CINXE.COM

cohomology operation in nLab

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> cohomology operation in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> cohomology operation </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/3551/#Item_12" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="cohomology">Cohomology</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/cohomology">cohomology</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/cocycle">cocycle</a>, <a class="existingWikiWord" href="/nlab/show/coboundary">coboundary</a>, <a class="existingWikiWord" href="/nlab/show/coefficient">coefficient</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homology">homology</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/chain">chain</a>, <a class="existingWikiWord" href="/nlab/show/cycle">cycle</a>, <a class="existingWikiWord" href="/nlab/show/boundary">boundary</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/characteristic+class">characteristic class</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/universal+characteristic+class">universal characteristic class</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/secondary+characteristic+class">secondary characteristic class</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+characteristic+class">differential characteristic class</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fiber+sequence">fiber sequence</a>/<a class="existingWikiWord" href="/nlab/show/long+exact+sequence+in+cohomology">long exact sequence in cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fiber+%E2%88%9E-bundle">fiber ∞-bundle</a>, <a class="existingWikiWord" href="/nlab/show/principal+%E2%88%9E-bundle">principal ∞-bundle</a>, <a class="existingWikiWord" href="/nlab/show/associated+%E2%88%9E-bundle">associated ∞-bundle</a>,</p> <p><a class="existingWikiWord" href="/nlab/show/twisted+%E2%88%9E-bundle">twisted ∞-bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-group+extension">∞-group extension</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/obstruction">obstruction</a></p> </li> </ul> <h3 id="special_and_general_types">Special and general types</h3> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/cochain+cohomology">cochain cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/ordinary+cohomology">ordinary cohomology</a>, <a class="existingWikiWord" href="/nlab/show/singular+cohomology">singular cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/group+cohomology">group cohomology</a>, <a class="existingWikiWord" href="/nlab/show/nonabelian+group+cohomology">nonabelian group cohomology</a>, <a class="existingWikiWord" href="/nlab/show/Lie+group+cohomology">Lie group cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Galois+cohomology">Galois cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/groupoid+cohomology">groupoid cohomology</a>, <a class="existingWikiWord" href="/nlab/show/nonabelian+groupoid+cohomology">nonabelian groupoid cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/generalized+%28Eilenberg-Steenrod%29+cohomology">generalized (Eilenberg-Steenrod) cohomology</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/cobordism+cohomology+theory">cobordism cohomology theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/integral+cohomology">integral cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/K-theory">K-theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/elliptic+cohomology">elliptic cohomology</a>, <a class="existingWikiWord" href="/nlab/show/tmf">tmf</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/taf">taf</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/abelian+sheaf+cohomology">abelian sheaf cohomology</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Deligne+cohomology">Deligne cohomology</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/de+Rham+cohomology">de Rham cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Dolbeault+cohomology">Dolbeault cohomology</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/etale+cohomology">etale cohomology</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/group+of+units">group of units</a>, <a class="existingWikiWord" href="/nlab/show/Picard+group">Picard group</a>, <a class="existingWikiWord" href="/nlab/show/Brauer+group">Brauer group</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/crystalline+cohomology">crystalline cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/syntomic+cohomology">syntomic cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/motivic+cohomology">motivic cohomology</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cohomology+of+operads">cohomology of operads</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Hochschild+cohomology">Hochschild cohomology</a>, <a class="existingWikiWord" href="/nlab/show/cyclic+cohomology">cyclic cohomology</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/string+topology">string topology</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/nonabelian+cohomology">nonabelian cohomology</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/principal+%E2%88%9E-bundle">principal ∞-bundle</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/universal+principal+%E2%88%9E-bundle">universal principal ∞-bundle</a>, <a class="existingWikiWord" href="/nlab/show/groupal+model+for+universal+principal+%E2%88%9E-bundles">groupal model for universal principal ∞-bundles</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/principal+bundle">principal bundle</a>, <a class="existingWikiWord" href="/nlab/show/Atiyah+Lie+groupoid">Atiyah Lie groupoid</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/principal+2-bundle">principal 2-bundle</a>/<a class="existingWikiWord" href="/nlab/show/gerbe">gerbe</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/locally+constant+%E2%88%9E-stack">covering ∞-bundle</a>/<a class="existingWikiWord" href="/nlab/show/local+system">local system</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-vector+bundle">(∞,1)-vector bundle</a> / <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2Cn%29-vector+bundle">(∞,n)-vector bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/quantum+anomaly">quantum anomaly</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/orientation">orientation</a>, <a class="existingWikiWord" href="/nlab/show/Spin+structure">Spin structure</a>, <a class="existingWikiWord" href="/nlab/show/Spin%5Ec+structure">Spin^c structure</a>, <a class="existingWikiWord" href="/nlab/show/String+structure">String structure</a>, <a class="existingWikiWord" href="/nlab/show/Fivebrane+structure">Fivebrane structure</a></li> </ul> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cohomology+with+constant+coefficients">cohomology with constant coefficients</a> / <a class="existingWikiWord" href="/nlab/show/cohomology+with+a+local+system+of+coefficients">with a local system of coefficients</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-Lie+algebra+cohomology">∞-Lie algebra cohomology</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Lie+algebra+cohomology">Lie algebra cohomology</a>, <a class="existingWikiWord" href="/nlab/show/nonabelian+Lie+algebra+cohomology">nonabelian Lie algebra cohomology</a>, <a class="existingWikiWord" href="/nlab/show/Lie+algebra+extensions">Lie algebra extensions</a>, <a class="existingWikiWord" href="/nlab/show/Gelfand-Fuks+cohomology">Gelfand-Fuks cohomology</a>,</li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Gerstenhaber-Schack+cohomology">bialgebra cohomology</a></p> </li> </ul> <h3 id="special_notions">Special notions</h3> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/%3Fech+cohomology">?ech cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/hypercohomology">hypercohomology</a></p> </li> </ul> <h3 id="variants">Variants</h3> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/equivariant+cohomology">equivariant cohomology</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/equivariant+homotopy+theory">equivariant homotopy theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Bredon+cohomology">Bredon cohomology</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/twisted+cohomology">twisted cohomology</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/twisted+bundle">twisted bundle</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/twisted+K-theory">twisted K-theory</a>, <a class="existingWikiWord" href="/nlab/show/twisted+spin+structure">twisted spin structure</a>, <a class="existingWikiWord" href="/nlab/show/twisted+spin%5Ec+structure">twisted spin^c structure</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/twisted+differential+c-structures">twisted differential c-structures</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/twisted+differential+string+structure">twisted differential string structure</a>, <a class="existingWikiWord" href="/nlab/show/twisted+differential+fivebrane+structure">twisted differential fivebrane structure</a></li> </ul> </li> </ul> </li> <li> <p>differential cohomology</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+cohomology">differential generalized (Eilenberg-Steenrod) cohomology</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+cobordism+cohomology">differential cobordism cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Deligne+cohomology">Deligne cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+K-theory">differential K-theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+elliptic+cohomology">differential elliptic cohomology</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/schreiber/show/differential+cohomology+in+a+cohesive+topos">differential cohomology in a cohesive topos</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Chern-Weil+theory">Chern-Weil theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-Chern-Weil+theory">∞-Chern-Weil theory</a></p> </li> </ul> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/relative+cohomology">relative cohomology</a></p> </li> </ul> <h3 id="extra_structure">Extra structure</h3> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Hodge+structure">Hodge structure</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/orientation">orientation</a>, <a class="existingWikiWord" href="/nlab/show/orientation+in+generalized+cohomology">in generalized cohomology</a></p> </li> </ul> <h3 id="operations">Operations</h3> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/cohomology+operations">cohomology operations</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cup+product">cup product</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/connecting+homomorphism">connecting homomorphism</a>, <a class="existingWikiWord" href="/nlab/show/Bockstein+homomorphism">Bockstein homomorphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fiber+integration">fiber integration</a>, <a class="existingWikiWord" href="/nlab/show/transgression">transgression</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cohomology+localization">cohomology localization</a></p> </li> </ul> <h3 id="theorems">Theorems</h3> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/universal+coefficient+theorem">universal coefficient theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/K%C3%BCnneth+theorem">Künneth theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/de+Rham+theorem">de Rham theorem</a>, <a class="existingWikiWord" href="/nlab/show/Poincare+lemma">Poincare lemma</a>, <a class="existingWikiWord" href="/nlab/show/Stokes+theorem">Stokes theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Hodge+theory">Hodge theory</a>, <a class="existingWikiWord" href="/nlab/show/Hodge+theorem">Hodge theorem</a></p> <p><a class="existingWikiWord" href="/nlab/show/nonabelian+Hodge+theory">nonabelian Hodge theory</a>, <a class="existingWikiWord" href="/nlab/show/noncommutative+Hodge+theory">noncommutative Hodge theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Brown+representability+theorem">Brown representability theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/abelian+sheaf+cohomology">hypercovering theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Eckmann-Hilton+duality">Eckmann-Hilton-Fuks duality</a></p> </li> </ul> <div> <p> <a href="/nlab/edit/cohomology+-+contents">Edit this sidebar</a> </p> </div></div></div> <h4 id="homotopy_theory">Homotopy theory</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/homotopy+theory">homotopy theory</a>, <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category+theory">(∞,1)-category theory</a>, <a class="existingWikiWord" href="/nlab/show/homotopy+type+theory">homotopy type theory</a></strong></p> <p>flavors: <a class="existingWikiWord" href="/nlab/show/stable+homotopy+theory">stable</a>, <a class="existingWikiWord" href="/nlab/show/equivariant+homotopy+theory">equivariant</a>, <a class="existingWikiWord" href="/nlab/show/rational+homotopy+theory">rational</a>, <a class="existingWikiWord" href="/nlab/show/p-adic+homotopy+theory">p-adic</a>, <a class="existingWikiWord" href="/nlab/show/proper+homotopy+theory">proper</a>, <a class="existingWikiWord" href="/nlab/show/geometric+homotopy+theory">geometric</a>, <a class="existingWikiWord" href="/nlab/show/cohesive+homotopy+theory">cohesive</a>, <a class="existingWikiWord" href="/nlab/show/directed+homotopy+theory">directed</a>…</p> <p>models: <a class="existingWikiWord" href="/nlab/show/topological+homotopy+theory">topological</a>, <a class="existingWikiWord" href="/nlab/show/simplicial+homotopy+theory">simplicial</a>, <a class="existingWikiWord" href="/nlab/show/localic+homotopy+theory">localic</a>, …</p> <p>see also <strong><a class="existingWikiWord" href="/nlab/show/algebraic+topology">algebraic topology</a></strong></p> <p><strong>Introductions</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Introduction+to+Topology+--+2">Introduction to Basic Homotopy Theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Introduction+to+Homotopy+Theory">Introduction to Abstract Homotopy Theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/geometry+of+physics+--+homotopy+types">geometry of physics – homotopy types</a></p> </li> </ul> <p><strong>Definitions</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy">homotopy</a>, <a class="existingWikiWord" href="/nlab/show/higher+homotopy">higher homotopy</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+type">homotopy type</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Pi-algebra">Pi-algebra</a>, <a class="existingWikiWord" href="/nlab/show/spherical+object+and+Pi%28A%29-algebra">spherical object and Pi(A)-algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+coherent+category+theory">homotopy coherent category theory</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopical+category">homotopical category</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/model+category">model category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/category+of+fibrant+objects">category of fibrant objects</a>, <a class="existingWikiWord" href="/nlab/show/cofibration+category">cofibration category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Waldhausen+category">Waldhausen category</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+category">homotopy category</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Ho%28Top%29">Ho(Top)</a></li> </ul> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category">(∞,1)-category</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/homotopy+category+of+an+%28%E2%88%9E%2C1%29-category">homotopy category of an (∞,1)-category</a></li> </ul> </li> </ul> <p><strong>Paths and cylinders</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/left+homotopy">left homotopy</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/cylinder+object">cylinder object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/mapping+cone">mapping cone</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/right+homotopy">right homotopy</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/path+object">path object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/mapping+cocone">mapping cocone</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/generalized+universal+bundle">universal bundle</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/interval+object">interval object</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+localization">homotopy localization</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/infinitesimal+interval+object">infinitesimal interval object</a></p> </li> </ul> </li> </ul> <p><strong>Homotopy groups</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+group">homotopy group</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/fundamental+group">fundamental group</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/fundamental+group+of+a+topos">fundamental group of a topos</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Brown-Grossman+homotopy+group">Brown-Grossman homotopy group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/categorical+homotopy+groups+in+an+%28%E2%88%9E%2C1%29-topos">categorical homotopy groups in an (∞,1)-topos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/geometric+homotopy+groups+in+an+%28%E2%88%9E%2C1%29-topos">geometric homotopy groups in an (∞,1)-topos</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fundamental+%E2%88%9E-groupoid">fundamental ∞-groupoid</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/fundamental+groupoid">fundamental groupoid</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/path+groupoid">path groupoid</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fundamental+%E2%88%9E-groupoid+in+a+locally+%E2%88%9E-connected+%28%E2%88%9E%2C1%29-topos">fundamental ∞-groupoid in a locally ∞-connected (∞,1)-topos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fundamental+%E2%88%9E-groupoid+of+a+locally+%E2%88%9E-connected+%28%E2%88%9E%2C1%29-topos">fundamental ∞-groupoid of a locally ∞-connected (∞,1)-topos</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fundamental+%28%E2%88%9E%2C1%29-category">fundamental (∞,1)-category</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/fundamental+category">fundamental category</a></li> </ul> </li> </ul> <p><strong>Basic facts</strong></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/fundamental+group+of+the+circle+is+the+integers">fundamental group of the circle is the integers</a></li> </ul> <p><strong>Theorems</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/fundamental+theorem+of+covering+spaces">fundamental theorem of covering spaces</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Freudenthal+suspension+theorem">Freudenthal suspension theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Blakers-Massey+theorem">Blakers-Massey theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/higher+homotopy+van+Kampen+theorem">higher homotopy van Kampen theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/nerve+theorem">nerve theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Whitehead%27s+theorem">Whitehead's theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Hurewicz+theorem">Hurewicz theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Galois+theory">Galois theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+hypothesis">homotopy hypothesis</a>-theorem</p> </li> </ul> </div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#idea'>Idea</a></li> <li><a href='#examples'>Examples</a></li> <ul> <li><a href='#list_of_examples'>List of examples</a></li> <li><a href='#CupPowersInMultiplicativeCohomology'>Cup powers in multiplicative cohomology</a></li> </ul> <li><a href='#references'>References</a></li> <ul> <li><a href='#general'>General</a></li> <li><a href='#on_ordinary_cohomology'>On ordinary cohomology</a></li> <li><a href='#on_topological_ktheory'>On topological K-theory</a></li> <li><a href='#on_complexoriented_cohomology_theories'>On complex-oriented cohomology theories</a></li> <li><a href='#on_differential_cohomology'>On differential cohomology</a></li> </ul> </ul> </div> <h2 id="idea">Idea</h2> <p>A <em>cohomology operation</em> is a family of <a class="existingWikiWord" href="/nlab/show/morphisms">morphisms</a> between <a class="existingWikiWord" href="/nlab/show/cohomology+groups">cohomology groups</a>, which is <a class="existingWikiWord" href="/nlab/show/natural+transformation">natural</a> with respect to the base space.</p> <p>Equivalently, if the <a class="existingWikiWord" href="/nlab/show/cohomology+theory">cohomology theory</a> has a <a class="existingWikiWord" href="/nlab/show/classifying+space">classifying space</a> (as it does for all usual notions of <a class="existingWikiWord" href="/nlab/show/cohomology">cohomology</a>, in particular for all <a class="existingWikiWord" href="/nlab/show/Whitehead-generalized+cohomology+theories">Whitehead-generalized cohomology theories</a>) then, by the <a class="existingWikiWord" href="/nlab/show/Yoneda+lemma">Yoneda lemma</a>, (non-abelian/unstable) cohomology operations are in natural bijection with <a class="existingWikiWord" href="/nlab/show/homotopy+classes">homotopy classes</a> of maps between classifying spaces.</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo stretchy="false">{</mo><msup><mi>H</mi> <mi>k</mi></msup><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mi>E</mi><mo stretchy="false">)</mo><mo>→</mo><msup><mi>H</mi> <mi>l</mi></msup><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mi>F</mi><mo stretchy="false">)</mo><mo stretchy="false">}</mo><mo>≃</mo><mi>Ho</mi><mo stretchy="false">(</mo><msub><mi>E</mi> <mi>k</mi></msub><mo>,</mo><msub><mi>F</mi> <mi>l</mi></msub><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \{ H^k(-, E) \to H^l(-, F) \} \simeq Ho(E_k, F_l) \,. </annotation></semantics></math></div> <p>(This statement is made fully explicit for instance below def. 12.3.22 in (<a href="#AguilarGitlerPrieto">Aguilar-Gitler-Prieto</a>).</p> <p>If here <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>E</mi> <mo>•</mo></msub></mrow><annotation encoding="application/x-tex">E_\bullet</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>F</mi> <mo>•</mo></msub></mrow><annotation encoding="application/x-tex">F_\bullet</annotation></semantics></math> are the component spaces of <a class="existingWikiWord" href="/nlab/show/spectra">spectra</a> and if such cohomology operations are compatible with the <a class="existingWikiWord" href="/nlab/show/suspension+isomorphism">suspension isomorphism</a>, then one speaks of a <em>stable cohomology operation</em>.</p> <h2 id="examples">Examples</h2> <h3 id="list_of_examples">List of examples</h3> <ul> <li> <p>every <a class="existingWikiWord" href="/nlab/show/universal+characteristic+class">universal characteristic class</a> is a cohomology operation.</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Bockstein+homomorphism">Bockstein homomorphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cup+product">cup product</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Massey+product">Massey product</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/power+operation">power operation</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Steenrod+squares">Steenrod squares</a> are the stable cohomology endo-operations on <a class="existingWikiWord" href="/nlab/show/ordinary+cohomology">ordinary cohomology</a> (mod 2)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Adams+operations">Adams operations</a> are the endo-cohomology operations on <a class="existingWikiWord" href="/nlab/show/K-theory">K-theory</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/logarithmic+cohomology+operation">logarithmic cohomology operation</a></p> </li> </ul> <h3 id="CupPowersInMultiplicativeCohomology">Cup powers in multiplicative cohomology</h3> <p> <div class='num_remark' id='CupSquareCohomologyOperation'> <h6>Example</h6> <p>[Cup-square cohomology operation]</p> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>E</mi></mrow><annotation encoding="application/x-tex">E</annotation></semantics></math> be a <a class="existingWikiWord" href="/nlab/show/multiplicative+cohomology+theory">multiplicative</a> <a class="existingWikiWord" href="/nlab/show/Whitehead-generalized+cohomology+theory">Whitehead-generalized cohomology theory</a> <a class="existingWikiWord" href="/nlab/show/Brown+representability+theorem">represented</a> by a <a class="existingWikiWord" href="/nlab/show/ring+spectrum">ring spectrum</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo maxsize="1.2em" minsize="1.2em">(</mo><mi>E</mi><mo>,</mo><msup><mn>1</mn> <mi>E</mi></msup><mo>,</mo><msup><mi>m</mi> <mi>E</mi></msup><mo maxsize="1.2em" minsize="1.2em">)</mo><mspace width="thickmathspace"></mspace><mo>∈</mo><mspace width="thickmathspace"></mspace><mi>CommutativeMonoids</mi><mo maxsize="1.8em" minsize="1.8em">(</mo><mi>Ho</mi><mo maxsize="1.2em" minsize="1.2em">(</mo><mi>Spectra</mi><mo maxsize="1.2em" minsize="1.2em">)</mo><mo>,</mo><mi>𝕊</mi><mo>,</mo><mo>∧</mo><mo maxsize="1.8em" minsize="1.8em">)</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \big( E, 1^E, m^E \big) \;\in\; CommutativeMonoids \Big( Ho\big( Spectra\big), \mathbb{S}, \wedge \Big) \,. </annotation></semantics></math></div> <p>Then for all <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi><mo>∈</mo><mi>ℕ</mi></mrow><annotation encoding="application/x-tex">n \in \mathbb{N}</annotation></semantics></math> there is an unstable <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>E</mi></mrow><annotation encoding="application/x-tex">E</annotation></semantics></math>-cohomology operation</p> <div class="maruku-equation" id="eq:CupSquareAsUnstableCohomologyOperation"><span class="maruku-eq-number">(1)</span><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo maxsize="1.2em" minsize="1.2em">[</mo><msup><mi>Ω</mi> <mn>∞</mn></msup><msup><mi>Σ</mi> <mi>n</mi></msup><mi>E</mi><mover><mo>⟶</mo><mrow><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><msup><mo stretchy="false">)</mo> <mrow><msub><mn>2</mn> <mo>∪</mo></msub></mrow></msup></mrow></mover><msup><mi>Ω</mi> <mn>∞</mn></msup><msup><mi>Σ</mi> <mrow><mn>2</mn><mi>n</mi></mrow></msup><mi>E</mi><mo maxsize="1.2em" minsize="1.2em">]</mo><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mo>∈</mo><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><msup><mover><mi>E</mi><mo>˜</mo></mover> <mrow><mn>2</mn><mi>n</mi></mrow></msup><mo maxsize="1.2em" minsize="1.2em">(</mo><msup><mi>Ω</mi> <mrow><mn>∞</mn><mo>−</mo><mi>n</mi></mrow></msup><mi>E</mi><mo maxsize="1.2em" minsize="1.2em">)</mo></mrow><annotation encoding="application/x-tex"> \big[ \Omega^\infty \Sigma^n E \overset{ (-)^{2_\cup} }{\longrightarrow} \Omega^\infty \Sigma^{2 n} E \big] \;\;\in\;\; \widetilde E^{ 2 n } \big( \Omega^{\infty - n} E \big) </annotation></semantics></math></div> <p>defined – via the <a class="existingWikiWord" href="/nlab/show/Yoneda+lemma">Yoneda lemma</a> on the <a class="existingWikiWord" href="/nlab/show/opposite+category">opposite</a> of the <a class="existingWikiWord" href="/nlab/show/classical+homotopy+category">classical homotopy category</a> of <a class="existingWikiWord" href="/nlab/show/pointed+topological+spaces">pointed topological spaces</a> – by acting over any <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mspace width="thinmathspace"></mspace><mo>∈</mo><mspace width="thinmathspace"></mspace><mi>Ho</mi><mo maxsize="1.2em" minsize="1.2em">(</mo><mi>PointedTopologicalSpaces</mi><mo maxsize="1.2em" minsize="1.2em">)</mo></mrow><annotation encoding="application/x-tex">X \,\in\, Ho\big(PointedTopologicalSpaces\big)</annotation></semantics></math> as the <a href="cup+product#CupProductInWhiteheadGeneralizedCohomologyTheory">cup square on E-cohomology</a> on cohomology in degree <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math>:</p> <div class="maruku-equation" id="eq:CupSquareInMultiplicativeCohomologyNaturalTransformation"><span class="maruku-eq-number">(2)</span><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>X</mi><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mo>↦</mo><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mo maxsize="1.8em" minsize="1.8em">(</mo><mo stretchy="false">[</mo><mi>X</mi><mo>,</mo><msup><mi>Ω</mi> <mn>∞</mn></msup><msup><mi>Σ</mi> <mi>n</mi></msup><mi>E</mi><mo stretchy="false">]</mo><mspace width="thinmathspace"></mspace><mo>=</mo><mspace width="thinmathspace"></mspace><mover><mi>E</mi><mo>˜</mo></mover><msup><mrow></mrow> <mi>n</mi></msup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mover><mo>⟶</mo><mrow><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><msub><mi>Δ</mi> <mrow><mover><mi>E</mi><mo>˜</mo></mover><msup><mrow></mrow> <mi>n</mi></msup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow></msub><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace></mrow></mover><mover><mi>E</mi><mo>˜</mo></mover><msup><mrow></mrow> <mi>n</mi></msup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>×</mo><mover><mi>E</mi><mo>˜</mo></mover><msup><mrow></mrow> <mi>n</mi></msup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mover><mo>⟶</mo><mrow><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><msubsup><mo>∪</mo> <mi>X</mi> <mi>E</mi></msubsup><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace></mrow></mover><mover><mi>E</mi><mo>˜</mo></mover><msup><mrow></mrow> <mi>n</mi></msup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mo>=</mo><mspace width="thinmathspace"></mspace><mo stretchy="false">[</mo><mi>X</mi><mo>,</mo><msup><mi>Ω</mi> <mn>∞</mn></msup><msup><mi>Σ</mi> <mrow><mn>2</mn><mi>n</mi></mrow></msup><mi>E</mi><mo stretchy="false">]</mo><mo maxsize="1.8em" minsize="1.8em">)</mo></mrow><annotation encoding="application/x-tex"> X \;\;\mapsto\;\; \Big( [X, \Omega^\infty \Sigma^n E] \,=\, {\widetilde E}{}^n(X) \overset{ \;\; \Delta_{{\widetilde E}{}^n(X)} \;\; }{\longrightarrow} {\widetilde E}{}^n(X) \times {\widetilde E}{}^n(X) \overset{ \;\; \cup^E_X \;\; }{\longrightarrow} {\widetilde E}{}^n(X) \,=\, [X, \Omega^\infty \Sigma^{2n} E] \Big) </annotation></semantics></math></div> <p>Here the first <a class="existingWikiWord" href="/nlab/show/function">function</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>Δ</mi> <mrow><mover><mi>E</mi><mo>˜</mo></mover><msup><mrow></mrow> <mi>n</mi></msup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow></msub></mrow><annotation encoding="application/x-tex">\Delta_{{\widetilde E}{}^n(X)}</annotation></semantics></math> is the <a class="existingWikiWord" href="/nlab/show/diagonal+morphism">diagonal</a> on the <em>set</em> underlying the degree=<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>E</mi></mrow><annotation encoding="application/x-tex">E</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/cohomology+group">cohomology group</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math>, while the second function <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msubsup><mo>∪</mo> <mi>X</mi> <mi>E</mi></msubsup></mrow><annotation encoding="application/x-tex">\cup^E_X</annotation></semantics></math> is the operation of forming the <a href="cup+product#CupProductInWhiteheadGeneralizedCohomologyTheory">E-cup product</a> of <a class="existingWikiWord" href="/nlab/show/pairs">pairs</a> of its elements.</p> <p>Both of these operations are clearly <a class="existingWikiWord" href="/nlab/show/natural+transformations">natural transformations</a> (for the first this is evident, for the second this comes down to the fact that the <a href="suspension+spectrum#SmashMonoidalDiagonals">smash-monoidal diagonals of suspension spectra</a> are natural, hence are indeed <a class="existingWikiWord" href="/nlab/show/monoidal+category+with+diagonals">monoidal diagonals</a>). Therefore the <a class="existingWikiWord" href="/nlab/show/full+subcategory">fully-faithfulness</a> of the <a class="existingWikiWord" href="/nlab/show/Yoneda+embedding">Yoneda embedding</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>Ho</mi><mo maxsize="1.2em" minsize="1.2em">(</mo><mi>PointedTopologicalSpaces</mi><mo maxsize="1.2em" minsize="1.2em">)</mo><mspace width="thickmathspace"></mspace><mover><mo>↪</mo><mrow><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mi>A</mi><mo>↦</mo><mo stretchy="false">[</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mi>A</mi><mo stretchy="false">]</mo><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace></mrow></mover><mspace width="thickmathspace"></mspace><mi>Functors</mi><mo maxsize="1.8em" minsize="1.8em">(</mo><mi>Ho</mi><mo maxsize="1.2em" minsize="1.2em">(</mo><mi>PointedTopologicalSpaces</mi><msup><mo maxsize="1.2em" minsize="1.2em">)</mo> <mi>op</mi></msup><mo>,</mo><mi>Set</mi><mo maxsize="1.8em" minsize="1.8em">)</mo></mrow><annotation encoding="application/x-tex"> Ho \big( PointedTopologicalSpaces \big) \;\overset{ \;\; A \mapsto [-,A]\;\; }{\hookrightarrow}\; Functors \Big( Ho \big( PointedTopologicalSpaces \big)^{op} , Set \Big) </annotation></semantics></math></div> <p>implies that this natural transformation <a class="maruku-eqref" href="#eq:CupSquareInMultiplicativeCohomologyNaturalTransformation">(2)</a> between the <a class="existingWikiWord" href="/nlab/show/representable+functors">representable functors</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><msup><mi>Ω</mi> <mn>∞</mn></msup><msup><mi>Σ</mi> <mi>n</mi></msup><mi>E</mi><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">[-,\Omega^\infty \Sigma^n E]</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><msup><mi>Ω</mi> <mn>∞</mn></msup><msup><mi>Σ</mi> <mrow><mn>2</mn><mi>n</mi></mrow></msup><mi>E</mi><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">[-,\Omega^\infty \Sigma^{2n} E]</annotation></semantics></math> is itself represented by a <a class="existingWikiWord" href="/nlab/show/morphism">morphism</a> <a class="maruku-eqref" href="#eq:CupSquareAsUnstableCohomologyOperation">(1)</a> between the representing classifying spaces, hence by an unstable cohomology operation.</p> <p></p> </div> </p> <p>The analogous construction of course exists for the <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math>th cup power <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><msup><mo stretchy="false">)</mo> <mrow><msub><mi>k</mi> <mo>∪</mo></msub></mrow></msup></mrow><annotation encoding="application/x-tex">(-)^{k_\cup}</annotation></semantics></math> for any <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>k</mi><mo>∈</mo><mi>ℕ</mi></mrow><annotation encoding="application/x-tex">k \in \mathbb{N}</annotation></semantics></math>. Brief mentioning of this is in <a href="#Wirthmuller12">Wirthmüller 12, Example (1) on p. 44 (46 of 67)</a>.</p> <h2 id="references">References</h2> <h3 id="general">General</h3> <p>Steenrod’s original colloquium lectures:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Norman+Steenrod">Norman Steenrod</a>, <em>Cohomology operations, and obstructions to extending continuous functions</em>, Advances in Math. 8, 371–416. (1972) (<a href="https://doi.org/10.1016/0001-8708(72)90004-7">doi:10.1016/0001-8708(72)90004-7</a>, <a href="http://www.maths.ed.ac.uk/%7Eaar/papers/steen6.pdf">pdf</a>)</li> </ul> <p>Background and review:</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/John+Michael+Boardman">John Michael Boardman</a>, <em>Stable Operations in Generalized Cohomology</em> &lbrack;<a href="https://math.jhu.edu/~wsw/papers2/math/28a-boardman-stable.pdf">pdf</a>, <a class="existingWikiWord" href="/nlab/files/Boardman-StableOperations.pdf" title="pdf">pdf</a>&rbrack; in: <a class="existingWikiWord" href="/nlab/show/Ioan+Mackenzie+James">Ioan Mackenzie James</a> (ed.) <em><a class="existingWikiWord" href="/nlab/show/Handbook+of+Algebraic+Topology">Handbook of Algebraic Topology</a></em> Oxford 1995 (<a href="https://doi.org/10.1016/B978-0-444-81779-2.X5000-7">doi:10.1016/B978-0-444-81779-2.X5000-7</a>)</p> </li> <li id="May"> <p><a class="existingWikiWord" href="/nlab/show/Peter+May">Peter May</a>, chapter 22, section 5 of: <em>A concise course in algebraic topology</em>, University of Chicago Press 1999 (ISBN:978-0226511832, <a href="https://www.math.uchicago.edu/~may/CONCISE/ConciseRevised.pdf">pdf</a>)</p> </li> </ul> <p>On the structure on the collection of all unstable cohomology operations:</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/John+Michael+Boardman">John Michael Boardman</a>, <a class="existingWikiWord" href="/nlab/show/David+Copeland+Johnson">David Copeland Johnson</a>, <a class="existingWikiWord" href="/nlab/show/W.+Stephen+Wilson">W. Stephen Wilson</a>, <em>Unstable Operations in Generalized Cohomology</em> (<a href="https://hopf.math.purdue.edu/Boardman-Johnson-Wilson/bjw.pdf">pdf</a>), in: <a class="existingWikiWord" href="/nlab/show/Ioan+Mackenzie+James">Ioan Mackenzie James</a> (ed.) <em><a class="existingWikiWord" href="/nlab/show/Handbook+of+Algebraic+Topology">Handbook of Algebraic Topology</a></em> Oxford 1995 (<a href="https://doi.org/10.1016/B978-0-444-81779-2.X5000-7">doi:10.1016/B978-0-444-81779-2.X5000-7</a>)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Andrew+Stacey">Andrew Stacey</a>, <a class="existingWikiWord" href="/nlab/show/Sarah+Whitehouse">Sarah Whitehouse</a>, <em>The Hunting of the Hopf Ring</em>, Homology Homotopy Appl. Volume 11, Number 2 (2009), 75-132. (<a href="https://arxiv.org/abs/0711.3722">arXiv:0711.3722</a>, <a href="https://projecteuclid.org/euclid.hha/1251832594">euclid:hha/1251832594</a>)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Tilman+Bauer">Tilman Bauer</a>, <em>Formal plethories</em>, Advances in Mathematics Volume 254, 20 March 2014, Pages 497-569 (<a href="https://arxiv.org/abs/1107.5745">arXiv:1107.5745</a>, <a href="https://doi.org/10.1016/j.aim.2013.12.023">doi:10.1016/j.aim.2013.12.023</a>)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/William+Mycroft">William Mycroft</a>, <em>Unstable Cohomology Operations: Computational Aspects of Plethories</em>, 2017 (<a href="https://etheses.whiterose.ac.uk/20524/1/wm-thesis-final.pdf">pdf</a>, <a class="existingWikiWord" href="/nlab/files/MycroftUnstableCohomologyOperations.pdf" title="pdf">pdf</a>)</p> </li> </ul> <h3 id="on_ordinary_cohomology">On ordinary cohomology</h3> <p>Operations on <a class="existingWikiWord" href="/nlab/show/ordinary+cohomology">ordinary cohomology</a>:</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Robert+Mosher">Robert Mosher</a>, <a class="existingWikiWord" href="/nlab/show/Martin+Tangora">Martin Tangora</a>, <em>Cohomology Operations and Application in Homotopy Theory</em>, Harper and Row (1968), Dover (2008) (<a href="https://store.doverpublications.com/0486466647.html">ISBN10:0486466647</a>, <a href="https://www.maths.ed.ac.uk/~v1ranick/papers/moshtang.pdf">pdf</a>)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Andrew+Stacey">Andrew Stacey</a>, <a class="existingWikiWord" href="/nlab/show/Sarah+Whitehouse">Sarah Whitehouse</a>, <em>Stable and unstable operations in mod <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math> cohomology theories</em>, Algebr. Geom. Topol. Volume 8, Number 2 (2008), 1059-1091 (<a href="https://arxiv.org/abs/math/0605471">arXiv:math/0605471</a>, <a href="https://projecteuclid.org/euclid.agt/1513796856">euclid:agt/1513796856</a>)</p> </li> </ul> <h3 id="on_topological_ktheory">On topological K-theory</h3> <p>Operations on <a class="existingWikiWord" href="/nlab/show/topological+K-theory">topological K-theory</a>:</p> <ul> <li id="Wirthmuller12"><a class="existingWikiWord" href="/nlab/show/Klaus+Wirthm%C3%BCller">Klaus Wirthmüller</a>, Sections 11 and 13 of: <em>Vector bundles and K-theory</em>, 2012 (<a class="existingWikiWord" href="/nlab/files/wirthmueller-vector-bundles-and-k-theory.pdf" title="pdf">pdf</a>)</li> </ul> <p>For <a class="existingWikiWord" href="/nlab/show/Adams+operations">Adams operations</a>:</p> <ul> <li id="AguilarGitlerPrieto">Marcelo Aguilar, <a class="existingWikiWord" href="/nlab/show/Samuel+Gitler">Samuel Gitler</a>, Carlos Prieto, Section 10 of: <em>Algebraic topology from a homotopical viewpoint</em>, Springer (2002) (<a href="https://link.springer.com/book/10.1007/b97586">doi:10.1007/b97586</a>)</li> </ul> <p>More:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/William+Mycroft">William Mycroft</a>, <a class="existingWikiWord" href="/nlab/show/Sarah+Whitehouse">Sarah Whitehouse</a>, <em>The plethory of operations in complex topological K-theory</em> (<a href="https://arxiv.org/abs/2001.01608">arXiv:2001.01608</a>)</li> </ul> <h3 id="on_complexoriented_cohomology_theories">On complex-oriented cohomology theories</h3> <p>For <a class="existingWikiWord" href="/nlab/show/Steenrod+operations">Steenrod operations</a> on <a class="existingWikiWord" href="/nlab/show/complex+oriented+cohomology">complex-oriented</a> <a class="existingWikiWord" href="/nlab/show/Whitehead-generalized+cohomology">generalized cohomology</a> (such as <a class="existingWikiWord" href="/nlab/show/MU">MU</a> and <a class="existingWikiWord" href="/nlab/show/BP">BP</a>):</p> <ul> <li id="Kochman96"><a class="existingWikiWord" href="/nlab/show/Stanley+Kochman">Stanley Kochman</a>, section 2.5 and 3.5 of <em><a class="existingWikiWord" href="/nlab/show/Bordism%2C+Stable+Homotopy+and+Adams+Spectral+Sequences">Bordism, Stable Homotopy and Adams Spectral Sequences</a></em>, AMS 1996</li> </ul> <h3 id="on_differential_cohomology">On differential cohomology</h3> <p>Refinement to <a class="existingWikiWord" href="/nlab/show/differential+cohomology">differential cohomology</a>:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Daniel+Grady">Daniel Grady</a>, <a class="existingWikiWord" href="/nlab/show/Hisham+Sati">Hisham Sati</a>, <em>Primary operations in differential cohomology</em>, Adv. Math. 335 (2018), 519-562 (<a href="https://arxiv.org/abs/1604.05988">arXiv:1604.05988</a>, <a href="https://www.sciencedirect.com/science/article/pii/S0001870818302676?via%3Dihub">doi:10.1016/j.aim.2018.07.019</a>)</li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on September 5, 2023 at 19:31:55. See the <a href="/nlab/history/cohomology+operation" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/cohomology+operation" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/3551/#Item_12">Discuss</a><span class="backintime"><a href="/nlab/revision/cohomology+operation/31" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/cohomology+operation" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/cohomology+operation" accesskey="S" class="navlink" id="history" rel="nofollow">History (31 revisions)</a> <a href="/nlab/show/cohomology+operation/cite" style="color: black">Cite</a> <a href="/nlab/print/cohomology+operation" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/cohomology+operation" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10