CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;18 of 18 results for author: <span class="mathjax">Mann, I</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/astro-ph" aria-role="search"> Searching in archive <strong>astro-ph</strong>. <a href="/search/?searchtype=author&amp;query=Mann%2C+I">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Mann, I"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Mann%2C+I&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Mann, I"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.05031">arXiv:2408.05031</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.05031">pdf</a>, <a href="https://arxiv.org/format/2408.05031">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> </div> <p class="title is-5 mathjax"> On the distribution of the the near-solar bound dust grains detected with Parker Solar Probe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Ko%C4%8Di%C5%A1%C4%8D%C3%A1k%2C+S">Samuel Ko膷i拧膷谩k</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Theodorsen%2C+A">Audun Theodorsen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mann%2C+I">Ingrid Mann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.05031v1-abstract-short" style="display: inline;"> Parker Solar Probe (PSP) counts dust impacts in the near-solar region, but modelling effort is needed to understand the dust population&#39;s properties. We aim to constrain the dust cloud&#39;s properties based on the flux observed by PSP. We develop a forward-model for the bound dust detection rates using the formalism of 6D phase space distribution of the dust. We apply the model to the location table&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05031v1-abstract-full').style.display = 'inline'; document.getElementById('2408.05031v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.05031v1-abstract-full" style="display: none;"> Parker Solar Probe (PSP) counts dust impacts in the near-solar region, but modelling effort is needed to understand the dust population&#39;s properties. We aim to constrain the dust cloud&#39;s properties based on the flux observed by PSP. We develop a forward-model for the bound dust detection rates using the formalism of 6D phase space distribution of the dust. We apply the model to the location table of different PSP&#39;s solar encounter groups. We explain some of the near-perihelion features observed in the data as well as the broader characteristic of the dust flux between 0.15 AU and 0.5 AU. We compare the measurements of PSP to the measurements of Solar Orbiter (SolO) near 1 AU to expose the differences between the two spacecraft. We found that the dust flux observed by PSP between 0.15 AU and 0.5 AU in post-perihelia can be explained by dust on bound orbits and is consistent with a broad range of orbital parameters, including dust on circular orbits. However, the dust number density as a function of the heliocentric distance and the scaling of detection efficiency with the relative speed are important to explain the observed flux variation. The data suggest that the slope of differential mass distribution $未$ is between 0.14 and 0.49. The near-perihelion observations, however, show the flux maxima, which are inconsistent with the circular dust model, and additional effects may play a role. We found indication that the sunward side of PSP is less sensitive to the dust impacts, compared to the other PSP&#39;s surfaces. Conclusions. We show that the dust flux on PSP can be explained by non-circular bound dust and the detection capabilities of PSP. The scaling of flux with the impact speed is especially important, and shallower than previously assumed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05031v1-abstract-full').style.display = 'none'; document.getElementById('2408.05031v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.02727">arXiv:2301.02727</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.02727">pdf</a>, <a href="https://arxiv.org/format/2301.02727">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11214-023-00952-4">10.1007/s11214-023-00952-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Parker Solar Probe: Four Years of Discoveries at Solar Cycle Minimum </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Raouafi%2C+N+E">N. E. Raouafi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Matteini%2C+L">L. Matteini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Squire%2C+J">J. Squire</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Badman%2C+S+T">S. T. Badman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Velli%2C+M">M. Velli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klein%2C+K+G">K. G. Klein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+C+H+K">C. H. K. Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Matthaeus%2C+W+H">W. H. Matthaeus</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Szabo%2C+A">A. Szabo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Linton%2C+M">M. Linton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allen%2C+R+C">R. C. Allen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Szalay%2C+J+R">J. R. Szalay</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bruno%2C+R">R. Bruno</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Decker%2C+R+B">R. B. Decker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Akhavan-Tafti%2C+M">M. Akhavan-Tafti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Agapitov%2C+O+V">O. V. Agapitov</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bale%2C+S+D">S. D. Bale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bandyopadhyay%2C+R">R. Bandyopadhyay</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battams%2C+K">K. Battams</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ber%C4%8Di%C4%8D%2C+L">L. Ber膷i膷</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bourouaine%2C+S">S. Bourouaine</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bowen%2C+T">T. Bowen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cattell%2C+C">C. Cattell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chandran%2C+B+D+G">B. D. G. Chandran</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chhiber%2C+R">R. Chhiber</a> , et al. (32 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.02727v1-abstract-short" style="display: inline;"> Launched on 12 Aug. 2018, NASA&#39;s Parker Solar Probe had completed 13 of its scheduled 24 orbits around the Sun by Nov. 2022. The mission&#39;s primary science goal is to determine the structure and dynamics of the Sun&#39;s coronal magnetic field, understand how the solar corona and wind are heated and accelerated, and determine what processes accelerate energetic particles. Parker Solar Probe returned a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.02727v1-abstract-full').style.display = 'inline'; document.getElementById('2301.02727v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.02727v1-abstract-full" style="display: none;"> Launched on 12 Aug. 2018, NASA&#39;s Parker Solar Probe had completed 13 of its scheduled 24 orbits around the Sun by Nov. 2022. The mission&#39;s primary science goal is to determine the structure and dynamics of the Sun&#39;s coronal magnetic field, understand how the solar corona and wind are heated and accelerated, and determine what processes accelerate energetic particles. Parker Solar Probe returned a treasure trove of science data that far exceeded quality, significance, and quantity expectations, leading to a significant number of discoveries reported in nearly 700 peer-reviewed publications. The first four years of the 7-year primary mission duration have been mostly during solar minimum conditions with few major solar events. Starting with orbit 8 (i.e., 28 Apr. 2021), Parker flew through the magnetically dominated corona, i.e., sub-Alfv茅nic solar wind, which is one of the mission&#39;s primary objectives. In this paper, we present an overview of the scientific advances made mainly during the first four years of the Parker Solar Probe mission, which go well beyond the three science objectives that are: (1) Trace the flow of energy that heats and accelerates the solar corona and solar wind; (2) Determine the structure and dynamics of the plasma and magnetic fields at the sources of the solar wind; and (3) Explore mechanisms that accelerate and transport energetic particles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.02727v1-abstract-full').style.display = 'none'; document.getElementById('2301.02727v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">157 pages, 65 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Space Science Reviews 2023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.14248">arXiv:2212.14248</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.14248">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.icarus.2009.11.018">10.1016/j.icarus.2009.11.018 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Mid-infrared spectra of the shocked Murchison CM chondrite: Comparison with astronomical observations of dust in debris disks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Morlok%2C+A">A. Morlok</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koike%2C+C">C. Koike</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tomioka%2C+N">N. Tomioka</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mann%2C+I">I. Mann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tomoeka%2C+K">K. Tomoeka</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.14248v1-abstract-short" style="display: inline;"> We present laboratory mid-infrared transmission/absorption spectra obtained from matrix of the hydrated Murchison CM meteorite experimentally shocked at peak pressures of 10 to 49 GPa, and compare them to astronomical observations of circumstellar dust in different stages of the formation of planetary systems. The laboratory spectra of the Murchison samples exhibit characteristic changes in the in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.14248v1-abstract-full').style.display = 'inline'; document.getElementById('2212.14248v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.14248v1-abstract-full" style="display: none;"> We present laboratory mid-infrared transmission/absorption spectra obtained from matrix of the hydrated Murchison CM meteorite experimentally shocked at peak pressures of 10 to 49 GPa, and compare them to astronomical observations of circumstellar dust in different stages of the formation of planetary systems. The laboratory spectra of the Murchison samples exhibit characteristic changes in the infrared features. A weakly shocked sample (shocked at 10 GPa) shows almost no changes from the unshocked sample dominated by hydrous silicate (serpentine). Moderately shocked samples (21 to 34 GPa) have typical serpentine features gradually replaced by bands of amorphous material and olivine with increasing shock pressure. A strongly shocked sample (36 GPa) shows major changes due to decomposition of the serpentine and due to devolatilization. A shock melted sample (49 GPa) shows features of olivine recrystallized from melted material. The spectra of highly shocked Murchison samples (36 and 49 GPa) are similar to those of dust in the debris disks of HD113766 and HD69830, and the transitional disk of HD100546. The moderately shocked samples (21 to 34 GPa) exhibit spectra similar to those of dust in the debris disks of Beta Pictoris and BD+20307, and the transitional disk of GM Aur. An average of the spectra of all Murchison samples (0 to 49 GPa) has a similarity to the spectrum of the older protoplanetary disk of SU Auriga. In the gas-rich transitional and protoplanetary disks, the abundances of amorphous silicates and gases have widely been considered to be a primary property. However, our study suggests that impact processing may play a significant role in generating secondary amorphous silicates and gases in those disks. Infrared spectra of the shocked Murchison samples are also suggesting that the comets also contain shocked Murchison-like material. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.14248v1-abstract-full').style.display = 'none'; document.getElementById('2212.14248v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Icarus (2010), Volume 207, Issue 1, p. 45-53 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.03562">arXiv:2210.03562</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.03562">pdf</a>, <a href="https://arxiv.org/format/2210.03562">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202245165">10.1051/0004-6361/202245165 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Modelling Solar Orbiter Dust Detection Rates in Inner Heliosphere as a Poisson Process </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Ko%C4%8Di%C5%A1%C4%8D%C3%A1k%2C+S">Samuel Ko膷i拧膷谩k</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kvammen%2C+A">Andreas Kvammen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mann%2C+I">Ingrid Mann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=S%C3%B8rbye%2C+S+H">Sigrunn Holbek S酶rbye</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Theodorsen%2C+A">Audun Theodorsen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zaslavsky%2C+A">Arnaud Zaslavsky</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.03562v1-abstract-short" style="display: inline;"> Solar Orbiter provides dust detection capability in inner heliosphere, but estimating physical properties of detected dust from the collected data is far from straightforward. First, a physical model for dust collection considering a Poisson process is formulated. Second, it is shown that dust on hyperbolic orbits is responsible for the majority of dust detections with Solar Orbiter&#39;s Radio and Pl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.03562v1-abstract-full').style.display = 'inline'; document.getElementById('2210.03562v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.03562v1-abstract-full" style="display: none;"> Solar Orbiter provides dust detection capability in inner heliosphere, but estimating physical properties of detected dust from the collected data is far from straightforward. First, a physical model for dust collection considering a Poisson process is formulated. Second, it is shown that dust on hyperbolic orbits is responsible for the majority of dust detections with Solar Orbiter&#39;s Radio and Plasma Waves (SolO/RPW). Third, the model for dust counts is fitted to SolO/RPW data and parameters of the dust are inferred, namely: radial velocity, hyperbolic meteoroids predominance, and solar radiation pressure to gravity ratio as well as uncertainties of these. Non-parametric model fitting is used to get the difference between inbound and outbound detection rate and dust radial velocity is thus estimated. A hierarchical Bayesian model is formulated and applied to available SolO/RPW data. The model uses the methodology of Integrated Nested Laplace Approximation, estimating parameters of dust and their uncertainties. SolO/RPW dust observations can be modelled as a Poisson process in a Bayesian framework and observations up to this date are consistent with the hyperbolic dust model with an additional background component. Analysis suggests a radial velocity of the hyperbolic component around $(63 \pm 7) \mathrm{km/s}$ with the predominance of hyperbolic dust about $(78 \pm 4) \%$. The results are consistent with hyperbolic meteoroids originating between $0.02 \mathrm{AU}$ and $0.1 \mathrm{AU}$ and showing substantial deceleration, which implies effective solar radiation pressure to gravity ratio $\gtrsim 0.5$. The flux of hyperbolic component at $1 \mathrm{AU}$ is found to be $(1.1 \pm 0.2) \times 10^{-4} \mathrm{m^{-2}s^{-1}}$ and the flux of background component at $1 \mathrm{AU}$ is found to be $(5.4 \pm 1.5) \times 10^{-5} \mathrm{m^{-2}s^{-1}}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.03562v1-abstract-full').style.display = 'none'; document.getElementById('2210.03562v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.00377">arXiv:1908.00377</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1908.00377">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> </div> <p class="title is-5 mathjax"> Cometary Plasma Science -- A White Paper in response to the Voyage 2050 Call by the European Space Agency </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=G%C3%B6tz%2C+C">Charlotte G枚tz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gunell%2C+H">Herber Gunell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Volwerk%2C+M">Martin Volwerk</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beth%2C+A">Arnaud Beth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eriksson%2C+A">Anders Eriksson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galand%2C+M">Marina Galand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Henri%2C+P">Pierre Henri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nilsson%2C+H">Hans Nilsson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wedlund%2C+C+S">Cyril Simon Wedlund</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alho%2C+M">Markku Alho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andersson%2C+L">Laila Andersson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andre%2C+N">Nicolas Andre</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Keyser%2C+J">Johan De Keyser</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Deca%2C+J">Jan Deca</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ge%2C+Y">Yasong Ge</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gla%C3%9Fmeier%2C+K">Karl-Heinz Gla脽meier</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hajra%2C+R">Rajkumar Hajra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Karlsson%2C+T">Tomas Karlsson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kasahara%2C+S">Satoshi Kasahara</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kolmasova%2C+I">Ivana Kolmasova</a>, <a href="/search/astro-ph?searchtype=author&amp;query=LLera%2C+K">Kristie LLera</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Madanian%2C+H">Hadi Madanian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mann%2C+I">Ingrid Mann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mazelle%2C+C">Christian Mazelle</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Odelstad%2C+E">Elias Odelstad</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.00377v1-abstract-short" style="display: inline;"> Comets hold the key to the understanding of our solar system, its formation and its evolution, and to the fundamental plasma processes at work both in it and beyond it. A comet nucleus emits gas as it is heated by the sunlight. The gas forms the coma, where it is ionised, becomes a plasma and eventually interacts with the solar wind. Besides these neutral and ionised gases, the coma also contains&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.00377v1-abstract-full').style.display = 'inline'; document.getElementById('1908.00377v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.00377v1-abstract-full" style="display: none;"> Comets hold the key to the understanding of our solar system, its formation and its evolution, and to the fundamental plasma processes at work both in it and beyond it. A comet nucleus emits gas as it is heated by the sunlight. The gas forms the coma, where it is ionised, becomes a plasma and eventually interacts with the solar wind. Besides these neutral and ionised gases, the coma also contains dust grains, released from the comet nucleus. As a cometary atmosphere develops when the comet travels through the solar system, large-scale structures, such as the plasma boundaries, develop and disappear, while at planets such large-scale structures are only accessible in their fully grown, quasi-steady state. In situ measurements at comets enable us to learn both how such large-scale structures are formed or reformed and how small-scale processes in the plasma affect the formation and properties of these large scale structures. Furthermore, a comet goes through a wide range of parameter regimes during its life cycle, where either collisional processes, involving neutrals and charged particles, or collisionless processes are at play, and might even compete in complicated transitional regimes. Thus a comet presents a unique opportunity to study this parameter space, from an asteroid-like to a Mars- and Venus-like interaction. Fast flybys of comets have made many new discoveries, setting the stage for a multi-spacecraft mission to accompany a comet on its journey through the solar system. This white paper reviews the present-day knowledge of cometary plasmas, discusses the many questions that remain unanswered, and outlines a multi-spacecraft ESA mission to accompany a comet that will answer these questions by combining both multi-spacecraft observations and a rendezvous mission, and at the same time advance our understanding of fundamental plasma physics and its role in planetary systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.00377v1-abstract-full').style.display = 'none'; document.getElementById('1908.00377v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.12502">arXiv:1810.12502</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.12502">pdf</a>, <a href="https://arxiv.org/ps/1810.12502">ps</a>, <a href="https://arxiv.org/format/1810.12502">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/S1743921319004666">10.1017/S1743921319004666 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nano Dust in Space and Astrophysics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Mann%2C+I">Ingrid Mann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+A">Aigen Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tanaka%2C+K">Kyoko Tanaka</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.12502v2-abstract-short" style="display: inline;"> We summarize the Focus Meeting (FM10) &#34;Nano Dust in Space and Astrophysics&#34; held in Vienna, Austria on 28-29 August 2018 during the 30th General Assembly of the International Astronomical Union (IAU). The theme of this focus meeting is related to the detection, characterization and modeling of nano particles --- cosmic dust of sizes of roughly 1 to 100 nm --- in space environments like the interst&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.12502v2-abstract-full').style.display = 'inline'; document.getElementById('1810.12502v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.12502v2-abstract-full" style="display: none;"> We summarize the Focus Meeting (FM10) &#34;Nano Dust in Space and Astrophysics&#34; held in Vienna, Austria on 28-29 August 2018 during the 30th General Assembly of the International Astronomical Union (IAU). The theme of this focus meeting is related to the detection, characterization and modeling of nano particles --- cosmic dust of sizes of roughly 1 to 100 nm --- in space environments like the interstellar medium, planetary debris disks, the heliosphere, the vicinity of the Sun and planetary atmospheres, and the space near Earth. Discussions focus on nano dust that forms from condensations and collisions and from planetary objects, as well as its interactions with space plasmas like the solar and stellar winds, atmospheres and magnetospheres. A particular goal is to bring together space scientists, astronomers, astrophysicists, and laboratory experimentalists and combine their knowledge to reach cross fertilization of different disciplines. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.12502v2-abstract-full').style.display = 'none'; document.getElementById('1810.12502v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 1 figure; conference summary for the Focus Meeting (FM10) &#34;Nano Dust in Space and Astrophysics&#34; (August 28-29, 2018) of the 30th General Assembly of IAU in Vienna, Austria</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proc. IAU 14 (2018) 379-381 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1504.02345">arXiv:1504.02345</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1504.02345">pdf</a>, <a href="https://arxiv.org/ps/1504.02345">ps</a>, <a href="https://arxiv.org/format/1504.02345">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0004-637X/806/1/77">10.1088/0004-637X/806/1/77 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nanodust detection between 1 and 5 AU by using Cassini wave measurements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Schippers%2C+P">P. Schippers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Meyer-Vernet%2C+N">N. Meyer-Vernet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lecacheux%2C+A">A. Lecacheux</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Belheouane%2C+S">S. Belheouane</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moncuquet%2C+M">M. Moncuquet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kurth%2C+W+S">W. S. Kurth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mann%2C+I">I. Mann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mitchell%2C+D+G">D. G. Mitchell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andr%C3%A9%2C+N">N. Andr茅</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1504.02345v1-abstract-short" style="display: inline;"> The solar system contains solids of all sizes, ranging from km-size bodies to nano-sized particles. Nanograins have been detected in situ in the Earth&#39;s atmosphere, near cometary and giant planet environments, and more recently in the solar wind at 1 AU. These latter nano grains are thought to be formed in the inner solar system dust cloud, mainly through collisional break-up of larger grains and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.02345v1-abstract-full').style.display = 'inline'; document.getElementById('1504.02345v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1504.02345v1-abstract-full" style="display: none;"> The solar system contains solids of all sizes, ranging from km-size bodies to nano-sized particles. Nanograins have been detected in situ in the Earth&#39;s atmosphere, near cometary and giant planet environments, and more recently in the solar wind at 1 AU. These latter nano grains are thought to be formed in the inner solar system dust cloud, mainly through collisional break-up of larger grains and are then picked-up and accelerated by the magnetized solar wind because of their large charge-to-mass ratio. In the present paper, we analyze the low frequency bursty noise identified in the Cassini radio and plasma wave data during the spacecraft cruise phase inside Jupiter&#39;s orbit. The magnitude, spectral shape and waveform of this broadband noise is consistent with the signature of nano particles impinging at nearby the solar wind speed on the spacecraft surface. Nanoparticles were observed whenever the radio instrument was turned on and able to detect them, at different heliocentric distances between Earth and Jupiter, suggesting their ubiquitous presence in the heliosphere. We analyzed the radial dependence of the nano dust flux with heliospheric distance and found that it is consistent with the dynamics of nano dust originating from the inner heliosphere and picked-up by the solar wind. The contribution of the nano dust produced in asteroid belt appears to be negligible compared to the trapping region in the inner heliosphere. In contrast, further out, nano dust are mainly produced by the volcanism of active moons such as Io and Enceladus. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.02345v1-abstract-full').style.display = 'none'; document.getElementById('1504.02345v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 April, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">to appear in ApJ</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2015 ApJ 806 77 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1503.06135">arXiv:1503.06135</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1503.06135">pdf</a>, <a href="https://arxiv.org/ps/1503.06135">ps</a>, <a href="https://arxiv.org/format/1503.06135">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.asr.2015.03.023">10.1016/j.asr.2015.03.023 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Understanding space weather to shield society: A global road map for 2015-2025 commissioned by COSPAR and ILWS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Schrijver%2C+C+J">Carolus J. Schrijver</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kauristie%2C+K">Kirsti Kauristie</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aylward%2C+A+D">Alan D. Aylward</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Denardini%2C+C+M">Clezio M. Denardini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gibson%2C+S+E">Sarah E. Gibson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Glover%2C+A">Alexi Glover</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gopalswamy%2C+N">Nat Gopalswamy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Grande%2C+M">Manuel Grande</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hapgood%2C+M">Mike Hapgood</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Heynderickx%2C+D">Daniel Heynderickx</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jakowski%2C+N">Norbert Jakowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kalegaev%2C+V+V">Vladimir V. Kalegaev</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lapenta%2C+G">Giovanni Lapenta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Linker%2C+J+A">Jon A. Linker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Liu%2C+S">Siqing Liu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mandrini%2C+C+H">Cristina H. Mandrini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mann%2C+I+R">Ian R. Mann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nagatsuma%2C+T">Tsutomu Nagatsuma</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nandi%2C+D">Dibyendu Nandi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Obara%2C+T">Takahiro Obara</a>, <a href="/search/astro-ph?searchtype=author&amp;query=O%27Brien%2C+T+P">T. Paul O&#39;Brien</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Onsager%2C+T">Terrance Onsager</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Opgenoorth%2C+H+J">Hermann J. Opgenoorth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Terkildsen%2C+M">Michael Terkildsen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Valladares%2C+C+E">Cesar E. Valladares</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1503.06135v1-abstract-short" style="display: inline;"> There is a growing appreciation that the environmental conditions that we call space weather impact the technological infrastructure that powers the coupled economies around the world. With that comes the need to better shield society against space weather by improving forecasts, environmental specifications, and infrastructure design. [...] advanced understanding of space weather requires a coord&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.06135v1-abstract-full').style.display = 'inline'; document.getElementById('1503.06135v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1503.06135v1-abstract-full" style="display: none;"> There is a growing appreciation that the environmental conditions that we call space weather impact the technological infrastructure that powers the coupled economies around the world. With that comes the need to better shield society against space weather by improving forecasts, environmental specifications, and infrastructure design. [...] advanced understanding of space weather requires a coordinated international approach to effectively provide awareness of the processes within the Sun-Earth system through observation-driven models. This roadmap prioritizes the scientific focus areas and research infrastructure that are needed to significantly advance our understanding of space weather of all intensities and of its implications for society. Advancement of the existing system observatory through the addition of small to moderate state-of-the-art capabilities designed to fill observational gaps will enable significant advances. Such a strategy requires urgent action: key instrumentation needs to be sustained, and action needs to be taken before core capabilities are lost in the aging ensemble. We recommend advances through priority focus (1) on observation-based modeling throughout the Sun-Earth system, (2) on forecasts more than 12 hrs ahead of the magnetic structure of incoming coronal mass ejections, (3) on understanding the geospace response to variable solar-wind stresses that lead to intense geomagnetically-induced currents and ionospheric and radiation storms, and (4) on developing a comprehensive specification of space climate, including the characterization of extreme space storms to guide resilient and robust engineering of technological infrastructures. The roadmap clusters its implementation recommendations by formulating three action pathways, and outlines needed instrumentation and research programs and infrastructure for each of these. [...] <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.06135v1-abstract-full').style.display = 'none'; document.getElementById('1503.06135v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">In press for Advances of Space Research: an international roadmap on the science of space weather, commissioned by COSPAR and ILWS (63 pages and 4 figures)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1210.8058">arXiv:1210.8058</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1210.8058">pdf</a>, <a href="https://arxiv.org/ps/1210.8058">ps</a>, <a href="https://arxiv.org/format/1210.8058">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/978-3-642-27543-2_2">10.1007/978-3-642-27543-2_2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nanodust in the Interstellar Medium in Comparison to the Solar System </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+A">Aigen Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mann%2C+I">Ingrid Mann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1210.8058v1-abstract-short" style="display: inline;"> Nanodust, which undergoes stochastic heating by single starlight photons in the interstellar medium, ranges from angstrom-sized large molecules containing tens to thousands of atoms (e.g. polycyclic aromatic hydrocarbon molecules) to grains of a couple tens of nanometers. The presence of nanograins in astrophysical environments has been revealed by a variety of interstellar phenomena: the optical&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1210.8058v1-abstract-full').style.display = 'inline'; document.getElementById('1210.8058v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1210.8058v1-abstract-full" style="display: none;"> Nanodust, which undergoes stochastic heating by single starlight photons in the interstellar medium, ranges from angstrom-sized large molecules containing tens to thousands of atoms (e.g. polycyclic aromatic hydrocarbon molecules) to grains of a couple tens of nanometers. The presence of nanograins in astrophysical environments has been revealed by a variety of interstellar phenomena: the optical luminescence, the near- and mid-infrared emission, the Galactic foreground microwave emission, and the ultraviolet extinction which are ubiquitously seen in the interstellar medium of the Milky Way and beyond. Nanograins (e.g. nanodiamonds) have also been identified as presolar in primitive meteorites based on their isotopically anomalous composition. Considering the very processes that lead to the detection of nanodust in the ISM for the nanodust in the solar system shows that the observation of solar system nanodust by these processes is less likely. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1210.8058v1-abstract-full').style.display = 'none'; document.getElementById('1210.8058v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 12 figures; invited book chapter for &#34;Nanodust in the Solar System: Discoveries and Interpretations&#34; (2012)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> published in &#34;Nanodust in the Solar System: Discoveries and Interpretations&#34; (Astrophys. Space Sci Lib, Vol. 385. ISBN 978-3-642-27542-5. ed. I. Mann; Springer-Verlag, 2012), chapter 1, pp 5--30 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1008.1742">arXiv:1008.1742</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1008.1742">pdf</a>, <a href="https://arxiv.org/ps/1008.1742">ps</a>, <a href="https://arxiv.org/format/1008.1742">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0741-3335/52/12/124012">10.1088/0741-3335/52/12/124012 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dust in the Interplanetary Medium </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Mann%2C+I">Ingrid Mann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Czechowski%2C+A">Andrzej Czechowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Meyer-Vernet%2C+N">Nicole Meyer-Vernet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zaslavsky%2C+A">Arnaud Zaslavsky</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lamy%2C+H">Herve Lamy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1008.1742v1-abstract-short" style="display: inline;"> The mass density of dust particles that form from asteroids and comets in the interplanetary medium of the solar system is, near 1 AU, comparable to the mass density of the solar wind. It is mainly contained in particles of micrometer size and larger. Dust and larger objects are destroyed by collisions and sublimation and hence feed heavy ions into the solar wind and the solar corona. Small dust p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1008.1742v1-abstract-full').style.display = 'inline'; document.getElementById('1008.1742v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1008.1742v1-abstract-full" style="display: none;"> The mass density of dust particles that form from asteroids and comets in the interplanetary medium of the solar system is, near 1 AU, comparable to the mass density of the solar wind. It is mainly contained in particles of micrometer size and larger. Dust and larger objects are destroyed by collisions and sublimation and hence feed heavy ions into the solar wind and the solar corona. Small dust particles are present in large number and as a result of their large charge to mass ratio deflected by electromagnetic forces in the solar wind. For nano dust particles of sizes 1 - 10 nm, recent calculations show trapping near the Sun and outside from about 0.15 AU ejection with velocities close to solar wind velocity. The fluxes of ejected nano dust are detected near 1AU with the plasma wave instrument onboard the STEREO spacecraft. Though such electric signals have been observed during dust impacts before, the interpretation depends on several different parameters and data analysis is still in progress. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1008.1742v1-abstract-full').style.display = 'none'; document.getElementById('1008.1742v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 8 figures, accepted for publication in Plasma Physics and Controlled Fusion, special issue 37th EPS Conference on Plasma Physics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0908.1279">arXiv:0908.1279</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0908.1279">pdf</a>, <a href="https://arxiv.org/format/0908.1279">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.pss.2009.11.002">10.1016/j.pss.2009.11.002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Three years of Ulysses dust data: 2005 to 2007 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kr%C3%BCger%2C+H">Harald Kr眉ger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dikarev%2C+V">V. Dikarev</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anweiler%2C+B">B. Anweiler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dermott%2C+S+F">S. F. Dermott</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Graps%2C+A+L">A. L. Graps</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gruen%2C+E">E. Gruen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gustafson%2C+B+A">B. A. Gustafson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hamilton%2C+D+P">D. P. Hamilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hanner%2C+M+S">M. S. Hanner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Horanyi%2C+M">M. Horanyi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kissel%2C+J">J. Kissel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Linkert%2C+D">D. Linkert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Linkert%2C+G">G. Linkert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mann%2C+I">I. Mann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McDonnell%2C+J+A+M">J. A. M. McDonnell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Morfill%2C+G+E">G. E. Morfill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Polanskey%2C+C">C. Polanskey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schwehm%2C+G">G. Schwehm</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Srama%2C+R">R. Srama</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0908.1279v1-abstract-short" style="display: inline;"> The Ulysses spacecraft has been orbiting the Sun on a highly inclined ellipse since it encountered Jupiter in February 1992. Since then it made almost three revolutions about the Sun. Here we report on the final three years of data taken by the on-board dust detector. During this time, the dust detector recorded 609 dust impacts of particles with masses 10^-16 g &lt;= m &lt;= 10^-7 g, bringing the mis&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0908.1279v1-abstract-full').style.display = 'inline'; document.getElementById('0908.1279v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0908.1279v1-abstract-full" style="display: none;"> The Ulysses spacecraft has been orbiting the Sun on a highly inclined ellipse since it encountered Jupiter in February 1992. Since then it made almost three revolutions about the Sun. Here we report on the final three years of data taken by the on-board dust detector. During this time, the dust detector recorded 609 dust impacts of particles with masses 10^-16 g &lt;= m &lt;= 10^-7 g, bringing the mission total to 6719 dust data sets. The impact rate varied from a low value of 0.3 per day at high ecliptic latitudes to 1.5 per day in the inner solar system. The impact direction of the majority of impacts between 2005 and 2007 is compatible with particles of interstellar origin, the rest are most likely interplanetary particles. We compare the interstellar dust measurements from 2005/2006 with the data obtained during earlier periods (1993/1994) and (1999/2000) when Ulysses was traversing the same spatial region at southern ecliptic latitudes but the solar cycle was at a different phase. During these three intervals the impact rate of interstellar grains varied by more than a factor of two. Furthermore, in the two earlier periods the grain impact direction was in agreement with the flow direction of the interstellar helium while in 2005/2006 we observed a shift in the approach direction of the grains by approximately 30 deg away from the ecliptic plane. The reason for this shift remains unclear but may be connected with the configuration of the interplanetary magnetic field during solar maximum. We also find that the dust measurements are in agreement with the interplanetary flux model of Staubach et al. (1997) which was developed to fit a 5-year span of Ulysses data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0908.1279v1-abstract-full').style.display = 'none'; document.getElementById('0908.1279v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">50 pages, 9 b/w Figures, 1 colour figure, 4 Tables; submitted to Planetary and Space Science</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0908.1051">arXiv:0908.1051</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0908.1051">pdf</a>, <a href="https://arxiv.org/format/0908.1051">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.pss.2010.03.003">10.1016/j.pss.2010.03.003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Galileo dust data from the jovian system: 2000 to 2003 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kr%C3%BCger%2C+H">Harald Kr眉ger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bindschadler%2C+D">D. Bindschadler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dermott%2C+S+F">S. F. Dermott</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Graps%2C+A+L">A. L. Graps</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gruen%2C+E">E. Gruen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gustafson%2C+B+A">B. A. Gustafson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hamilton%2C+D+P">D. P. Hamilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hanner%2C+M+S">M. S. Hanner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Horanyi%2C+M">M. Horanyi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kissel%2C+J">J. Kissel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Linkert%2C+D">D. Linkert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Linkert%2C+G">G. Linkert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mann%2C+I">I. Mann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McDonnell%2C+J+A+M">J. A. M. McDonnell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moissl%2C+R">R. Moissl</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Morfill%2C+G+E">G. E. Morfill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Polanskey%2C+C">C. Polanskey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Roy%2C+M">M. Roy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schwehm%2C+G">G. Schwehm</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Srama%2C+R">R. Srama</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0908.1051v1-abstract-short" style="display: inline;"> The Galileo spacecraft was orbiting Jupiter between Dec 1995 and Sep 2003. The Galileo dust detector monitored the jovian dust environment between about 2 and 370 R_J (jovian radius R_J = 71492 km). We present data from the Galileo dust instrument for the period January 2000 to September 2003. We report on the data of 5389 particles measured between 2000 and the end of the mission in 2003. The m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0908.1051v1-abstract-full').style.display = 'inline'; document.getElementById('0908.1051v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0908.1051v1-abstract-full" style="display: none;"> The Galileo spacecraft was orbiting Jupiter between Dec 1995 and Sep 2003. The Galileo dust detector monitored the jovian dust environment between about 2 and 370 R_J (jovian radius R_J = 71492 km). We present data from the Galileo dust instrument for the period January 2000 to September 2003. We report on the data of 5389 particles measured between 2000 and the end of the mission in 2003. The majority of the 21250 particles for which the full set of measured impact parameters (impact time, impact direction, charge rise times, charge amplitudes, etc.) was transmitted to Earth were tiny grains (about 10 nm in radius), most of them originating from Jupiter&#39;s innermost Galilean moon Io. Their impact rates frequently exceeded 10 min^-1. Surprisingly large impact rates up to 100 min^-1 occurred in Aug/Sep 2000 when Galileo was at about 280 R_J from Jupiter. This peak in dust emission appears to coincide with strong changes in the release of neutral gas from the Io torus. Strong variability in the Io dust flux was measured on timescales of days to weeks, indicating large variations in the dust release from Io or the Io torus or both on such short timescales. Galileo has detected a large number of bigger micron-sized particles mostly in the region between the Galilean moons. A surprisingly large number of such bigger grains was measured in March 2003 within a 4-day interval when Galileo was outside Jupiter&#39;s magnetosphere at approximately 350 R_J jovicentric distance. Two passages of Jupiter&#39;s gossamer rings in 2002 and 2003 provided the first actual comparison of in-situ dust data from a planetary ring with the results inferred from inverting optical images. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0908.1051v1-abstract-full').style.display = 'none'; document.getElementById('0908.1051v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">59 pages, 13 figures, 6 tables, submitted to Planetary and Space Science</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0903.4141">arXiv:0903.4141</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0903.4141">pdf</a>, <a href="https://arxiv.org/ps/0903.4141">ps</a>, <a href="https://arxiv.org/format/0903.4141">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11207-009-9349-2">10.1007/s11207-009-9349-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dust detection by the wave instrument on STEREO: nanoparticles picked up by the solar wind? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Meyer-Vernet%2C+N">N. Meyer-Vernet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maksimovic%2C+M">M. Maksimovic</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Czechowski%2C+A">A. Czechowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mann%2C+I">I. Mann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zouganelis%2C+I">I. Zouganelis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Goetz%2C+K">K. Goetz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kaiser%2C+M+L">M. L. Kaiser</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cyr%2C+O+C+S">O. C. St. Cyr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bougeret%2C+J+L">J. L. Bougeret</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bale%2C+S+D">S. D. Bale</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0903.4141v2-abstract-short" style="display: inline;"> The STEREO/WAVES instrument has detected a very large number of intense voltage pulses. We suggest that these events are produced by impact ionisation of nanoparticles striking the spacecraft at a velocity of the order of magnitude of the solar wind speed. Nanoparticles, which are half-way between micron-sized dust and atomic ions, have such a large charge-to-mass ratio that the electric field i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0903.4141v2-abstract-full').style.display = 'inline'; document.getElementById('0903.4141v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0903.4141v2-abstract-full" style="display: none;"> The STEREO/WAVES instrument has detected a very large number of intense voltage pulses. We suggest that these events are produced by impact ionisation of nanoparticles striking the spacecraft at a velocity of the order of magnitude of the solar wind speed. Nanoparticles, which are half-way between micron-sized dust and atomic ions, have such a large charge-to-mass ratio that the electric field induced by the solar wind magnetic field accelerates them very efficiently. Since the voltage produced by dust impacts increases very fast with speed, such nanoparticles produce signals as high as do much larger grains of smaller speeds. The flux of 10-nm radius grains inferred in this way is compatible with the interplanetary dust flux model. The present results may represent the first detection of fast nanoparticles in interplanetary space near Earth orbit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0903.4141v2-abstract-full').style.display = 'none'; document.getElementById('0903.4141v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 2009; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 March, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">In press in Solar Physics, 13 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0808.4113">arXiv:0808.4113</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0808.4113">pdf</a>, <a href="https://arxiv.org/ps/0808.4113">ps</a>, <a href="https://arxiv.org/format/0808.4113">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics">astro-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1086/592961">10.1086/592961 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Complex Organic Materials in the HR 4796A Disk? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Koehler%2C+M">M. Koehler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mann%2C+I">I. Mann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+A">Aigen Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0808.4113v1-abstract-short" style="display: inline;"> The red spectral shape of the visible to near infrared reflectance spectrum of the sharply-edged ring-like disk around the young main sequence star HR 4796A was recently interpreted as the presence of tholin-like complex organic materials which are seen in the atmosphere and surface of Titan and the surfaces of icy bodies in the solar system. However, we show in this Letter that porous grains co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0808.4113v1-abstract-full').style.display = 'inline'; document.getElementById('0808.4113v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0808.4113v1-abstract-full" style="display: none;"> The red spectral shape of the visible to near infrared reflectance spectrum of the sharply-edged ring-like disk around the young main sequence star HR 4796A was recently interpreted as the presence of tholin-like complex organic materials which are seen in the atmosphere and surface of Titan and the surfaces of icy bodies in the solar system. However, we show in this Letter that porous grains comprised of common cosmic dust species (amorphous silicate, amorphous carbon, and water ice) also closely reproduce the observed reflectance spectrum, suggesting that the presence of complex organic materials in the HR 4796 disk is still not definitive. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0808.4113v1-abstract-full').style.display = 'none'; document.getElementById('0808.4113v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2008; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2008. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures; To be published in The Astrophysical Journal Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/astro-ph/0107052">arXiv:astro-ph/0107052</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/astro-ph/0107052">pdf</a>, <a href="https://arxiv.org/ps/astro-ph/0107052">ps</a>, <a href="https://arxiv.org/format/astro-ph/0107052">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics">astro-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/S0032-0633(01)00053-8">10.1016/S0032-0633(01)00053-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> One year of Galileo dust data from the Jovian system: 1996 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kr%C3%BCger%2C+H">H. Kr眉ger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gr%C3%BCn%2C+E">E. Gr眉n</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Graps%2C+A">A. Graps</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bindschadler%2C+D">D. Bindschadler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dermott%2C+S">S. Dermott</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fechtig%2C+H">H. Fechtig</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gustason%2C+B+A">B. A. Gustason</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hamilton%2C+D+P">D. P. Hamilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hanner%2C+M+S">M. S. Hanner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hor%C3%A1nyi%2C+M">M. Hor谩nyi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kissel%2C+J">J. Kissel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lindblad%2C+B+A">B. A. Lindblad</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Linkert%2C+D">D. Linkert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Linkert%2C+G">G. Linkert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mann%2C+I">I. Mann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McDonnell%2C+J+A+M">J. A. M. McDonnell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Morfill%2C+G+E">G. E. Morfill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Planskey%2C+C">C. Planskey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schwehm%2C+G">G. Schwehm</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Srama%2C+R">R. Srama</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zook%2C+H+A">H. A. Zook</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="astro-ph/0107052v1-abstract-short" style="display: inline;"> The dust detector system onboard Galileo records dust impacts in circumjovian space since the spacecraft has been injected into a bound orbit about Jupiter in December 1995. This is the sixth in a series of papers dedicated to presenting Galileo and Ulysses dust data. We present data from the Galileo dust instrument for the period January to December 1996 when the spacecraft completed four orbit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('astro-ph/0107052v1-abstract-full').style.display = 'inline'; document.getElementById('astro-ph/0107052v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="astro-ph/0107052v1-abstract-full" style="display: none;"> The dust detector system onboard Galileo records dust impacts in circumjovian space since the spacecraft has been injected into a bound orbit about Jupiter in December 1995. This is the sixth in a series of papers dedicated to presenting Galileo and Ulysses dust data. We present data from the Galileo dust instrument for the period January to December 1996 when the spacecraft completed four orbits about Jupiter (G1, G2, C3 and E4). Data were obtained as high resolution realtime science data or recorded data during a time period of 100 days, or via memory read-outs during the remaining times. Because the data transmission rate of the spacecraft is very low, the complete data set (i. e. all parameters measured by the instrument during impact of a dust particle) for only 2% (5353) of all particles detected could be transmitted to Earth; the other particles were only counted. Together with the data for 2883 particles detected during Galileo&#39;s interplanetary cruise and published earlier, complete data of 8236 particles detected by the Galileo dust instrument from 1989 to 1996 are now available. The majority of particles detected are tiny grains (about 10 nm in radius) originating from Jupiter&#39;s innermost Galilean moon Io. These grains have been detected throughout the Jovian system and the highest impact rates exceeded $\rm 100 min^{-1}$. A small number of grains has been detected in the close vicinity of the Galilean moons Europa, Ganymede and Callisto which belong to impact-generated dust clouds formed by (mostly submicrometer sized) ejecta from the surfaces of the moons (Kr眉ger et al., Nature, 399, 558, 1999). Impacts of submicrometer to micrometer sized grains have been detected thoughout the Jovian system and especially in the region between the Galilean moons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('astro-ph/0107052v1-abstract-full').style.display = 'none'; document.getElementById('astro-ph/0107052v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2001; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2001. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted for Planetary and Space Science, 33 pages, 6 tables, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/astro-ph/0106322">arXiv:astro-ph/0106322</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/astro-ph/0106322">pdf</a>, <a href="https://arxiv.org/ps/astro-ph/0106322">ps</a>, <a href="https://arxiv.org/format/astro-ph/0106322">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics">astro-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/S0032-0633(01)00054-X">10.1016/S0032-0633(01)00054-X <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Four years of Ulysses dust data: 1996 to 1999 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kr%C3%BCger%2C+H">H. Kr眉ger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gr%C3%BCn%2C+E">E. Gr眉n</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Landgraf%2C+M">M. Landgraf</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dermott%2C+S">S. Dermott</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fechtig%2C+H">H. Fechtig</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gustafson%2C+B+A">B. A. Gustafson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hamilton%2C+D+P">D. P. Hamilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hanner%2C+M+S">M. S. Hanner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hor%C3%A1nyi%2C+M">M. Hor谩nyi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kissel%2C+J">J. Kissel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lindblad%2C+B+A">B. A. Lindblad</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Linkert%2C+D">D. Linkert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Linkert%2C+G">G. Linkert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mann%2C+I">I. Mann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McDonnell%2C+J+A+M">J. A. M. McDonnell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Morfill%2C+G+E">G. E. Morfill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Polanskey%2C+C">C. Polanskey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schwehm%2C+G">G. Schwehm</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Srama%2C+R">R. Srama</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zook%2C+H+A">H. A. Zook</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="astro-ph/0106322v1-abstract-short" style="display: inline;"> The Ulysses spacecraft is orbiting the Sun on a highly inclined ellipse ($ i = 79^{\circ}$, perihelion distance 1.3 AU, aphelion distance 5.4 AU). Between January 1996 and December 1999 the spacecraft was beyond 3 AU from the Sun and crossed the ecliptic plane at aphelion in May 1998. In this four-year period 218 dust impacts were recorded with the dust detector on board. We publish and analyse&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('astro-ph/0106322v1-abstract-full').style.display = 'inline'; document.getElementById('astro-ph/0106322v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="astro-ph/0106322v1-abstract-full" style="display: none;"> The Ulysses spacecraft is orbiting the Sun on a highly inclined ellipse ($ i = 79^{\circ}$, perihelion distance 1.3 AU, aphelion distance 5.4 AU). Between January 1996 and December 1999 the spacecraft was beyond 3 AU from the Sun and crossed the ecliptic plane at aphelion in May 1998. In this four-year period 218 dust impacts were recorded with the dust detector on board. We publish and analyse the complete data set of both raw and reduced data for particles with masses $\rm 10^{-16} g$ to $\rm 10^{-8}$ g. Together with 1477 dust impacts recorded between launch of Ulysses and the end of 1995 published earlier \cite{gruen1995c,krueger1999b}, a data set of 1695 dust impacts detected with the Ulysses sensor between October 1990 and December 1999 is now available. The impact rate measured between 1996 and 1999 was relatively constant with about 0.2 impacts per day. The impact direction of the majority of the impacts is compatible with particles of interstellar origin, the rest are most likely interplanetary particles. The observed impact rate is compared with a model for the flux of interstellar dust particles. The flux of particles several micrometers in size is compared with the measurements of the dust instruments on board Pioneer 10 and Pioneer 11 beyond 3 AU (Humes 1980, JGR, 85, 5841--5852, 1980). Between 3 and 5 AU, Pioneer results predict that Ulysses should have seen five times more ($\rm \sim 10 渭m$ sized) particles than actually detected. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('astro-ph/0106322v1-abstract-full').style.display = 'none'; document.getElementById('astro-ph/0106322v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 June, 2001; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2001. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted by Planetary and Space Science, 22 pages, 8 figures (1 colour figure)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/astro-ph/9809318">arXiv:astro-ph/9809318</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/astro-ph/9809318">pdf</a>, <a href="https://arxiv.org/ps/astro-ph/9809318">ps</a>, <a href="https://arxiv.org/format/astro-ph/9809318">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics">astro-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/S0032-0633(98)00097-X">10.1016/S0032-0633(98)00097-X <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Three years of Galileo dust data: II. 1993 to 1995 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kr%C3%BCger%2C+H">H. Kr眉ger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gr%C3%BCn%2C+E">E. Gr眉n</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hamilton%2C+D+P">D. P. Hamilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baguhl%2C+M">M. Baguhl</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dermott%2C+S">S. Dermott</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fechtig%2C+H">H. Fechtig</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gustafson%2C+B+A">B. A. Gustafson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hanner%2C+M+S">M. S. Hanner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hor%C3%A1nyi%2C+M">M. Hor谩nyi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kissel%2C+J">J. Kissel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lindblad%2C+B+A">B. A. Lindblad</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Linkert%2C+D">D. Linkert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Linkert%2C+G">G. Linkert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mann%2C+I">I. Mann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McDonnell%2C+J+A+M">J. A. M. McDonnell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Morfill%2C+G+E">G. E. Morfill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Polanskey%2C+C">C. Polanskey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Riemann%2C+R">R. Riemann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schwehm%2C+G">G. Schwehm</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Srama%2C+R">R. Srama</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zook%2C+H+A">H. A. Zook</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="astro-ph/9809318v1-abstract-short" style="display: inline;"> Between Jan 1993 and Dec 1995 the Galileo spacecraft traversed interplanetary space between Earth and Jupiter and arrived at Jupiter on 7 Dec 1995. The dust instrument onboard was operating during most of the time. A relatively constant impact rate of interplanetary and interstellar (big) particles of 0.4 impacts per day was detected over the whole three-year time span. In the outer solar system&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('astro-ph/9809318v1-abstract-full').style.display = 'inline'; document.getElementById('astro-ph/9809318v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="astro-ph/9809318v1-abstract-full" style="display: none;"> Between Jan 1993 and Dec 1995 the Galileo spacecraft traversed interplanetary space between Earth and Jupiter and arrived at Jupiter on 7 Dec 1995. The dust instrument onboard was operating during most of the time. A relatively constant impact rate of interplanetary and interstellar (big) particles of 0.4 impacts per day was detected over the whole three-year time span. In the outer solar system (outside about 2.6 AU) they are mostly of interstellar origin, whereas in the inner solar system they are mostly interplanetary particles. Within about 1.7 AU from Jupiter intense streams of small dust particles were detected with impact rates of up to 20,000 per day whose impact directions are compatible with a Jovian origin. Two different populations of dust particles were detected in the Jovian magnetosphere: small stream particles during Galileo&#39;s approach to the planet and big particles concentrated closer to Jupiter between the Galilean satellites. There is strong evidence that the dust stream particles are orders of magnitude smaller in mass and faster than the instrument&#39;s calibration, whereas the calibration is valid for the big particles. Because the data transmission rate was very low, the complete data set for only a small fraction (2525) of all detected particles could be transmitted to Earth; the other particles were only counted. Together with the 358 particles published earlier, information about 2883 particles detected by the dust instrument during Galileo&#39;s six years&#39; journey to Jupiter is now available. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('astro-ph/9809318v1-abstract-full').style.display = 'none'; document.getElementById('astro-ph/9809318v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 1998; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 1998. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for Planetary and Space Science, 37 pages, 5 tables, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/astro-ph/9809133">arXiv:astro-ph/9809133</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/astro-ph/9809133">pdf</a>, <a href="https://arxiv.org/ps/astro-ph/9809133">ps</a>, <a href="https://arxiv.org/format/astro-ph/9809133">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics">astro-ph</span> </div> </div> <p class="title is-5 mathjax"> Three years of Ulysses dust data: 1993 to 1995 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kr%C3%BCger%2C+H">H. Kr眉ger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gr%C3%BCn%2C+E">E. Gr眉n</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Landgraf%2C+M">M. Landgraf</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baguhl%2C+M">M. Baguhl</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dermott%2C+S">S. Dermott</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fechtig%2C+H">H. Fechtig</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gustafson%2C+B+A">B. A. Gustafson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hamilton%2C+D+P">D. P. Hamilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hanner%2C+M+S">M. S. Hanner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hor%C3%A1nyi%2C+M">M. Hor谩nyi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kissel%2C+J">J. Kissel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lindblad%2C+B+A">B. A. Lindblad</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Linkert%2C+D">D. Linkert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Linkert%2C+G">G. Linkert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mann%2C+I">I. Mann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McDonnell%2C+J+A+M">J. A. M. McDonnell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Morfill%2C+G+E">G. E. Morfill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Polanskey%2C+C">C. Polanskey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schwehm%2C+G">G. Schwehm</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Srama%2C+R">R. Srama</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zook%2C+H+A">H. A. Zook</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="astro-ph/9809133v1-abstract-short" style="display: inline;"> The Ulysses spacecraft is orbiting the Sun on a highly inclined ellipse ($i = 79^{\circ}$). After its Jupiter flyby in 1992 at a heliocentric distance of 5.4 AU, the spacecraft reapproached the inner solar system, flew over the Sun&#39;s south polar region in September 1994, crossed the ecliptic plane at a distance of 1.3 AU in March 1995, and flew over the Sun&#39;s north polar region in July 1995. We&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('astro-ph/9809133v1-abstract-full').style.display = 'inline'; document.getElementById('astro-ph/9809133v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="astro-ph/9809133v1-abstract-full" style="display: none;"> The Ulysses spacecraft is orbiting the Sun on a highly inclined ellipse ($i = 79^{\circ}$). After its Jupiter flyby in 1992 at a heliocentric distance of 5.4 AU, the spacecraft reapproached the inner solar system, flew over the Sun&#39;s south polar region in September 1994, crossed the ecliptic plane at a distance of 1.3 AU in March 1995, and flew over the Sun&#39;s north polar region in July 1995. We report on dust impact data obtained with the dust detector onboard Ulysses between January 1993 and December 1995. We publish and analyse the complete data set of 509 recorded impacts of dust particles with masses between $10^{-16}$ g to $10^{-7}$ g. Together with 968 dust impacts from launch until the end of 1992 published earlier (Gr眉n et al., 1995, {\em Planet. Space Sci}, Vol. 43, p. 971-999), information about 1477 particles detected with the Ulysses sensor between October 1990 and December 1995 is now available. The impact rate measured between 1993 and 1995 stayed relatively constant at about 0.4 impacts per day and varied by less than a factor of ten. Most of the impacts recorded outside about 3.5 AU are compatible with particles of interstellar origin. Two populations of interplanetary particles have been recognised: big micrometer-sized particles close to the ecliptic plane and small sub-micrometer-sized particles at high ecliptic latitudes. The observed impact rate is compared with a model for the flux of interstellar dust particles which gives relatively good agreement with the observed impact rate. No change in the instrument&#39;s noise characteristics or degradation of the channeltron could be revealed during the three-year period. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('astro-ph/9809133v1-abstract-full').style.display = 'none'; document.getElementById('astro-ph/9809133v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 1998; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 1998. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 8 figures, 3 Tables, rotating package and Latex 2e required</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10