CINXE.COM

Andre Anders | Leipzig University (Universität Leipzig) - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Andre Anders | Leipzig University (Universität Leipzig) - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="Dqcjpod-TR0XQJA_voxDWlHj2bqjBfNfT8fPN3IoNeQSVaf2qbmNoVLalRLTvAP7QjPr0s_FlQjg-SWbi3THYg" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-3d36c19b4875b226bfed0fcba1dcea3f2fe61148383d97c0465c016b8c969290.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-79e78ce59bef0a338eb6540ec3d93b4a7952115b56c57f1760943128f4544d42.css" /><script type="application/ld+json">{"@context":"https://schema.org","@type":"ProfilePage","mainEntity":{"@context":"https://schema.org","@type":"Person","name":"Andre Anders","url":"https://uni-leipzig1.academia.edu/AndreAnders","image":"https://0.academia-photos.com/33147769/10552206/14843660/s200_andre.anders.jpg","sameAs":[]},"dateCreated":"2015-07-17T15:40:22-07:00","dateModified":"2024-07-27T07:08:18-07:00","name":"Andre Anders","description":"Andre Anders is Director of the Leibniz Institute of Surface Engineering (IOM) in Leipzig, Germany, and Professor of Applied Physics at the University of Leipzig. He assumed these positions after working over 25 years at Lawrence Berkeley National Laboratory, Berkeley, California. \n His research interests are in the field of plasmas and materials, especially in arc and magnetron plasmas, plasma diagnostics, HiPIMS, thin films, diamond-like carbon, transparent conducting oxides, electrochromic materials, nanoparticles and nanocomposites. \nSince 2014, Andre also serves as the Editor-in-Chief of Journal of Applied Physics. ","image":"https://0.academia-photos.com/33147769/10552206/14843660/s200_andre.anders.jpg","thumbnailUrl":"https://0.academia-photos.com/33147769/10552206/14843660/s65_andre.anders.jpg","primaryImageOfPage":{"@type":"ImageObject","url":"https://0.academia-photos.com/33147769/10552206/14843660/s200_andre.anders.jpg","width":200},"sameAs":[],"relatedLink":"https://www.academia.edu/122858913/Bulk_and_thin_film_model_samples_for_the_analysis_of_the_strain_sensitivity_of_niobium_tin"}</script><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-95367dc03b794f6737f30123738a886cf53b7a65cdef98a922a98591d60063e3.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-8c9ae4b5c8a2531640c354d92a1f3579c8ff103277ef74913e34c8a76d4e6c00.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-170d1319f0e354621e81ca17054bb147da2856ec0702fe440a99af314a6338c5.css" /><style type="text/css">@media(max-width: 567px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 32px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 30px;--type-sans-serif-lg-line-height: 36px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 30px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 24px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 24px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 18px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 32px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 20px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 32px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 40px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 24px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 26px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 48px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 52px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 48px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 58px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 80px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 64px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}@media(min-width: 568px)and (max-width: 1279px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 42px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 32px;--type-sans-serif-lg-line-height: 36px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 34px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 28px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 25px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 20px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 30px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 24px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 40px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 48px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 28px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 32px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 58px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 68px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 74px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 82px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 104px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 80px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}@media(min-width: 1280px){:root{--token-mode: Parity;--dropshadow: 0 2px 4px 0 #22223340;--primary-brand: #0645b1;--error-dark: #b60000;--success-dark: #05b01c;--inactive-fill: #ebebee;--hover: #0c3b8d;--pressed: #082f75;--button-primary-fill-inactive: #ebebee;--button-primary-fill: #0645b1;--button-primary-text: #ffffff;--button-primary-fill-hover: #0c3b8d;--button-primary-fill-press: #082f75;--button-primary-icon: #ffffff;--button-primary-fill-inverse: #ffffff;--button-primary-text-inverse: #082f75;--button-primary-icon-inverse: #0645b1;--button-primary-fill-inverse-hover: #cddaef;--button-primary-stroke-inverse-pressed: #0645b1;--button-secondary-stroke-inactive: #b1b1ba;--button-secondary-fill: #eef2f9;--button-secondary-text: #082f75;--button-secondary-fill-press: #cddaef;--button-secondary-fill-inactive: #ebebee;--button-secondary-stroke: #cddaef;--button-secondary-stroke-hover: #386ac1;--button-secondary-stroke-press: #0645b1;--button-secondary-text-inactive: #b1b1ba;--button-secondary-icon: #082f75;--button-secondary-fill-hover: #e6ecf7;--button-secondary-stroke-inverse: #ffffff;--button-secondary-fill-inverse: rgba(255, 255, 255, 0);--button-secondary-icon-inverse: #ffffff;--button-secondary-icon-hover: #082f75;--button-secondary-icon-press: #082f75;--button-secondary-text-inverse: #ffffff;--button-secondary-text-hover: #082f75;--button-secondary-text-press: #082f75;--button-secondary-fill-inverse-hover: #043059;--button-xs-stroke: #141413;--button-xs-stroke-hover: #0c3b8d;--button-xs-stroke-press: #082f75;--button-xs-stroke-inactive: #ebebee;--button-xs-text: #141413;--button-xs-text-hover: #0c3b8d;--button-xs-text-press: #082f75;--button-xs-text-inactive: #91919e;--button-xs-icon: #141413;--button-xs-icon-hover: #0c3b8d;--button-xs-icon-press: #082f75;--button-xs-icon-inactive: #91919e;--button-xs-fill: #ffffff;--button-xs-fill-hover: #f4f7fc;--button-xs-fill-press: #eef2f9;--buttons-button-text-inactive: #91919e;--buttons-button-focus: #0645b1;--buttons-button-icon-inactive: #91919e;--buttons-small-buttons-corner-radius: 8px;--buttons-small-buttons-l-r-padding: 12px;--buttons-small-buttons-height: 44px;--buttons-small-buttons-gap: 8px;--buttons-small-buttons-icon-only-width: 44px;--buttons-small-buttons-icon-size: 20px;--buttons-small-buttons-stroke-default: 1px;--buttons-small-buttons-stroke-thick: 2px;--buttons-large-buttons-l-r-padding: 20px;--buttons-large-buttons-height: 54px;--buttons-large-buttons-icon-only-width: 54px;--buttons-large-buttons-icon-size: 20px;--buttons-large-buttons-gap: 8px;--buttons-large-buttons-corner-radius: 8px;--buttons-large-buttons-stroke-default: 1px;--buttons-large-buttons-stroke-thick: 2px;--buttons-extra-small-buttons-l-r-padding: 8px;--buttons-extra-small-buttons-height: 32px;--buttons-extra-small-buttons-icon-size: 16px;--buttons-extra-small-buttons-gap: 4px;--buttons-extra-small-buttons-corner-radius: 8px;--buttons-stroke-default: 1px;--buttons-stroke-thick: 2px;--background-beige: #f9f7f4;--error-light: #fff2f2;--text-placeholder: #6d6d7d;--stroke-dark: #141413;--stroke-light: #dddde2;--stroke-medium: #535366;--accent-green: #ccffd4;--accent-turquoise: #ccf7ff;--accent-yellow: #f7ffcc;--accent-peach: #ffd4cc;--accent-violet: #f7ccff;--accent-purple: #f4f7fc;--text-primary: #141413;--secondary-brand: #141413;--text-hover: #0c3b8d;--text-white: #ffffff;--text-link: #0645b1;--text-press: #082f75;--success-light: #f0f8f1;--background-light-blue: #eef2f9;--background-white: #ffffff;--premium-dark: #877440;--premium-light: #f9f6ed;--stroke-white: #ffffff;--inactive-content: #b1b1ba;--annotate-light: #a35dff;--annotate-dark: #824acc;--grid: #eef2f9;--inactive-stroke: #ebebee;--shadow: rgba(34, 34, 51, 0.25);--text-inactive: #6d6d7d;--text-error: #b60000;--stroke-error: #b60000;--background-error: #fff2f2;--background-black: #141413;--icon-default: #141413;--icon-blue: #0645b1;--background-grey: #dddde2;--icon-grey: #b1b1ba;--text-focus: #082f75;--brand-colors-neutral-black: #141413;--brand-colors-neutral-900: #535366;--brand-colors-neutral-800: #6d6d7d;--brand-colors-neutral-700: #91919e;--brand-colors-neutral-600: #b1b1ba;--brand-colors-neutral-500: #c8c8cf;--brand-colors-neutral-400: #dddde2;--brand-colors-neutral-300: #ebebee;--brand-colors-neutral-200: #f8f8fb;--brand-colors-neutral-100: #fafafa;--brand-colors-neutral-white: #ffffff;--brand-colors-blue-900: #043059;--brand-colors-blue-800: #082f75;--brand-colors-blue-700: #0c3b8d;--brand-colors-blue-600: #0645b1;--brand-colors-blue-500: #386ac1;--brand-colors-blue-400: #cddaef;--brand-colors-blue-300: #e6ecf7;--brand-colors-blue-200: #eef2f9;--brand-colors-blue-100: #f4f7fc;--brand-colors-gold-500: #877440;--brand-colors-gold-400: #e9e3d4;--brand-colors-gold-300: #f2efe8;--brand-colors-gold-200: #f9f6ed;--brand-colors-gold-100: #f9f7f4;--brand-colors-error-900: #920000;--brand-colors-error-500: #b60000;--brand-colors-success-900: #035c0f;--brand-colors-green: #ccffd4;--brand-colors-turquoise: #ccf7ff;--brand-colors-yellow: #f7ffcc;--brand-colors-peach: #ffd4cc;--brand-colors-violet: #f7ccff;--brand-colors-error-100: #fff2f2;--brand-colors-success-500: #05b01c;--brand-colors-success-100: #f0f8f1;--text-secondary: #535366;--icon-white: #ffffff;--background-beige-darker: #f2efe8;--icon-dark-grey: #535366;--type-font-family-sans-serif: Roboto;--type-font-family-serif: Georgia;--type-font-family-mono: IBM Plex Mono;--type-weights-300: 300;--type-weights-400: 400;--type-weights-500: 500;--type-weights-700: 700;--type-sizes-12: 12px;--type-sizes-14: 14px;--type-sizes-16: 16px;--type-sizes-18: 18px;--type-sizes-20: 20px;--type-sizes-22: 22px;--type-sizes-24: 24px;--type-sizes-28: 28px;--type-sizes-30: 30px;--type-sizes-32: 32px;--type-sizes-40: 40px;--type-sizes-42: 42px;--type-sizes-48-2: 48px;--type-line-heights-16: 16px;--type-line-heights-20: 20px;--type-line-heights-23: 23px;--type-line-heights-24: 24px;--type-line-heights-25: 25px;--type-line-heights-26: 26px;--type-line-heights-29: 29px;--type-line-heights-30: 30px;--type-line-heights-32: 32px;--type-line-heights-34: 34px;--type-line-heights-35: 35px;--type-line-heights-36: 36px;--type-line-heights-38: 38px;--type-line-heights-40: 40px;--type-line-heights-46: 46px;--type-line-heights-48: 48px;--type-line-heights-52: 52px;--type-line-heights-58: 58px;--type-line-heights-68: 68px;--type-line-heights-74: 74px;--type-line-heights-82: 82px;--type-paragraph-spacings-0: 0px;--type-paragraph-spacings-4: 4px;--type-paragraph-spacings-8: 8px;--type-paragraph-spacings-16: 16px;--type-sans-serif-xl-font-weight: 400;--type-sans-serif-xl-size: 42px;--type-sans-serif-xl-line-height: 46px;--type-sans-serif-xl-paragraph-spacing: 16px;--type-sans-serif-lg-font-weight: 400;--type-sans-serif-lg-size: 32px;--type-sans-serif-lg-line-height: 38px;--type-sans-serif-lg-paragraph-spacing: 16px;--type-sans-serif-md-font-weight: 400;--type-sans-serif-md-line-height: 34px;--type-sans-serif-md-paragraph-spacing: 16px;--type-sans-serif-md-size: 28px;--type-sans-serif-xs-font-weight: 700;--type-sans-serif-xs-line-height: 25px;--type-sans-serif-xs-paragraph-spacing: 0px;--type-sans-serif-xs-size: 20px;--type-sans-serif-sm-font-weight: 400;--type-sans-serif-sm-line-height: 30px;--type-sans-serif-sm-paragraph-spacing: 16px;--type-sans-serif-sm-size: 24px;--type-body-xl-font-weight: 400;--type-body-xl-size: 24px;--type-body-xl-line-height: 36px;--type-body-xl-paragraph-spacing: 0px;--type-body-sm-font-weight: 400;--type-body-sm-size: 14px;--type-body-sm-line-height: 20px;--type-body-sm-paragraph-spacing: 8px;--type-body-xs-font-weight: 400;--type-body-xs-size: 12px;--type-body-xs-line-height: 16px;--type-body-xs-paragraph-spacing: 0px;--type-body-md-font-weight: 400;--type-body-md-size: 16px;--type-body-md-line-height: 20px;--type-body-md-paragraph-spacing: 4px;--type-body-lg-font-weight: 400;--type-body-lg-size: 20px;--type-body-lg-line-height: 26px;--type-body-lg-paragraph-spacing: 16px;--type-body-lg-medium-font-weight: 500;--type-body-lg-medium-size: 20px;--type-body-lg-medium-line-height: 32px;--type-body-lg-medium-paragraph-spacing: 16px;--type-body-md-medium-font-weight: 500;--type-body-md-medium-size: 16px;--type-body-md-medium-line-height: 20px;--type-body-md-medium-paragraph-spacing: 4px;--type-body-sm-bold-font-weight: 700;--type-body-sm-bold-size: 14px;--type-body-sm-bold-line-height: 20px;--type-body-sm-bold-paragraph-spacing: 8px;--type-body-sm-medium-font-weight: 500;--type-body-sm-medium-size: 14px;--type-body-sm-medium-line-height: 20px;--type-body-sm-medium-paragraph-spacing: 8px;--type-serif-md-font-weight: 400;--type-serif-md-size: 40px;--type-serif-md-paragraph-spacing: 0px;--type-serif-md-line-height: 48px;--type-serif-sm-font-weight: 400;--type-serif-sm-size: 28px;--type-serif-sm-paragraph-spacing: 0px;--type-serif-sm-line-height: 32px;--type-serif-lg-font-weight: 400;--type-serif-lg-size: 58px;--type-serif-lg-paragraph-spacing: 0px;--type-serif-lg-line-height: 68px;--type-serif-xs-font-weight: 400;--type-serif-xs-size: 18px;--type-serif-xs-line-height: 24px;--type-serif-xs-paragraph-spacing: 0px;--type-serif-xl-font-weight: 400;--type-serif-xl-size: 74px;--type-serif-xl-paragraph-spacing: 0px;--type-serif-xl-line-height: 82px;--type-mono-md-font-weight: 400;--type-mono-md-size: 22px;--type-mono-md-line-height: 24px;--type-mono-md-paragraph-spacing: 0px;--type-mono-lg-font-weight: 400;--type-mono-lg-size: 40px;--type-mono-lg-line-height: 40px;--type-mono-lg-paragraph-spacing: 0px;--type-mono-sm-font-weight: 400;--type-mono-sm-size: 14px;--type-mono-sm-line-height: 24px;--type-mono-sm-paragraph-spacing: 0px;--spacing-xs-4: 4px;--spacing-xs-8: 8px;--spacing-xs-16: 16px;--spacing-sm-24: 24px;--spacing-sm-32: 32px;--spacing-md-40: 40px;--spacing-md-48: 48px;--spacing-lg-64: 64px;--spacing-lg-80: 80px;--spacing-xlg-104: 104px;--spacing-xlg-152: 152px;--spacing-xs-12: 12px;--spacing-page-section: 152px;--spacing-card-list-spacing: 48px;--spacing-text-section-spacing: 80px;--spacing-md-xs-headings: 40px;--corner-radius-radius-lg: 16px;--corner-radius-radius-sm: 4px;--corner-radius-radius-md: 8px;--corner-radius-radius-round: 104px}}</style><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-57f9da13cef3fd4e2a8b655342c6488eded3e557e823fe67571f2ac77acd7b6f.css" /> <meta name="author" content="andre anders" /> <meta name="description" content="Andre Anders is Director of the Leibniz Institute of Surface Engineering (IOM) in Leipzig, Germany, and Professor of Applied Physics at the University of…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = 'b22bb4b4c659370e45f7093516d2fe164f182615'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":13939,"monthly_visitors":"135 million","monthly_visitor_count":135372775,"monthly_visitor_count_in_millions":135,"user_count":285073685,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1742116922000); window.Aedu.timeDifference = new Date().getTime() - 1742116922000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link rel="preload" href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" as="style" onload="this.rel='stylesheet'"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-9982828ed1de4777566441c35ccf7157c55ca779141fce69380d727ebdbbb926.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-948be8fa2cdf77e0edc9d37d89e2ceac6298a9cec36b295126fe6066d89fe4f6.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-3f0732fc165186a3e70d3de1b749e1a47b279db87e2188a19da2a0c42b75cab9.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://uni-leipzig1.academia.edu/AndreAnders" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-e1d575982904827f1397a4a8ee10c2382667df3df47448516361b995ce9464bd.js" defer="defer"></script><script>$viewedUser = Aedu.User.set_viewed( {"id":33147769,"first_name":"Andre","middle_initials":"","last_name":"Anders","page_name":"AndreAnders","domain_name":"uni-leipzig1","created_at":"2015-07-17T15:40:22.246-07:00","display_name":"Andre Anders","url":"https://uni-leipzig1.academia.edu/AndreAnders","photo":"https://0.academia-photos.com/33147769/10552206/14843660/s65_andre.anders.jpg","has_photo":true,"department":{"id":2137374,"name":"Leibniz Institute of Surface Engineering (IOM)","url":"https://uni-leipzig1.academia.edu/Departments/Leibniz_Institute_of_Surface_Engineering_IOM_/Documents","university":{"id":93022,"name":"Leipzig University (Universität Leipzig)","url":"https://uni-leipzig1.academia.edu/"}},"position":"Faculty Member","position_id":1,"is_analytics_public":false,"interests":[{"id":517,"name":"Plasma Physics","url":"https://www.academia.edu/Documents/in/Plasma_Physics"},{"id":4907,"name":"Thin Films and Coatings","url":"https://www.academia.edu/Documents/in/Thin_Films_and_Coatings"},{"id":1349474,"name":"Plasma Diagnostics","url":"https://www.academia.edu/Documents/in/Plasma_Diagnostics"},{"id":209193,"name":"Ion Beam Modifications","url":"https://www.academia.edu/Documents/in/Ion_Beam_Modifications"},{"id":176882,"name":"Ion beam analyses","url":"https://www.academia.edu/Documents/in/Ion_beam_analyses"},{"id":1236744,"name":"Cathodic Arc Deposition","url":"https://www.academia.edu/Documents/in/Cathodic_Arc_Deposition"},{"id":204064,"name":"Magnetron Sputtering","url":"https://www.academia.edu/Documents/in/Magnetron_Sputtering"},{"id":124930,"name":"Diamond Like Carbon","url":"https://www.academia.edu/Documents/in/Diamond_Like_Carbon"},{"id":61196,"name":"Optical Coatings","url":"https://www.academia.edu/Documents/in/Optical_Coatings"},{"id":200376,"name":"Smart Materials and Structures","url":"https://www.academia.edu/Documents/in/Smart_Materials_and_Structures"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":2306,"name":"Synthesis of nanoparticles","url":"https://www.academia.edu/Documents/in/Synthesis_of_nanoparticles"},{"id":44409,"name":"Physical Vapor Deposition","url":"https://www.academia.edu/Documents/in/Physical_Vapor_Deposition"},{"id":1254350,"name":"Plasma Immersion Ion Implantation","url":"https://www.academia.edu/Documents/in/Plasma_Immersion_Ion_Implantation"},{"id":851235,"name":"Plasma Sources","url":"https://www.academia.edu/Documents/in/Plasma_Sources"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://uni-leipzig1.academia.edu/AndreAnders&quot;,&quot;location&quot;:&quot;/AndreAnders&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;uni-leipzig1.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/AndreAnders&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-5c0ba3a4-0589-4c59-a8e8-306abbf8e775"></div> <div id="ProfileCheckPaperUpdate-react-component-5c0ba3a4-0589-4c59-a8e8-306abbf8e775"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="Andre Anders" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/33147769/10552206/14843660/s200_andre.anders.jpg" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Andre Anders</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://uni-leipzig1.academia.edu/">Leipzig University (Universität Leipzig)</a>, <a class="u-tcGrayDarker" href="https://uni-leipzig1.academia.edu/Departments/Leibniz_Institute_of_Surface_Engineering_IOM_/Documents">Leibniz Institute of Surface Engineering (IOM)</a>, <span class="u-tcGrayDarker">Faculty Member</span></div><div><a class="u-tcGrayDarker" href="https://uni-leipzig.academia.edu/">Universität Leipzig</a>, <a class="u-tcGrayDarker" href="https://uni-leipzig.academia.edu/Departments/Felix_Bloch_Institute_of_Solid_State_Physics/Documents">Felix Bloch Institute of Solid State Physics</a>, <span class="u-tcGrayDarker">Faculty Member</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Andre" data-follow-user-id="33147769" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="33147769"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">293</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">33</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">29</p></div></a><div class="js-mentions-count-container" style="display: none;"><a href="/AndreAnders/mentions"><div class="stat-container"><p class="label">Mentions</p><p class="data"></p></div></a></div><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="user-bio-container"><div class="profile-bio fake-truncate js-profile-about" style="margin: 0px;">Andre Anders is Director of the Leibniz Institute of Surface Engineering (IOM) in Leipzig, Germany, and Professor of Applied Physics at the University of Leipzig.&nbsp; He assumed these positions after working over 25 years at Lawrence Berkeley National Laboratory, Berkeley, California. <br /> His research interests are in the field of plasmas and materials, especially in arc and magnetron plasmas, plasma diagnostics, HiPIMS, thin films, diamond-like carbon, transparent conducting oxides, electrochromic materials, nanoparticles and nanocomposites.&nbsp; <br />Since 2014, Andre also serves as the Editor-in-Chief of Journal of Applied Physics.<br /><span class="u-fw700">Phone:&nbsp;</span>+49(0)341 235-2308<br /><b>Address:&nbsp;</b>Permoserstr. 15<br />D-04318 Leipzig<br />Germany<br /><div class="js-profile-less-about u-linkUnstyled u-tcGrayDarker u-textDecorationUnderline u-displayNone">less</div></div></div><div class="suggested-academics-container"><div class="suggested-academics--header"><p class="ds2-5-body-md-bold">Related Authors</p></div><ul class="suggested-user-card-list"><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://pu-pk1.academia.edu/ShahzadNaseem"><img class="profile-avatar u-positionAbsolute" alt="Shahzad Naseem" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/107626/29497/7969318/s200_shahzad.naseem.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://pu-pk1.academia.edu/ShahzadNaseem">Shahzad Naseem</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of the Punjab</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://virginia.academia.edu/PetraReinke"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://virginia.academia.edu/PetraReinke">Petra Reinke</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Virginia</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://iuac.academia.edu/ShivPoojanPatel"><img class="profile-avatar u-positionAbsolute" alt="Shiv Poojan Patel" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/570246/203718/237718/s200_shiv_poojan.patel.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://iuac.academia.edu/ShivPoojanPatel">Shiv Poojan Patel</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Inter University Accelerator Centre</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://moscowstate.academia.edu/IrinaKolesnik"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://moscowstate.academia.edu/IrinaKolesnik">Irina Kolesnik</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Moscow State University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://bangaloreuniversity.academia.edu/BasavarajAngadi"><img class="profile-avatar u-positionAbsolute" alt="Basavaraj Angadi" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/2073972/1074638/1340887/s200_basavaraj.angadi.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://bangaloreuniversity.academia.edu/BasavarajAngadi">Basavaraj Angadi</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Banglore University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://itb.academia.edu/YudiDarma"><img class="profile-avatar u-positionAbsolute" alt="Yudi Darma" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/3342591/1119721/1402123/s200_yudi.darma.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://itb.academia.edu/YudiDarma">Yudi Darma</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Institut Teknologi Bandung</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://paruluniversity.academia.edu/shivanipandya"><img class="profile-avatar u-positionAbsolute" alt="shivani R pandya" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/3444414/1993203/20762718/s200_shivani.pandya.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://paruluniversity.academia.edu/shivanipandya">shivani R pandya</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Parul university</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/guptadushyant"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/guptadushyant">dushyant gupta</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://uanl.academia.edu/CarlosLunaCriado"><img class="profile-avatar u-positionAbsolute" alt="Carlos Luna Criado" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/16332539/4443912/38791003/s200_carlos.luna_criado.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://uanl.academia.edu/CarlosLunaCriado">Carlos Luna Criado</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Universidad Autónoma de Nuevo León</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://cnrs.academia.edu/st%C3%A9phaneB%C3%A9chu"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://cnrs.academia.edu/st%C3%A9phaneB%C3%A9chu">stéphane Béchu</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Centre National de la Recherche Scientifique / French National Centre for Scientific Research</p></div></div></ul></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span><a class="ri-more-link js-profile-ri-list-card" data-click-track="profile-user-info-primary-research-interest" data-has-card-for-ri-list="33147769">View All (14)</a></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="33147769" href="https://www.academia.edu/Documents/in/Plasma_Physics"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://uni-leipzig1.academia.edu/AndreAnders&quot;,&quot;location&quot;:&quot;/AndreAnders&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;uni-leipzig1.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/AndreAnders&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Plasma Physics&quot;]}" data-trace="false" data-dom-id="Pill-react-component-f157a65b-23d4-4028-9e87-4b9c9545b077"></div> <div id="Pill-react-component-f157a65b-23d4-4028-9e87-4b9c9545b077"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="33147769" href="https://www.academia.edu/Documents/in/Thin_Films_and_Coatings"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Thin Films and Coatings&quot;]}" data-trace="false" data-dom-id="Pill-react-component-87fc45f5-5636-429b-b185-09605f473f09"></div> <div id="Pill-react-component-87fc45f5-5636-429b-b185-09605f473f09"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="33147769" href="https://www.academia.edu/Documents/in/Ion_Beam_Modifications"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Ion Beam Modifications&quot;]}" data-trace="false" data-dom-id="Pill-react-component-b0b8dd5d-5f63-43c0-b2d9-42c10e9c4dc0"></div> <div id="Pill-react-component-b0b8dd5d-5f63-43c0-b2d9-42c10e9c4dc0"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="33147769" href="https://www.academia.edu/Documents/in/Ion_beam_analyses"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Ion beam analyses&quot;]}" data-trace="false" data-dom-id="Pill-react-component-d5162822-f3d1-489e-b8a6-fc918670fc17"></div> <div id="Pill-react-component-d5162822-f3d1-489e-b8a6-fc918670fc17"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="33147769" href="https://www.academia.edu/Documents/in/Cathodic_Arc_Deposition"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Cathodic Arc Deposition&quot;]}" data-trace="false" data-dom-id="Pill-react-component-7783e435-47e3-4950-85c8-59efba3677de"></div> <div id="Pill-react-component-7783e435-47e3-4950-85c8-59efba3677de"></div> </a></div></div><div class="external-links-container"><ul class="profile-links new-profile js-UserInfo-social"><li class="profile-profiles js-social-profiles-container"><i class="fa fa-spin fa-spinner"></i></li></ul></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Andre Anders</h3></div><div class="js-work-strip profile--work_container" data-work-id="122858913"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/122858913/Bulk_and_thin_film_model_samples_for_the_analysis_of_the_strain_sensitivity_of_niobium_tin"><img alt="Research paper thumbnail of Bulk and thin film model samples for the analysis of the strain sensitivity of niobium-tin" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/122858913/Bulk_and_thin_film_model_samples_for_the_analysis_of_the_strain_sensitivity_of_niobium_tin">Bulk and thin film model samples for the analysis of the strain sensitivity of niobium-tin</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="122858913"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="122858913"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 122858913; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=122858913]").text(description); $(".js-view-count[data-work-id=122858913]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 122858913; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='122858913']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=122858913]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":122858913,"title":"Bulk and thin film model samples for the analysis of the strain sensitivity of niobium-tin","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2010,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/122858913/Bulk_and_thin_film_model_samples_for_the_analysis_of_the_strain_sensitivity_of_niobium_tin","translated_internal_url":"","created_at":"2024-08-13T21:42:00.511-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33147769,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Bulk_and_thin_film_model_samples_for_the_analysis_of_the_strain_sensitivity_of_niobium_tin","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":33147769,"first_name":"Andre","middle_initials":"","last_name":"Anders","page_name":"AndreAnders","domain_name":"uni-leipzig1","created_at":"2015-07-17T15:40:22.246-07:00","display_name":"Andre Anders","url":"https://uni-leipzig1.academia.edu/AndreAnders"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":6309,"name":"Metallurgy","url":"https://www.academia.edu/Documents/in/Metallurgy"},{"id":80693,"name":"Tin","url":"https://www.academia.edu/Documents/in/Tin"},{"id":226668,"name":"Niobium","url":"https://www.academia.edu/Documents/in/Niobium"},{"id":464116,"name":"Repetitive Strain Injury","url":"https://www.academia.edu/Documents/in/Repetitive_Strain_Injury"}],"urls":[{"id":43997626,"url":"https://publikationen.bibliothek.kit.edu/240080165"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="122858912"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/122858912/Ion_beam_sputtering_of_silicon_Energy_distributions_of_sputtered_and_scattered_ions"><img alt="Research paper thumbnail of Ion beam sputtering of silicon: Energy distributions of sputtered and scattered ions" class="work-thumbnail" src="https://attachments.academia-assets.com/117432871/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/122858912/Ion_beam_sputtering_of_silicon_Energy_distributions_of_sputtered_and_scattered_ions">Ion beam sputtering of silicon: Energy distributions of sputtered and scattered ions</a></div><div class="wp-workCard_item"><span>Journal of vacuum science &amp; technology</span><span>, Aug 23, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The properties of sputtered and scattered ions are studied for ion beam sputtering of Si by bomba...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The properties of sputtered and scattered ions are studied for ion beam sputtering of Si by bombardment with noble gas ions. The energy distributions in dependence on ion beam parameters (ion energy: 0.5-1 keV; ion species: Ne, Ar, Xe) and geometrical parameters (ion incidence angle, polar emission angle, scattering angle) are measured by means of energy-selective mass spectrometry. The presence of anisotropic effects due to direct sputtering and scattering is discussed and correlated with process parameters. The experimental results are compared to calculations based on a simple elastic binary collision model and to simulations using the Monte-Carlo code SDTrimSP. The influence of the contribution of implanted primary ions on energy distributions of sputtered and scattered particles is studied in simulations. It is found that a 10% variation of the target composition leads to detectable but small differences in the energy distributions of scattered ions. Comparison with previously reported data for other ion/target configurations confirms the presence of similar trends and anisotropic effects: the number of high-energy sputtered ions increases with increasing energy of incident ions and decreasing scattering angle. The effect of the ion/target mass ratio is additionally investigated. Small differences are observed with the change of the primary ion species: the closer the mass ratio to unity, the higher the average energy of sputtered ions. The presence of peaks, assigned to different mechanisms of direct scattering, strongly depends on the ion/target mass ratio.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5761d68a1434fc37cebc532a9067a740" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:117432871,&quot;asset_id&quot;:122858912,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/117432871/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="122858912"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="122858912"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 122858912; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=122858912]").text(description); $(".js-view-count[data-work-id=122858912]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 122858912; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='122858912']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5761d68a1434fc37cebc532a9067a740" } } $('.js-work-strip[data-work-id=122858912]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":122858912,"title":"Ion beam sputtering of silicon: Energy distributions of sputtered and scattered ions","translated_title":"","metadata":{"publisher":"American Institute of Physics","grobid_abstract":"The properties of sputtered and scattered ions are studied for ion beam sputtering of Si by bombardment with noble gas ions. The energy distributions in dependence on ion beam parameters (ion energy: 0.5-1 keV; ion species: Ne, Ar, Xe) and geometrical parameters (ion incidence angle, polar emission angle, scattering angle) are measured by means of energy-selective mass spectrometry. The presence of anisotropic effects due to direct sputtering and scattering is discussed and correlated with process parameters. The experimental results are compared to calculations based on a simple elastic binary collision model and to simulations using the Monte-Carlo code SDTrimSP. The influence of the contribution of implanted primary ions on energy distributions of sputtered and scattered particles is studied in simulations. It is found that a 10% variation of the target composition leads to detectable but small differences in the energy distributions of scattered ions. Comparison with previously reported data for other ion/target configurations confirms the presence of similar trends and anisotropic effects: the number of high-energy sputtered ions increases with increasing energy of incident ions and decreasing scattering angle. The effect of the ion/target mass ratio is additionally investigated. Small differences are observed with the change of the primary ion species: the closer the mass ratio to unity, the higher the average energy of sputtered ions. The presence of peaks, assigned to different mechanisms of direct scattering, strongly depends on the ion/target mass ratio.","publication_date":{"day":23,"month":8,"year":2019,"errors":{}},"publication_name":"Journal of vacuum science \u0026 technology","grobid_abstract_attachment_id":117432872},"translated_abstract":null,"internal_url":"https://www.academia.edu/122858912/Ion_beam_sputtering_of_silicon_Energy_distributions_of_sputtered_and_scattered_ions","translated_internal_url":"","created_at":"2024-08-13T21:42:00.284-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33147769,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":117432871,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117432871/thumbnails/1.jpg","file_name":"1906.05550.pdf","download_url":"https://www.academia.edu/attachments/117432871/download_file","bulk_download_file_name":"Ion_beam_sputtering_of_silicon_Energy_di.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117432871/1906.05550-libre.pdf?1723611336=\u0026response-content-disposition=attachment%3B+filename%3DIon_beam_sputtering_of_silicon_Energy_di.pdf\u0026Expires=1741733688\u0026Signature=PHuTdGwxlppoSBVhDB7N8gq7otNt6mVA29Y8B8-lwi6i08cjetv~Pw9XUPgDEm5MSecONAOkh-RXcWkifDSPCQIO3r1SHFx13opu8zGiRlFXD-QEk3bnaPpX0KVgDJYywSRvLnxZWR0hDTtdB-1ZbhzoQc7~BLrMEMo~h4W5naBwnBPlZNg8QLlVOF2~eHAN7ewFxBWwVOP2diH5hnUiPyIHboEhzCeoKjmKKpSqGzLoKvFkhw3lSfzFpvxO8b-SFbMDUnnkc82igq~tKbbMtfyTDYIh9SN7Sex0MDC-fky9c9KjvUv7eeFkhymNhpDpdyonyQXkII9YYIn2NLSUNw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Ion_beam_sputtering_of_silicon_Energy_distributions_of_sputtered_and_scattered_ions","translated_slug":"","page_count":16,"language":"en","content_type":"Work","summary":"The properties of sputtered and scattered ions are studied for ion beam sputtering of Si by bombardment with noble gas ions. The energy distributions in dependence on ion beam parameters (ion energy: 0.5-1 keV; ion species: Ne, Ar, Xe) and geometrical parameters (ion incidence angle, polar emission angle, scattering angle) are measured by means of energy-selective mass spectrometry. The presence of anisotropic effects due to direct sputtering and scattering is discussed and correlated with process parameters. The experimental results are compared to calculations based on a simple elastic binary collision model and to simulations using the Monte-Carlo code SDTrimSP. The influence of the contribution of implanted primary ions on energy distributions of sputtered and scattered particles is studied in simulations. It is found that a 10% variation of the target composition leads to detectable but small differences in the energy distributions of scattered ions. Comparison with previously reported data for other ion/target configurations confirms the presence of similar trends and anisotropic effects: the number of high-energy sputtered ions increases with increasing energy of incident ions and decreasing scattering angle. The effect of the ion/target mass ratio is additionally investigated. Small differences are observed with the change of the primary ion species: the closer the mass ratio to unity, the higher the average energy of sputtered ions. The presence of peaks, assigned to different mechanisms of direct scattering, strongly depends on the ion/target mass ratio.","owner":{"id":33147769,"first_name":"Andre","middle_initials":"","last_name":"Anders","page_name":"AndreAnders","domain_name":"uni-leipzig1","created_at":"2015-07-17T15:40:22.246-07:00","display_name":"Andre Anders","url":"https://uni-leipzig1.academia.edu/AndreAnders"},"attachments":[{"id":117432871,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117432871/thumbnails/1.jpg","file_name":"1906.05550.pdf","download_url":"https://www.academia.edu/attachments/117432871/download_file","bulk_download_file_name":"Ion_beam_sputtering_of_silicon_Energy_di.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117432871/1906.05550-libre.pdf?1723611336=\u0026response-content-disposition=attachment%3B+filename%3DIon_beam_sputtering_of_silicon_Energy_di.pdf\u0026Expires=1741733688\u0026Signature=PHuTdGwxlppoSBVhDB7N8gq7otNt6mVA29Y8B8-lwi6i08cjetv~Pw9XUPgDEm5MSecONAOkh-RXcWkifDSPCQIO3r1SHFx13opu8zGiRlFXD-QEk3bnaPpX0KVgDJYywSRvLnxZWR0hDTtdB-1ZbhzoQc7~BLrMEMo~h4W5naBwnBPlZNg8QLlVOF2~eHAN7ewFxBWwVOP2diH5hnUiPyIHboEhzCeoKjmKKpSqGzLoKvFkhw3lSfzFpvxO8b-SFbMDUnnkc82igq~tKbbMtfyTDYIh9SN7Sex0MDC-fky9c9KjvUv7eeFkhymNhpDpdyonyQXkII9YYIn2NLSUNw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":117432872,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117432872/thumbnails/1.jpg","file_name":"1906.05550.pdf","download_url":"https://www.academia.edu/attachments/117432872/download_file","bulk_download_file_name":"Ion_beam_sputtering_of_silicon_Energy_di.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117432872/1906.05550-libre.pdf?1723611332=\u0026response-content-disposition=attachment%3B+filename%3DIon_beam_sputtering_of_silicon_Energy_di.pdf\u0026Expires=1741733688\u0026Signature=W-UlzgDs8DRncaucGI9e9rcLaz--6JlAlxTnPF9eum9Dr3F~itwg2np7R-sEUXlME2wkvVgF4eCsxtTiICqKOFz5xF2~xtWwHG6zSUE3MPs0iKxyfUQ734Z9iPogqVH7~Vs1RAZ1yKlQVFqWswWVRRRGNkYF1Ws2Dip6bVGuFxWa5VEeDIzrrEmmnNWvLL17~b9-E9WToQgF0vS4KT1cXX1mhXlG-dwLYFiJJak12wXakQuuY4s9FZEYkhpKyN1zzEHTA58sWOW6nlhTcaCGALUdqT8WccHBI7ISDnz6yJE2CHYModA8dXw-QYh4KlbZH5HAiI5OPT7le7v44D~-jA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":9138,"name":"Applied Physics","url":"https://www.academia.edu/Documents/in/Applied_Physics"},{"id":11406,"name":"Silicon","url":"https://www.academia.edu/Documents/in/Silicon"},{"id":11740,"name":"Atomic Physics","url":"https://www.academia.edu/Documents/in/Atomic_Physics"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":185387,"name":"Sputtering","url":"https://www.academia.edu/Documents/in/Sputtering"},{"id":348756,"name":"Ion","url":"https://www.academia.edu/Documents/in/Ion"},{"id":441926,"name":"Scattering","url":"https://www.academia.edu/Documents/in/Scattering"},{"id":693812,"name":"Ion Beam","url":"https://www.academia.edu/Documents/in/Ion_Beam"},{"id":1801184,"name":"Vacuum Science and Technology","url":"https://www.academia.edu/Documents/in/Vacuum_Science_and_Technology"}],"urls":[{"id":43997625,"url":"https://arxiv.org/pdf/1906.05550"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="122858911"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/122858911/Influence_of_Ar_gas_pressure_on_ion_energy_and_charge_state_distributions_in_pulsed_cathodic_arc_plasmas_from_Nb_Al_cathodes_studied_with_high_time_resolution"><img alt="Research paper thumbnail of Influence of Ar gas pressure on ion energy and charge state distributions in pulsed cathodic arc plasmas from Nb–Al cathodes studied with high time resolution" class="work-thumbnail" src="https://attachments.academia-assets.com/117432903/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/122858911/Influence_of_Ar_gas_pressure_on_ion_energy_and_charge_state_distributions_in_pulsed_cathodic_arc_plasmas_from_Nb_Al_cathodes_studied_with_high_time_resolution">Influence of Ar gas pressure on ion energy and charge state distributions in pulsed cathodic arc plasmas from Nb–Al cathodes studied with high time resolution</a></div><div class="wp-workCard_item"><span>Journal of Physics D</span><span>, Nov 23, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">For cathodic arcs, the cathode material is one of the most important determinants of plasma prope...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">For cathodic arcs, the cathode material is one of the most important determinants of plasma properties. Consequently, the cathode material -plasma relationship is of special interest in related fundamental research as well as in applications like the synthesis of thin films and coatings. In the latter, the use of multi-element cathodes in inert as well as reactive gas atmospheres is common practice. To further improve the physical understanding of cathodic arcs in such settings, we analyze ions in pulsed cathodic arc plasmas from Nb, Al and two composite Nb-Al cathodes in high time-resolution using a mass-energy-analyzer. The experiments were conducted in Ar atmosphere at total pressures of 0.04, 0.20 and 0.40 Pa, and are compared to former results in high vacuum at 10 -4 Pa. In addition to examining the influence of Ar on ion properties and their cathode material dependence, the results are used to discuss physical concepts in cathodic arcs, like the gas-dynamic expansion of the cathode spot plasma, or the influence of charge exchange collisions of ions with neutrals. While such inelastic collisions e.g. with Ar atoms cause a reduction of charge states to mainly Al + and Nb 2+ at the highest pressure, Ar atoms also seem to take part in near-cathode processes. Ar ions in different time and energy regimes up to 150 eV were observed and compared to Nb and Al ions, showing overlapping velocity distributions for Nb, Al and Ar + ions, but also Ar 2+ ions faster than other ion species. 1</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e39a6d52a26377c185365961613f0cca" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:117432903,&quot;asset_id&quot;:122858911,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/117432903/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="122858911"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="122858911"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 122858911; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=122858911]").text(description); $(".js-view-count[data-work-id=122858911]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 122858911; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='122858911']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e39a6d52a26377c185365961613f0cca" } } $('.js-work-strip[data-work-id=122858911]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":122858911,"title":"Influence of Ar gas pressure on ion energy and charge state distributions in pulsed cathodic arc plasmas from Nb–Al cathodes studied with high time resolution","translated_title":"","metadata":{"publisher":"Institute of Physics","grobid_abstract":"For cathodic arcs, the cathode material is one of the most important determinants of plasma properties. Consequently, the cathode material -plasma relationship is of special interest in related fundamental research as well as in applications like the synthesis of thin films and coatings. In the latter, the use of multi-element cathodes in inert as well as reactive gas atmospheres is common practice. To further improve the physical understanding of cathodic arcs in such settings, we analyze ions in pulsed cathodic arc plasmas from Nb, Al and two composite Nb-Al cathodes in high time-resolution using a mass-energy-analyzer. The experiments were conducted in Ar atmosphere at total pressures of 0.04, 0.20 and 0.40 Pa, and are compared to former results in high vacuum at 10 -4 Pa. In addition to examining the influence of Ar on ion properties and their cathode material dependence, the results are used to discuss physical concepts in cathodic arcs, like the gas-dynamic expansion of the cathode spot plasma, or the influence of charge exchange collisions of ions with neutrals. While such inelastic collisions e.g. with Ar atoms cause a reduction of charge states to mainly Al + and Nb 2+ at the highest pressure, Ar atoms also seem to take part in near-cathode processes. Ar ions in different time and energy regimes up to 150 eV were observed and compared to Nb and Al ions, showing overlapping velocity distributions for Nb, Al and Ar + ions, but also Ar 2+ ions faster than other ion species. 1","publication_date":{"day":23,"month":11,"year":2018,"errors":{}},"publication_name":"Journal of Physics D","grobid_abstract_attachment_id":117432903},"translated_abstract":null,"internal_url":"https://www.academia.edu/122858911/Influence_of_Ar_gas_pressure_on_ion_energy_and_charge_state_distributions_in_pulsed_cathodic_arc_plasmas_from_Nb_Al_cathodes_studied_with_high_time_resolution","translated_internal_url":"","created_at":"2024-08-13T21:41:59.892-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33147769,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":117432903,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117432903/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/117432903/download_file","bulk_download_file_name":"Influence_of_Ar_gas_pressure_on_ion_ener.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117432903/pdf-libre.pdf?1723611340=\u0026response-content-disposition=attachment%3B+filename%3DInfluence_of_Ar_gas_pressure_on_ion_ener.pdf\u0026Expires=1741733688\u0026Signature=WrDaUyXw4z-5jH87QTsHGcU3exjZIbnmgAXiACeS0yn7gsQ8a0iqyQ8CtqRI~uBw906QO-z-NmSpB2ShyRJdhfAqhFv3A8UpFqEEaWg5WX896Uy-KoS-l2el8rTtKrIZ-s9t7G7rxECcoq0pyo~PHWAKsf1g64A2LPy4iIL7dkXqwzGnStSNdfTIdAifYJPx2n-r1lN86NwtbFM9ZodgJ7D3JPSoKCFSQLPCB~X7CZWI0QyHYfWSxV5DRT5cxT7KHIqTcB20FNmu-ofL9ETEowKqqqtngKeG-~TqgW5xDk1SNpUDiGqh8qrRewjtE2HueXOu-WIeAmSWlf2bKB5HxQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Influence_of_Ar_gas_pressure_on_ion_energy_and_charge_state_distributions_in_pulsed_cathodic_arc_plasmas_from_Nb_Al_cathodes_studied_with_high_time_resolution","translated_slug":"","page_count":34,"language":"en","content_type":"Work","summary":"For cathodic arcs, the cathode material is one of the most important determinants of plasma properties. Consequently, the cathode material -plasma relationship is of special interest in related fundamental research as well as in applications like the synthesis of thin films and coatings. In the latter, the use of multi-element cathodes in inert as well as reactive gas atmospheres is common practice. To further improve the physical understanding of cathodic arcs in such settings, we analyze ions in pulsed cathodic arc plasmas from Nb, Al and two composite Nb-Al cathodes in high time-resolution using a mass-energy-analyzer. The experiments were conducted in Ar atmosphere at total pressures of 0.04, 0.20 and 0.40 Pa, and are compared to former results in high vacuum at 10 -4 Pa. In addition to examining the influence of Ar on ion properties and their cathode material dependence, the results are used to discuss physical concepts in cathodic arcs, like the gas-dynamic expansion of the cathode spot plasma, or the influence of charge exchange collisions of ions with neutrals. While such inelastic collisions e.g. with Ar atoms cause a reduction of charge states to mainly Al + and Nb 2+ at the highest pressure, Ar atoms also seem to take part in near-cathode processes. Ar ions in different time and energy regimes up to 150 eV were observed and compared to Nb and Al ions, showing overlapping velocity distributions for Nb, Al and Ar + ions, but also Ar 2+ ions faster than other ion species. 1","owner":{"id":33147769,"first_name":"Andre","middle_initials":"","last_name":"Anders","page_name":"AndreAnders","domain_name":"uni-leipzig1","created_at":"2015-07-17T15:40:22.246-07:00","display_name":"Andre Anders","url":"https://uni-leipzig1.academia.edu/AndreAnders"},"attachments":[{"id":117432903,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117432903/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/117432903/download_file","bulk_download_file_name":"Influence_of_Ar_gas_pressure_on_ion_ener.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117432903/pdf-libre.pdf?1723611340=\u0026response-content-disposition=attachment%3B+filename%3DInfluence_of_Ar_gas_pressure_on_ion_ener.pdf\u0026Expires=1741733688\u0026Signature=WrDaUyXw4z-5jH87QTsHGcU3exjZIbnmgAXiACeS0yn7gsQ8a0iqyQ8CtqRI~uBw906QO-z-NmSpB2ShyRJdhfAqhFv3A8UpFqEEaWg5WX896Uy-KoS-l2el8rTtKrIZ-s9t7G7rxECcoq0pyo~PHWAKsf1g64A2LPy4iIL7dkXqwzGnStSNdfTIdAifYJPx2n-r1lN86NwtbFM9ZodgJ7D3JPSoKCFSQLPCB~X7CZWI0QyHYfWSxV5DRT5cxT7KHIqTcB20FNmu-ofL9ETEowKqqqtngKeG-~TqgW5xDk1SNpUDiGqh8qrRewjtE2HueXOu-WIeAmSWlf2bKB5HxQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":11740,"name":"Atomic Physics","url":"https://www.academia.edu/Documents/in/Atomic_Physics"},{"id":71287,"name":"Cathodic Protection","url":"https://www.academia.edu/Documents/in/Cathodic_Protection"},{"id":117555,"name":"Plasma","url":"https://www.academia.edu/Documents/in/Plasma"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":348756,"name":"Ion","url":"https://www.academia.edu/Documents/in/Ion"},{"id":1131650,"name":"Cathode","url":"https://www.academia.edu/Documents/in/Cathode"}],"urls":[{"id":43997624,"url":"https://doi.org/10.1088/1361-6463/aaeecc"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="122858905"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/122858905/Copper_Sputter_Thyself"><img alt="Research paper thumbnail of Copper, Sputter Thyself" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/122858905/Copper_Sputter_Thyself">Copper, Sputter Thyself</a></div><div class="wp-workCard_item"><span>Focus</span><span>, 2009</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="122858905"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="122858905"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 122858905; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=122858905]").text(description); $(".js-view-count[data-work-id=122858905]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 122858905; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='122858905']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=122858905]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":122858905,"title":"Copper, Sputter Thyself","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2009,"errors":{}},"publication_name":"Focus"},"translated_abstract":null,"internal_url":"https://www.academia.edu/122858905/Copper_Sputter_Thyself","translated_internal_url":"","created_at":"2024-08-13T21:41:04.775-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33147769,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Copper_Sputter_Thyself","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":33147769,"first_name":"Andre","middle_initials":"","last_name":"Anders","page_name":"AndreAnders","domain_name":"uni-leipzig1","created_at":"2015-07-17T15:40:22.246-07:00","display_name":"Andre Anders","url":"https://uni-leipzig1.academia.edu/AndreAnders"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":80692,"name":"Copper","url":"https://www.academia.edu/Documents/in/Copper"},{"id":144927,"name":"Focus","url":"https://www.academia.edu/Documents/in/Focus"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="116836983"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/116836983/Temporal_development_of_the_plasma_composition_of_a_pulsed_aluminum_plasma_stream_in_the_presence_of_oxygen"><img alt="Research paper thumbnail of Temporal development of the plasma composition of a pulsed aluminum plasma stream in the presence of oxygen" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/116836983/Temporal_development_of_the_plasma_composition_of_a_pulsed_aluminum_plasma_stream_in_the_presence_of_oxygen">Temporal development of the plasma composition of a pulsed aluminum plasma stream in the presence of oxygen</a></div><div class="wp-workCard_item"><span>Applied Physics Letters</span><span>, 1999</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We describe the temporal development of the plasma composition of pulsed aluminum plasma streams ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We describe the temporal development of the plasma composition of pulsed aluminum plasma streams at various oxygen pressures. The plasma was formed with a vacuum arc plasma source and the time resolved plasma composition was measured with time-of-flight charge-to-mass spectrometry. The temporal development of the plasma composition as well as the Al average ion charge state was found to be a strong function of the oxygen pressure. Oxygen and hydrogen concentrations of up to 0.36 and 0.32, respectively, were found in the first 50 mus of the pulse at oxygen pressures of &amp;gt;=5×10-5 Torr. The average charge state of aluminum ions was found to vary from +1.2 to +2.5 depending on the oxygen pressure and the time elapsed after ignition of the arc. These results are of fundamental importance for the understanding of the evolution of the composition (through the plasma composition) and microstructure (through the Al ion flux energy) of alumina thin films produced by pulsed, reactive aluminum plasmas.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="116836983"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="116836983"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 116836983; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=116836983]").text(description); $(".js-view-count[data-work-id=116836983]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 116836983; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='116836983']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=116836983]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":116836983,"title":"Temporal development of the plasma composition of a pulsed aluminum plasma stream in the presence of oxygen","translated_title":"","metadata":{"abstract":"We describe the temporal development of the plasma composition of pulsed aluminum plasma streams at various oxygen pressures. The plasma was formed with a vacuum arc plasma source and the time resolved plasma composition was measured with time-of-flight charge-to-mass spectrometry. The temporal development of the plasma composition as well as the Al average ion charge state was found to be a strong function of the oxygen pressure. Oxygen and hydrogen concentrations of up to 0.36 and 0.32, respectively, were found in the first 50 mus of the pulse at oxygen pressures of \u0026gt;=5×10-5 Torr. The average charge state of aluminum ions was found to vary from +1.2 to +2.5 depending on the oxygen pressure and the time elapsed after ignition of the arc. These results are of fundamental importance for the understanding of the evolution of the composition (through the plasma composition) and microstructure (through the Al ion flux energy) of alumina thin films produced by pulsed, reactive aluminum plasmas.","publisher":"AIP Publishing","publication_date":{"day":null,"month":null,"year":1999,"errors":{}},"publication_name":"Applied Physics Letters"},"translated_abstract":"We describe the temporal development of the plasma composition of pulsed aluminum plasma streams at various oxygen pressures. The plasma was formed with a vacuum arc plasma source and the time resolved plasma composition was measured with time-of-flight charge-to-mass spectrometry. The temporal development of the plasma composition as well as the Al average ion charge state was found to be a strong function of the oxygen pressure. Oxygen and hydrogen concentrations of up to 0.36 and 0.32, respectively, were found in the first 50 mus of the pulse at oxygen pressures of \u0026gt;=5×10-5 Torr. The average charge state of aluminum ions was found to vary from +1.2 to +2.5 depending on the oxygen pressure and the time elapsed after ignition of the arc. These results are of fundamental importance for the understanding of the evolution of the composition (through the plasma composition) and microstructure (through the Al ion flux energy) of alumina thin films produced by pulsed, reactive aluminum plasmas.","internal_url":"https://www.academia.edu/116836983/Temporal_development_of_the_plasma_composition_of_a_pulsed_aluminum_plasma_stream_in_the_presence_of_oxygen","translated_internal_url":"","created_at":"2024-03-29T08:03:27.516-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33147769,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Temporal_development_of_the_plasma_composition_of_a_pulsed_aluminum_plasma_stream_in_the_presence_of_oxygen","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"We describe the temporal development of the plasma composition of pulsed aluminum plasma streams at various oxygen pressures. The plasma was formed with a vacuum arc plasma source and the time resolved plasma composition was measured with time-of-flight charge-to-mass spectrometry. The temporal development of the plasma composition as well as the Al average ion charge state was found to be a strong function of the oxygen pressure. Oxygen and hydrogen concentrations of up to 0.36 and 0.32, respectively, were found in the first 50 mus of the pulse at oxygen pressures of \u0026gt;=5×10-5 Torr. The average charge state of aluminum ions was found to vary from +1.2 to +2.5 depending on the oxygen pressure and the time elapsed after ignition of the arc. These results are of fundamental importance for the understanding of the evolution of the composition (through the plasma composition) and microstructure (through the Al ion flux energy) of alumina thin films produced by pulsed, reactive aluminum plasmas.","owner":{"id":33147769,"first_name":"Andre","middle_initials":"","last_name":"Anders","page_name":"AndreAnders","domain_name":"uni-leipzig1","created_at":"2015-07-17T15:40:22.246-07:00","display_name":"Andre Anders","url":"https://uni-leipzig1.academia.edu/AndreAnders"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":5769,"name":"Mass Spectrometry","url":"https://www.academia.edu/Documents/in/Mass_Spectrometry"},{"id":101573,"name":"Thin Film","url":"https://www.academia.edu/Documents/in/Thin_Film"},{"id":109198,"name":"Lightning","url":"https://www.academia.edu/Documents/in/Lightning"},{"id":112619,"name":"Time of Flight","url":"https://www.academia.edu/Documents/in/Time_of_Flight"},{"id":117555,"name":"Plasma","url":"https://www.academia.edu/Documents/in/Plasma"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":158186,"name":"Time Resolved","url":"https://www.academia.edu/Documents/in/Time_Resolved"},{"id":348756,"name":"Ion","url":"https://www.academia.edu/Documents/in/Ion"},{"id":369525,"name":"Aluminium","url":"https://www.academia.edu/Documents/in/Aluminium"},{"id":380825,"name":"Oxygen","url":"https://www.academia.edu/Documents/in/Oxygen"},{"id":430542,"name":"Arcs","url":"https://www.academia.edu/Documents/in/Arcs"},{"id":473797,"name":"Microstructures","url":"https://www.academia.edu/Documents/in/Microstructures"},{"id":1523712,"name":"Atmospheric Electricity","url":"https://www.academia.edu/Documents/in/Atmospheric_Electricity"},{"id":2638670,"name":"plasma cleaning","url":"https://www.academia.edu/Documents/in/plasma_cleaning"}],"urls":[{"id":40700242,"url":"http://aip.scitation.org/doi/pdf/10.1063/1.124457"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="115840964"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/115840964/Results_on_intense_beam_focusing_and_neutralization_from_the_neutralized_beam_experiment"><img alt="Research paper thumbnail of Results on intense beam focusing and neutralization from the neutralized beam experiment" class="work-thumbnail" src="https://attachments.academia-assets.com/112136580/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/115840964/Results_on_intense_beam_focusing_and_neutralization_from_the_neutralized_beam_experiment">Results on intense beam focusing and neutralization from the neutralized beam experiment</a></div><div class="wp-workCard_item"><span>Lawrence Berkeley National Laboratory</span><span>, Oct 31, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Experimental techniques to provide active neutralization for space-charge-dominated beams as well...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Experimental techniques to provide active neutralization for space-charge-dominated beams as well as to prevent uncontrolled ion beam neutralization by stray electrons have been demonstrated. Neutralization is provided by a localized plasma injected from a cathode arc source. Unwanted secondary electrons produced at the wall by halo particle impact are suppressed using a radial mesh liner that is positively biased inside a beam drift tube. Measurements of current transmission, beam spot size as a function of axial position, beam energy, and plasma source conditions are presented along with detailed comparisons with theory.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="730812687998b6c02d6d32c848bbc21c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:112136580,&quot;asset_id&quot;:115840964,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/112136580/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="115840964"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="115840964"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 115840964; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=115840964]").text(description); $(".js-view-count[data-work-id=115840964]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 115840964; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='115840964']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "730812687998b6c02d6d32c848bbc21c" } } $('.js-work-strip[data-work-id=115840964]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":115840964,"title":"Results on intense beam focusing and neutralization from the neutralized beam experiment","translated_title":"","metadata":{"publisher":"United States Department of Energy","grobid_abstract":"Experimental techniques to provide active neutralization for space-charge-dominated beams as well as to prevent uncontrolled ion beam neutralization by stray electrons have been demonstrated. Neutralization is provided by a localized plasma injected from a cathode arc source. Unwanted secondary electrons produced at the wall by halo particle impact are suppressed using a radial mesh liner that is positively biased inside a beam drift tube. Measurements of current transmission, beam spot size as a function of axial position, beam energy, and plasma source conditions are presented along with detailed comparisons with theory.","publication_date":{"day":31,"month":10,"year":2003,"errors":{}},"publication_name":"Lawrence Berkeley National Laboratory","grobid_abstract_attachment_id":112136580},"translated_abstract":null,"internal_url":"https://www.academia.edu/115840964/Results_on_intense_beam_focusing_and_neutralization_from_the_neutralized_beam_experiment","translated_internal_url":"","created_at":"2024-03-05T15:10:53.085-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33147769,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":112136580,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112136580/thumbnails/1.jpg","file_name":"PR.1.2004.pdf","download_url":"https://www.academia.edu/attachments/112136580/download_file","bulk_download_file_name":"Results_on_intense_beam_focusing_and_neu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112136580/PR.1.2004-libre.pdf?1709680811=\u0026response-content-disposition=attachment%3B+filename%3DResults_on_intense_beam_focusing_and_neu.pdf\u0026Expires=1741733688\u0026Signature=Oyn2IHf9qzQCTPgzKhQMOXhDaCCz8ZzPSJ1GYLuIwTfnazfFRiw2wALlzAdvmeQu84FY7pk31ioHNb3jOI7qLrwXNH4kzMUScNHj0mZvqNxnlRGhNd~zCWMxYYFYQ8Re2N-X9rkwE9ZpcgNeF64fwA6zWe37CjUxpwvaXhUEgJFeP8Tx-nAzGhywLKLHaStjZRWaCnDe0d0daIF6ZOcRPZyMt~m9EoYqF5AUOkZlPlgPKv7kJvPRHGOERy9vCZ2pwyqRE1tpyDmirmz50l1uXxylCDkoiVvqVqQbp4gV3120eQ8yYJHR3yBXczJ~~7t8doQieqrWLeFr-6jVZZRYtw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Results_on_intense_beam_focusing_and_neutralization_from_the_neutralized_beam_experiment","translated_slug":"","page_count":9,"language":"en","content_type":"Work","summary":"Experimental techniques to provide active neutralization for space-charge-dominated beams as well as to prevent uncontrolled ion beam neutralization by stray electrons have been demonstrated. Neutralization is provided by a localized plasma injected from a cathode arc source. Unwanted secondary electrons produced at the wall by halo particle impact are suppressed using a radial mesh liner that is positively biased inside a beam drift tube. Measurements of current transmission, beam spot size as a function of axial position, beam energy, and plasma source conditions are presented along with detailed comparisons with theory.","owner":{"id":33147769,"first_name":"Andre","middle_initials":"","last_name":"Anders","page_name":"AndreAnders","domain_name":"uni-leipzig1","created_at":"2015-07-17T15:40:22.246-07:00","display_name":"Andre Anders","url":"https://uni-leipzig1.academia.edu/AndreAnders"},"attachments":[{"id":112136580,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112136580/thumbnails/1.jpg","file_name":"PR.1.2004.pdf","download_url":"https://www.academia.edu/attachments/112136580/download_file","bulk_download_file_name":"Results_on_intense_beam_focusing_and_neu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112136580/PR.1.2004-libre.pdf?1709680811=\u0026response-content-disposition=attachment%3B+filename%3DResults_on_intense_beam_focusing_and_neu.pdf\u0026Expires=1741733688\u0026Signature=Oyn2IHf9qzQCTPgzKhQMOXhDaCCz8ZzPSJ1GYLuIwTfnazfFRiw2wALlzAdvmeQu84FY7pk31ioHNb3jOI7qLrwXNH4kzMUScNHj0mZvqNxnlRGhNd~zCWMxYYFYQ8Re2N-X9rkwE9ZpcgNeF64fwA6zWe37CjUxpwvaXhUEgJFeP8Tx-nAzGhywLKLHaStjZRWaCnDe0d0daIF6ZOcRPZyMt~m9EoYqF5AUOkZlPlgPKv7kJvPRHGOERy9vCZ2pwyqRE1tpyDmirmz50l1uXxylCDkoiVvqVqQbp4gV3120eQ8yYJHR3yBXczJ~~7t8doQieqrWLeFr-6jVZZRYtw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":112136581,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112136581/thumbnails/1.jpg","file_name":"PR.1.2004.pdf","download_url":"https://www.academia.edu/attachments/112136581/download_file","bulk_download_file_name":"Results_on_intense_beam_focusing_and_neu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112136581/PR.1.2004-libre.pdf?1709680812=\u0026response-content-disposition=attachment%3B+filename%3DResults_on_intense_beam_focusing_and_neu.pdf\u0026Expires=1741733688\u0026Signature=PHLm4uUNaSTsIOSE~spyiC3yonNm6MzehfII1floN3tHiscJXFWkaqvFo9HY6rnF-WJb2B0h1jPVINJrQfOoJgF4Y89ehbwSSNcA9s0aJiW6okoK6XQAe38Sl3Bjt85H6JUmvuv0Q2zDUahVynOn3HYhBhP3ybHbgmztrovk~bGzywk3iAuoG3n0Ue75PogfDUfLkGeka~m1VkD2grHo0jSm7NtO~yEbeCTbx92XwUsWFSd4ChYaVVnAxpz1lClhxg7Qf8Gmqe1eUIWQ5EibXFYWBwQqRChXonjKNjREFhhufk3GbZKgk7FG5nWKbEkd8jR4ZPbM1w62f6Dp8o4U9A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":6962,"name":"Energy Conservation","url":"https://www.academia.edu/Documents/in/Energy_Conservation"},{"id":34388,"name":"Power Plant","url":"https://www.academia.edu/Documents/in/Power_Plant"},{"id":72817,"name":"Focused Ion Beam","url":"https://www.academia.edu/Documents/in/Focused_Ion_Beam"},{"id":80799,"name":"Classical Physics","url":"https://www.academia.edu/Documents/in/Classical_Physics"},{"id":160656,"name":"Potassium","url":"https://www.academia.edu/Documents/in/Potassium"},{"id":290469,"name":"Phase Space","url":"https://www.academia.edu/Documents/in/Phase_Space"},{"id":693812,"name":"Ion Beam","url":"https://www.academia.edu/Documents/in/Ion_Beam"},{"id":735265,"name":"Secondary Electron","url":"https://www.academia.edu/Documents/in/Secondary_Electron"},{"id":762611,"name":"Space Charge","url":"https://www.academia.edu/Documents/in/Space_Charge"},{"id":776554,"name":"Inertial Confinement Fusion","url":"https://www.academia.edu/Documents/in/Inertial_Confinement_Fusion"},{"id":2274108,"name":"Lawrence Berkeley Laboratory","url":"https://www.academia.edu/Documents/in/Lawrence_Berkeley_Laboratory"},{"id":2539021,"name":"Heavy Ions","url":"https://www.academia.edu/Documents/in/Heavy_Ions"},{"id":2948559,"name":"Higher order","url":"https://www.academia.edu/Documents/in/Higher_order"}],"urls":[{"id":40065739,"url":"http://nonneutral.pppl.gov/pdfpapers/PR.1.2004.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111751761"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111751761/Guest_editorial_special_issue_on_vacuum_discharge_plasmas"><img alt="Research paper thumbnail of Guest editorial special issue on vacuum discharge plasmas" class="work-thumbnail" src="https://attachments.academia-assets.com/109194929/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111751761/Guest_editorial_special_issue_on_vacuum_discharge_plasmas">Guest editorial special issue on vacuum discharge plasmas</a></div><div class="wp-workCard_item"><span>IEEE Transactions on Plasma Science</span><span>, Oct 1, 2001</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6913563d12bdaf80c2e7732c385f7db4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109194929,&quot;asset_id&quot;:111751761,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109194929/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111751761"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111751761"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111751761; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111751761]").text(description); $(".js-view-count[data-work-id=111751761]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111751761; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111751761']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6913563d12bdaf80c2e7732c385f7db4" } } $('.js-work-strip[data-work-id=111751761]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111751761,"title":"Guest editorial special issue on vacuum discharge plasmas","translated_title":"","metadata":{"publisher":"Institute of Electrical and Electronics Engineers","ai_abstract":"The Guest Editorial highlights the XVIIth International Symposium on Discharges and Electrical Insulation in Vacuum, held at Lawrence Berkeley National Laboratory in 1996. It reviews the wide variety of topics covered, including vacuum breakdown phenomena, vacuum arcs, and new developments like vacuum arc deposition. The editorial also mentions awards granted at the symposium and the introduction of minicourses and an industrial exhibition, reflecting the vibrant scientific discourse and applications in the field.","publication_date":{"day":1,"month":10,"year":2001,"errors":{}},"publication_name":"IEEE Transactions on Plasma Science"},"translated_abstract":null,"internal_url":"https://www.academia.edu/111751761/Guest_editorial_special_issue_on_vacuum_discharge_plasmas","translated_internal_url":"","created_at":"2023-12-18T09:28:32.814-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33147769,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":109194929,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194929/thumbnails/1.jpg","file_name":"article.pdf","download_url":"https://www.academia.edu/attachments/109194929/download_file","bulk_download_file_name":"Guest_editorial_special_issue_on_vacuum.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194929/article-libre.pdf?1702923761=\u0026response-content-disposition=attachment%3B+filename%3DGuest_editorial_special_issue_on_vacuum.pdf\u0026Expires=1741733688\u0026Signature=VU4RDy34sWX1z8x7fI~4iwQ5zWakEm3auBf0pGQuxmhxuXFNcWd0NVUyKiI8ltpAceUvBbxSX-cBWoVdN~WYAk8CsLCozeGzomAnR6nyPRkme3htElD5JS~dmqZ7eekP2fp~iuNekMH1xjOM5LMAKVHmHx~eqBbX77G4M74~ucjdY7CxnWKa9WlKPN2S-ETCESCz~L0rm9KMLcSBdMQNBliWUoP7L92CWjebcHKnSjQcT9RcQGJfaoIZXrRaThmSwVpcy5djePQy3lIeOfxBNB83JW9jjM6kLZgQN1xEEBhqS21azv2VE-A2u7jtWG-qK8BF~r43QQLlqbGzv33OJA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Guest_editorial_special_issue_on_vacuum_discharge_plasmas","translated_slug":"","page_count":2,"language":"en","content_type":"Work","summary":null,"owner":{"id":33147769,"first_name":"Andre","middle_initials":"","last_name":"Anders","page_name":"AndreAnders","domain_name":"uni-leipzig1","created_at":"2015-07-17T15:40:22.246-07:00","display_name":"Andre Anders","url":"https://uni-leipzig1.academia.edu/AndreAnders"},"attachments":[{"id":109194929,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194929/thumbnails/1.jpg","file_name":"article.pdf","download_url":"https://www.academia.edu/attachments/109194929/download_file","bulk_download_file_name":"Guest_editorial_special_issue_on_vacuum.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194929/article-libre.pdf?1702923761=\u0026response-content-disposition=attachment%3B+filename%3DGuest_editorial_special_issue_on_vacuum.pdf\u0026Expires=1741733688\u0026Signature=VU4RDy34sWX1z8x7fI~4iwQ5zWakEm3auBf0pGQuxmhxuXFNcWd0NVUyKiI8ltpAceUvBbxSX-cBWoVdN~WYAk8CsLCozeGzomAnR6nyPRkme3htElD5JS~dmqZ7eekP2fp~iuNekMH1xjOM5LMAKVHmHx~eqBbX77G4M74~ucjdY7CxnWKa9WlKPN2S-ETCESCz~L0rm9KMLcSBdMQNBliWUoP7L92CWjebcHKnSjQcT9RcQGJfaoIZXrRaThmSwVpcy5djePQy3lIeOfxBNB83JW9jjM6kLZgQN1xEEBhqS21azv2VE-A2u7jtWG-qK8BF~r43QQLlqbGzv33OJA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":109194928,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194928/thumbnails/1.jpg","file_name":"article.pdf","download_url":"https://www.academia.edu/attachments/109194928/download_file","bulk_download_file_name":"Guest_editorial_special_issue_on_vacuum.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194928/article-libre.pdf?1702923762=\u0026response-content-disposition=attachment%3B+filename%3DGuest_editorial_special_issue_on_vacuum.pdf\u0026Expires=1741733688\u0026Signature=M2My0vyac2WsT-m7VGwFwJa~2o4oNp7YT2W215G9p94fCegAxtNFNOroLaa-W7pfaP2HQqicOsL~TSD3zkB-HD8a6p2pYJXHgGZzSBBV-N2erCiwvlqw~a8boSzBFWbiycf7FEYhKKEDwHhWpmHZB0UuuDAR3CxL325BFIGJOXFqCITAk1PFztw5LGn43I~~cnZoNYPtGyKHaRCGRIG3xGbnpXdS5Q9W9Q2TrKIRd7b9jn2a7hx45dzqwkIcZdbHUzjfO7b6-affD0vpIxQL0VLy~2KUXxHTFrp~UjC-AJOhDClIkMy6r4O62gsib5hjYKfgfk2uajacP5E-CvnMdQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":517,"name":"Plasma Physics","url":"https://www.academia.edu/Documents/in/Plasma_Physics"},{"id":117555,"name":"Plasma","url":"https://www.academia.edu/Documents/in/Plasma"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"}],"urls":[{"id":37334647,"url":"https://zenodo.org/record/1282366/files/article.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111751760"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111751760/Characterization_of_a_reactive_arc_plasma"><img alt="Research paper thumbnail of Characterization of a reactive arc plasma" class="work-thumbnail" src="https://attachments.academia-assets.com/109194934/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111751760/Characterization_of_a_reactive_arc_plasma">Characterization of a reactive arc plasma</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The plasma composition, average charge state values, as well as the kinetic energy of the aluminu...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The plasma composition, average charge state values, as well as the kinetic energy of the aluminum ions have been measured by TOF spectrometry as a function of the oxygen partial pressure. The plasma was produced in cathodic arc spots. It was found that the oxygen partial pressure reduces the average charge state as well as the kinetic ion energy. These data are important for the evolution of both composition and structure during thin film growth from highly ionized plasma.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="cab4852b4c07b6709cfd9a6330559c7c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109194934,&quot;asset_id&quot;:111751760,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109194934/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111751760"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111751760"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111751760; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111751760]").text(description); $(".js-view-count[data-work-id=111751760]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111751760; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111751760']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "cab4852b4c07b6709cfd9a6330559c7c" } } $('.js-work-strip[data-work-id=111751760]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111751760,"title":"Characterization of a reactive arc plasma","translated_title":"","metadata":{"ai_title_tag":"Arc Plasma Ionization Affected by Oxygen Pressure","grobid_abstract":"The plasma composition, average charge state values, as well as the kinetic energy of the aluminum ions have been measured by TOF spectrometry as a function of the oxygen partial pressure. The plasma was produced in cathodic arc spots. It was found that the oxygen partial pressure reduces the average charge state as well as the kinetic ion energy. These data are important for the evolution of both composition and structure during thin film growth from highly ionized plasma.","publication_date":{"day":2,"month":1,"year":2002,"errors":{}},"grobid_abstract_attachment_id":109194934},"translated_abstract":null,"internal_url":"https://www.academia.edu/111751760/Characterization_of_a_reactive_arc_plasma","translated_internal_url":"","created_at":"2023-12-18T09:28:32.685-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33147769,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":109194934,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194934/thumbnails/1.jpg","file_name":"qt7ct1s5wt.pdf","download_url":"https://www.academia.edu/attachments/109194934/download_file","bulk_download_file_name":"Characterization_of_a_reactive_arc_plasm.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194934/qt7ct1s5wt-libre.pdf?1702923765=\u0026response-content-disposition=attachment%3B+filename%3DCharacterization_of_a_reactive_arc_plasm.pdf\u0026Expires=1741733688\u0026Signature=O4MloxmihmA0HopfqbkwQFVi~kkWc5PLDr4JYsd0eDqSikrODKvItxqo9etSgAP-aLi-v-AUhgXZD4aHtKDzNLdkF2KRmu94hv-eJRo8xhLokZiW~NuqeqgByoHgxnfu1OdcqIjdu2Om9MO6jTpZUsSNjaFaQbKJ3Gs5j3BgPeichRzLX~qkcnnwOldOEhsXYCGkWL93RpeKme8LJR9mUT489GyamXQtNn3GpXOPtKNDQv6hfkZYPBq2ILQ6WLXt8PUo4rfLMkfQsVvAy0ph3CWejQAiFuYiqOs9n~S5bPVE3Jwpl8iNYjJT4vjtRJ~W7eWM00fkyRGAwAhugpgQpA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Characterization_of_a_reactive_arc_plasma","translated_slug":"","page_count":3,"language":"en","content_type":"Work","summary":"The plasma composition, average charge state values, as well as the kinetic energy of the aluminum ions have been measured by TOF spectrometry as a function of the oxygen partial pressure. The plasma was produced in cathodic arc spots. It was found that the oxygen partial pressure reduces the average charge state as well as the kinetic ion energy. These data are important for the evolution of both composition and structure during thin film growth from highly ionized plasma.","owner":{"id":33147769,"first_name":"Andre","middle_initials":"","last_name":"Anders","page_name":"AndreAnders","domain_name":"uni-leipzig1","created_at":"2015-07-17T15:40:22.246-07:00","display_name":"Andre Anders","url":"https://uni-leipzig1.academia.edu/AndreAnders"},"attachments":[{"id":109194934,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194934/thumbnails/1.jpg","file_name":"qt7ct1s5wt.pdf","download_url":"https://www.academia.edu/attachments/109194934/download_file","bulk_download_file_name":"Characterization_of_a_reactive_arc_plasm.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194934/qt7ct1s5wt-libre.pdf?1702923765=\u0026response-content-disposition=attachment%3B+filename%3DCharacterization_of_a_reactive_arc_plasm.pdf\u0026Expires=1741733688\u0026Signature=O4MloxmihmA0HopfqbkwQFVi~kkWc5PLDr4JYsd0eDqSikrODKvItxqo9etSgAP-aLi-v-AUhgXZD4aHtKDzNLdkF2KRmu94hv-eJRo8xhLokZiW~NuqeqgByoHgxnfu1OdcqIjdu2Om9MO6jTpZUsSNjaFaQbKJ3Gs5j3BgPeichRzLX~qkcnnwOldOEhsXYCGkWL93RpeKme8LJR9mUT489GyamXQtNn3GpXOPtKNDQv6hfkZYPBq2ILQ6WLXt8PUo4rfLMkfQsVvAy0ph3CWejQAiFuYiqOs9n~S5bPVE3Jwpl8iNYjJT4vjtRJ~W7eWM00fkyRGAwAhugpgQpA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":109194933,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194933/thumbnails/1.jpg","file_name":"qt7ct1s5wt.pdf","download_url":"https://www.academia.edu/attachments/109194933/download_file","bulk_download_file_name":"Characterization_of_a_reactive_arc_plasm.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194933/qt7ct1s5wt-libre.pdf?1702923763=\u0026response-content-disposition=attachment%3B+filename%3DCharacterization_of_a_reactive_arc_plasm.pdf\u0026Expires=1741733688\u0026Signature=G0WM2Jaxm40741K~SqqMPU8Vd9VjktvqDYz2OSCl9-aW9P48QG2D17SdAHJ3eBgc1fkIAOfBPzjyvhHOzdLc~NuedwOWjxtWxsTq~gWQcXKNhlAt~ZDJbxOZ8RYkZI4-e0vRXVZ1p9wyOwu3k0PUqOlzL5ICIeCMCLqKSn~pkCnVsqVP1iIcfiyFfeMmJ0UDhUi0WPZg4VOWHXWyd2u7m-N6wxSMQHPZ8tr8tMw~s2ykBmBaLXY7ic1Vjb0SUFMdY81BwEpaHYVdMly3Grg2icYUtcExvrjV9XIB--62WdNvdLv5MTrJrtWTQ9ONqfdJS6lItxAUQetJsDK~QcHWXQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":117555,"name":"Plasma","url":"https://www.academia.edu/Documents/in/Plasma"}],"urls":[{"id":37334646,"url":"https://escholarship.org/content/qt7ct1s5wt/qt7ct1s5wt.pdf?t=p0hiks"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111751758"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111751758/Building_on_excellence_and_reputation_a_more_inclusive_i_Journal_of_Applied_Physics_i_evolves"><img alt="Research paper thumbnail of Building on excellence and reputation, a more inclusive &lt;i&gt;Journal of Applied Physics&lt;/i&gt; evolves" class="work-thumbnail" src="https://attachments.academia-assets.com/109194926/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111751758/Building_on_excellence_and_reputation_a_more_inclusive_i_Journal_of_Applied_Physics_i_evolves">Building on excellence and reputation, a more inclusive &lt;i&gt;Journal of Applied Physics&lt;/i&gt; evolves</a></div><div class="wp-workCard_item"><span>Journal of Applied Physics</span><span>, Mar 15, 2022</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Building on excellence and reputation, a more inclusive Journal of Applied Physics evolves</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1dc5a29e71d86d9e6801e12ea91ed21b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109194926,&quot;asset_id&quot;:111751758,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109194926/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111751758"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111751758"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111751758; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111751758]").text(description); $(".js-view-count[data-work-id=111751758]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111751758; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111751758']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1dc5a29e71d86d9e6801e12ea91ed21b" } } $('.js-work-strip[data-work-id=111751758]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111751758,"title":"Building on excellence and reputation, a more inclusive \u003ci\u003eJournal of Applied Physics\u003c/i\u003e evolves","translated_title":"","metadata":{"publisher":"American Institute of Physics","grobid_abstract":"Building on excellence and reputation, a more inclusive Journal of Applied Physics evolves","publication_date":{"day":15,"month":3,"year":2022,"errors":{}},"publication_name":"Journal of Applied Physics","grobid_abstract_attachment_id":109194926},"translated_abstract":null,"internal_url":"https://www.academia.edu/111751758/Building_on_excellence_and_reputation_a_more_inclusive_i_Journal_of_Applied_Physics_i_evolves","translated_internal_url":"","created_at":"2023-12-18T09:28:32.513-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33147769,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":109194926,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194926/thumbnails/1.jpg","file_name":"5.pdf","download_url":"https://www.academia.edu/attachments/109194926/download_file","bulk_download_file_name":"Building_on_excellence_and_reputation_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194926/5-libre.pdf?1702923767=\u0026response-content-disposition=attachment%3B+filename%3DBuilding_on_excellence_and_reputation_a.pdf\u0026Expires=1741733688\u0026Signature=RTD3L1FS32KFOMEdidWxv3lS6NGG8CTYV5NWZpWo6BrMDbQAFqYietC6PWR~u~6DBQhfVYJ1hMKDEOMqcK4Wa39fGSBU7S2DwT869vXWCTl-i2HGVnkp~eEpTzcJIIWAV3agPjJLHDd~tn5Ywg1uPlmabtvdRg~ppO4g~OqZFKEDK~GTFUpCXrEHkDMwFCImdeMmqIxaLjaD-bzRvt~YzE-kZi-hS4nXZr54CWa2oUezne4tdn7Gcc15Y9vfgeFwznkIQysFMMXiQ8ixDEwdPhBViOvou21vXkUaNge~4Yn9EdtJTzvFHm3orFmhrmNa9wG5X3JTwqVm~t0BWLGWWQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Building_on_excellence_and_reputation_a_more_inclusive_i_Journal_of_Applied_Physics_i_evolves","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"Building on excellence and reputation, a more inclusive Journal of Applied Physics evolves","owner":{"id":33147769,"first_name":"Andre","middle_initials":"","last_name":"Anders","page_name":"AndreAnders","domain_name":"uni-leipzig1","created_at":"2015-07-17T15:40:22.246-07:00","display_name":"Andre Anders","url":"https://uni-leipzig1.academia.edu/AndreAnders"},"attachments":[{"id":109194926,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194926/thumbnails/1.jpg","file_name":"5.pdf","download_url":"https://www.academia.edu/attachments/109194926/download_file","bulk_download_file_name":"Building_on_excellence_and_reputation_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194926/5-libre.pdf?1702923767=\u0026response-content-disposition=attachment%3B+filename%3DBuilding_on_excellence_and_reputation_a.pdf\u0026Expires=1741733688\u0026Signature=RTD3L1FS32KFOMEdidWxv3lS6NGG8CTYV5NWZpWo6BrMDbQAFqYietC6PWR~u~6DBQhfVYJ1hMKDEOMqcK4Wa39fGSBU7S2DwT869vXWCTl-i2HGVnkp~eEpTzcJIIWAV3agPjJLHDd~tn5Ywg1uPlmabtvdRg~ppO4g~OqZFKEDK~GTFUpCXrEHkDMwFCImdeMmqIxaLjaD-bzRvt~YzE-kZi-hS4nXZr54CWa2oUezne4tdn7Gcc15Y9vfgeFwznkIQysFMMXiQ8ixDEwdPhBViOvou21vXkUaNge~4Yn9EdtJTzvFHm3orFmhrmNa9wG5X3JTwqVm~t0BWLGWWQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":9138,"name":"Applied Physics","url":"https://www.academia.edu/Documents/in/Applied_Physics"},{"id":48977,"name":"Reputation","url":"https://www.academia.edu/Documents/in/Reputation"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":173206,"name":"Excellence","url":"https://www.academia.edu/Documents/in/Excellence"}],"urls":[{"id":37334644,"url":"https://aip.scitation.org/doi/pdf/10.1063/5.0088430"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111751757"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/111751757/Properties_of_gallium_oxide_thin_films_grown_by_ion_beam_sputter_deposition_at_room_temperature"><img alt="Research paper thumbnail of Properties of gallium oxide thin films grown by ion beam sputter deposition at room temperature" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/111751757/Properties_of_gallium_oxide_thin_films_grown_by_ion_beam_sputter_deposition_at_room_temperature">Properties of gallium oxide thin films grown by ion beam sputter deposition at room temperature</a></div><div class="wp-workCard_item"><span>Journal of vacuum science &amp; technology</span><span>, May 1, 2022</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Gallium oxide thin films were grown by ion beam sputter deposition (IBSD) at room temperature on ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Gallium oxide thin films were grown by ion beam sputter deposition (IBSD) at room temperature on Si substrates with systematically varied process parameters: primary ion energy, primary ion species (O2+ and Ar+), sputtering geometry (ion incidence angle α and polar emission angle β), and O2 background pressure. No substrate heating was applied because the goal of these experiments was to investigate the impact of the energetic film-forming species on thin film properties. The films were characterized with regard to film thickness, growth rate, crystallinity, surface roughness, mass density, elemental composition and its depth profiles, and optical properties. All films were found to be amorphous with a surface roughness of less than 1 nm. The stoichiometry of the films improved with an increase in the energy of film-forming species. The mass density and the optical properties, including the index of refraction, are correlated and show a dependency on the kinetic energy of the film-forming species. The ranges of IBSD parameters, which are most promising for further improvement of the film quality, are discussed.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111751757"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111751757"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111751757; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111751757]").text(description); $(".js-view-count[data-work-id=111751757]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111751757; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111751757']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=111751757]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111751757,"title":"Properties of gallium oxide thin films grown by ion beam sputter deposition at room temperature","translated_title":"","metadata":{"abstract":"Gallium oxide thin films were grown by ion beam sputter deposition (IBSD) at room temperature on Si substrates with systematically varied process parameters: primary ion energy, primary ion species (O2+ and Ar+), sputtering geometry (ion incidence angle α and polar emission angle β), and O2 background pressure. No substrate heating was applied because the goal of these experiments was to investigate the impact of the energetic film-forming species on thin film properties. The films were characterized with regard to film thickness, growth rate, crystallinity, surface roughness, mass density, elemental composition and its depth profiles, and optical properties. All films were found to be amorphous with a surface roughness of less than 1 nm. The stoichiometry of the films improved with an increase in the energy of film-forming species. The mass density and the optical properties, including the index of refraction, are correlated and show a dependency on the kinetic energy of the film-forming species. The ranges of IBSD parameters, which are most promising for further improvement of the film quality, are discussed.","publisher":"American Institute of Physics","publication_date":{"day":1,"month":5,"year":2022,"errors":{}},"publication_name":"Journal of vacuum science \u0026 technology"},"translated_abstract":"Gallium oxide thin films were grown by ion beam sputter deposition (IBSD) at room temperature on Si substrates with systematically varied process parameters: primary ion energy, primary ion species (O2+ and Ar+), sputtering geometry (ion incidence angle α and polar emission angle β), and O2 background pressure. No substrate heating was applied because the goal of these experiments was to investigate the impact of the energetic film-forming species on thin film properties. The films were characterized with regard to film thickness, growth rate, crystallinity, surface roughness, mass density, elemental composition and its depth profiles, and optical properties. All films were found to be amorphous with a surface roughness of less than 1 nm. The stoichiometry of the films improved with an increase in the energy of film-forming species. The mass density and the optical properties, including the index of refraction, are correlated and show a dependency on the kinetic energy of the film-forming species. The ranges of IBSD parameters, which are most promising for further improvement of the film quality, are discussed.","internal_url":"https://www.academia.edu/111751757/Properties_of_gallium_oxide_thin_films_grown_by_ion_beam_sputter_deposition_at_room_temperature","translated_internal_url":"","created_at":"2023-12-18T09:28:32.364-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33147769,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Properties_of_gallium_oxide_thin_films_grown_by_ion_beam_sputter_deposition_at_room_temperature","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Gallium oxide thin films were grown by ion beam sputter deposition (IBSD) at room temperature on Si substrates with systematically varied process parameters: primary ion energy, primary ion species (O2+ and Ar+), sputtering geometry (ion incidence angle α and polar emission angle β), and O2 background pressure. No substrate heating was applied because the goal of these experiments was to investigate the impact of the energetic film-forming species on thin film properties. The films were characterized with regard to film thickness, growth rate, crystallinity, surface roughness, mass density, elemental composition and its depth profiles, and optical properties. All films were found to be amorphous with a surface roughness of less than 1 nm. The stoichiometry of the films improved with an increase in the energy of film-forming species. The mass density and the optical properties, including the index of refraction, are correlated and show a dependency on the kinetic energy of the film-forming species. The ranges of IBSD parameters, which are most promising for further improvement of the film quality, are discussed.","owner":{"id":33147769,"first_name":"Andre","middle_initials":"","last_name":"Anders","page_name":"AndreAnders","domain_name":"uni-leipzig1","created_at":"2015-07-17T15:40:22.246-07:00","display_name":"Andre Anders","url":"https://uni-leipzig1.academia.edu/AndreAnders"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":101573,"name":"Thin Film","url":"https://www.academia.edu/Documents/in/Thin_Film"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":185387,"name":"Sputtering","url":"https://www.academia.edu/Documents/in/Sputtering"},{"id":192323,"name":"Crystallinity","url":"https://www.academia.edu/Documents/in/Crystallinity"},{"id":688966,"name":"Gallium","url":"https://www.academia.edu/Documents/in/Gallium"},{"id":693812,"name":"Ion Beam","url":"https://www.academia.edu/Documents/in/Ion_Beam"},{"id":925604,"name":"Sputter Deposition","url":"https://www.academia.edu/Documents/in/Sputter_Deposition"},{"id":1801184,"name":"Vacuum Science and Technology","url":"https://www.academia.edu/Documents/in/Vacuum_Science_and_Technology"}],"urls":[{"id":37334643,"url":"https://doi.org/10.1116/6.0001825"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111751756"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/111751756/Heavy_Ion_Fusion_Science_Virtual_National_Laboratory_1st_Quarter_FY09_Milestone_Report"><img alt="Research paper thumbnail of Heavy Ion Fusion Science Virtual National Laboratory 1st Quarter FY09 Milestone Report" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/111751756/Heavy_Ion_Fusion_Science_Virtual_National_Laboratory_1st_Quarter_FY09_Milestone_Report">Heavy Ion Fusion Science Virtual National Laboratory 1st Quarter FY09 Milestone Report</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This milestone has been met. In the previous quarter (3rd quarter FY2008), the Heavy Ion Fusion S...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This milestone has been met. In the previous quarter (3rd quarter FY2008), the Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) completed the new experimental target chamber facility for future Warm Dense Matter (WDM) experiments [1]. The target chamber is operational and target experiments are now underway, using beams focused by a final focus solenoid and compressed by an improved bunching waveform. Initial experiments have demonstrated the capability of the Neutralized Drift Compression Experiment (NDCX) beam to heat bulk matter in target foils. The experiments have focused on tuning and characterizing the NDCX beam in the target chamber, implementing the target assembly, and implementing target diagnostics in the target chamber environment. We have completed a characterization and initial optimization of the compressed and uncompressed NDCX beam entering the target chamber. The neutralizing plasma has been significantly improved to increase the beam neutralization in the target chamber. Preliminary results from recent beam tests of a gold cone for concentrating beam energy on target are encouraging and indicate the potential to double beam intensity on target. Other advantages of the cone include the large amount of neutralizing secondary electrons expected from the grazing incidence at the cone walls, and the shielding of the target from the edges of the beam pulse. The first target temperature measurements with the fast optical pyrometer were made on Sep. 12, 2008. The fast optical pyrometer is a unique and significant new diagnostic. These new results demonstrate for the first time beam heating of the target to a temperature well over 2000 K. The initial experimental results are suggestive of potentially interesting physics. The rapid initial rise and subsequent decay of the target temperature during the beam pulse indicate changes in the balance of beam heating and target evaporative cooling, a behavior which may be affected by phenomena such as droplet formation and rapid changes in the optical properties of the hot target material. NDCX, possibly uniquely, is capable of studying these changes because of its wide range of diagnostic capabilities. These capabilities include target diagnostics already in place such as the fast pyrometer and streak camera, as well as the ability to measure both ion beam transmission and optical transmission through the foil. Measurements with these diagnostic techniques can help determine the rate at which the target is breaking up into droplets and the rate at which its bulk optical properties are changing.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111751756"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111751756"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111751756; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111751756]").text(description); $(".js-view-count[data-work-id=111751756]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111751756; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111751756']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=111751756]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111751756,"title":"Heavy Ion Fusion Science Virtual National Laboratory 1st Quarter FY09 Milestone Report","translated_title":"","metadata":{"abstract":"This milestone has been met. In the previous quarter (3rd quarter FY2008), the Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) completed the new experimental target chamber facility for future Warm Dense Matter (WDM) experiments [1]. The target chamber is operational and target experiments are now underway, using beams focused by a final focus solenoid and compressed by an improved bunching waveform. Initial experiments have demonstrated the capability of the Neutralized Drift Compression Experiment (NDCX) beam to heat bulk matter in target foils. The experiments have focused on tuning and characterizing the NDCX beam in the target chamber, implementing the target assembly, and implementing target diagnostics in the target chamber environment. We have completed a characterization and initial optimization of the compressed and uncompressed NDCX beam entering the target chamber. The neutralizing plasma has been significantly improved to increase the beam neutralization in the target chamber. Preliminary results from recent beam tests of a gold cone for concentrating beam energy on target are encouraging and indicate the potential to double beam intensity on target. Other advantages of the cone include the large amount of neutralizing secondary electrons expected from the grazing incidence at the cone walls, and the shielding of the target from the edges of the beam pulse. The first target temperature measurements with the fast optical pyrometer were made on Sep. 12, 2008. The fast optical pyrometer is a unique and significant new diagnostic. These new results demonstrate for the first time beam heating of the target to a temperature well over 2000 K. The initial experimental results are suggestive of potentially interesting physics. The rapid initial rise and subsequent decay of the target temperature during the beam pulse indicate changes in the balance of beam heating and target evaporative cooling, a behavior which may be affected by phenomena such as droplet formation and rapid changes in the optical properties of the hot target material. NDCX, possibly uniquely, is capable of studying these changes because of its wide range of diagnostic capabilities. These capabilities include target diagnostics already in place such as the fast pyrometer and streak camera, as well as the ability to measure both ion beam transmission and optical transmission through the foil. Measurements with these diagnostic techniques can help determine the rate at which the target is breaking up into droplets and the rate at which its bulk optical properties are changing.","publication_date":{"day":22,"month":12,"year":2008,"errors":{}}},"translated_abstract":"This milestone has been met. In the previous quarter (3rd quarter FY2008), the Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) completed the new experimental target chamber facility for future Warm Dense Matter (WDM) experiments [1]. The target chamber is operational and target experiments are now underway, using beams focused by a final focus solenoid and compressed by an improved bunching waveform. Initial experiments have demonstrated the capability of the Neutralized Drift Compression Experiment (NDCX) beam to heat bulk matter in target foils. The experiments have focused on tuning and characterizing the NDCX beam in the target chamber, implementing the target assembly, and implementing target diagnostics in the target chamber environment. We have completed a characterization and initial optimization of the compressed and uncompressed NDCX beam entering the target chamber. The neutralizing plasma has been significantly improved to increase the beam neutralization in the target chamber. Preliminary results from recent beam tests of a gold cone for concentrating beam energy on target are encouraging and indicate the potential to double beam intensity on target. Other advantages of the cone include the large amount of neutralizing secondary electrons expected from the grazing incidence at the cone walls, and the shielding of the target from the edges of the beam pulse. The first target temperature measurements with the fast optical pyrometer were made on Sep. 12, 2008. The fast optical pyrometer is a unique and significant new diagnostic. These new results demonstrate for the first time beam heating of the target to a temperature well over 2000 K. The initial experimental results are suggestive of potentially interesting physics. The rapid initial rise and subsequent decay of the target temperature during the beam pulse indicate changes in the balance of beam heating and target evaporative cooling, a behavior which may be affected by phenomena such as droplet formation and rapid changes in the optical properties of the hot target material. NDCX, possibly uniquely, is capable of studying these changes because of its wide range of diagnostic capabilities. These capabilities include target diagnostics already in place such as the fast pyrometer and streak camera, as well as the ability to measure both ion beam transmission and optical transmission through the foil. Measurements with these diagnostic techniques can help determine the rate at which the target is breaking up into droplets and the rate at which its bulk optical properties are changing.","internal_url":"https://www.academia.edu/111751756/Heavy_Ion_Fusion_Science_Virtual_National_Laboratory_1st_Quarter_FY09_Milestone_Report","translated_internal_url":"","created_at":"2023-12-18T09:28:32.176-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33147769,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Heavy_Ion_Fusion_Science_Virtual_National_Laboratory_1st_Quarter_FY09_Milestone_Report","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"This milestone has been met. In the previous quarter (3rd quarter FY2008), the Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) completed the new experimental target chamber facility for future Warm Dense Matter (WDM) experiments [1]. The target chamber is operational and target experiments are now underway, using beams focused by a final focus solenoid and compressed by an improved bunching waveform. Initial experiments have demonstrated the capability of the Neutralized Drift Compression Experiment (NDCX) beam to heat bulk matter in target foils. The experiments have focused on tuning and characterizing the NDCX beam in the target chamber, implementing the target assembly, and implementing target diagnostics in the target chamber environment. We have completed a characterization and initial optimization of the compressed and uncompressed NDCX beam entering the target chamber. The neutralizing plasma has been significantly improved to increase the beam neutralization in the target chamber. Preliminary results from recent beam tests of a gold cone for concentrating beam energy on target are encouraging and indicate the potential to double beam intensity on target. Other advantages of the cone include the large amount of neutralizing secondary electrons expected from the grazing incidence at the cone walls, and the shielding of the target from the edges of the beam pulse. The first target temperature measurements with the fast optical pyrometer were made on Sep. 12, 2008. The fast optical pyrometer is a unique and significant new diagnostic. These new results demonstrate for the first time beam heating of the target to a temperature well over 2000 K. The initial experimental results are suggestive of potentially interesting physics. The rapid initial rise and subsequent decay of the target temperature during the beam pulse indicate changes in the balance of beam heating and target evaporative cooling, a behavior which may be affected by phenomena such as droplet formation and rapid changes in the optical properties of the hot target material. NDCX, possibly uniquely, is capable of studying these changes because of its wide range of diagnostic capabilities. These capabilities include target diagnostics already in place such as the fast pyrometer and streak camera, as well as the ability to measure both ion beam transmission and optical transmission through the foil. Measurements with these diagnostic techniques can help determine the rate at which the target is breaking up into droplets and the rate at which its bulk optical properties are changing.","owner":{"id":33147769,"first_name":"Andre","middle_initials":"","last_name":"Anders","page_name":"AndreAnders","domain_name":"uni-leipzig1","created_at":"2015-07-17T15:40:22.246-07:00","display_name":"Andre Anders","url":"https://uni-leipzig1.academia.edu/AndreAnders"},"attachments":[],"research_interests":[{"id":9355,"name":"Equations of State","url":"https://www.academia.edu/Documents/in/Equations_of_State"},{"id":13268,"name":"Evaporation","url":"https://www.academia.edu/Documents/in/Evaporation"},{"id":48459,"name":"High Voltage","url":"https://www.academia.edu/Documents/in/High_Voltage"},{"id":80555,"name":"Heavy Ions Physics","url":"https://www.academia.edu/Documents/in/Heavy_Ions_Physics"},{"id":134591,"name":"Evaporative Cooling","url":"https://www.academia.edu/Documents/in/Evaporative_Cooling"},{"id":179332,"name":"Hydrodynamics","url":"https://www.academia.edu/Documents/in/Hydrodynamics"},{"id":212475,"name":"Electric Fields","url":"https://www.academia.edu/Documents/in/Electric_Fields"},{"id":238655,"name":"Implementation","url":"https://www.academia.edu/Documents/in/Implementation"},{"id":270366,"name":"Heat Conduction","url":"https://www.academia.edu/Documents/in/Heat_Conduction"},{"id":317745,"name":"High Speed","url":"https://www.academia.edu/Documents/in/High_Speed"},{"id":325234,"name":"Compression","url":"https://www.academia.edu/Documents/in/Compression"},{"id":418058,"name":"Dynamic Response","url":"https://www.academia.edu/Documents/in/Dynamic_Response"},{"id":542983,"name":"Heating","url":"https://www.academia.edu/Documents/in/Heating"},{"id":1031112,"name":"Emissivity","url":"https://www.academia.edu/Documents/in/Emissivity"},{"id":1120502,"name":"Experimental Data","url":"https://www.academia.edu/Documents/in/Experimental_Data"},{"id":1130559,"name":"Electric Field","url":"https://www.academia.edu/Documents/in/Electric_Field"},{"id":1320599,"name":"Equation of State","url":"https://www.academia.edu/Documents/in/Equation_of_State"},{"id":1557246,"name":"Functional Form","url":"https://www.academia.edu/Documents/in/Functional_Form"},{"id":2193830,"name":"Brightness temperature","url":"https://www.academia.edu/Documents/in/Brightness_temperature"},{"id":2282000,"name":"Current Transformer","url":"https://www.academia.edu/Documents/in/Current_Transformer"}],"urls":[{"id":37334642,"url":"https://www.osti.gov/biblio/945605"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111751755"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/111751755/Time_and_Position_Dependent_Breakdown_Volume_Calculations_to_Explain_Experimentally_Observed_Femtosecond_Laser_Induced_Plasma_Properties"><img alt="Research paper thumbnail of Time- and Position-Dependent Breakdown Volume Calculations to Explain Experimentally Observed Femtosecond Laser-Induced Plasma Properties" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/111751755/Time_and_Position_Dependent_Breakdown_Volume_Calculations_to_Explain_Experimentally_Observed_Femtosecond_Laser_Induced_Plasma_Properties">Time- and Position-Dependent Breakdown Volume Calculations to Explain Experimentally Observed Femtosecond Laser-Induced Plasma Properties</a></div><div class="wp-workCard_item"><span>ACS Photonics</span><span>, Feb 20, 2023</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111751755"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111751755"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111751755; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111751755]").text(description); $(".js-view-count[data-work-id=111751755]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111751755; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111751755']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=111751755]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111751755,"title":"Time- and Position-Dependent Breakdown Volume Calculations to Explain Experimentally Observed Femtosecond Laser-Induced Plasma Properties","translated_title":"","metadata":{"publisher":"American Chemical Society","publication_date":{"day":20,"month":2,"year":2023,"errors":{}},"publication_name":"ACS Photonics"},"translated_abstract":null,"internal_url":"https://www.academia.edu/111751755/Time_and_Position_Dependent_Breakdown_Volume_Calculations_to_Explain_Experimentally_Observed_Femtosecond_Laser_Induced_Plasma_Properties","translated_internal_url":"","created_at":"2023-12-18T09:28:32.008-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33147769,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Time_and_Position_Dependent_Breakdown_Volume_Calculations_to_Explain_Experimentally_Observed_Femtosecond_Laser_Induced_Plasma_Properties","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":33147769,"first_name":"Andre","middle_initials":"","last_name":"Anders","page_name":"AndreAnders","domain_name":"uni-leipzig1","created_at":"2015-07-17T15:40:22.246-07:00","display_name":"Andre Anders","url":"https://uni-leipzig1.academia.edu/AndreAnders"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":4135,"name":"Laser","url":"https://www.academia.edu/Documents/in/Laser"},{"id":117555,"name":"Plasma","url":"https://www.academia.edu/Documents/in/Plasma"},{"id":359621,"name":"Femtosecond","url":"https://www.academia.edu/Documents/in/Femtosecond"}],"urls":[{"id":37334641,"url":"https://doi.org/10.1021/acsphotonics.2c00746"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111751754"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111751754/Apparatus_and_methods_for_deposition_of_materials_on_interior_surfaces_of_hollow_components"><img alt="Research paper thumbnail of Apparatus and methods for deposition of materials on interior surfaces of hollow components" class="work-thumbnail" src="https://attachments.academia-assets.com/109194932/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111751754/Apparatus_and_methods_for_deposition_of_materials_on_interior_surfaces_of_hollow_components">Apparatus and methods for deposition of materials on interior surfaces of hollow components</a></div><div class="wp-workCard_item"><span>OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information)</span><span>, Jul 30, 2019</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="927b0c971f93f312f7123f0ce924372d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109194932,&quot;asset_id&quot;:111751754,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109194932/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111751754"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111751754"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111751754; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111751754]").text(description); $(".js-view-count[data-work-id=111751754]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111751754; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111751754']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "927b0c971f93f312f7123f0ce924372d" } } $('.js-work-strip[data-work-id=111751754]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111751754,"title":"Apparatus and methods for deposition of materials on interior surfaces of hollow components","translated_title":"","metadata":{"publisher":"U.S. Department of Energy Office of Scientific and Technical Information","publication_date":{"day":30,"month":7,"year":2019,"errors":{}},"publication_name":"OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/111751754/Apparatus_and_methods_for_deposition_of_materials_on_interior_surfaces_of_hollow_components","translated_internal_url":"","created_at":"2023-12-18T09:28:31.869-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33147769,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":109194932,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194932/thumbnails/1.jpg","file_name":"10364489.pdf","download_url":"https://www.academia.edu/attachments/109194932/download_file","bulk_download_file_name":"Apparatus_and_methods_for_deposition_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194932/10364489-libre.pdf?1702923764=\u0026response-content-disposition=attachment%3B+filename%3DApparatus_and_methods_for_deposition_of.pdf\u0026Expires=1741733689\u0026Signature=WhcOAvmYo0ipsH5tIw7B9vsn6S77uQoEDR6cRg0w-fGRfpUxOem9~XsCIDEmjY12QLhKB4WMm5cp2cu1AiwQq4gRO78dyfWisqJPnojEmKoMjDYGulf6Y2D9xuL1eaFK2PDMwIj8wAulJ~963d8~IQak9hkuE3Kr5l1dnCw3crWFqxHVWa3-jk5YOPYRIZFBtcYFIgK-pYAd~aBOU~q3sV72zaoccf847EIFPBpVAxEFPIwrOVtyH60g9naxCYyR43hHk-iVYI7jtS13ipzey43GTmmQEEfFygHRQkPaZIPB6Lpi~xc7ZtYNVsVsK5JvcKNBNWqtDhuF5GfHa4Sc9w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Apparatus_and_methods_for_deposition_of_materials_on_interior_surfaces_of_hollow_components","translated_slug":"","page_count":12,"language":"en","content_type":"Work","summary":null,"owner":{"id":33147769,"first_name":"Andre","middle_initials":"","last_name":"Anders","page_name":"AndreAnders","domain_name":"uni-leipzig1","created_at":"2015-07-17T15:40:22.246-07:00","display_name":"Andre Anders","url":"https://uni-leipzig1.academia.edu/AndreAnders"},"attachments":[{"id":109194932,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194932/thumbnails/1.jpg","file_name":"10364489.pdf","download_url":"https://www.academia.edu/attachments/109194932/download_file","bulk_download_file_name":"Apparatus_and_methods_for_deposition_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194932/10364489-libre.pdf?1702923764=\u0026response-content-disposition=attachment%3B+filename%3DApparatus_and_methods_for_deposition_of.pdf\u0026Expires=1741733689\u0026Signature=WhcOAvmYo0ipsH5tIw7B9vsn6S77uQoEDR6cRg0w-fGRfpUxOem9~XsCIDEmjY12QLhKB4WMm5cp2cu1AiwQq4gRO78dyfWisqJPnojEmKoMjDYGulf6Y2D9xuL1eaFK2PDMwIj8wAulJ~963d8~IQak9hkuE3Kr5l1dnCw3crWFqxHVWa3-jk5YOPYRIZFBtcYFIgK-pYAd~aBOU~q3sV72zaoccf847EIFPBpVAxEFPIwrOVtyH60g9naxCYyR43hHk-iVYI7jtS13ipzey43GTmmQEEfFygHRQkPaZIPB6Lpi~xc7ZtYNVsVsK5JvcKNBNWqtDhuF5GfHa4Sc9w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":109194931,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194931/thumbnails/1.jpg","file_name":"10364489.pdf","download_url":"https://www.academia.edu/attachments/109194931/download_file","bulk_download_file_name":"Apparatus_and_methods_for_deposition_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194931/10364489-libre.pdf?1702923762=\u0026response-content-disposition=attachment%3B+filename%3DApparatus_and_methods_for_deposition_of.pdf\u0026Expires=1741733689\u0026Signature=EX7XPHOR6mVoDYX4CbdNst6Y-jjWs4Oudy1r0AR5IJKM23SgTWlzmCZaAcVA4~bmEv1NBeeaXYyChHJiuD2saL9henZOmiZ4JD9lofQcd-ddxDjVC35nJSgQQLOu-Q8SGJGntWqKehxld46GzPPA4uCfLvGKg95K4uIpHNhk80Ixu9CngCjPNfAlge8x-6G30iHFns4ILYlprMxVqCYMVkD9CRXcJl~nlY3S1jFz4~bcWfcL-XDSvSi7aQb4DQRsN9XZBPsvGVommem9kbz-OfGoXCI7WiBMSfsW5TogK-t57KxbOs4lAQF5UaoWUUhYa6CY0oXAMNBZuYsVosKvgw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"}],"urls":[{"id":37334640,"url":"https://image-ppubs.uspto.gov/dirsearch-public/print/downloadPdf/10364489"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111751753"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111751753/Pulsed_biasing_techniques_with_fully_ionized_metal_plasmas"><img alt="Research paper thumbnail of Pulsed biasing techniques with fully ionized metal plasmas" class="work-thumbnail" src="https://attachments.academia-assets.com/109194924/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111751753/Pulsed_biasing_techniques_with_fully_ionized_metal_plasmas">Pulsed biasing techniques with fully ionized metal plasmas</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">(MePIIID) has been developed over the last decade as a hybrid ion implantation and thin-film depo...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">(MePIIID) has been developed over the last decade as a hybrid ion implantation and thin-film deposition technique. Depending on the substrate bias voltage, MePIIID can also operate in a pure ion implantation or pure ion deposition mode. This paper is a brief review of the MePIIID technique and results obtained. The fully ionized metal or carbon plasma is conventionally produced by filtered vacuum arcs. Magnetic filters are used to remove unwanted macroparticles. Pulsing the substrate bias is advantageous for several reasons, and primarily a means of suppressing substrate arcing. Heat management and stress control are other important factors. Highly adherent films of a-C (diamond-like carbon), metals, oxides, nitrides, and carbides have been formed, and film quality can superior to films obtained by evaporation or sputtering.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="58dc5ea20eced619917a85a09ca3d66d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109194924,&quot;asset_id&quot;:111751753,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109194924/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111751753"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111751753"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111751753; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111751753]").text(description); $(".js-view-count[data-work-id=111751753]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111751753; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111751753']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "58dc5ea20eced619917a85a09ca3d66d" } } $('.js-work-strip[data-work-id=111751753]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111751753,"title":"Pulsed biasing techniques with fully ionized metal plasmas","translated_title":"","metadata":{"grobid_abstract":"(MePIIID) has been developed over the last decade as a hybrid ion implantation and thin-film deposition technique. Depending on the substrate bias voltage, MePIIID can also operate in a pure ion implantation or pure ion deposition mode. This paper is a brief review of the MePIIID technique and results obtained. The fully ionized metal or carbon plasma is conventionally produced by filtered vacuum arcs. Magnetic filters are used to remove unwanted macroparticles. Pulsing the substrate bias is advantageous for several reasons, and primarily a means of suppressing substrate arcing. Heat management and stress control are other important factors. Highly adherent films of a-C (diamond-like carbon), metals, oxides, nitrides, and carbides have been formed, and film quality can superior to films obtained by evaporation or sputtering.","publication_date":{"day":23,"month":2,"year":2001,"errors":{}},"grobid_abstract_attachment_id":109194924},"translated_abstract":null,"internal_url":"https://www.academia.edu/111751753/Pulsed_biasing_techniques_with_fully_ionized_metal_plasmas","translated_internal_url":"","created_at":"2023-12-18T09:28:31.714-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33147769,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":109194924,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194924/thumbnails/1.jpg","file_name":"qt8np1k5m9.pdf","download_url":"https://www.academia.edu/attachments/109194924/download_file","bulk_download_file_name":"Pulsed_biasing_techniques_with_fully_ion.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194924/qt8np1k5m9-libre.pdf?1702923768=\u0026response-content-disposition=attachment%3B+filename%3DPulsed_biasing_techniques_with_fully_ion.pdf\u0026Expires=1741733689\u0026Signature=dlHnZ3hh9BwuSVOPHFCtweC0vkPf0WIYTFLOrrFvsvNx7j23wQiFr~wkRDmKaiZn6p7tr1MJdGE81jstw6wSfMLHlekA1b~x33cxR21fxjU4JqsqBYd3aCf-w4oXlEZIwEPkv~BoYc~RgyfQKfj5QUlSpklcpSl7ZbjKmHoFOzCa31DCzKALMB11~9vVVsAGegf0-jVm9VKytLvnVSfBD2YAOQ5IPVIKDHfMibVTwopH63gDAk6PVOsJ9Vw4JKGlBTQkJU9~9GVqgWUDQbZbHZUlvChrcZhmgZvwbhDW16YYfnoS3T6k7kZ9lmR9acFkReJzl7rcFZFWOw~1lHBuFg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Pulsed_biasing_techniques_with_fully_ionized_metal_plasmas","translated_slug":"","page_count":3,"language":"en","content_type":"Work","summary":"(MePIIID) has been developed over the last decade as a hybrid ion implantation and thin-film deposition technique. Depending on the substrate bias voltage, MePIIID can also operate in a pure ion implantation or pure ion deposition mode. This paper is a brief review of the MePIIID technique and results obtained. The fully ionized metal or carbon plasma is conventionally produced by filtered vacuum arcs. Magnetic filters are used to remove unwanted macroparticles. Pulsing the substrate bias is advantageous for several reasons, and primarily a means of suppressing substrate arcing. Heat management and stress control are other important factors. Highly adherent films of a-C (diamond-like carbon), metals, oxides, nitrides, and carbides have been formed, and film quality can superior to films obtained by evaporation or sputtering.","owner":{"id":33147769,"first_name":"Andre","middle_initials":"","last_name":"Anders","page_name":"AndreAnders","domain_name":"uni-leipzig1","created_at":"2015-07-17T15:40:22.246-07:00","display_name":"Andre Anders","url":"https://uni-leipzig1.academia.edu/AndreAnders"},"attachments":[{"id":109194924,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194924/thumbnails/1.jpg","file_name":"qt8np1k5m9.pdf","download_url":"https://www.academia.edu/attachments/109194924/download_file","bulk_download_file_name":"Pulsed_biasing_techniques_with_fully_ion.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194924/qt8np1k5m9-libre.pdf?1702923768=\u0026response-content-disposition=attachment%3B+filename%3DPulsed_biasing_techniques_with_fully_ion.pdf\u0026Expires=1741733689\u0026Signature=dlHnZ3hh9BwuSVOPHFCtweC0vkPf0WIYTFLOrrFvsvNx7j23wQiFr~wkRDmKaiZn6p7tr1MJdGE81jstw6wSfMLHlekA1b~x33cxR21fxjU4JqsqBYd3aCf-w4oXlEZIwEPkv~BoYc~RgyfQKfj5QUlSpklcpSl7ZbjKmHoFOzCa31DCzKALMB11~9vVVsAGegf0-jVm9VKytLvnVSfBD2YAOQ5IPVIKDHfMibVTwopH63gDAk6PVOsJ9Vw4JKGlBTQkJU9~9GVqgWUDQbZbHZUlvChrcZhmgZvwbhDW16YYfnoS3T6k7kZ9lmR9acFkReJzl7rcFZFWOw~1lHBuFg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":109194925,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194925/thumbnails/1.jpg","file_name":"qt8np1k5m9.pdf","download_url":"https://www.academia.edu/attachments/109194925/download_file","bulk_download_file_name":"Pulsed_biasing_techniques_with_fully_ion.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194925/qt8np1k5m9-libre.pdf?1702923765=\u0026response-content-disposition=attachment%3B+filename%3DPulsed_biasing_techniques_with_fully_ion.pdf\u0026Expires=1741733689\u0026Signature=EHf~FX-lueW1hucI9eVnLEc3eecWHy-NlghMUSC5k2oNmp1-mhfUNKEQdiQcNg3dhnxhrDaeqwPkIf~gjl3I1RVZOX6dO~ACpo3oEl4YcwNB1kQ9LVMPkbh9RU7krpk2t9iMOferzgy6g6Qj6JoiHcQifqMMTdRamjaAHq2qklDLdxcte~qonkMKINjtjXipExzzaxFOs6HMnt7d2nN4vkVYxJfaPc9nj8UVeqhF0twuGGl1rVrS8u6Ip1M4-iNTSlBwVnNFHsxvQkmPBv4SoN5V683u~oM2DZxED7gjFRD4i0SUY~AYGGQ3IoKj2OhZiE9xsCtwAfVkuWvVp9TUQQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":117555,"name":"Plasma","url":"https://www.academia.edu/Documents/in/Plasma"},{"id":329196,"name":"Ionization","url":"https://www.academia.edu/Documents/in/Ionization"}],"urls":[{"id":37334639,"url":"https://escholarship.org/content/qt8np1k5m9/qt8np1k5m9.pdf?t=p2asmy"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111751752"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111751752/Formation_of_hollow_atoms_above_diamond_surfaces"><img alt="Research paper thumbnail of Formation of hollow atoms above diamond surfaces" class="work-thumbnail" src="https://attachments.academia-assets.com/109194920/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111751752/Formation_of_hollow_atoms_above_diamond_surfaces">Formation of hollow atoms above diamond surfaces</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1fe0302453642865cd8726148594f3ea" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109194920,&quot;asset_id&quot;:111751752,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109194920/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111751752"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111751752"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111751752; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111751752]").text(description); $(".js-view-count[data-work-id=111751752]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111751752; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111751752']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1fe0302453642865cd8726148594f3ea" } } $('.js-work-strip[data-work-id=111751752]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111751752,"title":"Formation of hollow atoms above diamond surfaces","translated_title":"","metadata":{"ai_abstract":"This study investigates the interaction of Highly Charged Ions (HCIs) with diamond surfaces, focusing on the effects of surface characteristics such as conductivity and the presence of graphitic layers. By analyzing hollow atom X-ray spectra emitted during the interaction, the research reveals insights into how HCI modifies the surfaces, particularly highlighting the roles of hydrogen and oxygen passivation, surface conductivity, and the implications for characterizing and altering diamond surfaces in real time.","publication_date":{"day":2,"month":5,"year":2006,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/111751752/Formation_of_hollow_atoms_above_diamond_surfaces","translated_internal_url":"","created_at":"2023-12-18T09:28:30.066-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33147769,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":109194920,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194920/thumbnails/1.jpg","file_name":"qt37q0b8h1.pdf","download_url":"https://www.academia.edu/attachments/109194920/download_file","bulk_download_file_name":"Formation_of_hollow_atoms_above_diamond.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194920/qt37q0b8h1-libre.pdf?1702923764=\u0026response-content-disposition=attachment%3B+filename%3DFormation_of_hollow_atoms_above_diamond.pdf\u0026Expires=1741733689\u0026Signature=fVjecjdb7zFeDRB73cvescN4g0BR0EN9ka9~6r3dDh5M5BXj8EU3sILeG3PsfDjQQgN48DpEUPng1A2pF0LOx0AGmFiiIPuNBSh2X2rbSJxAkvS7-xnfBtupa7bU7QMyEOaU5CZ~TtduO7hRCwlbH0al-Z5yan~unwPE3Krcf0SSB6NCC-5kZnV1-UFZXhybCjcMnTPSPSf88DwtK26H8d0Xw-eajunOyYV7T2JCUlzuTobD8RYb7CjffSrCxu3jt2CLIyL9~0iN8I6KxWyHIrsgiDWi8vR1Yg4Xdkmzy5IdRa5Q3ruUIYbMXSJJ2cPqc6iLtGHQRDnfDvBtnbkZ~w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Formation_of_hollow_atoms_above_diamond_surfaces","translated_slug":"","page_count":3,"language":"en","content_type":"Work","summary":null,"owner":{"id":33147769,"first_name":"Andre","middle_initials":"","last_name":"Anders","page_name":"AndreAnders","domain_name":"uni-leipzig1","created_at":"2015-07-17T15:40:22.246-07:00","display_name":"Andre Anders","url":"https://uni-leipzig1.academia.edu/AndreAnders"},"attachments":[{"id":109194920,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194920/thumbnails/1.jpg","file_name":"qt37q0b8h1.pdf","download_url":"https://www.academia.edu/attachments/109194920/download_file","bulk_download_file_name":"Formation_of_hollow_atoms_above_diamond.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194920/qt37q0b8h1-libre.pdf?1702923764=\u0026response-content-disposition=attachment%3B+filename%3DFormation_of_hollow_atoms_above_diamond.pdf\u0026Expires=1741733689\u0026Signature=fVjecjdb7zFeDRB73cvescN4g0BR0EN9ka9~6r3dDh5M5BXj8EU3sILeG3PsfDjQQgN48DpEUPng1A2pF0LOx0AGmFiiIPuNBSh2X2rbSJxAkvS7-xnfBtupa7bU7QMyEOaU5CZ~TtduO7hRCwlbH0al-Z5yan~unwPE3Krcf0SSB6NCC-5kZnV1-UFZXhybCjcMnTPSPSf88DwtK26H8d0Xw-eajunOyYV7T2JCUlzuTobD8RYb7CjffSrCxu3jt2CLIyL9~0iN8I6KxWyHIrsgiDWi8vR1Yg4Xdkmzy5IdRa5Q3ruUIYbMXSJJ2cPqc6iLtGHQRDnfDvBtnbkZ~w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":109194919,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194919/thumbnails/1.jpg","file_name":"qt37q0b8h1.pdf","download_url":"https://www.academia.edu/attachments/109194919/download_file","bulk_download_file_name":"Formation_of_hollow_atoms_above_diamond.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194919/qt37q0b8h1-libre.pdf?1702923765=\u0026response-content-disposition=attachment%3B+filename%3DFormation_of_hollow_atoms_above_diamond.pdf\u0026Expires=1741733689\u0026Signature=F50KNoIWPr4tvn0kS~cbI5fGACj5SUAnlCaS8ns9mx-6qDz8oRlnMubgOsJzItEJRE5jIf3jeZeDbu0S1SfjfWKDDHRkxbSLPiGCY~jBqebi6uTechNGdTqIbbOI~n5zkXJi4RbgChi-kia2OKF05LQPyL8ApD6Vx6eMIFBbMAsCAM7rQ8WAuNjZm5SddxXBtyIRAHrWPapYwjo~fWLIlFWEvGha~vEjsb8dzk7Uv6LduWXiSTkkE2cWz1o8qkBHirHbLvBvoxrPBZAwsPz7x4BJdNQ33DhDB28rR2tHuNz9Roj86SJwH~fReIRfIPLuYkrTV-7nO98ItUow0ErXSQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":102207,"name":"DIELECTRIC","url":"https://www.academia.edu/Documents/in/DIELECTRIC"},{"id":118104,"name":"Electron","url":"https://www.academia.edu/Documents/in/Electron"},{"id":250583,"name":"Diamond","url":"https://www.academia.edu/Documents/in/Diamond"},{"id":348756,"name":"Ion","url":"https://www.academia.edu/Documents/in/Ion"},{"id":761614,"name":"Microcrystalline","url":"https://www.academia.edu/Documents/in/Microcrystalline"}],"urls":[{"id":37334638,"url":"https://escholarship.org/content/qt37q0b8h1/qt37q0b8h1.pdf?t=p0juxw"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111751750"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111751750/Cathodic_arc_plasma_deposition_Principles_and_trends"><img alt="Research paper thumbnail of Cathodic arc plasma deposition: Principles and trends" class="work-thumbnail" src="https://attachments.academia-assets.com/109194911/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111751750/Cathodic_arc_plasma_deposition_Principles_and_trends">Cathodic arc plasma deposition: Principles and trends</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Cathodic arc plasmas have outstanding properties because they are fully ionized metal plasmas. Io...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Cathodic arc plasmas have outstanding properties because they are fully ionized metal plasmas. Ions are unusually energetic and are often multiply charged. Because of these features, superior metal and compound films can be made that are well adherent, dense, and smooth, provided that the infamous macroparticle problem is solved. Progress has been made in the design of macroparticle filters, and first versions are commercially available. Most cathodic arc deposition today is for hard compound films such as TiN and TiAlN on cutting tools, building hardware, and jewelry. These films are made without filtering. New applications are emerging, including ultrathin diamond-like carbon coatings, semiconductor metallization, and optical films, where filtered arc deposition is gaining importance.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b6daea46c310ed09c74d1c1d6b997f18" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109194911,&quot;asset_id&quot;:111751750,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109194911/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111751750"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111751750"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111751750; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111751750]").text(description); $(".js-view-count[data-work-id=111751750]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111751750; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111751750']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b6daea46c310ed09c74d1c1d6b997f18" } } $('.js-work-strip[data-work-id=111751750]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111751750,"title":"Cathodic arc plasma deposition: Principles and trends","translated_title":"","metadata":{"ai_title_tag":"Advancements in Cathodic Arc Plasma Deposition","grobid_abstract":"Cathodic arc plasmas have outstanding properties because they are fully ionized metal plasmas. Ions are unusually energetic and are often multiply charged. Because of these features, superior metal and compound films can be made that are well adherent, dense, and smooth, provided that the infamous macroparticle problem is solved. Progress has been made in the design of macroparticle filters, and first versions are commercially available. Most cathodic arc deposition today is for hard compound films such as TiN and TiAlN on cutting tools, building hardware, and jewelry. These films are made without filtering. New applications are emerging, including ultrathin diamond-like carbon coatings, semiconductor metallization, and optical films, where filtered arc deposition is gaining importance.","publication_date":{"day":1,"month":6,"year":2001,"errors":{}},"grobid_abstract_attachment_id":109194911},"translated_abstract":null,"internal_url":"https://www.academia.edu/111751750/Cathodic_arc_plasma_deposition_Principles_and_trends","translated_internal_url":"","created_at":"2023-12-18T09:28:29.920-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33147769,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":109194911,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194911/thumbnails/1.jpg","file_name":"qt3fc442qn.pdf","download_url":"https://www.academia.edu/attachments/109194911/download_file","bulk_download_file_name":"Cathodic_arc_plasma_deposition_Principle.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194911/qt3fc442qn-libre.pdf?1702923764=\u0026response-content-disposition=attachment%3B+filename%3DCathodic_arc_plasma_deposition_Principle.pdf\u0026Expires=1741733689\u0026Signature=QvYU2dA0Drifhl1AMtIB79nlsnw3521G9GSNw~v3CL8LHFQzeGzuj-aAk2TP9nNWWnDPnAwu4pBjZ5nnD~zpqrSXptnNpItvB2zlZ7kxJWkweRSS6Yr4fsgY0bNTPwhxWavEGsSzLwYpuOpqGoMhkALj34NLGDUHDiQGFbQTfUM2OTsZ5DAdIFcOrabz~CiUor2y-BPKdujBOas6rqz8SQvbDmMgQHvJne1qONoWUuy26RXWz288gKKlf1RziZQTd3bLiDdHT~~KZwftGEeVlbBSW-~pptfGbBxZpf6k~CV0lxUSnqvrSc8Cus0q7QhGMbFuyIn6viZhVdPyCrVMHw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Cathodic_arc_plasma_deposition_Principles_and_trends","translated_slug":"","page_count":3,"language":"en","content_type":"Work","summary":"Cathodic arc plasmas have outstanding properties because they are fully ionized metal plasmas. Ions are unusually energetic and are often multiply charged. Because of these features, superior metal and compound films can be made that are well adherent, dense, and smooth, provided that the infamous macroparticle problem is solved. Progress has been made in the design of macroparticle filters, and first versions are commercially available. Most cathodic arc deposition today is for hard compound films such as TiN and TiAlN on cutting tools, building hardware, and jewelry. These films are made without filtering. New applications are emerging, including ultrathin diamond-like carbon coatings, semiconductor metallization, and optical films, where filtered arc deposition is gaining importance.","owner":{"id":33147769,"first_name":"Andre","middle_initials":"","last_name":"Anders","page_name":"AndreAnders","domain_name":"uni-leipzig1","created_at":"2015-07-17T15:40:22.246-07:00","display_name":"Andre Anders","url":"https://uni-leipzig1.academia.edu/AndreAnders"},"attachments":[{"id":109194911,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194911/thumbnails/1.jpg","file_name":"qt3fc442qn.pdf","download_url":"https://www.academia.edu/attachments/109194911/download_file","bulk_download_file_name":"Cathodic_arc_plasma_deposition_Principle.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194911/qt3fc442qn-libre.pdf?1702923764=\u0026response-content-disposition=attachment%3B+filename%3DCathodic_arc_plasma_deposition_Principle.pdf\u0026Expires=1741733689\u0026Signature=QvYU2dA0Drifhl1AMtIB79nlsnw3521G9GSNw~v3CL8LHFQzeGzuj-aAk2TP9nNWWnDPnAwu4pBjZ5nnD~zpqrSXptnNpItvB2zlZ7kxJWkweRSS6Yr4fsgY0bNTPwhxWavEGsSzLwYpuOpqGoMhkALj34NLGDUHDiQGFbQTfUM2OTsZ5DAdIFcOrabz~CiUor2y-BPKdujBOas6rqz8SQvbDmMgQHvJne1qONoWUuy26RXWz288gKKlf1RziZQTd3bLiDdHT~~KZwftGEeVlbBSW-~pptfGbBxZpf6k~CV0lxUSnqvrSc8Cus0q7QhGMbFuyIn6viZhVdPyCrVMHw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":109194910,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194910/thumbnails/1.jpg","file_name":"qt3fc442qn.pdf","download_url":"https://www.academia.edu/attachments/109194910/download_file","bulk_download_file_name":"Cathodic_arc_plasma_deposition_Principle.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194910/qt3fc442qn-libre.pdf?1702923766=\u0026response-content-disposition=attachment%3B+filename%3DCathodic_arc_plasma_deposition_Principle.pdf\u0026Expires=1741733689\u0026Signature=RWSSHTjBHfZomRzbDM1pxutW0qci6-D0Ph6mr4UXdMfrKb1GpNlHGJNo3-V063-OBiBVM4qdwWLXSv3CY8q1SDyA5w2jFG8g8BZDgEAOFGz2-jtE56jg5tzknbkCngJ9W0f-hiVGILJdZrtW7QpVulNZJcI4SSXBSkJk3MyAGYJ511iMTTzcdlWgl9vFQH5UWuAziRTePt2i2I6Jy-9JiLgnYkKdw6cVPdwsmXSXs9UJSWDXBjq6oZtgArAAp8CkvmZcfhLtZtNZMUnLcW6kzlVjbaVqnVmVlBTlfqNHdydsrWCfwqorF8u8KtiR1UWHR7vlhNCBxjInWuxXJ4FWwQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":71287,"name":"Cathodic Protection","url":"https://www.academia.edu/Documents/in/Cathodic_Protection"}],"urls":[{"id":37334636,"url":"https://escholarship.org/content/qt3fc442qn/qt3fc442qn.pdf?t=p0wsiv"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111751748"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111751748/Cathodic_arcs_and_high_power_pulsed_magnetron_sputtering_A_comparison_of_plasma_formation_and_thin_film_deposition"><img alt="Research paper thumbnail of Cathodic arcs and high power pulsed magnetron sputtering: A comparison of plasma formation and thin film deposition" class="work-thumbnail" src="https://attachments.academia-assets.com/109194912/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111751748/Cathodic_arcs_and_high_power_pulsed_magnetron_sputtering_A_comparison_of_plasma_formation_and_thin_film_deposition">Cathodic arcs and high power pulsed magnetron sputtering: A comparison of plasma formation and thin film deposition</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Film formation by energetic condensation has been shown to lead to well-adherent, dense films. Fi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Film formation by energetic condensation has been shown to lead to well-adherent, dense films. Films are often under high compressive stress, but stress control is possible by pulsed high-voltage biasing, for example. Control of film growth via tuning the kinetic energy of condensing species is most efficient when the condensing species are ions, and when the degree of ionization of the plasma is high. Cathodic arc plasmas are fully ionized; they even contain multiply charged ions. The streaming plasma is supersonic, with kinetic ion energies in the range 20-150 eV, and additional energy can be provided via substrate bias. Ion formation at cathode spots and the dependence of plasma properties on the cathode material will be discussed. Along with ions, macroparticles are produced at cathode spots. This highly undesirable feature can be mitigated by plasma filters and other approaches, however, there is strong motivation to find alternative ways of producing fully ionized plasmas of condensing species. High power pulsed magnetron sputtering (HPPMS) may be one possible way of achieving this goal, at least for some target materials. In HPPMS, the power density at the magnetron target is pulsed to power levels exceeding the average power by about two orders of magnitude. Thermalization of sputtered atoms appears to be needed to accomplish ionization, and self-sputtering during each power pulse may be an important feature of HPPMS.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="59d062488e160b5438a63cf41231ed69" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109194912,&quot;asset_id&quot;:111751748,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109194912/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111751748"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111751748"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111751748; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111751748]").text(description); $(".js-view-count[data-work-id=111751748]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111751748; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111751748']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "59d062488e160b5438a63cf41231ed69" } } $('.js-work-strip[data-work-id=111751748]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111751748,"title":"Cathodic arcs and high power pulsed magnetron sputtering: A comparison of plasma formation and thin film deposition","translated_title":"","metadata":{"ai_title_tag":"Comparative Study of Cathodic Arcs and HPPMS in Thin Film Deposition","grobid_abstract":"Film formation by energetic condensation has been shown to lead to well-adherent, dense films. Films are often under high compressive stress, but stress control is possible by pulsed high-voltage biasing, for example. Control of film growth via tuning the kinetic energy of condensing species is most efficient when the condensing species are ions, and when the degree of ionization of the plasma is high. Cathodic arc plasmas are fully ionized; they even contain multiply charged ions. The streaming plasma is supersonic, with kinetic ion energies in the range 20-150 eV, and additional energy can be provided via substrate bias. Ion formation at cathode spots and the dependence of plasma properties on the cathode material will be discussed. Along with ions, macroparticles are produced at cathode spots. This highly undesirable feature can be mitigated by plasma filters and other approaches, however, there is strong motivation to find alternative ways of producing fully ionized plasmas of condensing species. High power pulsed magnetron sputtering (HPPMS) may be one possible way of achieving this goal, at least for some target materials. In HPPMS, the power density at the magnetron target is pulsed to power levels exceeding the average power by about two orders of magnitude. Thermalization of sputtered atoms appears to be needed to accomplish ionization, and self-sputtering during each power pulse may be an important feature of HPPMS.","publication_date":{"day":2,"month":6,"year":2003,"errors":{}},"grobid_abstract_attachment_id":109194912},"translated_abstract":null,"internal_url":"https://www.academia.edu/111751748/Cathodic_arcs_and_high_power_pulsed_magnetron_sputtering_A_comparison_of_plasma_formation_and_thin_film_deposition","translated_internal_url":"","created_at":"2023-12-18T09:28:29.789-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33147769,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":109194912,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194912/thumbnails/1.jpg","file_name":"qt7sb736zw.pdf","download_url":"https://www.academia.edu/attachments/109194912/download_file","bulk_download_file_name":"Cathodic_arcs_and_high_power_pulsed_magn.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194912/qt7sb736zw-libre.pdf?1702923765=\u0026response-content-disposition=attachment%3B+filename%3DCathodic_arcs_and_high_power_pulsed_magn.pdf\u0026Expires=1741733689\u0026Signature=F07YTS-wvFKG6nMTaXD6LMUWODV5oZ9qE~EKp-Py5Ty87eowvcGz8tw9yhMDLOStzRmgGtp9l5hyZx0bf--hE8air3LvvjKUfo6unZJ29oFLQ1Za-P6N2HNU8JSnC-FhelJSZb1syPv9QWmrVk-NDjUeUQ9yL8DcHSjvnSx8wclv5sxDP2tMyEoX86Lft4bsSwGdtuNYTZBADd23EsoXdTRewSzXH40HmOVpQ86WpxKk34~1OaaI2Pp-4TKv1yaUxbsSMzUlRRAxIvUZveaCrUS~5RHr1R0jc-87Ry1B3sHjdHZb-Qo5322CYEQ8ysBLrzDQqgL9UCYc~7YPTW1pDw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Cathodic_arcs_and_high_power_pulsed_magnetron_sputtering_A_comparison_of_plasma_formation_and_thin_film_deposition","translated_slug":"","page_count":3,"language":"en","content_type":"Work","summary":"Film formation by energetic condensation has been shown to lead to well-adherent, dense films. Films are often under high compressive stress, but stress control is possible by pulsed high-voltage biasing, for example. Control of film growth via tuning the kinetic energy of condensing species is most efficient when the condensing species are ions, and when the degree of ionization of the plasma is high. Cathodic arc plasmas are fully ionized; they even contain multiply charged ions. The streaming plasma is supersonic, with kinetic ion energies in the range 20-150 eV, and additional energy can be provided via substrate bias. Ion formation at cathode spots and the dependence of plasma properties on the cathode material will be discussed. Along with ions, macroparticles are produced at cathode spots. This highly undesirable feature can be mitigated by plasma filters and other approaches, however, there is strong motivation to find alternative ways of producing fully ionized plasmas of condensing species. High power pulsed magnetron sputtering (HPPMS) may be one possible way of achieving this goal, at least for some target materials. In HPPMS, the power density at the magnetron target is pulsed to power levels exceeding the average power by about two orders of magnitude. Thermalization of sputtered atoms appears to be needed to accomplish ionization, and self-sputtering during each power pulse may be an important feature of HPPMS.","owner":{"id":33147769,"first_name":"Andre","middle_initials":"","last_name":"Anders","page_name":"AndreAnders","domain_name":"uni-leipzig1","created_at":"2015-07-17T15:40:22.246-07:00","display_name":"Andre Anders","url":"https://uni-leipzig1.academia.edu/AndreAnders"},"attachments":[{"id":109194912,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194912/thumbnails/1.jpg","file_name":"qt7sb736zw.pdf","download_url":"https://www.academia.edu/attachments/109194912/download_file","bulk_download_file_name":"Cathodic_arcs_and_high_power_pulsed_magn.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194912/qt7sb736zw-libre.pdf?1702923765=\u0026response-content-disposition=attachment%3B+filename%3DCathodic_arcs_and_high_power_pulsed_magn.pdf\u0026Expires=1741733689\u0026Signature=F07YTS-wvFKG6nMTaXD6LMUWODV5oZ9qE~EKp-Py5Ty87eowvcGz8tw9yhMDLOStzRmgGtp9l5hyZx0bf--hE8air3LvvjKUfo6unZJ29oFLQ1Za-P6N2HNU8JSnC-FhelJSZb1syPv9QWmrVk-NDjUeUQ9yL8DcHSjvnSx8wclv5sxDP2tMyEoX86Lft4bsSwGdtuNYTZBADd23EsoXdTRewSzXH40HmOVpQ86WpxKk34~1OaaI2Pp-4TKv1yaUxbsSMzUlRRAxIvUZveaCrUS~5RHr1R0jc-87Ry1B3sHjdHZb-Qo5322CYEQ8ysBLrzDQqgL9UCYc~7YPTW1pDw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":11740,"name":"Atomic Physics","url":"https://www.academia.edu/Documents/in/Atomic_Physics"},{"id":117555,"name":"Plasma","url":"https://www.academia.edu/Documents/in/Plasma"},{"id":185387,"name":"Sputtering","url":"https://www.academia.edu/Documents/in/Sputtering"},{"id":329196,"name":"Ionization","url":"https://www.academia.edu/Documents/in/Ionization"},{"id":348756,"name":"Ion","url":"https://www.academia.edu/Documents/in/Ion"},{"id":925604,"name":"Sputter Deposition","url":"https://www.academia.edu/Documents/in/Sputter_Deposition"},{"id":1131650,"name":"Cathode","url":"https://www.academia.edu/Documents/in/Cathode"},{"id":3572330,"name":"High Power Impulse Magnetron Sputtering","url":"https://www.academia.edu/Documents/in/High_Power_Impulse_Magnetron_Sputtering"}],"urls":[{"id":37334634,"url":"https://escholarship.org/content/qt7sb736zw/qt7sb736zw.pdf?t=p0lnri"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111751747"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111751747/The_effect_of_transition_metals_and_other_parameters_on_the_coalescence_of_sputter_deposited_silver_islands_on_coated_glass"><img alt="Research paper thumbnail of The effect of transition metals and other parameters on the coalescence of sputter-deposited silver islands on coated glass" class="work-thumbnail" src="https://attachments.academia-assets.com/109194906/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111751747/The_effect_of_transition_metals_and_other_parameters_on_the_coalescence_of_sputter_deposited_silver_islands_on_coated_glass">The effect of transition metals and other parameters on the coalescence of sputter-deposited silver islands on coated glass</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="145221dc09f0fb3bf4ac941ca22869da" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109194906,&quot;asset_id&quot;:111751747,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109194906/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111751747"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111751747"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111751747; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111751747]").text(description); $(".js-view-count[data-work-id=111751747]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111751747; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111751747']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "145221dc09f0fb3bf4ac941ca22869da" } } $('.js-work-strip[data-work-id=111751747]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111751747,"title":"The effect of transition metals and other parameters on the coalescence of sputter-deposited silver islands on coated glass","translated_title":"","metadata":{"ai_abstract":"This research investigates the coalescence behavior of sputter-deposited silver islands on coated glass, examining the influence of various transition metals and deposition parameters. Using in-situ conductivity measurements, the study identifies the critical thickness for coalescence and the conditions under which it occurs, revealing that the presence of certain transition metals accelerates the process. Findings suggest that optimal conditions for silver-based low-emissivity coatings can be achieved by manipulating these factors.","publication_date":{"day":1,"month":12,"year":2005,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/111751747/The_effect_of_transition_metals_and_other_parameters_on_the_coalescence_of_sputter_deposited_silver_islands_on_coated_glass","translated_internal_url":"","created_at":"2023-12-18T09:28:29.656-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33147769,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":109194906,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194906/thumbnails/1.jpg","file_name":"qt3nh1h8m5.pdf","download_url":"https://www.academia.edu/attachments/109194906/download_file","bulk_download_file_name":"The_effect_of_transition_metals_and_othe.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194906/qt3nh1h8m5-libre.pdf?1702923766=\u0026response-content-disposition=attachment%3B+filename%3DThe_effect_of_transition_metals_and_othe.pdf\u0026Expires=1741733689\u0026Signature=IEDENA3qpRtdV5cfkDbKe-EVuwHUy8FoT4zj7p1F7xO4vT1gU9e~WAU43MUeG2sb84i3fdPPhcMtDmBDaat-S4b3ZSouFsZ9JMI7gEKGrMNVu0mM-CAQpjcBmWQtmVpPZ5TkBWZK8EXDZQLjjC8CEArj7VlsiTsIrtLcNUesd2cqUtL9E6L8XPsCgiICJJljyp6j2KlC7hWehJq7Yu3JBiDVB0KTUQFCzELG54kmBV~cdsj7H6jSwHTuWXHIyWSzvvY~BPrlZS70X4~zRjdWwTcC60ClJQ5oedYpm9ixFyTmO5p4TkifydG5QiTRcrUE5GK7LotAnb1SGhtMhoxUGQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_effect_of_transition_metals_and_other_parameters_on_the_coalescence_of_sputter_deposited_silver_islands_on_coated_glass","translated_slug":"","page_count":3,"language":"en","content_type":"Work","summary":null,"owner":{"id":33147769,"first_name":"Andre","middle_initials":"","last_name":"Anders","page_name":"AndreAnders","domain_name":"uni-leipzig1","created_at":"2015-07-17T15:40:22.246-07:00","display_name":"Andre Anders","url":"https://uni-leipzig1.academia.edu/AndreAnders"},"attachments":[{"id":109194906,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194906/thumbnails/1.jpg","file_name":"qt3nh1h8m5.pdf","download_url":"https://www.academia.edu/attachments/109194906/download_file","bulk_download_file_name":"The_effect_of_transition_metals_and_othe.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194906/qt3nh1h8m5-libre.pdf?1702923766=\u0026response-content-disposition=attachment%3B+filename%3DThe_effect_of_transition_metals_and_othe.pdf\u0026Expires=1741733689\u0026Signature=IEDENA3qpRtdV5cfkDbKe-EVuwHUy8FoT4zj7p1F7xO4vT1gU9e~WAU43MUeG2sb84i3fdPPhcMtDmBDaat-S4b3ZSouFsZ9JMI7gEKGrMNVu0mM-CAQpjcBmWQtmVpPZ5TkBWZK8EXDZQLjjC8CEArj7VlsiTsIrtLcNUesd2cqUtL9E6L8XPsCgiICJJljyp6j2KlC7hWehJq7Yu3JBiDVB0KTUQFCzELG54kmBV~cdsj7H6jSwHTuWXHIyWSzvvY~BPrlZS70X4~zRjdWwTcC60ClJQ5oedYpm9ixFyTmO5p4TkifydG5QiTRcrUE5GK7LotAnb1SGhtMhoxUGQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":109194905,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194905/thumbnails/1.jpg","file_name":"qt3nh1h8m5.pdf","download_url":"https://www.academia.edu/attachments/109194905/download_file","bulk_download_file_name":"The_effect_of_transition_metals_and_othe.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194905/qt3nh1h8m5-libre.pdf?1702923766=\u0026response-content-disposition=attachment%3B+filename%3DThe_effect_of_transition_metals_and_othe.pdf\u0026Expires=1741733689\u0026Signature=ftdXJvg6go5MhUCE8JbOIHZwC0AKd6rs7tcz7DFjdRPTpD5Dk0Epi25n0SmM6Svd7nxd3aiNFJOLHo97Xg1ACIdzZ2nF76vUaJlPmTN5B-Y~Pc3NqDnRhXBkdWdMB3RSZWTiEQt54tyaPPUDXNeDu6Ayzmx6wc-8yvZV7Nn6EzPQ4AmOQpSgg-x5LiP6WfbuQMIBqwpZVuyz3xwE4wZLZbufaX8EEJ2ArRU1XReNoQ~HO2hdzcD7uFK9nx9~wkTBQpe2RkqxCFyT9Jq8QSRAbC0iOFBRHkVCCsDGTUAFGfTH1Zh3GCT93gEyaC80TNRDJdMERshU67~l60oaYVSZ6g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":125058,"name":"Nucleation","url":"https://www.academia.edu/Documents/in/Nucleation"},{"id":159300,"name":"Molybdenum","url":"https://www.academia.edu/Documents/in/Molybdenum"},{"id":185387,"name":"Sputtering","url":"https://www.academia.edu/Documents/in/Sputtering"},{"id":500007,"name":"Tungsten","url":"https://www.academia.edu/Documents/in/Tungsten"},{"id":925604,"name":"Sputter Deposition","url":"https://www.academia.edu/Documents/in/Sputter_Deposition"}],"urls":[{"id":37334633,"url":"https://escholarship.org/content/qt3nh1h8m5/qt3nh1h8m5.pdf?t=p0fvky"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111751746"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111751746/Atomic_scale_heating_in_energetic_plasma_deposition_eScholarship"><img alt="Research paper thumbnail of Atomic scale heating in energetic plasma deposition - eScholarship" class="work-thumbnail" src="https://attachments.academia-assets.com/109194907/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111751746/Atomic_scale_heating_in_energetic_plasma_deposition_eScholarship">Atomic scale heating in energetic plasma deposition - eScholarship</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Energetic deposition using filtered cathodic arc plasma is known to lead to well adherent and den...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Energetic deposition using filtered cathodic arc plasma is known to lead to well adherent and dense films. Interface mixing, subplantation depth, texture, and stress of the growing film are often studied as a function of the kinetic energy of condensing ions. Ions have also potential energy contributing to atomic scale heating, secondary electron emission and potential sputtering, thereby affecting all film properties. A table is presented showing kinetic and potential energies of ions in cathodic arc plasmas. These energies are greater than the binding energy, surface binding energy, and activation energy of surface diffusion. The role of potential energy on film growth is not limited to the cathodic arc plasma deposition process.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7814e9f1fb3a97cfe3528e81dfd672a3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109194907,&quot;asset_id&quot;:111751746,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109194907/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111751746"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111751746"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111751746; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111751746]").text(description); $(".js-view-count[data-work-id=111751746]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111751746; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111751746']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7814e9f1fb3a97cfe3528e81dfd672a3" } } $('.js-work-strip[data-work-id=111751746]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111751746,"title":"Atomic scale heating in energetic plasma deposition - eScholarship","translated_title":"","metadata":{"grobid_abstract":"Energetic deposition using filtered cathodic arc plasma is known to lead to well adherent and dense films. Interface mixing, subplantation depth, texture, and stress of the growing film are often studied as a function of the kinetic energy of condensing ions. Ions have also potential energy contributing to atomic scale heating, secondary electron emission and potential sputtering, thereby affecting all film properties. A table is presented showing kinetic and potential energies of ions in cathodic arc plasmas. These energies are greater than the binding energy, surface binding energy, and activation energy of surface diffusion. The role of potential energy on film growth is not limited to the cathodic arc plasma deposition process.","publication_date":{"day":28,"month":9,"year":2001,"errors":{}},"grobid_abstract_attachment_id":109194908},"translated_abstract":null,"internal_url":"https://www.academia.edu/111751746/Atomic_scale_heating_in_energetic_plasma_deposition_eScholarship","translated_internal_url":"","created_at":"2023-12-18T09:28:29.447-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33147769,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":109194907,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194907/thumbnails/1.jpg","file_name":"qt3s24f5tx.pdf","download_url":"https://www.academia.edu/attachments/109194907/download_file","bulk_download_file_name":"Atomic_scale_heating_in_energetic_plasma.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194907/qt3s24f5tx-libre.pdf?1702923768=\u0026response-content-disposition=attachment%3B+filename%3DAtomic_scale_heating_in_energetic_plasma.pdf\u0026Expires=1741733689\u0026Signature=BM1aaRj~3Aa1TLGfmJFwJM4A45nNGZ7K-bus1F1tU8boIsOe4l9md3Ghx-LVG1YqO9DlxzHNWQQTRltO-e-kOVzzipuphJ0u~498kCSKf-A7RXAdhVVpjdDTEMwjaneoTk4KyFPGyYyZBj6xnODCjBIteg0bC16khgKkddoqeSygF4V01rUzOWs3BjdloS83j7ZvwcSyyr77~QbbV4alYuhNqhFfo8kTjvI~G4o3NyPm2bz9K5-N-YYfxphXwxU5PuZz4WhLb1zixUUeHhW8raa3Mo4Uy7xpp-RoWvJDSJ0tT10aUusFAw8B5oumjoVB0jaUg7RsIgYQM9QyUw1PkA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Atomic_scale_heating_in_energetic_plasma_deposition_eScholarship","translated_slug":"","page_count":11,"language":"en","content_type":"Work","summary":"Energetic deposition using filtered cathodic arc plasma is known to lead to well adherent and dense films. Interface mixing, subplantation depth, texture, and stress of the growing film are often studied as a function of the kinetic energy of condensing ions. Ions have also potential energy contributing to atomic scale heating, secondary electron emission and potential sputtering, thereby affecting all film properties. A table is presented showing kinetic and potential energies of ions in cathodic arc plasmas. These energies are greater than the binding energy, surface binding energy, and activation energy of surface diffusion. The role of potential energy on film growth is not limited to the cathodic arc plasma deposition process.","owner":{"id":33147769,"first_name":"Andre","middle_initials":"","last_name":"Anders","page_name":"AndreAnders","domain_name":"uni-leipzig1","created_at":"2015-07-17T15:40:22.246-07:00","display_name":"Andre Anders","url":"https://uni-leipzig1.academia.edu/AndreAnders"},"attachments":[{"id":109194907,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194907/thumbnails/1.jpg","file_name":"qt3s24f5tx.pdf","download_url":"https://www.academia.edu/attachments/109194907/download_file","bulk_download_file_name":"Atomic_scale_heating_in_energetic_plasma.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194907/qt3s24f5tx-libre.pdf?1702923768=\u0026response-content-disposition=attachment%3B+filename%3DAtomic_scale_heating_in_energetic_plasma.pdf\u0026Expires=1741733689\u0026Signature=BM1aaRj~3Aa1TLGfmJFwJM4A45nNGZ7K-bus1F1tU8boIsOe4l9md3Ghx-LVG1YqO9DlxzHNWQQTRltO-e-kOVzzipuphJ0u~498kCSKf-A7RXAdhVVpjdDTEMwjaneoTk4KyFPGyYyZBj6xnODCjBIteg0bC16khgKkddoqeSygF4V01rUzOWs3BjdloS83j7ZvwcSyyr77~QbbV4alYuhNqhFfo8kTjvI~G4o3NyPm2bz9K5-N-YYfxphXwxU5PuZz4WhLb1zixUUeHhW8raa3Mo4Uy7xpp-RoWvJDSJ0tT10aUusFAw8B5oumjoVB0jaUg7RsIgYQM9QyUw1PkA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":109194908,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194908/thumbnails/1.jpg","file_name":"qt3s24f5tx.pdf","download_url":"https://www.academia.edu/attachments/109194908/download_file","bulk_download_file_name":"Atomic_scale_heating_in_energetic_plasma.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194908/qt3s24f5tx-libre.pdf?1702923767=\u0026response-content-disposition=attachment%3B+filename%3DAtomic_scale_heating_in_energetic_plasma.pdf\u0026Expires=1741733689\u0026Signature=YHQOOqFU4sTIEeNst5oUEqvKwf1ZHX3ewKx40zI0czABXrVI42BXESCpK6yiInY4PVcavAIi3gykH6Fjqip0cpIkEsVU34vQbaMqvXAJjhhM8aTj~HUEJ5C3RSzWWFaBX77Tm-UNRIsuEyq8qOxJlQtJTIwG9oIC4la3GBzh15H6kaMOO4MFBPLM~M3nkUcgN7H9~KBJjVCSzXHhsw~ywSH-EWwBmS-0wWBqwT-8u7cPWFqh38rR9JxxqH79YRB7i6bmaeADOpuhW464c-DtEPCHE0oOOS3pH3wLT8hmAPIzBoKfJzkFGudO9MeARDjZjjLssUnf0C0TIUUdT3-NJQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":11740,"name":"Atomic Physics","url":"https://www.academia.edu/Documents/in/Atomic_Physics"},{"id":71287,"name":"Cathodic Protection","url":"https://www.academia.edu/Documents/in/Cathodic_Protection"},{"id":117555,"name":"Plasma","url":"https://www.academia.edu/Documents/in/Plasma"},{"id":348756,"name":"Ion","url":"https://www.academia.edu/Documents/in/Ion"},{"id":413295,"name":"Kinetic Energy","url":"https://www.academia.edu/Documents/in/Kinetic_Energy"},{"id":2274108,"name":"Lawrence Berkeley Laboratory","url":"https://www.academia.edu/Documents/in/Lawrence_Berkeley_Laboratory"}],"urls":[{"id":37334631,"url":"https://escholarship.org/content/qt3s24f5tx/qt3s24f5tx.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111751744"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111751744/The_fractal_nature_of_vacuum_arc_cathode_spots_eScholarship"><img alt="Research paper thumbnail of The fractal nature of vacuum arc cathode spots - eScholarship" class="work-thumbnail" src="https://attachments.academia-assets.com/109194904/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111751744/The_fractal_nature_of_vacuum_arc_cathode_spots_eScholarship">The fractal nature of vacuum arc cathode spots - eScholarship</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The fractal nature of vacuum arc cathode spots *# André Anders, Fellow, IEEE Cathode spot phenome...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The fractal nature of vacuum arc cathode spots *# André Anders, Fellow, IEEE Cathode spot phenomena show many features of fractals, for example self-similar patterns in the emitted light and arc erosion traces. Although there have been hints on the fractal nature of cathode spots in the literature, the fractal approach to spot interpretation is underutilized. In this work, a brief review of spot properties is given, touching the differences between spot type 1 (on cathodes surfaces with dielectric layers) and spot type 2 (on metallic, clean surfaces) as well as the known spot fragment or cell structure. The basic properties of self-similarity, power laws, random colored noise, and fractals are introduced. Several points of evidence for the fractal nature of spots are provided. Specifically power laws are identified as signature of fractal properties, such as spectral power of noisy arc parameters (ion current, arc voltage, etc) obtained by fast Fourier transform. It is shown that fractal properties can be observed down to the cutoff by measurement resolution or occurrence of elementary steps in physical processes. Random walk models of cathode spot motion are well established: they go asymptotically to Brownian motion for infinitesimal step width. The power spectrum of the arc voltage noise falls as 1/f 2 , where f is frequency, supporting a fractal spot model associated with Brownian motion.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="546f0482114da2f40fba6ee198d629ce" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109194904,&quot;asset_id&quot;:111751744,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109194904/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111751744"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111751744"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111751744; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111751744]").text(description); $(".js-view-count[data-work-id=111751744]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111751744; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111751744']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "546f0482114da2f40fba6ee198d629ce" } } $('.js-work-strip[data-work-id=111751744]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111751744,"title":"The fractal nature of vacuum arc cathode spots - eScholarship","translated_title":"","metadata":{"ai_title_tag":"Fractal Properties of Vacuum Arc Cathode Spots","grobid_abstract":"The fractal nature of vacuum arc cathode spots *# André Anders, Fellow, IEEE Cathode spot phenomena show many features of fractals, for example self-similar patterns in the emitted light and arc erosion traces. Although there have been hints on the fractal nature of cathode spots in the literature, the fractal approach to spot interpretation is underutilized. In this work, a brief review of spot properties is given, touching the differences between spot type 1 (on cathodes surfaces with dielectric layers) and spot type 2 (on metallic, clean surfaces) as well as the known spot fragment or cell structure. The basic properties of self-similarity, power laws, random colored noise, and fractals are introduced. Several points of evidence for the fractal nature of spots are provided. Specifically power laws are identified as signature of fractal properties, such as spectral power of noisy arc parameters (ion current, arc voltage, etc) obtained by fast Fourier transform. It is shown that fractal properties can be observed down to the cutoff by measurement resolution or occurrence of elementary steps in physical processes. Random walk models of cathode spot motion are well established: they go asymptotically to Brownian motion for infinitesimal step width. The power spectrum of the arc voltage noise falls as 1/f 2 , where f is frequency, supporting a fractal spot model associated with Brownian motion.","publication_date":{"day":27,"month":5,"year":2005,"errors":{}},"grobid_abstract_attachment_id":109194903},"translated_abstract":null,"internal_url":"https://www.academia.edu/111751744/The_fractal_nature_of_vacuum_arc_cathode_spots_eScholarship","translated_internal_url":"","created_at":"2023-12-18T09:28:29.247-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33147769,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":109194904,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194904/thumbnails/1.jpg","file_name":"qt4ps8t0qc.pdf","download_url":"https://www.academia.edu/attachments/109194904/download_file","bulk_download_file_name":"The_fractal_nature_of_vacuum_arc_cathode.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194904/qt4ps8t0qc-libre.pdf?1702923777=\u0026response-content-disposition=attachment%3B+filename%3DThe_fractal_nature_of_vacuum_arc_cathode.pdf\u0026Expires=1741733689\u0026Signature=KmXkPkWumwyzCAIpT~Dy1vQkMJS5N65rectoopJiXj9jUjVHgRBsH757EOKqa~m58pKhYIXfc2dBGShdPCtfj0SqV4VlwS3bwf7SGyA800lavt9MIop4njo6FGW~MjLhFwkbKHg82xz2F5k~mlSNQleczNmYn15R4cZSpBdgUhQhVqXBnAoWfDjJDcWXh420YzP81iqBFwm56oshMK-PUOPDyX8E5yKLIvk9h71~Dph5KUzex1lVbAaNO66Xw2n5PvMrk6S27~StuddhZaMTQ6ckgUnyBzrWomgkM1NLHd0dpKW77HwNMtXcgYi2c-RzKUt1WJUDl-MTiEyGKNdyZg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_fractal_nature_of_vacuum_arc_cathode_spots_eScholarship","translated_slug":"","page_count":31,"language":"en","content_type":"Work","summary":"The fractal nature of vacuum arc cathode spots *# André Anders, Fellow, IEEE Cathode spot phenomena show many features of fractals, for example self-similar patterns in the emitted light and arc erosion traces. Although there have been hints on the fractal nature of cathode spots in the literature, the fractal approach to spot interpretation is underutilized. In this work, a brief review of spot properties is given, touching the differences between spot type 1 (on cathodes surfaces with dielectric layers) and spot type 2 (on metallic, clean surfaces) as well as the known spot fragment or cell structure. The basic properties of self-similarity, power laws, random colored noise, and fractals are introduced. Several points of evidence for the fractal nature of spots are provided. Specifically power laws are identified as signature of fractal properties, such as spectral power of noisy arc parameters (ion current, arc voltage, etc) obtained by fast Fourier transform. It is shown that fractal properties can be observed down to the cutoff by measurement resolution or occurrence of elementary steps in physical processes. Random walk models of cathode spot motion are well established: they go asymptotically to Brownian motion for infinitesimal step width. The power spectrum of the arc voltage noise falls as 1/f 2 , where f is frequency, supporting a fractal spot model associated with Brownian motion.","owner":{"id":33147769,"first_name":"Andre","middle_initials":"","last_name":"Anders","page_name":"AndreAnders","domain_name":"uni-leipzig1","created_at":"2015-07-17T15:40:22.246-07:00","display_name":"Andre Anders","url":"https://uni-leipzig1.academia.edu/AndreAnders"},"attachments":[{"id":109194904,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194904/thumbnails/1.jpg","file_name":"qt4ps8t0qc.pdf","download_url":"https://www.academia.edu/attachments/109194904/download_file","bulk_download_file_name":"The_fractal_nature_of_vacuum_arc_cathode.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194904/qt4ps8t0qc-libre.pdf?1702923777=\u0026response-content-disposition=attachment%3B+filename%3DThe_fractal_nature_of_vacuum_arc_cathode.pdf\u0026Expires=1741733689\u0026Signature=KmXkPkWumwyzCAIpT~Dy1vQkMJS5N65rectoopJiXj9jUjVHgRBsH757EOKqa~m58pKhYIXfc2dBGShdPCtfj0SqV4VlwS3bwf7SGyA800lavt9MIop4njo6FGW~MjLhFwkbKHg82xz2F5k~mlSNQleczNmYn15R4cZSpBdgUhQhVqXBnAoWfDjJDcWXh420YzP81iqBFwm56oshMK-PUOPDyX8E5yKLIvk9h71~Dph5KUzex1lVbAaNO66Xw2n5PvMrk6S27~StuddhZaMTQ6ckgUnyBzrWomgkM1NLHd0dpKW77HwNMtXcgYi2c-RzKUt1WJUDl-MTiEyGKNdyZg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":109194903,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194903/thumbnails/1.jpg","file_name":"qt4ps8t0qc.pdf","download_url":"https://www.academia.edu/attachments/109194903/download_file","bulk_download_file_name":"The_fractal_nature_of_vacuum_arc_cathode.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194903/qt4ps8t0qc-libre.pdf?1702923779=\u0026response-content-disposition=attachment%3B+filename%3DThe_fractal_nature_of_vacuum_arc_cathode.pdf\u0026Expires=1741733689\u0026Signature=NxUxdEtfkHm7OhYMC874s5e4PNJmuj1nEeArOoKvGi9YPlJ2C2e~4MTjg2WvEtokNV7be7KyYchvbBUpq68EP4DJbO-oZMlQuTodrhgOeZ~EcUsmurF2yWemh20NxKUkNdOucMgwUgr45KdBnhPowcnxBCKqS62TWRzJtlKXLkGW5IWOwoHBgg~UV70IvsSPycf0rqBz7RAZpkvNA~zcH8OeMGlB12T3YFj0dJ5F4iRNWWC~7L4RSglkejVZxqyI6pjZ~1b8s8LMcU0PXgvijXbloFoFVkzSnU1VI356WvsytBEsa8nWNcxg8KgKrbW8pKkZq90JKYdEy-FuNY~9LQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":37754,"name":"Cyclotron","url":"https://www.academia.edu/Documents/in/Cyclotron"}],"urls":[{"id":37334630,"url":"https://escholarship.org/content/qt4ps8t0qc/qt4ps8t0qc.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="3240146" id="papers"><div class="js-work-strip profile--work_container" data-work-id="122858913"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/122858913/Bulk_and_thin_film_model_samples_for_the_analysis_of_the_strain_sensitivity_of_niobium_tin"><img alt="Research paper thumbnail of Bulk and thin film model samples for the analysis of the strain sensitivity of niobium-tin" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/122858913/Bulk_and_thin_film_model_samples_for_the_analysis_of_the_strain_sensitivity_of_niobium_tin">Bulk and thin film model samples for the analysis of the strain sensitivity of niobium-tin</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="122858913"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="122858913"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 122858913; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=122858913]").text(description); $(".js-view-count[data-work-id=122858913]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 122858913; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='122858913']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=122858913]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":122858913,"title":"Bulk and thin film model samples for the analysis of the strain sensitivity of niobium-tin","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2010,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/122858913/Bulk_and_thin_film_model_samples_for_the_analysis_of_the_strain_sensitivity_of_niobium_tin","translated_internal_url":"","created_at":"2024-08-13T21:42:00.511-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33147769,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Bulk_and_thin_film_model_samples_for_the_analysis_of_the_strain_sensitivity_of_niobium_tin","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":33147769,"first_name":"Andre","middle_initials":"","last_name":"Anders","page_name":"AndreAnders","domain_name":"uni-leipzig1","created_at":"2015-07-17T15:40:22.246-07:00","display_name":"Andre Anders","url":"https://uni-leipzig1.academia.edu/AndreAnders"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":6309,"name":"Metallurgy","url":"https://www.academia.edu/Documents/in/Metallurgy"},{"id":80693,"name":"Tin","url":"https://www.academia.edu/Documents/in/Tin"},{"id":226668,"name":"Niobium","url":"https://www.academia.edu/Documents/in/Niobium"},{"id":464116,"name":"Repetitive Strain Injury","url":"https://www.academia.edu/Documents/in/Repetitive_Strain_Injury"}],"urls":[{"id":43997626,"url":"https://publikationen.bibliothek.kit.edu/240080165"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="122858912"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/122858912/Ion_beam_sputtering_of_silicon_Energy_distributions_of_sputtered_and_scattered_ions"><img alt="Research paper thumbnail of Ion beam sputtering of silicon: Energy distributions of sputtered and scattered ions" class="work-thumbnail" src="https://attachments.academia-assets.com/117432871/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/122858912/Ion_beam_sputtering_of_silicon_Energy_distributions_of_sputtered_and_scattered_ions">Ion beam sputtering of silicon: Energy distributions of sputtered and scattered ions</a></div><div class="wp-workCard_item"><span>Journal of vacuum science &amp; technology</span><span>, Aug 23, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The properties of sputtered and scattered ions are studied for ion beam sputtering of Si by bomba...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The properties of sputtered and scattered ions are studied for ion beam sputtering of Si by bombardment with noble gas ions. The energy distributions in dependence on ion beam parameters (ion energy: 0.5-1 keV; ion species: Ne, Ar, Xe) and geometrical parameters (ion incidence angle, polar emission angle, scattering angle) are measured by means of energy-selective mass spectrometry. The presence of anisotropic effects due to direct sputtering and scattering is discussed and correlated with process parameters. The experimental results are compared to calculations based on a simple elastic binary collision model and to simulations using the Monte-Carlo code SDTrimSP. The influence of the contribution of implanted primary ions on energy distributions of sputtered and scattered particles is studied in simulations. It is found that a 10% variation of the target composition leads to detectable but small differences in the energy distributions of scattered ions. Comparison with previously reported data for other ion/target configurations confirms the presence of similar trends and anisotropic effects: the number of high-energy sputtered ions increases with increasing energy of incident ions and decreasing scattering angle. The effect of the ion/target mass ratio is additionally investigated. Small differences are observed with the change of the primary ion species: the closer the mass ratio to unity, the higher the average energy of sputtered ions. The presence of peaks, assigned to different mechanisms of direct scattering, strongly depends on the ion/target mass ratio.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5761d68a1434fc37cebc532a9067a740" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:117432871,&quot;asset_id&quot;:122858912,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/117432871/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="122858912"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="122858912"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 122858912; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=122858912]").text(description); $(".js-view-count[data-work-id=122858912]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 122858912; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='122858912']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5761d68a1434fc37cebc532a9067a740" } } $('.js-work-strip[data-work-id=122858912]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":122858912,"title":"Ion beam sputtering of silicon: Energy distributions of sputtered and scattered ions","translated_title":"","metadata":{"publisher":"American Institute of Physics","grobid_abstract":"The properties of sputtered and scattered ions are studied for ion beam sputtering of Si by bombardment with noble gas ions. The energy distributions in dependence on ion beam parameters (ion energy: 0.5-1 keV; ion species: Ne, Ar, Xe) and geometrical parameters (ion incidence angle, polar emission angle, scattering angle) are measured by means of energy-selective mass spectrometry. The presence of anisotropic effects due to direct sputtering and scattering is discussed and correlated with process parameters. The experimental results are compared to calculations based on a simple elastic binary collision model and to simulations using the Monte-Carlo code SDTrimSP. The influence of the contribution of implanted primary ions on energy distributions of sputtered and scattered particles is studied in simulations. It is found that a 10% variation of the target composition leads to detectable but small differences in the energy distributions of scattered ions. Comparison with previously reported data for other ion/target configurations confirms the presence of similar trends and anisotropic effects: the number of high-energy sputtered ions increases with increasing energy of incident ions and decreasing scattering angle. The effect of the ion/target mass ratio is additionally investigated. Small differences are observed with the change of the primary ion species: the closer the mass ratio to unity, the higher the average energy of sputtered ions. The presence of peaks, assigned to different mechanisms of direct scattering, strongly depends on the ion/target mass ratio.","publication_date":{"day":23,"month":8,"year":2019,"errors":{}},"publication_name":"Journal of vacuum science \u0026 technology","grobid_abstract_attachment_id":117432872},"translated_abstract":null,"internal_url":"https://www.academia.edu/122858912/Ion_beam_sputtering_of_silicon_Energy_distributions_of_sputtered_and_scattered_ions","translated_internal_url":"","created_at":"2024-08-13T21:42:00.284-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33147769,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":117432871,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117432871/thumbnails/1.jpg","file_name":"1906.05550.pdf","download_url":"https://www.academia.edu/attachments/117432871/download_file","bulk_download_file_name":"Ion_beam_sputtering_of_silicon_Energy_di.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117432871/1906.05550-libre.pdf?1723611336=\u0026response-content-disposition=attachment%3B+filename%3DIon_beam_sputtering_of_silicon_Energy_di.pdf\u0026Expires=1741733688\u0026Signature=PHuTdGwxlppoSBVhDB7N8gq7otNt6mVA29Y8B8-lwi6i08cjetv~Pw9XUPgDEm5MSecONAOkh-RXcWkifDSPCQIO3r1SHFx13opu8zGiRlFXD-QEk3bnaPpX0KVgDJYywSRvLnxZWR0hDTtdB-1ZbhzoQc7~BLrMEMo~h4W5naBwnBPlZNg8QLlVOF2~eHAN7ewFxBWwVOP2diH5hnUiPyIHboEhzCeoKjmKKpSqGzLoKvFkhw3lSfzFpvxO8b-SFbMDUnnkc82igq~tKbbMtfyTDYIh9SN7Sex0MDC-fky9c9KjvUv7eeFkhymNhpDpdyonyQXkII9YYIn2NLSUNw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Ion_beam_sputtering_of_silicon_Energy_distributions_of_sputtered_and_scattered_ions","translated_slug":"","page_count":16,"language":"en","content_type":"Work","summary":"The properties of sputtered and scattered ions are studied for ion beam sputtering of Si by bombardment with noble gas ions. The energy distributions in dependence on ion beam parameters (ion energy: 0.5-1 keV; ion species: Ne, Ar, Xe) and geometrical parameters (ion incidence angle, polar emission angle, scattering angle) are measured by means of energy-selective mass spectrometry. The presence of anisotropic effects due to direct sputtering and scattering is discussed and correlated with process parameters. The experimental results are compared to calculations based on a simple elastic binary collision model and to simulations using the Monte-Carlo code SDTrimSP. The influence of the contribution of implanted primary ions on energy distributions of sputtered and scattered particles is studied in simulations. It is found that a 10% variation of the target composition leads to detectable but small differences in the energy distributions of scattered ions. Comparison with previously reported data for other ion/target configurations confirms the presence of similar trends and anisotropic effects: the number of high-energy sputtered ions increases with increasing energy of incident ions and decreasing scattering angle. The effect of the ion/target mass ratio is additionally investigated. Small differences are observed with the change of the primary ion species: the closer the mass ratio to unity, the higher the average energy of sputtered ions. The presence of peaks, assigned to different mechanisms of direct scattering, strongly depends on the ion/target mass ratio.","owner":{"id":33147769,"first_name":"Andre","middle_initials":"","last_name":"Anders","page_name":"AndreAnders","domain_name":"uni-leipzig1","created_at":"2015-07-17T15:40:22.246-07:00","display_name":"Andre Anders","url":"https://uni-leipzig1.academia.edu/AndreAnders"},"attachments":[{"id":117432871,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117432871/thumbnails/1.jpg","file_name":"1906.05550.pdf","download_url":"https://www.academia.edu/attachments/117432871/download_file","bulk_download_file_name":"Ion_beam_sputtering_of_silicon_Energy_di.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117432871/1906.05550-libre.pdf?1723611336=\u0026response-content-disposition=attachment%3B+filename%3DIon_beam_sputtering_of_silicon_Energy_di.pdf\u0026Expires=1741733688\u0026Signature=PHuTdGwxlppoSBVhDB7N8gq7otNt6mVA29Y8B8-lwi6i08cjetv~Pw9XUPgDEm5MSecONAOkh-RXcWkifDSPCQIO3r1SHFx13opu8zGiRlFXD-QEk3bnaPpX0KVgDJYywSRvLnxZWR0hDTtdB-1ZbhzoQc7~BLrMEMo~h4W5naBwnBPlZNg8QLlVOF2~eHAN7ewFxBWwVOP2diH5hnUiPyIHboEhzCeoKjmKKpSqGzLoKvFkhw3lSfzFpvxO8b-SFbMDUnnkc82igq~tKbbMtfyTDYIh9SN7Sex0MDC-fky9c9KjvUv7eeFkhymNhpDpdyonyQXkII9YYIn2NLSUNw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":117432872,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117432872/thumbnails/1.jpg","file_name":"1906.05550.pdf","download_url":"https://www.academia.edu/attachments/117432872/download_file","bulk_download_file_name":"Ion_beam_sputtering_of_silicon_Energy_di.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117432872/1906.05550-libre.pdf?1723611332=\u0026response-content-disposition=attachment%3B+filename%3DIon_beam_sputtering_of_silicon_Energy_di.pdf\u0026Expires=1741733688\u0026Signature=W-UlzgDs8DRncaucGI9e9rcLaz--6JlAlxTnPF9eum9Dr3F~itwg2np7R-sEUXlME2wkvVgF4eCsxtTiICqKOFz5xF2~xtWwHG6zSUE3MPs0iKxyfUQ734Z9iPogqVH7~Vs1RAZ1yKlQVFqWswWVRRRGNkYF1Ws2Dip6bVGuFxWa5VEeDIzrrEmmnNWvLL17~b9-E9WToQgF0vS4KT1cXX1mhXlG-dwLYFiJJak12wXakQuuY4s9FZEYkhpKyN1zzEHTA58sWOW6nlhTcaCGALUdqT8WccHBI7ISDnz6yJE2CHYModA8dXw-QYh4KlbZH5HAiI5OPT7le7v44D~-jA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":9138,"name":"Applied Physics","url":"https://www.academia.edu/Documents/in/Applied_Physics"},{"id":11406,"name":"Silicon","url":"https://www.academia.edu/Documents/in/Silicon"},{"id":11740,"name":"Atomic Physics","url":"https://www.academia.edu/Documents/in/Atomic_Physics"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":185387,"name":"Sputtering","url":"https://www.academia.edu/Documents/in/Sputtering"},{"id":348756,"name":"Ion","url":"https://www.academia.edu/Documents/in/Ion"},{"id":441926,"name":"Scattering","url":"https://www.academia.edu/Documents/in/Scattering"},{"id":693812,"name":"Ion Beam","url":"https://www.academia.edu/Documents/in/Ion_Beam"},{"id":1801184,"name":"Vacuum Science and Technology","url":"https://www.academia.edu/Documents/in/Vacuum_Science_and_Technology"}],"urls":[{"id":43997625,"url":"https://arxiv.org/pdf/1906.05550"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="122858911"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/122858911/Influence_of_Ar_gas_pressure_on_ion_energy_and_charge_state_distributions_in_pulsed_cathodic_arc_plasmas_from_Nb_Al_cathodes_studied_with_high_time_resolution"><img alt="Research paper thumbnail of Influence of Ar gas pressure on ion energy and charge state distributions in pulsed cathodic arc plasmas from Nb–Al cathodes studied with high time resolution" class="work-thumbnail" src="https://attachments.academia-assets.com/117432903/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/122858911/Influence_of_Ar_gas_pressure_on_ion_energy_and_charge_state_distributions_in_pulsed_cathodic_arc_plasmas_from_Nb_Al_cathodes_studied_with_high_time_resolution">Influence of Ar gas pressure on ion energy and charge state distributions in pulsed cathodic arc plasmas from Nb–Al cathodes studied with high time resolution</a></div><div class="wp-workCard_item"><span>Journal of Physics D</span><span>, Nov 23, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">For cathodic arcs, the cathode material is one of the most important determinants of plasma prope...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">For cathodic arcs, the cathode material is one of the most important determinants of plasma properties. Consequently, the cathode material -plasma relationship is of special interest in related fundamental research as well as in applications like the synthesis of thin films and coatings. In the latter, the use of multi-element cathodes in inert as well as reactive gas atmospheres is common practice. To further improve the physical understanding of cathodic arcs in such settings, we analyze ions in pulsed cathodic arc plasmas from Nb, Al and two composite Nb-Al cathodes in high time-resolution using a mass-energy-analyzer. The experiments were conducted in Ar atmosphere at total pressures of 0.04, 0.20 and 0.40 Pa, and are compared to former results in high vacuum at 10 -4 Pa. In addition to examining the influence of Ar on ion properties and their cathode material dependence, the results are used to discuss physical concepts in cathodic arcs, like the gas-dynamic expansion of the cathode spot plasma, or the influence of charge exchange collisions of ions with neutrals. While such inelastic collisions e.g. with Ar atoms cause a reduction of charge states to mainly Al + and Nb 2+ at the highest pressure, Ar atoms also seem to take part in near-cathode processes. Ar ions in different time and energy regimes up to 150 eV were observed and compared to Nb and Al ions, showing overlapping velocity distributions for Nb, Al and Ar + ions, but also Ar 2+ ions faster than other ion species. 1</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e39a6d52a26377c185365961613f0cca" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:117432903,&quot;asset_id&quot;:122858911,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/117432903/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="122858911"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="122858911"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 122858911; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=122858911]").text(description); $(".js-view-count[data-work-id=122858911]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 122858911; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='122858911']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e39a6d52a26377c185365961613f0cca" } } $('.js-work-strip[data-work-id=122858911]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":122858911,"title":"Influence of Ar gas pressure on ion energy and charge state distributions in pulsed cathodic arc plasmas from Nb–Al cathodes studied with high time resolution","translated_title":"","metadata":{"publisher":"Institute of Physics","grobid_abstract":"For cathodic arcs, the cathode material is one of the most important determinants of plasma properties. Consequently, the cathode material -plasma relationship is of special interest in related fundamental research as well as in applications like the synthesis of thin films and coatings. In the latter, the use of multi-element cathodes in inert as well as reactive gas atmospheres is common practice. To further improve the physical understanding of cathodic arcs in such settings, we analyze ions in pulsed cathodic arc plasmas from Nb, Al and two composite Nb-Al cathodes in high time-resolution using a mass-energy-analyzer. The experiments were conducted in Ar atmosphere at total pressures of 0.04, 0.20 and 0.40 Pa, and are compared to former results in high vacuum at 10 -4 Pa. In addition to examining the influence of Ar on ion properties and their cathode material dependence, the results are used to discuss physical concepts in cathodic arcs, like the gas-dynamic expansion of the cathode spot plasma, or the influence of charge exchange collisions of ions with neutrals. While such inelastic collisions e.g. with Ar atoms cause a reduction of charge states to mainly Al + and Nb 2+ at the highest pressure, Ar atoms also seem to take part in near-cathode processes. Ar ions in different time and energy regimes up to 150 eV were observed and compared to Nb and Al ions, showing overlapping velocity distributions for Nb, Al and Ar + ions, but also Ar 2+ ions faster than other ion species. 1","publication_date":{"day":23,"month":11,"year":2018,"errors":{}},"publication_name":"Journal of Physics D","grobid_abstract_attachment_id":117432903},"translated_abstract":null,"internal_url":"https://www.academia.edu/122858911/Influence_of_Ar_gas_pressure_on_ion_energy_and_charge_state_distributions_in_pulsed_cathodic_arc_plasmas_from_Nb_Al_cathodes_studied_with_high_time_resolution","translated_internal_url":"","created_at":"2024-08-13T21:41:59.892-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33147769,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":117432903,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117432903/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/117432903/download_file","bulk_download_file_name":"Influence_of_Ar_gas_pressure_on_ion_ener.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117432903/pdf-libre.pdf?1723611340=\u0026response-content-disposition=attachment%3B+filename%3DInfluence_of_Ar_gas_pressure_on_ion_ener.pdf\u0026Expires=1741733688\u0026Signature=WrDaUyXw4z-5jH87QTsHGcU3exjZIbnmgAXiACeS0yn7gsQ8a0iqyQ8CtqRI~uBw906QO-z-NmSpB2ShyRJdhfAqhFv3A8UpFqEEaWg5WX896Uy-KoS-l2el8rTtKrIZ-s9t7G7rxECcoq0pyo~PHWAKsf1g64A2LPy4iIL7dkXqwzGnStSNdfTIdAifYJPx2n-r1lN86NwtbFM9ZodgJ7D3JPSoKCFSQLPCB~X7CZWI0QyHYfWSxV5DRT5cxT7KHIqTcB20FNmu-ofL9ETEowKqqqtngKeG-~TqgW5xDk1SNpUDiGqh8qrRewjtE2HueXOu-WIeAmSWlf2bKB5HxQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Influence_of_Ar_gas_pressure_on_ion_energy_and_charge_state_distributions_in_pulsed_cathodic_arc_plasmas_from_Nb_Al_cathodes_studied_with_high_time_resolution","translated_slug":"","page_count":34,"language":"en","content_type":"Work","summary":"For cathodic arcs, the cathode material is one of the most important determinants of plasma properties. Consequently, the cathode material -plasma relationship is of special interest in related fundamental research as well as in applications like the synthesis of thin films and coatings. In the latter, the use of multi-element cathodes in inert as well as reactive gas atmospheres is common practice. To further improve the physical understanding of cathodic arcs in such settings, we analyze ions in pulsed cathodic arc plasmas from Nb, Al and two composite Nb-Al cathodes in high time-resolution using a mass-energy-analyzer. The experiments were conducted in Ar atmosphere at total pressures of 0.04, 0.20 and 0.40 Pa, and are compared to former results in high vacuum at 10 -4 Pa. In addition to examining the influence of Ar on ion properties and their cathode material dependence, the results are used to discuss physical concepts in cathodic arcs, like the gas-dynamic expansion of the cathode spot plasma, or the influence of charge exchange collisions of ions with neutrals. While such inelastic collisions e.g. with Ar atoms cause a reduction of charge states to mainly Al + and Nb 2+ at the highest pressure, Ar atoms also seem to take part in near-cathode processes. Ar ions in different time and energy regimes up to 150 eV were observed and compared to Nb and Al ions, showing overlapping velocity distributions for Nb, Al and Ar + ions, but also Ar 2+ ions faster than other ion species. 1","owner":{"id":33147769,"first_name":"Andre","middle_initials":"","last_name":"Anders","page_name":"AndreAnders","domain_name":"uni-leipzig1","created_at":"2015-07-17T15:40:22.246-07:00","display_name":"Andre Anders","url":"https://uni-leipzig1.academia.edu/AndreAnders"},"attachments":[{"id":117432903,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117432903/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/117432903/download_file","bulk_download_file_name":"Influence_of_Ar_gas_pressure_on_ion_ener.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117432903/pdf-libre.pdf?1723611340=\u0026response-content-disposition=attachment%3B+filename%3DInfluence_of_Ar_gas_pressure_on_ion_ener.pdf\u0026Expires=1741733688\u0026Signature=WrDaUyXw4z-5jH87QTsHGcU3exjZIbnmgAXiACeS0yn7gsQ8a0iqyQ8CtqRI~uBw906QO-z-NmSpB2ShyRJdhfAqhFv3A8UpFqEEaWg5WX896Uy-KoS-l2el8rTtKrIZ-s9t7G7rxECcoq0pyo~PHWAKsf1g64A2LPy4iIL7dkXqwzGnStSNdfTIdAifYJPx2n-r1lN86NwtbFM9ZodgJ7D3JPSoKCFSQLPCB~X7CZWI0QyHYfWSxV5DRT5cxT7KHIqTcB20FNmu-ofL9ETEowKqqqtngKeG-~TqgW5xDk1SNpUDiGqh8qrRewjtE2HueXOu-WIeAmSWlf2bKB5HxQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":11740,"name":"Atomic Physics","url":"https://www.academia.edu/Documents/in/Atomic_Physics"},{"id":71287,"name":"Cathodic Protection","url":"https://www.academia.edu/Documents/in/Cathodic_Protection"},{"id":117555,"name":"Plasma","url":"https://www.academia.edu/Documents/in/Plasma"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":348756,"name":"Ion","url":"https://www.academia.edu/Documents/in/Ion"},{"id":1131650,"name":"Cathode","url":"https://www.academia.edu/Documents/in/Cathode"}],"urls":[{"id":43997624,"url":"https://doi.org/10.1088/1361-6463/aaeecc"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="122858905"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/122858905/Copper_Sputter_Thyself"><img alt="Research paper thumbnail of Copper, Sputter Thyself" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/122858905/Copper_Sputter_Thyself">Copper, Sputter Thyself</a></div><div class="wp-workCard_item"><span>Focus</span><span>, 2009</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="122858905"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="122858905"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 122858905; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=122858905]").text(description); $(".js-view-count[data-work-id=122858905]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 122858905; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='122858905']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=122858905]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":122858905,"title":"Copper, Sputter Thyself","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2009,"errors":{}},"publication_name":"Focus"},"translated_abstract":null,"internal_url":"https://www.academia.edu/122858905/Copper_Sputter_Thyself","translated_internal_url":"","created_at":"2024-08-13T21:41:04.775-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33147769,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Copper_Sputter_Thyself","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":33147769,"first_name":"Andre","middle_initials":"","last_name":"Anders","page_name":"AndreAnders","domain_name":"uni-leipzig1","created_at":"2015-07-17T15:40:22.246-07:00","display_name":"Andre Anders","url":"https://uni-leipzig1.academia.edu/AndreAnders"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":80692,"name":"Copper","url":"https://www.academia.edu/Documents/in/Copper"},{"id":144927,"name":"Focus","url":"https://www.academia.edu/Documents/in/Focus"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="116836983"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/116836983/Temporal_development_of_the_plasma_composition_of_a_pulsed_aluminum_plasma_stream_in_the_presence_of_oxygen"><img alt="Research paper thumbnail of Temporal development of the plasma composition of a pulsed aluminum plasma stream in the presence of oxygen" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/116836983/Temporal_development_of_the_plasma_composition_of_a_pulsed_aluminum_plasma_stream_in_the_presence_of_oxygen">Temporal development of the plasma composition of a pulsed aluminum plasma stream in the presence of oxygen</a></div><div class="wp-workCard_item"><span>Applied Physics Letters</span><span>, 1999</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We describe the temporal development of the plasma composition of pulsed aluminum plasma streams ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We describe the temporal development of the plasma composition of pulsed aluminum plasma streams at various oxygen pressures. The plasma was formed with a vacuum arc plasma source and the time resolved plasma composition was measured with time-of-flight charge-to-mass spectrometry. The temporal development of the plasma composition as well as the Al average ion charge state was found to be a strong function of the oxygen pressure. Oxygen and hydrogen concentrations of up to 0.36 and 0.32, respectively, were found in the first 50 mus of the pulse at oxygen pressures of &amp;gt;=5×10-5 Torr. The average charge state of aluminum ions was found to vary from +1.2 to +2.5 depending on the oxygen pressure and the time elapsed after ignition of the arc. These results are of fundamental importance for the understanding of the evolution of the composition (through the plasma composition) and microstructure (through the Al ion flux energy) of alumina thin films produced by pulsed, reactive aluminum plasmas.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="116836983"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="116836983"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 116836983; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=116836983]").text(description); $(".js-view-count[data-work-id=116836983]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 116836983; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='116836983']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=116836983]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":116836983,"title":"Temporal development of the plasma composition of a pulsed aluminum plasma stream in the presence of oxygen","translated_title":"","metadata":{"abstract":"We describe the temporal development of the plasma composition of pulsed aluminum plasma streams at various oxygen pressures. The plasma was formed with a vacuum arc plasma source and the time resolved plasma composition was measured with time-of-flight charge-to-mass spectrometry. The temporal development of the plasma composition as well as the Al average ion charge state was found to be a strong function of the oxygen pressure. Oxygen and hydrogen concentrations of up to 0.36 and 0.32, respectively, were found in the first 50 mus of the pulse at oxygen pressures of \u0026gt;=5×10-5 Torr. The average charge state of aluminum ions was found to vary from +1.2 to +2.5 depending on the oxygen pressure and the time elapsed after ignition of the arc. These results are of fundamental importance for the understanding of the evolution of the composition (through the plasma composition) and microstructure (through the Al ion flux energy) of alumina thin films produced by pulsed, reactive aluminum plasmas.","publisher":"AIP Publishing","publication_date":{"day":null,"month":null,"year":1999,"errors":{}},"publication_name":"Applied Physics Letters"},"translated_abstract":"We describe the temporal development of the plasma composition of pulsed aluminum plasma streams at various oxygen pressures. The plasma was formed with a vacuum arc plasma source and the time resolved plasma composition was measured with time-of-flight charge-to-mass spectrometry. The temporal development of the plasma composition as well as the Al average ion charge state was found to be a strong function of the oxygen pressure. Oxygen and hydrogen concentrations of up to 0.36 and 0.32, respectively, were found in the first 50 mus of the pulse at oxygen pressures of \u0026gt;=5×10-5 Torr. The average charge state of aluminum ions was found to vary from +1.2 to +2.5 depending on the oxygen pressure and the time elapsed after ignition of the arc. These results are of fundamental importance for the understanding of the evolution of the composition (through the plasma composition) and microstructure (through the Al ion flux energy) of alumina thin films produced by pulsed, reactive aluminum plasmas.","internal_url":"https://www.academia.edu/116836983/Temporal_development_of_the_plasma_composition_of_a_pulsed_aluminum_plasma_stream_in_the_presence_of_oxygen","translated_internal_url":"","created_at":"2024-03-29T08:03:27.516-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33147769,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Temporal_development_of_the_plasma_composition_of_a_pulsed_aluminum_plasma_stream_in_the_presence_of_oxygen","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"We describe the temporal development of the plasma composition of pulsed aluminum plasma streams at various oxygen pressures. The plasma was formed with a vacuum arc plasma source and the time resolved plasma composition was measured with time-of-flight charge-to-mass spectrometry. The temporal development of the plasma composition as well as the Al average ion charge state was found to be a strong function of the oxygen pressure. Oxygen and hydrogen concentrations of up to 0.36 and 0.32, respectively, were found in the first 50 mus of the pulse at oxygen pressures of \u0026gt;=5×10-5 Torr. The average charge state of aluminum ions was found to vary from +1.2 to +2.5 depending on the oxygen pressure and the time elapsed after ignition of the arc. These results are of fundamental importance for the understanding of the evolution of the composition (through the plasma composition) and microstructure (through the Al ion flux energy) of alumina thin films produced by pulsed, reactive aluminum plasmas.","owner":{"id":33147769,"first_name":"Andre","middle_initials":"","last_name":"Anders","page_name":"AndreAnders","domain_name":"uni-leipzig1","created_at":"2015-07-17T15:40:22.246-07:00","display_name":"Andre Anders","url":"https://uni-leipzig1.academia.edu/AndreAnders"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":5769,"name":"Mass Spectrometry","url":"https://www.academia.edu/Documents/in/Mass_Spectrometry"},{"id":101573,"name":"Thin Film","url":"https://www.academia.edu/Documents/in/Thin_Film"},{"id":109198,"name":"Lightning","url":"https://www.academia.edu/Documents/in/Lightning"},{"id":112619,"name":"Time of Flight","url":"https://www.academia.edu/Documents/in/Time_of_Flight"},{"id":117555,"name":"Plasma","url":"https://www.academia.edu/Documents/in/Plasma"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":158186,"name":"Time Resolved","url":"https://www.academia.edu/Documents/in/Time_Resolved"},{"id":348756,"name":"Ion","url":"https://www.academia.edu/Documents/in/Ion"},{"id":369525,"name":"Aluminium","url":"https://www.academia.edu/Documents/in/Aluminium"},{"id":380825,"name":"Oxygen","url":"https://www.academia.edu/Documents/in/Oxygen"},{"id":430542,"name":"Arcs","url":"https://www.academia.edu/Documents/in/Arcs"},{"id":473797,"name":"Microstructures","url":"https://www.academia.edu/Documents/in/Microstructures"},{"id":1523712,"name":"Atmospheric Electricity","url":"https://www.academia.edu/Documents/in/Atmospheric_Electricity"},{"id":2638670,"name":"plasma cleaning","url":"https://www.academia.edu/Documents/in/plasma_cleaning"}],"urls":[{"id":40700242,"url":"http://aip.scitation.org/doi/pdf/10.1063/1.124457"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="115840964"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/115840964/Results_on_intense_beam_focusing_and_neutralization_from_the_neutralized_beam_experiment"><img alt="Research paper thumbnail of Results on intense beam focusing and neutralization from the neutralized beam experiment" class="work-thumbnail" src="https://attachments.academia-assets.com/112136580/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/115840964/Results_on_intense_beam_focusing_and_neutralization_from_the_neutralized_beam_experiment">Results on intense beam focusing and neutralization from the neutralized beam experiment</a></div><div class="wp-workCard_item"><span>Lawrence Berkeley National Laboratory</span><span>, Oct 31, 2003</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Experimental techniques to provide active neutralization for space-charge-dominated beams as well...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Experimental techniques to provide active neutralization for space-charge-dominated beams as well as to prevent uncontrolled ion beam neutralization by stray electrons have been demonstrated. Neutralization is provided by a localized plasma injected from a cathode arc source. Unwanted secondary electrons produced at the wall by halo particle impact are suppressed using a radial mesh liner that is positively biased inside a beam drift tube. Measurements of current transmission, beam spot size as a function of axial position, beam energy, and plasma source conditions are presented along with detailed comparisons with theory.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="730812687998b6c02d6d32c848bbc21c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:112136580,&quot;asset_id&quot;:115840964,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/112136580/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="115840964"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="115840964"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 115840964; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=115840964]").text(description); $(".js-view-count[data-work-id=115840964]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 115840964; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='115840964']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "730812687998b6c02d6d32c848bbc21c" } } $('.js-work-strip[data-work-id=115840964]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":115840964,"title":"Results on intense beam focusing and neutralization from the neutralized beam experiment","translated_title":"","metadata":{"publisher":"United States Department of Energy","grobid_abstract":"Experimental techniques to provide active neutralization for space-charge-dominated beams as well as to prevent uncontrolled ion beam neutralization by stray electrons have been demonstrated. Neutralization is provided by a localized plasma injected from a cathode arc source. Unwanted secondary electrons produced at the wall by halo particle impact are suppressed using a radial mesh liner that is positively biased inside a beam drift tube. Measurements of current transmission, beam spot size as a function of axial position, beam energy, and plasma source conditions are presented along with detailed comparisons with theory.","publication_date":{"day":31,"month":10,"year":2003,"errors":{}},"publication_name":"Lawrence Berkeley National Laboratory","grobid_abstract_attachment_id":112136580},"translated_abstract":null,"internal_url":"https://www.academia.edu/115840964/Results_on_intense_beam_focusing_and_neutralization_from_the_neutralized_beam_experiment","translated_internal_url":"","created_at":"2024-03-05T15:10:53.085-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33147769,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":112136580,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112136580/thumbnails/1.jpg","file_name":"PR.1.2004.pdf","download_url":"https://www.academia.edu/attachments/112136580/download_file","bulk_download_file_name":"Results_on_intense_beam_focusing_and_neu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112136580/PR.1.2004-libre.pdf?1709680811=\u0026response-content-disposition=attachment%3B+filename%3DResults_on_intense_beam_focusing_and_neu.pdf\u0026Expires=1741733688\u0026Signature=Oyn2IHf9qzQCTPgzKhQMOXhDaCCz8ZzPSJ1GYLuIwTfnazfFRiw2wALlzAdvmeQu84FY7pk31ioHNb3jOI7qLrwXNH4kzMUScNHj0mZvqNxnlRGhNd~zCWMxYYFYQ8Re2N-X9rkwE9ZpcgNeF64fwA6zWe37CjUxpwvaXhUEgJFeP8Tx-nAzGhywLKLHaStjZRWaCnDe0d0daIF6ZOcRPZyMt~m9EoYqF5AUOkZlPlgPKv7kJvPRHGOERy9vCZ2pwyqRE1tpyDmirmz50l1uXxylCDkoiVvqVqQbp4gV3120eQ8yYJHR3yBXczJ~~7t8doQieqrWLeFr-6jVZZRYtw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Results_on_intense_beam_focusing_and_neutralization_from_the_neutralized_beam_experiment","translated_slug":"","page_count":9,"language":"en","content_type":"Work","summary":"Experimental techniques to provide active neutralization for space-charge-dominated beams as well as to prevent uncontrolled ion beam neutralization by stray electrons have been demonstrated. Neutralization is provided by a localized plasma injected from a cathode arc source. Unwanted secondary electrons produced at the wall by halo particle impact are suppressed using a radial mesh liner that is positively biased inside a beam drift tube. Measurements of current transmission, beam spot size as a function of axial position, beam energy, and plasma source conditions are presented along with detailed comparisons with theory.","owner":{"id":33147769,"first_name":"Andre","middle_initials":"","last_name":"Anders","page_name":"AndreAnders","domain_name":"uni-leipzig1","created_at":"2015-07-17T15:40:22.246-07:00","display_name":"Andre Anders","url":"https://uni-leipzig1.academia.edu/AndreAnders"},"attachments":[{"id":112136580,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112136580/thumbnails/1.jpg","file_name":"PR.1.2004.pdf","download_url":"https://www.academia.edu/attachments/112136580/download_file","bulk_download_file_name":"Results_on_intense_beam_focusing_and_neu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112136580/PR.1.2004-libre.pdf?1709680811=\u0026response-content-disposition=attachment%3B+filename%3DResults_on_intense_beam_focusing_and_neu.pdf\u0026Expires=1741733688\u0026Signature=Oyn2IHf9qzQCTPgzKhQMOXhDaCCz8ZzPSJ1GYLuIwTfnazfFRiw2wALlzAdvmeQu84FY7pk31ioHNb3jOI7qLrwXNH4kzMUScNHj0mZvqNxnlRGhNd~zCWMxYYFYQ8Re2N-X9rkwE9ZpcgNeF64fwA6zWe37CjUxpwvaXhUEgJFeP8Tx-nAzGhywLKLHaStjZRWaCnDe0d0daIF6ZOcRPZyMt~m9EoYqF5AUOkZlPlgPKv7kJvPRHGOERy9vCZ2pwyqRE1tpyDmirmz50l1uXxylCDkoiVvqVqQbp4gV3120eQ8yYJHR3yBXczJ~~7t8doQieqrWLeFr-6jVZZRYtw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":112136581,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/112136581/thumbnails/1.jpg","file_name":"PR.1.2004.pdf","download_url":"https://www.academia.edu/attachments/112136581/download_file","bulk_download_file_name":"Results_on_intense_beam_focusing_and_neu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/112136581/PR.1.2004-libre.pdf?1709680812=\u0026response-content-disposition=attachment%3B+filename%3DResults_on_intense_beam_focusing_and_neu.pdf\u0026Expires=1741733688\u0026Signature=PHLm4uUNaSTsIOSE~spyiC3yonNm6MzehfII1floN3tHiscJXFWkaqvFo9HY6rnF-WJb2B0h1jPVINJrQfOoJgF4Y89ehbwSSNcA9s0aJiW6okoK6XQAe38Sl3Bjt85H6JUmvuv0Q2zDUahVynOn3HYhBhP3ybHbgmztrovk~bGzywk3iAuoG3n0Ue75PogfDUfLkGeka~m1VkD2grHo0jSm7NtO~yEbeCTbx92XwUsWFSd4ChYaVVnAxpz1lClhxg7Qf8Gmqe1eUIWQ5EibXFYWBwQqRChXonjKNjREFhhufk3GbZKgk7FG5nWKbEkd8jR4ZPbM1w62f6Dp8o4U9A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":6962,"name":"Energy Conservation","url":"https://www.academia.edu/Documents/in/Energy_Conservation"},{"id":34388,"name":"Power Plant","url":"https://www.academia.edu/Documents/in/Power_Plant"},{"id":72817,"name":"Focused Ion Beam","url":"https://www.academia.edu/Documents/in/Focused_Ion_Beam"},{"id":80799,"name":"Classical Physics","url":"https://www.academia.edu/Documents/in/Classical_Physics"},{"id":160656,"name":"Potassium","url":"https://www.academia.edu/Documents/in/Potassium"},{"id":290469,"name":"Phase Space","url":"https://www.academia.edu/Documents/in/Phase_Space"},{"id":693812,"name":"Ion Beam","url":"https://www.academia.edu/Documents/in/Ion_Beam"},{"id":735265,"name":"Secondary Electron","url":"https://www.academia.edu/Documents/in/Secondary_Electron"},{"id":762611,"name":"Space Charge","url":"https://www.academia.edu/Documents/in/Space_Charge"},{"id":776554,"name":"Inertial Confinement Fusion","url":"https://www.academia.edu/Documents/in/Inertial_Confinement_Fusion"},{"id":2274108,"name":"Lawrence Berkeley Laboratory","url":"https://www.academia.edu/Documents/in/Lawrence_Berkeley_Laboratory"},{"id":2539021,"name":"Heavy Ions","url":"https://www.academia.edu/Documents/in/Heavy_Ions"},{"id":2948559,"name":"Higher order","url":"https://www.academia.edu/Documents/in/Higher_order"}],"urls":[{"id":40065739,"url":"http://nonneutral.pppl.gov/pdfpapers/PR.1.2004.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111751761"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111751761/Guest_editorial_special_issue_on_vacuum_discharge_plasmas"><img alt="Research paper thumbnail of Guest editorial special issue on vacuum discharge plasmas" class="work-thumbnail" src="https://attachments.academia-assets.com/109194929/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111751761/Guest_editorial_special_issue_on_vacuum_discharge_plasmas">Guest editorial special issue on vacuum discharge plasmas</a></div><div class="wp-workCard_item"><span>IEEE Transactions on Plasma Science</span><span>, Oct 1, 2001</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6913563d12bdaf80c2e7732c385f7db4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109194929,&quot;asset_id&quot;:111751761,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109194929/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111751761"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111751761"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111751761; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111751761]").text(description); $(".js-view-count[data-work-id=111751761]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111751761; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111751761']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6913563d12bdaf80c2e7732c385f7db4" } } $('.js-work-strip[data-work-id=111751761]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111751761,"title":"Guest editorial special issue on vacuum discharge plasmas","translated_title":"","metadata":{"publisher":"Institute of Electrical and Electronics Engineers","ai_abstract":"The Guest Editorial highlights the XVIIth International Symposium on Discharges and Electrical Insulation in Vacuum, held at Lawrence Berkeley National Laboratory in 1996. It reviews the wide variety of topics covered, including vacuum breakdown phenomena, vacuum arcs, and new developments like vacuum arc deposition. The editorial also mentions awards granted at the symposium and the introduction of minicourses and an industrial exhibition, reflecting the vibrant scientific discourse and applications in the field.","publication_date":{"day":1,"month":10,"year":2001,"errors":{}},"publication_name":"IEEE Transactions on Plasma Science"},"translated_abstract":null,"internal_url":"https://www.academia.edu/111751761/Guest_editorial_special_issue_on_vacuum_discharge_plasmas","translated_internal_url":"","created_at":"2023-12-18T09:28:32.814-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33147769,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":109194929,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194929/thumbnails/1.jpg","file_name":"article.pdf","download_url":"https://www.academia.edu/attachments/109194929/download_file","bulk_download_file_name":"Guest_editorial_special_issue_on_vacuum.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194929/article-libre.pdf?1702923761=\u0026response-content-disposition=attachment%3B+filename%3DGuest_editorial_special_issue_on_vacuum.pdf\u0026Expires=1741733688\u0026Signature=VU4RDy34sWX1z8x7fI~4iwQ5zWakEm3auBf0pGQuxmhxuXFNcWd0NVUyKiI8ltpAceUvBbxSX-cBWoVdN~WYAk8CsLCozeGzomAnR6nyPRkme3htElD5JS~dmqZ7eekP2fp~iuNekMH1xjOM5LMAKVHmHx~eqBbX77G4M74~ucjdY7CxnWKa9WlKPN2S-ETCESCz~L0rm9KMLcSBdMQNBliWUoP7L92CWjebcHKnSjQcT9RcQGJfaoIZXrRaThmSwVpcy5djePQy3lIeOfxBNB83JW9jjM6kLZgQN1xEEBhqS21azv2VE-A2u7jtWG-qK8BF~r43QQLlqbGzv33OJA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Guest_editorial_special_issue_on_vacuum_discharge_plasmas","translated_slug":"","page_count":2,"language":"en","content_type":"Work","summary":null,"owner":{"id":33147769,"first_name":"Andre","middle_initials":"","last_name":"Anders","page_name":"AndreAnders","domain_name":"uni-leipzig1","created_at":"2015-07-17T15:40:22.246-07:00","display_name":"Andre Anders","url":"https://uni-leipzig1.academia.edu/AndreAnders"},"attachments":[{"id":109194929,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194929/thumbnails/1.jpg","file_name":"article.pdf","download_url":"https://www.academia.edu/attachments/109194929/download_file","bulk_download_file_name":"Guest_editorial_special_issue_on_vacuum.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194929/article-libre.pdf?1702923761=\u0026response-content-disposition=attachment%3B+filename%3DGuest_editorial_special_issue_on_vacuum.pdf\u0026Expires=1741733688\u0026Signature=VU4RDy34sWX1z8x7fI~4iwQ5zWakEm3auBf0pGQuxmhxuXFNcWd0NVUyKiI8ltpAceUvBbxSX-cBWoVdN~WYAk8CsLCozeGzomAnR6nyPRkme3htElD5JS~dmqZ7eekP2fp~iuNekMH1xjOM5LMAKVHmHx~eqBbX77G4M74~ucjdY7CxnWKa9WlKPN2S-ETCESCz~L0rm9KMLcSBdMQNBliWUoP7L92CWjebcHKnSjQcT9RcQGJfaoIZXrRaThmSwVpcy5djePQy3lIeOfxBNB83JW9jjM6kLZgQN1xEEBhqS21azv2VE-A2u7jtWG-qK8BF~r43QQLlqbGzv33OJA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":109194928,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194928/thumbnails/1.jpg","file_name":"article.pdf","download_url":"https://www.academia.edu/attachments/109194928/download_file","bulk_download_file_name":"Guest_editorial_special_issue_on_vacuum.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194928/article-libre.pdf?1702923762=\u0026response-content-disposition=attachment%3B+filename%3DGuest_editorial_special_issue_on_vacuum.pdf\u0026Expires=1741733688\u0026Signature=M2My0vyac2WsT-m7VGwFwJa~2o4oNp7YT2W215G9p94fCegAxtNFNOroLaa-W7pfaP2HQqicOsL~TSD3zkB-HD8a6p2pYJXHgGZzSBBV-N2erCiwvlqw~a8boSzBFWbiycf7FEYhKKEDwHhWpmHZB0UuuDAR3CxL325BFIGJOXFqCITAk1PFztw5LGn43I~~cnZoNYPtGyKHaRCGRIG3xGbnpXdS5Q9W9Q2TrKIRd7b9jn2a7hx45dzqwkIcZdbHUzjfO7b6-affD0vpIxQL0VLy~2KUXxHTFrp~UjC-AJOhDClIkMy6r4O62gsib5hjYKfgfk2uajacP5E-CvnMdQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":517,"name":"Plasma Physics","url":"https://www.academia.edu/Documents/in/Plasma_Physics"},{"id":117555,"name":"Plasma","url":"https://www.academia.edu/Documents/in/Plasma"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"}],"urls":[{"id":37334647,"url":"https://zenodo.org/record/1282366/files/article.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111751760"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111751760/Characterization_of_a_reactive_arc_plasma"><img alt="Research paper thumbnail of Characterization of a reactive arc plasma" class="work-thumbnail" src="https://attachments.academia-assets.com/109194934/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111751760/Characterization_of_a_reactive_arc_plasma">Characterization of a reactive arc plasma</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The plasma composition, average charge state values, as well as the kinetic energy of the aluminu...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The plasma composition, average charge state values, as well as the kinetic energy of the aluminum ions have been measured by TOF spectrometry as a function of the oxygen partial pressure. The plasma was produced in cathodic arc spots. It was found that the oxygen partial pressure reduces the average charge state as well as the kinetic ion energy. These data are important for the evolution of both composition and structure during thin film growth from highly ionized plasma.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="cab4852b4c07b6709cfd9a6330559c7c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109194934,&quot;asset_id&quot;:111751760,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109194934/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111751760"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111751760"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111751760; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111751760]").text(description); $(".js-view-count[data-work-id=111751760]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111751760; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111751760']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "cab4852b4c07b6709cfd9a6330559c7c" } } $('.js-work-strip[data-work-id=111751760]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111751760,"title":"Characterization of a reactive arc plasma","translated_title":"","metadata":{"ai_title_tag":"Arc Plasma Ionization Affected by Oxygen Pressure","grobid_abstract":"The plasma composition, average charge state values, as well as the kinetic energy of the aluminum ions have been measured by TOF spectrometry as a function of the oxygen partial pressure. The plasma was produced in cathodic arc spots. It was found that the oxygen partial pressure reduces the average charge state as well as the kinetic ion energy. These data are important for the evolution of both composition and structure during thin film growth from highly ionized plasma.","publication_date":{"day":2,"month":1,"year":2002,"errors":{}},"grobid_abstract_attachment_id":109194934},"translated_abstract":null,"internal_url":"https://www.academia.edu/111751760/Characterization_of_a_reactive_arc_plasma","translated_internal_url":"","created_at":"2023-12-18T09:28:32.685-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33147769,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":109194934,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194934/thumbnails/1.jpg","file_name":"qt7ct1s5wt.pdf","download_url":"https://www.academia.edu/attachments/109194934/download_file","bulk_download_file_name":"Characterization_of_a_reactive_arc_plasm.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194934/qt7ct1s5wt-libre.pdf?1702923765=\u0026response-content-disposition=attachment%3B+filename%3DCharacterization_of_a_reactive_arc_plasm.pdf\u0026Expires=1741733688\u0026Signature=O4MloxmihmA0HopfqbkwQFVi~kkWc5PLDr4JYsd0eDqSikrODKvItxqo9etSgAP-aLi-v-AUhgXZD4aHtKDzNLdkF2KRmu94hv-eJRo8xhLokZiW~NuqeqgByoHgxnfu1OdcqIjdu2Om9MO6jTpZUsSNjaFaQbKJ3Gs5j3BgPeichRzLX~qkcnnwOldOEhsXYCGkWL93RpeKme8LJR9mUT489GyamXQtNn3GpXOPtKNDQv6hfkZYPBq2ILQ6WLXt8PUo4rfLMkfQsVvAy0ph3CWejQAiFuYiqOs9n~S5bPVE3Jwpl8iNYjJT4vjtRJ~W7eWM00fkyRGAwAhugpgQpA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Characterization_of_a_reactive_arc_plasma","translated_slug":"","page_count":3,"language":"en","content_type":"Work","summary":"The plasma composition, average charge state values, as well as the kinetic energy of the aluminum ions have been measured by TOF spectrometry as a function of the oxygen partial pressure. The plasma was produced in cathodic arc spots. It was found that the oxygen partial pressure reduces the average charge state as well as the kinetic ion energy. These data are important for the evolution of both composition and structure during thin film growth from highly ionized plasma.","owner":{"id":33147769,"first_name":"Andre","middle_initials":"","last_name":"Anders","page_name":"AndreAnders","domain_name":"uni-leipzig1","created_at":"2015-07-17T15:40:22.246-07:00","display_name":"Andre Anders","url":"https://uni-leipzig1.academia.edu/AndreAnders"},"attachments":[{"id":109194934,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194934/thumbnails/1.jpg","file_name":"qt7ct1s5wt.pdf","download_url":"https://www.academia.edu/attachments/109194934/download_file","bulk_download_file_name":"Characterization_of_a_reactive_arc_plasm.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194934/qt7ct1s5wt-libre.pdf?1702923765=\u0026response-content-disposition=attachment%3B+filename%3DCharacterization_of_a_reactive_arc_plasm.pdf\u0026Expires=1741733688\u0026Signature=O4MloxmihmA0HopfqbkwQFVi~kkWc5PLDr4JYsd0eDqSikrODKvItxqo9etSgAP-aLi-v-AUhgXZD4aHtKDzNLdkF2KRmu94hv-eJRo8xhLokZiW~NuqeqgByoHgxnfu1OdcqIjdu2Om9MO6jTpZUsSNjaFaQbKJ3Gs5j3BgPeichRzLX~qkcnnwOldOEhsXYCGkWL93RpeKme8LJR9mUT489GyamXQtNn3GpXOPtKNDQv6hfkZYPBq2ILQ6WLXt8PUo4rfLMkfQsVvAy0ph3CWejQAiFuYiqOs9n~S5bPVE3Jwpl8iNYjJT4vjtRJ~W7eWM00fkyRGAwAhugpgQpA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":109194933,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194933/thumbnails/1.jpg","file_name":"qt7ct1s5wt.pdf","download_url":"https://www.academia.edu/attachments/109194933/download_file","bulk_download_file_name":"Characterization_of_a_reactive_arc_plasm.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194933/qt7ct1s5wt-libre.pdf?1702923763=\u0026response-content-disposition=attachment%3B+filename%3DCharacterization_of_a_reactive_arc_plasm.pdf\u0026Expires=1741733688\u0026Signature=G0WM2Jaxm40741K~SqqMPU8Vd9VjktvqDYz2OSCl9-aW9P48QG2D17SdAHJ3eBgc1fkIAOfBPzjyvhHOzdLc~NuedwOWjxtWxsTq~gWQcXKNhlAt~ZDJbxOZ8RYkZI4-e0vRXVZ1p9wyOwu3k0PUqOlzL5ICIeCMCLqKSn~pkCnVsqVP1iIcfiyFfeMmJ0UDhUi0WPZg4VOWHXWyd2u7m-N6wxSMQHPZ8tr8tMw~s2ykBmBaLXY7ic1Vjb0SUFMdY81BwEpaHYVdMly3Grg2icYUtcExvrjV9XIB--62WdNvdLv5MTrJrtWTQ9ONqfdJS6lItxAUQetJsDK~QcHWXQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":117555,"name":"Plasma","url":"https://www.academia.edu/Documents/in/Plasma"}],"urls":[{"id":37334646,"url":"https://escholarship.org/content/qt7ct1s5wt/qt7ct1s5wt.pdf?t=p0hiks"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111751758"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111751758/Building_on_excellence_and_reputation_a_more_inclusive_i_Journal_of_Applied_Physics_i_evolves"><img alt="Research paper thumbnail of Building on excellence and reputation, a more inclusive &lt;i&gt;Journal of Applied Physics&lt;/i&gt; evolves" class="work-thumbnail" src="https://attachments.academia-assets.com/109194926/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111751758/Building_on_excellence_and_reputation_a_more_inclusive_i_Journal_of_Applied_Physics_i_evolves">Building on excellence and reputation, a more inclusive &lt;i&gt;Journal of Applied Physics&lt;/i&gt; evolves</a></div><div class="wp-workCard_item"><span>Journal of Applied Physics</span><span>, Mar 15, 2022</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Building on excellence and reputation, a more inclusive Journal of Applied Physics evolves</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1dc5a29e71d86d9e6801e12ea91ed21b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109194926,&quot;asset_id&quot;:111751758,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109194926/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111751758"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111751758"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111751758; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111751758]").text(description); $(".js-view-count[data-work-id=111751758]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111751758; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111751758']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1dc5a29e71d86d9e6801e12ea91ed21b" } } $('.js-work-strip[data-work-id=111751758]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111751758,"title":"Building on excellence and reputation, a more inclusive \u003ci\u003eJournal of Applied Physics\u003c/i\u003e evolves","translated_title":"","metadata":{"publisher":"American Institute of Physics","grobid_abstract":"Building on excellence and reputation, a more inclusive Journal of Applied Physics evolves","publication_date":{"day":15,"month":3,"year":2022,"errors":{}},"publication_name":"Journal of Applied Physics","grobid_abstract_attachment_id":109194926},"translated_abstract":null,"internal_url":"https://www.academia.edu/111751758/Building_on_excellence_and_reputation_a_more_inclusive_i_Journal_of_Applied_Physics_i_evolves","translated_internal_url":"","created_at":"2023-12-18T09:28:32.513-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33147769,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":109194926,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194926/thumbnails/1.jpg","file_name":"5.pdf","download_url":"https://www.academia.edu/attachments/109194926/download_file","bulk_download_file_name":"Building_on_excellence_and_reputation_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194926/5-libre.pdf?1702923767=\u0026response-content-disposition=attachment%3B+filename%3DBuilding_on_excellence_and_reputation_a.pdf\u0026Expires=1741733688\u0026Signature=RTD3L1FS32KFOMEdidWxv3lS6NGG8CTYV5NWZpWo6BrMDbQAFqYietC6PWR~u~6DBQhfVYJ1hMKDEOMqcK4Wa39fGSBU7S2DwT869vXWCTl-i2HGVnkp~eEpTzcJIIWAV3agPjJLHDd~tn5Ywg1uPlmabtvdRg~ppO4g~OqZFKEDK~GTFUpCXrEHkDMwFCImdeMmqIxaLjaD-bzRvt~YzE-kZi-hS4nXZr54CWa2oUezne4tdn7Gcc15Y9vfgeFwznkIQysFMMXiQ8ixDEwdPhBViOvou21vXkUaNge~4Yn9EdtJTzvFHm3orFmhrmNa9wG5X3JTwqVm~t0BWLGWWQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Building_on_excellence_and_reputation_a_more_inclusive_i_Journal_of_Applied_Physics_i_evolves","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"Building on excellence and reputation, a more inclusive Journal of Applied Physics evolves","owner":{"id":33147769,"first_name":"Andre","middle_initials":"","last_name":"Anders","page_name":"AndreAnders","domain_name":"uni-leipzig1","created_at":"2015-07-17T15:40:22.246-07:00","display_name":"Andre Anders","url":"https://uni-leipzig1.academia.edu/AndreAnders"},"attachments":[{"id":109194926,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194926/thumbnails/1.jpg","file_name":"5.pdf","download_url":"https://www.academia.edu/attachments/109194926/download_file","bulk_download_file_name":"Building_on_excellence_and_reputation_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194926/5-libre.pdf?1702923767=\u0026response-content-disposition=attachment%3B+filename%3DBuilding_on_excellence_and_reputation_a.pdf\u0026Expires=1741733688\u0026Signature=RTD3L1FS32KFOMEdidWxv3lS6NGG8CTYV5NWZpWo6BrMDbQAFqYietC6PWR~u~6DBQhfVYJ1hMKDEOMqcK4Wa39fGSBU7S2DwT869vXWCTl-i2HGVnkp~eEpTzcJIIWAV3agPjJLHDd~tn5Ywg1uPlmabtvdRg~ppO4g~OqZFKEDK~GTFUpCXrEHkDMwFCImdeMmqIxaLjaD-bzRvt~YzE-kZi-hS4nXZr54CWa2oUezne4tdn7Gcc15Y9vfgeFwznkIQysFMMXiQ8ixDEwdPhBViOvou21vXkUaNge~4Yn9EdtJTzvFHm3orFmhrmNa9wG5X3JTwqVm~t0BWLGWWQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":9138,"name":"Applied Physics","url":"https://www.academia.edu/Documents/in/Applied_Physics"},{"id":48977,"name":"Reputation","url":"https://www.academia.edu/Documents/in/Reputation"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":173206,"name":"Excellence","url":"https://www.academia.edu/Documents/in/Excellence"}],"urls":[{"id":37334644,"url":"https://aip.scitation.org/doi/pdf/10.1063/5.0088430"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111751757"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/111751757/Properties_of_gallium_oxide_thin_films_grown_by_ion_beam_sputter_deposition_at_room_temperature"><img alt="Research paper thumbnail of Properties of gallium oxide thin films grown by ion beam sputter deposition at room temperature" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/111751757/Properties_of_gallium_oxide_thin_films_grown_by_ion_beam_sputter_deposition_at_room_temperature">Properties of gallium oxide thin films grown by ion beam sputter deposition at room temperature</a></div><div class="wp-workCard_item"><span>Journal of vacuum science &amp; technology</span><span>, May 1, 2022</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Gallium oxide thin films were grown by ion beam sputter deposition (IBSD) at room temperature on ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Gallium oxide thin films were grown by ion beam sputter deposition (IBSD) at room temperature on Si substrates with systematically varied process parameters: primary ion energy, primary ion species (O2+ and Ar+), sputtering geometry (ion incidence angle α and polar emission angle β), and O2 background pressure. No substrate heating was applied because the goal of these experiments was to investigate the impact of the energetic film-forming species on thin film properties. The films were characterized with regard to film thickness, growth rate, crystallinity, surface roughness, mass density, elemental composition and its depth profiles, and optical properties. All films were found to be amorphous with a surface roughness of less than 1 nm. The stoichiometry of the films improved with an increase in the energy of film-forming species. The mass density and the optical properties, including the index of refraction, are correlated and show a dependency on the kinetic energy of the film-forming species. The ranges of IBSD parameters, which are most promising for further improvement of the film quality, are discussed.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111751757"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111751757"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111751757; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111751757]").text(description); $(".js-view-count[data-work-id=111751757]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111751757; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111751757']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=111751757]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111751757,"title":"Properties of gallium oxide thin films grown by ion beam sputter deposition at room temperature","translated_title":"","metadata":{"abstract":"Gallium oxide thin films were grown by ion beam sputter deposition (IBSD) at room temperature on Si substrates with systematically varied process parameters: primary ion energy, primary ion species (O2+ and Ar+), sputtering geometry (ion incidence angle α and polar emission angle β), and O2 background pressure. No substrate heating was applied because the goal of these experiments was to investigate the impact of the energetic film-forming species on thin film properties. The films were characterized with regard to film thickness, growth rate, crystallinity, surface roughness, mass density, elemental composition and its depth profiles, and optical properties. All films were found to be amorphous with a surface roughness of less than 1 nm. The stoichiometry of the films improved with an increase in the energy of film-forming species. The mass density and the optical properties, including the index of refraction, are correlated and show a dependency on the kinetic energy of the film-forming species. The ranges of IBSD parameters, which are most promising for further improvement of the film quality, are discussed.","publisher":"American Institute of Physics","publication_date":{"day":1,"month":5,"year":2022,"errors":{}},"publication_name":"Journal of vacuum science \u0026 technology"},"translated_abstract":"Gallium oxide thin films were grown by ion beam sputter deposition (IBSD) at room temperature on Si substrates with systematically varied process parameters: primary ion energy, primary ion species (O2+ and Ar+), sputtering geometry (ion incidence angle α and polar emission angle β), and O2 background pressure. No substrate heating was applied because the goal of these experiments was to investigate the impact of the energetic film-forming species on thin film properties. The films were characterized with regard to film thickness, growth rate, crystallinity, surface roughness, mass density, elemental composition and its depth profiles, and optical properties. All films were found to be amorphous with a surface roughness of less than 1 nm. The stoichiometry of the films improved with an increase in the energy of film-forming species. The mass density and the optical properties, including the index of refraction, are correlated and show a dependency on the kinetic energy of the film-forming species. The ranges of IBSD parameters, which are most promising for further improvement of the film quality, are discussed.","internal_url":"https://www.academia.edu/111751757/Properties_of_gallium_oxide_thin_films_grown_by_ion_beam_sputter_deposition_at_room_temperature","translated_internal_url":"","created_at":"2023-12-18T09:28:32.364-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33147769,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Properties_of_gallium_oxide_thin_films_grown_by_ion_beam_sputter_deposition_at_room_temperature","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Gallium oxide thin films were grown by ion beam sputter deposition (IBSD) at room temperature on Si substrates with systematically varied process parameters: primary ion energy, primary ion species (O2+ and Ar+), sputtering geometry (ion incidence angle α and polar emission angle β), and O2 background pressure. No substrate heating was applied because the goal of these experiments was to investigate the impact of the energetic film-forming species on thin film properties. The films were characterized with regard to film thickness, growth rate, crystallinity, surface roughness, mass density, elemental composition and its depth profiles, and optical properties. All films were found to be amorphous with a surface roughness of less than 1 nm. The stoichiometry of the films improved with an increase in the energy of film-forming species. The mass density and the optical properties, including the index of refraction, are correlated and show a dependency on the kinetic energy of the film-forming species. The ranges of IBSD parameters, which are most promising for further improvement of the film quality, are discussed.","owner":{"id":33147769,"first_name":"Andre","middle_initials":"","last_name":"Anders","page_name":"AndreAnders","domain_name":"uni-leipzig1","created_at":"2015-07-17T15:40:22.246-07:00","display_name":"Andre Anders","url":"https://uni-leipzig1.academia.edu/AndreAnders"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":101573,"name":"Thin Film","url":"https://www.academia.edu/Documents/in/Thin_Film"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":185387,"name":"Sputtering","url":"https://www.academia.edu/Documents/in/Sputtering"},{"id":192323,"name":"Crystallinity","url":"https://www.academia.edu/Documents/in/Crystallinity"},{"id":688966,"name":"Gallium","url":"https://www.academia.edu/Documents/in/Gallium"},{"id":693812,"name":"Ion Beam","url":"https://www.academia.edu/Documents/in/Ion_Beam"},{"id":925604,"name":"Sputter Deposition","url":"https://www.academia.edu/Documents/in/Sputter_Deposition"},{"id":1801184,"name":"Vacuum Science and Technology","url":"https://www.academia.edu/Documents/in/Vacuum_Science_and_Technology"}],"urls":[{"id":37334643,"url":"https://doi.org/10.1116/6.0001825"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111751756"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/111751756/Heavy_Ion_Fusion_Science_Virtual_National_Laboratory_1st_Quarter_FY09_Milestone_Report"><img alt="Research paper thumbnail of Heavy Ion Fusion Science Virtual National Laboratory 1st Quarter FY09 Milestone Report" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/111751756/Heavy_Ion_Fusion_Science_Virtual_National_Laboratory_1st_Quarter_FY09_Milestone_Report">Heavy Ion Fusion Science Virtual National Laboratory 1st Quarter FY09 Milestone Report</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This milestone has been met. In the previous quarter (3rd quarter FY2008), the Heavy Ion Fusion S...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This milestone has been met. In the previous quarter (3rd quarter FY2008), the Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) completed the new experimental target chamber facility for future Warm Dense Matter (WDM) experiments [1]. The target chamber is operational and target experiments are now underway, using beams focused by a final focus solenoid and compressed by an improved bunching waveform. Initial experiments have demonstrated the capability of the Neutralized Drift Compression Experiment (NDCX) beam to heat bulk matter in target foils. The experiments have focused on tuning and characterizing the NDCX beam in the target chamber, implementing the target assembly, and implementing target diagnostics in the target chamber environment. We have completed a characterization and initial optimization of the compressed and uncompressed NDCX beam entering the target chamber. The neutralizing plasma has been significantly improved to increase the beam neutralization in the target chamber. Preliminary results from recent beam tests of a gold cone for concentrating beam energy on target are encouraging and indicate the potential to double beam intensity on target. Other advantages of the cone include the large amount of neutralizing secondary electrons expected from the grazing incidence at the cone walls, and the shielding of the target from the edges of the beam pulse. The first target temperature measurements with the fast optical pyrometer were made on Sep. 12, 2008. The fast optical pyrometer is a unique and significant new diagnostic. These new results demonstrate for the first time beam heating of the target to a temperature well over 2000 K. The initial experimental results are suggestive of potentially interesting physics. The rapid initial rise and subsequent decay of the target temperature during the beam pulse indicate changes in the balance of beam heating and target evaporative cooling, a behavior which may be affected by phenomena such as droplet formation and rapid changes in the optical properties of the hot target material. NDCX, possibly uniquely, is capable of studying these changes because of its wide range of diagnostic capabilities. These capabilities include target diagnostics already in place such as the fast pyrometer and streak camera, as well as the ability to measure both ion beam transmission and optical transmission through the foil. Measurements with these diagnostic techniques can help determine the rate at which the target is breaking up into droplets and the rate at which its bulk optical properties are changing.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111751756"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111751756"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111751756; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111751756]").text(description); $(".js-view-count[data-work-id=111751756]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111751756; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111751756']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=111751756]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111751756,"title":"Heavy Ion Fusion Science Virtual National Laboratory 1st Quarter FY09 Milestone Report","translated_title":"","metadata":{"abstract":"This milestone has been met. In the previous quarter (3rd quarter FY2008), the Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) completed the new experimental target chamber facility for future Warm Dense Matter (WDM) experiments [1]. The target chamber is operational and target experiments are now underway, using beams focused by a final focus solenoid and compressed by an improved bunching waveform. Initial experiments have demonstrated the capability of the Neutralized Drift Compression Experiment (NDCX) beam to heat bulk matter in target foils. The experiments have focused on tuning and characterizing the NDCX beam in the target chamber, implementing the target assembly, and implementing target diagnostics in the target chamber environment. We have completed a characterization and initial optimization of the compressed and uncompressed NDCX beam entering the target chamber. The neutralizing plasma has been significantly improved to increase the beam neutralization in the target chamber. Preliminary results from recent beam tests of a gold cone for concentrating beam energy on target are encouraging and indicate the potential to double beam intensity on target. Other advantages of the cone include the large amount of neutralizing secondary electrons expected from the grazing incidence at the cone walls, and the shielding of the target from the edges of the beam pulse. The first target temperature measurements with the fast optical pyrometer were made on Sep. 12, 2008. The fast optical pyrometer is a unique and significant new diagnostic. These new results demonstrate for the first time beam heating of the target to a temperature well over 2000 K. The initial experimental results are suggestive of potentially interesting physics. The rapid initial rise and subsequent decay of the target temperature during the beam pulse indicate changes in the balance of beam heating and target evaporative cooling, a behavior which may be affected by phenomena such as droplet formation and rapid changes in the optical properties of the hot target material. NDCX, possibly uniquely, is capable of studying these changes because of its wide range of diagnostic capabilities. These capabilities include target diagnostics already in place such as the fast pyrometer and streak camera, as well as the ability to measure both ion beam transmission and optical transmission through the foil. Measurements with these diagnostic techniques can help determine the rate at which the target is breaking up into droplets and the rate at which its bulk optical properties are changing.","publication_date":{"day":22,"month":12,"year":2008,"errors":{}}},"translated_abstract":"This milestone has been met. In the previous quarter (3rd quarter FY2008), the Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) completed the new experimental target chamber facility for future Warm Dense Matter (WDM) experiments [1]. The target chamber is operational and target experiments are now underway, using beams focused by a final focus solenoid and compressed by an improved bunching waveform. Initial experiments have demonstrated the capability of the Neutralized Drift Compression Experiment (NDCX) beam to heat bulk matter in target foils. The experiments have focused on tuning and characterizing the NDCX beam in the target chamber, implementing the target assembly, and implementing target diagnostics in the target chamber environment. We have completed a characterization and initial optimization of the compressed and uncompressed NDCX beam entering the target chamber. The neutralizing plasma has been significantly improved to increase the beam neutralization in the target chamber. Preliminary results from recent beam tests of a gold cone for concentrating beam energy on target are encouraging and indicate the potential to double beam intensity on target. Other advantages of the cone include the large amount of neutralizing secondary electrons expected from the grazing incidence at the cone walls, and the shielding of the target from the edges of the beam pulse. The first target temperature measurements with the fast optical pyrometer were made on Sep. 12, 2008. The fast optical pyrometer is a unique and significant new diagnostic. These new results demonstrate for the first time beam heating of the target to a temperature well over 2000 K. The initial experimental results are suggestive of potentially interesting physics. The rapid initial rise and subsequent decay of the target temperature during the beam pulse indicate changes in the balance of beam heating and target evaporative cooling, a behavior which may be affected by phenomena such as droplet formation and rapid changes in the optical properties of the hot target material. NDCX, possibly uniquely, is capable of studying these changes because of its wide range of diagnostic capabilities. These capabilities include target diagnostics already in place such as the fast pyrometer and streak camera, as well as the ability to measure both ion beam transmission and optical transmission through the foil. Measurements with these diagnostic techniques can help determine the rate at which the target is breaking up into droplets and the rate at which its bulk optical properties are changing.","internal_url":"https://www.academia.edu/111751756/Heavy_Ion_Fusion_Science_Virtual_National_Laboratory_1st_Quarter_FY09_Milestone_Report","translated_internal_url":"","created_at":"2023-12-18T09:28:32.176-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33147769,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Heavy_Ion_Fusion_Science_Virtual_National_Laboratory_1st_Quarter_FY09_Milestone_Report","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"This milestone has been met. In the previous quarter (3rd quarter FY2008), the Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) completed the new experimental target chamber facility for future Warm Dense Matter (WDM) experiments [1]. The target chamber is operational and target experiments are now underway, using beams focused by a final focus solenoid and compressed by an improved bunching waveform. Initial experiments have demonstrated the capability of the Neutralized Drift Compression Experiment (NDCX) beam to heat bulk matter in target foils. The experiments have focused on tuning and characterizing the NDCX beam in the target chamber, implementing the target assembly, and implementing target diagnostics in the target chamber environment. We have completed a characterization and initial optimization of the compressed and uncompressed NDCX beam entering the target chamber. The neutralizing plasma has been significantly improved to increase the beam neutralization in the target chamber. Preliminary results from recent beam tests of a gold cone for concentrating beam energy on target are encouraging and indicate the potential to double beam intensity on target. Other advantages of the cone include the large amount of neutralizing secondary electrons expected from the grazing incidence at the cone walls, and the shielding of the target from the edges of the beam pulse. The first target temperature measurements with the fast optical pyrometer were made on Sep. 12, 2008. The fast optical pyrometer is a unique and significant new diagnostic. These new results demonstrate for the first time beam heating of the target to a temperature well over 2000 K. The initial experimental results are suggestive of potentially interesting physics. The rapid initial rise and subsequent decay of the target temperature during the beam pulse indicate changes in the balance of beam heating and target evaporative cooling, a behavior which may be affected by phenomena such as droplet formation and rapid changes in the optical properties of the hot target material. NDCX, possibly uniquely, is capable of studying these changes because of its wide range of diagnostic capabilities. These capabilities include target diagnostics already in place such as the fast pyrometer and streak camera, as well as the ability to measure both ion beam transmission and optical transmission through the foil. Measurements with these diagnostic techniques can help determine the rate at which the target is breaking up into droplets and the rate at which its bulk optical properties are changing.","owner":{"id":33147769,"first_name":"Andre","middle_initials":"","last_name":"Anders","page_name":"AndreAnders","domain_name":"uni-leipzig1","created_at":"2015-07-17T15:40:22.246-07:00","display_name":"Andre Anders","url":"https://uni-leipzig1.academia.edu/AndreAnders"},"attachments":[],"research_interests":[{"id":9355,"name":"Equations of State","url":"https://www.academia.edu/Documents/in/Equations_of_State"},{"id":13268,"name":"Evaporation","url":"https://www.academia.edu/Documents/in/Evaporation"},{"id":48459,"name":"High Voltage","url":"https://www.academia.edu/Documents/in/High_Voltage"},{"id":80555,"name":"Heavy Ions Physics","url":"https://www.academia.edu/Documents/in/Heavy_Ions_Physics"},{"id":134591,"name":"Evaporative Cooling","url":"https://www.academia.edu/Documents/in/Evaporative_Cooling"},{"id":179332,"name":"Hydrodynamics","url":"https://www.academia.edu/Documents/in/Hydrodynamics"},{"id":212475,"name":"Electric Fields","url":"https://www.academia.edu/Documents/in/Electric_Fields"},{"id":238655,"name":"Implementation","url":"https://www.academia.edu/Documents/in/Implementation"},{"id":270366,"name":"Heat Conduction","url":"https://www.academia.edu/Documents/in/Heat_Conduction"},{"id":317745,"name":"High Speed","url":"https://www.academia.edu/Documents/in/High_Speed"},{"id":325234,"name":"Compression","url":"https://www.academia.edu/Documents/in/Compression"},{"id":418058,"name":"Dynamic Response","url":"https://www.academia.edu/Documents/in/Dynamic_Response"},{"id":542983,"name":"Heating","url":"https://www.academia.edu/Documents/in/Heating"},{"id":1031112,"name":"Emissivity","url":"https://www.academia.edu/Documents/in/Emissivity"},{"id":1120502,"name":"Experimental Data","url":"https://www.academia.edu/Documents/in/Experimental_Data"},{"id":1130559,"name":"Electric Field","url":"https://www.academia.edu/Documents/in/Electric_Field"},{"id":1320599,"name":"Equation of State","url":"https://www.academia.edu/Documents/in/Equation_of_State"},{"id":1557246,"name":"Functional Form","url":"https://www.academia.edu/Documents/in/Functional_Form"},{"id":2193830,"name":"Brightness temperature","url":"https://www.academia.edu/Documents/in/Brightness_temperature"},{"id":2282000,"name":"Current Transformer","url":"https://www.academia.edu/Documents/in/Current_Transformer"}],"urls":[{"id":37334642,"url":"https://www.osti.gov/biblio/945605"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111751755"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/111751755/Time_and_Position_Dependent_Breakdown_Volume_Calculations_to_Explain_Experimentally_Observed_Femtosecond_Laser_Induced_Plasma_Properties"><img alt="Research paper thumbnail of Time- and Position-Dependent Breakdown Volume Calculations to Explain Experimentally Observed Femtosecond Laser-Induced Plasma Properties" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/111751755/Time_and_Position_Dependent_Breakdown_Volume_Calculations_to_Explain_Experimentally_Observed_Femtosecond_Laser_Induced_Plasma_Properties">Time- and Position-Dependent Breakdown Volume Calculations to Explain Experimentally Observed Femtosecond Laser-Induced Plasma Properties</a></div><div class="wp-workCard_item"><span>ACS Photonics</span><span>, Feb 20, 2023</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111751755"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111751755"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111751755; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111751755]").text(description); $(".js-view-count[data-work-id=111751755]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111751755; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111751755']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=111751755]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111751755,"title":"Time- and Position-Dependent Breakdown Volume Calculations to Explain Experimentally Observed Femtosecond Laser-Induced Plasma Properties","translated_title":"","metadata":{"publisher":"American Chemical Society","publication_date":{"day":20,"month":2,"year":2023,"errors":{}},"publication_name":"ACS Photonics"},"translated_abstract":null,"internal_url":"https://www.academia.edu/111751755/Time_and_Position_Dependent_Breakdown_Volume_Calculations_to_Explain_Experimentally_Observed_Femtosecond_Laser_Induced_Plasma_Properties","translated_internal_url":"","created_at":"2023-12-18T09:28:32.008-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33147769,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Time_and_Position_Dependent_Breakdown_Volume_Calculations_to_Explain_Experimentally_Observed_Femtosecond_Laser_Induced_Plasma_Properties","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":33147769,"first_name":"Andre","middle_initials":"","last_name":"Anders","page_name":"AndreAnders","domain_name":"uni-leipzig1","created_at":"2015-07-17T15:40:22.246-07:00","display_name":"Andre Anders","url":"https://uni-leipzig1.academia.edu/AndreAnders"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":4135,"name":"Laser","url":"https://www.academia.edu/Documents/in/Laser"},{"id":117555,"name":"Plasma","url":"https://www.academia.edu/Documents/in/Plasma"},{"id":359621,"name":"Femtosecond","url":"https://www.academia.edu/Documents/in/Femtosecond"}],"urls":[{"id":37334641,"url":"https://doi.org/10.1021/acsphotonics.2c00746"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111751754"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111751754/Apparatus_and_methods_for_deposition_of_materials_on_interior_surfaces_of_hollow_components"><img alt="Research paper thumbnail of Apparatus and methods for deposition of materials on interior surfaces of hollow components" class="work-thumbnail" src="https://attachments.academia-assets.com/109194932/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111751754/Apparatus_and_methods_for_deposition_of_materials_on_interior_surfaces_of_hollow_components">Apparatus and methods for deposition of materials on interior surfaces of hollow components</a></div><div class="wp-workCard_item"><span>OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information)</span><span>, Jul 30, 2019</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="927b0c971f93f312f7123f0ce924372d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109194932,&quot;asset_id&quot;:111751754,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109194932/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111751754"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111751754"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111751754; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111751754]").text(description); $(".js-view-count[data-work-id=111751754]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111751754; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111751754']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "927b0c971f93f312f7123f0ce924372d" } } $('.js-work-strip[data-work-id=111751754]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111751754,"title":"Apparatus and methods for deposition of materials on interior surfaces of hollow components","translated_title":"","metadata":{"publisher":"U.S. Department of Energy Office of Scientific and Technical Information","publication_date":{"day":30,"month":7,"year":2019,"errors":{}},"publication_name":"OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/111751754/Apparatus_and_methods_for_deposition_of_materials_on_interior_surfaces_of_hollow_components","translated_internal_url":"","created_at":"2023-12-18T09:28:31.869-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33147769,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":109194932,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194932/thumbnails/1.jpg","file_name":"10364489.pdf","download_url":"https://www.academia.edu/attachments/109194932/download_file","bulk_download_file_name":"Apparatus_and_methods_for_deposition_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194932/10364489-libre.pdf?1702923764=\u0026response-content-disposition=attachment%3B+filename%3DApparatus_and_methods_for_deposition_of.pdf\u0026Expires=1741733689\u0026Signature=WhcOAvmYo0ipsH5tIw7B9vsn6S77uQoEDR6cRg0w-fGRfpUxOem9~XsCIDEmjY12QLhKB4WMm5cp2cu1AiwQq4gRO78dyfWisqJPnojEmKoMjDYGulf6Y2D9xuL1eaFK2PDMwIj8wAulJ~963d8~IQak9hkuE3Kr5l1dnCw3crWFqxHVWa3-jk5YOPYRIZFBtcYFIgK-pYAd~aBOU~q3sV72zaoccf847EIFPBpVAxEFPIwrOVtyH60g9naxCYyR43hHk-iVYI7jtS13ipzey43GTmmQEEfFygHRQkPaZIPB6Lpi~xc7ZtYNVsVsK5JvcKNBNWqtDhuF5GfHa4Sc9w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Apparatus_and_methods_for_deposition_of_materials_on_interior_surfaces_of_hollow_components","translated_slug":"","page_count":12,"language":"en","content_type":"Work","summary":null,"owner":{"id":33147769,"first_name":"Andre","middle_initials":"","last_name":"Anders","page_name":"AndreAnders","domain_name":"uni-leipzig1","created_at":"2015-07-17T15:40:22.246-07:00","display_name":"Andre Anders","url":"https://uni-leipzig1.academia.edu/AndreAnders"},"attachments":[{"id":109194932,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194932/thumbnails/1.jpg","file_name":"10364489.pdf","download_url":"https://www.academia.edu/attachments/109194932/download_file","bulk_download_file_name":"Apparatus_and_methods_for_deposition_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194932/10364489-libre.pdf?1702923764=\u0026response-content-disposition=attachment%3B+filename%3DApparatus_and_methods_for_deposition_of.pdf\u0026Expires=1741733689\u0026Signature=WhcOAvmYo0ipsH5tIw7B9vsn6S77uQoEDR6cRg0w-fGRfpUxOem9~XsCIDEmjY12QLhKB4WMm5cp2cu1AiwQq4gRO78dyfWisqJPnojEmKoMjDYGulf6Y2D9xuL1eaFK2PDMwIj8wAulJ~963d8~IQak9hkuE3Kr5l1dnCw3crWFqxHVWa3-jk5YOPYRIZFBtcYFIgK-pYAd~aBOU~q3sV72zaoccf847EIFPBpVAxEFPIwrOVtyH60g9naxCYyR43hHk-iVYI7jtS13ipzey43GTmmQEEfFygHRQkPaZIPB6Lpi~xc7ZtYNVsVsK5JvcKNBNWqtDhuF5GfHa4Sc9w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":109194931,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194931/thumbnails/1.jpg","file_name":"10364489.pdf","download_url":"https://www.academia.edu/attachments/109194931/download_file","bulk_download_file_name":"Apparatus_and_methods_for_deposition_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194931/10364489-libre.pdf?1702923762=\u0026response-content-disposition=attachment%3B+filename%3DApparatus_and_methods_for_deposition_of.pdf\u0026Expires=1741733689\u0026Signature=EX7XPHOR6mVoDYX4CbdNst6Y-jjWs4Oudy1r0AR5IJKM23SgTWlzmCZaAcVA4~bmEv1NBeeaXYyChHJiuD2saL9henZOmiZ4JD9lofQcd-ddxDjVC35nJSgQQLOu-Q8SGJGntWqKehxld46GzPPA4uCfLvGKg95K4uIpHNhk80Ixu9CngCjPNfAlge8x-6G30iHFns4ILYlprMxVqCYMVkD9CRXcJl~nlY3S1jFz4~bcWfcL-XDSvSi7aQb4DQRsN9XZBPsvGVommem9kbz-OfGoXCI7WiBMSfsW5TogK-t57KxbOs4lAQF5UaoWUUhYa6CY0oXAMNBZuYsVosKvgw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"}],"urls":[{"id":37334640,"url":"https://image-ppubs.uspto.gov/dirsearch-public/print/downloadPdf/10364489"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111751753"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111751753/Pulsed_biasing_techniques_with_fully_ionized_metal_plasmas"><img alt="Research paper thumbnail of Pulsed biasing techniques with fully ionized metal plasmas" class="work-thumbnail" src="https://attachments.academia-assets.com/109194924/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111751753/Pulsed_biasing_techniques_with_fully_ionized_metal_plasmas">Pulsed biasing techniques with fully ionized metal plasmas</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">(MePIIID) has been developed over the last decade as a hybrid ion implantation and thin-film depo...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">(MePIIID) has been developed over the last decade as a hybrid ion implantation and thin-film deposition technique. Depending on the substrate bias voltage, MePIIID can also operate in a pure ion implantation or pure ion deposition mode. This paper is a brief review of the MePIIID technique and results obtained. The fully ionized metal or carbon plasma is conventionally produced by filtered vacuum arcs. Magnetic filters are used to remove unwanted macroparticles. Pulsing the substrate bias is advantageous for several reasons, and primarily a means of suppressing substrate arcing. Heat management and stress control are other important factors. Highly adherent films of a-C (diamond-like carbon), metals, oxides, nitrides, and carbides have been formed, and film quality can superior to films obtained by evaporation or sputtering.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="58dc5ea20eced619917a85a09ca3d66d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109194924,&quot;asset_id&quot;:111751753,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109194924/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111751753"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111751753"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111751753; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111751753]").text(description); $(".js-view-count[data-work-id=111751753]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111751753; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111751753']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "58dc5ea20eced619917a85a09ca3d66d" } } $('.js-work-strip[data-work-id=111751753]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111751753,"title":"Pulsed biasing techniques with fully ionized metal plasmas","translated_title":"","metadata":{"grobid_abstract":"(MePIIID) has been developed over the last decade as a hybrid ion implantation and thin-film deposition technique. Depending on the substrate bias voltage, MePIIID can also operate in a pure ion implantation or pure ion deposition mode. This paper is a brief review of the MePIIID technique and results obtained. The fully ionized metal or carbon plasma is conventionally produced by filtered vacuum arcs. Magnetic filters are used to remove unwanted macroparticles. Pulsing the substrate bias is advantageous for several reasons, and primarily a means of suppressing substrate arcing. Heat management and stress control are other important factors. Highly adherent films of a-C (diamond-like carbon), metals, oxides, nitrides, and carbides have been formed, and film quality can superior to films obtained by evaporation or sputtering.","publication_date":{"day":23,"month":2,"year":2001,"errors":{}},"grobid_abstract_attachment_id":109194924},"translated_abstract":null,"internal_url":"https://www.academia.edu/111751753/Pulsed_biasing_techniques_with_fully_ionized_metal_plasmas","translated_internal_url":"","created_at":"2023-12-18T09:28:31.714-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33147769,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":109194924,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194924/thumbnails/1.jpg","file_name":"qt8np1k5m9.pdf","download_url":"https://www.academia.edu/attachments/109194924/download_file","bulk_download_file_name":"Pulsed_biasing_techniques_with_fully_ion.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194924/qt8np1k5m9-libre.pdf?1702923768=\u0026response-content-disposition=attachment%3B+filename%3DPulsed_biasing_techniques_with_fully_ion.pdf\u0026Expires=1741733689\u0026Signature=dlHnZ3hh9BwuSVOPHFCtweC0vkPf0WIYTFLOrrFvsvNx7j23wQiFr~wkRDmKaiZn6p7tr1MJdGE81jstw6wSfMLHlekA1b~x33cxR21fxjU4JqsqBYd3aCf-w4oXlEZIwEPkv~BoYc~RgyfQKfj5QUlSpklcpSl7ZbjKmHoFOzCa31DCzKALMB11~9vVVsAGegf0-jVm9VKytLvnVSfBD2YAOQ5IPVIKDHfMibVTwopH63gDAk6PVOsJ9Vw4JKGlBTQkJU9~9GVqgWUDQbZbHZUlvChrcZhmgZvwbhDW16YYfnoS3T6k7kZ9lmR9acFkReJzl7rcFZFWOw~1lHBuFg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Pulsed_biasing_techniques_with_fully_ionized_metal_plasmas","translated_slug":"","page_count":3,"language":"en","content_type":"Work","summary":"(MePIIID) has been developed over the last decade as a hybrid ion implantation and thin-film deposition technique. Depending on the substrate bias voltage, MePIIID can also operate in a pure ion implantation or pure ion deposition mode. This paper is a brief review of the MePIIID technique and results obtained. The fully ionized metal or carbon plasma is conventionally produced by filtered vacuum arcs. Magnetic filters are used to remove unwanted macroparticles. Pulsing the substrate bias is advantageous for several reasons, and primarily a means of suppressing substrate arcing. Heat management and stress control are other important factors. Highly adherent films of a-C (diamond-like carbon), metals, oxides, nitrides, and carbides have been formed, and film quality can superior to films obtained by evaporation or sputtering.","owner":{"id":33147769,"first_name":"Andre","middle_initials":"","last_name":"Anders","page_name":"AndreAnders","domain_name":"uni-leipzig1","created_at":"2015-07-17T15:40:22.246-07:00","display_name":"Andre Anders","url":"https://uni-leipzig1.academia.edu/AndreAnders"},"attachments":[{"id":109194924,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194924/thumbnails/1.jpg","file_name":"qt8np1k5m9.pdf","download_url":"https://www.academia.edu/attachments/109194924/download_file","bulk_download_file_name":"Pulsed_biasing_techniques_with_fully_ion.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194924/qt8np1k5m9-libre.pdf?1702923768=\u0026response-content-disposition=attachment%3B+filename%3DPulsed_biasing_techniques_with_fully_ion.pdf\u0026Expires=1741733689\u0026Signature=dlHnZ3hh9BwuSVOPHFCtweC0vkPf0WIYTFLOrrFvsvNx7j23wQiFr~wkRDmKaiZn6p7tr1MJdGE81jstw6wSfMLHlekA1b~x33cxR21fxjU4JqsqBYd3aCf-w4oXlEZIwEPkv~BoYc~RgyfQKfj5QUlSpklcpSl7ZbjKmHoFOzCa31DCzKALMB11~9vVVsAGegf0-jVm9VKytLvnVSfBD2YAOQ5IPVIKDHfMibVTwopH63gDAk6PVOsJ9Vw4JKGlBTQkJU9~9GVqgWUDQbZbHZUlvChrcZhmgZvwbhDW16YYfnoS3T6k7kZ9lmR9acFkReJzl7rcFZFWOw~1lHBuFg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":109194925,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194925/thumbnails/1.jpg","file_name":"qt8np1k5m9.pdf","download_url":"https://www.academia.edu/attachments/109194925/download_file","bulk_download_file_name":"Pulsed_biasing_techniques_with_fully_ion.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194925/qt8np1k5m9-libre.pdf?1702923765=\u0026response-content-disposition=attachment%3B+filename%3DPulsed_biasing_techniques_with_fully_ion.pdf\u0026Expires=1741733689\u0026Signature=EHf~FX-lueW1hucI9eVnLEc3eecWHy-NlghMUSC5k2oNmp1-mhfUNKEQdiQcNg3dhnxhrDaeqwPkIf~gjl3I1RVZOX6dO~ACpo3oEl4YcwNB1kQ9LVMPkbh9RU7krpk2t9iMOferzgy6g6Qj6JoiHcQifqMMTdRamjaAHq2qklDLdxcte~qonkMKINjtjXipExzzaxFOs6HMnt7d2nN4vkVYxJfaPc9nj8UVeqhF0twuGGl1rVrS8u6Ip1M4-iNTSlBwVnNFHsxvQkmPBv4SoN5V683u~oM2DZxED7gjFRD4i0SUY~AYGGQ3IoKj2OhZiE9xsCtwAfVkuWvVp9TUQQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":117555,"name":"Plasma","url":"https://www.academia.edu/Documents/in/Plasma"},{"id":329196,"name":"Ionization","url":"https://www.academia.edu/Documents/in/Ionization"}],"urls":[{"id":37334639,"url":"https://escholarship.org/content/qt8np1k5m9/qt8np1k5m9.pdf?t=p2asmy"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111751752"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111751752/Formation_of_hollow_atoms_above_diamond_surfaces"><img alt="Research paper thumbnail of Formation of hollow atoms above diamond surfaces" class="work-thumbnail" src="https://attachments.academia-assets.com/109194920/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111751752/Formation_of_hollow_atoms_above_diamond_surfaces">Formation of hollow atoms above diamond surfaces</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1fe0302453642865cd8726148594f3ea" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109194920,&quot;asset_id&quot;:111751752,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109194920/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111751752"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111751752"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111751752; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111751752]").text(description); $(".js-view-count[data-work-id=111751752]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111751752; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111751752']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1fe0302453642865cd8726148594f3ea" } } $('.js-work-strip[data-work-id=111751752]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111751752,"title":"Formation of hollow atoms above diamond surfaces","translated_title":"","metadata":{"ai_abstract":"This study investigates the interaction of Highly Charged Ions (HCIs) with diamond surfaces, focusing on the effects of surface characteristics such as conductivity and the presence of graphitic layers. By analyzing hollow atom X-ray spectra emitted during the interaction, the research reveals insights into how HCI modifies the surfaces, particularly highlighting the roles of hydrogen and oxygen passivation, surface conductivity, and the implications for characterizing and altering diamond surfaces in real time.","publication_date":{"day":2,"month":5,"year":2006,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/111751752/Formation_of_hollow_atoms_above_diamond_surfaces","translated_internal_url":"","created_at":"2023-12-18T09:28:30.066-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33147769,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":109194920,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194920/thumbnails/1.jpg","file_name":"qt37q0b8h1.pdf","download_url":"https://www.academia.edu/attachments/109194920/download_file","bulk_download_file_name":"Formation_of_hollow_atoms_above_diamond.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194920/qt37q0b8h1-libre.pdf?1702923764=\u0026response-content-disposition=attachment%3B+filename%3DFormation_of_hollow_atoms_above_diamond.pdf\u0026Expires=1741733689\u0026Signature=fVjecjdb7zFeDRB73cvescN4g0BR0EN9ka9~6r3dDh5M5BXj8EU3sILeG3PsfDjQQgN48DpEUPng1A2pF0LOx0AGmFiiIPuNBSh2X2rbSJxAkvS7-xnfBtupa7bU7QMyEOaU5CZ~TtduO7hRCwlbH0al-Z5yan~unwPE3Krcf0SSB6NCC-5kZnV1-UFZXhybCjcMnTPSPSf88DwtK26H8d0Xw-eajunOyYV7T2JCUlzuTobD8RYb7CjffSrCxu3jt2CLIyL9~0iN8I6KxWyHIrsgiDWi8vR1Yg4Xdkmzy5IdRa5Q3ruUIYbMXSJJ2cPqc6iLtGHQRDnfDvBtnbkZ~w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Formation_of_hollow_atoms_above_diamond_surfaces","translated_slug":"","page_count":3,"language":"en","content_type":"Work","summary":null,"owner":{"id":33147769,"first_name":"Andre","middle_initials":"","last_name":"Anders","page_name":"AndreAnders","domain_name":"uni-leipzig1","created_at":"2015-07-17T15:40:22.246-07:00","display_name":"Andre Anders","url":"https://uni-leipzig1.academia.edu/AndreAnders"},"attachments":[{"id":109194920,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194920/thumbnails/1.jpg","file_name":"qt37q0b8h1.pdf","download_url":"https://www.academia.edu/attachments/109194920/download_file","bulk_download_file_name":"Formation_of_hollow_atoms_above_diamond.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194920/qt37q0b8h1-libre.pdf?1702923764=\u0026response-content-disposition=attachment%3B+filename%3DFormation_of_hollow_atoms_above_diamond.pdf\u0026Expires=1741733689\u0026Signature=fVjecjdb7zFeDRB73cvescN4g0BR0EN9ka9~6r3dDh5M5BXj8EU3sILeG3PsfDjQQgN48DpEUPng1A2pF0LOx0AGmFiiIPuNBSh2X2rbSJxAkvS7-xnfBtupa7bU7QMyEOaU5CZ~TtduO7hRCwlbH0al-Z5yan~unwPE3Krcf0SSB6NCC-5kZnV1-UFZXhybCjcMnTPSPSf88DwtK26H8d0Xw-eajunOyYV7T2JCUlzuTobD8RYb7CjffSrCxu3jt2CLIyL9~0iN8I6KxWyHIrsgiDWi8vR1Yg4Xdkmzy5IdRa5Q3ruUIYbMXSJJ2cPqc6iLtGHQRDnfDvBtnbkZ~w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":109194919,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194919/thumbnails/1.jpg","file_name":"qt37q0b8h1.pdf","download_url":"https://www.academia.edu/attachments/109194919/download_file","bulk_download_file_name":"Formation_of_hollow_atoms_above_diamond.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194919/qt37q0b8h1-libre.pdf?1702923765=\u0026response-content-disposition=attachment%3B+filename%3DFormation_of_hollow_atoms_above_diamond.pdf\u0026Expires=1741733689\u0026Signature=F50KNoIWPr4tvn0kS~cbI5fGACj5SUAnlCaS8ns9mx-6qDz8oRlnMubgOsJzItEJRE5jIf3jeZeDbu0S1SfjfWKDDHRkxbSLPiGCY~jBqebi6uTechNGdTqIbbOI~n5zkXJi4RbgChi-kia2OKF05LQPyL8ApD6Vx6eMIFBbMAsCAM7rQ8WAuNjZm5SddxXBtyIRAHrWPapYwjo~fWLIlFWEvGha~vEjsb8dzk7Uv6LduWXiSTkkE2cWz1o8qkBHirHbLvBvoxrPBZAwsPz7x4BJdNQ33DhDB28rR2tHuNz9Roj86SJwH~fReIRfIPLuYkrTV-7nO98ItUow0ErXSQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":102207,"name":"DIELECTRIC","url":"https://www.academia.edu/Documents/in/DIELECTRIC"},{"id":118104,"name":"Electron","url":"https://www.academia.edu/Documents/in/Electron"},{"id":250583,"name":"Diamond","url":"https://www.academia.edu/Documents/in/Diamond"},{"id":348756,"name":"Ion","url":"https://www.academia.edu/Documents/in/Ion"},{"id":761614,"name":"Microcrystalline","url":"https://www.academia.edu/Documents/in/Microcrystalline"}],"urls":[{"id":37334638,"url":"https://escholarship.org/content/qt37q0b8h1/qt37q0b8h1.pdf?t=p0juxw"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111751750"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111751750/Cathodic_arc_plasma_deposition_Principles_and_trends"><img alt="Research paper thumbnail of Cathodic arc plasma deposition: Principles and trends" class="work-thumbnail" src="https://attachments.academia-assets.com/109194911/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111751750/Cathodic_arc_plasma_deposition_Principles_and_trends">Cathodic arc plasma deposition: Principles and trends</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Cathodic arc plasmas have outstanding properties because they are fully ionized metal plasmas. Io...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Cathodic arc plasmas have outstanding properties because they are fully ionized metal plasmas. Ions are unusually energetic and are often multiply charged. Because of these features, superior metal and compound films can be made that are well adherent, dense, and smooth, provided that the infamous macroparticle problem is solved. Progress has been made in the design of macroparticle filters, and first versions are commercially available. Most cathodic arc deposition today is for hard compound films such as TiN and TiAlN on cutting tools, building hardware, and jewelry. These films are made without filtering. New applications are emerging, including ultrathin diamond-like carbon coatings, semiconductor metallization, and optical films, where filtered arc deposition is gaining importance.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b6daea46c310ed09c74d1c1d6b997f18" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109194911,&quot;asset_id&quot;:111751750,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109194911/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111751750"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111751750"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111751750; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111751750]").text(description); $(".js-view-count[data-work-id=111751750]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111751750; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111751750']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b6daea46c310ed09c74d1c1d6b997f18" } } $('.js-work-strip[data-work-id=111751750]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111751750,"title":"Cathodic arc plasma deposition: Principles and trends","translated_title":"","metadata":{"ai_title_tag":"Advancements in Cathodic Arc Plasma Deposition","grobid_abstract":"Cathodic arc plasmas have outstanding properties because they are fully ionized metal plasmas. Ions are unusually energetic and are often multiply charged. Because of these features, superior metal and compound films can be made that are well adherent, dense, and smooth, provided that the infamous macroparticle problem is solved. Progress has been made in the design of macroparticle filters, and first versions are commercially available. Most cathodic arc deposition today is for hard compound films such as TiN and TiAlN on cutting tools, building hardware, and jewelry. These films are made without filtering. New applications are emerging, including ultrathin diamond-like carbon coatings, semiconductor metallization, and optical films, where filtered arc deposition is gaining importance.","publication_date":{"day":1,"month":6,"year":2001,"errors":{}},"grobid_abstract_attachment_id":109194911},"translated_abstract":null,"internal_url":"https://www.academia.edu/111751750/Cathodic_arc_plasma_deposition_Principles_and_trends","translated_internal_url":"","created_at":"2023-12-18T09:28:29.920-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33147769,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":109194911,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194911/thumbnails/1.jpg","file_name":"qt3fc442qn.pdf","download_url":"https://www.academia.edu/attachments/109194911/download_file","bulk_download_file_name":"Cathodic_arc_plasma_deposition_Principle.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194911/qt3fc442qn-libre.pdf?1702923764=\u0026response-content-disposition=attachment%3B+filename%3DCathodic_arc_plasma_deposition_Principle.pdf\u0026Expires=1741733689\u0026Signature=QvYU2dA0Drifhl1AMtIB79nlsnw3521G9GSNw~v3CL8LHFQzeGzuj-aAk2TP9nNWWnDPnAwu4pBjZ5nnD~zpqrSXptnNpItvB2zlZ7kxJWkweRSS6Yr4fsgY0bNTPwhxWavEGsSzLwYpuOpqGoMhkALj34NLGDUHDiQGFbQTfUM2OTsZ5DAdIFcOrabz~CiUor2y-BPKdujBOas6rqz8SQvbDmMgQHvJne1qONoWUuy26RXWz288gKKlf1RziZQTd3bLiDdHT~~KZwftGEeVlbBSW-~pptfGbBxZpf6k~CV0lxUSnqvrSc8Cus0q7QhGMbFuyIn6viZhVdPyCrVMHw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Cathodic_arc_plasma_deposition_Principles_and_trends","translated_slug":"","page_count":3,"language":"en","content_type":"Work","summary":"Cathodic arc plasmas have outstanding properties because they are fully ionized metal plasmas. Ions are unusually energetic and are often multiply charged. Because of these features, superior metal and compound films can be made that are well adherent, dense, and smooth, provided that the infamous macroparticle problem is solved. Progress has been made in the design of macroparticle filters, and first versions are commercially available. Most cathodic arc deposition today is for hard compound films such as TiN and TiAlN on cutting tools, building hardware, and jewelry. These films are made without filtering. New applications are emerging, including ultrathin diamond-like carbon coatings, semiconductor metallization, and optical films, where filtered arc deposition is gaining importance.","owner":{"id":33147769,"first_name":"Andre","middle_initials":"","last_name":"Anders","page_name":"AndreAnders","domain_name":"uni-leipzig1","created_at":"2015-07-17T15:40:22.246-07:00","display_name":"Andre Anders","url":"https://uni-leipzig1.academia.edu/AndreAnders"},"attachments":[{"id":109194911,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194911/thumbnails/1.jpg","file_name":"qt3fc442qn.pdf","download_url":"https://www.academia.edu/attachments/109194911/download_file","bulk_download_file_name":"Cathodic_arc_plasma_deposition_Principle.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194911/qt3fc442qn-libre.pdf?1702923764=\u0026response-content-disposition=attachment%3B+filename%3DCathodic_arc_plasma_deposition_Principle.pdf\u0026Expires=1741733689\u0026Signature=QvYU2dA0Drifhl1AMtIB79nlsnw3521G9GSNw~v3CL8LHFQzeGzuj-aAk2TP9nNWWnDPnAwu4pBjZ5nnD~zpqrSXptnNpItvB2zlZ7kxJWkweRSS6Yr4fsgY0bNTPwhxWavEGsSzLwYpuOpqGoMhkALj34NLGDUHDiQGFbQTfUM2OTsZ5DAdIFcOrabz~CiUor2y-BPKdujBOas6rqz8SQvbDmMgQHvJne1qONoWUuy26RXWz288gKKlf1RziZQTd3bLiDdHT~~KZwftGEeVlbBSW-~pptfGbBxZpf6k~CV0lxUSnqvrSc8Cus0q7QhGMbFuyIn6viZhVdPyCrVMHw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":109194910,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194910/thumbnails/1.jpg","file_name":"qt3fc442qn.pdf","download_url":"https://www.academia.edu/attachments/109194910/download_file","bulk_download_file_name":"Cathodic_arc_plasma_deposition_Principle.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194910/qt3fc442qn-libre.pdf?1702923766=\u0026response-content-disposition=attachment%3B+filename%3DCathodic_arc_plasma_deposition_Principle.pdf\u0026Expires=1741733689\u0026Signature=RWSSHTjBHfZomRzbDM1pxutW0qci6-D0Ph6mr4UXdMfrKb1GpNlHGJNo3-V063-OBiBVM4qdwWLXSv3CY8q1SDyA5w2jFG8g8BZDgEAOFGz2-jtE56jg5tzknbkCngJ9W0f-hiVGILJdZrtW7QpVulNZJcI4SSXBSkJk3MyAGYJ511iMTTzcdlWgl9vFQH5UWuAziRTePt2i2I6Jy-9JiLgnYkKdw6cVPdwsmXSXs9UJSWDXBjq6oZtgArAAp8CkvmZcfhLtZtNZMUnLcW6kzlVjbaVqnVmVlBTlfqNHdydsrWCfwqorF8u8KtiR1UWHR7vlhNCBxjInWuxXJ4FWwQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":71287,"name":"Cathodic Protection","url":"https://www.academia.edu/Documents/in/Cathodic_Protection"}],"urls":[{"id":37334636,"url":"https://escholarship.org/content/qt3fc442qn/qt3fc442qn.pdf?t=p0wsiv"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111751748"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111751748/Cathodic_arcs_and_high_power_pulsed_magnetron_sputtering_A_comparison_of_plasma_formation_and_thin_film_deposition"><img alt="Research paper thumbnail of Cathodic arcs and high power pulsed magnetron sputtering: A comparison of plasma formation and thin film deposition" class="work-thumbnail" src="https://attachments.academia-assets.com/109194912/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111751748/Cathodic_arcs_and_high_power_pulsed_magnetron_sputtering_A_comparison_of_plasma_formation_and_thin_film_deposition">Cathodic arcs and high power pulsed magnetron sputtering: A comparison of plasma formation and thin film deposition</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Film formation by energetic condensation has been shown to lead to well-adherent, dense films. Fi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Film formation by energetic condensation has been shown to lead to well-adherent, dense films. Films are often under high compressive stress, but stress control is possible by pulsed high-voltage biasing, for example. Control of film growth via tuning the kinetic energy of condensing species is most efficient when the condensing species are ions, and when the degree of ionization of the plasma is high. Cathodic arc plasmas are fully ionized; they even contain multiply charged ions. The streaming plasma is supersonic, with kinetic ion energies in the range 20-150 eV, and additional energy can be provided via substrate bias. Ion formation at cathode spots and the dependence of plasma properties on the cathode material will be discussed. Along with ions, macroparticles are produced at cathode spots. This highly undesirable feature can be mitigated by plasma filters and other approaches, however, there is strong motivation to find alternative ways of producing fully ionized plasmas of condensing species. High power pulsed magnetron sputtering (HPPMS) may be one possible way of achieving this goal, at least for some target materials. In HPPMS, the power density at the magnetron target is pulsed to power levels exceeding the average power by about two orders of magnitude. Thermalization of sputtered atoms appears to be needed to accomplish ionization, and self-sputtering during each power pulse may be an important feature of HPPMS.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="59d062488e160b5438a63cf41231ed69" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109194912,&quot;asset_id&quot;:111751748,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109194912/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111751748"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111751748"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111751748; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111751748]").text(description); $(".js-view-count[data-work-id=111751748]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111751748; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111751748']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "59d062488e160b5438a63cf41231ed69" } } $('.js-work-strip[data-work-id=111751748]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111751748,"title":"Cathodic arcs and high power pulsed magnetron sputtering: A comparison of plasma formation and thin film deposition","translated_title":"","metadata":{"ai_title_tag":"Comparative Study of Cathodic Arcs and HPPMS in Thin Film Deposition","grobid_abstract":"Film formation by energetic condensation has been shown to lead to well-adherent, dense films. Films are often under high compressive stress, but stress control is possible by pulsed high-voltage biasing, for example. Control of film growth via tuning the kinetic energy of condensing species is most efficient when the condensing species are ions, and when the degree of ionization of the plasma is high. Cathodic arc plasmas are fully ionized; they even contain multiply charged ions. The streaming plasma is supersonic, with kinetic ion energies in the range 20-150 eV, and additional energy can be provided via substrate bias. Ion formation at cathode spots and the dependence of plasma properties on the cathode material will be discussed. Along with ions, macroparticles are produced at cathode spots. This highly undesirable feature can be mitigated by plasma filters and other approaches, however, there is strong motivation to find alternative ways of producing fully ionized plasmas of condensing species. High power pulsed magnetron sputtering (HPPMS) may be one possible way of achieving this goal, at least for some target materials. In HPPMS, the power density at the magnetron target is pulsed to power levels exceeding the average power by about two orders of magnitude. Thermalization of sputtered atoms appears to be needed to accomplish ionization, and self-sputtering during each power pulse may be an important feature of HPPMS.","publication_date":{"day":2,"month":6,"year":2003,"errors":{}},"grobid_abstract_attachment_id":109194912},"translated_abstract":null,"internal_url":"https://www.academia.edu/111751748/Cathodic_arcs_and_high_power_pulsed_magnetron_sputtering_A_comparison_of_plasma_formation_and_thin_film_deposition","translated_internal_url":"","created_at":"2023-12-18T09:28:29.789-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33147769,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":109194912,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194912/thumbnails/1.jpg","file_name":"qt7sb736zw.pdf","download_url":"https://www.academia.edu/attachments/109194912/download_file","bulk_download_file_name":"Cathodic_arcs_and_high_power_pulsed_magn.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194912/qt7sb736zw-libre.pdf?1702923765=\u0026response-content-disposition=attachment%3B+filename%3DCathodic_arcs_and_high_power_pulsed_magn.pdf\u0026Expires=1741733689\u0026Signature=F07YTS-wvFKG6nMTaXD6LMUWODV5oZ9qE~EKp-Py5Ty87eowvcGz8tw9yhMDLOStzRmgGtp9l5hyZx0bf--hE8air3LvvjKUfo6unZJ29oFLQ1Za-P6N2HNU8JSnC-FhelJSZb1syPv9QWmrVk-NDjUeUQ9yL8DcHSjvnSx8wclv5sxDP2tMyEoX86Lft4bsSwGdtuNYTZBADd23EsoXdTRewSzXH40HmOVpQ86WpxKk34~1OaaI2Pp-4TKv1yaUxbsSMzUlRRAxIvUZveaCrUS~5RHr1R0jc-87Ry1B3sHjdHZb-Qo5322CYEQ8ysBLrzDQqgL9UCYc~7YPTW1pDw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Cathodic_arcs_and_high_power_pulsed_magnetron_sputtering_A_comparison_of_plasma_formation_and_thin_film_deposition","translated_slug":"","page_count":3,"language":"en","content_type":"Work","summary":"Film formation by energetic condensation has been shown to lead to well-adherent, dense films. Films are often under high compressive stress, but stress control is possible by pulsed high-voltage biasing, for example. Control of film growth via tuning the kinetic energy of condensing species is most efficient when the condensing species are ions, and when the degree of ionization of the plasma is high. Cathodic arc plasmas are fully ionized; they even contain multiply charged ions. The streaming plasma is supersonic, with kinetic ion energies in the range 20-150 eV, and additional energy can be provided via substrate bias. Ion formation at cathode spots and the dependence of plasma properties on the cathode material will be discussed. Along with ions, macroparticles are produced at cathode spots. This highly undesirable feature can be mitigated by plasma filters and other approaches, however, there is strong motivation to find alternative ways of producing fully ionized plasmas of condensing species. High power pulsed magnetron sputtering (HPPMS) may be one possible way of achieving this goal, at least for some target materials. In HPPMS, the power density at the magnetron target is pulsed to power levels exceeding the average power by about two orders of magnitude. Thermalization of sputtered atoms appears to be needed to accomplish ionization, and self-sputtering during each power pulse may be an important feature of HPPMS.","owner":{"id":33147769,"first_name":"Andre","middle_initials":"","last_name":"Anders","page_name":"AndreAnders","domain_name":"uni-leipzig1","created_at":"2015-07-17T15:40:22.246-07:00","display_name":"Andre Anders","url":"https://uni-leipzig1.academia.edu/AndreAnders"},"attachments":[{"id":109194912,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194912/thumbnails/1.jpg","file_name":"qt7sb736zw.pdf","download_url":"https://www.academia.edu/attachments/109194912/download_file","bulk_download_file_name":"Cathodic_arcs_and_high_power_pulsed_magn.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194912/qt7sb736zw-libre.pdf?1702923765=\u0026response-content-disposition=attachment%3B+filename%3DCathodic_arcs_and_high_power_pulsed_magn.pdf\u0026Expires=1741733689\u0026Signature=F07YTS-wvFKG6nMTaXD6LMUWODV5oZ9qE~EKp-Py5Ty87eowvcGz8tw9yhMDLOStzRmgGtp9l5hyZx0bf--hE8air3LvvjKUfo6unZJ29oFLQ1Za-P6N2HNU8JSnC-FhelJSZb1syPv9QWmrVk-NDjUeUQ9yL8DcHSjvnSx8wclv5sxDP2tMyEoX86Lft4bsSwGdtuNYTZBADd23EsoXdTRewSzXH40HmOVpQ86WpxKk34~1OaaI2Pp-4TKv1yaUxbsSMzUlRRAxIvUZveaCrUS~5RHr1R0jc-87Ry1B3sHjdHZb-Qo5322CYEQ8ysBLrzDQqgL9UCYc~7YPTW1pDw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":11740,"name":"Atomic Physics","url":"https://www.academia.edu/Documents/in/Atomic_Physics"},{"id":117555,"name":"Plasma","url":"https://www.academia.edu/Documents/in/Plasma"},{"id":185387,"name":"Sputtering","url":"https://www.academia.edu/Documents/in/Sputtering"},{"id":329196,"name":"Ionization","url":"https://www.academia.edu/Documents/in/Ionization"},{"id":348756,"name":"Ion","url":"https://www.academia.edu/Documents/in/Ion"},{"id":925604,"name":"Sputter Deposition","url":"https://www.academia.edu/Documents/in/Sputter_Deposition"},{"id":1131650,"name":"Cathode","url":"https://www.academia.edu/Documents/in/Cathode"},{"id":3572330,"name":"High Power Impulse Magnetron Sputtering","url":"https://www.academia.edu/Documents/in/High_Power_Impulse_Magnetron_Sputtering"}],"urls":[{"id":37334634,"url":"https://escholarship.org/content/qt7sb736zw/qt7sb736zw.pdf?t=p0lnri"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111751747"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111751747/The_effect_of_transition_metals_and_other_parameters_on_the_coalescence_of_sputter_deposited_silver_islands_on_coated_glass"><img alt="Research paper thumbnail of The effect of transition metals and other parameters on the coalescence of sputter-deposited silver islands on coated glass" class="work-thumbnail" src="https://attachments.academia-assets.com/109194906/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111751747/The_effect_of_transition_metals_and_other_parameters_on_the_coalescence_of_sputter_deposited_silver_islands_on_coated_glass">The effect of transition metals and other parameters on the coalescence of sputter-deposited silver islands on coated glass</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="145221dc09f0fb3bf4ac941ca22869da" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109194906,&quot;asset_id&quot;:111751747,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109194906/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111751747"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111751747"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111751747; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111751747]").text(description); $(".js-view-count[data-work-id=111751747]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111751747; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111751747']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "145221dc09f0fb3bf4ac941ca22869da" } } $('.js-work-strip[data-work-id=111751747]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111751747,"title":"The effect of transition metals and other parameters on the coalescence of sputter-deposited silver islands on coated glass","translated_title":"","metadata":{"ai_abstract":"This research investigates the coalescence behavior of sputter-deposited silver islands on coated glass, examining the influence of various transition metals and deposition parameters. Using in-situ conductivity measurements, the study identifies the critical thickness for coalescence and the conditions under which it occurs, revealing that the presence of certain transition metals accelerates the process. Findings suggest that optimal conditions for silver-based low-emissivity coatings can be achieved by manipulating these factors.","publication_date":{"day":1,"month":12,"year":2005,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/111751747/The_effect_of_transition_metals_and_other_parameters_on_the_coalescence_of_sputter_deposited_silver_islands_on_coated_glass","translated_internal_url":"","created_at":"2023-12-18T09:28:29.656-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33147769,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":109194906,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194906/thumbnails/1.jpg","file_name":"qt3nh1h8m5.pdf","download_url":"https://www.academia.edu/attachments/109194906/download_file","bulk_download_file_name":"The_effect_of_transition_metals_and_othe.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194906/qt3nh1h8m5-libre.pdf?1702923766=\u0026response-content-disposition=attachment%3B+filename%3DThe_effect_of_transition_metals_and_othe.pdf\u0026Expires=1741733689\u0026Signature=IEDENA3qpRtdV5cfkDbKe-EVuwHUy8FoT4zj7p1F7xO4vT1gU9e~WAU43MUeG2sb84i3fdPPhcMtDmBDaat-S4b3ZSouFsZ9JMI7gEKGrMNVu0mM-CAQpjcBmWQtmVpPZ5TkBWZK8EXDZQLjjC8CEArj7VlsiTsIrtLcNUesd2cqUtL9E6L8XPsCgiICJJljyp6j2KlC7hWehJq7Yu3JBiDVB0KTUQFCzELG54kmBV~cdsj7H6jSwHTuWXHIyWSzvvY~BPrlZS70X4~zRjdWwTcC60ClJQ5oedYpm9ixFyTmO5p4TkifydG5QiTRcrUE5GK7LotAnb1SGhtMhoxUGQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_effect_of_transition_metals_and_other_parameters_on_the_coalescence_of_sputter_deposited_silver_islands_on_coated_glass","translated_slug":"","page_count":3,"language":"en","content_type":"Work","summary":null,"owner":{"id":33147769,"first_name":"Andre","middle_initials":"","last_name":"Anders","page_name":"AndreAnders","domain_name":"uni-leipzig1","created_at":"2015-07-17T15:40:22.246-07:00","display_name":"Andre Anders","url":"https://uni-leipzig1.academia.edu/AndreAnders"},"attachments":[{"id":109194906,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194906/thumbnails/1.jpg","file_name":"qt3nh1h8m5.pdf","download_url":"https://www.academia.edu/attachments/109194906/download_file","bulk_download_file_name":"The_effect_of_transition_metals_and_othe.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194906/qt3nh1h8m5-libre.pdf?1702923766=\u0026response-content-disposition=attachment%3B+filename%3DThe_effect_of_transition_metals_and_othe.pdf\u0026Expires=1741733689\u0026Signature=IEDENA3qpRtdV5cfkDbKe-EVuwHUy8FoT4zj7p1F7xO4vT1gU9e~WAU43MUeG2sb84i3fdPPhcMtDmBDaat-S4b3ZSouFsZ9JMI7gEKGrMNVu0mM-CAQpjcBmWQtmVpPZ5TkBWZK8EXDZQLjjC8CEArj7VlsiTsIrtLcNUesd2cqUtL9E6L8XPsCgiICJJljyp6j2KlC7hWehJq7Yu3JBiDVB0KTUQFCzELG54kmBV~cdsj7H6jSwHTuWXHIyWSzvvY~BPrlZS70X4~zRjdWwTcC60ClJQ5oedYpm9ixFyTmO5p4TkifydG5QiTRcrUE5GK7LotAnb1SGhtMhoxUGQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":109194905,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194905/thumbnails/1.jpg","file_name":"qt3nh1h8m5.pdf","download_url":"https://www.academia.edu/attachments/109194905/download_file","bulk_download_file_name":"The_effect_of_transition_metals_and_othe.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194905/qt3nh1h8m5-libre.pdf?1702923766=\u0026response-content-disposition=attachment%3B+filename%3DThe_effect_of_transition_metals_and_othe.pdf\u0026Expires=1741733689\u0026Signature=ftdXJvg6go5MhUCE8JbOIHZwC0AKd6rs7tcz7DFjdRPTpD5Dk0Epi25n0SmM6Svd7nxd3aiNFJOLHo97Xg1ACIdzZ2nF76vUaJlPmTN5B-Y~Pc3NqDnRhXBkdWdMB3RSZWTiEQt54tyaPPUDXNeDu6Ayzmx6wc-8yvZV7Nn6EzPQ4AmOQpSgg-x5LiP6WfbuQMIBqwpZVuyz3xwE4wZLZbufaX8EEJ2ArRU1XReNoQ~HO2hdzcD7uFK9nx9~wkTBQpe2RkqxCFyT9Jq8QSRAbC0iOFBRHkVCCsDGTUAFGfTH1Zh3GCT93gEyaC80TNRDJdMERshU67~l60oaYVSZ6g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":125058,"name":"Nucleation","url":"https://www.academia.edu/Documents/in/Nucleation"},{"id":159300,"name":"Molybdenum","url":"https://www.academia.edu/Documents/in/Molybdenum"},{"id":185387,"name":"Sputtering","url":"https://www.academia.edu/Documents/in/Sputtering"},{"id":500007,"name":"Tungsten","url":"https://www.academia.edu/Documents/in/Tungsten"},{"id":925604,"name":"Sputter Deposition","url":"https://www.academia.edu/Documents/in/Sputter_Deposition"}],"urls":[{"id":37334633,"url":"https://escholarship.org/content/qt3nh1h8m5/qt3nh1h8m5.pdf?t=p0fvky"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111751746"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111751746/Atomic_scale_heating_in_energetic_plasma_deposition_eScholarship"><img alt="Research paper thumbnail of Atomic scale heating in energetic plasma deposition - eScholarship" class="work-thumbnail" src="https://attachments.academia-assets.com/109194907/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111751746/Atomic_scale_heating_in_energetic_plasma_deposition_eScholarship">Atomic scale heating in energetic plasma deposition - eScholarship</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Energetic deposition using filtered cathodic arc plasma is known to lead to well adherent and den...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Energetic deposition using filtered cathodic arc plasma is known to lead to well adherent and dense films. Interface mixing, subplantation depth, texture, and stress of the growing film are often studied as a function of the kinetic energy of condensing ions. Ions have also potential energy contributing to atomic scale heating, secondary electron emission and potential sputtering, thereby affecting all film properties. A table is presented showing kinetic and potential energies of ions in cathodic arc plasmas. These energies are greater than the binding energy, surface binding energy, and activation energy of surface diffusion. The role of potential energy on film growth is not limited to the cathodic arc plasma deposition process.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7814e9f1fb3a97cfe3528e81dfd672a3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109194907,&quot;asset_id&quot;:111751746,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109194907/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111751746"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111751746"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111751746; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111751746]").text(description); $(".js-view-count[data-work-id=111751746]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111751746; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111751746']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7814e9f1fb3a97cfe3528e81dfd672a3" } } $('.js-work-strip[data-work-id=111751746]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111751746,"title":"Atomic scale heating in energetic plasma deposition - eScholarship","translated_title":"","metadata":{"grobid_abstract":"Energetic deposition using filtered cathodic arc plasma is known to lead to well adherent and dense films. Interface mixing, subplantation depth, texture, and stress of the growing film are often studied as a function of the kinetic energy of condensing ions. Ions have also potential energy contributing to atomic scale heating, secondary electron emission and potential sputtering, thereby affecting all film properties. A table is presented showing kinetic and potential energies of ions in cathodic arc plasmas. These energies are greater than the binding energy, surface binding energy, and activation energy of surface diffusion. The role of potential energy on film growth is not limited to the cathodic arc plasma deposition process.","publication_date":{"day":28,"month":9,"year":2001,"errors":{}},"grobid_abstract_attachment_id":109194908},"translated_abstract":null,"internal_url":"https://www.academia.edu/111751746/Atomic_scale_heating_in_energetic_plasma_deposition_eScholarship","translated_internal_url":"","created_at":"2023-12-18T09:28:29.447-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33147769,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":109194907,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194907/thumbnails/1.jpg","file_name":"qt3s24f5tx.pdf","download_url":"https://www.academia.edu/attachments/109194907/download_file","bulk_download_file_name":"Atomic_scale_heating_in_energetic_plasma.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194907/qt3s24f5tx-libre.pdf?1702923768=\u0026response-content-disposition=attachment%3B+filename%3DAtomic_scale_heating_in_energetic_plasma.pdf\u0026Expires=1741733689\u0026Signature=BM1aaRj~3Aa1TLGfmJFwJM4A45nNGZ7K-bus1F1tU8boIsOe4l9md3Ghx-LVG1YqO9DlxzHNWQQTRltO-e-kOVzzipuphJ0u~498kCSKf-A7RXAdhVVpjdDTEMwjaneoTk4KyFPGyYyZBj6xnODCjBIteg0bC16khgKkddoqeSygF4V01rUzOWs3BjdloS83j7ZvwcSyyr77~QbbV4alYuhNqhFfo8kTjvI~G4o3NyPm2bz9K5-N-YYfxphXwxU5PuZz4WhLb1zixUUeHhW8raa3Mo4Uy7xpp-RoWvJDSJ0tT10aUusFAw8B5oumjoVB0jaUg7RsIgYQM9QyUw1PkA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Atomic_scale_heating_in_energetic_plasma_deposition_eScholarship","translated_slug":"","page_count":11,"language":"en","content_type":"Work","summary":"Energetic deposition using filtered cathodic arc plasma is known to lead to well adherent and dense films. Interface mixing, subplantation depth, texture, and stress of the growing film are often studied as a function of the kinetic energy of condensing ions. Ions have also potential energy contributing to atomic scale heating, secondary electron emission and potential sputtering, thereby affecting all film properties. A table is presented showing kinetic and potential energies of ions in cathodic arc plasmas. These energies are greater than the binding energy, surface binding energy, and activation energy of surface diffusion. The role of potential energy on film growth is not limited to the cathodic arc plasma deposition process.","owner":{"id":33147769,"first_name":"Andre","middle_initials":"","last_name":"Anders","page_name":"AndreAnders","domain_name":"uni-leipzig1","created_at":"2015-07-17T15:40:22.246-07:00","display_name":"Andre Anders","url":"https://uni-leipzig1.academia.edu/AndreAnders"},"attachments":[{"id":109194907,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194907/thumbnails/1.jpg","file_name":"qt3s24f5tx.pdf","download_url":"https://www.academia.edu/attachments/109194907/download_file","bulk_download_file_name":"Atomic_scale_heating_in_energetic_plasma.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194907/qt3s24f5tx-libre.pdf?1702923768=\u0026response-content-disposition=attachment%3B+filename%3DAtomic_scale_heating_in_energetic_plasma.pdf\u0026Expires=1741733689\u0026Signature=BM1aaRj~3Aa1TLGfmJFwJM4A45nNGZ7K-bus1F1tU8boIsOe4l9md3Ghx-LVG1YqO9DlxzHNWQQTRltO-e-kOVzzipuphJ0u~498kCSKf-A7RXAdhVVpjdDTEMwjaneoTk4KyFPGyYyZBj6xnODCjBIteg0bC16khgKkddoqeSygF4V01rUzOWs3BjdloS83j7ZvwcSyyr77~QbbV4alYuhNqhFfo8kTjvI~G4o3NyPm2bz9K5-N-YYfxphXwxU5PuZz4WhLb1zixUUeHhW8raa3Mo4Uy7xpp-RoWvJDSJ0tT10aUusFAw8B5oumjoVB0jaUg7RsIgYQM9QyUw1PkA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":109194908,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194908/thumbnails/1.jpg","file_name":"qt3s24f5tx.pdf","download_url":"https://www.academia.edu/attachments/109194908/download_file","bulk_download_file_name":"Atomic_scale_heating_in_energetic_plasma.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194908/qt3s24f5tx-libre.pdf?1702923767=\u0026response-content-disposition=attachment%3B+filename%3DAtomic_scale_heating_in_energetic_plasma.pdf\u0026Expires=1741733689\u0026Signature=YHQOOqFU4sTIEeNst5oUEqvKwf1ZHX3ewKx40zI0czABXrVI42BXESCpK6yiInY4PVcavAIi3gykH6Fjqip0cpIkEsVU34vQbaMqvXAJjhhM8aTj~HUEJ5C3RSzWWFaBX77Tm-UNRIsuEyq8qOxJlQtJTIwG9oIC4la3GBzh15H6kaMOO4MFBPLM~M3nkUcgN7H9~KBJjVCSzXHhsw~ywSH-EWwBmS-0wWBqwT-8u7cPWFqh38rR9JxxqH79YRB7i6bmaeADOpuhW464c-DtEPCHE0oOOS3pH3wLT8hmAPIzBoKfJzkFGudO9MeARDjZjjLssUnf0C0TIUUdT3-NJQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":11740,"name":"Atomic Physics","url":"https://www.academia.edu/Documents/in/Atomic_Physics"},{"id":71287,"name":"Cathodic Protection","url":"https://www.academia.edu/Documents/in/Cathodic_Protection"},{"id":117555,"name":"Plasma","url":"https://www.academia.edu/Documents/in/Plasma"},{"id":348756,"name":"Ion","url":"https://www.academia.edu/Documents/in/Ion"},{"id":413295,"name":"Kinetic Energy","url":"https://www.academia.edu/Documents/in/Kinetic_Energy"},{"id":2274108,"name":"Lawrence Berkeley Laboratory","url":"https://www.academia.edu/Documents/in/Lawrence_Berkeley_Laboratory"}],"urls":[{"id":37334631,"url":"https://escholarship.org/content/qt3s24f5tx/qt3s24f5tx.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111751744"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111751744/The_fractal_nature_of_vacuum_arc_cathode_spots_eScholarship"><img alt="Research paper thumbnail of The fractal nature of vacuum arc cathode spots - eScholarship" class="work-thumbnail" src="https://attachments.academia-assets.com/109194904/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111751744/The_fractal_nature_of_vacuum_arc_cathode_spots_eScholarship">The fractal nature of vacuum arc cathode spots - eScholarship</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The fractal nature of vacuum arc cathode spots *# André Anders, Fellow, IEEE Cathode spot phenome...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The fractal nature of vacuum arc cathode spots *# André Anders, Fellow, IEEE Cathode spot phenomena show many features of fractals, for example self-similar patterns in the emitted light and arc erosion traces. Although there have been hints on the fractal nature of cathode spots in the literature, the fractal approach to spot interpretation is underutilized. In this work, a brief review of spot properties is given, touching the differences between spot type 1 (on cathodes surfaces with dielectric layers) and spot type 2 (on metallic, clean surfaces) as well as the known spot fragment or cell structure. The basic properties of self-similarity, power laws, random colored noise, and fractals are introduced. Several points of evidence for the fractal nature of spots are provided. Specifically power laws are identified as signature of fractal properties, such as spectral power of noisy arc parameters (ion current, arc voltage, etc) obtained by fast Fourier transform. It is shown that fractal properties can be observed down to the cutoff by measurement resolution or occurrence of elementary steps in physical processes. Random walk models of cathode spot motion are well established: they go asymptotically to Brownian motion for infinitesimal step width. The power spectrum of the arc voltage noise falls as 1/f 2 , where f is frequency, supporting a fractal spot model associated with Brownian motion.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="546f0482114da2f40fba6ee198d629ce" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:109194904,&quot;asset_id&quot;:111751744,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/109194904/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111751744"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111751744"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111751744; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111751744]").text(description); $(".js-view-count[data-work-id=111751744]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111751744; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111751744']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "546f0482114da2f40fba6ee198d629ce" } } $('.js-work-strip[data-work-id=111751744]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111751744,"title":"The fractal nature of vacuum arc cathode spots - eScholarship","translated_title":"","metadata":{"ai_title_tag":"Fractal Properties of Vacuum Arc Cathode Spots","grobid_abstract":"The fractal nature of vacuum arc cathode spots *# André Anders, Fellow, IEEE Cathode spot phenomena show many features of fractals, for example self-similar patterns in the emitted light and arc erosion traces. Although there have been hints on the fractal nature of cathode spots in the literature, the fractal approach to spot interpretation is underutilized. In this work, a brief review of spot properties is given, touching the differences between spot type 1 (on cathodes surfaces with dielectric layers) and spot type 2 (on metallic, clean surfaces) as well as the known spot fragment or cell structure. The basic properties of self-similarity, power laws, random colored noise, and fractals are introduced. Several points of evidence for the fractal nature of spots are provided. Specifically power laws are identified as signature of fractal properties, such as spectral power of noisy arc parameters (ion current, arc voltage, etc) obtained by fast Fourier transform. It is shown that fractal properties can be observed down to the cutoff by measurement resolution or occurrence of elementary steps in physical processes. Random walk models of cathode spot motion are well established: they go asymptotically to Brownian motion for infinitesimal step width. The power spectrum of the arc voltage noise falls as 1/f 2 , where f is frequency, supporting a fractal spot model associated with Brownian motion.","publication_date":{"day":27,"month":5,"year":2005,"errors":{}},"grobid_abstract_attachment_id":109194903},"translated_abstract":null,"internal_url":"https://www.academia.edu/111751744/The_fractal_nature_of_vacuum_arc_cathode_spots_eScholarship","translated_internal_url":"","created_at":"2023-12-18T09:28:29.247-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33147769,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":109194904,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194904/thumbnails/1.jpg","file_name":"qt4ps8t0qc.pdf","download_url":"https://www.academia.edu/attachments/109194904/download_file","bulk_download_file_name":"The_fractal_nature_of_vacuum_arc_cathode.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194904/qt4ps8t0qc-libre.pdf?1702923777=\u0026response-content-disposition=attachment%3B+filename%3DThe_fractal_nature_of_vacuum_arc_cathode.pdf\u0026Expires=1741733689\u0026Signature=KmXkPkWumwyzCAIpT~Dy1vQkMJS5N65rectoopJiXj9jUjVHgRBsH757EOKqa~m58pKhYIXfc2dBGShdPCtfj0SqV4VlwS3bwf7SGyA800lavt9MIop4njo6FGW~MjLhFwkbKHg82xz2F5k~mlSNQleczNmYn15R4cZSpBdgUhQhVqXBnAoWfDjJDcWXh420YzP81iqBFwm56oshMK-PUOPDyX8E5yKLIvk9h71~Dph5KUzex1lVbAaNO66Xw2n5PvMrk6S27~StuddhZaMTQ6ckgUnyBzrWomgkM1NLHd0dpKW77HwNMtXcgYi2c-RzKUt1WJUDl-MTiEyGKNdyZg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_fractal_nature_of_vacuum_arc_cathode_spots_eScholarship","translated_slug":"","page_count":31,"language":"en","content_type":"Work","summary":"The fractal nature of vacuum arc cathode spots *# André Anders, Fellow, IEEE Cathode spot phenomena show many features of fractals, for example self-similar patterns in the emitted light and arc erosion traces. Although there have been hints on the fractal nature of cathode spots in the literature, the fractal approach to spot interpretation is underutilized. In this work, a brief review of spot properties is given, touching the differences between spot type 1 (on cathodes surfaces with dielectric layers) and spot type 2 (on metallic, clean surfaces) as well as the known spot fragment or cell structure. The basic properties of self-similarity, power laws, random colored noise, and fractals are introduced. Several points of evidence for the fractal nature of spots are provided. Specifically power laws are identified as signature of fractal properties, such as spectral power of noisy arc parameters (ion current, arc voltage, etc) obtained by fast Fourier transform. It is shown that fractal properties can be observed down to the cutoff by measurement resolution or occurrence of elementary steps in physical processes. Random walk models of cathode spot motion are well established: they go asymptotically to Brownian motion for infinitesimal step width. The power spectrum of the arc voltage noise falls as 1/f 2 , where f is frequency, supporting a fractal spot model associated with Brownian motion.","owner":{"id":33147769,"first_name":"Andre","middle_initials":"","last_name":"Anders","page_name":"AndreAnders","domain_name":"uni-leipzig1","created_at":"2015-07-17T15:40:22.246-07:00","display_name":"Andre Anders","url":"https://uni-leipzig1.academia.edu/AndreAnders"},"attachments":[{"id":109194904,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194904/thumbnails/1.jpg","file_name":"qt4ps8t0qc.pdf","download_url":"https://www.academia.edu/attachments/109194904/download_file","bulk_download_file_name":"The_fractal_nature_of_vacuum_arc_cathode.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194904/qt4ps8t0qc-libre.pdf?1702923777=\u0026response-content-disposition=attachment%3B+filename%3DThe_fractal_nature_of_vacuum_arc_cathode.pdf\u0026Expires=1741733689\u0026Signature=KmXkPkWumwyzCAIpT~Dy1vQkMJS5N65rectoopJiXj9jUjVHgRBsH757EOKqa~m58pKhYIXfc2dBGShdPCtfj0SqV4VlwS3bwf7SGyA800lavt9MIop4njo6FGW~MjLhFwkbKHg82xz2F5k~mlSNQleczNmYn15R4cZSpBdgUhQhVqXBnAoWfDjJDcWXh420YzP81iqBFwm56oshMK-PUOPDyX8E5yKLIvk9h71~Dph5KUzex1lVbAaNO66Xw2n5PvMrk6S27~StuddhZaMTQ6ckgUnyBzrWomgkM1NLHd0dpKW77HwNMtXcgYi2c-RzKUt1WJUDl-MTiEyGKNdyZg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":109194903,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/109194903/thumbnails/1.jpg","file_name":"qt4ps8t0qc.pdf","download_url":"https://www.academia.edu/attachments/109194903/download_file","bulk_download_file_name":"The_fractal_nature_of_vacuum_arc_cathode.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/109194903/qt4ps8t0qc-libre.pdf?1702923779=\u0026response-content-disposition=attachment%3B+filename%3DThe_fractal_nature_of_vacuum_arc_cathode.pdf\u0026Expires=1741733689\u0026Signature=NxUxdEtfkHm7OhYMC874s5e4PNJmuj1nEeArOoKvGi9YPlJ2C2e~4MTjg2WvEtokNV7be7KyYchvbBUpq68EP4DJbO-oZMlQuTodrhgOeZ~EcUsmurF2yWemh20NxKUkNdOucMgwUgr45KdBnhPowcnxBCKqS62TWRzJtlKXLkGW5IWOwoHBgg~UV70IvsSPycf0rqBz7RAZpkvNA~zcH8OeMGlB12T3YFj0dJ5F4iRNWWC~7L4RSglkejVZxqyI6pjZ~1b8s8LMcU0PXgvijXbloFoFVkzSnU1VI356WvsytBEsa8nWNcxg8KgKrbW8pKkZq90JKYdEy-FuNY~9LQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":37754,"name":"Cyclotron","url":"https://www.academia.edu/Documents/in/Cyclotron"}],"urls":[{"id":37334630,"url":"https://escholarship.org/content/qt4ps8t0qc/qt4ps8t0qc.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; } .sign-in-with-apple-button > div { margin: 0 auto; / This centers the Apple-rendered button horizontally }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "249267211a438cbc3a7cb0ef99cc003e9da47904c644c188014deb594dc601bd", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="lHyE7uD7fIEV6iN4udFRT0nPdrhAAhMr3sCoWMoJs8-IjgC-zjy8PVBwJlXU4RHuWh9E0CzCdXxx_kL0M1VBSQ" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://uni-leipzig1.academia.edu/AndreAnders" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="h7HFbyza8iusMi5qqOQ3-l3QXfUn-fEbsgLj5orqrSSbQ0E_Ah0yl-moK0fF1HdbTgBvnUs5l0wdPAlKc7Zfog" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2025</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10