CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 1,077 results for author: <span class="mathjax">Wang, Z</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/quant-ph" aria-role="search"> Searching in archive <strong>quant-ph</strong>. <a href="/search/?searchtype=author&amp;query=Wang%2C+Z">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Wang, Z"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Wang%2C+Z&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Wang, Z"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Wang%2C+Z&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Wang%2C+Z&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wang%2C+Z&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wang%2C+Z&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wang%2C+Z&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wang%2C+Z&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.08831">arXiv:2502.08831</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.08831">pdf</a>, <a href="https://arxiv.org/format/2502.08831">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum communication over bandwidth-and-time-limited channels </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Gandotra%2C+A">Aditya Gandotra</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zhaoyou Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Clerk%2C+A+A">Aashish A. Clerk</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jiang%2C+L">Liang Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.08831v1-abstract-short" style="display: inline;"> Standard communication systems have transmission spectra that characterize their ability to perform frequency multiplexing over a finite bandwidth. Realistic quantum signals in quantum communication systems like transducers are inherently limited in time due to intrinsic decoherence and finite latency, which hinders the direct implementation of frequency-multiplexed encoding. We investigate quantu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.08831v1-abstract-full').style.display = 'inline'; document.getElementById('2502.08831v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.08831v1-abstract-full" style="display: none;"> Standard communication systems have transmission spectra that characterize their ability to perform frequency multiplexing over a finite bandwidth. Realistic quantum signals in quantum communication systems like transducers are inherently limited in time due to intrinsic decoherence and finite latency, which hinders the direct implementation of frequency-multiplexed encoding. We investigate quantum channel capacities for bandwidth-and-time-limited (BTL) channels to establish the optimal communication strategy in a realistic setting. For pure-loss bosonic channels, we derive analytical solutions of the optimal encoding and decoding modes for Lorentzian and box transmission spectra, along with numerical solutions for various other transmissions. Our findings reveal a general feature of sequential activation of quantum channels as the input signal duration increases, as well as the existence of optimal signal length for scenarios where only a limited number of channels are in use. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.08831v1-abstract-full').style.display = 'none'; document.getElementById('2502.08831v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.03534">arXiv:2502.03534</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.03534">pdf</a>, <a href="https://arxiv.org/format/2502.03534">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Many-body non-Hermitian skin effect with exact steady states in dissipative lattice gauge theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Hu%2C+Y">Yu-Min Hu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zijian Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lian%2C+B">Biao Lian</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zhong Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.03534v1-abstract-short" style="display: inline;"> We introduce a dissipative lattice gauge model that exhibits the many-body version of the non-Hermitian skin effect. The dissipative couplings between dynamical gauge fields on the lattice links and the surrounding environment generate chiral motions of particles residing on lattice sites. Although the system involves many-body interactions, the local gauge symmetries offer a flexible approach to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.03534v1-abstract-full').style.display = 'inline'; document.getElementById('2502.03534v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.03534v1-abstract-full" style="display: none;"> We introduce a dissipative lattice gauge model that exhibits the many-body version of the non-Hermitian skin effect. The dissipative couplings between dynamical gauge fields on the lattice links and the surrounding environment generate chiral motions of particles residing on lattice sites. Although the system involves many-body interactions, the local gauge symmetries offer a flexible approach to exactly constructing the steady state that demonstrates the many-body non-Hermitian skin effect. Furthermore, our approach can be generalized to realize a new type of many-body non-Hermitian skin effect, dubbed the hierarchical skin effect, where different subsystem degrees of freedom exhibit boundary accumulation of multiple moments at different orders. Our findings can be readily observed by engineering dissipation in state-of-the-art lattice gauge simulators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.03534v1-abstract-full').style.display = 'none'; document.getElementById('2502.03534v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8+1 pages, 2+1 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.01058">arXiv:2502.01058</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.01058">pdf</a>, <a href="https://arxiv.org/ps/2502.01058">ps</a>, <a href="https://arxiv.org/format/2502.01058">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Giant emitter magnetometer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+X">Xiaojun Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+X">Xiang Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zhihai Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.01058v1-abstract-short" style="display: inline;"> Leveraging the sensitive dependence of a giant atom&#39;s radiation rate on its frequency [A. F. Kockum, $et~al$., Phys. Rev. A 90, 013837 (2014)], we propose an effective magnetometer model based on single giant emitter. In this model, the emitter&#39;s frequency is proportional to the applied bias magnetic field. The self-interference effect causes the slope of the dissipation spectrum to vary linearly&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.01058v1-abstract-full').style.display = 'inline'; document.getElementById('2502.01058v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.01058v1-abstract-full" style="display: none;"> Leveraging the sensitive dependence of a giant atom&#39;s radiation rate on its frequency [A. F. Kockum, $et~al$., Phys. Rev. A 90, 013837 (2014)], we propose an effective magnetometer model based on single giant emitter. In this model, the emitter&#39;s frequency is proportional to the applied bias magnetic field. The self-interference effect causes the slope of the dissipation spectrum to vary linearly with the number of emitter-coupling points. The giant emitter magnetometer achieves a sensitivity as high as $10^{-8}-10^{-9}\,{\rm T/\sqrt{Hz}}$, demonstrating the significant advantages of the self-interference effect compared to small emitters. We hope our proposal will expand the applications of giant emitters in precision measurement and magnetometry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.01058v1-abstract-full').style.display = 'none'; document.getElementById('2502.01058v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 Pages, 5 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.18546">arXiv:2501.18546</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.18546">pdf</a>, <a href="https://arxiv.org/format/2501.18546">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Mitigating shot noise in local overlapping quantum tomography with semidefinite programming </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z+J">Zherui Jerry Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Dechant%2C+D">David Dechant</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Patel%2C+Y+J">Yash J. Patel</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tura%2C+J">Jordi Tura</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.18546v1-abstract-short" style="display: inline;"> Reduced density matrices (RDMs) are fundamental in quantum information processing, allowing the computation of local observables, such as energy and correlation functions, without the exponential complexity of fully characterizing quantum states. In the context of near-term quantum computing, RDMs provide sufficient information to effectively design variational quantum algorithms. However, their e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.18546v1-abstract-full').style.display = 'inline'; document.getElementById('2501.18546v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.18546v1-abstract-full" style="display: none;"> Reduced density matrices (RDMs) are fundamental in quantum information processing, allowing the computation of local observables, such as energy and correlation functions, without the exponential complexity of fully characterizing quantum states. In the context of near-term quantum computing, RDMs provide sufficient information to effectively design variational quantum algorithms. However, their experimental estimation is challenging, as it involves preparing and measuring quantum states in multiple bases - a resource-intensive process susceptible to producing non-physical RDMs due to shot noise from limited measurements. To address this, we propose a method to mitigate shot noise by re-enforcing certain physicality constraints on RDMs. While verifying RDM compatibility with a global state is QMA-complete, we relax this condition by enforcing compatibility constraints up to a certain level using a polynomial-size semidefinite program to reconstruct overlapping RDMs from simulated experimental data. Our approach yields, on average, tighter bounds for the same number of measurements compared to tomography without compatibility constraints. We demonstrate the versatility and efficacy of our method by integrating it into an algorithmic cooling procedure to prepare low-energy states of local Hamiltonians. Simulations on frustrated Hamiltonians reveal notable improvements in accuracy and resource efficiency, highlighting the potential of our approach for practical applications in near-term quantum computing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.18546v1-abstract-full').style.display = 'none'; document.getElementById('2501.18546v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.18319">arXiv:2501.18319</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.18319">pdf</a>, <a href="https://arxiv.org/format/2501.18319">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Direct Implementation of High-Fidelity Three-Qubit Gates for Superconducting Processor with Tunable Couplers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+H">Hao-Tian Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+B">Bing-Jie Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+J">Jia-Chi Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xiao%2C+Y">Yong-Xi Xiao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+T">Tian-Ming Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Huang%2C+K">Kaixuan Huang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Ziting Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+H">Hao Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+K">Kui Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+Y">Yueshan Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Deng%2C+C">Cheng-Lin Deng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liang%2C+G">Gui-Han Liang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+Z">Zheng-He Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+S">Si-Yun Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Fang%2C+C">Cai-Ping Fang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+X">Xiaohui Song</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xiang%2C+Z">Zhongcheng Xiang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zheng%2C+D">Dongning Zheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Yun-Hao Shi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+K">Kai Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Fan%2C+H">Heng Fan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.18319v1-abstract-short" style="display: inline;"> Three-qubit gates can be constructed using combinations of single-qubit and two-qubit gates, making their independent realization unnecessary. However, direct implementation of three-qubit gates reduces the depth of quantum circuits, streamlines quantum programming, and facilitates efficient circuit optimization, thereby enhancing overall performance in quantum computation. In this work, we propos&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.18319v1-abstract-full').style.display = 'inline'; document.getElementById('2501.18319v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.18319v1-abstract-full" style="display: none;"> Three-qubit gates can be constructed using combinations of single-qubit and two-qubit gates, making their independent realization unnecessary. However, direct implementation of three-qubit gates reduces the depth of quantum circuits, streamlines quantum programming, and facilitates efficient circuit optimization, thereby enhancing overall performance in quantum computation. In this work, we propose and experimentally demonstrate a high-fidelity scheme for implementing a three-qubit controlled-controlled-Z (CCZ) gate in a flip-chip superconducting quantum processor with tunable couplers. This direct CCZ gate is implemented by simultaneously leveraging two tunable couplers interspersed between three qubits to enable three-qubit interactions, achieving an average final state fidelity of $97.94\%$ and a process fidelity of $93.54\%$. This high fidelity cannot be achieved through a simple combination of single- and two-qubit gate sequences from processors with similar performance levels. Our experiments also verify that multi-layer direct implementation of the CCZ gate exhibits lower leakage compared to decomposed gate approaches. To further showcase the versatility of our approach, we construct a Toffoli gate by combining the CCZ gate with Hadamard gates. As a showcase, we utilize the CCZ gate as an oracle to implement the Grover search algorithm on three qubits, demonstrating high performance with the target probability amplitude significantly enhanced after two iterations. These results highlight the advantage of our approach, and facilitate the implementation of complex quantum circuits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.18319v1-abstract-full').style.display = 'none'; document.getElementById('2501.18319v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">main text: 8 pages, 4 figures; supp: 11 pages, 11 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.17093">arXiv:2501.17093</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.17093">pdf</a>, <a href="https://arxiv.org/format/2501.17093">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Enhancing the fidelity of stimulated Raman transitions with simple phase shifts </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+H">Hua-Yang Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+X">Xu-Yang Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zhen-Yu Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.17093v1-abstract-short" style="display: inline;"> We demonstrate that in stimulated Raman transitions, introducing one or two simple phase shifts to the control fields significantly enhances the fidelity of state manipulation while simultaneously reducing leakage to the intermediate excited state. Our approach achieves high-fidelity quantum gate operations between the two target states under arbitrary detuning conditions. Notably, the average pop&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.17093v1-abstract-full').style.display = 'inline'; document.getElementById('2501.17093v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.17093v1-abstract-full" style="display: none;"> We demonstrate that in stimulated Raman transitions, introducing one or two simple phase shifts to the control fields significantly enhances the fidelity of state manipulation while simultaneously reducing leakage to the intermediate excited state. Our approach achieves high-fidelity quantum gate operations between the two target states under arbitrary detuning conditions. Notably, the average population in the intermediate excited state is approximately halved, without extending the overall evolution time. Additionally, our method exhibits greater robustness to static amplitude and detuning errors compared to conventional adiabatic elimination techniques, and maintains higher fidelity even in the presence of dissipation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.17093v1-abstract-full').style.display = 'none'; document.getElementById('2501.17093v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.16509">arXiv:2501.16509</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.16509">pdf</a>, <a href="https://arxiv.org/format/2501.16509">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Reinforcement Learning for Quantum Circuit Design: Using Matrix Representations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zhiyuan Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Feng%2C+C">Chunlin Feng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Poon%2C+C">Christopher Poon</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Huang%2C+L">Lijian Huang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+X">Xingjian Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ma%2C+Y">Yao Ma</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Fu%2C+T">Tianfan Fu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+X">Xiao-Yang Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.16509v1-abstract-short" style="display: inline;"> Quantum computing promises advantages over classical computing. The manufacturing of quantum hardware is in the infancy stage, called the Noisy Intermediate-Scale Quantum (NISQ) era. A major challenge is automated quantum circuit design that map a quantum circuit to gates in a universal gate set. In this paper, we present a generic MDP modeling and employ Q-learning and DQN algorithms for quantum&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.16509v1-abstract-full').style.display = 'inline'; document.getElementById('2501.16509v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.16509v1-abstract-full" style="display: none;"> Quantum computing promises advantages over classical computing. The manufacturing of quantum hardware is in the infancy stage, called the Noisy Intermediate-Scale Quantum (NISQ) era. A major challenge is automated quantum circuit design that map a quantum circuit to gates in a universal gate set. In this paper, we present a generic MDP modeling and employ Q-learning and DQN algorithms for quantum circuit design. By leveraging the power of deep reinforcement learning, we aim to provide an automatic and scalable approach over traditional hand-crafted heuristic methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.16509v1-abstract-full').style.display = 'none'; document.getElementById('2501.16509v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.16148">arXiv:2501.16148</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.16148">pdf</a>, <a href="https://arxiv.org/ps/2501.16148">ps</a>, <a href="https://arxiv.org/format/2501.16148">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Velocity-comb modulation transfer spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Guan%2C+X">Xiaolei Guan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xiao%2C+Z">Zheng Xiao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+Z">Zijie Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zhiyang Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+J">Jia Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gao%2C+X">Xun Gao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chang%2C+P">Pengyuan Chang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+T">Tiantian Shi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+J">Jingbiao Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.16148v1-abstract-short" style="display: inline;"> Sub-Doppler laser spectroscopy is a crucial technique for laser frequency stabilization, playing a significant role in atomic physics, precision measurement, and quantum communication. However, recent efforts to improve frequency stability appear to have reached a bottleneck, as they primarily focus on external technical approaches while neglecting the fundamental issue of low atomic utilization (&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.16148v1-abstract-full').style.display = 'inline'; document.getElementById('2501.16148v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.16148v1-abstract-full" style="display: none;"> Sub-Doppler laser spectroscopy is a crucial technique for laser frequency stabilization, playing a significant role in atomic physics, precision measurement, and quantum communication. However, recent efforts to improve frequency stability appear to have reached a bottleneck, as they primarily focus on external technical approaches while neglecting the fundamental issue of low atomic utilization (&lt; 1%), caused by only near-zero transverse velocity atoms involved in the transition. Here, we propose a velocity-comb modulation transfer spectroscopy (MTS) solution that takes advantage of the velocity-selective resonance effect of multi-frequency comb lasers to enhance the utilization of non-zero-velocity atoms. In the probe-pump configuration, each pair of counter-propagating lasers interacts with atoms from different transverse velocity-comb groups, independently contributing to the spectral amplitude and signal-to-noise ratio. Preliminary proof-of-principle results show that the frequency stability of the triple-frequency laser is optimized by nearly a factor of \sqrt{3} compared to the single-frequency laser, consistent with theoretical expectations. With more frequency comb components, MTS-stabilized lasers are expected to achieve order-of-magnitude breakthroughs in frequency stability, taking an important step toward next-generation compact optical clocks. This unique method can also be widely applied to any quantum system with a wide velocity distribution, inspiring innovative advances in numerous fields with a fresh perspective. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.16148v1-abstract-full').style.display = 'none'; document.getElementById('2501.16148v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.13482">arXiv:2501.13482</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.13482">pdf</a>, <a href="https://arxiv.org/format/2501.13482">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum key distribution overcoming practical correlated intensity fluctuations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+J">Jia-Xuan Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lu%2C+F">Feng-Yu Lu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Ze-Hao Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zapatero%2C+V">Victor Zapatero</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Curty%2C+M">Marcos Curty</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+S">Shuang Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yin%2C+Z">Zhen-Qiang Yin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+W">Wei Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=He%2C+D">De-Yong He</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+G">Guang-Can Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Han%2C+Z">Zheng-Fu Han</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.13482v1-abstract-short" style="display: inline;"> Intensity correlations between neighboring pulses open a prevalent yet often overlooked security loophole in decoy-state quantum key distribution (QKD). As a solution, we present and experimentally demonstrate an intensity-correlation-tolerant QKD protocol that mitigates the negative effect that this phenomenon has on the secret key rate according to existing security analyses. Compared to previou&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13482v1-abstract-full').style.display = 'inline'; document.getElementById('2501.13482v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.13482v1-abstract-full" style="display: none;"> Intensity correlations between neighboring pulses open a prevalent yet often overlooked security loophole in decoy-state quantum key distribution (QKD). As a solution, we present and experimentally demonstrate an intensity-correlation-tolerant QKD protocol that mitigates the negative effect that this phenomenon has on the secret key rate according to existing security analyses. Compared to previous approaches, our method significantly enhances the robustness against correlations, notably improving both the maximum transmission distances and the achievable secret key rates across different scenarios. By relaxing constraints on correlation parameters, our protocol enables practical devices to counter intensity correlations. We experimentally demonstrate this first practical solution that directly overcomes this security vulnerability, establish the feasibility and efficacy of our proposal, taking a major step towards loophole-free and high-performance QKD. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13482v1-abstract-full').style.display = 'none'; document.getElementById('2501.13482v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.13095">arXiv:2501.13095</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.13095">pdf</a>, <a href="https://arxiv.org/format/2501.13095">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Sunny.jl: A Julia Package for Spin Dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Dahlbom%2C+D">David Dahlbom</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+H">Hao Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Miles%2C+C">Cole Miles</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Quinn%2C+S">Sam Quinn</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Niraula%2C+A">Alin Niraula</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Thipe%2C+B">Bhushan Thipe</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wilson%2C+M">Matthew Wilson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Matin%2C+S">Sakib Matin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mankad%2C+H">Het Mankad</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hahn%2C+S">Steven Hahn</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Pajerowski%2C+D">Daniel Pajerowski</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Johnston%2C+S">Steve Johnston</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zhentao Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lane%2C+H">Harry Lane</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+Y+W">Ying Wai Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bai%2C+X">Xiaojian Bai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mourigal%2C+M">Martin Mourigal</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Batista%2C+C+D">Cristian D. Batista</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Barros%2C+K">Kipton Barros</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.13095v2-abstract-short" style="display: inline;"> Sunny is a Julia package designed to serve the needs of the quantum magnetism community. It supports the specification of a very broad class of spin models and a diverse suite of numerical solvers. These include powerful methods for simulating spin dynamics both in and out of equilibrium. Uniquely, it features a broad generalization of classical and semiclassical approaches to SU(N) coherent state&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13095v2-abstract-full').style.display = 'inline'; document.getElementById('2501.13095v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.13095v2-abstract-full" style="display: none;"> Sunny is a Julia package designed to serve the needs of the quantum magnetism community. It supports the specification of a very broad class of spin models and a diverse suite of numerical solvers. These include powerful methods for simulating spin dynamics both in and out of equilibrium. Uniquely, it features a broad generalization of classical and semiclassical approaches to SU(N) coherent states, which is useful for studying systems exhibiting strong spin-orbit coupling or local entanglement effects. Sunny also offers a well-developed framework for calculating the dynamical spin structure factor, enabling direct comparison with scattering experiments. Ease of use is a priority, with tools for symmetry-guided modeling and interactive visualization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13095v2-abstract-full').style.display = 'none'; document.getElementById('2501.13095v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.12146">arXiv:2501.12146</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.12146">pdf</a>, <a href="https://arxiv.org/format/2501.12146">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Evaluating many-body stabilizer R茅nyi entropy by sampling reduced Pauli strings: singularities, volume law, and nonlocal magic </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Ding%2C+Y">Yi-Ming Ding</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zhe Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yan%2C+Z">Zheng Yan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.12146v1-abstract-short" style="display: inline;"> We present a novel quantum Monte Carlo scheme for evaluating the $伪$-stabilizer R茅nyi entropy (SRE) with any integer $伪\ge 2$. By interpreting $伪$-SRE as a ratio of generalized partition functions, we prove that it can be simulated by sampling reduced Pauli strings within a reduced configuration space. This allows for straightforward computation of the values and derivatives of $伪$-SRE using techn&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.12146v1-abstract-full').style.display = 'inline'; document.getElementById('2501.12146v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.12146v1-abstract-full" style="display: none;"> We present a novel quantum Monte Carlo scheme for evaluating the $伪$-stabilizer R茅nyi entropy (SRE) with any integer $伪\ge 2$. By interpreting $伪$-SRE as a ratio of generalized partition functions, we prove that it can be simulated by sampling reduced Pauli strings within a reduced configuration space. This allows for straightforward computation of the values and derivatives of $伪$-SRE using techniques such as reweight-annealing and thermodynamic integration. Moreover, our approach separates the free energy contribution in $伪$-SRE, thus the contribution solely from the characteristic function can be studied, which is directly tied to magic. In our applications to the ground states of 1D and 2D transverse field Ising (TFI) model, we reveal that the behavior of $2$-SRE is governed by the interplay between the characteristic function and the free energy contributions, with singularities hidden in both of their derivatives at quantum critical points. This indicates that $伪$-SRE does not necessarily exhibit a peak at the quantum critical point for a general many-body system. We also study the volume-law corrections to the ground-state magic. These corrections slightly violate the strict volume law and suggest discontinuity at quantum critical points, which we attribute to the abrupt change of the ground-state magical structure. Our findings suggest that volume-law corrections of magic are stronger diagnostics for criticalities than the full-state magic. Lastly, we study the finite-temperature phase transition of the 2D TFI model, where the $2$-SRE is not a well-defined magic measure. The nonphysical results we obtain also prove the ineffectiveness of $2$-SRE for mixed states. Our method enables scalable and efficient evaluation of $伪$-SRE in large-scale quantum systems, providing a powerful tool for exploring the roles of magic in many-body systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.12146v1-abstract-full').style.display = 'none'; document.getElementById('2501.12146v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.09079">arXiv:2501.09079</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.09079">pdf</a>, <a href="https://arxiv.org/format/2501.09079">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Demonstrating quantum error mitigation on logical qubits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+A">Aosai Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xie%2C+H">Haipeng Xie</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gao%2C+Y">Yu Gao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+J">Jia-Nan Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bao%2C+Z">Zehang Bao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhu%2C+Z">Zitian Zhu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+N">Ning Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+C">Chuanyu Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhong%2C+J">Jiarun Zhong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+S">Shibo Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Y">Yaozu Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jin%2C+F">Feitong Jin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zou%2C+Y">Yiren Zou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tan%2C+Z">Ziqi Tan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cui%2C+Z">Zhengyi Cui</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shen%2C+F">Fanhao Shen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+T">Tingting Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Han%2C+Y">Yihang Han</a>, <a href="/search/quant-ph?searchtype=author&amp;query=He%2C+Y">Yiyang He</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+G">Gongyu Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shen%2C+J">Jiayuan Shen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+H">Han Wang</a> , et al. (10 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.09079v1-abstract-short" style="display: inline;"> A long-standing challenge in quantum computing is developing technologies to overcome the inevitable noise in qubits. To enable meaningful applications in the early stages of fault-tolerant quantum computing, devising methods to suppress post-correction logical failures is becoming increasingly crucial. In this work, we propose and experimentally demonstrate the application of zero-noise extrapola&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.09079v1-abstract-full').style.display = 'inline'; document.getElementById('2501.09079v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.09079v1-abstract-full" style="display: none;"> A long-standing challenge in quantum computing is developing technologies to overcome the inevitable noise in qubits. To enable meaningful applications in the early stages of fault-tolerant quantum computing, devising methods to suppress post-correction logical failures is becoming increasingly crucial. In this work, we propose and experimentally demonstrate the application of zero-noise extrapolation, a practical quantum error mitigation technique, to error correction circuits on state-of-the-art superconducting processors. By amplifying the noise on physical qubits, the circuits yield outcomes that exhibit a predictable dependence on noise strength, following a polynomial function determined by the code distance. This property enables the effective application of polynomial extrapolation to mitigate logical errors. Our experiments demonstrate a universal reduction in logical errors across various quantum circuits, including fault-tolerant circuits of repetition and surface codes. We observe a favorable performance in multi-round error correction circuits, indicating that this method remains effective when the circuit depth increases. These results advance the frontier of quantum error suppression technologies, opening a practical way to achieve reliable quantum computing in the early fault-tolerant era. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.09079v1-abstract-full').style.display = 'none'; document.getElementById('2501.09079v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.07085">arXiv:2501.07085</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.07085">pdf</a>, <a href="https://arxiv.org/format/2501.07085">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> PPO-Q: Proximal Policy Optimization with Parametrized Quantum Policies or Values </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Jin%2C+Y">Yu-Xin Jin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zi-Wei Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+H">Hong-Ze Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhuang%2C+W">Wei-Feng Zhuang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hu%2C+M">Meng-Jun Hu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+D+E">Dong E. Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.07085v1-abstract-short" style="display: inline;"> Quantum machine learning (QML), which combines quantum computing with machine learning, is widely believed to hold the potential to outperform traditional machine learning in the era of noisy intermediate-scale quantum (NISQ). As one of the most important types of QML, quantum reinforcement learning (QRL) with parameterized quantum circuits as agents has received extensive attention in the past fe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.07085v1-abstract-full').style.display = 'inline'; document.getElementById('2501.07085v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.07085v1-abstract-full" style="display: none;"> Quantum machine learning (QML), which combines quantum computing with machine learning, is widely believed to hold the potential to outperform traditional machine learning in the era of noisy intermediate-scale quantum (NISQ). As one of the most important types of QML, quantum reinforcement learning (QRL) with parameterized quantum circuits as agents has received extensive attention in the past few years. Various algorithms and techniques have been introduced, demonstrating the effectiveness of QRL in solving some popular benchmark environments such as CartPole, FrozenLake, and MountainCar. However, tackling more complex environments with continuous action spaces and high-dimensional state spaces remains challenging within the existing QRL framework. Here we present PPO-Q, which, by integrating hybrid quantum-classical networks into the actor or critic part of the proximal policy optimization (PPO) algorithm, achieves state-of-the-art performance in a range of complex environments with significantly reduced training parameters. The hybrid quantum-classical networks in the PPO-Q incorporate two additional traditional neural networks to aid the parameterized quantum circuits in managing high-dimensional state encoding and action selection. When evaluated on 8 diverse environments, including four with continuous action space, the PPO-Q achieved comparable performance with the PPO algorithm but with significantly reduced training parameters. Especially, we accomplished the BipedalWalker environment, with a high-dimensional state and continuous action space simultaneously, which has not previously been reported in the QRL. More importantly, the PPO-Q is very friendly to the current NISQ hardware. We successfully trained two representative environments on the real superconducting quantum devices via the Quafu quantum cloud service. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.07085v1-abstract-full').style.display = 'none'; document.getElementById('2501.07085v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.06993">arXiv:2501.06993</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.06993">pdf</a>, <a href="https://arxiv.org/format/2501.06993">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> QSteed: Quantum Software of Compilation for Supporting Real Quantum Device </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+H">Hong-Ze Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zheng-An Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Feng%2C+Y">Yu-Long Feng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+Y">Yu Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+X">Xinpeng Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+J">Jingbo Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chai%2C+X">Xu-Dan Chai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhuang%2C+W">Wei-Feng Zhuang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jin%2C+Y">Yu-Xin Jin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jin%2C+Y">Yirong Jin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yu%2C+H">Haifeng Yu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Fan%2C+H">Heng Fan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hu%2C+M">Meng-Jun Hu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+D+E">Dong E. Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.06993v1-abstract-short" style="display: inline;"> We present QSteed, a quantum compilation system that can be deployed on real quantum computing devices and quantum computing clusters. It is designed to meet the challenges of effectively compiling quantum tasks and managing multiple quantum backends. The system integrates two core components: a quantum compiler and a quantum computing resource virtualization manager, both of which provide standar&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.06993v1-abstract-full').style.display = 'inline'; document.getElementById('2501.06993v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.06993v1-abstract-full" style="display: none;"> We present QSteed, a quantum compilation system that can be deployed on real quantum computing devices and quantum computing clusters. It is designed to meet the challenges of effectively compiling quantum tasks and managing multiple quantum backends. The system integrates two core components: a quantum compiler and a quantum computing resource virtualization manager, both of which provide standardized interfaces. The resource manager models quantum chips into different abstract layers, including the real quantum processing unit (QPU), the standard QPU (StdQPU), the substructure QPU (SubQPU), and the virtual QPU (VQPU), and stores this information in a quantum computing resource virtualization database, thus realizing the unified management of quantum computing devices. The quantum compiler adopts a modular and extensible design, providing a flexible framework for customizing compilation optimization strategies. It provides hardware-aware compilation algorithms that account for quantum gate noise and qubit coupling structures. By selecting the most suitable computing resources from the VQPU library, the compiler maps quantum tasks to the optimal qubit regions of the target device. We validated the effectiveness of the QSteed on the superconducting devices of the Quafu quantum cloud computing cluster. The quantum computing resource virtualization management technology of QSteed and the flexible and extensible design of its compiler make it possible to achieve unified management and task compilation for backend devices of multiple physical systems such as neutral-atom and ion-trap. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.06993v1-abstract-full').style.display = 'none'; document.getElementById('2501.06993v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">White paper for QSteed, with 7 figures and 18 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.06743">arXiv:2501.06743</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.06743">pdf</a>, <a href="https://arxiv.org/format/2501.06743">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Synthetic $蟺$-flux system in 2D superconducting qubit array with tunable coupling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+Y">Yiting Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+J">Jiawei Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+Z">Zechen Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Huang%2C+P">Peisheng Huang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Huang%2C+W">Wenhui Huang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liang%2C+Y">Yongqi Liang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Qiu%2C+J">Jiawei Qiu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sun%2C+X">Xuandong Sun</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zilin Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xie%2C+C">Changrong Xie</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+X">Xiaohan Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+J">Jiajian Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+L">Libo Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chu%2C+J">Ji Chu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+W">Weijie Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jiang%2C+J">Ji Jiang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Linpeng%2C+X">Xiayu Linpeng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+S">Song Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Niu%2C+J">Jingjing Niu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">Yuxuan Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ren%2C+W">Wenhui Ren</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tao%2C+Z">Ziyu Tao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhong%2C+Y">Youpeng Zhong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yu%2C+D">Dapeng Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.06743v1-abstract-short" style="display: inline;"> Flat-band systems provide an ideal platform for exploring exotic quantum phenomena, where the strongly suppressed kinetic energy in these flat energy bands suggests the potential for exotic phases driven by geometric structure, disorder, and interactions. While intriguing phenomena and physical mechanisms have been unveiled in theoretical models, synthesizing such systems within scalable quantum p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.06743v1-abstract-full').style.display = 'inline'; document.getElementById('2501.06743v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.06743v1-abstract-full" style="display: none;"> Flat-band systems provide an ideal platform for exploring exotic quantum phenomena, where the strongly suppressed kinetic energy in these flat energy bands suggests the potential for exotic phases driven by geometric structure, disorder, and interactions. While intriguing phenomena and physical mechanisms have been unveiled in theoretical models, synthesizing such systems within scalable quantum platforms remains challenging. Here, we present the experimental realization of a $蟺$-flux rhombic system using a two-dimensional superconducting qubit array with tunable coupling. We experimentally observe characteristic dynamics, e.g., $蟺$-flux driven destructive interference, and demonstrate the protocol for eigenstate preparation in this rhombic array with coupler-assisted flux. Our results provide future possibilities for exploring the interplay of geometry, interactions, and quantum information encoding in such degenerate systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.06743v1-abstract-full').style.display = 'none'; document.getElementById('2501.06743v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7+7 pages, 4+2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.05194">arXiv:2501.05194</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.05194">pdf</a>, <a href="https://arxiv.org/format/2501.05194">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Three-body scattering hypervolume of two-component fermions in three dimensions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+J">Jiansen Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zipeng Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tan%2C+S">Shina Tan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.05194v1-abstract-short" style="display: inline;"> We study the zero-energy collision of three fermions, two of which are in the spin-down ($\downarrow$) state and one of which is in the spin-up ($\uparrow$) state. Assuming that the two-body and the three-body interactions have a finite range, we find a parameter, $D$, called the three-body scattering hypervolume. We study the three-body wave function asymptotically when three fermions are far apa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.05194v1-abstract-full').style.display = 'inline'; document.getElementById('2501.05194v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.05194v1-abstract-full" style="display: none;"> We study the zero-energy collision of three fermions, two of which are in the spin-down ($\downarrow$) state and one of which is in the spin-up ($\uparrow$) state. Assuming that the two-body and the three-body interactions have a finite range, we find a parameter, $D$, called the three-body scattering hypervolume. We study the three-body wave function asymptotically when three fermions are far apart or one spin-$\uparrow$ (spin-$\downarrow$) fermion and one pair, formed by the other two fermions, are far apart, and derive three asymptotic expansions of the wave function. The three-body scattering hypervolume appears in the coefficients of such expansions at the order of $B^{-5}$, where $B$ is the hyperradius of the triangle formed by the three fermions. When the interactions are weak, we calculate $D$ approximately using the Born expansion. We also analyze the energy shift of three such fermions in a large periodic cube due to $D$ and generalize this result to the many-fermion system. $D$ also determines the three-body recombination rate in two-component Fermi gases, and we calculate the three-body recombination rate in terms of $D$ and the density and temperature of the gas. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.05194v1-abstract-full').style.display = 'none'; document.getElementById('2501.05194v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.04954">arXiv:2501.04954</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.04954">pdf</a>, <a href="https://arxiv.org/ps/2501.04954">ps</a>, <a href="https://arxiv.org/format/2501.04954">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> High-fidelity Generation of Bell and W States in Giant Atom System via Bound State in the Continuum </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Weng%2C+M">Mingzhu Weng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yu%2C+H">Hongwei Yu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zhihai Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.04954v2-abstract-short" style="display: inline;"> In this paper, we propose a high-fidelity scheme for generating entangled states in a system of two and three giant atoms coupled to the coupled resonator waveguide. Our approach leverages the bound state in the continuum, which is robust against waveguide disorder. Specifically, we achieve a fidelity exceeding $98\%$ for Bell state generation, overcoming the limitations of conventional decoherenc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04954v2-abstract-full').style.display = 'inline'; document.getElementById('2501.04954v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.04954v2-abstract-full" style="display: none;"> In this paper, we propose a high-fidelity scheme for generating entangled states in a system of two and three giant atoms coupled to the coupled resonator waveguide. Our approach leverages the bound state in the continuum, which is robust against waveguide disorder. Specifically, we achieve a fidelity exceeding $98\%$ for Bell state generation, overcoming the limitations of conventional decoherence-free interaction mechanisms. This scheme can be readily extended to a three-giant-atom system for generating W states. In both the two- and three-atom setups, the maximally entangled states are generated in a short time and remain stable even as time approaches infinity. Our proposal is feasible for implementation on state-of-the-art solid-state quantum platforms and significantly broadens the applications of giant atoms and waveguide QED system in quantum information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04954v2-abstract-full').style.display = 'none'; document.getElementById('2501.04954v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 Pages, 5 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.04688">arXiv:2501.04688</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.04688">pdf</a>, <a href="https://arxiv.org/format/2501.04688">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Observation of topological prethermal strong zero modes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Jin%2C+F">Feitong Jin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jiang%2C+S">Si Jiang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bao%2C+Z">Zehang Bao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shen%2C+F">Fanhao Shen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhu%2C+Z">Zitian Zhu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+S">Shibo Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+Z">Zixuan Song</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tan%2C+Z">Ziqi Tan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Y">Yaozu Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+C">Chuanyu Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gao%2C+Y">Yu Gao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+N">Ning Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zou%2C+Y">Yiren Zou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+A">Aosai Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+T">Tingting Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhong%2C+J">Jiarun Zhong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cui%2C+Z">Zhengyi Cui</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Han%2C+Y">Yihang Han</a>, <a href="/search/quant-ph?searchtype=author&amp;query=He%2C+Y">Yiyang He</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+H">Han Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+J">Jianan Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Y">Yanzhe Wang</a> , et al. (20 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.04688v1-abstract-short" style="display: inline;"> Symmetry-protected topological phases cannot be described by any local order parameter and are beyond the conventional symmetry-breaking paradigm for understanding quantum matter. They are characterized by topological boundary states robust against perturbations that respect the protecting symmetry. In a clean system without disorder, these edge modes typically only occur for the ground states of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04688v1-abstract-full').style.display = 'inline'; document.getElementById('2501.04688v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.04688v1-abstract-full" style="display: none;"> Symmetry-protected topological phases cannot be described by any local order parameter and are beyond the conventional symmetry-breaking paradigm for understanding quantum matter. They are characterized by topological boundary states robust against perturbations that respect the protecting symmetry. In a clean system without disorder, these edge modes typically only occur for the ground states of systems with a bulk energy gap and would not survive at finite temperatures due to mobile thermal excitations. Here, we report the observation of a distinct type of topological edge modes, which are protected by emergent symmetries and persist even up to infinite temperature, with an array of 100 programmable superconducting qubits. In particular, through digital quantum simulation of the dynamics of a one-dimensional disorder-free &#34;cluster&#34; Hamiltonian, we observe robust long-lived topological edge modes over up to 30 cycles at a wide range of temperatures. By monitoring the propagation of thermal excitations, we show that despite the free mobility of these excitations, their interactions with the edge modes are substantially suppressed in the dimerized regime due to an emergent U(1)$\times$U(1) symmetry, resulting in an unusually prolonged lifetime of the topological edge modes even at infinite temperature. In addition, we exploit these topological edge modes as logical qubits and prepare a logical Bell state, which exhibits persistent coherence in the dimerized and off-resonant regime, despite the system being disorder-free and far from its ground state. Our results establish a viable digital simulation approach to experimentally exploring a variety of finite-temperature topological phases and demonstrate a potential route to construct long-lived robust boundary qubits that survive to infinite temperature in disorder-free systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04688v1-abstract-full').style.display = 'none'; document.getElementById('2501.04688v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.04679">arXiv:2501.04679</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.04679">pdf</a>, <a href="https://arxiv.org/format/2501.04679">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Exploring nontrivial topology at quantum criticality in a superconducting processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Tan%2C+Z">Ziqi Tan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+S">Sheng Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shen%2C+F">Fanhao Shen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jin%2C+F">Feitong Jin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ji%2C+Y">Yujie Ji</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+S">Shibo Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Y">Yaozu Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+C">Chuanyu Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gao%2C+Y">Yu Gao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+N">Ning Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zou%2C+Y">Yiren Zou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+A">Aosai Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+T">Tingting Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bao%2C+Z">Zehang Bao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhu%2C+Z">Zitian Zhu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhong%2C+J">Jiarun Zhong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cui%2C+Z">Zhengyi Cui</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Han%2C+Y">Yihang Han</a>, <a href="/search/quant-ph?searchtype=author&amp;query=He%2C+Y">Yiyang He</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+H">Han Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+J">Jianan Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Y">Yanzhe Wang</a> , et al. (15 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.04679v1-abstract-short" style="display: inline;"> The discovery of nontrivial topology in quantum critical states has introduced a new paradigm for classifying quantum phase transitions and challenges the conventional belief that topological phases are typically associated with a bulk energy gap. However, realizing and characterizing such topologically nontrivial quantum critical states with large particle numbers remains an outstanding experimen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04679v1-abstract-full').style.display = 'inline'; document.getElementById('2501.04679v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.04679v1-abstract-full" style="display: none;"> The discovery of nontrivial topology in quantum critical states has introduced a new paradigm for classifying quantum phase transitions and challenges the conventional belief that topological phases are typically associated with a bulk energy gap. However, realizing and characterizing such topologically nontrivial quantum critical states with large particle numbers remains an outstanding experimental challenge in statistical and condensed matter physics. Programmable quantum processors can directly prepare and manipulate exotic quantum many-body states, offering a powerful path for exploring the physics behind these states. Here, we present an experimental exploration of the critical cluster Ising model by preparing its low-lying critical states on a superconducting processor with up to $100$ qubits. We develop an efficient method to probe the boundary $g$-function based on prepared low-energy states, which allows us to uniquely identify the nontrivial topology of the critical systems under study. Furthermore, by adapting the entanglement Hamiltonian tomography technique, we recognize two-fold topological degeneracy in the entanglement spectrum under periodic boundary condition, experimentally verifying the universal bulk-boundary correspondence in topological critical systems. Our results demonstrate the low-lying critical states as useful quantum resources for investigating the interplay between topology and quantum criticality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04679v1-abstract-full').style.display = 'none'; document.getElementById('2501.04679v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.03886">arXiv:2501.03886</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.03886">pdf</a>, <a href="https://arxiv.org/format/2501.03886">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> </div> <p class="title is-5 mathjax"> Signatures of a gravitational quantum vacuum on dynamics of massive particles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Malcolm%2C+A+R">Aaron R. Malcolm</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zhi-Wei Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sharmila%2C+B">B. Sharmila</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Datta%2C+A">Animesh Datta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.03886v1-abstract-short" style="display: inline;"> We study the interaction of two massive particles with a quantised gravitational field in its vacuum state using two different position observables: (i) a frame-dependent coordinate separation and (ii) a frame-independent geodesic separation. For free particles, (i) leads to purely unitary dynamics but (ii) leads to dissipation. For two particles coupled through a linear spring, (i) and (ii) lead&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.03886v1-abstract-full').style.display = 'inline'; document.getElementById('2501.03886v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.03886v1-abstract-full" style="display: none;"> We study the interaction of two massive particles with a quantised gravitational field in its vacuum state using two different position observables: (i) a frame-dependent coordinate separation and (ii) a frame-independent geodesic separation. For free particles, (i) leads to purely unitary dynamics but (ii) leads to dissipation. For two particles coupled through a linear spring, (i) and (ii) lead to different cut-off dependences in the frequency shift harmonic ladder of the differential motional mode. Our findings highlight the subtle consequences of different position observables at the interface of quantum mechanics and gravity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.03886v1-abstract-full').style.display = 'none'; document.getElementById('2501.03886v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.03319">arXiv:2501.03319</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.03319">pdf</a>, <a href="https://arxiv.org/format/2501.03319">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Probing Stress and Magnetism at High Pressures with Two-Dimensional Quantum Sensors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=He%2C+G">Guanghui He</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gong%2C+R">Ruotian Gong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zhipan Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+Z">Zhongyuan Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hong%2C+J">Jeonghoon Hong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+T">Tongxie Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Riofrio%2C+A+L">Ariana L. Riofrio</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Rehfuss%2C+Z">Zachary Rehfuss</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+M">Mingfeng Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yao%2C+C">Changyu Yao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Poirier%2C+T">Thomas Poirier</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ye%2C+B">Bingtian Ye</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+X">Xi Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ran%2C+S">Sheng Ran</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Edgar%2C+J+H">James H. Edgar</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+S">Shixiong Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yao%2C+N+Y">Norman Y. Yao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zu%2C+C">Chong Zu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.03319v1-abstract-short" style="display: inline;"> Pressure serves as a fundamental tuning parameter capable of drastically modifying all properties of matter. The advent of diamond anvil cells (DACs) has enabled a compact and tabletop platform for generating extreme pressure conditions in laboratory settings. However, the limited spatial dimensions and ultrahigh pressures within these environments present significant challenges for conventional s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.03319v1-abstract-full').style.display = 'inline'; document.getElementById('2501.03319v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.03319v1-abstract-full" style="display: none;"> Pressure serves as a fundamental tuning parameter capable of drastically modifying all properties of matter. The advent of diamond anvil cells (DACs) has enabled a compact and tabletop platform for generating extreme pressure conditions in laboratory settings. However, the limited spatial dimensions and ultrahigh pressures within these environments present significant challenges for conventional spectroscopy techniques. In this work, we integrate optical spin defects within a thin layer of two-dimensional (2D) materials directly into the high-pressure chamber, enabling an in situ quantum sensing platform for mapping local stress and magnetic environments up to 4~GPa. Compared to nitrogen-vacancy (NV) centers embedded in diamond anvils, our 2D sensors exhibit around three times stronger response to local stress and provide nanoscale proximity to the target sample in heterogeneous devices. We showcase the versatility of our approach by imaging both stress gradients within the high-pressure chamber and a pressure-driven magnetic phase transition in a room-temperature self-intercalated van der Waals ferromagnet, Cr$_{1+未}$Te$_2$. Our work demonstrates an integrated quantum sensing device for high-pressure experiments, offering potential applications in probing pressure-induced phenomena such as superconductivity, magnetism, and mechanical deformation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.03319v1-abstract-full').style.display = 'none'; document.getElementById('2501.03319v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.03084">arXiv:2501.03084</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.03084">pdf</a>, <a href="https://arxiv.org/format/2501.03084">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Stable excitations and holographic transportation in tensor networks of critical spin chains </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zuo Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=He%2C+L">Liang He</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.03084v1-abstract-short" style="display: inline;"> The AdS/CFT correspondence conjectures a duality between quantum gravity theories in anti-de Sitter (AdS) spacetime and conformal field theories (CFTs) on the boundary. One intriguing aspect of this correspondence is that it offers a pathway to explore quantum gravity through tabletop experiments. Recently, a multi-scale entanglement renormalization ansatz (MERA) model of AdS/CFT that can be imple&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.03084v1-abstract-full').style.display = 'inline'; document.getElementById('2501.03084v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.03084v1-abstract-full" style="display: none;"> The AdS/CFT correspondence conjectures a duality between quantum gravity theories in anti-de Sitter (AdS) spacetime and conformal field theories (CFTs) on the boundary. One intriguing aspect of this correspondence is that it offers a pathway to explore quantum gravity through tabletop experiments. Recently, a multi-scale entanglement renormalization ansatz (MERA) model of AdS/CFT that can be implemented using contemporary quantum simulators has been proposed [R. Sahay, M. D. Lukin, and J. Cotler, arXiv:2401.13595 (2024)]. Particularly, local bulk excitations (entitled &#34;hologrons&#34;) manifesting attractive interactions given by AdS gravity were found. However, the fundamental question concerning the stability of these identified hologrons is still left open. Here, we address this question and find that hologrons are unstable during dynamic evolution. In searching for stable bulk excitations with attractive interactions, we find they can be constructed by the local primary operators in the boundary CFT. Furthermore, we identify a class of boundary excitations that exhibit the bizarre behavior of &#34;holographic transportation&#34;, which can be directly observed on the boundary system implemented in experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.03084v1-abstract-full').style.display = 'none'; document.getElementById('2501.03084v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4.5 pages (3 figures) + supplemental material (3 figures)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.02806">arXiv:2501.02806</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.02806">pdf</a>, <a href="https://arxiv.org/ps/2501.02806">ps</a>, <a href="https://arxiv.org/format/2501.02806">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Controllable superradiance scaling in photonic waveguide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+X">Xiang Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zhihai Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.02806v1-abstract-short" style="display: inline;"> We investigate the superradiance of two-level target atoms (TAs) coupled to a photonic waveguide, demonstrating that the scaling of the superradiance strength can be controlled on demand by an ensemble of control atoms (CAs). The scaling with respect to the number of TAs can be lower, higher, or equal to the traditional Dicke superradiance, depending on the relative positioning of the ensembles an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.02806v1-abstract-full').style.display = 'inline'; document.getElementById('2501.02806v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.02806v1-abstract-full" style="display: none;"> We investigate the superradiance of two-level target atoms (TAs) coupled to a photonic waveguide, demonstrating that the scaling of the superradiance strength can be controlled on demand by an ensemble of control atoms (CAs). The scaling with respect to the number of TAs can be lower, higher, or equal to the traditional Dicke superradiance, depending on the relative positioning of the ensembles and the type of CAs (e.g., small or giant). These phenomena are attributed to unconventional atomic correlations. Furthermore, we observe chiral superradiance of the TAs, where the degree of chirality can be enhanced by giant CAs instead of small ones. The effects discussed in this work could be observed in waveguide QED experiments, offering a potential avenue for manipulating superradiance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.02806v1-abstract-full').style.display = 'none'; document.getElementById('2501.02806v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages main text+7 pages supplementary material, 5 figures+4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.20604">arXiv:2412.20604</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.20604">pdf</a>, <a href="https://arxiv.org/format/2412.20604">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Functional Analysis">math.FA</span> </div> </div> <p class="title is-5 mathjax"> Error Estimates and Higher Order Trotter Product Formulas in Jordan-Banach Algebras </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Chehade%2C+S">Sarah Chehade</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Delgado%2C+A">Andrea Delgado</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+S">Shuzhou Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zhenhua Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.20604v2-abstract-short" style="display: inline;"> In quantum computing, Trotter estimates are critical for enabling efficient simulation of quantum systems and quantum dynamics, help implement complex quantum algorithms, and provide a systematic way to control approximate errors. In this paper, we extend the analysis of Trotter-Suzuki approximations, including third and higher orders, to Jordan-Banach algebras. We solve an open problem in our ear&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.20604v2-abstract-full').style.display = 'inline'; document.getElementById('2412.20604v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.20604v2-abstract-full" style="display: none;"> In quantum computing, Trotter estimates are critical for enabling efficient simulation of quantum systems and quantum dynamics, help implement complex quantum algorithms, and provide a systematic way to control approximate errors. In this paper, we extend the analysis of Trotter-Suzuki approximations, including third and higher orders, to Jordan-Banach algebras. We solve an open problem in our earlier paper on the existence of second-order Trotter formula error estimation in Jordan-Banach algebras. To illustrate our work, we apply our formula to simulate Trotter-factorized spins, and show improvements in the approximations. Our approach demonstrates the adaptability of Trotter product formulas and estimates to non-associative settings, which offers new insights into the applications of Jordan algebra theory to operator dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.20604v2-abstract-full').style.display = 'none'; document.getElementById('2412.20604v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">some updates on section 5</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 17C90; 81P45; 15A16(Primary); 17C65; 81R15; 46H70(Secondary) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.20380">arXiv:2412.20380</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.20380">pdf</a>, <a href="https://arxiv.org/format/2412.20380">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Artificial Intelligence for Quantum Error Correction: A Comprehensive Review </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zihao Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tang%2C+H">Hao Tang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.20380v1-abstract-short" style="display: inline;"> Quantum Error Correction (QEC) is the process of detecting and correcting errors in quantum systems, which are prone to decoherence and quantum noise. QEC is crucial for developing stable and highly accurate quantum computing systems, therefore, several research efforts have been made to develop the best QEC strategy. Recently, Google&#39;s breakthrough shows great potential to improve the accuracy of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.20380v1-abstract-full').style.display = 'inline'; document.getElementById('2412.20380v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.20380v1-abstract-full" style="display: none;"> Quantum Error Correction (QEC) is the process of detecting and correcting errors in quantum systems, which are prone to decoherence and quantum noise. QEC is crucial for developing stable and highly accurate quantum computing systems, therefore, several research efforts have been made to develop the best QEC strategy. Recently, Google&#39;s breakthrough shows great potential to improve the accuracy of the existing error correction methods. This survey provides a comprehensive review of advancements in the use of artificial intelligence (AI) tools to enhance QEC schemes for existing Noisy Intermediate Scale Quantum (NISQ) systems. Specifically, we focus on machine learning (ML) strategies and span from unsupervised, supervised, semi-supervised, to reinforcement learning methods. It is clear from the evidence, that these methods have recently shown superior efficiency and accuracy in the QEC pipeline compared to conventional approaches. Our review covers more than 150 relevant studies, offering a comprehensive overview of progress and perspective in this field. We organized the reviewed literature on the basis of the AI strategies employed and improvements in error correction performance. We also discuss challenges ahead such as data sparsity caused by limited quantum error datasets and scalability issues as the number of quantum bits (qubits) in quantum systems kept increasing very fast. We conclude the paper with summary of existing works and future research directions aimed at deeper integration of AI techniques into QEC strategies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.20380v1-abstract-full').style.display = 'none'; document.getElementById('2412.20380v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.17801">arXiv:2412.17801</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.17801">pdf</a>, <a href="https://arxiv.org/format/2412.17801">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Probing the magnetic origin of the pseudogap using a Fermi-Hubbard quantum simulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Chalopin%2C+T">Thomas Chalopin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bojovi%C4%87%2C+P">Petar Bojovi膰</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+S">Si Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Franz%2C+T">Titus Franz</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sinha%2C+A">Aritra Sinha</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zhenjiu Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bourgund%2C+D">Dominik Bourgund</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Obermeyer%2C+J">Johannes Obermeyer</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Grusdt%2C+F">Fabian Grusdt</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bohrdt%2C+A">Annabelle Bohrdt</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Pollet%2C+L">Lode Pollet</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wietek%2C+A">Alexander Wietek</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Georges%2C+A">Antoine Georges</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hilker%2C+T">Timon Hilker</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bloch%2C+I">Immanuel Bloch</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.17801v1-abstract-short" style="display: inline;"> In strongly correlated materials, interacting electrons are entangled and form collective quantum states, resulting in rich low-temperature phase diagrams. Notable examples include cuprate superconductors, in which superconductivity emerges at low doping out of an unusual ``pseudogap&#39;&#39; metallic state above the critical temperature. The Fermi-Hubbard model, describing a wide range of phenomena asso&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.17801v1-abstract-full').style.display = 'inline'; document.getElementById('2412.17801v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.17801v1-abstract-full" style="display: none;"> In strongly correlated materials, interacting electrons are entangled and form collective quantum states, resulting in rich low-temperature phase diagrams. Notable examples include cuprate superconductors, in which superconductivity emerges at low doping out of an unusual ``pseudogap&#39;&#39; metallic state above the critical temperature. The Fermi-Hubbard model, describing a wide range of phenomena associated with strong electron correlations, still offers major computational challenges despite its simple formulation. In this context, ultracold atoms quantum simulators have provided invaluable insights into the microscopic nature of correlated quantum states. Here, we use a quantum gas microscope Fermi-Hubbard simulator to explore a wide range of doping levels and temperatures in a regime where a pseudogap is known to develop. By measuring multi-point correlation functions up to fifth order, we uncover a novel universal behaviour in magnetic and higher-order spin-charge correlations. This behaviour is characterized by a doping-dependent energy scale that governs the exponential growth of the magnetic correlation length upon cooling. Accurate comparisons with determinant Quantum Monte Carlo and Minimally Entangled Typical Thermal States simulations confirm that this energy scale agrees well with the pseudogap temperature $T^{*}$. Our findings establish a qualitative and quantitative understanding of the magnetic origin and physical nature of the pseudogap and pave the way towards the exploration of pairing and collective phenomena among charge carriers expected to emerge at lower temperatures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.17801v1-abstract-full').style.display = 'none'; document.getElementById('2412.17801v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.16891">arXiv:2412.16891</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.16891">pdf</a>, <a href="https://arxiv.org/format/2412.16891">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Instanton-Induced Supersymmetry Breaking in Topological Semimetals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Rui%2C+W+B">W. B. Rui</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+Y+X">Y. X. Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z+D">Z. D. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.16891v1-abstract-short" style="display: inline;"> Supersymmetry (SUSY) proposed as an elementary symmetry for physics beyond the Standard Model has found important applications in various areas outside high-energy physics. Here, we systematically implement supersymmetric quantum mechanics -- exhibiting fundamental SUSY properties in the simple setting of quantum mechanics -- into a wide range of topological semimetals, where the broken translatio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.16891v1-abstract-full').style.display = 'inline'; document.getElementById('2412.16891v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.16891v1-abstract-full" style="display: none;"> Supersymmetry (SUSY) proposed as an elementary symmetry for physics beyond the Standard Model has found important applications in various areas outside high-energy physics. Here, we systematically implement supersymmetric quantum mechanics -- exhibiting fundamental SUSY properties in the simple setting of quantum mechanics -- into a wide range of topological semimetals, where the broken translational symmetry, e.g., by a magnetic field, is effectively captured by a SUSY potential. We show that the dynamical SUSY breaking via the instanton effect over the SUSY potential valleys works as the underlying mechanism for the gap opening of the topological semimetallic phases, and the magnitude of the instanton effect is proportional to the energy gap. This instanton mechanism provides a simple criterion for determining whether the energy gap has been opened, without resorting to detailed calculations, i.e., a finite energy gap is opened if and only if the SUSY potential has an even number of zeros. Our theory leads to previously unexpected results: even an infinitesimal magnetic field can open a gap in topologically robust Dirac, Weyl, and nodal-line semimetallic phases due to the dynamical SUSY breaking. Overall, the revealed connection between SUSY quantum mechanics and non-uniform topological semimetals can elucidate previously ambiguous phenomena, provide guidance for future investigations, and open a new avenue for exploring topological semimetals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.16891v1-abstract-full').style.display = 'none'; document.getElementById('2412.16891v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.13489">arXiv:2412.13489</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.13489">pdf</a>, <a href="https://arxiv.org/format/2412.13489">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Analysis of Higher-Order Ising Hamiltonians </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Cen%2C+Y">Yunuo Cen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+Z">Zhiwei Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zixuan Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Y">Yimin Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Fong%2C+X">Xuanyao Fong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.13489v1-abstract-short" style="display: inline;"> It is challenging to scale Ising machines for industrial-level problems due to algorithm or hardware limitations. Although higher-order Ising models provide a more compact encoding, they are, however, hard to physically implement. This work proposes a theoretical framework of a higher-order Ising simulator, IsingSim. The Ising spins and gradients in IsingSim are decoupled and self-customizable. We&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.13489v1-abstract-full').style.display = 'inline'; document.getElementById('2412.13489v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.13489v1-abstract-full" style="display: none;"> It is challenging to scale Ising machines for industrial-level problems due to algorithm or hardware limitations. Although higher-order Ising models provide a more compact encoding, they are, however, hard to physically implement. This work proposes a theoretical framework of a higher-order Ising simulator, IsingSim. The Ising spins and gradients in IsingSim are decoupled and self-customizable. We significantly accelerate the simulation speed via a bidirectional approach for differentiating the hyperedge functions. Our proof-of-concept implementation verifies the theoretical framework by simulating the Ising spins with exact and approximate gradients. Experiment results show that our novel framework can be a useful tool for providing design guidelines for higher-order Ising machines. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.13489v1-abstract-full').style.display = 'none'; document.getElementById('2412.13489v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.13360">arXiv:2412.13360</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.13360">pdf</a>, <a href="https://arxiv.org/format/2412.13360">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> </div> </div> <p class="title is-5 mathjax"> Parastatistics and a secret communication challenge </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zhiyuan Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.13360v3-abstract-short" style="display: inline;"> One of the most unconventional features of topological phases of matter is the emergence of quasiparticles with exotic statistics, such as non-Abelian anyons in two dimensional systems. Recently, a different type of exotic particle statistics that is consistently defined in any dimension, called parastatistics, is also shown to be possible in a special family of topological phases. However, the ph&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.13360v3-abstract-full').style.display = 'inline'; document.getElementById('2412.13360v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.13360v3-abstract-full" style="display: none;"> One of the most unconventional features of topological phases of matter is the emergence of quasiparticles with exotic statistics, such as non-Abelian anyons in two dimensional systems. Recently, a different type of exotic particle statistics that is consistently defined in any dimension, called parastatistics, is also shown to be possible in a special family of topological phases. However, the physical significance of emergent parastatistics still remains elusive. Here we demonstrate a distinctive physical consequence of parastatistics by proposing a challenge game that can only be won using physical systems hosting paraparticles, as passing the challenge requires the two participating players to secretly communicate in an indirect way by exploiting the nontrivial exchange statistics of the quasiparticles. The winning strategy using emergent paraparticles is robust against noise, as well as the most relevant class of eavesdropping via local measurements. This provides both an operational definition and an experimental identity test for paraparticles, alongside a potential application in secret communication. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.13360v3-abstract-full').style.display = 'none'; document.getElementById('2412.13360v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 3 captioned figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.10074">arXiv:2412.10074</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.10074">pdf</a>, <a href="https://arxiv.org/ps/2412.10074">ps</a>, <a href="https://arxiv.org/format/2412.10074">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11128-024-04611-7">10.1007/s11128-024-04611-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Schmidt number criterion via general symmetric informationally complete measurements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zhen Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sun%2C+B">Bao-Zhi Sun</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Fei%2C+S">Shao-Ming Fei</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zhi-Xi Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.10074v1-abstract-short" style="display: inline;"> The Schmidt number characterizes the quantum entanglement of a bipartite mixed state and plays a significant role in certifying entanglement of quantum states. We derive a Schmidt number criterion based on the trace norm of the correlation matrix obtained from the general symmetric informationally complete measurements. The criterion gives an effective way to quantify the entanglement dimension of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.10074v1-abstract-full').style.display = 'inline'; document.getElementById('2412.10074v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.10074v1-abstract-full" style="display: none;"> The Schmidt number characterizes the quantum entanglement of a bipartite mixed state and plays a significant role in certifying entanglement of quantum states. We derive a Schmidt number criterion based on the trace norm of the correlation matrix obtained from the general symmetric informationally complete measurements. The criterion gives an effective way to quantify the entanglement dimension of a bipartite state with arbitrary local dimensions. We show that this Schmidt number criterion is more effective and superior than other criteria such as fidelity, CCNR (computable cross-norm or realignment), MUB (mutually unbiased bases) and EAM (equiangular measurements) criteria in certifying the Schmidt numbers by detailed examples. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.10074v1-abstract-full').style.display = 'none'; document.getElementById('2412.10074v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Quantum Inf. Process.23(2024),401 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.09944">arXiv:2412.09944</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.09944">pdf</a>, <a href="https://arxiv.org/format/2412.09944">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Deterministic steady-state subradiance within a single-excitation basis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Chu%2C+M">Meng-Jia Chu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ren%2C+J">Jun Ren</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z+D">Z. D. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.09944v1-abstract-short" style="display: inline;"> Subradiance shows promising applications in quantum information, yet its realization remains more challenging than superradiance due to the need to suppress various decay channels. This study introduces a state space within a single-excitation basis with perfect subradiance and genuine multipartite quantum entanglement resources for the all-to-all case. Utilizing the quantum jump operator method,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.09944v1-abstract-full').style.display = 'inline'; document.getElementById('2412.09944v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.09944v1-abstract-full" style="display: none;"> Subradiance shows promising applications in quantum information, yet its realization remains more challenging than superradiance due to the need to suppress various decay channels. This study introduces a state space within a single-excitation basis with perfect subradiance and genuine multipartite quantum entanglement resources for the all-to-all case. Utilizing the quantum jump operator method, we also provide an analytical derivation of the system&#39;s steady final state for any single-excitation initial state. Additionally, we determine the approximate final state in the quasi-all-to-all coupling scenario. As an illustrative example, we evaluate the coupling and dynamical properties of emitters in a photonic crystal slab possessing an ultra-high quality bound state in the continuum, thereby validating the efficacy of our theoretical approach. This theoretical framework facilitates the analytical prediction of dynamics for long-lived multipartite entanglement while elucidating a pathway toward realizing autonomous subradiance in atomic systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.09944v1-abstract-full').style.display = 'none'; document.getElementById('2412.09944v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.04479">arXiv:2412.04479</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.04479">pdf</a>, <a href="https://arxiv.org/ps/2412.04479">ps</a>, <a href="https://arxiv.org/format/2412.04479">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Separability criteria based on realignment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Lu%2C+Y">Yu Lu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shen%2C+Z">Zhong-Xi Shen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Fei%2C+S">Shao-Ming Fei</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zhi-Xi Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.04479v1-abstract-short" style="display: inline;"> The detection of entanglement in a bipartite state is a crucial issue in quantum information science. Based on realignment of density matrices and the vectorization of the reduced density matrices, we introduce a new set of separability criteria. The proposed separability criteria can detect more entanglement than the previous separability criteria. Moreover, we provide new criteria for detecting&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04479v1-abstract-full').style.display = 'inline'; document.getElementById('2412.04479v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.04479v1-abstract-full" style="display: none;"> The detection of entanglement in a bipartite state is a crucial issue in quantum information science. Based on realignment of density matrices and the vectorization of the reduced density matrices, we introduce a new set of separability criteria. The proposed separability criteria can detect more entanglement than the previous separability criteria. Moreover, we provide new criteria for detecting the genuine tripartite entanglement and lower bounds for the concurrence and convex-roof extended negativity. The advantages of results are demonstrated through detailed examples. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04479v1-abstract-full').style.display = 'none'; document.getElementById('2412.04479v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 1 figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.04010">arXiv:2412.04010</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.04010">pdf</a>, <a href="https://arxiv.org/ps/2412.04010">ps</a>, <a href="https://arxiv.org/format/2412.04010">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Topological Aspects of Dirac Fermions in a Kagom茅 Lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+X">Xinyuan Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Ziqiang Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+H">Hua Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.04010v2-abstract-short" style="display: inline;"> The Dirac fermion with linear dispersion in the kagom茅 lattice governs the low-energy physics of different valleys at two inequivalent corners of hexagonal Brillouin zone. The effective Hamiltonian based on the cyclic permutation symmetry of sublattices is constructed to show that the topology of Dirac fermions at these two valleys is characterized by opposite winding numbers. For spinless fermion&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04010v2-abstract-full').style.display = 'inline'; document.getElementById('2412.04010v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.04010v2-abstract-full" style="display: none;"> The Dirac fermion with linear dispersion in the kagom茅 lattice governs the low-energy physics of different valleys at two inequivalent corners of hexagonal Brillouin zone. The effective Hamiltonian based on the cyclic permutation symmetry of sublattices is constructed to show that the topology of Dirac fermions at these two valleys is characterized by opposite winding numbers. For spinless fermions, the many-particle interactions produce intervalley scattering and drive an intervalley coherent state with spontaneous translation symmetry breaking. The Dirac fermions acquire a mass term from the simultaneous charge and bond orderings. In this phase, the developed bond texture underlies a hollow-star-of-David pattern in a tripled Wigner-Seitz cell of kagom茅 lattice. It is further demonstrated that the twisting of Dirac mass with vorticity leads to zero Dirac modes at the vortex core, which are intimately related to fractionalization. The hollow-star-of-David phase is shown to have a distinct $\mathbb{Z}_6$ Berry phase with its sign-change counterpart of Dirac mass, i.e. the hexagonal phase, shedding light on the topological origin of zero Dirac modes around the vortex core. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04010v2-abstract-full').style.display = 'none'; document.getElementById('2412.04010v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.03249">arXiv:2412.03249</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.03249">pdf</a>, <a href="https://arxiv.org/format/2412.03249">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> </div> </div> <p class="title is-5 mathjax"> MLQM: Machine Learning Approach for Accelerating Optimal Qubit Mapping </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Sun%2C+W">Wenjie Sun</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+X">Xiaoyu Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yu%2C+L">Lianhui Yu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zhigang Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+G">Geng Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+G">Guowu Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.03249v1-abstract-short" style="display: inline;"> Quantum circuit mapping is a critical process in quantum computing that involves adapting logical quantum circuits to adhere to hardware constraints, thereby generating physically executable quantum circuits. Current quantum circuit mapping techniques, such as solver-based methods, often encounter challenges related to slow solving speeds due to factors like redundant search iterations. Regarding&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.03249v1-abstract-full').style.display = 'inline'; document.getElementById('2412.03249v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.03249v1-abstract-full" style="display: none;"> Quantum circuit mapping is a critical process in quantum computing that involves adapting logical quantum circuits to adhere to hardware constraints, thereby generating physically executable quantum circuits. Current quantum circuit mapping techniques, such as solver-based methods, often encounter challenges related to slow solving speeds due to factors like redundant search iterations. Regarding this issue, we propose a machine learning approach for accelerating optimal qubit mapping (MLQM). First, the method proposes a global search space pruning scheme based on prior knowledge and machine learning, which in turn improves the solution efficiency. Second, to address the limited availability of effective samples in the learning task, MLQM introduces a novel data augmentation and refinement scheme, this scheme enhances the size and diversity of the quantum circuit dataset by exploiting gate allocation and qubit rearrangement. Finally, MLQM also further improves the solution efficiency by pruning the local search space, which is achieved through an adaptive dynamic adjustment mechanism of the solver variables. Compared to state-of-the-art qubit mapping approaches, MLQM achieves optimal qubit mapping with an average solving speed-up ratio of 1.79 and demonstrates an average advantage of 22% in terms of space complexity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.03249v1-abstract-full').style.display = 'none'; document.getElementById('2412.03249v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.01384">arXiv:2412.01384</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.01384">pdf</a>, <a href="https://arxiv.org/format/2412.01384">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Addressing general measurements in quantum Monte Carlo </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zhiyan Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+Z">Zenan Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zhe Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yan%2C+Z">Zheng Yan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.01384v2-abstract-short" style="display: inline;"> Achieving general (off-diagonal) measurements is one of the most significant challenges in quantum Monte Carlo, which strongly limits its application during the decades of development. We propose a universal scheme to tackle the problems of general measurement. The target observables are expressed as the ratio of two types of partition functions $\langle \mathrm{O} \rangle=\bar{Z}/Z$, where&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01384v2-abstract-full').style.display = 'inline'; document.getElementById('2412.01384v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.01384v2-abstract-full" style="display: none;"> Achieving general (off-diagonal) measurements is one of the most significant challenges in quantum Monte Carlo, which strongly limits its application during the decades of development. We propose a universal scheme to tackle the problems of general measurement. The target observables are expressed as the ratio of two types of partition functions $\langle \mathrm{O} \rangle=\bar{Z}/Z$, where $\bar{Z}=\mathrm{tr} (\mathrm{Oe^{-尾H}})$ and $Z=\mathrm{tr} (\mathrm{e^{-尾H}})$. These two partition functions can be estimated separately within the reweight-annealing frame, and then be connected by an easily solvable reference point. We have successfully applied this scheme to XXZ model and transverse field Ising model, from 1D to 2D systems, from two-body to multi-body correlations and even non-local disorder operators, and from equal-time to imaginary-time correlations. The reweighting path is not limited to physical parameters, but also works for space and (imaginary) time. Our work paves an easy and efficient way to capture the complex off-diagonal operators in quantum Monte Carlo simulation, which provides new insight to address the challenge of quantum Monte Carlo. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01384v2-abstract-full').style.display = 'none'; document.getElementById('2412.01384v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages,16 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.19905">arXiv:2411.19905</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.19905">pdf</a>, <a href="https://arxiv.org/format/2411.19905">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Universal non-Hermitian transport in disordered systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+B">Bo Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+C">Chuan Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zhong Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.19905v1-abstract-short" style="display: inline;"> In disordered Hermitian systems, localization of energy eigenstates prohibits wave propagation. In non-Hermitian systems, however, wave propagation is possible even when the eigenstates of Hamiltonian are exponentially localized by disorders. We find in this regime that non-Hermitian wave propagation exhibits novel universal scaling behaviors without Hermitian counterpart. Furthermore, our theory&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19905v1-abstract-full').style.display = 'inline'; document.getElementById('2411.19905v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.19905v1-abstract-full" style="display: none;"> In disordered Hermitian systems, localization of energy eigenstates prohibits wave propagation. In non-Hermitian systems, however, wave propagation is possible even when the eigenstates of Hamiltonian are exponentially localized by disorders. We find in this regime that non-Hermitian wave propagation exhibits novel universal scaling behaviors without Hermitian counterpart. Furthermore, our theory demonstrates how the tail of imaginary-part density of states dictates wave propagation in the long-time limit. Specifically, for the three typical classes, namely the Gaussian, the uniform, and the linear imaginary-part density of states, we obtain logarithmically suppressed sub-ballistic transport, and two types of subdiffusion with exponents that depend only on spatial dimensions, respectively. Our work highlights the fundamental differences between Hermitian and non-Hermitian Anderson localization, and uncovers unique universality in non-Hermitian wave propagation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19905v1-abstract-full').style.display = 'none'; document.getElementById('2411.19905v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5+10 pages,3+2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.17197">arXiv:2411.17197</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.17197">pdf</a>, <a href="https://arxiv.org/ps/2411.17197">ps</a>, <a href="https://arxiv.org/format/2411.17197">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Going beyond quantum Markovianity and back to reality: An exact master equation study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zhao-Ming Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+S+L">S. L. Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Byrd%2C+M+S">Mark S. Byrd</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+L">Lian-Ao Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.17197v2-abstract-short" style="display: inline;"> The precise characterization of dynamics in open quantum systems often presents significant challenges, leading to the introduction of various approximations to simplify a model. One commonly used strategy involves Markovian approximations, assuming a memoryless environment. In this study, such approximations are not used and an analytical dynamical depiction of an open quantum system is provided.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17197v2-abstract-full').style.display = 'inline'; document.getElementById('2411.17197v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.17197v2-abstract-full" style="display: none;"> The precise characterization of dynamics in open quantum systems often presents significant challenges, leading to the introduction of various approximations to simplify a model. One commonly used strategy involves Markovian approximations, assuming a memoryless environment. In this study, such approximations are not used and an analytical dynamical depiction of an open quantum system is provided. The system under consideration is an oscillator that is surrounded by a bath of oscillators. The resulting dynamics are characterized by a second-order complex coefficient linear differential equation, which may be either homogeneous or inhomogeneous. Moreover, distinct dynamical regions emerge, depending on certain parameter values. Notably, the steady-state average excitation number (AEN) of the system shows rapid escalation with increasing non-Markovianity, reflecting the intricacies of real-world dynamics. In cases where there is detuning between the system frequency and the environmental central frequency within a non-Markovian regime, the AEN maintains its initial value for an extended period. Furthermore, the application of pulse control can effectively protect the quantum system from decoherence effects without using approximations. The pulse control can not only prolong the relaxation time of the oscillator, but can also be used to speed up the relaxation process, depending on the specifications of the pulse. By employing a kick pulse, the Mpemba effect can be observed in the non-Markovian regime in a surprisingly super-cooling-like effect. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17197v2-abstract-full').style.display = 'none'; document.getElementById('2411.17197v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.15676">arXiv:2411.15676</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.15676">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.chip.2023.100078">10.1016/j.chip.2023.100078 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cooperative engineering the multiple radio-frequency fields to reduce the X-junction barrier for ion trap chips </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+Y">Yarui Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zhao Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xiang%2C+Z">Zixuan Xiang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Q">Qikun Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hu%2C+T">Tianyang Hu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+X">Xu Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.15676v1-abstract-short" style="display: inline;"> With the increasing number of ion qubits and improving performance of sophisticated quantum algorithms, more and more scalable complex ion trap electrodes have been developed and integrated. Nonlinear ion shuttling operations at the junction are more frequently used, such as in the areas of separation, merging, and exchanging. Several studies have been conducted to optimize the geometries of the r&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15676v1-abstract-full').style.display = 'inline'; document.getElementById('2411.15676v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.15676v1-abstract-full" style="display: none;"> With the increasing number of ion qubits and improving performance of sophisticated quantum algorithms, more and more scalable complex ion trap electrodes have been developed and integrated. Nonlinear ion shuttling operations at the junction are more frequently used, such as in the areas of separation, merging, and exchanging. Several studies have been conducted to optimize the geometries of the radio-frequency (RF) electrodes to generate ideal trapping electric fields with a lower junction barrier and an even ion height of the RF saddle points. However, this iteration is time-consuming and commonly accompanied by complicated and sharp electrode geometry. Therefore, high-accuracy fabrication process and high electric breakdown voltage are essential. In the current work, an effective method was proposed to reduce the junction&#39;s pseudo-potential barrier and ion height variation by setting several individual RF electrodes and adjusting each RF voltage amplitude without changing the geometry of the electrode structure. The simulation results show that this method shows the same effect on engineering the trapping potential and reducing the potential barrier, but requires fewer parameters and optimization time. By combining this method with the geometrical shape-optimizing, the pseudo-potential barrier and the ion height variation near the junction can be further reduced. In addition, the geometry of the electrodes can be simplified to relax the fabrication precision and keep the ability to engineer the trapping electric field in real-time even after the fabrication of the electrodes, which provides a potential all-electric degree of freedom for the design and control of the two-dimensional ion crystals and investigation of their phase transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15676v1-abstract-full').style.display = 'none'; document.getElementById('2411.15676v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 8 figures,</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chip 3, no. 1 (2024): 100078 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.15571">arXiv:2411.15571</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.15571">pdf</a>, <a href="https://arxiv.org/format/2411.15571">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Dephasing-assisted diffusive dynamics in superconducting quantum circuits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Liang%2C+Y">Yongqi Liang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xie%2C+C">Changrong Xie</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+Z">Zechen Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Huang%2C+P">Peisheng Huang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Huang%2C+W">Wenhui Huang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+Y">Yiting Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Qiu%2C+J">Jiawei Qiu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sun%2C+X">Xuandong Sun</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zilin Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+X">Xiaohan Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+J">Jiawei Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+J">Jiajian Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+L">Libo Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chu%2C+J">Ji Chu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+W">Weijie Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jiang%2C+J">Ji Jiang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Linpeng%2C+X">Xiayu Linpeng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+S">Song Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Niu%2C+J">Jingjing Niu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">Yuxuan Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ren%2C+W">Wenhui Ren</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tao%2C+Z">Ziyu Tao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhong%2C+Y">Youpeng Zhong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yu%2C+D">Dapeng Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.15571v1-abstract-short" style="display: inline;"> Random fluctuations caused by environmental noise can lead to decoherence in quantum systems. Exploring and controlling such dissipative processes is both fundamentally intriguing and essential for harnessing quantum systems to achieve practical advantages and deeper insights. In this Letter, we first demonstrate the diffusive dynamics assisted by controlled dephasing noise in superconducting quan&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15571v1-abstract-full').style.display = 'inline'; document.getElementById('2411.15571v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.15571v1-abstract-full" style="display: none;"> Random fluctuations caused by environmental noise can lead to decoherence in quantum systems. Exploring and controlling such dissipative processes is both fundamentally intriguing and essential for harnessing quantum systems to achieve practical advantages and deeper insights. In this Letter, we first demonstrate the diffusive dynamics assisted by controlled dephasing noise in superconducting quantum circuits, contrasting with coherent evolution. We show that dephasing can enhance localization in a superconducting qubit array with quasiperiodic order, even in the regime where all eigenstates remain spatially extended for the coherent counterpart. Furthermore, by preparing different excitation distributions in the qubit array, we observe that a more localized initial state relaxes to a uniformly distributed mixed state faster with dephasing noise, illustrating another counterintuitive phenomenon called Mpemba effect, i.e., a far-from-equilibrium state can relax toward the equilibrium faster. These results deepen our understanding of diffusive dynamics at the microscopic level, and demonstrate controlled dissipative processes as a valuable tool for investigating Markovian open quantum systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15571v1-abstract-full').style.display = 'none'; document.getElementById('2411.15571v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7+10 pages, 4+9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.14065">arXiv:2411.14065</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.14065">pdf</a>, <a href="https://arxiv.org/ps/2411.14065">ps</a>, <a href="https://arxiv.org/format/2411.14065">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Rabi oscillation and fractional population via the bound states in the continuum in a giant atom waveguide QED setup </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Yu%2C+H">Hongwei Yu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+X">Xiaojun Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zhihai Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+J">Jin Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.14065v1-abstract-short" style="display: inline;"> We study the dynamics of two giant atoms interacting with a coupled resonator waveguide (CRW) beyond the Markovian approximation. The distinct atomic configurations determine the number of bound states in the continuum (BIC), leading to different dynamical behaviors. Our results show that when the system supports two BICs, Rabi oscillations dominate the dynamics, whereas fractional population dyna&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14065v1-abstract-full').style.display = 'inline'; document.getElementById('2411.14065v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.14065v1-abstract-full" style="display: none;"> We study the dynamics of two giant atoms interacting with a coupled resonator waveguide (CRW) beyond the Markovian approximation. The distinct atomic configurations determine the number of bound states in the continuum (BIC), leading to different dynamical behaviors. Our results show that when the system supports two BICs, Rabi oscillations dominate the dynamics, whereas fractional population dynamics emerge in the presence of a single BIC. The connection between these dynamics and the existence of BICs is further verified by analyzing the photonic distribution in the CRW during time evolution. These findings challenge the conventional notion that the environment always induces dissipation and decoherence. Instead, the bound states in the CRW-emitters coupled system can suppress complete dissipation of the emitters. This work offers an effective approach for controlling dissipative dynamics in open quantum systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14065v1-abstract-full').style.display = 'none'; document.getElementById('2411.14065v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures, All the comments are welcomed</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13910">arXiv:2411.13910</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.13910">pdf</a>, <a href="https://arxiv.org/ps/2411.13910">ps</a>, <a href="https://arxiv.org/format/2411.13910">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum gravity corrections to the spontaneous excitation of an accelerated atom interacting with a quantum scalar field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zhi Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13910v2-abstract-short" style="display: inline;"> The Generalized Uncertainty Principle (GUP) extends the Heisenberg Uncertainty Principle (HUP) by suggesting a minimum observable scale that includes the effects of quantum gravity, which is supposed to potentially result in observable effects far below the Planck energy scale, providing us the opportunity to explore the theory of quantum gravity through physical processes at low energy scale. In&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13910v2-abstract-full').style.display = 'inline'; document.getElementById('2411.13910v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13910v2-abstract-full" style="display: none;"> The Generalized Uncertainty Principle (GUP) extends the Heisenberg Uncertainty Principle (HUP) by suggesting a minimum observable scale that includes the effects of quantum gravity, which is supposed to potentially result in observable effects far below the Planck energy scale, providing us the opportunity to explore the theory of quantum gravity through physical processes at low energy scale. In present work, we study the corrections induced by the GUP to the spontaneous radiation properties of a two-level atom interacting with a real massless scalar quantum field based on the DDC formalism. The GUP alters the correlation function of the scalar field, consequently affecting the radiative properties of atoms. We compute the rate of change in the mean atomic energy for an atom undergoing inertial motion, uniform acceleration, and uniform circular motion. We show that the GUP can enhance the spontaneous emission rate of an excited state atom in inertial motion; however, it does not alter the stability of the ground-state atom in vacuum. For an atom in uniformly accelerated and uniformly circular motion, the GUP can change both its spontaneous emission and spontaneous excitation rates, and the proper acceleration $a$ can significantly amplify the effect of the GUP on the spontaneous transition rates of the atom. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13910v2-abstract-full').style.display = 'none'; document.getElementById('2411.13910v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13661">arXiv:2411.13661</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.13661">pdf</a>, <a href="https://arxiv.org/format/2411.13661">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Non-Bloch self-energy of dissipative interacting fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+H">He-Ran Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zijian Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zhong Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13661v1-abstract-short" style="display: inline;"> The non-Hermitian skin effect describes the phenomenon of exponential localization of single-particle eigenstates near the boundary of the system. We explore its generalization to the many-body regime by investigating interacting fermions in open quantum systems. Therein, the elementary excitations from the ``vacuum&#39;&#39; (steady state) are given by two types of dissipative quasi-particles composed of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13661v1-abstract-full').style.display = 'inline'; document.getElementById('2411.13661v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13661v1-abstract-full" style="display: none;"> The non-Hermitian skin effect describes the phenomenon of exponential localization of single-particle eigenstates near the boundary of the system. We explore its generalization to the many-body regime by investigating interacting fermions in open quantum systems. Therein, the elementary excitations from the ``vacuum&#39;&#39; (steady state) are given by two types of dissipative quasi-particles composed of single-fermion operators. We perturbatively calculate the self-energy of these quasi-particles in the presence of interactions, and utilize the non-Bloch band theory to develop an exact integral formula, which is further simplified by imposing complex momentum conservation. The formula allows calculating the Liouvillian gap modified by interactions with high precision, as demonstrated by comparison to numerical results. Furthermore, our results show that interactions can even enhance the non-reciprocity of fermion hoppings, contrary to the conventional viewpoint from the Pauli exclusion principle. Our formulation provides a quantitative tool for investigating dissipative interacting fermions with non-Hermitian skin effect, and generalizes the Fermi liquid theory to open quantum systems in the context of diagrammatic perturbation theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13661v1-abstract-full').style.display = 'none'; document.getElementById('2411.13661v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7+5 pages, 3+1 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13331">arXiv:2411.13331</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.13331">pdf</a>, <a href="https://arxiv.org/format/2411.13331">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Versatile photonic frequency synthetic dimensions using a single Mach-Zehnder-interferometer-assisted device on thin-film lithium niobate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zhao-An Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zeng%2C+X">Xiao-Dong Zeng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Y">Yi-Tao Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ren%2C+J">Jia-Ming Ren</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ao%2C+C">Chun Ao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+Z">Zhi-Peng Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+W">Wei Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+N">Nai-Jie Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xie%2C+L">Lin-Ke Xie</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+J">Jun-You Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ma%2C+Y">Yu-Hang Ma</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Y">Ya-Qi Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+S">Shuang Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tang%2C+J">Jian-Shun Tang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+C">Chuan-Feng Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+G">Guang-Can Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13331v1-abstract-short" style="display: inline;"> Investigating physical models with photonic synthetic dimensions has been generating great interest in vast fields of science. The rapid developing thin-film lithium niobate (TFLN) platform, for its numerous advantages including high electro-optic coefficient and scalability, is well compatible with the realization of synthetic dimensions in the frequency together with spatial domain. While coupli&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13331v1-abstract-full').style.display = 'inline'; document.getElementById('2411.13331v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13331v1-abstract-full" style="display: none;"> Investigating physical models with photonic synthetic dimensions has been generating great interest in vast fields of science. The rapid developing thin-film lithium niobate (TFLN) platform, for its numerous advantages including high electro-optic coefficient and scalability, is well compatible with the realization of synthetic dimensions in the frequency together with spatial domain. While coupling resonators with fixed beam splitters is a common experimental approach, it often lacks tunability and limits coupling between adjacent lattices to sites occupying the same frequency domain positions. Here, on the contrary, we conceive the resonator arrays connected by electro-optic tunable Mach-Zehnder interferometers in our configuration instead of fixed beam splitters. By applying bias voltage and RF modulation on the interferometers, our design extends such coupling to long-range scenario and allows for continuous tuning on each coupling strength and synthetic effective magnetic flux. Therefore, our design enriches controllable coupling types that are essential for building programmable lattice networks and significantly increases versatility. As the example, we experimentally fabricate a two-resonator prototype on the TFLN platform, and on this single chip we realize well-known models including tight-binding lattices, topological Hall ladder and Creutz ladder. We directly observe the band structures in the quasi-momentum space and important phenomena such as spin-momentum locking and the Aharonov-Bohm cage effect. These results demonstrate the potential for convenient simulations of more complex models in our configuration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13331v1-abstract-full').style.display = 'none'; document.getElementById('2411.13331v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.11822">arXiv:2411.11822</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.11822">pdf</a>, <a href="https://arxiv.org/format/2411.11822">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Logical computation demonstrated with a neutral atom quantum processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Reichardt%2C+B+W">Ben W. Reichardt</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Paetznick%2C+A">Adam Paetznick</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Aasen%2C+D">David Aasen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Basov%2C+I">Ivan Basov</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bello-Rivas%2C+J+M">Juan M. Bello-Rivas</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bonderson%2C+P">Parsa Bonderson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chao%2C+R">Rui Chao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=van+Dam%2C+W">Wim van Dam</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hastings%2C+M+B">Matthew B. Hastings</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Paz%2C+A">Andres Paz</a>, <a href="/search/quant-ph?searchtype=author&amp;query=da+Silva%2C+M+P">Marcus P. da Silva</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sundaram%2C+A">Aarthi Sundaram</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Svore%2C+K+M">Krysta M. Svore</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Vaschillo%2C+A">Alexander Vaschillo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zhenghan Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zanner%2C+M">Matt Zanner</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cairncross%2C+W+B">William B. Cairncross</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+C">Cheng-An Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Crow%2C+D">Daniel Crow</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Kim%2C+H">Hyosub Kim</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Kindem%2C+J+M">Jonathan M. Kindem</a>, <a href="/search/quant-ph?searchtype=author&amp;query=King%2C+J">Jonathan King</a>, <a href="/search/quant-ph?searchtype=author&amp;query=McDonald%2C+M">Michael McDonald</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Norcia%2C+M+A">Matthew A. Norcia</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ryou%2C+A">Albert Ryou</a> , et al. (46 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.11822v2-abstract-short" style="display: inline;"> Transitioning from quantum computation on physical qubits to quantum computation on encoded, logical qubits can improve the error rate of operations, and will be essential for realizing valuable quantum computational advantages. Using a neutral atom quantum processor with 256 qubits, each an individual Ytterbium atom, we demonstrate the entanglement of 24 logical qubits using the distance-two [[4,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11822v2-abstract-full').style.display = 'inline'; document.getElementById('2411.11822v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.11822v2-abstract-full" style="display: none;"> Transitioning from quantum computation on physical qubits to quantum computation on encoded, logical qubits can improve the error rate of operations, and will be essential for realizing valuable quantum computational advantages. Using a neutral atom quantum processor with 256 qubits, each an individual Ytterbium atom, we demonstrate the entanglement of 24 logical qubits using the distance-two [[4,2,2]] code, simultaneously detecting errors and correcting for lost qubits. We also implement the Bernstein-Vazirani algorithm with up to 28 logical qubits encoded in the [[4,1,2]] code, showing better-than-physical error rates. We demonstrate fault-tolerant quantum computation in our approach, guided by the proposal of Gottesman (2016), by performing repeated loss correction for both structured and random circuits encoded in the [[4,2,2]] code. Finally, since distance-two codes can correct qubit loss, but not other errors, we show repeated loss and error correction using the distance-three [[9,1,3]] Bacon-Shor code. These results begin to clear a path for achieving scientific quantum advantage with a programmable neutral atom quantum processor. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11822v2-abstract-full').style.display = 'none'; document.getElementById('2411.11822v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 16 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.11485">arXiv:2411.11485</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.11485">pdf</a>, <a href="https://arxiv.org/ps/2411.11485">ps</a>, <a href="https://arxiv.org/format/2411.11485">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum Coherence: A Fundamental Resource for Establishing Genuine Multipartite Correlations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zong Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+Z">Zhihua Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+Z">Zhihua Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+M">Ming Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Z">Zihang Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+C">Chengjie Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Fei%2C+S">Shao-Ming Fei</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ma%2C+Z">Zhihao Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.11485v1-abstract-short" style="display: inline;"> We establish the profound equivalence between measures of genuine multipartite entanglement(GME) and their corresponding coherence measures. Initially we construct two distinct classes of measures for genuine multipartite entanglement utilizing real symmetric concave functions and the convex roof technique. We then demonstrate that all coherence measures for any qudit states, defined through the c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11485v1-abstract-full').style.display = 'inline'; document.getElementById('2411.11485v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.11485v1-abstract-full" style="display: none;"> We establish the profound equivalence between measures of genuine multipartite entanglement(GME) and their corresponding coherence measures. Initially we construct two distinct classes of measures for genuine multipartite entanglement utilizing real symmetric concave functions and the convex roof technique. We then demonstrate that all coherence measures for any qudit states, defined through the convex roof approach, are identical to our two classes of GME measures of the states combined with an incoherent ancilla under a unitary incoherent operation. This relationship implies that genuine multipartite entanglement can be generated from the coherence inherent in an initial state through the unitary incoherent operations. Furthermore, we explore the interplay between coherence and other forms of genuine quantum correlations, specifically genuine multipartite steering and genuine multipartite nonlocality. In the instance of special three-qubit X-states (only nonzero elements of X-state are diagonal or antidiagonal when written in an orthonormal basis), we find that genuine multipartite steering and nonlocality are present if and only if the coherence exists in the corresponding qubit states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11485v1-abstract-full').style.display = 'none'; document.getElementById('2411.11485v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.10740">arXiv:2411.10740</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.10740">pdf</a>, <a href="https://arxiv.org/format/2411.10740">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1572-9494/ad766d">10.1088/1572-9494/ad766d <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unified monogamy relations for the generalized $W$-class states beyond qubits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Shen%2C+Z">Zhong-Xi Shen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+W">Wen Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xuan%2C+D">Dong-Ping Xuan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zhi-Xi Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Fei%2C+S">Shao-Ming Fei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.10740v1-abstract-short" style="display: inline;"> The monogamy of entanglement stands as an indispensable feature within multipartite quantum systems. We study monogamy relations with respect to any partitions for the generalized $W$-class (GW) states based on the unified-($q,s$) entanglement (UE). We provide the monogamy relation based on the squared UE for a reduced density matrix of a qudit GW state, as well as tighter monogamy relations based&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10740v1-abstract-full').style.display = 'inline'; document.getElementById('2411.10740v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.10740v1-abstract-full" style="display: none;"> The monogamy of entanglement stands as an indispensable feature within multipartite quantum systems. We study monogamy relations with respect to any partitions for the generalized $W$-class (GW) states based on the unified-($q,s$) entanglement (UE). We provide the monogamy relation based on the squared UE for a reduced density matrix of a qudit GW state, as well as tighter monogamy relations based on the $伪$th ($伪\geq2$) power of UE. Furthermore, for an $n$-qudit system $ABC_1...C_{n-2}$, generalized monogamy relation and upper bound satisfied by the $尾$th ($0\leq尾\leq1$) power of UE for the GW states under the partition $AB$ and $C_1...C_{n-2}$ are established. In particular, two partition-dependent residual entanglements for the GW states are analyzed in detail. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10740v1-abstract-full').style.display = 'none'; document.getElementById('2411.10740v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Commun. Theor. Phys. 77 (2025) 025104 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08368">arXiv:2411.08368</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.08368">pdf</a>, <a href="https://arxiv.org/ps/2411.08368">ps</a>, <a href="https://arxiv.org/format/2411.08368">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1402-4896/ad8e14">10.1088/1402-4896/ad8e14 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum partial coherence measures constructed from Fisher information </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Xuan%2C+D">Dong-Ping Xuan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shen%2C+Z">Zhong-Xi Shen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+W">Wen Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Nan%2C+H">Hua Nan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Fei%2C+S">Shao-Ming Fei</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zhi-Xi Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08368v1-abstract-short" style="display: inline;"> Quantum mechanics gives a new breakthrough to the field of parameter estimation. In the realm of quantum metrology, the precision of parameter estimation is limited by the quantum Fisher information. We introduce the measures of partial coherence based on (quantum) Fisher information by taking into account the post-selective non-unitary parametrization process. These partial coherence measures pre&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08368v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08368v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08368v1-abstract-full" style="display: none;"> Quantum mechanics gives a new breakthrough to the field of parameter estimation. In the realm of quantum metrology, the precision of parameter estimation is limited by the quantum Fisher information. We introduce the measures of partial coherence based on (quantum) Fisher information by taking into account the post-selective non-unitary parametrization process. These partial coherence measures present a clear operational interpretation by directly linking the coherence to the parameter estimation accuracy. Furthermore, we explore the distinctions between our partial coherence measure and the quantum Fisher information within the context of unitary parametrization. We provide an analytical expression for the partial coherence measure of two-qubit states. We elucidate the operational significance of the partial coherence measures by establishing the connections between the partial coherence measures and quantum state discrimination. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08368v1-abstract-full').style.display = 'none'; document.getElementById('2411.08368v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 1 figure</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Scr. 99(2024),125110 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08358">arXiv:2411.08358</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.08358">pdf</a>, <a href="https://arxiv.org/format/2411.08358">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> 10 GHz Robust polarization modulation towards high-speed satellite-based quantum communication </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zexu Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+H">Huaxing Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+J">Ju Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Huang%2C+J">Jinquan Huang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Han%2C+H">Hui Han</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+C">Changlei Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+P">Ping Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yin%2C+F">Feifei Yin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+K">Kun Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+B">Bo Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Dai%2C+Y">Yitang Dai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08358v1-abstract-short" style="display: inline;"> In practical satellite-based quantum key distribution (QKD) systems, the preparation and transmission of polarization-encoding photons suffer from complex environmental effects and high channel-loss. Consequently, the hinge to enhancing the secure key rate (SKR) lies in achieving robust, low-error and high-speed polarization modulation. Although the schemes that realize self-compensation exhibit r&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08358v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08358v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08358v1-abstract-full" style="display: none;"> In practical satellite-based quantum key distribution (QKD) systems, the preparation and transmission of polarization-encoding photons suffer from complex environmental effects and high channel-loss. Consequently, the hinge to enhancing the secure key rate (SKR) lies in achieving robust, low-error and high-speed polarization modulation. Although the schemes that realize self-compensation exhibit remarkable robustness. Their modulation speed is constrained to approximately 2 GHz to avoid the interaction between the electrical signal and the reverse optical pulses. Here we utilize the non-reciprocity of the lithium niobate modulators and eliminate the modulation on the reverse optical pulses. As this characteristic is widely available in the radio-frequency band, the modulation speed is no longer limited by the self-compensating optics and can be further increased. The measured average intrinsic QBER of the different polarization states at 10 GHz system repetition frequency is as low as 0.53% over 10 min without any compensation. And the experiment simulation shows that the proposed scheme extends the transmission distance to more than 350 km. Our work can be be efficient performed to the high-speed and high-loss satellite-based quantum communication scenario. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08358v1-abstract-full').style.display = 'none'; document.getElementById('2411.08358v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.07818">arXiv:2411.07818</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.07818">pdf</a>, <a href="https://arxiv.org/ps/2411.07818">ps</a>, <a href="https://arxiv.org/format/2411.07818">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.110.042413">10.1103/PhysRevA.110.042413 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coherence and entropy complementarity relations of generalized wave-particle duality </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+K">Kang-Kang Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zhi-Xi Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Fei%2C+S">Shao-Ming Fei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.07818v1-abstract-short" style="display: inline;"> The concept of wave-particle duality holds significant importance in the field of quantum mechanics, as it elucidates the dual nature encompassing both wave-like and particle-like properties exhibited by microscopic particles. In this paper, we construct generalized measures for the predictability and visibility of $n$-path interference fringes to quantify the wave and particle properties in quant&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07818v1-abstract-full').style.display = 'inline'; document.getElementById('2411.07818v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.07818v1-abstract-full" style="display: none;"> The concept of wave-particle duality holds significant importance in the field of quantum mechanics, as it elucidates the dual nature encompassing both wave-like and particle-like properties exhibited by microscopic particles. In this paper, we construct generalized measures for the predictability and visibility of $n$-path interference fringes to quantify the wave and particle properties in quantum high-dimensional systems. By employing the Morozova-Chentsov function, we ascertain that the wave-particle relationship can be delineated by the average coherence. This function exhibits a close correlation with the metric-adjusted skew information, thereby we establish complementary relations between visibility, predictability, and quantum $f$ entropy, which reveals deep connections between wave-particle duality and other physical quantities. Through our methodology, diverse functions can be selected to yield corresponding complementary relationships. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07818v1-abstract-full').style.display = 'none'; document.getElementById('2411.07818v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 110(2024), 042413 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.07803">arXiv:2411.07803</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.07803">pdf</a>, <a href="https://arxiv.org/ps/2411.07803">ps</a>, <a href="https://arxiv.org/format/2411.07803">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1142/S0219749924500266">10.1142/S0219749924500266 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tighter superadditivity relations for $l_{1}$-norm coherence measure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+K">Kang-Kang Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shen%2C+Z">Zhong-Xi Shen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zhi-Xi Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Fei%2C+S">Shao-Ming Fei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.07803v1-abstract-short" style="display: inline;"> Quantum coherence serves as a crucial physical resource, with its quantification emerging as a focal point in contemporary research. Superadditivity constitutes one of the most fundamental attributes in characterizing the coherence distribution in multipartite quantum systems. In this paper, we provide a way to derive tighter superadditivity inequalities of $l_1$-norm coherence measure for arbitra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07803v1-abstract-full').style.display = 'inline'; document.getElementById('2411.07803v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.07803v1-abstract-full" style="display: none;"> Quantum coherence serves as a crucial physical resource, with its quantification emerging as a focal point in contemporary research. Superadditivity constitutes one of the most fundamental attributes in characterizing the coherence distribution in multipartite quantum systems. In this paper, we provide a way to derive tighter superadditivity inequalities of $l_1$-norm coherence measure for arbitrary multiqubit states. We present a category of superadditivity relations related to the $伪$-th ($伪\geqslant 2$) power of $l_{1}$-norm coherence $C_{l_{1}}$ under certain conditions. Our results are better than existing ones and are illustrated in detail with examples. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07803v1-abstract-full').style.display = 'none'; document.getElementById('2411.07803v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Int. J. Quant. Inform. 22(7)(2024), 2450026 </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Wang%2C+Z&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Wang%2C+Z&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wang%2C+Z&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wang%2C+Z&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wang%2C+Z&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wang%2C+Z&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10