CINXE.COM
Atiyah Lie groupoid in nLab
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> Atiyah Lie groupoid in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> Atiyah Lie groupoid </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/543/#Item_3" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="lie_theory"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-Lie theory</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-Lie+theory">∞-Lie theory</a></strong> (<a class="existingWikiWord" href="/nlab/show/higher+geometry">higher geometry</a>)</p> <p><strong>Background</strong></p> <p><em>Smooth structure</em></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/generalized+smooth+space">generalized smooth space</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/smooth+manifold">smooth manifold</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/diffeological+space">diffeological space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Fr%C3%B6licher+space">Frölicher space</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/smooth+topos">smooth topos</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Cahiers+topos">Cahiers topos</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/smooth+%E2%88%9E-groupoid">smooth ∞-groupoid</a>, <a class="existingWikiWord" href="/nlab/show/concrete+smooth+%E2%88%9E-groupoid">concrete smooth ∞-groupoid</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/synthetic+differential+%E2%88%9E-groupoid">synthetic differential ∞-groupoid</a></p> </li> </ul> <p><em>Higher groupoids</em></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-groupoid">∞-groupoid</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/groupoid">groupoid</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/2-groupoid">2-groupoid</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/strict+%E2%88%9E-groupoid">strict ∞-groupoid</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/crossed+complex">crossed complex</a></li> </ul> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-group">∞-group</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/simplicial+group">simplicial group</a></li> </ul> </li> </ul> <p><em>Lie theory</em></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Lie+theory">Lie theory</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Lie+integration">Lie integration</a>, <a class="existingWikiWord" href="/nlab/show/Lie+differentiation">Lie differentiation</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Lie%27s+three+theorems">Lie's three theorems</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Lie+theory+for+stacky+Lie+groupoids">Lie theory for stacky Lie groupoids</a></p> </li> </ul> </li> </ul> <p><strong>∞-Lie groupoids</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-Lie+groupoid">∞-Lie groupoid</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-Lie+groupoid">strict ∞-Lie groupoid</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Lie+groupoid">Lie groupoid</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/differentiable+stack">differentiable stack</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/orbifold">orbifold</a></p> </li> </ul> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-Lie+group">∞-Lie group</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Lie+group">Lie group</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/simple+Lie+group">simple Lie group</a>, <a class="existingWikiWord" href="/nlab/show/semisimple+Lie+group">semisimple Lie group</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Lie+2-group">Lie 2-group</a></p> </li> </ul> </li> </ul> <p><strong>∞-Lie algebroids</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-Lie+algebroid">∞-Lie algebroid</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Lie+algebroid">Lie algebroid</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Lie+%E2%88%9E-algebroid+representation">Lie ∞-algebroid representation</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/L-%E2%88%9E-algebra">L-∞-algebra</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/model+structure+for+L-%E2%88%9E+algebras">model structure for L-∞ algebras</a>: <a class="existingWikiWord" href="/nlab/show/model+structure+on+dg-Lie+algebras">on dg-Lie algebras</a>, <a class="existingWikiWord" href="/nlab/show/model+structure+on+dg-coalgebras">on dg-coalgebras</a>, <a class="existingWikiWord" href="/nlab/show/model+structure+on+simplicial+Lie+algebras">on simplicial Lie algebras</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Lie+algebra">Lie algebra</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/semisimple+Lie+algebra">semisimple Lie algebra</a>, <a class="existingWikiWord" href="/nlab/show/compact+Lie+algebra">compact Lie algebra</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Lie+2-algebra">Lie 2-algebra</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/strict+Lie+2-algebra">strict Lie 2-algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+crossed+module">differential crossed module</a></p> </li> </ul> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Lie+3-algebra">Lie 3-algebra</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/differential+2-crossed+module">differential 2-crossed module</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/dg-Lie+algebra">dg-Lie algebra</a>, <a class="existingWikiWord" href="/nlab/show/simplicial+Lie+algebra">simplicial Lie algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/super+L-%E2%88%9E+algebra">super L-∞ algebra</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/super+Lie+algebra">super Lie algebra</a></li> </ul> </li> </ul> <p><strong>Formal Lie groupoids</strong></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/formal+group">formal group</a>, <a class="existingWikiWord" href="/nlab/show/formal+groupoid">formal groupoid</a></li> </ul> <p><strong>Cohomology</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Lie+algebra+cohomology">Lie algebra cohomology</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Chevalley-Eilenberg+algebra">Chevalley-Eilenberg algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Weil+algebra">Weil algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/invariant+polynomial">invariant polynomial</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Killing+form">Killing form</a></li> </ul> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/nonabelian+Lie+algebra+cohomology">nonabelian Lie algebra cohomology</a></p> </li> </ul> <p><strong>Homotopy</strong></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/homotopy+groups+of+a+Lie+groupoid">homotopy groups of a Lie groupoid</a></li> </ul> <p><strong>Related topics</strong></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-Chern-Weil+theory">∞-Chern-Weil theory</a></li> </ul> <p><strong>Examples</strong></p> <p><em><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-Lie groupoids</em></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Atiyah+Lie+groupoid">Atiyah Lie groupoid</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fundamental+%E2%88%9E-groupoid">fundamental ∞-groupoid</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/path+groupoid">path groupoid</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/path+n-groupoid">path n-groupoid</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/principal+%E2%88%9E-bundle">smooth principal ∞-bundle</a></p> </li> </ul> <p><em><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-Lie groups</em></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/orthogonal+group">orthogonal group</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/special+orthogonal+group">special orthogonal group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/spin+group">spin group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/string+2-group">string 2-group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fivebrane+6-group">fivebrane 6-group</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/unitary+group">unitary group</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/special+unitary+group">special unitary group</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-Lie+groupoid">circle Lie n-group</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/circle+group">circle group</a></li> </ul> </li> </ul> <p><em><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-Lie algebroids</em></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/tangent+Lie+algebroid">tangent Lie algebroid</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/action+Lie+algebroid">action Lie algebroid</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Atiyah+Lie+algebroid">Atiyah Lie algebroid</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/symplectic+Lie+n-algebroid">symplectic Lie n-algebroid</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/symplectic+manifold">symplectic manifold</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Poisson+Lie+algebroid">Poisson Lie algebroid</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Courant+Lie+algebroid">Courant Lie algebroid</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/generalized+complex+geometry">generalized complex geometry</a></li> </ul> </li> </ul> </li> </ul> <p><em><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-Lie algebras</em></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/general+linear+Lie+algebra">general linear Lie algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/orthogonal+Lie+algebra">orthogonal Lie algebra</a>, <a class="existingWikiWord" href="/nlab/show/special+orthogonal+Lie+algebra">special orthogonal Lie algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/endomorphism+L-%E2%88%9E+algebra">endomorphism L-∞ algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/automorphism+%E2%88%9E-Lie+algebra">automorphism ∞-Lie algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/string+Lie+2-algebra">string Lie 2-algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fivebrane+Lie+6-algebra">fivebrane Lie 6-algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/supergravity+Lie+3-algebra">supergravity Lie 3-algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/supergravity+Lie+6-algebra">supergravity Lie 6-algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/line+Lie+n-algebra">line Lie n-algebra</a></p> </li> </ul> </div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#idea'>Idea</a></li> <li><a href='#definition'>Definition</a></li> <ul> <li><a href='#over_the_pair_groupoid'>Over the pair groupoid</a></li> <li><a href='#the_integrated_atiyah_sequence'>The integrated Atiyah sequence</a></li> <li><a href='#over_a_path_groupoid'>Over a path groupoid</a></li> </ul> <li><a href='#related_concepts'>Related concepts</a></li> </ul> </div> <h2 id="idea">Idea</h2> <p>The <strong>Atiyah Lie groupoid</strong> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>At</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">At(P)</annotation></semantics></math> of a smooth <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/principal+bundle">principal bundle</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi><mo>→</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">P \to X</annotation></semantics></math> is the <a class="existingWikiWord" href="/nlab/show/Lie+groupoid">Lie groupoid</a> whose <a class="existingWikiWord" href="/nlab/show/objects">objects</a> are the <a class="existingWikiWord" href="/nlab/show/fibers">fibers</a> of the bundle, and whose <a class="existingWikiWord" href="/nlab/show/morphisms">morphisms</a> are the <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/equivariant+maps">equivariant maps</a> between the fibers.</p> <p>Schematically:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>At</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mo>=</mo><mspace width="thinmathspace"></mspace><mrow><mo>{</mo><msub><mi>P</mi> <mi>x</mi></msub><mover><mo>→</mo><mi>α</mi></mover><msub><mi>P</mi> <mi>y</mi></msub><mo stretchy="false">|</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>X</mi><mo>}</mo></mrow><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> At(P) \,=\, \left\{ P_x \stackrel{\alpha}{\to} P_y | x,y \in X \right\} \,. </annotation></semantics></math></div> <p>Its <a class="existingWikiWord" href="/nlab/show/Lie+algebroid">Lie algebroid</a> is the <a class="existingWikiWord" href="/nlab/show/Atiyah+Lie+algebroid">Atiyah Lie algebroid</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>at</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">at(P)</annotation></semantics></math> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi></mrow><annotation encoding="application/x-tex">P</annotation></semantics></math>.</p> <p>Both the Atiyah Lie groupoid and its Lie algebroid are used to characterize and are characterized by <a class="existingWikiWord" href="/nlab/show/connection+on+a+bundle">connections</a> on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi></mrow><annotation encoding="application/x-tex">P</annotation></semantics></math>.</p> <h2 id="definition">Definition</h2> <p>As generally for every <a class="existingWikiWord" href="/nlab/show/Lie+algebroid">Lie algebroid</a>, there are different <a class="existingWikiWord" href="/nlab/show/Lie+groupoids">Lie groupoids</a> <a class="existingWikiWord" href="/nlab/show/Lie+integration">integrating</a> the <a class="existingWikiWord" href="/nlab/show/Atiyah+Lie+algebroid">Atiyah Lie algebroid</a>. We describe two of them.</p> <p>The Aityah Lie algebroid <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>at</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">at(P)</annotation></semantics></math> of the <a class="existingWikiWord" href="/nlab/show/principal+bundle">principal bundle</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi><mo>→</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">P \to X</annotation></semantics></math> comes canonically with a morphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>at</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>→</mo><mi>T</mi><mi>X</mi></mrow><annotation encoding="application/x-tex">at(X) \to T X</annotation></semantics></math> to the <a class="existingWikiWord" href="/nlab/show/tangent+Lie+algebroid">tangent Lie algebroid</a>.</p> <p>The simplest <a class="existingWikiWord" href="/nlab/show/Lie+integration">Lie integration</a> of the tangent Lie algebroid is the <a class="existingWikiWord" href="/nlab/show/pair+groupoid">pair groupoid</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo>×</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">X \times X</annotation></semantics></math> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math>. On the other hand, the universal integration is the <a class="existingWikiWord" href="/nlab/show/fundamental+groupoid">fundamental groupoid</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Π</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\Pi(X)</annotation></semantics></math> (both coincide precisey if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/simply+connected+space">simply connected space</a>).</p> <p>Accordingly, there is a version of the Atiyah Lie groupoid over <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo>×</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">X \times X</annotation></semantics></math>, and a richer version over <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Π</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\Pi(X)</annotation></semantics></math>.</p> <h3 id="over_the_pair_groupoid">Over the pair groupoid</h3> <p>For <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> a Lie group and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi><mo lspace="verythinmathspace">:</mo><mi>P</mi><mo>→</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">p \colon P \to X</annotation></semantics></math> a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math>-principal bundle, the <strong>Atiyah groupoid</strong> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>At</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">At(P)</annotation></semantics></math> – also called the <strong>gauge groupoid</strong> or <strong>transport groupoid</strong> – of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi></mrow><annotation encoding="application/x-tex">P</annotation></semantics></math> is the <a class="existingWikiWord" href="/nlab/show/Lie+groupoid">Lie groupoid</a> with</p> <ul> <li> <p>the <a class="existingWikiWord" href="/nlab/show/smooth+manifold">smooth manifold</a> of <a class="existingWikiWord" href="/nlab/show/objects">objects</a> is <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Obj</mi><mo stretchy="false">(</mo><mi>At</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>≔</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">Obj(At(P)) \coloneqq X</annotation></semantics></math>;</p> </li> <li> <p>the <a class="existingWikiWord" href="/nlab/show/smooth+manifold">smooth manifold</a> of <a class="existingWikiWord" href="/nlab/show/morphisms">morphisms</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Mor</mi><mo stretchy="false">(</mo><mi>At</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><mi>P</mi><mo>×</mo><mi>P</mi><mo stretchy="false">)</mo><mo stretchy="false">/</mo><mi>G</mi></mrow><annotation encoding="application/x-tex">Mor(At(P)) = (P \times P)/G</annotation></semantics></math>, where the <a class="existingWikiWord" href="/nlab/show/quotient+object">quotient</a> is taken with respect to the <a class="existingWikiWord" href="/nlab/show/diagonal+action">diagonal action</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi><mo>×</mo><mi>P</mi></mrow><annotation encoding="application/x-tex">P \times P</annotation></semantics></math>;</p> </li> <li> <p>the <a class="existingWikiWord" href="/nlab/show/source">source</a>/<a class="existingWikiWord" href="/nlab/show/target">target</a> maps are those induced by the bundle projection <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math>;</p> <p>notice that a point <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo lspace="verythinmathspace">:</mo><mo>*</mo><mo>→</mo><mo stretchy="false">(</mo><mi>P</mi><mo>×</mo><mi>P</mi><mo stretchy="false">)</mo><mo stretchy="false">/</mo><mi>G</mi></mrow><annotation encoding="application/x-tex">f \colon * \to (P \times P)/G</annotation></semantics></math> over <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>x</mi> <mn>1</mn></msub><mo>=</mo><mi>s</mi><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo><mo>,</mo><msub><mi>x</mi> <mn>2</mn></msub><mo>=</mo><mi>t</mi><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(x_1 = s(f), x_2 = t(f))</annotation></semantics></math>, being an <a class="existingWikiWord" href="/nlab/show/equivalence+class">equivalence class</a> of a pair <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>s</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>s</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mo>∈</mo><mi>P</mi><mo>×</mo><mi>P</mi></mrow><annotation encoding="application/x-tex">(s_1, s_2) \in P \times P</annotation></semantics></math> is canonically identified with the unique <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math>-equivariant <a class="existingWikiWord" href="/nlab/show/function">function</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo lspace="verythinmathspace">:</mo><msub><mi>P</mi> <mrow><msub><mi>x</mi> <mn>1</mn></msub></mrow></msub><mo>→</mo><msub><mi>P</mi> <mrow><msub><mi>x</mi> <mn>2</mn></msub></mrow></msub></mrow><annotation encoding="application/x-tex">f \colon P_{x_1} \to P_{x_2}</annotation></semantics></math> which sends <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>s</mi> <mn>1</mn></msub></mrow><annotation encoding="application/x-tex">s_1</annotation></semantics></math> to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>s</mi> <mn>2</mn></msub></mrow><annotation encoding="application/x-tex">s_2</annotation></semantics></math>;</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/composition">composition</a> is the given by ordinary composition of these functions.</p> </li> </ul> <h3 id="the_integrated_atiyah_sequence">The integrated Atiyah sequence</h3> <p>The Atiyah groupoid sits in a sequence of groupoids</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>Ad</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>→</mo><mi>At</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>→</mo><mi>Pair</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex"> Ad(P) \to At(P) \to Pair(X) </annotation></semantics></math></div> <p>where</p> <ul> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Ad</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>=</mo><mi>P</mi><msub><mo>×</mo> <mi>G</mi></msub><mi>G</mi></mrow><annotation encoding="application/x-tex">Ad(P) = P \times_G G</annotation></semantics></math> is the <strong>adjoint bundle</strong> of groups associated via the adjoint action of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> on itself; regarded as a smooth union <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mo lspace="thinmathspace" rspace="thinmathspace">∐</mo> <mrow><mi>x</mi><mo>∈</mo><mi>X</mi></mrow></msub><mstyle mathvariant="bold"><mi>B</mi></mstyle><msub><mi>P</mi> <mi>x</mi></msub><msub><mo>×</mo> <mi>G</mi></msub><mi>G</mi></mrow><annotation encoding="application/x-tex">\coprod_{x \in X} \mathbf{B} P_x \times_G G</annotation></semantics></math> of one-object groupoids coming from <a class="existingWikiWord" href="/nlab/show/group">group</a>s;</p> </li> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Pair</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><mi>X</mi><mo>×</mo><mi>X</mi><mo>⇉</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Pair(X) = (X \times X \rightrightarrows X)</annotation></semantics></math> is the <a class="existingWikiWord" href="/nlab/show/pair+groupoid">pair groupoid</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math></p> </li> <li> <p>the <a class="existingWikiWord" href="/nlab/show/functor">functor</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Ad</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>→</mo><mi>At</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Ad(P) \to At(P)</annotation></semantics></math> is the identity on objects and on morphisms given by the canonical identification <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>P</mi> <mi>x</mi></msub><msub><mo>×</mo> <mi>G</mi></msub><mi>G</mi><mover><mo>→</mo><mo>≃</mo></mover><mo stretchy="false">(</mo><msub><mi>P</mi> <mi>x</mi></msub><mo>×</mo><msub><mi>P</mi> <mi>x</mi></msub><mo stretchy="false">)</mo><mo stretchy="false">/</mo><mi>G</mi></mrow><annotation encoding="application/x-tex">P_x \times_G G \stackrel{\simeq}{\to} (P_x \times P_x)/G</annotation></semantics></math>, where again we use the diagonal action of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>P</mi> <mi>x</mi></msub><mo>×</mo><msub><mi>P</mi> <mi>x</mi></msub></mrow><annotation encoding="application/x-tex">P_x \times P_x</annotation></semantics></math>.</p> </li> <li> <p>the functor <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>At</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>→</mo><mi>Pair</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">At(P) \to Pair(X)</annotation></semantics></math> is the unique one that is the identity on objects.</p> </li> </ul> <p>Notice that a splitting (a <a class="existingWikiWord" href="/nlab/show/section">section</a>)</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>Pair</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>→</mo><mi>At</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex"> Pair(X) \to At(P) </annotation></semantics></math></div> <p>of the Atiyah groupoid is a trivialization of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi></mrow><annotation encoding="application/x-tex">P</annotation></semantics></math>. On the other hand, locally on <a class="existingWikiWord" href="/nlab/show/contractible+space">contractible</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>U</mi><mo>⊂</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">U \subset X</annotation></semantics></math> we have <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Pair</mi><mo stretchy="false">(</mo><mi>U</mi><mo stretchy="false">)</mo><mo>≃</mo><msub><mi>Π</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>U</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Pair(U) \simeq \Pi_1(U)</annotation></semantics></math> with <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>U</mi></mrow><annotation encoding="application/x-tex">U</annotation></semantics></math> the <a class="existingWikiWord" href="/nlab/show/fundamental+groupoid">fundamental groupoid</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>U</mi></mrow><annotation encoding="application/x-tex">U</annotation></semantics></math>, and a splitting <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Pair</mi><mo stretchy="false">(</mo><mi>U</mi><mo stretchy="false">)</mo><mo>≃</mo><msub><mi>Π</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>U</mi><mo stretchy="false">)</mo><mo>→</mo><mi>At</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><msub><mo stretchy="false">|</mo> <mi>U</mi></msub></mrow><annotation encoding="application/x-tex">Pair(U) \simeq \Pi_1(U) \to At(P)|_U</annotation></semantics></math> is still a trivialization over <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>U</mi></mrow><annotation encoding="application/x-tex">U</annotation></semantics></math> but indicates now that one may want to interpret it as giving rise to a flat <a class="existingWikiWord" href="/nlab/show/connection">connection</a>.</p> <h3 id="over_a_path_groupoid">Over a path groupoid</h3> <p>We have the sequence of surjective and <a class="existingWikiWord" href="/nlab/show/full+functor">full functor</a>s of <a class="existingWikiWord" href="/nlab/show/path+category">path categories</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>P</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>→</mo><msub><mi>Π</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>→</mo><mi>Pair</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex"> P_1(X) \to \Pi_1(X) \to Pair(X) </annotation></semantics></math></div> <p>with <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>Π</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\Pi_1(X)</annotation></semantics></math> the <a class="existingWikiWord" href="/nlab/show/fundamental+groupoid">fundamental groupoid</a> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>P</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">P_1(X)</annotation></semantics></math> the smooth <a class="existingWikiWord" href="/nlab/show/path+groupoid">path groupoid</a> and may refine the Atiyah groupoid by pulling back along these.</p> <p>Write therefore <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>At</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>:</mo><mo>=</mo><mi>At</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><msub><mo>×</mo> <mrow><mi>Pair</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow></msub><msub><mi>Π</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">At'(P) := At(P) \times_{Pair(X)} \Pi_1(X)</annotation></semantics></math> for the <a class="existingWikiWord" href="/nlab/show/pullback">pullback</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>At</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mtd> <mtd><mo>→</mo></mtd> <mtd><msub><mi>Π</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd><mo stretchy="false">↓</mo></mtd> <mtd></mtd> <mtd><mo stretchy="false">↓</mo></mtd></mtr> <mtr><mtd><mi>At</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>Pair</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mtd></mtr></mtable></mrow><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \array{ At'(P) &\to& \Pi_1(X) \\ \downarrow && \downarrow \\ At(P) &\to& Pair(X) } \,. </annotation></semantics></math></div> <p>A splitting <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>Π</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>→</mo><mi>At</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\Pi_1(X) \to At'(P)</annotation></semantics></math> of the top row is now precisely a flat <a class="existingWikiWord" href="/nlab/show/connection">connection</a> on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi></mrow><annotation encoding="application/x-tex">P</annotation></semantics></math>.</p> <p>If we pull back further to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi><mo>″</mo></mrow><annotation encoding="application/x-tex">A''</annotation></semantics></math></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>At</mi><mo>″</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mtd> <mtd><mo>→</mo></mtd> <mtd><msub><mi>P</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd><mo stretchy="false">↓</mo></mtd> <mtd></mtd> <mtd><mo stretchy="false">↓</mo></mtd></mtr> <mtr><mtd><mi>At</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mtd> <mtd><mo>→</mo></mtd> <mtd><msub><mi>Π</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd><mo stretchy="false">↓</mo></mtd> <mtd></mtd> <mtd><mo stretchy="false">↓</mo></mtd></mtr> <mtr><mtd><mi>At</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>Pair</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mtd></mtr></mtable></mrow><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \array{ At''(P) &\to& P_1(X) \\ \downarrow && \downarrow \\ At'(P) &\to& \Pi_1(X) \\ \downarrow && \downarrow \\ At(P) &\to& Pair(X) } \,. </annotation></semantics></math></div> <p>then splittings of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>P</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>→</mo><mi>At</mi><mo>″</mo><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">P_1(X) \to At''(X)</annotation></semantics></math> are precisely (not necessarily flat) connections on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi></mrow><annotation encoding="application/x-tex">P</annotation></semantics></math>.</p> <p>All this is more well known in terms of the <a class="existingWikiWord" href="/nlab/show/Lie+algebroid">Lie algebroid</a> underlying the Atiyah Lie groupoid, i.e. the <strong>Atiyah Lie algebroid</strong> sequence</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>ad</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>→</mo><mi>at</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>→</mo><mi>T</mi><mi>X</mi><mspace width="thinmathspace"></mspace><mo>,</mo></mrow><annotation encoding="application/x-tex"> ad(P) \to at(P) \to T X \,, </annotation></semantics></math></div> <p>where</p> <ul> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ad</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>=</mo><mi>P</mi><msub><mo>×</mo> <mi>g</mi></msub><mi>Lie</mi><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">ad(P) = P \times_g Lie(G)</annotation></semantics></math> is the adjoint bundle of Lie algebras, associated via the adjoint action of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> on its Lie algebra;</p> </li> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>at</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><mi>T</mi><mi>P</mi><mo stretchy="false">)</mo><mo stretchy="false">/</mo><mi>G</mi></mrow><annotation encoding="application/x-tex">at(P) = (T P)/G</annotation></semantics></math> is the <strong>Atiyah Lie algebroid</strong></p> </li> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi><mi>X</mi></mrow><annotation encoding="application/x-tex">T X</annotation></semantics></math> is the <a class="existingWikiWord" href="/nlab/show/tangent+Lie+algebroid">tangent Lie algebroid</a>.</p> </li> </ul> <p>Indeed, a splitting <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mo>∇</mo> <mi>flat</mi></msub><mo>:</mo><mi>T</mi><mi>X</mi><mo>→</mo><mi>at</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\nabla_{flat} : T X \to at(P)</annotation></semantics></math> of this sequence in the category of <a class="existingWikiWord" href="/nlab/show/Lie+algebroid">Lie algebroid</a>s is precisely again a flat connection on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi></mrow><annotation encoding="application/x-tex">P</annotation></semantics></math> and integrates under <a class="existingWikiWord" href="/nlab/show/Lie+integration">Lie integration</a> to the splitting of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>At</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">At'(P)</annotation></semantics></math> discussed above.</p> <p>To get non-flat connections in the literature one often sees discussed splittings of the Atiyah Lie algebroid sequence in the category just of vector bundles. In that case one finds the curvature of the connection precisely as the obstruction to having a splitting even in Lie algebroids.</p> <p>One can describe non-flat connections without leaving the context of Lie algebroids by passing to higher Lie algebroids, namely <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>L</mi> <mn>∞</mn></msub></mrow><annotation encoding="application/x-tex">L_\infty</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/L-infinity-algebroid">algebroids</a>.</p> <h2 id="related_concepts">Related concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/higher+Atiyah+groupoid">higher Atiyah groupoid</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Atiyah+Lie+groupoid">Atiyah Lie groupoid</a>, <a class="existingWikiWord" href="/nlab/show/Atiyah+Lie+algebroid">Atiyah Lie algebroid</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Courant+Lie+2-groupoid">Courant Lie 2-groupoid</a>, <a class="existingWikiWord" href="/nlab/show/Courant+Lie+2-algebroid">Courant Lie 2-algebroid</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/quantomorphism+group">quantomorphism group</a>, <a class="existingWikiWord" href="/nlab/show/quantomorphism+n-group">quantomorphism n-group</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Schauenburg+bialgebroid">Schauenburg bialgebroid</a> (analogue for affine noncommutative principal bundles)</p> </li> </ul> <div> <p><strong><a class="existingWikiWord" href="/nlab/show/higher+Atiyah+groupoid">higher Atiyah groupoid</a></strong></p> <table><thead><tr><th><a class="existingWikiWord" href="/nlab/show/higher+Atiyah+groupoid">higher Atiyah groupoid</a>:</th><th>standard <a class="existingWikiWord" href="/nlab/show/higher+Atiyah+groupoid">higher Atiyah groupoid</a></th><th><a class="existingWikiWord" href="/nlab/show/higher+Courant+groupoid">higher Courant groupoid</a></th><th>groupoid version of <a class="existingWikiWord" href="/nlab/show/quantomorphism+n-group">quantomorphism n-group</a></th></tr></thead><tbody><tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/coefficient">coefficient</a> for <a class="existingWikiWord" href="/nlab/show/cohomology">cohomology</a>:</td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" class="maruku-mathml" display="inline" id="mathml_25bb27a7b2a5a8fcca6d17f6a351b913ce28a816_1"><semantics><mrow><mstyle mathvariant="bold"><mi>B</mi></mstyle><mi>𝔾</mi></mrow><annotation encoding="application/x-tex">\mathbf{B}\mathbb{G}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" class="maruku-mathml" display="inline" id="mathml_25bb27a7b2a5a8fcca6d17f6a351b913ce28a816_2"><semantics><mrow><mstyle mathvariant="bold"><mi>B</mi></mstyle><mo stretchy="false">(</mo><mstyle mathvariant="bold"><mi>B</mi></mstyle><msub><mi>𝔾</mi> <mi mathvariant="normal">conn</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathbf{B}(\mathbf{B}\mathbb{G}_{\mathrm{conn}})</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" class="maruku-mathml" display="inline" id="mathml_25bb27a7b2a5a8fcca6d17f6a351b913ce28a816_3"><semantics><mrow><mstyle mathvariant="bold"><mi>B</mi></mstyle><msub><mi>𝔾</mi> <mi>conn</mi></msub></mrow><annotation encoding="application/x-tex">\mathbf{B} \mathbb{G}_{conn}</annotation></semantics></math></td></tr> <tr><td style="text-align: left;">type of <a class="existingWikiWord" href="/nlab/show/fiber+%E2%88%9E-bundle">fiber ∞-bundle</a>:</td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/principal+%E2%88%9E-bundle">principal ∞-bundle</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/principal+%E2%88%9E-connection">principal ∞-connection</a> without top-degree connection form</td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/principal+%E2%88%9E-connection">principal ∞-connection</a></td></tr> </tbody></table> </div></body></html> </div> <div class="revisedby"> <p> Last revised on October 23, 2023 at 12:31:58. See the <a href="/nlab/history/Atiyah+Lie+groupoid" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/Atiyah+Lie+groupoid" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/543/#Item_3">Discuss</a><span class="backintime"><a href="/nlab/revision/Atiyah+Lie+groupoid/24" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/Atiyah+Lie+groupoid" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/Atiyah+Lie+groupoid" accesskey="S" class="navlink" id="history" rel="nofollow">History (24 revisions)</a> <a href="/nlab/show/Atiyah+Lie+groupoid/cite" style="color: black">Cite</a> <a href="/nlab/print/Atiyah+Lie+groupoid" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/Atiyah+Lie+groupoid" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>