process is stopped and the search for assignable causes is initiated when the posterior probability that the process is out of control exceeds a control limit. An algorithm in the semi-Markov decision process framework is developed to calculate the optimal control limit and the corresponding average cost. Numerical examples are presented to illustrate the developed optimal control chart and to compare it with the traditional u-chart. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20u-chart" title="Bayesian u-chart">Bayesian u-chart</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20design" title=" economic design"> economic design</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20stopping" title=" optimal stopping"> optimal stopping</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-Markov%20decision%20process" title=" semi-Markov decision process"> semi-Markov decision process</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20process%20control" title=" statistical process control"> statistical process control</a> </p> <a href="https://publications.waset.org/abstracts/62841/optimal-bayesian-chart-for-controlling-expected-number-of-defects-in-production-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62841.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">573</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5818</span> Semi-Supervised Hierarchical Clustering Given a Reference Tree of Labeled Documents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ying%20Zhao">Ying Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Xingyan%20Bin"> Xingyan Bin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Semi-supervised clustering algorithms have been shown effective to improve clustering process with even limited supervision. However, semi-supervised hierarchical clustering remains challenging due to the complexities of expressing constraints for agglomerative clustering algorithms. This paper proposes novel semi-supervised agglomerative clustering algorithms to build a hierarchy based on a known reference tree. We prove that by enforcing distance constraints defined by a reference tree during the process of hierarchical clustering, the resultant tree is guaranteed to be consistent with the reference tree. We also propose a framework that allows the hierarchical tree generation be aware of levels of levels of the agglomerative tree under creation, so that metric weights can be learned and adopted at each level in a recursive fashion. The experimental evaluation shows that the additional cost of our contraint-based semi-supervised hierarchical clustering algorithm (HAC) is negligible, and our combined semi-supervised HAC algorithm outperforms the state-of-the-art algorithms on real-world datasets. The experiments also show that our proposed methods can improve clustering performance even with a small number of unevenly distributed labeled data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=semi-supervised%20clustering" title="semi-supervised clustering">semi-supervised clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%0D%0Aagglomerative%20clustering" title=" hierarchical agglomerative clustering"> hierarchical agglomerative clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=reference%20trees" title=" reference trees"> reference trees</a>, <a href="https://publications.waset.org/abstracts/search?q=distance%20constraints" title=" distance constraints "> distance constraints </a> </p> <a href="https://publications.waset.org/abstracts/19478/semi-supervised-hierarchical-clustering-given-a-reference-tree-of-labeled-documents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19478.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">547</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5817</span> A Bayesian Parameter Identification Method for Thermorheological Complex Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20Anton%20Kraus">Michael Anton Kraus</a>, <a href="https://publications.waset.org/abstracts/search?q=Miriam%20Schuster"> Miriam Schuster</a>, <a href="https://publications.waset.org/abstracts/search?q=Geralt%20Siebert"> Geralt Siebert</a>, <a href="https://publications.waset.org/abstracts/search?q=Jens%20Schneider"> Jens Schneider</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polymers increasingly gained interest in construction materials over the last years in civil engineering applications. As polymeric materials typically show time- and temperature dependent material behavior, which is accounted for in the context of the theory of linear viscoelasticity. Within the context of this paper, the authors show, that some polymeric interlayers for laminated glass can not be considered as thermorheologically simple as they do not follow a simple TTSP, thus a methodology of identifying the thermorheologically complex constitutive bahavioir is needed. ‘Dynamical-Mechanical-Thermal-Analysis’ (DMTA) in tensile and shear mode as well as ‘Differential Scanning Caliometry’ (DSC) tests are carried out on the interlayer material ‘Ethylene-vinyl acetate’ (EVA). A navoel Bayesian framework for the Master Curving Process as well as the detection and parameter identification of the TTSPs along with their associated Prony-series is derived and applied to the EVA material data. To our best knowledge, this is the first time, an uncertainty quantification of the Prony-series in a Bayesian context is shown. Within this paper, we could successfully apply the derived Bayesian methodology to the EVA material data to gather meaningful Master Curves and TTSPs. Uncertainties occurring in this process can be well quantified. We found, that EVA needs two TTSPs with two associated Generalized Maxwell Models. As the methodology is kept general, the derived framework could be also applied to other thermorheologically complex polymers for parameter identification purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bayesian%20parameter%20identification" title="bayesian parameter identification">bayesian parameter identification</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20Maxwell%20model" title=" generalized Maxwell model"> generalized Maxwell model</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20viscoelasticity" title=" linear viscoelasticity"> linear viscoelasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=thermorheological%20complex" title=" thermorheological complex "> thermorheological complex </a> </p> <a href="https://publications.waset.org/abstracts/93017/a-bayesian-parameter-identification-method-for-thermorheological-complex-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93017.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5816</span> A Hierarchical Bayesian Calibration of Data-Driven Models for Composite Laminate Consolidation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nikolaos%20Papadimas">Nikolaos Papadimas</a>, <a href="https://publications.waset.org/abstracts/search?q=Joanna%20Bennett"> Joanna Bennett</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Sakhaei"> Amir Sakhaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Timothy%20Dodwell"> Timothy Dodwell</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Composite modeling of consolidation processes is playing an important role in the process and part design by indicating the formation of possible unwanted prior to expensive experimental iterative trial and development programs. Composite materials in their uncured state display complex constitutive behavior, which has received much academic interest, and this with different models proposed. Errors from modeling and statistical which arise from this fitting will propagate through any simulation in which the material model is used. A general hyperelastic polynomial representation was proposed, which can be readily implemented in various nonlinear finite element packages. In our case, FEniCS was chosen. The coefficients are assumed uncertain, and therefore the distribution of parameters learned using Markov Chain Monte Carlo (MCMC) methods. In engineering, the approach often followed is to select a single set of model parameters, which on average, best fits a set of experiments. There are good statistical reasons why this is not a rigorous approach to take. To overcome these challenges, A hierarchical Bayesian framework was proposed in which population distribution of model parameters is inferred from an ensemble of experiments tests. The resulting sampled distribution of hyperparameters is approximated using Maximum Entropy methods so that the distribution of samples can be readily sampled when embedded within a stochastic finite element simulation. The methodology is validated and demonstrated on a set of consolidation experiments of AS4/8852 with various stacking sequences. The resulting distributions are then applied to stochastic finite element simulations of the consolidation of curved parts, leading to a distribution of possible model outputs. With this, the paper, as far as the authors are aware, represents the first stochastic finite element implementation in composite process modelling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data-driven" title="data-driven ">data-driven </a>, <a href="https://publications.waset.org/abstracts/search?q=material%20consolidation" title=" material consolidation"> material consolidation</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20finite%20%20elements" title=" stochastic finite elements"> stochastic finite elements</a>, <a href="https://publications.waset.org/abstracts/search?q=surrogate%20models" title=" surrogate models"> surrogate models</a> </p> <a href="https://publications.waset.org/abstracts/136517/a-hierarchical-bayesian-calibration-of-data-driven-models-for-composite-laminate-consolidation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136517.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5815</span> Meta-Learning for Hierarchical Classification and Applications in Bioinformatics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fabio%20Fabris">Fabio Fabris</a>, <a href="https://publications.waset.org/abstracts/search?q=Alex%20A.%20Freitas"> Alex A. Freitas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hierarchical classification is a special type of classification task where the class labels are organised into a hierarchy, with more generic class labels being ancestors of more specific ones. Meta-learning for classification-algorithm recommendation consists of recommending to the user a classification algorithm, from a pool of candidate algorithms, for a dataset, based on the past performance of the candidate algorithms in other datasets. Meta-learning is normally used in conventional, non-hierarchical classification. By contrast, this paper proposes a meta-learning approach for more challenging task of hierarchical classification, and evaluates it in a large number of bioinformatics datasets. Hierarchical classification is especially relevant for bioinformatics problems, as protein and gene functions tend to be organised into a hierarchy of class labels. This work proposes meta-learning approach for recommending the best hierarchical classification algorithm to a hierarchical classification dataset. This work&rsquo;s contributions are: 1) proposing an algorithm for splitting hierarchical datasets into new datasets to increase the number of meta-instances, 2) proposing meta-features for hierarchical classification, and 3) interpreting decision-tree meta-models for hierarchical classification algorithm recommendation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algorithm%20recommendation" title="algorithm recommendation">algorithm recommendation</a>, <a href="https://publications.waset.org/abstracts/search?q=meta-learning" title=" meta-learning"> meta-learning</a>, <a href="https://publications.waset.org/abstracts/search?q=bioinformatics" title=" bioinformatics"> bioinformatics</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20classification" title=" hierarchical classification"> hierarchical classification</a> </p> <a href="https://publications.waset.org/abstracts/81005/meta-learning-for-hierarchical-classification-and-applications-in-bioinformatics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5814</span> Probabilistic Approach of Dealing with Uncertainties in Distributed Constraint Optimization Problems and Situation Awareness for Multi-agent Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sagir%20M.%20Yusuf">Sagir M. Yusuf</a>, <a href="https://publications.waset.org/abstracts/search?q=Chris%20Baber"> Chris Baber</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we describe how Bayesian inferential reasoning will contributes in obtaining a well-satisfied prediction for Distributed Constraint Optimization Problems (DCOPs) with uncertainties. We also demonstrate how DCOPs could be merged to multi-agent knowledge understand and prediction (i.e. Situation Awareness). The DCOPs functions were merged with Bayesian Belief Network (BBN) in the form of situation, awareness, and utility nodes. We describe how the uncertainties can be represented to the BBN and make an effective prediction using the expectation-maximization algorithm or conjugate gradient descent algorithm. The idea of variable prediction using Bayesian inference may reduce the number of variables in agents&rsquo; sampling domain and also allow missing variables estimations. Experiment results proved that the BBN perform compelling predictions with samples containing uncertainties than the perfect samples. That is, Bayesian inference can help in handling uncertainties and dynamism of DCOPs, which is the current issue in the DCOPs community. We show how Bayesian inference could be formalized with Distributed Situation Awareness (DSA) using uncertain and missing agents&rsquo; data. The whole framework was tested on multi-UAV mission for forest fire searching. Future work focuses on augmenting existing architecture to deal with dynamic DCOPs algorithms and multi-agent information merging. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DCOP" title="DCOP">DCOP</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-agent%20reasoning" title=" multi-agent reasoning"> multi-agent reasoning</a>, <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20reasoning" title=" Bayesian reasoning"> Bayesian reasoning</a>, <a href="https://publications.waset.org/abstracts/search?q=swarm%20intelligence" title=" swarm intelligence"> swarm intelligence</a> </p> <a href="https://publications.waset.org/abstracts/116869/probabilistic-approach-of-dealing-with-uncertainties-in-distributed-constraint-optimization-problems-and-situation-awareness-for-multi-agent-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116869.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5813</span> An Optimal Bayesian Maintenance Policy for a Partially Observable System Subject to Two Failure Modes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akram%20Khaleghei%20Ghosheh%20Balagh">Akram Khaleghei Ghosheh Balagh</a>, <a href="https://publications.waset.org/abstracts/search?q=Viliam%20Makis"> Viliam Makis</a>, <a href="https://publications.waset.org/abstracts/search?q=Leila%20Jafari"> Leila Jafari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present a new maintenance model for a partially observable system subject to two failure modes, namely a catastrophic failure and a failure due to the system degradation. The system is subject to condition monitoring and the degradation process is described by a hidden Markov model. A cost-optimal Bayesian control policy is developed for maintaining the system. The control problem is formulated in the semi-Markov decision process framework. An effective computational algorithm is developed and illustrated by a numerical example. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=partially%20observable%20system" title="partially observable system">partially observable system</a>, <a href="https://publications.waset.org/abstracts/search?q=hidden%20Markov%20model" title=" hidden Markov model"> hidden Markov model</a>, <a href="https://publications.waset.org/abstracts/search?q=competing%20risks" title=" competing risks"> competing risks</a>, <a href="https://publications.waset.org/abstracts/search?q=multivariate%20Bayesian%20control" title=" multivariate Bayesian control"> multivariate Bayesian control</a> </p> <a href="https://publications.waset.org/abstracts/12740/an-optimal-bayesian-maintenance-policy-for-a-partially-observable-system-subject-to-two-failure-modes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12740.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5812</span> The Effect of Institutions on Economic Growth: An Analysis Based on Bayesian Panel Data Estimation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Anwar">Mohammad Anwar</a>, <a href="https://publications.waset.org/abstracts/search?q=Shah%20Waliullah"> Shah Waliullah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigated panel data regression models. This paper used Bayesian and classical methods to study the impact of institutions on economic growth from data (1990-2014), especially in developing countries. Under the classical and Bayesian methodology, the two-panel data models were estimated, which are common effects and fixed effects. For the Bayesian approach, the prior information is used in this paper, and normal gamma prior is used for the panel data models. The analysis was done through WinBUGS14 software. The estimated results of the study showed that panel data models are valid models in Bayesian methodology. In the Bayesian approach, the effects of all independent variables were positively and significantly affected by the dependent variables. Based on the standard errors of all models, we must say that the fixed effect model is the best model in the Bayesian estimation of panel data models. Also, it was proved that the fixed effect model has the lowest value of standard error, as compared to other models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20approach" title="Bayesian approach">Bayesian approach</a>, <a href="https://publications.waset.org/abstracts/search?q=common%20effect" title=" common effect"> common effect</a>, <a href="https://publications.waset.org/abstracts/search?q=fixed%20effect" title=" fixed effect"> fixed effect</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20effect" title=" random effect"> random effect</a>, <a href="https://publications.waset.org/abstracts/search?q=Dynamic%20Random%20Effect%20Model" title=" Dynamic Random Effect Model"> Dynamic Random Effect Model</a> </p> <a href="https://publications.waset.org/abstracts/161692/the-effect-of-institutions-on-economic-growth-an-analysis-based-on-bayesian-panel-data-estimation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161692.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5811</span> Upgrades for Hydric Supply in Water System Distribution: Use of the Bayesian Network and Technical Expedients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elena%20Carcano">Elena Carcano</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20Ball"> James Ball</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work details the strategies adopted by the Italian Water Utilities during the distribution of water in emergency conditions which glide from earthquakes and droughts to floods and fires. Several water bureaus located over the national territory have been interviewed, and the collected information has been used in a database of potential interventions to be taken. The work discusses the actions adopted by water utilities. These are generally prioritized in order to minimize the social, temporal, and economic burden that the damaged and nearby areas need to support. Actions are defined relying on the Bayesian Network Approach, which constitutes the hard core of any decision support system. The Bayesian Networks give answers to interventions to real and most likely risky cases. The added value of this research consists in supplying the National Bureau, namely Protezione Civile, in charge of managing havoc and catastrophic situations with a univocal plot outline so as to be able to handle actions uniformly at the expense of different local laws or contradictory customs which squander any recovery conditions, proper technical service, and economic aids. The paper is organized as follows: in section 1, the introduction is stated; section 2 provides a brief discussion of BNNs (Bayesian Networks), section 3 introduces the adopted methodology; and in the last sections, results are presented, and conclusions are drawn. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20process" title="hierarchical process">hierarchical process</a>, <a href="https://publications.waset.org/abstracts/search?q=strategic%20plan" title=" strategic plan"> strategic plan</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20emergency%20conditions" title=" water emergency conditions"> water emergency conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20supply" title=" water supply"> water supply</a> </p> <a href="https://publications.waset.org/abstracts/150764/upgrades-for-hydric-supply-in-water-system-distribution-use-of-the-bayesian-network-and-technical-expedients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150764.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5810</span> Probabilistic Approach to Contrast Theoretical Predictions from a Public Corruption Game Using Bayesian Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaime%20E.%20Fernandez">Jaime E. Fernandez</a>, <a href="https://publications.waset.org/abstracts/search?q=Pablo%20J.%20Valverde"> Pablo J. Valverde</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a methodological approach that aims to contrast/validate theoretical results from a corruption network game through probabilistic analysis of simulated microdata using Bayesian Networks (BNs). The research develops a public corruption model in a game theory framework. Theoretical results suggest a series of 'optimal settings' of model's exogenous parameters that boost the emergence of corruption. The paper contrasts these outcomes with probabilistic inference results based on BNs adjusted over simulated microdata. Principal findings indicate that probabilistic reasoning based on BNs significantly improves parameter specification and causal analysis in a public corruption game. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20networks" title="Bayesian networks">Bayesian networks</a>, <a href="https://publications.waset.org/abstracts/search?q=probabilistic%20reasoning" title=" probabilistic reasoning"> probabilistic reasoning</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20corruption" title=" public corruption"> public corruption</a>, <a href="https://publications.waset.org/abstracts/search?q=theoretical%20games" title=" theoretical games"> theoretical games</a> </p> <a href="https://publications.waset.org/abstracts/100412/probabilistic-approach-to-contrast-theoretical-predictions-from-a-public-corruption-game-using-bayesian-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100412.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5809</span> Hybrid Hierarchical Clustering Approach for Community Detection in Social Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Radhia%20Toujani">Radhia Toujani</a>, <a href="https://publications.waset.org/abstracts/search?q=Jalel%20Akaichi"> Jalel Akaichi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Social Networks generally present a hierarchy of communities. To determine these communities and the relationship between them, detection algorithms should be applied. Most of the existing algorithms, proposed for hierarchical communities identification, are based on either agglomerative clustering or divisive clustering. In this paper, we present a hybrid hierarchical clustering approach for community detection based on both bottom-up and bottom-down clustering. Obviously, our approach provides more relevant community structure than hierarchical method which considers only divisive or agglomerative clustering to identify communities. Moreover, we performed some comparative experiments to enhance the quality of the clustering results and to show the effectiveness of our algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agglomerative%20hierarchical%20clustering" title="agglomerative hierarchical clustering">agglomerative hierarchical clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=community%20structure" title=" community structure"> community structure</a>, <a href="https://publications.waset.org/abstracts/search?q=divisive%20hierarchical%20clustering" title=" divisive hierarchical clustering"> divisive hierarchical clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20hierarchical%20clustering" title=" hybrid hierarchical clustering"> hybrid hierarchical clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=opinion%20mining" title=" opinion mining"> opinion mining</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20network" title=" social network"> social network</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20network%20analysis" title=" social network analysis"> social network analysis</a> </p> <a href="https://publications.waset.org/abstracts/63702/hybrid-hierarchical-clustering-approach-for-community-detection-in-social-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63702.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5808</span> A General Framework for Knowledge Discovery from Echocardiographic and Natural Images </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Nandagopalan">S. Nandagopalan</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Pradeep"> N. Pradeep</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is to propose a general framework for storing, analyzing, and extracting knowledge from two-dimensional echocardiographic images, color Doppler images, non-medical images, and general data sets. A number of high performance data mining algorithms have been used to carry out this task. Our framework encompasses four layers namely physical storage, object identification, knowledge discovery, user level. Techniques such as active contour model to identify the cardiac chambers, pixel classification to segment the color Doppler echo image, universal model for image retrieval, Bayesian method for classification, parallel algorithms for image segmentation, etc., were employed. Using the feature vector database that have been efficiently constructed, one can perform various data mining tasks like clustering, classification, etc. with efficient algorithms along with image mining given a query image. All these facilities are included in the framework that is supported by state-of-the-art user interface (UI). The algorithms were tested with actual patient data and Coral image database and the results show that their performance is better than the results reported already. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20contour" title="active contour">active contour</a>, <a href="https://publications.waset.org/abstracts/search?q=Bayesian" title=" Bayesian"> Bayesian</a>, <a href="https://publications.waset.org/abstracts/search?q=echocardiographic%20image" title=" echocardiographic image"> echocardiographic image</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20vector" title=" feature vector"> feature vector</a> </p> <a href="https://publications.waset.org/abstracts/42868/a-general-framework-for-knowledge-discovery-from-echocardiographic-and-natural-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42868.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">445</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5807</span> A General Framework for Knowledge Discovery Using High Performance Machine Learning Algorithms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Nandagopalan">S. Nandagopalan</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Pradeep"> N. Pradeep</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is to propose a general framework for storing, analyzing, and extracting knowledge from two-dimensional echocardiographic images, color Doppler images, non-medical images, and general data sets. A number of high performance data mining algorithms have been used to carry out this task. Our framework encompasses four layers namely physical storage, object identification, knowledge discovery, user level. Techniques such as active contour model to identify the cardiac chambers, pixel classification to segment the color Doppler echo image, universal model for image retrieval, Bayesian method for classification, parallel algorithms for image segmentation, etc., were employed. Using the feature vector database that have been efficiently constructed, one can perform various data mining tasks like clustering, classification, etc. with efficient algorithms along with image mining given a query image. All these facilities are included in the framework that is supported by state-of-the-art user interface (UI). The algorithms were tested with actual patient data and Coral image database and the results show that their performance is better than the results reported already. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20contour" title="active contour">active contour</a>, <a href="https://publications.waset.org/abstracts/search?q=bayesian" title=" bayesian"> bayesian</a>, <a href="https://publications.waset.org/abstracts/search?q=echocardiographic%20image" title=" echocardiographic image"> echocardiographic image</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20vector" title=" feature vector"> feature vector</a> </p> <a href="https://publications.waset.org/abstracts/42632/a-general-framework-for-knowledge-discovery-using-high-performance-machine-learning-algorithms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5806</span> Bayesian Approach for Moving Extremes Ranked Set Sampling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Said%20Ali%20Al-Hadhrami">Said Ali Al-Hadhrami</a>, <a href="https://publications.waset.org/abstracts/search?q=Amer%20Ibrahim%20Al-Omari"> Amer Ibrahim Al-Omari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, Bayesian estimation for the mean of exponential distribution is considered using Moving Extremes Ranked Set Sampling (MERSS). Three priors are used; Jeffery, conjugate and constant using MERSS and Simple Random Sampling (SRS). Some properties of the proposed estimators are investigated. It is found that the suggested estimators using MERSS are more efficient than its counterparts based on SRS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayesian" title="Bayesian">Bayesian</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=moving%20extreme%20ranked%20set%20sampling" title=" moving extreme ranked set sampling"> moving extreme ranked set sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=ranked%20set%20sampling" title=" ranked set sampling"> ranked set sampling</a> </p> <a href="https://publications.waset.org/abstracts/30733/bayesian-approach-for-moving-extremes-ranked-set-sampling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30733.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">513</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hierarchical%20Bayesian%20framework&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hierarchical%20Bayesian%20framework&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hierarchical%20Bayesian%20framework&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hierarchical%20Bayesian%20framework&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hierarchical%20Bayesian%20framework&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hierarchical%20Bayesian%20framework&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hierarchical%20Bayesian%20framework&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hierarchical%20Bayesian%20framework&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hierarchical%20Bayesian%20framework&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hierarchical%20Bayesian%20framework&amp;page=194">194</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hierarchical%20Bayesian%20framework&amp;page=195">195</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hierarchical%20Bayesian%20framework&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10