CINXE.COM

Statistics Jul 2019

<!DOCTYPE html> <html lang="en"> <head> <title>Statistics Jul 2019</title> <meta name="viewport" content="width=device-width, initial-scale=1"> <link rel="apple-touch-icon" sizes="180x180" href="/static/browse/0.3.4/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="/static/browse/0.3.4/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="/static/browse/0.3.4/images/icons/favicon-16x16.png"> <link rel="manifest" href="/static/browse/0.3.4/images/icons/site.webmanifest"> <link rel="mask-icon" href="/static/browse/0.3.4/images/icons/safari-pinned-tab.svg" color="#5bbad5"> <meta name="msapplication-TileColor" content="#da532c"> <meta name="theme-color" content="#ffffff"> <link rel="stylesheet" type="text/css" media="screen" href="/static/browse/0.3.4/css/arXiv.css?v=20241206" /> <link rel="stylesheet" type="text/css" media="print" href="/static/browse/0.3.4/css/arXiv-print.css?v=20200611" /> <link rel="stylesheet" type="text/css" media="screen" href="/static/browse/0.3.4/css/browse_search.css" /> <script language="javascript" src="/static/browse/0.3.4/js/accordion.js" /></script> <script src="/static/browse/0.3.4/js/mathjaxToggle.min.js" type="text/javascript"></script> <script type="text/javascript" language="javascript">mathjaxToggle();</script> </head> <body class="with-cu-identity"> <div class="flex-wrap-footer"> <header> <a href="#content" class="is-sr-only">Skip to main content</a> <!-- start desktop header --> <div class="columns is-vcentered is-hidden-mobile" id="cu-identity"> <div class="column" id="cu-logo"> <a href="https://www.cornell.edu/"><img src="/static/browse/0.3.4/images/icons/cu/cornell-reduced-white-SMALL.svg" alt="Cornell University" /></a> </div><div class="column" id="support-ack"> <span id="support-ack-url">We gratefully acknowledge support from the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors.</span> <a href="https://info.arxiv.org/about/donate.html" class="btn-header-donate">Donate</a> </div> </div> <div id="header" class="is-hidden-mobile"> <a aria-hidden="true" tabindex="-1" href="/IgnoreMe"></a> <div class="header-breadcrumbs"> <a href="/"><img src="/static/browse/0.3.4/images/arxiv-logo-one-color-white.svg" alt="arxiv logo" style="height:40px;"/></a> <span>&gt;</span> <a href="/list/stat/recent">stat</a> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div><!-- /end desktop header --> <div class="mobile-header"> <div class="columns is-mobile"> <div class="column logo-arxiv"><a href="https://arxiv.org/"><img src="/static/browse/0.3.4/images/arxiv-logomark-small-white.svg" alt="arXiv logo" style="height:60px;" /></a></div> <div class="column logo-cornell"><a href="https://www.cornell.edu/"> <picture> <source media="(min-width: 501px)" srcset="/static/browse/0.3.4/images/icons/cu/cornell-reduced-white-SMALL.svg 400w" sizes="400w" /> <source srcset="/static/browse/0.3.4/images/icons/cu/cornell_seal_simple_black.svg 2x" /> <img src="/static/browse/0.3.4/images/icons/cu/cornell-reduced-white-SMALL.svg" alt="Cornell University Logo" /> </picture> </a></div> <div class="column nav" id="toggle-container" role="menubar"> <button class="toggle-control"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-white"><title>open search</title><path d="M505 442.7L405.3 343c-4.5-4.5-10.6-7-17-7H372c27.6-35.3 44-79.7 44-128C416 93.1 322.9 0 208 0S0 93.1 0 208s93.1 208 208 208c48.3 0 92.7-16.4 128-44v16.3c0 6.4 2.5 12.5 7 17l99.7 99.7c9.4 9.4 24.6 9.4 33.9 0l28.3-28.3c9.4-9.4 9.4-24.6.1-34zM208 336c-70.7 0-128-57.2-128-128 0-70.7 57.2-128 128-128 70.7 0 128 57.2 128 128 0 70.7-57.2 128-128 128z"/></svg></button> <div class="mobile-toggle-block toggle-target"> <form class="mobile-search-form" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <input class="input" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <input type="hidden" name="source" value="header"> <input type="hidden" name="searchtype" value="all"> <button class="button">GO</button> </div> </form> </div> <button class="toggle-control"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-white" role="menu"><title>open navigation menu</title><path d="M16 132h416c8.837 0 16-7.163 16-16V76c0-8.837-7.163-16-16-16H16C7.163 60 0 67.163 0 76v40c0 8.837 7.163 16 16 16zm0 160h416c8.837 0 16-7.163 16-16v-40c0-8.837-7.163-16-16-16H16c-8.837 0-16 7.163-16 16v40c0 8.837 7.163 16 16 16zm0 160h416c8.837 0 16-7.163 16-16v-40c0-8.837-7.163-16-16-16H16c-8.837 0-16 7.163-16 16v40c0 8.837 7.163 16 16 16z"/ ></svg></button> <div class="mobile-toggle-block toggle-target"> <nav class="mobile-menu" aria-labelledby="mobilemenulabel"> <h2 id="mobilemenulabel">quick links</h2> <ul> <li><a href="https://arxiv.org/login">Login</a></li> <li><a href="https://info.arxiv.org/help">Help Pages</a></li> <li><a href="https://info.arxiv.org/about">About</a></li> </ul> </nav> </div> </div> </div> </div><!-- /end mobile-header --> </header> <main> <div id="content"> <div id='content-inner'> <div id='dlpage'> <h1>Statistics</h1> <h2>Authors and titles for July 2019 </h2> <div class='paging'>Total of 1336 entries : <span>1-50</span> <a href=/list/stat/2019-07?skip=50&amp;show=50>51-100</a> <a href=/list/stat/2019-07?skip=100&amp;show=50>101-150</a> <a href=/list/stat/2019-07?skip=150&amp;show=50>151-200</a> <span>...</span> <a href=/list/stat/2019-07?skip=1300&amp;show=50>1301-1336</a> </div> <div class='morefewer'>Showing up to 50 entries per page: <a href=/list/stat/2019-07?skip=0&amp;show=25 rel="nofollow"> fewer</a> | <a href=/list/stat/2019-07?skip=0&amp;show=100 rel="nofollow"> more</a> | <a href=/list/stat/2019-07?skip=0&amp;show=2000 rel="nofollow"> all</a> </div> <dl id='articles'> <dt> <a name='item1'>[1]</a> <a href ="/abs/1907.00004" title="Abstract" id="1907.00004"> arXiv:1907.00004 </a> [<a href="/pdf/1907.00004" title="Download PDF" id="pdf-1907.00004" aria-labelledby="pdf-1907.00004">pdf</a>, <a href="/format/1907.00004" title="Other formats" id="oth-1907.00004" aria-labelledby="oth-1907.00004">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Test for parameter change in the presence of outliers: the density power divergence based approach </div> <div class='list-authors'><a href="https://arxiv.org/search/math?searchtype=author&amp;query=Song,+J">Junmo Song</a>, <a href="https://arxiv.org/search/math?searchtype=author&amp;query=Kang,+J">Jiwon Kang</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 26 pages, 2 figures </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Statistics Theory (math.ST)</span>; Methodology (stat.ME) </div> </div> </dd> <dt> <a name='item2'>[2]</a> <a href ="/abs/1907.00020" title="Abstract" id="1907.00020"> arXiv:1907.00020 </a> [<a href="/pdf/1907.00020" title="Download PDF" id="pdf-1907.00020" aria-labelledby="pdf-1907.00020">pdf</a>, <a href="/format/1907.00020" title="Other formats" id="oth-1907.00020" aria-labelledby="oth-1907.00020">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Training individually fair ML models with Sensitive Subspace Robustness </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Yurochkin,+M">Mikhail Yurochkin</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Bower,+A">Amanda Bower</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Sun,+Y">Yuekai Sun</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> ICLR 2020 (spotlight) </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Machine Learning (stat.ML)</span>; Machine Learning (cs.LG) </div> </div> </dd> <dt> <a name='item3'>[3]</a> <a href ="/abs/1907.00030" title="Abstract" id="1907.00030"> arXiv:1907.00030 </a> [<a href="/pdf/1907.00030" title="Download PDF" id="pdf-1907.00030" aria-labelledby="pdf-1907.00030">pdf</a>, <a href="/format/1907.00030" title="Other formats" id="oth-1907.00030" aria-labelledby="oth-1907.00030">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Empirical Study of the Benefits of Overparameterization in Learning Latent Variable Models </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Buhai,+R">Rares-Darius Buhai</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Halpern,+Y">Yoni Halpern</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Kim,+Y">Yoon Kim</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Risteski,+A">Andrej Risteski</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Sontag,+D">David Sontag</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 22 pages, to appear at ICML 2020 </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Machine Learning (stat.ML)</span>; Machine Learning (cs.LG) </div> </div> </dd> <dt> <a name='item4'>[4]</a> <a href ="/abs/1907.00032" title="Abstract" id="1907.00032"> arXiv:1907.00032 </a> [<a href="/pdf/1907.00032" title="Download PDF" id="pdf-1907.00032" aria-labelledby="pdf-1907.00032">pdf</a>, <a href="/format/1907.00032" title="Other formats" id="oth-1907.00032" aria-labelledby="oth-1907.00032">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Cross-product Penalized Component Analysis (XCAN) </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Camacho,+J">Jos茅 Camacho</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Acar,+E">Evrim Acar</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Rasmussen,+M+A">Morten A. Rasmussen</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Bro,+R">Rasmus Bro</a></div> <div class='list-journal-ref'><span class='descriptor'>Journal-ref:</span> Chemometrics and Intelligent Laboratory Systems, 2020, 203: 104038- </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Machine Learning (stat.ML)</span>; Machine Learning (cs.LG) </div> </div> </dd> <dt> <a name='item5'>[5]</a> <a href ="/abs/1907.00057" title="Abstract" id="1907.00057"> arXiv:1907.00057 </a> [<a href="/pdf/1907.00057" title="Download PDF" id="pdf-1907.00057" aria-labelledby="pdf-1907.00057">pdf</a>, <a href="/format/1907.00057" title="Other formats" id="oth-1907.00057" aria-labelledby="oth-1907.00057">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Fast and Exact Simulation of Multivariate Normal and Wishart Random Variables with Box Constraints </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Koch,+H">Hillary Koch</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Bopp,+G+P">Gregory P. Bopp</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> There is an error in the the technical proofs for the proposed algorithms&#39; validity. While the proposed algorithms can in many cases produce approximate draws from the described target distributions, they do not produce exact draws </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Computation (stat.CO)</span> </div> </div> </dd> <dt> <a name='item6'>[6]</a> <a href ="/abs/1907.00063" title="Abstract" id="1907.00063"> arXiv:1907.00063 </a> [<a href="/pdf/1907.00063" title="Download PDF" id="pdf-1907.00063" aria-labelledby="pdf-1907.00063">pdf</a>, <a href="/format/1907.00063" title="Other formats" id="oth-1907.00063" aria-labelledby="oth-1907.00063">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Bayesian Nonparametric Boolean Factor Models </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Rukat,+T">Tammo Rukat</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Yau,+C">Christopher Yau</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> Presented at the 2018 NeurIPS Workshop on Bayesian Nonparametrics </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Machine Learning (stat.ML)</span>; Machine Learning (cs.LG) </div> </div> </dd> <dt> <a name='item7'>[7]</a> <a href ="/abs/1907.00085" title="Abstract" id="1907.00085"> arXiv:1907.00085 </a> [<a href="/pdf/1907.00085" title="Download PDF" id="pdf-1907.00085" aria-labelledby="pdf-1907.00085">pdf</a>, <a href="/format/1907.00085" title="Other formats" id="oth-1907.00085" aria-labelledby="oth-1907.00085">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Large-scale inference with block structure </div> <div class='list-authors'><a href="https://arxiv.org/search/math?searchtype=author&amp;query=Kou,+J">Jiyao Kou</a>, <a href="https://arxiv.org/search/math?searchtype=author&amp;query=Walther,+G">Guenther Walther</a></div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Statistics Theory (math.ST)</span>; Methodology (stat.ME) </div> </div> </dd> <dt> <a name='item8'>[8]</a> <a href ="/abs/1907.00093" title="Abstract" id="1907.00093"> arXiv:1907.00093 </a> [<a href="/pdf/1907.00093" title="Download PDF" id="pdf-1907.00093" aria-labelledby="pdf-1907.00093">pdf</a>, <a href="/format/1907.00093" title="Other formats" id="oth-1907.00093" aria-labelledby="oth-1907.00093">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Data integration for high-resolution, continental-scale estimation of air pollution concentrations </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Thomas,+M+L">Matthew L. Thomas</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Shaddick,+G">Gavin Shaddick</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Simpson,+D">Daniel Simpson</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=de+Hoogh,+K">Kees de Hoogh</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Zidek,+J+V">James V. Zidek</a></div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Applications (stat.AP)</span>; Methodology (stat.ME) </div> </div> </dd> <dt> <a name='item9'>[9]</a> <a href ="/abs/1907.00111" title="Abstract" id="1907.00111"> arXiv:1907.00111 </a> [<a href="/pdf/1907.00111" title="Download PDF" id="pdf-1907.00111" aria-labelledby="pdf-1907.00111">pdf</a>, <a href="/format/1907.00111" title="Other formats" id="oth-1907.00111" aria-labelledby="oth-1907.00111">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> An Intrinsic Geometrical Approach for Statistical Process Control of Surface and Manifold Data </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Zhao,+X">Xueqi Zhao</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=del+Castillo,+E">Enrique del Castillo</a></div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Applications (stat.AP)</span> </div> </div> </dd> <dt> <a name='item10'>[10]</a> <a href ="/abs/1907.00113" title="Abstract" id="1907.00113"> arXiv:1907.00113 </a> [<a href="/pdf/1907.00113" title="Download PDF" id="pdf-1907.00113" aria-labelledby="pdf-1907.00113">pdf</a>, <a href="/format/1907.00113" title="Other formats" id="oth-1907.00113" aria-labelledby="oth-1907.00113">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Learning Markov models via low-rank optimization </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Zhu,+Z">Ziwei Zhu</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Li,+X">Xudong Li</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Wang,+M">Mengdi Wang</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Zhang,+A">Anru Zhang</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 52 pages, 4 figures. arXiv admin note: text overlap with <a href="https://arxiv.org/abs/1804.00795" data-arxiv-id="1804.00795" class="link-https">arXiv:1804.00795</a> </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Methodology (stat.ME)</span>; Machine Learning (stat.ML) </div> </div> </dd> <dt> <a name='item11'>[11]</a> <a href ="/abs/1907.00161" title="Abstract" id="1907.00161"> arXiv:1907.00161 </a> [<a href="/pdf/1907.00161" title="Download PDF" id="pdf-1907.00161" aria-labelledby="pdf-1907.00161">pdf</a>, <a href="/format/1907.00161" title="Other formats" id="oth-1907.00161" aria-labelledby="oth-1907.00161">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> trialr: Bayesian Clinical Trial Designs in R and Stan </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Brock,+K">Kristian Brock</a></div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Computation (stat.CO)</span>; Applications (stat.AP); Methodology (stat.ME) </div> </div> </dd> <dt> <a name='item12'>[12]</a> <a href ="/abs/1907.00196" title="Abstract" id="1907.00196"> arXiv:1907.00196 </a> [<a href="/pdf/1907.00196" title="Download PDF" id="pdf-1907.00196" aria-labelledby="pdf-1907.00196">pdf</a>, <a href="/format/1907.00196" title="Other formats" id="oth-1907.00196" aria-labelledby="oth-1907.00196">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Statistical estimation of the Kullback-Leibler divergence </div> <div class='list-authors'><a href="https://arxiv.org/search/math?searchtype=author&amp;query=Bulinski,+A">Alexander Bulinski</a>, <a href="https://arxiv.org/search/math?searchtype=author&amp;query=Dimitrov,+D">Denis Dimitrov</a></div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Statistics Theory (math.ST)</span> </div> </div> </dd> <dt> <a name='item13'>[13]</a> <a href ="/abs/1907.00241" title="Abstract" id="1907.00241"> arXiv:1907.00241 </a> [<a href="/pdf/1907.00241" title="Download PDF" id="pdf-1907.00241" aria-labelledby="pdf-1907.00241">pdf</a>, <a href="/format/1907.00241" title="Other formats" id="oth-1907.00241" aria-labelledby="oth-1907.00241">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Identification In Missing Data Models Represented By Directed Acyclic Graphs </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Bhattacharya,+R">Rohit Bhattacharya</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Nabi,+R">Razieh Nabi</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Shpitser,+I">Ilya Shpitser</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Robins,+J+M">James M. Robins</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 16 pages, published in proceedings of 35th Conference on Uncertainty in Artificial Intelligence (UAI 2019) </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Machine Learning (stat.ML)</span>; Machine Learning (cs.LG) </div> </div> </dd> <dt> <a name='item14'>[14]</a> <a href ="/abs/1907.00287" title="Abstract" id="1907.00287"> arXiv:1907.00287 </a> [<a href="/pdf/1907.00287" title="Download PDF" id="pdf-1907.00287" aria-labelledby="pdf-1907.00287">pdf</a>, <a href="/format/1907.00287" title="Other formats" id="oth-1907.00287" aria-labelledby="oth-1907.00287">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Estimating Treatment Effect under Additive Hazards Models with High-dimensional Covariates </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Hou,+J">Jue Hou</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Bradic,+J">Jelena Bradic</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Xu,+R">Ronghui Xu</a></div> <div class='list-journal-ref'><span class='descriptor'>Journal-ref:</span> Journal of the American Statistical Association 118(541) 327-342 (2021) </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Methodology (stat.ME)</span>; Quantitative Methods (q-bio.QM); Applications (stat.AP); Machine Learning (stat.ML) </div> </div> </dd> <dt> <a name='item15'>[15]</a> <a href ="/abs/1907.00288" title="Abstract" id="1907.00288"> arXiv:1907.00288 </a> [<a href="/pdf/1907.00288" title="Download PDF" id="pdf-1907.00288" aria-labelledby="pdf-1907.00288">pdf</a>, <a href="/format/1907.00288" title="Other formats" id="oth-1907.00288" aria-labelledby="oth-1907.00288">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> A New Lower Bound for Kullback-Leibler Divergence Based on Hammersley-Chapman-Robbins Bound </div> <div class='list-authors'><a href="https://arxiv.org/search/math?searchtype=author&amp;query=Nishiyama,+T">Tomohiro Nishiyama</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 8 pages, 3 figures </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Statistics Theory (math.ST)</span>; Information Theory (cs.IT); Machine Learning (stat.ML) </div> </div> </dd> <dt> <a name='item16'>[16]</a> <a href ="/abs/1907.00296" title="Abstract" id="1907.00296"> arXiv:1907.00296 </a> [<a href="/pdf/1907.00296" title="Download PDF" id="pdf-1907.00296" aria-labelledby="pdf-1907.00296">pdf</a>, <a href="/format/1907.00296" title="Other formats" id="oth-1907.00296" aria-labelledby="oth-1907.00296">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Geodesic Distance Estimation with Spherelets </div> <div class='list-authors'><a href="https://arxiv.org/search/math?searchtype=author&amp;query=Li,+D">Didong Li</a>, <a href="https://arxiv.org/search/math?searchtype=author&amp;query=Dunson,+D+B">David B Dunson</a></div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Statistics Theory (math.ST)</span>; Machine Learning (stat.ML) </div> </div> </dd> <dt> <a name='item17'>[17]</a> <a href ="/abs/1907.00307" title="Abstract" id="1907.00307"> arXiv:1907.00307 </a> [<a href="/pdf/1907.00307" title="Download PDF" id="pdf-1907.00307" aria-labelledby="pdf-1907.00307">pdf</a>, <a href="/format/1907.00307" title="Other formats" id="oth-1907.00307" aria-labelledby="oth-1907.00307">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Outlier-robust Kalman filters with mixture correntropy </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Wang,+H">Hongwei Wang</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Zhang,+W">Wei Zhang</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Zuo,+J">Junyi Zuo</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Wang,+H">Heping Wang</a></div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Methodology (stat.ME)</span>; Applications (stat.AP) </div> </div> </dd> <dt> <a name='item18'>[18]</a> <a href ="/abs/1907.00345" title="Abstract" id="1907.00345"> arXiv:1907.00345 </a> [<a href="/pdf/1907.00345" title="Download PDF" id="pdf-1907.00345" aria-labelledby="pdf-1907.00345">pdf</a>, <a href="/format/1907.00345" title="Other formats" id="oth-1907.00345" aria-labelledby="oth-1907.00345">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Frequentist performances of Bayesian prediction intervals for random-effects meta-analysis </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Hamaguchi,+Y">Yuta Hamaguchi</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Noma,+H">Hisashi Noma</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Nagashima,+K">Kengo Nagashima</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Yamada,+T">Tomohide Yamada</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Furukawa,+T+A">Toshi A. Furukawa</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 23 pages, 4 figures, 1 table </div> <div class='list-journal-ref'><span class='descriptor'>Journal-ref:</span> Biom J 2021;63(2):394-405 </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Methodology (stat.ME)</span> </div> </div> </dd> <dt> <a name='item19'>[19]</a> <a href ="/abs/1907.00389" title="Abstract" id="1907.00389"> arXiv:1907.00389 </a> [<a href="/pdf/1907.00389" title="Download PDF" id="pdf-1907.00389" aria-labelledby="pdf-1907.00389">pdf</a>, <a href="/format/1907.00389" title="Other formats" id="oth-1907.00389" aria-labelledby="oth-1907.00389">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Coupling techniques for nonlinear ensemble filtering </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Spantini,+A">Alessio Spantini</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Baptista,+R">Ricardo Baptista</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Marzouk,+Y">Youssef Marzouk</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> To appear in SIAM Review. 47 pages, 18 figures </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Methodology (stat.ME)</span>; Computation (stat.CO); Machine Learning (stat.ML) </div> </div> </dd> <dt> <a name='item20'>[20]</a> <a href ="/abs/1907.00399" title="Abstract" id="1907.00399"> arXiv:1907.00399 </a> [<a href="/pdf/1907.00399" title="Download PDF" id="pdf-1907.00399" aria-labelledby="pdf-1907.00399">pdf</a>, <a href="/format/1907.00399" title="Other formats" id="oth-1907.00399" aria-labelledby="oth-1907.00399">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Bounding Causes of Effects with Mediators </div> <div class='list-authors'><a href="https://arxiv.org/search/math?searchtype=author&amp;query=Dawid,+P">Philip Dawid</a>, <a href="https://arxiv.org/search/math?searchtype=author&amp;query=Humphreys,+M">Macartan Humphreys</a>, <a href="https://arxiv.org/search/math?searchtype=author&amp;query=Musio,+M">Monica Musio</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 23 pages, 2 figures </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Statistics Theory (math.ST)</span>; Econometrics (econ.EM) </div> </div> </dd> <dt> <a name='item21'>[21]</a> <a href ="/abs/1907.00502" title="Abstract" id="1907.00502"> arXiv:1907.00502 </a> [<a href="/pdf/1907.00502" title="Download PDF" id="pdf-1907.00502" aria-labelledby="pdf-1907.00502">pdf</a>, <a href="/format/1907.00502" title="Other formats" id="oth-1907.00502" aria-labelledby="oth-1907.00502">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Wave-shape oscillatory model for nonstationary periodic time series analysis </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Lin,+Y">Yu-Ting Lin</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Malik,+J">John Malik</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Wu,+H">Hau-Tieng Wu</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 35 pages, 15 figures </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Applications (stat.AP)</span> </div> </div> </dd> <dt> <a name='item22'>[22]</a> <a href ="/abs/1907.00519" title="Abstract" id="1907.00519"> arXiv:1907.00519 </a> [<a href="/pdf/1907.00519" title="Download PDF" id="pdf-1907.00519" aria-labelledby="pdf-1907.00519">pdf</a>, <a href="/format/1907.00519" title="Other formats" id="oth-1907.00519" aria-labelledby="oth-1907.00519">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Transformed Naive Ratio and Product Based Estimators for Estimating Population Mode in Simple Random Sampling </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Kumar,+S">Sanjay Kumar</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Tiwari,+N">Nirmal Tiwari</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 25 pages, 11 figures </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Methodology (stat.ME)</span> </div> </div> </dd> <dt> <a name='item23'>[23]</a> <a href ="/abs/1907.00586" title="Abstract" id="1907.00586"> arXiv:1907.00586 </a> [<a href="/pdf/1907.00586" title="Download PDF" id="pdf-1907.00586" aria-labelledby="pdf-1907.00586">pdf</a>, <a href="/format/1907.00586" title="Other formats" id="oth-1907.00586" aria-labelledby="oth-1907.00586">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> A Kernel Stein Test for Comparing Latent Variable Models </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Kanagawa,+H">Heishiro Kanagawa</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Jitkrittum,+W">Wittawat Jitkrittum</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Mackey,+L">Lester Mackey</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Fukumizu,+K">Kenji Fukumizu</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Gretton,+A">Arthur Gretton</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> This is a pre-copyedited, author-produced version of an article accepted for publication in The Journal of the Royal Statistical Society Series: B following peer review </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Machine Learning (stat.ML)</span>; Machine Learning (cs.LG) </div> </div> </dd> <dt> <a name='item24'>[24]</a> <a href ="/abs/1907.00603" title="Abstract" id="1907.00603"> arXiv:1907.00603 </a> [<a href="/pdf/1907.00603" title="Download PDF" id="pdf-1907.00603" aria-labelledby="pdf-1907.00603">pdf</a>, <a href="/format/1907.00603" title="Other formats" id="oth-1907.00603" aria-labelledby="oth-1907.00603">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Applying Meta-Analytic-Predictive Priors with the R Bayesian evidence synthesis tools </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Weber,+S">Sebastian Weber</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Li,+Y">Yue Li</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Seaman,+J">John Seaman</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Kakizume,+T">Tomoyuki Kakizume</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Schmidli,+H">Heinz Schmidli</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 27 pages, 3 figures, RBesT R package on CRAN <a href="https://cran.r-project.org/package=RBesT" rel="external noopener nofollow" class="link-external link-https">this https URL</a> </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Applications (stat.AP)</span> </div> </div> </dd> <dt> <a name='item25'>[25]</a> <a href ="/abs/1907.00668" title="Abstract" id="1907.00668"> arXiv:1907.00668 </a> [<a href="/pdf/1907.00668" title="Download PDF" id="pdf-1907.00668" aria-labelledby="pdf-1907.00668">pdf</a>, <a href="/format/1907.00668" title="Other formats" id="oth-1907.00668" aria-labelledby="oth-1907.00668">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Power Lindley distribution and software metrics </div> <div class='list-authors'><a href="https://arxiv.org/search/math?searchtype=author&amp;query=Khalleefah,+M">Mohammed Khalleefah</a>, <a href="https://arxiv.org/search/math?searchtype=author&amp;query=Ostrovska,+S">Sofiya Ostrovska</a>, <a href="https://arxiv.org/search/math?searchtype=author&amp;query=Turan,+M">Mehmet Turan</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 15 pages, 3 figures,4 tables </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Statistics Theory (math.ST)</span>; Probability (math.PR) </div> </div> </dd> <dt> <a name='item26'>[26]</a> <a href ="/abs/1907.00686" title="Abstract" id="1907.00686"> arXiv:1907.00686 </a> [<a href="/pdf/1907.00686" title="Download PDF" id="pdf-1907.00686" aria-labelledby="pdf-1907.00686">pdf</a>, <a href="/format/1907.00686" title="Other formats" id="oth-1907.00686" aria-labelledby="oth-1907.00686">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Sparse regular variation </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Nicolas,+M">Meyer Nicolas</a> (LPSM (UMR\_8001)), <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Wintenberger,+O">Olivier Wintenberger</a> (LPSM (UMR\_8001))</div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Machine Learning (stat.ML)</span>; Machine Learning (cs.LG); Statistics Theory (math.ST) </div> </div> </dd> <dt> <a name='item27'>[27]</a> <a href ="/abs/1907.00723" title="Abstract" id="1907.00723"> arXiv:1907.00723 </a> [<a href="/pdf/1907.00723" title="Download PDF" id="pdf-1907.00723" aria-labelledby="pdf-1907.00723">pdf</a>, <a href="/format/1907.00723" title="Other formats" id="oth-1907.00723" aria-labelledby="oth-1907.00723">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> A greedy algorithm for sparse precision matrix approximation </div> <div class='list-authors'><a href="https://arxiv.org/search/math?searchtype=author&amp;query=Lv,+D">Didi Lv</a>, <a href="https://arxiv.org/search/math?searchtype=author&amp;query=Zhang,+X">Xiaoqun Zhang</a></div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Statistics Theory (math.ST)</span> </div> </div> </dd> <dt> <a name='item28'>[28]</a> <a href ="/abs/1907.00786" title="Abstract" id="1907.00786"> arXiv:1907.00786 </a> [<a href="/pdf/1907.00786" title="Download PDF" id="pdf-1907.00786" aria-labelledby="pdf-1907.00786">pdf</a>, <a href="/format/1907.00786" title="Other formats" id="oth-1907.00786" aria-labelledby="oth-1907.00786">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> State-of-the-art in selection of variables and functional forms in multivariable analysis -- outstanding issues </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Sauerbrei,+W">Willi Sauerbrei</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Perperoglou,+A">Aris Perperoglou</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Schmid,+M">Matthias Schmid</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Abrahamowicz,+M">Michal Abrahamowicz</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Becher,+H">Heiko Becher</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Binder,+H">Harald Binder</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Dunkler,+D">Daniela Dunkler</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Harrell,+F+E">Frank E. Harrell Jr</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Royston,+P">Patrick Royston</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Heinze,+G">Georg Heinze</a> (for TG2 of the STRATOS initiative)</div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Methodology (stat.ME)</span> </div> </div> </dd> <dt> <a name='item29'>[29]</a> <a href ="/abs/1907.00825" title="Abstract" id="1907.00825"> arXiv:1907.00825 </a> [<a href="/pdf/1907.00825" title="Download PDF" id="pdf-1907.00825" aria-labelledby="pdf-1907.00825">pdf</a>, <a href="/format/1907.00825" title="Other formats" id="oth-1907.00825" aria-labelledby="oth-1907.00825">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Time-to-Event Prediction with Neural Networks and Cox Regression </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Kvamme,+H">H氓vard Kvamme</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Borgan,+%C3%98">脴rnulf Borgan</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Scheel,+I">Ida Scheel</a></div> <div class='list-journal-ref'><span class='descriptor'>Journal-ref:</span> Journal of Machine Learning Research, 20(129):1-30, 2019 </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Machine Learning (stat.ML)</span>; Machine Learning (cs.LG) </div> </div> </dd> <dt> <a name='item30'>[30]</a> <a href ="/abs/1907.00846" title="Abstract" id="1907.00846"> arXiv:1907.00846 </a> [<a href="/pdf/1907.00846" title="Download PDF" id="pdf-1907.00846" aria-labelledby="pdf-1907.00846">pdf</a>, <a href="/format/1907.00846" title="Other formats" id="oth-1907.00846" aria-labelledby="oth-1907.00846">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> ICU Disparnumerophobia and Triskaidekaphobia: The &#39;Irrational Care Unit&#39;? </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Ercole,+A">Ari Ercole</a></div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Applications (stat.AP)</span> </div> </div> </dd> <dt> <a name='item31'>[31]</a> <a href ="/abs/1907.00865" title="Abstract" id="1907.00865"> arXiv:1907.00865 </a> [<a href="/pdf/1907.00865" title="Download PDF" id="pdf-1907.00865" aria-labelledby="pdf-1907.00865">pdf</a>, <a href="/format/1907.00865" title="Other formats" id="oth-1907.00865" aria-labelledby="oth-1907.00865">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Radial Bayesian Neural Networks: Beyond Discrete Support In Large-Scale Bayesian Deep Learning </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Farquhar,+S">Sebastian Farquhar</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Osborne,+M">Michael Osborne</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Gal,+Y">Yarin Gal</a></div> <div class='list-journal-ref'><span class='descriptor'>Journal-ref:</span> AI Stats, PMLR 108:1352-1362, 2020 </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Machine Learning (stat.ML)</span>; Machine Learning (cs.LG) </div> </div> </dd> <dt> <a name='item32'>[32]</a> <a href ="/abs/1907.00914" title="Abstract" id="1907.00914"> arXiv:1907.00914 </a> [<a href="/pdf/1907.00914" title="Download PDF" id="pdf-1907.00914" aria-labelledby="pdf-1907.00914">pdf</a>, <a href="/format/1907.00914" title="Other formats" id="oth-1907.00914" aria-labelledby="oth-1907.00914">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> ensr: R Package for Simultaneous Selection of Elastic Net Tuning Parameters </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=DeWitt,+P+E">Peter E. DeWitt</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Bennett,+T+D">Tellen D. Bennett</a></div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Computation (stat.CO)</span> </div> </div> </dd> <dt> <a name='item33'>[33]</a> <a href ="/abs/1907.00927" title="Abstract" id="1907.00927"> arXiv:1907.00927 </a> [<a href="/pdf/1907.00927" title="Download PDF" id="pdf-1907.00927" aria-labelledby="pdf-1907.00927">pdf</a>, <a href="/format/1907.00927" title="Other formats" id="oth-1907.00927" aria-labelledby="oth-1907.00927">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> A Unified Approach to Robust Mean Estimation </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Prasad,+A">Adarsh Prasad</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Balakrishnan,+S">Sivaraman Balakrishnan</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Ravikumar,+P">Pradeep Ravikumar</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 51 pages, 6 figures </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Machine Learning (stat.ML)</span>; Artificial Intelligence (cs.AI); Machine Learning (cs.LG) </div> </div> </dd> <dt> <a name='item34'>[34]</a> <a href ="/abs/1907.01003" title="Abstract" id="1907.01003"> arXiv:1907.01003 </a> [<a href="/pdf/1907.01003" title="Download PDF" id="pdf-1907.01003" aria-labelledby="pdf-1907.01003">pdf</a>, <a href="/format/1907.01003" title="Other formats" id="oth-1907.01003" aria-labelledby="oth-1907.01003">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Accurate, reliable and fast robustness evaluation </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Brendel,+W">Wieland Brendel</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Rauber,+J">Jonas Rauber</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=K%C3%BCmmerer,+M">Matthias K眉mmerer</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Ustyuzhaninov,+I">Ivan Ustyuzhaninov</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Bethge,+M">Matthias Bethge</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> Accepted at the 2019 Conference on Neural Information Processing Systems </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Machine Learning (stat.ML)</span>; Cryptography and Security (cs.CR); Computer Vision and Pattern Recognition (cs.CV); Machine Learning (cs.LG); Neural and Evolutionary Computing (cs.NE) </div> </div> </dd> <dt> <a name='item35'>[35]</a> <a href ="/abs/1907.01068" title="Abstract" id="1907.01068"> arXiv:1907.01068 </a> [<a href="/pdf/1907.01068" title="Download PDF" id="pdf-1907.01068" aria-labelledby="pdf-1907.01068">pdf</a>, <a href="/format/1907.01068" title="Other formats" id="oth-1907.01068" aria-labelledby="oth-1907.01068">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Augmenting and Tuning Knowledge Graph Embeddings </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Bamler,+R">Robert Bamler</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Salehi,+F">Farnood Salehi</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Mandt,+S">Stephan Mandt</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> Published version, Conference on Uncertainty in Artificial Intelligence (UAI 2019) </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Machine Learning (stat.ML)</span>; Artificial Intelligence (cs.AI); Machine Learning (cs.LG) </div> </div> </dd> <dt> <a name='item36'>[36]</a> <a href ="/abs/1907.01110" title="Abstract" id="1907.01110"> arXiv:1907.01110 </a> [<a href="/pdf/1907.01110" title="Download PDF" id="pdf-1907.01110" aria-labelledby="pdf-1907.01110">pdf</a>, <a href="/format/1907.01110" title="Other formats" id="oth-1907.01110" aria-labelledby="oth-1907.01110">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Robust analogs to the Coefficient of Variation </div> <div class='list-authors'><a href="https://arxiv.org/search/math?searchtype=author&amp;query=Arachchige,+C+N+P+G">Chandima N. P. G. Arachchige</a>, <a href="https://arxiv.org/search/math?searchtype=author&amp;query=Prendergast,+L+A">Luke A. Prendergast</a>, <a href="https://arxiv.org/search/math?searchtype=author&amp;query=Staudte,+R+G">Robert G. Staudte</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 30 pages, 2 figures Changed &#34;analogues&#34; to &#34;analogs&#34; in title to match published version. Journal of Applied Statistics (2020) </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Statistics Theory (math.ST)</span> </div> </div> </dd> <dt> <a name='item37'>[37]</a> <a href ="/abs/1907.01136" title="Abstract" id="1907.01136"> arXiv:1907.01136 </a> [<a href="/pdf/1907.01136" title="Download PDF" id="pdf-1907.01136" aria-labelledby="pdf-1907.01136">pdf</a>, <a href="https://arxiv.org/html/1907.01136v6" title="View HTML" id="html-1907.01136" aria-labelledby="html-1907.01136" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/1907.01136" title="Other formats" id="oth-1907.01136" aria-labelledby="oth-1907.01136">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Finding Outliers in Gaussian Model-Based Clustering </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Clark,+K+M">Katharine M. Clark</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=McNicholas,+P+D">Paul D. McNicholas</a></div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Methodology (stat.ME)</span>; Machine Learning (stat.ML) </div> </div> </dd> <dt> <a name='item38'>[38]</a> <a href ="/abs/1907.01145" title="Abstract" id="1907.01145"> arXiv:1907.01145 </a> [<a href="/pdf/1907.01145" title="Download PDF" id="pdf-1907.01145" aria-labelledby="pdf-1907.01145">pdf</a>, <a href="/format/1907.01145" title="Other formats" id="oth-1907.01145" aria-labelledby="oth-1907.01145">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> The generalized orthogonal Procrustes problem in the high noise regime </div> <div class='list-authors'><a href="https://arxiv.org/search/math?searchtype=author&amp;query=Pumir,+T">Thomas Pumir</a>, <a href="https://arxiv.org/search/math?searchtype=author&amp;query=Singer,+A">Amit Singer</a>, <a href="https://arxiv.org/search/math?searchtype=author&amp;query=Boumal,+N">Nicolas Boumal</a></div> <div class='list-journal-ref'><span class='descriptor'>Journal-ref:</span> Information and Inference: A Journal of the IMA, iaaa035, 2021 </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Statistics Theory (math.ST)</span> </div> </div> </dd> <dt> <a name='item39'>[39]</a> <a href ="/abs/1907.01170" title="Abstract" id="1907.01170"> arXiv:1907.01170 </a> [<a href="/pdf/1907.01170" title="Download PDF" id="pdf-1907.01170" aria-labelledby="pdf-1907.01170">pdf</a>, <a href="/format/1907.01170" title="Other formats" id="oth-1907.01170" aria-labelledby="oth-1907.01170">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Bayesian Analysis of High-dimensional Discrete Graphical Models </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Bhattacharyya,+A">Anwesha Bhattacharyya</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Atchade,+Y">Yves Atchade</a></div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Methodology (stat.ME)</span>; Computation (stat.CO) </div> </div> </dd> <dt> <a name='item40'>[40]</a> <a href ="/abs/1907.01175" title="Abstract" id="1907.01175"> arXiv:1907.01175 </a> [<a href="/pdf/1907.01175" title="Download PDF" id="pdf-1907.01175" aria-labelledby="pdf-1907.01175">pdf</a>, <a href="/format/1907.01175" title="Other formats" id="oth-1907.01175" aria-labelledby="oth-1907.01175">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Volatility Analysis with Realized GARCH-Ito Models </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Song,+X">Xinyu Song</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Kim,+D">Donggyu Kim</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Yuan,+H">Huiling Yuan</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Cui,+X">Xiangyu Cui</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Lu,+Z">Zhiping Lu</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Zhou,+Y">Yong Zhou</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Wang,+Y">Yazhen Wang</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 39 pages, 4 tables, 3 figures </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Methodology (stat.ME)</span>; Applications (stat.AP) </div> </div> </dd> <dt> <a name='item41'>[41]</a> <a href ="/abs/1907.01181" title="Abstract" id="1907.01181"> arXiv:1907.01181 </a> [<a href="/pdf/1907.01181" title="Download PDF" id="pdf-1907.01181" aria-labelledby="pdf-1907.01181">pdf</a>, <a href="/format/1907.01181" title="Other formats" id="oth-1907.01181" aria-labelledby="oth-1907.01181">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Adaptive Partitioning Design and Analysis for Emulation of a Complex Computer Code </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Surjanovic,+S">Sonja Surjanovic</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Welch,+W+J">William J. Welch</a></div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Methodology (stat.ME)</span> </div> </div> </dd> <dt> <a name='item42'>[42]</a> <a href ="/abs/1907.01196" title="Abstract" id="1907.01196"> arXiv:1907.01196 </a> [<a href="/pdf/1907.01196" title="Download PDF" id="pdf-1907.01196" aria-labelledby="pdf-1907.01196">pdf</a>, <a href="/format/1907.01196" title="Other formats" id="oth-1907.01196" aria-labelledby="oth-1907.01196">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Large Volatility Matrix Prediction with High-Frequency Data </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Song,+X">Xinyu Song</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> Research method similar to the one covered in the manuscript has been examined already </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Applications (stat.AP)</span>; Econometrics (econ.EM) </div> </div> </dd> <dt> <a name='item43'>[43]</a> <a href ="/abs/1907.01223" title="Abstract" id="1907.01223"> arXiv:1907.01223 </a> [<a href="/pdf/1907.01223" title="Download PDF" id="pdf-1907.01223" aria-labelledby="pdf-1907.01223">pdf</a>, <a href="/format/1907.01223" title="Other formats" id="oth-1907.01223" aria-labelledby="oth-1907.01223">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Specification testing in semi-parametric transformation models </div> <div class='list-authors'><a href="https://arxiv.org/search/math?searchtype=author&amp;query=Kloodt,+N">Nick Kloodt</a>, <a href="https://arxiv.org/search/math?searchtype=author&amp;query=Neumeyer,+N">Natalie Neumeyer</a>, <a href="https://arxiv.org/search/math?searchtype=author&amp;query=Van+Keilegom,+I">Ingrid Van Keilegom</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 54 pages </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Statistics Theory (math.ST)</span> </div> </div> </dd> <dt> <a name='item44'>[44]</a> <a href ="/abs/1907.01248" title="Abstract" id="1907.01248"> arXiv:1907.01248 </a> [<a href="/pdf/1907.01248" title="Download PDF" id="pdf-1907.01248" aria-labelledby="pdf-1907.01248">pdf</a>, <a href="/format/1907.01248" title="Other formats" id="oth-1907.01248" aria-labelledby="oth-1907.01248">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Integrated Nested Laplace Approximations (INLA) </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Martino,+S">Sara Martino</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Riebler,+A">Andrea Riebler</a></div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Computation (stat.CO)</span> </div> </div> </dd> <dt> <a name='item45'>[45]</a> <a href ="/abs/1907.01306" title="Abstract" id="1907.01306"> arXiv:1907.01306 </a> [<a href="/pdf/1907.01306" title="Download PDF" id="pdf-1907.01306" aria-labelledby="pdf-1907.01306">pdf</a>, <a href="/format/1907.01306" title="Other formats" id="oth-1907.01306" aria-labelledby="oth-1907.01306">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Elicitability and Identifiability of Systemic Risk Measures </div> <div class='list-authors'><a href="https://arxiv.org/search/math?searchtype=author&amp;query=Fissler,+T">Tobias Fissler</a>, <a href="https://arxiv.org/search/math?searchtype=author&amp;query=Hlavinov%C3%A1,+J">Jana Hlavinov谩</a>, <a href="https://arxiv.org/search/math?searchtype=author&amp;query=Rudloff,+B">Birgit Rudloff</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 42 pages, 3 figures + supplementary material (6 pages, 2 figures) </div> <div class='list-journal-ref'><span class='descriptor'>Journal-ref:</span> Finance and Stochastics (2021), Volume 25, No. 1, 133-165 </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Statistics Theory (math.ST)</span>; Mathematical Finance (q-fin.MF); Risk Management (q-fin.RM); Statistical Finance (q-fin.ST) </div> </div> </dd> <dt> <a name='item46'>[46]</a> <a href ="/abs/1907.01333" title="Abstract" id="1907.01333"> arXiv:1907.01333 </a> [<a href="/pdf/1907.01333" title="Download PDF" id="pdf-1907.01333" aria-labelledby="pdf-1907.01333">pdf</a>, <a href="/format/1907.01333" title="Other formats" id="oth-1907.01333" aria-labelledby="oth-1907.01333">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> On Global-local Shrinkage Priors for Count Data </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Hamura,+Y">Yasuyuki Hamura</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Irie,+K">Kaoru Irie</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Sugasawa,+S">Shonosuke Sugasawa</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 28 pages (main text) + 14 pages (supplementary material) </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Methodology (stat.ME)</span> </div> </div> </dd> <dt> <a name='item47'>[47]</a> <a href ="/abs/1907.01358" title="Abstract" id="1907.01358"> arXiv:1907.01358 </a> [<a href="/pdf/1907.01358" title="Download PDF" id="pdf-1907.01358" aria-labelledby="pdf-1907.01358">pdf</a>, <a href="/format/1907.01358" title="Other formats" id="oth-1907.01358" aria-labelledby="oth-1907.01358">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Multiple Bayesian Filtering as Message Passing </div> <div class='list-authors'><a href="https://arxiv.org/search/math?searchtype=author&amp;query=Vitetta,+G+M">Giorgio M. Vitetta</a>, <a href="https://arxiv.org/search/math?searchtype=author&amp;query=Di+Viesti,+P">Pasquale Di Viesti</a>, <a href="https://arxiv.org/search/math?searchtype=author&amp;query=Sirignano,+E">Emilio Sirignano</a>, <a href="https://arxiv.org/search/math?searchtype=author&amp;query=Montorsi,+F">Francesco Montorsi</a></div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Statistics Theory (math.ST)</span> </div> </div> </dd> <dt> <a name='item48'>[48]</a> <a href ="/abs/1907.01379" title="Abstract" id="1907.01379"> arXiv:1907.01379 </a> [<a href="/pdf/1907.01379" title="Download PDF" id="pdf-1907.01379" aria-labelledby="pdf-1907.01379">pdf</a>, <a href="/format/1907.01379" title="Other formats" id="oth-1907.01379" aria-labelledby="oth-1907.01379">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Multidimensional Scaling on Metric Measure Spaces </div> <div class='list-authors'><a href="https://arxiv.org/search/math?searchtype=author&amp;query=Adams,+H">Henry Adams</a>, <a href="https://arxiv.org/search/math?searchtype=author&amp;query=Blumstein,+M">Mark Blumstein</a>, <a href="https://arxiv.org/search/math?searchtype=author&amp;query=Kassab,+L">Lara Kassab</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> arXiv admin note: substantial text overlap with <a href="https://arxiv.org/abs/1904.07763" data-arxiv-id="1904.07763" class="link-https">arXiv:1904.07763</a> </div> <div class='list-journal-ref'><span class='descriptor'>Journal-ref:</span> Rocky Mountain Journal of Mathematics 50 (2020), 397-413 </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Statistics Theory (math.ST)</span>; Spectral Theory (math.SP) </div> </div> </dd> <dt> <a name='item49'>[49]</a> <a href ="/abs/1907.01458" title="Abstract" id="1907.01458"> arXiv:1907.01458 </a> [<a href="/pdf/1907.01458" title="Download PDF" id="pdf-1907.01458" aria-labelledby="pdf-1907.01458">pdf</a>, <a href="/format/1907.01458" title="Other formats" id="oth-1907.01458" aria-labelledby="oth-1907.01458">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Multiple competition-based FDR control for peptide detection </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Emery,+K">Kristen Emery</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Hasam,+S">Syamand Hasam</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Noble,+W+S">William Stafford Noble</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Keich,+U">Uri Keich</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> Numerous changes from the initial submission including an expanded section on peptide detection (context/motivation and results), refocused and streamlined methods development section, revised and more selective figures reflecting the most recent analysis </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Methodology (stat.ME)</span>; Applications (stat.AP) </div> </div> </dd> <dt> <a name='item50'>[50]</a> <a href ="/abs/1907.01505" title="Abstract" id="1907.01505"> arXiv:1907.01505 </a> [<a href="/pdf/1907.01505" title="Download PDF" id="pdf-1907.01505" aria-labelledby="pdf-1907.01505">pdf</a>, <a href="/format/1907.01505" title="Other formats" id="oth-1907.01505" aria-labelledby="oth-1907.01505">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Adaptive Approximate Bayesian Computation Tolerance Selection </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Simola,+U">Umberto Simola</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Cisewski-Kehe,+J">Jessica Cisewski-Kehe</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Gutmann,+M+U">Michael U. Gutmann</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Corander,+J">Jukka Corander</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 26 pages, 8 figures </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Computation (stat.CO)</span>; Applications (stat.AP); Methodology (stat.ME) </div> </div> </dd> </dl> <div class='paging'>Total of 1336 entries : <span>1-50</span> <a href=/list/stat/2019-07?skip=50&amp;show=50>51-100</a> <a href=/list/stat/2019-07?skip=100&amp;show=50>101-150</a> <a href=/list/stat/2019-07?skip=150&amp;show=50>151-200</a> <span>...</span> <a href=/list/stat/2019-07?skip=1300&amp;show=50>1301-1336</a> </div> <div class='morefewer'>Showing up to 50 entries per page: <a href=/list/stat/2019-07?skip=0&amp;show=25 rel="nofollow"> fewer</a> | <a href=/list/stat/2019-07?skip=0&amp;show=100 rel="nofollow"> more</a> | <a href=/list/stat/2019-07?skip=0&amp;show=2000 rel="nofollow"> all</a> </div> </div> </div> </div> </main> <footer style="clear: both;"> <div class="columns is-desktop" role="navigation" aria-label="Secondary" style="margin: -0.75em -0.75em 0.75em -0.75em"> <!-- Macro-Column 1 --> <div class="column" style="padding: 0;"> <div class="columns"> <div class="column"> <ul style="list-style: none; line-height: 2;"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul style="list-style: none; line-height: 2;"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- End Macro-Column 1 --> <!-- Macro-Column 2 --> <div class="column" style="padding: 0;"> <div class="columns"> <div class="column"> <ul style="list-style: none; line-height: 2;"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul style="list-style: none; line-height: 2;"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> <!-- End Macro-Column 2 --> </div> </footer> </div> <script src="/static/base/1.0.1/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10