CINXE.COM

Formule d'Euler — Wikipédia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available" lang="fr" dir="ltr"> <head> <meta charset="UTF-8"> <title>Formule d'Euler — Wikipédia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available";var cookie=document.cookie.match(/(?:^|; )frwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t."," \t,"],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","janvier","février","mars","avril","mai","juin","juillet","août","septembre","octobre","novembre","décembre"],"wgRequestId":"fde25739-c1ba-4d06-aebb-63d748126c31","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Formule_d'Euler","wgTitle":"Formule d'Euler","wgCurRevisionId":216924199,"wgRevisionId":216924199,"wgArticleId":15192,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Article contenant un appel à traduction en anglais","Portail:Analyse/Articles liés","Portail:Mathématiques/Articles liés","Portail:Sciences/Articles liés","Analyse complexe","Théorème d'analyse","Leonhard Euler","Exponentielle","Trigonométrie"],"wgPageViewLanguage":"fr","wgPageContentLanguage":"fr","wgPageContentModel":"wikitext","wgRelevantPageName":"Formule_d'Euler","wgRelevantArticleId":15192,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true, "wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":true,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"fr","pageLanguageDir":"ltr","pageVariantFallbacks":"fr"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":10000,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q184871","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={ "ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ArchiveLinks","ext.gadget.Wdsearch","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming", "ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=fr&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=fr&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=fr&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.16"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/7/71/Euler%27s_formula.svg/1200px-Euler%27s_formula.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1235"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/7/71/Euler%27s_formula.svg/800px-Euler%27s_formula.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="823"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/7/71/Euler%27s_formula.svg/640px-Euler%27s_formula.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="659"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Formule d&#039;Euler — Wikipédia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//fr.m.wikipedia.org/wiki/Formule_d%27Euler"> <link rel="alternate" type="application/x-wiki" title="Modifier" href="/w/index.php?title=Formule_d%27Euler&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipédia (fr)"> <link rel="EditURI" type="application/rsd+xml" href="//fr.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://fr.wikipedia.org/wiki/Formule_d%27Euler"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.fr"> <link rel="alternate" type="application/atom+xml" title="Flux Atom de Wikipédia" href="/w/index.php?title=Sp%C3%A9cial:Modifications_r%C3%A9centes&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Formule_d_Euler rootpage-Formule_d_Euler skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Aller au contenu</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" title="Menu principal" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Menu principal" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Menu principal</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Menu principal</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">déplacer vers la barre latérale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">masquer</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Wikip%C3%A9dia:Accueil_principal" title="Accueil général [z]" accesskey="z"><span>Accueil</span></a></li><li id="n-thema" class="mw-list-item"><a href="/wiki/Portail:Accueil"><span>Portails thématiques</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Sp%C3%A9cial:Page_au_hasard" title="Affiche un article au hasard [x]" accesskey="x"><span>Article au hasard</span></a></li><li id="n-contact" class="mw-list-item"><a href="/wiki/Wikip%C3%A9dia:Contact"><span>Contact</span></a></li><li id="n-specialpages" class="mw-list-item"><a href="/wiki/Sp%C3%A9cial:Pages_sp%C3%A9ciales"><span>Pages spéciales</span></a></li> </ul> </div> </div> <div id="p-Contribuer" class="vector-menu mw-portlet mw-portlet-Contribuer" > <div class="vector-menu-heading"> Contribuer </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-aboutwp" class="mw-list-item"><a href="/wiki/Aide:D%C3%A9buter"><span>Débuter sur Wikipédia</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/Aide:Accueil" title="Accès à l’aide"><span>Aide</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikip%C3%A9dia:Accueil_de_la_communaut%C3%A9" title="À propos du projet, ce que vous pouvez faire, où trouver les informations"><span>Communauté</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Sp%C3%A9cial:Modifications_r%C3%A9centes" title="Liste des modifications récentes sur le wiki [r]" accesskey="r"><span>Modifications récentes</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Wikip%C3%A9dia:Accueil_principal" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipédia" src="/static/images/mobile/copyright/wikipedia-wordmark-fr.svg" style="width: 7.4375em; height: 1.125em;"> <img class="mw-logo-tagline" alt="l&#039;encyclopédie libre" src="/static/images/mobile/copyright/wikipedia-tagline-fr.svg" width="120" height="13" style="width: 7.5em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Sp%C3%A9cial:Recherche" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Rechercher sur Wikipédia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Rechercher</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Rechercher sur Wikipédia" aria-label="Rechercher sur Wikipédia" autocapitalize="sentences" title="Rechercher sur Wikipédia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Spécial:Recherche"> </div> <button class="cdx-button cdx-search-input__end-button">Rechercher</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Outils personnels"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Apparence"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Modifier l&#039;apparence de la taille, de la largeur et de la couleur de la police de la page" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Apparence" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Apparence</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=fr.wikipedia.org&amp;uselang=fr" class=""><span>Faire un don</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Sp%C3%A9cial:Cr%C3%A9er_un_compte&amp;returnto=Formule+d%27Euler" title="Nous vous encourageons à créer un compte utilisateur et vous connecter ; ce n’est cependant pas obligatoire." class=""><span>Créer un compte</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Sp%C3%A9cial:Connexion&amp;returnto=Formule+d%27Euler" title="Nous vous encourageons à vous connecter ; ce n’est cependant pas obligatoire. [o]" accesskey="o" class=""><span>Se connecter</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Plus d’options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Outils personnels" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Outils personnels</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="Menu utilisateur" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=fr.wikipedia.org&amp;uselang=fr"><span>Faire un don</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Sp%C3%A9cial:Cr%C3%A9er_un_compte&amp;returnto=Formule+d%27Euler" title="Nous vous encourageons à créer un compte utilisateur et vous connecter ; ce n’est cependant pas obligatoire."><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Créer un compte</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Sp%C3%A9cial:Connexion&amp;returnto=Formule+d%27Euler" title="Nous vous encourageons à vous connecter ; ce n’est cependant pas obligatoire. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Se connecter</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages pour les contributeurs déconnectés <a href="/wiki/Aide:Premiers_pas" aria-label="En savoir plus sur la contribution"><span>en savoir plus</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Sp%C3%A9cial:Mes_contributions" title="Une liste des modifications effectuées depuis cette adresse IP [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Sp%C3%A9cial:Mes_discussions" title="La page de discussion pour les contributions depuis cette adresse IP [n]" accesskey="n"><span>Discussion</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Sommaire" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Sommaire</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">déplacer vers la barre latérale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">masquer</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">Début</div> </a> </li> <li id="toc-Description" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Description"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Description</span> </div> </a> <ul id="toc-Description-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Démonstrations" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Démonstrations"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Démonstrations</span> </div> </a> <button aria-controls="toc-Démonstrations-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Afficher / masquer la sous-section Démonstrations</span> </button> <ul id="toc-Démonstrations-sublist" class="vector-toc-list"> <li id="toc-Par_les_séries_de_Taylor" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Par_les_séries_de_Taylor"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Par les séries de Taylor</span> </div> </a> <ul id="toc-Par_les_séries_de_Taylor-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Par_le_calcul_différentiel" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Par_le_calcul_différentiel"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Par le calcul différentiel</span> </div> </a> <ul id="toc-Par_le_calcul_différentiel-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Historique" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Historique"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Historique</span> </div> </a> <ul id="toc-Historique-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Applications" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Applications"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Applications</span> </div> </a> <ul id="toc-Applications-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Voir_aussi" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Voir_aussi"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Voir aussi</span> </div> </a> <button aria-controls="toc-Voir_aussi-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Afficher / masquer la sous-section Voir aussi</span> </button> <ul id="toc-Voir_aussi-sublist" class="vector-toc-list"> <li id="toc-Articles_connexes" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Articles_connexes"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Articles connexes</span> </div> </a> <ul id="toc-Articles_connexes-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Références" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Références"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Références</span> </div> </a> <ul id="toc-Références-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Sommaire" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" title="Table des matières" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Basculer la table des matières" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Basculer la table des matières</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Formule d'Euler</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Aller à un article dans une autre langue. Disponible en 66 langues." > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-66" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">66 langues</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Euler_se_formule" title="Euler se formule – afrikaans" lang="af" hreflang="af" data-title="Euler se formule" data-language-autonym="Afrikaans" data-language-local-name="afrikaans" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%B5%D9%8A%D8%BA%D8%A9_%D8%A3%D9%88%D9%8A%D9%84%D8%B1" title="صيغة أويلر – arabe" lang="ar" hreflang="ar" data-title="صيغة أويلر" data-language-autonym="العربية" data-language-local-name="arabe" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/F%C3%B3rmula_d%27Euler" title="Fórmula d&#039;Euler – asturien" lang="ast" hreflang="ast" data-title="Fórmula d&#039;Euler" data-language-autonym="Asturianu" data-language-local-name="asturien" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Eyler_d%C3%BCsturu" title="Eyler düsturu – azerbaïdjanais" lang="az" hreflang="az" data-title="Eyler düsturu" data-language-autonym="Azərbaycanca" data-language-local-name="azerbaïdjanais" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-ba mw-list-item"><a href="https://ba.wikipedia.org/wiki/%D0%AD%D0%B9%D0%BB%D0%B5%D1%80_%D1%84%D0%BE%D1%80%D0%BC%D1%83%D0%BB%D0%B0%D2%BB%D1%8B" title="Эйлер формулаһы – bachkir" lang="ba" hreflang="ba" data-title="Эйлер формулаһы" data-language-autonym="Башҡортса" data-language-local-name="bachkir" class="interlanguage-link-target"><span>Башҡортса</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%A4%D0%BE%D1%80%D0%BC%D1%83%D0%BB%D0%B0_%D0%AD%D0%B9%D0%BB%D0%B5%D1%80%D0%B0" title="Формула Эйлера – biélorusse" lang="be" hreflang="be" data-title="Формула Эйлера" data-language-autonym="Беларуская" data-language-local-name="biélorusse" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%A4%D0%BE%D1%80%D0%BC%D1%83%D0%BB%D0%B0_%D0%BD%D0%B0_%D0%9E%D0%B9%D0%BB%D0%B5%D1%80" title="Формула на Ойлер – bulgare" lang="bg" hreflang="bg" data-title="Формула на Ойлер" data-language-autonym="Български" data-language-local-name="bulgare" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%85%E0%A6%AF%E0%A6%BC%E0%A6%B2%E0%A6%BE%E0%A6%B0%E0%A7%87%E0%A6%B0_%E0%A6%B8%E0%A7%82%E0%A6%A4%E0%A7%8D%E0%A6%B0" title="অয়লারের সূত্র – bengali" lang="bn" hreflang="bn" data-title="অয়লারের সূত্র" data-language-autonym="বাংলা" data-language-local-name="bengali" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Eulerova_formula" title="Eulerova formula – bosniaque" lang="bs" hreflang="bs" data-title="Eulerova formula" data-language-autonym="Bosanski" data-language-local-name="bosniaque" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/F%C3%B3rmula_d%27Euler" title="Fórmula d&#039;Euler – catalan" lang="ca" hreflang="ca" data-title="Fórmula d&#039;Euler" data-language-autonym="Català" data-language-local-name="catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%D9%81%D9%88%D8%B1%D9%85%D9%88%D9%88%DA%B5%DB%8C_%D8%A6%DB%86%DB%8C%D9%84%DB%95%D8%B1" title="فورمووڵی ئۆیلەر – sorani" lang="ckb" hreflang="ckb" data-title="فورمووڵی ئۆیلەر" data-language-autonym="کوردی" data-language-local-name="sorani" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Euler%C5%AFv_vzorec" title="Eulerův vzorec – tchèque" lang="cs" hreflang="cs" data-title="Eulerův vzorec" data-language-autonym="Čeština" data-language-local-name="tchèque" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%AD%D0%B9%D0%BB%D0%B5%D1%80_%D1%84%D0%BE%D1%80%D0%BC%D1%83%D0%BB%D0%B8" title="Эйлер формули – tchouvache" lang="cv" hreflang="cv" data-title="Эйлер формули" data-language-autonym="Чӑвашла" data-language-local-name="tchouvache" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Fformiwla_Euler" title="Fformiwla Euler – gallois" lang="cy" hreflang="cy" data-title="Fformiwla Euler" data-language-autonym="Cymraeg" data-language-local-name="gallois" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Eulers_formel" title="Eulers formel – danois" lang="da" hreflang="da" data-title="Eulers formel" data-language-autonym="Dansk" data-language-local-name="danois" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Eulersche_Formel" title="Eulersche Formel – allemand" lang="de" hreflang="de" data-title="Eulersche Formel" data-language-autonym="Deutsch" data-language-local-name="allemand" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%A4%CF%8D%CF%80%CE%BF%CF%82_%CF%84%CE%BF%CF%85_%CE%8C%CE%B9%CE%BB%CE%B5%CF%81" title="Τύπος του Όιλερ – grec" lang="el" hreflang="el" data-title="Τύπος του Όιλερ" data-language-autonym="Ελληνικά" data-language-local-name="grec" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Euler%27s_formula" title="Euler&#039;s formula – anglais" lang="en" hreflang="en" data-title="Euler&#039;s formula" data-language-autonym="English" data-language-local-name="anglais" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/E%C5%ADlera_formulo" title="Eŭlera formulo – espéranto" lang="eo" hreflang="eo" data-title="Eŭlera formulo" data-language-autonym="Esperanto" data-language-local-name="espéranto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/F%C3%B3rmula_de_Euler" title="Fórmula de Euler – espagnol" lang="es" hreflang="es" data-title="Fórmula de Euler" data-language-autonym="Español" data-language-local-name="espagnol" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Euleri_valem" title="Euleri valem – estonien" lang="et" hreflang="et" data-title="Euleri valem" data-language-autonym="Eesti" data-language-local-name="estonien" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Eulerren_formula" title="Eulerren formula – basque" lang="eu" hreflang="eu" data-title="Eulerren formula" data-language-autonym="Euskara" data-language-local-name="basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%81%D8%B1%D9%85%D9%88%D9%84_%D8%A7%D9%88%DB%8C%D9%84%D8%B1" title="فرمول اویلر – persan" lang="fa" hreflang="fa" data-title="فرمول اویلر" data-language-autonym="فارسی" data-language-local-name="persan" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Eulerin_lause_(funktioteoria)" title="Eulerin lause (funktioteoria) – finnois" lang="fi" hreflang="fi" data-title="Eulerin lause (funktioteoria)" data-language-autonym="Suomi" data-language-local-name="finnois" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/F%C3%B3rmula_de_Euler" title="Fórmula de Euler – galicien" lang="gl" hreflang="gl" data-title="Fórmula de Euler" data-language-autonym="Galego" data-language-local-name="galicien" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%A0%D7%95%D7%A1%D7%97%D7%AA_%D7%90%D7%95%D7%99%D7%9C%D7%A8_(%D7%90%D7%A0%D7%9C%D7%99%D7%96%D7%94_%D7%9E%D7%A8%D7%95%D7%9B%D7%91%D7%AA)" title="נוסחת אוילר (אנליזה מרוכבת) – hébreu" lang="he" hreflang="he" data-title="נוסחת אוילר (אנליזה מרוכבת)" data-language-autonym="עברית" data-language-local-name="hébreu" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%91%E0%A4%AF%E0%A4%B2%E0%A4%B0_%E0%A4%95%E0%A4%BE_%E0%A4%B8%E0%A5%82%E0%A4%A4%E0%A5%8D%E0%A4%B0" title="ऑयलर का सूत्र – hindi" lang="hi" hreflang="hi" data-title="ऑयलर का सूत्र" data-language-autonym="हिन्दी" data-language-local-name="hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Eulerova_formula" title="Eulerova formula – croate" lang="hr" hreflang="hr" data-title="Eulerova formula" data-language-autonym="Hrvatski" data-language-local-name="croate" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Euler-k%C3%A9plet" title="Euler-képlet – hongrois" lang="hu" hreflang="hu" data-title="Euler-képlet" data-language-autonym="Magyar" data-language-local-name="hongrois" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D4%B7%D5%B5%D5%AC%D5%A5%D6%80%D5%AB_%D5%A2%D5%A1%D5%B6%D5%A1%D5%B1%D6%87" title="Էյլերի բանաձև – arménien" lang="hy" hreflang="hy" data-title="Էյլերի բանաձև" data-language-autonym="Հայերեն" data-language-local-name="arménien" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Rumus_Euler" title="Rumus Euler – indonésien" lang="id" hreflang="id" data-title="Rumus Euler" data-language-autonym="Bahasa Indonesia" data-language-local-name="indonésien" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Jafna_Eulers" title="Jafna Eulers – islandais" lang="is" hreflang="is" data-title="Jafna Eulers" data-language-autonym="Íslenska" data-language-local-name="islandais" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Formula_di_Eulero" title="Formula di Eulero – italien" lang="it" hreflang="it" data-title="Formula di Eulero" data-language-autonym="Italiano" data-language-local-name="italien" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%82%AA%E3%82%A4%E3%83%A9%E3%83%BC%E3%81%AE%E5%85%AC%E5%BC%8F" title="オイラーの公式 – japonais" lang="ja" hreflang="ja" data-title="オイラーの公式" data-language-autonym="日本語" data-language-local-name="japonais" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%AD%D0%B9%D0%BB%D0%B5%D1%80_%D1%84%D0%BE%D1%80%D0%BC%D1%83%D0%BB%D0%B0%D1%81%D1%8B" title="Эйлер формуласы – kazakh" lang="kk" hreflang="kk" data-title="Эйлер формуласы" data-language-autonym="Қазақша" data-language-local-name="kazakh" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-km mw-list-item"><a href="https://km.wikipedia.org/wiki/%E1%9E%9A%E1%9E%BC%E1%9E%94%E1%9E%98%E1%9E%93%E1%9F%92%E1%9E%8F%E1%9E%A2%E1%9E%99%E1%9E%9B%E1%9F%90%E1%9E%9A" title="រូបមន្តអយល័រ – khmer" lang="km" hreflang="km" data-title="រូបមន្តអយល័រ" data-language-autonym="ភាសាខ្មែរ" data-language-local-name="khmer" class="interlanguage-link-target"><span>ភាសាខ្មែរ</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%98%A4%EC%9D%BC%EB%9F%AC_%EA%B3%B5%EC%8B%9D" title="오일러 공식 – coréen" lang="ko" hreflang="ko" data-title="오일러 공식" data-language-autonym="한국어" data-language-local-name="coréen" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Euleri_formula" title="Euleri formula – latin" lang="la" hreflang="la" data-title="Euleri formula" data-language-autonym="Latina" data-language-local-name="latin" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Oilerio_formul%C4%97" title="Oilerio formulė – lituanien" lang="lt" hreflang="lt" data-title="Oilerio formulė" data-language-autonym="Lietuvių" data-language-local-name="lituanien" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Eilera_formula" title="Eilera formula – letton" lang="lv" hreflang="lv" data-title="Eilera formula" data-language-autonym="Latviešu" data-language-local-name="letton" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%9E%D1%98%D0%BB%D0%B5%D1%80%D0%BE%D0%B2%D0%B0_%D1%84%D0%BE%D1%80%D0%BC%D1%83%D0%BB%D0%B0" title="Ојлерова формула – macédonien" lang="mk" hreflang="mk" data-title="Ојлерова формула" data-language-autonym="Македонски" data-language-local-name="macédonien" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Formula_Euler" title="Formula Euler – malais" lang="ms" hreflang="ms" data-title="Formula Euler" data-language-autonym="Bahasa Melayu" data-language-local-name="malais" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Formule_van_Euler" title="Formule van Euler – néerlandais" lang="nl" hreflang="nl" data-title="Formule van Euler" data-language-autonym="Nederlands" data-language-local-name="néerlandais" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Eulerformelen" title="Eulerformelen – norvégien nynorsk" lang="nn" hreflang="nn" data-title="Eulerformelen" data-language-autonym="Norsk nynorsk" data-language-local-name="norvégien nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Eulers_formel" title="Eulers formel – norvégien bokmål" lang="nb" hreflang="nb" data-title="Eulers formel" data-language-autonym="Norsk bokmål" data-language-local-name="norvégien bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-oc mw-list-item"><a href="https://oc.wikipedia.org/wiki/Formula_d%27Euler" title="Formula d&#039;Euler – occitan" lang="oc" hreflang="oc" data-title="Formula d&#039;Euler" data-language-autonym="Occitan" data-language-local-name="occitan" class="interlanguage-link-target"><span>Occitan</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Wz%C3%B3r_Eulera" title="Wzór Eulera – polonais" lang="pl" hreflang="pl" data-title="Wzór Eulera" data-language-autonym="Polski" data-language-local-name="polonais" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/F%C3%B3rmula_de_Euler" title="Fórmula de Euler – portugais" lang="pt" hreflang="pt" data-title="Fórmula de Euler" data-language-autonym="Português" data-language-local-name="portugais" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Formula_lui_Euler" title="Formula lui Euler – roumain" lang="ro" hreflang="ro" data-title="Formula lui Euler" data-language-autonym="Română" data-language-local-name="roumain" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A4%D0%BE%D1%80%D0%BC%D1%83%D0%BB%D0%B0_%D0%AD%D0%B9%D0%BB%D0%B5%D1%80%D0%B0" title="Формула Эйлера – russe" lang="ru" hreflang="ru" data-title="Формула Эйлера" data-language-autonym="Русский" data-language-local-name="russe" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Euler%27s_formula" title="Euler&#039;s formula – Simple English" lang="en-simple" hreflang="en-simple" data-title="Euler&#039;s formula" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Eulerjeva_formula" title="Eulerjeva formula – slovène" lang="sl" hreflang="sl" data-title="Eulerjeva formula" data-language-autonym="Slovenščina" data-language-local-name="slovène" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%9E%D1%98%D0%BB%D0%B5%D1%80%D0%BE%D0%B2%D0%B0_%D1%84%D0%BE%D1%80%D0%BC%D1%83%D0%BB%D0%B0" title="Ојлерова формула – serbe" lang="sr" hreflang="sr" data-title="Ојлерова формула" data-language-autonym="Српски / srpski" data-language-local-name="serbe" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Eulers_formel" title="Eulers formel – suédois" lang="sv" hreflang="sv" data-title="Eulers formel" data-language-autonym="Svenska" data-language-local-name="suédois" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%86%E0%AE%AF%E0%AF%8D%E0%AE%B2%E0%AE%B0%E0%AE%BF%E0%AE%A9%E0%AF%8D_%E0%AE%B5%E0%AE%BE%E0%AE%AF%E0%AF%8D%E0%AE%AA%E0%AF%8D%E0%AE%AA%E0%AE%BE%E0%AE%9F%E0%AF%81" title="ஆய்லரின் வாய்ப்பாடு – tamoul" lang="ta" hreflang="ta" data-title="ஆய்லரின் வாய்ப்பாடு" data-language-autonym="தமிழ்" data-language-local-name="tamoul" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-tg mw-list-item"><a href="https://tg.wikipedia.org/wiki/%D0%A4%D0%BE%D1%80%D0%BC%D1%83%D0%BB%D0%B0%D2%B3%D0%BE%D0%B8_%D0%AD%D0%B9%D0%BB%D0%B5%D1%80" title="Формулаҳои Эйлер – tadjik" lang="tg" hreflang="tg" data-title="Формулаҳои Эйлер" data-language-autonym="Тоҷикӣ" data-language-local-name="tadjik" class="interlanguage-link-target"><span>Тоҷикӣ</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%AA%E0%B8%B9%E0%B8%95%E0%B8%A3%E0%B8%82%E0%B8%AD%E0%B8%87%E0%B8%AD%E0%B9%87%E0%B8%AD%E0%B8%A2%E0%B9%80%E0%B8%A5%E0%B8%AD%E0%B8%A3%E0%B9%8C" title="สูตรของอ็อยเลอร์ – thaï" lang="th" hreflang="th" data-title="สูตรของอ็อยเลอร์" data-language-autonym="ไทย" data-language-local-name="thaï" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Euler_form%C3%BCl%C3%BC" title="Euler formülü – turc" lang="tr" hreflang="tr" data-title="Euler formülü" data-language-autonym="Türkçe" data-language-local-name="turc" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A4%D0%BE%D1%80%D0%BC%D1%83%D0%BB%D0%B0_%D0%95%D0%B9%D0%BB%D0%B5%D1%80%D0%B0" title="Формула Ейлера – ukrainien" lang="uk" hreflang="uk" data-title="Формула Ейлера" data-language-autonym="Українська" data-language-local-name="ukrainien" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D8%B9%D8%A7%D8%A6%D9%84%D8%B1%DB%8C_%DA%A9%D9%84%DB%8C%DB%81" title="عائلری کلیہ – ourdou" lang="ur" hreflang="ur" data-title="عائلری کلیہ" data-language-autonym="اردو" data-language-local-name="ourdou" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Euler_formulalari" title="Euler formulalari – ouzbek" lang="uz" hreflang="uz" data-title="Euler formulalari" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="ouzbek" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/C%C3%B4ng_th%E1%BB%A9c_Euler" title="Công thức Euler – vietnamien" lang="vi" hreflang="vi" data-title="Công thức Euler" data-language-autonym="Tiếng Việt" data-language-local-name="vietnamien" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E6%AC%A7%E6%8B%89%E5%85%AC%E5%BC%8F" title="欧拉公式 – wu" lang="wuu" hreflang="wuu" data-title="欧拉公式" data-language-autonym="吴语" data-language-local-name="wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E6%AC%A7%E6%8B%89%E5%85%AC%E5%BC%8F" title="欧拉公式 – chinois" lang="zh" hreflang="zh" data-title="欧拉公式" data-language-autonym="中文" data-language-local-name="chinois" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-zh-classical mw-list-item"><a href="https://zh-classical.wikipedia.org/wiki/%E6%AD%90%E6%8B%89%E7%AD%89%E5%BC%8F" title="歐拉等式 – chinois littéraire" lang="lzh" hreflang="lzh" data-title="歐拉等式" data-language-autonym="文言" data-language-local-name="chinois littéraire" class="interlanguage-link-target"><span>文言</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E6%AD%90%E6%8B%89%E5%85%AC%E5%BC%8F" title="歐拉公式 – cantonais" lang="yue" hreflang="yue" data-title="歐拉公式" data-language-autonym="粵語" data-language-local-name="cantonais" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q184871#sitelinks-wikipedia" title="Modifier les liens interlangues" class="wbc-editpage">Modifier les liens</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Espaces de noms"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Formule_d%27Euler" title="Voir le contenu de la page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Discussion:Formule_d%27Euler" rel="discussion" title="Discussion au sujet de cette page de contenu [t]" accesskey="t"><span>Discussion</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Modifier la variante de langue" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">français</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Affichages"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Formule_d%27Euler"><span>Lire</span></a></li><li id="ca-ve-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Formule_d%27Euler&amp;veaction=edit" title="Modifier cette page [v]" accesskey="v"><span>Modifier</span></a></li><li id="ca-edit" class="collapsible vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Formule_d%27Euler&amp;action=edit" title="Modifier le wikicode de cette page [e]" accesskey="e"><span>Modifier le code</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Formule_d%27Euler&amp;action=history" title="Historique des versions de cette page [h]" accesskey="h"><span>Voir l’historique</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Outils de la page"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Outils" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Outils</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Outils</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">déplacer vers la barre latérale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">masquer</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="Plus d’options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Formule_d%27Euler"><span>Lire</span></a></li><li id="ca-more-ve-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Formule_d%27Euler&amp;veaction=edit" title="Modifier cette page [v]" accesskey="v"><span>Modifier</span></a></li><li id="ca-more-edit" class="collapsible vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Formule_d%27Euler&amp;action=edit" title="Modifier le wikicode de cette page [e]" accesskey="e"><span>Modifier le code</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Formule_d%27Euler&amp;action=history"><span>Voir l’historique</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> Général </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Sp%C3%A9cial:Pages_li%C3%A9es/Formule_d%27Euler" title="Liste des pages liées qui pointent sur celle-ci [j]" accesskey="j"><span>Pages liées</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Sp%C3%A9cial:Suivi_des_liens/Formule_d%27Euler" rel="nofollow" title="Liste des modifications récentes des pages appelées par celle-ci [k]" accesskey="k"><span>Suivi des pages liées</span></a></li><li id="t-upload" class="mw-list-item"><a href="//fr.wikipedia.org/wiki/Aide:Importer_un_fichier" title="Téléverser des fichiers [u]" accesskey="u"><span>Téléverser un fichier</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Formule_d%27Euler&amp;oldid=216924199" title="Adresse permanente de cette version de cette page"><span>Lien permanent</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Formule_d%27Euler&amp;action=info" title="Davantage d’informations sur cette page"><span>Informations sur la page</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Sp%C3%A9cial:Citer&amp;page=Formule_d%27Euler&amp;id=216924199&amp;wpFormIdentifier=titleform" title="Informations sur la manière de citer cette page"><span>Citer cette page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Sp%C3%A9cial:UrlShortener&amp;url=https%3A%2F%2Ffr.wikipedia.org%2Fwiki%2FFormule_d%2527Euler"><span>Obtenir l'URL raccourcie</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Sp%C3%A9cial:QrCode&amp;url=https%3A%2F%2Ffr.wikipedia.org%2Fwiki%2FFormule_d%2527Euler"><span>Télécharger le code QR</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Imprimer / exporter </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=Sp%C3%A9cial:Livre&amp;bookcmd=book_creator&amp;referer=Formule+d%27Euler"><span>Créer un livre</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Sp%C3%A9cial:DownloadAsPdf&amp;page=Formule_d%27Euler&amp;action=show-download-screen"><span>Télécharger comme PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Formule_d%27Euler&amp;printable=yes" title="Version imprimable de cette page [p]" accesskey="p"><span>Version imprimable</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> Dans d’autres projets </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Euler%27s_formula" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q184871" title="Lien vers l’élément dans le dépôt de données connecté [g]" accesskey="g"><span>Élément Wikidata</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Outils de la page"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Apparence"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Apparence</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">déplacer vers la barre latérale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">masquer</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">Un article de Wikipédia, l&#039;encyclopédie libre.</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="fr" dir="ltr"><div class="bandeau-container metadata homonymie hatnote"><div class="bandeau-cell bandeau-icone" style="display:table-cell;padding-right:0.5em"><span class="noviewer" typeof="mw:File"><a href="/wiki/Aide:Homonymie" title="Aide:Homonymie"><img alt="Page d’aide sur l’homonymie" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Confusion_colour.svg/20px-Confusion_colour.svg.png" decoding="async" width="20" height="15" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Confusion_colour.svg/30px-Confusion_colour.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Confusion_colour.svg/40px-Confusion_colour.svg.png 2x" data-file-width="260" data-file-height="200" /></a></span></div><div class="bandeau-cell" style="display:table-cell;padding-right:0.5em"> <p>Ne doit pas être confondue avec <a href="/wiki/Liste_de_sujets_nomm%C3%A9s_d%27apr%C3%A8s_Leonhard_Euler#Formules" class="mw-redirect" title="Liste de sujets nommés d&#39;après Leonhard Euler">d'autres formules dues à Euler</a>, comme <a href="/wiki/Graphe_planaire#Formule_d&#39;Euler_et_conséquences" title="Graphe planaire">celle concernant les graphes planaires</a>. </p> </div></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/Fichier:Euler%27s_formula.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/71/Euler%27s_formula.svg/220px-Euler%27s_formula.svg.png" decoding="async" width="220" height="226" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/71/Euler%27s_formula.svg/330px-Euler%27s_formula.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/71/Euler%27s_formula.svg/440px-Euler%27s_formula.svg.png 2x" data-file-width="760" data-file-height="782" /></a><figcaption><center>Formule d'Euler</center> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {e} ^{\mathrm {i} \varphi }=\cos(\varphi )+\mathrm {i} \sin(\varphi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> </mrow> <mi>&#x03C6;<!-- φ --></mi> </mrow> </msup> <mo>=</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> </mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {e} ^{\mathrm {i} \varphi }=\cos(\varphi )+\mathrm {i} \sin(\varphi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee2b77ea02b107f41a2262edc9ff1b0c5727f414" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.395ex; height:3.176ex;" alt="{\displaystyle \mathrm {e} ^{\mathrm {i} \varphi }=\cos(\varphi )+\mathrm {i} \sin(\varphi )}"></span></figcaption></figure> <p>La <b>formule d'Euler</b> est une <a href="/wiki/Identit%C3%A9_remarquable" title="Identité remarquable">égalité</a> <a href="/wiki/Math%C3%A9matiques" title="Mathématiques">mathématique</a>, attribuée au <a href="/wiki/Math%C3%A9maticien" title="Mathématicien">mathématicien</a> <a href="/wiki/Suisse" title="Suisse">suisse</a> <a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a>. Elle s'écrit, pour tout <a href="/wiki/Nombre_r%C3%A9el" title="Nombre réel">nombre réel</a> <span class="texhtml"><i>x</i></span>, </p> <center><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {e} ^{\mathrm {i} \,x}=\cos x+\mathrm {i} \,\sin x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> </mrow> <mspace width="thinmathspace" /> <mi>x</mi> </mrow> </msup> <mo>=</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> </mrow> <mspace width="thinmathspace" /> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {e} ^{\mathrm {i} \,x}=\cos x+\mathrm {i} \,\sin x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b1329706416e696b8f2438128c5cdf8b74e0f57f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:19.81ex; height:2.843ex;" alt="{\displaystyle \mathrm {e} ^{\mathrm {i} \,x}=\cos x+\mathrm {i} \,\sin x}"></span></center> <p>et se généralise aux <span class="texhtml mvar" style="font-style:italic;">x</span> <a href="/wiki/Nombre_complexe" title="Nombre complexe">complexes</a>. </p><p>Ici, le <a href="/wiki/E_(nombre)" title="E (nombre)">nombre <span class="texhtml">e</span></a> est la <a href="/wiki/Logarithme" title="Logarithme">base</a> des <a href="/wiki/Logarithme_naturel" class="mw-redirect" title="Logarithme naturel">logarithmes naturels</a>, <span class="texhtml">i</span> est l'<a href="/wiki/Unit%C3%A9_imaginaire" title="Unité imaginaire">unité imaginaire</a>, <span class="texhtml">sin</span> et <span class="texhtml">cos</span> sont des <a href="/wiki/Fonction_trigonom%C3%A9trique" title="Fonction trigonométrique">fonctions trigonométriques</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Description">Description</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Formule_d%27Euler&amp;veaction=edit&amp;section=1" title="Modifier la section : Description" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Formule_d%27Euler&amp;action=edit&amp;section=1" title="Modifier le code source de la section : Description"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Cette formule peut être interprétée en disant que la fonction <span class="texhtml"><i>x </i>↦ e<sup>i<i>x</i></sup></span>, appelée <b>fonction cis</b><sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite_crochet">[</span>1<span class="cite_crochet">]</span></a></sup>, <a href="/wiki/Param%C3%A9trage" class="mw-redirect" title="Paramétrage">décrit</a> le <a href="/wiki/Cercle" title="Cercle">cercle</a> unité dans le <a href="/wiki/Plan_complexe" title="Plan complexe">plan complexe</a> lorsque <span class="texhtml"><i>x</i></span> varie dans l'ensemble des nombres réels.<br /> <span class="texhtml"><i>x</i></span> représente la mesure (en radians) de l'<a href="/wiki/Angle#Angles_orientés_dans_le_plan" title="Angle">angle orienté</a> que fait la <a href="/wiki/Demi-droite" title="Demi-droite">demi-droite</a> d'extrémité l'origine et passant par un point du cercle unité avec la demi-droite des réels positifs. La formule n'est valable que si <span class="texhtml">sin</span> et <span class="texhtml">cos</span> ont des arguments exprimés en radians plutôt qu'en degrés. </p><p>La démonstration est fondée sur les développements en <a href="/wiki/S%C3%A9rie_enti%C3%A8re" title="Série entière">série entière</a> de la fonction <a href="/wiki/Exponentielle_complexe" title="Exponentielle complexe">exponentielle</a> <span class="texhtml"><i>z </i>↦ e<sup><i>z</i></sup></span> de la variable complexe <span class="texhtml"><i>z</i></span> et des fonctions <span class="texhtml">sin</span> et <span class="texhtml">cos</span> considérées à variables réelles.<br /> En fait, la même démonstration montre que la formule d'<a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Euler</a> est encore valable pour tous les nombres complexes <span class="texhtml"><i>x</i></span>. </p><p>La formule établit un puissant lien entre l'<a href="/wiki/Analyse_(math%C3%A9matiques)" title="Analyse (mathématiques)">analyse</a> et la <a href="/wiki/Trigonom%C3%A9trie" title="Trigonométrie">trigonométrie</a>. Selon <a href="/wiki/Richard_Feynman" title="Richard Feynman">Richard Feynman</a>, c'est <span class="citation">«&#160;l'une des formules les plus remarquables […] de toutes les mathématiques<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite_crochet">[</span>2<span class="cite_crochet">]</span></a></sup>.&#160;»</span> Elle est utilisée pour représenter les nombres complexes sous forme trigonométrique et permet la définition du <a href="/wiki/Logarithme" title="Logarithme">logarithme</a> pour les arguments complexes. En utilisant les propriétés de l'exponentielle </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\rm {e}}^{a+b}={\rm {e}}^{a}{\rm {e}}^{b}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mo>+</mo> <mi>b</mi> </mrow> </msup> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\rm {e}}^{a+b}={\rm {e}}^{a}{\rm {e}}^{b}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29e75866f94da818d4baa64b47beb2831fa88dce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:11.321ex; height:2.676ex;" alt="{\displaystyle {\rm {e}}^{a+b}={\rm {e}}^{a}{\rm {e}}^{b}}"></span></dd></dl> <p>et </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ({\rm {e}}^{a})^{k}={\rm {e}}^{ak}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>k</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ({\rm {e}}^{a})^{k}={\rm {e}}^{ak}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a3f0c64de4aef0f201722a07ba583d07b42ddce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.121ex; height:3.176ex;" alt="{\displaystyle ({\rm {e}}^{a})^{k}={\rm {e}}^{ak}}"></span></dd></dl> <p>(qui sont aussi valables pour tous les nombres complexes <span class="texhtml"><i>a</i>, <i>b</i></span> et pour tout entier <span class="texhtml"><i>k</i></span>), il devient facile de dériver plusieurs <a href="/wiki/Identit%C3%A9_trigonom%C3%A9trique" class="mw-redirect" title="Identité trigonométrique">identités trigonométriques</a> ou d'en déduire la <a href="/wiki/Formule_de_Moivre" title="Formule de Moivre">formule de Moivre</a>. La formule d'Euler permet une interprétation des fonctions cosinus et sinus comme <a href="/wiki/Combinaison_lin%C3%A9aire" title="Combinaison linéaire">combinaisons linéaires</a> de fonctions exponentielles&#160;: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cos(x)=\displaystyle {\frac {\mathrm {e} ^{\mathrm {i} \,x}+\mathrm {e} ^{-\mathrm {i} \,x}}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> </mrow> <mspace width="thinmathspace" /> <mi>x</mi> </mrow> </msup> <mo>+</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> </mrow> <mspace width="thinmathspace" /> <mi>x</mi> </mrow> </msup> </mrow> <mn>2</mn> </mfrac> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cos(x)=\displaystyle {\frac {\mathrm {e} ^{\mathrm {i} \,x}+\mathrm {e} ^{-\mathrm {i} \,x}}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7751dc49f8b90d34a2694d3c6d73abf70a9d866d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:20.402ex; height:5.676ex;" alt="{\displaystyle \cos(x)=\displaystyle {\frac {\mathrm {e} ^{\mathrm {i} \,x}+\mathrm {e} ^{-\mathrm {i} \,x}}{2}}}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin(x)=\displaystyle {\frac {\mathrm {e} ^{\mathrm {i} \,x}-\mathrm {e} ^{-\mathrm {i} \,x}}{2\mathrm {i} \,}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> </mrow> <mspace width="thinmathspace" /> <mi>x</mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> </mrow> <mspace width="thinmathspace" /> <mi>x</mi> </mrow> </msup> </mrow> <mrow> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> </mrow> <mspace width="thinmathspace" /> </mrow> </mfrac> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin(x)=\displaystyle {\frac {\mathrm {e} ^{\mathrm {i} \,x}-\mathrm {e} ^{-\mathrm {i} \,x}}{2\mathrm {i} \,}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e3c72a9ae92acfd8dbe9fec28ec67234def91466" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:20.147ex; height:5.676ex;" alt="{\displaystyle \sin(x)=\displaystyle {\frac {\mathrm {e} ^{\mathrm {i} \,x}-\mathrm {e} ^{-\mathrm {i} \,x}}{2\mathrm {i} \,}}}"></span></dd></dl> <p>Ces formules (aussi appelées <b>formules d'Euler</b>) constituent la définition moderne des fonctions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cos }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cos</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cos }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e473a3de151d75296f141f9f482fe59d582a7509" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.111ex; height:1.676ex;" alt="{\displaystyle \cos }"></span> et <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sin</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee55beec18afd710e7ab767964b915b020c65093" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.856ex; height:2.176ex;" alt="{\displaystyle \sin }"></span> (y compris <a href="/wiki/Trigonom%C3%A9trie_complexe" title="Trigonométrie complexe">lorsque <span class="texhtml"><i>x</i></span> est une variable complexe</a>)<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite_crochet">[</span>3<span class="cite_crochet">]</span></a></sup> et <a href="/wiki/Syst%C3%A8me_d%27%C3%A9quations_lin%C3%A9aires" title="Système d&#39;équations linéaires">sont équivalentes</a><sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite_crochet">[</span>4<span class="cite_crochet">]</span></a></sup> à la formule d'Euler (appliquée à <span class="texhtml"><i>x</i></span> et à <span class="texhtml">–<i>x</i></span>), qui devient alors une <a href="/wiki/Tautologie_(logique)" title="Tautologie (logique)">tautologie</a>. </p><p>Dans les équations différentielles, la fonction <span class="texhtml"><i>x </i>↦ e<sup>i<i>x</i></sup></span>, est souvent utilisée pour simplifier les dérivations, même si le problème est de déterminer les solutions réelles exprimées à l'aide de sinus et cosinus. L'<a href="/wiki/Identit%C3%A9_d%27Euler" title="Identité d&#39;Euler">identité d'Euler</a> est une conséquence immédiate de la formule d'Euler. </p><p>En <a href="/wiki/%C3%89lectrotechnique" title="Électrotechnique">électrotechnique</a> et dans d'autres domaines, les signaux qui varient périodiquement en fonction du temps sont souvent décrits par des combinaisons linéaires des fonctions sinus et cosinus (voir <a href="/wiki/Analyse_de_Fourier" class="mw-redirect" title="Analyse de Fourier">analyse de Fourier</a>), et ces dernières sont plus commodément exprimées comme parties réelles de fonctions exponentielles avec des exposants imaginaires, en utilisant la formule d'Euler. </p> <div class="mw-heading mw-heading2"><h2 id="Démonstrations"><span id="D.C3.A9monstrations"></span>Démonstrations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Formule_d%27Euler&amp;veaction=edit&amp;section=2" title="Modifier la section : Démonstrations" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Formule_d%27Euler&amp;action=edit&amp;section=2" title="Modifier le code source de la section : Démonstrations"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Par_les_séries_de_Taylor"><span id="Par_les_s.C3.A9ries_de_Taylor"></span>Par les séries de Taylor</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Formule_d%27Euler&amp;veaction=edit&amp;section=3" title="Modifier la section : Par les séries de Taylor" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Formule_d%27Euler&amp;action=edit&amp;section=3" title="Modifier le code source de la section : Par les séries de Taylor"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Fichier:Euler%27s_formula_proof.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/54/Euler%27s_formula_proof.gif/350px-Euler%27s_formula_proof.gif" decoding="async" width="350" height="234" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/54/Euler%27s_formula_proof.gif/525px-Euler%27s_formula_proof.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/54/Euler%27s_formula_proof.gif/700px-Euler%27s_formula_proof.gif 2x" data-file-width="901" data-file-height="603" /></a><figcaption>Animation de la démonstration par les séries de Taylor.</figcaption></figure> <div class="bandeau-container bandeau-section metadata bandeau-niveau-information"><div class="bandeau-cell bandeau-icone-css loupe">Article détaillé&#160;: <a href="/wiki/S%C3%A9rie_de_Taylor" title="Série de Taylor">Série de Taylor</a>.</div></div> <p>Le développement en série de la fonction <span class="texhtml">exp</span> de la <a href="/wiki/Variable_(math%C3%A9matiques)" title="Variable (mathématiques)">variable</a> réelle <span class="texhtml"><i>t</i></span> peut s'écrire&#160;: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathrm {e} }^{t}={\frac {t^{0}}{0\,!}}+{\frac {t^{1}}{1\,!}}+{\frac {t^{2}}{2\,!}}+{\frac {t^{3}}{3\,!}}+{\frac {t^{4}}{4\,!}}+\cdots =\sum _{n=0}^{\infty }{\frac {t^{n}}{n\,!}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> <mrow> <mn>0</mn> <mspace width="thinmathspace" /> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mrow> <mn>1</mn> <mspace width="thinmathspace" /> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>2</mn> <mspace width="thinmathspace" /> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mrow> <mn>3</mn> <mspace width="thinmathspace" /> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mrow> <mn>4</mn> <mspace width="thinmathspace" /> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow> <mi>n</mi> <mspace width="thinmathspace" /> <mo>!</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathrm {e} }^{t}={\frac {t^{0}}{0\,!}}+{\frac {t^{1}}{1\,!}}+{\frac {t^{2}}{2\,!}}+{\frac {t^{3}}{3\,!}}+{\frac {t^{4}}{4\,!}}+\cdots =\sum _{n=0}^{\infty }{\frac {t^{n}}{n\,!}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/444394b6d00ebbcef713446525d4dfeb7fdb3e89" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:47.15ex; height:6.843ex;" alt="{\displaystyle {\mathrm {e} }^{t}={\frac {t^{0}}{0\,!}}+{\frac {t^{1}}{1\,!}}+{\frac {t^{2}}{2\,!}}+{\frac {t^{3}}{3\,!}}+{\frac {t^{4}}{4\,!}}+\cdots =\sum _{n=0}^{\infty }{\frac {t^{n}}{n\,!}}}"></span></dd></dl> <p>et s'étend à tout nombre complexe <span class="texhtml"><i>t</i></span>&#160;: le développement en <a href="/wiki/S%C3%A9rie_de_Taylor" title="Série de Taylor">série de Taylor</a> reste <a href="/wiki/Convergence_absolue" title="Convergence absolue">absolument convergent</a> et définit l'exponentielle complexe. </p><p>En particulier pour <span class="texhtml"><i>t </i>= i<i>x</i></span> avec <span class="texhtml"><i>x</i></span> réel&#160;: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathrm {e} }^{{\mathrm {i} \,}x}=\sum _{n=0}^{\infty }{\frac {{({\mathrm {i} \,}x)}^{n}}{n\,!}}=\sum _{n=0}^{\infty }{\frac {{\mathrm {i} \,}^{n}x^{n}}{n\,!}}\cdot }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> </mrow> <mspace width="thinmathspace" /> </mrow> <mi>x</mi> </mrow> </msup> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> </mrow> <mspace width="thinmathspace" /> </mrow> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow> <mi>n</mi> <mspace width="thinmathspace" /> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> </mrow> <mspace width="thinmathspace" /> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mrow> <mi>n</mi> <mspace width="thinmathspace" /> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathrm {e} }^{{\mathrm {i} \,}x}=\sum _{n=0}^{\infty }{\frac {{({\mathrm {i} \,}x)}^{n}}{n\,!}}=\sum _{n=0}^{\infty }{\frac {{\mathrm {i} \,}^{n}x^{n}}{n\,!}}\cdot }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fbe5e396f2aedbb9e99254de8f6266e2f371041a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:29.242ex; height:6.843ex;" alt="{\displaystyle {\mathrm {e} }^{{\mathrm {i} \,}x}=\sum _{n=0}^{\infty }{\frac {{({\mathrm {i} \,}x)}^{n}}{n\,!}}=\sum _{n=0}^{\infty }{\frac {{\mathrm {i} \,}^{n}x^{n}}{n\,!}}\cdot }"></span></dd></dl> <p>Cette série peut être séparée en deux en regroupant les termes pairs et impairs. En effet, un réarrangement de l'ordre des termes de la série est possible ici, car il s'agit d'une série <a href="/wiki/Convergence_absolue" title="Convergence absolue">absolument convergente</a>, autrement dit d'une <a href="/wiki/Famille_sommable" title="Famille sommable">famille sommable</a>. On obtient alors, en utilisant le fait que <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {i} \,^{2k}=(\mathrm {i} \,^{2})^{k}=(-1)^{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> </mrow> <msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> </mrow> </msup> <mo>=</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> </mrow> <msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo>=</mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {i} \,^{2k}=(\mathrm {i} \,^{2})^{k}=(-1)^{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fcebb369bc73e482cb41aef0365492a1e9bbcb96" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.996ex; height:3.176ex;" alt="{\displaystyle \mathrm {i} \,^{2k}=(\mathrm {i} \,^{2})^{k}=(-1)^{k}}"></span>&#160;: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {e} ^{\mathrm {i} \,x}=\sum _{k=0}^{\infty }{\frac {\mathrm {i} \,^{2k}x^{2k}}{(2k)\,!}}+\sum _{k=0}^{\infty }{\frac {\mathrm {i} \,^{2k+1}x^{2k+1}}{(2k+1)\,!}}=\sum _{k=0}^{\infty }{\frac {(-1)^{k}x^{2k}}{(2k)\,!}}+\mathrm {i} \,\sum _{k=0}^{\infty }{\frac {(-1)^{k}x^{2k+1}}{(2k+1)\,!}}\cdot }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> </mrow> <mspace width="thinmathspace" /> <mi>x</mi> </mrow> </msup> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> </mrow> <msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> </mrow> </msup> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> </mrow> <msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> </mrow> <mspace width="thinmathspace" /> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {e} ^{\mathrm {i} \,x}=\sum _{k=0}^{\infty }{\frac {\mathrm {i} \,^{2k}x^{2k}}{(2k)\,!}}+\sum _{k=0}^{\infty }{\frac {\mathrm {i} \,^{2k+1}x^{2k+1}}{(2k+1)\,!}}=\sum _{k=0}^{\infty }{\frac {(-1)^{k}x^{2k}}{(2k)\,!}}+\mathrm {i} \,\sum _{k=0}^{\infty }{\frac {(-1)^{k}x^{2k+1}}{(2k+1)\,!}}\cdot }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/653ea313874a84c147e581e2b08c3a5971208f5e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:72.197ex; height:7.176ex;" alt="{\displaystyle \mathrm {e} ^{\mathrm {i} \,x}=\sum _{k=0}^{\infty }{\frac {\mathrm {i} \,^{2k}x^{2k}}{(2k)\,!}}+\sum _{k=0}^{\infty }{\frac {\mathrm {i} \,^{2k+1}x^{2k+1}}{(2k+1)\,!}}=\sum _{k=0}^{\infty }{\frac {(-1)^{k}x^{2k}}{(2k)\,!}}+\mathrm {i} \,\sum _{k=0}^{\infty }{\frac {(-1)^{k}x^{2k+1}}{(2k+1)\,!}}\cdot }"></span></dd></dl> <p>On voit <i>ainsi</i> apparaître les développements en série de Taylor des fonctions cosinus et sinus<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite_crochet">[</span>5<span class="cite_crochet">]</span></a></sup>&#160;: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cos(x)=1-{\frac {x^{2}}{2\,!}}+{\frac {x^{4}}{4\,!}}-{\frac {x^{6}}{6\,!}}+\cdots =\sum _{k=0}^{\infty }{\frac {(-1)^{k}x^{2k}}{(2k)\,!}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>2</mn> <mspace width="thinmathspace" /> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mrow> <mn>4</mn> <mspace width="thinmathspace" /> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msup> <mrow> <mn>6</mn> <mspace width="thinmathspace" /> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo>!</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cos(x)=1-{\frac {x^{2}}{2\,!}}+{\frac {x^{4}}{4\,!}}-{\frac {x^{6}}{6\,!}}+\cdots =\sum _{k=0}^{\infty }{\frac {(-1)^{k}x^{2k}}{(2k)\,!}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c54a5e9909aafd34b3581cb6a5de2923634512e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:51.042ex; height:7.176ex;" alt="{\displaystyle \cos(x)=1-{\frac {x^{2}}{2\,!}}+{\frac {x^{4}}{4\,!}}-{\frac {x^{6}}{6\,!}}+\cdots =\sum _{k=0}^{\infty }{\frac {(-1)^{k}x^{2k}}{(2k)\,!}}}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin(x)=x-{\frac {x^{3}}{3\,!}}+{\frac {x^{5}}{5\,!}}-{\frac {x^{7}}{7\,!}}+\cdots =\sum _{k=0}^{\infty }{\frac {(-1)^{k}x^{2k+1}}{(2k+1)\,!}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mrow> <mn>3</mn> <mspace width="thinmathspace" /> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <mrow> <mn>5</mn> <mspace width="thinmathspace" /> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> </msup> <mrow> <mn>7</mn> <mspace width="thinmathspace" /> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo>!</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin(x)=x-{\frac {x^{3}}{3\,!}}+{\frac {x^{5}}{5\,!}}-{\frac {x^{7}}{7\,!}}+\cdots =\sum _{k=0}^{\infty }{\frac {(-1)^{k}x^{2k+1}}{(2k+1)\,!}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7220a6a47777abc45945bbb301252757a2f45c31" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:53.054ex; height:7.176ex;" alt="{\displaystyle \sin(x)=x-{\frac {x^{3}}{3\,!}}+{\frac {x^{5}}{5\,!}}-{\frac {x^{7}}{7\,!}}+\cdots =\sum _{k=0}^{\infty }{\frac {(-1)^{k}x^{2k+1}}{(2k+1)\,!}}}"></span></dd></dl> <p>ce qui, en remplaçant dans l'expression précédente de <span class="texhtml">e<sup>i<i>x</i></sup></span>, donne bien&#160;: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {e} ^{\mathrm {i} \,x}=\cos(x)+\mathrm {i} \,\sin(x).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> </mrow> <mspace width="thinmathspace" /> <mi>x</mi> </mrow> </msup> <mo>=</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> </mrow> <mspace width="thinmathspace" /> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {e} ^{\mathrm {i} \,x}=\cos(x)+\mathrm {i} \,\sin(x).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/08363db1783f1dacbda80b05b41c5b006c34c2ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.301ex; height:3.176ex;" alt="{\displaystyle \mathrm {e} ^{\mathrm {i} \,x}=\cos(x)+\mathrm {i} \,\sin(x).}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Par_le_calcul_différentiel"><span id="Par_le_calcul_diff.C3.A9rentiel"></span>Par le <a href="/wiki/Calcul_diff%C3%A9rentiel" title="Calcul différentiel">calcul différentiel</a></h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Formule_d%27Euler&amp;veaction=edit&amp;section=4" title="Modifier la section : Par le calcul différentiel" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Formule_d%27Euler&amp;action=edit&amp;section=4" title="Modifier le code source de la section : Par le calcul différentiel"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="bandeau-container bandeau-section metadata bandeau-niveau-information"><div class="bandeau-cell bandeau-icone-css loupe">Article détaillé&#160;: <a href="/wiki/Exponentielle_de_base_a#Par_une_équation_différentielle" title="Exponentielle de base a">Exponentielle de base a#Par une équation différentielle</a>.</div></div> <p>Pour tout nombre complexe <span class="texhtml"><i>k</i></span>, la seule <a href="/wiki/Application_(math%C3%A9matiques)" title="Application (mathématiques)">application</a> <span class="texhtml"><i>f</i></span>&#160;: ℝ → ℂ vérifiant <i><span class="texhtml">f ' = kf</span></i> et <span class="texhtml"><i>f</i>(0) = 1</span> est l'application <span class="texhtml"><i>x</i> ↦ exp(<i>kx</i>)</span> (la démonstration est identique à celle pour <span class="texhtml"><i>k</i></span> réel, donnée dans l'article détaillé). </p><p>L'application <span class="texhtml"><i>f</i></span> définie par <span style="display: block; margin-left:1.6em;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=\cos x+{\rm {i}}\sin x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> </mrow> </mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=\cos x+{\rm {i}}\sin x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf564e693fd8cb6d09e8042d574b5593af5ecae1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.791ex; height:2.843ex;" alt="{\displaystyle f(x)=\cos x+{\rm {i}}\sin x}"></span></span> vérifie <span style="display: block; margin-left:1.6em;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'={\rm {i}}f{\text{ et }}f(0)=1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> </mrow> </mrow> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;et&#xA0;</mtext> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'={\rm {i}}f{\text{ et }}f(0)=1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45f846db4f285b7805a9b89e9c10bca9e2c866ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.286ex; height:3.009ex;" alt="{\displaystyle f&#039;={\rm {i}}f{\text{ et }}f(0)=1.}"></span></span> </p><p>Elle coïncide donc avec l'application <span class="texhtml"><i>x</i> ↦ exp(i<i>x</i>)</span>. </p> <div class="mw-heading mw-heading2"><h2 id="Historique">Historique</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Formule_d%27Euler&amp;veaction=edit&amp;section=5" title="Modifier la section : Historique" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Formule_d%27Euler&amp;action=edit&amp;section=5" title="Modifier le code source de la section : Historique"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="bandeau-container bandeau-section metadata bandeau-niveau-information"><div class="bandeau-cell bandeau-icone-css loupe">Article détaillé&#160;: <a href="/wiki/Histoire_des_nombres_complexes" title="Histoire des nombres complexes">Histoire des nombres complexes</a>.</div></div> <p>La formule d'Euler fut mise en évidence pour la première fois par <a href="/wiki/Roger_Cotes" title="Roger Cotes">Roger Cotes</a> en 1714 sous la forme <span class="texhtml">ln(cos <i>x</i> + i sin <i>x</i>) = i<i>x</i></span> (où <span class="texhtml">ln</span> désigne le <a href="/wiki/Logarithme_n%C3%A9p%C3%A9rien" title="Logarithme népérien">logarithme népérien</a>, c'est-à-dire le logarithme de base <span class="texhtml">e</span>)<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite_crochet">[</span>6<span class="cite_crochet">]</span></a></sup><sup class="reference cite_virgule">,</sup><sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite_crochet">[</span>7<span class="cite_crochet">]</span></a></sup>. Ce fut Euler qui publia la formule sous sa forme actuelle en 1748, en basant sa démonstration sur la <a href="/wiki/Formule_de_Moivre" title="Formule de Moivre">formule de Moivre</a> et à l'aide d'équivalents et de passages à la limite<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite_crochet">[</span>8<span class="cite_crochet">]</span></a></sup><sup class="reference cite_virgule">,</sup><sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite_crochet">[</span>9<span class="cite_crochet">]</span></a></sup>. Aucun des deux mathématiciens ne donna une interprétation géométrique de la formule&#160;: l'interprétation des nombres complexes comme des affixes de points d'un <a href="/wiki/Plan_complexe" title="Plan complexe">plan</a> ne fut vraiment évoquée que cinquante années plus tard (voir <a href="/wiki/Caspar_Wessel" title="Caspar Wessel">Caspar Wessel</a>). </p> <div class="mw-heading mw-heading2"><h2 id="Applications">Applications</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Formule_d%27Euler&amp;veaction=edit&amp;section=6" title="Modifier la section : Applications" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Formule_d%27Euler&amp;action=edit&amp;section=6" title="Modifier le code source de la section : Applications"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>La formule d'Euler permet d'affirmer que la <a href="/wiki/Logarithme_complexe#Détermination_principale" title="Logarithme complexe">détermination principale du logarithme complexe</a> de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cos x+\mathrm {i} \,\sin x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> </mrow> <mspace width="thinmathspace" /> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cos x+\mathrm {i} \,\sin x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6f9ebaa9e5d4ddaf24aaaaf3fe8a7e4b3c7972ba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:13.662ex; height:2.343ex;" alt="{\displaystyle \cos x+\mathrm {i} \,\sin x}"></span> est <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {i} x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> </mrow> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {i} x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9390ca6168e08e7c276092958becdc85846dbebe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.977ex; height:2.176ex;" alt="{\displaystyle \mathrm {i} x}"></span>, pour tout <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in \left]-\pi ,\pi \right[}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow> <mo>]</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C0;<!-- π --></mi> <mo>,</mo> <mi>&#x03C0;<!-- π --></mi> </mrow> <mo>[</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in \left]-\pi ,\pi \right[}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64bfae9d92c65381cde6e58d18e374748bfab4b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.97ex; height:2.843ex;" alt="{\displaystyle x\in \left]-\pi ,\pi \right[}"></span>.</li> <li>Un exemple d'application en <a href="/wiki/%C3%89lectromagn%C3%A9tisme" title="Électromagnétisme">électromagnétisme</a> est le <a href="/wiki/Courant_alternatif" title="Courant alternatif">courant alternatif</a>&#160;: puisque la <a href="/wiki/Diff%C3%A9rence_de_potentiel" class="mw-redirect" title="Différence de potentiel">différence de potentiel</a> d'un tel circuit <a href="/wiki/Onde" title="Onde">oscille</a>, elle peut être représentée par un <a href="/wiki/Nombre_complexe" title="Nombre complexe">nombre complexe</a>&#160;:<span style="display: block; margin-left:1.6em;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V=V_{0}{\rm {e}}^{{\rm {i}}\omega t}=V_{0}\left(\cos \omega t+{\rm {i}}\sin \omega t\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo>=</mo> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> </mrow> </mrow> <mi>&#x03C9;<!-- ω --></mi> <mi>t</mi> </mrow> </msup> <mo>=</mo> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C9;<!-- ω --></mi> <mi>t</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> </mrow> </mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C9;<!-- ω --></mi> <mi>t</mi> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V=V_{0}{\rm {e}}^{{\rm {i}}\omega t}=V_{0}\left(\cos \omega t+{\rm {i}}\sin \omega t\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9dc662e2028ceede9c034ee2eec6299b80c8fb3a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:34.558ex; height:3.176ex;" alt="{\displaystyle V=V_{0}{\rm {e}}^{{\rm {i}}\omega t}=V_{0}\left(\cos \omega t+{\rm {i}}\sin \omega t\right).}"></span></span>Afin d'obtenir une quantité mesurable, on prend la partie réelle<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite_crochet">[</span>10<span class="cite_crochet">]</span></a></sup>&#160;:<span style="display: block; margin-left:1.6em;"></span></li></ul> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {Re} (V)=\mathrm {Re} \left[V_{0}{\rm {e}}^{{\rm {i}}\omega t}\right]=V_{0}\cos \omega t.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">R</mi> <mi mathvariant="normal">e</mi> </mrow> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">R</mi> <mi mathvariant="normal">e</mi> </mrow> <mrow> <mo>[</mo> <mrow> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> </mrow> </mrow> <mi>&#x03C9;<!-- ω --></mi> <mi>t</mi> </mrow> </msup> </mrow> <mo>]</mo> </mrow> <mo>=</mo> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C9;<!-- ω --></mi> <mi>t</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {Re} (V)=\mathrm {Re} \left[V_{0}{\rm {e}}^{{\rm {i}}\omega t}\right]=V_{0}\cos \omega t.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0e33990c0e17d5962226323ef0a8f4a4cc7c5e88" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:32.58ex; height:3.343ex;" alt="{\displaystyle \mathrm {Re} (V)=\mathrm {Re} \left[V_{0}{\rm {e}}^{{\rm {i}}\omega t}\right]=V_{0}\cos \omega t.}"></span> </p> <ul><li>La <a href="/wiki/Identit%C3%A9_trigonom%C3%A9trique#Linéarisation" class="mw-redirect" title="Identité trigonométrique">linéarisation</a>, qui repose sur la formule d'Euler et la <a href="/wiki/Formule_du_bin%C3%B4me_de_Newton" title="Formule du binôme de Newton">formule du binôme de Newton</a>, transforme tout <a href="/wiki/Polyn%C3%B4me_en_plusieurs_ind%C3%A9termin%C3%A9es" title="Polynôme en plusieurs indéterminées">polynôme</a> en <span class="texhtml">cos(<i>x</i>)</span> et <span class="texhtml">sin(<i>x</i>)</span> en une <a href="/wiki/Combinaison_lin%C3%A9aire" title="Combinaison linéaire">combinaison linéaire</a> de divers <span class="texhtml">cos(<i>nx</i>)</span> et <span class="texhtml">sin(<i>nx</i>)</span>, ce qui rend alors immédiat le calcul de ses <a href="/wiki/Primitive" title="Primitive">primitives</a>.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Voir_aussi">Voir aussi</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Formule_d%27Euler&amp;veaction=edit&amp;section=7" title="Modifier la section : Voir aussi" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Formule_d%27Euler&amp;action=edit&amp;section=7" title="Modifier le code source de la section : Voir aussi"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Articles_connexes">Articles connexes</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Formule_d%27Euler&amp;veaction=edit&amp;section=8" title="Modifier la section : Articles connexes" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Formule_d%27Euler&amp;action=edit&amp;section=8" title="Modifier le code source de la section : Articles connexes"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Th%C3%A9or%C3%A8me_de_Descartes-Euler" title="Théorème de Descartes-Euler">Théorème de Descartes-Euler</a></li> <li><a href="/wiki/Triangle#Droite_et_cercle_d&#39;Euler" title="Triangle">Relation d'Euler</a> dans le triangle</li> <li><a href="/wiki/M%C3%A9thode_d%27Euler" title="Méthode d&#39;Euler">Méthode d'Euler</a>, calcul approché d'équations différentielles et de primitives</li> <li><a href="/wiki/Identit%C3%A9_d%27Euler" title="Identité d&#39;Euler">Identité d'Euler</a>&#160;: <span class="texhtml">e<sup>iπ</sup></span> + 1 = 0</li></ul> <div class="mw-heading mw-heading2"><h2 id="Références"><span id="R.C3.A9f.C3.A9rences"></span>Références</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Formule_d%27Euler&amp;veaction=edit&amp;section=9" title="Modifier la section : Références" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Formule_d%27Euler&amp;action=edit&amp;section=9" title="Modifier le code source de la section : Références"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><a href="#cite_ref-1">↑</a> </span><span class="reference-text"><abbr class="abbr indicateur-langue" title="Langue : anglais">(en)</abbr> Alan Sultan et Alice F. Artzt, <i>The mathematics that every secondary school math teacher needs to know</i>, Studies in Mathematical Thinking and Learning, Taylor &amp; Francis, 2010, <a rel="nofollow" class="external text" href="https://books.google.fr/books?id=N16lz_AsU4AC&amp;pg=PA326">p. 326</a>.</span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><a href="#cite_ref-2">↑</a> </span><span class="reference-text"><span class="ouvrage"><abbr class="abbr indicateur-langue" title="Langue : anglais">(en)</abbr> <a href="/wiki/Richard_Feynman" title="Richard Feynman">Richard P. Feynman</a>, <a href="/wiki/Robert_B._Leighton" title="Robert B. Leighton">Robert B. Leighton</a> et <a href="/w/index.php?title=Matthew_Sands&amp;action=edit&amp;redlink=1" class="new" title="Matthew Sands (page inexistante)">Matthew Sands</a>&#160;<a href="https://en.wikipedia.org/wiki/Matthew_Sands" class="extiw" title="en:Matthew Sands"><span class="indicateur-langue" title="Article en anglais&#160;: «&#160;Matthew Sands&#160;»">(en)</span></a>, <cite class="italique" lang="en"><a href="/wiki/Cours_de_physique_de_Feynman" class="mw-redirect" title="Cours de physique de Feynman">Feynman Lectures on Physics</a></cite> <small>&#91;<a href="/wiki/R%C3%A9f%C3%A9rence:Le_cours_de_physique_de_Feynman" class="mw-redirect" title="Référence:Le cours de physique de Feynman">détail de l’édition</a>&#93;</small><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Feynman+Lectures+on+Physics&amp;rfr_id=info%3Asid%2Ffr.wikipedia.org%3AFormule+d%27Euler"></span></span>, vol. 1, p. 22, d'après <abbr class="abbr indicateur-langue" title="Langue : anglais">(en)</abbr> «&#160;<a href="https://fr.wikiquote.org/wiki/en:Euler%27s_identity" class="extiw" title="q:en:Euler&#39;s identity">Euler's identity</a>&#160;» sur <a href="/wiki/Wikiquote" title="Wikiquote">Wikiquote</a>.</span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><a href="#cite_ref-3">↑</a> </span><span class="reference-text"><span class="ouvrage" id="Chatterji1997"><span class="ouvrage" id="Srishti_D._Chatterji1997">Srishti D. Chatterji, <cite class="italique">Cours d'analyse</cite>, <abbr class="abbr" title="volume">vol.</abbr>&#160;2&#160;: <span class="italique">Analyse complexe</span>, <a href="/wiki/PPUR" class="mw-redirect" title="PPUR">PPUR</a>, <time>1997</time> <small style="line-height:1em;">(<a rel="nofollow" class="external text" href="//books.google.com/books?id=oMbaI618xmMC&amp;pg=PA96">lire en ligne</a>)</small>, <abbr class="abbr" title="page">p.</abbr>&#160;96<span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Cours+d%27analyse&amp;rft.pub=PPUR&amp;rft.aulast=Chatterji&amp;rft.aufirst=Srishti+D.&amp;rft.date=1997&amp;rft.volume=2&amp;rft.pages=96&amp;rft_id=%2F%2Fbooks.google.com%2Fbooks%3Fid%3DoMbaI618xmMC%26pg%3DPA96&amp;rfr_id=info%3Asid%2Ffr.wikipedia.org%3AFormule+d%27Euler"></span></span></span>.</span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><a href="#cite_ref-4">↑</a> </span><span class="reference-text"><a href="#Chatterji1997">Chatterji 1997</a>, <abbr class="abbr" title="page(s)">p.</abbr>&#160;97.</span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><a href="#cite_ref-5">↑</a> </span><span class="reference-text"><span class="ouvrage" id="HairerWanner2001"><span class="ouvrage" id="Ernst_HairerGerhard_Wanner2001">Ernst Hairer et Gerhard Wanner, <cite class="italique">L'Analyse au fil de l'histoire</cite>, Springer, <time>2001</time><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=L%27Analyse+au+fil+de+l%27histoire&amp;rft.pub=Springer&amp;rft.aulast=Hairer&amp;rft.aufirst=Ernst&amp;rft.au=Gerhard+Wanner&amp;rft.date=2001&amp;rfr_id=info%3Asid%2Ffr.wikipedia.org%3AFormule+d%27Euler"></span></span></span>, p. 59</span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><a href="#cite_ref-6">↑</a> </span><span class="reference-text"><span class="ouvrage" id="Flament2003"><span class="ouvrage" id="Dominique_Flament2003">Dominique <span class="nom_auteur">Flament</span>, <cite class="italique">Histoire des nombres complexes&#160;: Entre algèbre et géométrie</cite>, Paris, CNRS Éditions, <time>2003</time> <small style="line-height:1em;">(<a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Sp%C3%A9cial:Ouvrages_de_r%C3%A9f%C3%A9rence/2_271_06128_8" title="Spécial:Ouvrages de référence/2 271 06128 8"><span class="nowrap">2 271 06128 8</span></a>)</small><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Histoire+des+nombres+complexes&amp;rft.place=Paris&amp;rft.pub=CNRS+%C3%89ditions&amp;rft.stitle=Entre+alg%C3%A8bre+et+g%C3%A9om%C3%A9trie&amp;rft.aulast=Flament&amp;rft.aufirst=Dominique&amp;rft.date=2003&amp;rft.isbn=2+271+06128+8&amp;rfr_id=info%3Asid%2Ffr.wikipedia.org%3AFormule+d%27Euler"></span></span></span>, p. 80.</span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><a href="#cite_ref-7">↑</a> </span><span class="reference-text"><span class="ouvrage" id="Stillwell"><span class="ouvrage" id="John_Stillwell"><abbr class="abbr indicateur-langue" title="Langue : anglais">(en)</abbr> <a href="/wiki/John_Stillwell" title="John Stillwell">John <span class="nom_auteur">Stillwell</span></a>, <cite class="italique" lang="en">Mathematics and Its History</cite> <small>&#91;<a href="/wiki/R%C3%A9f%C3%A9rence:Stillwell" title="Référence:Stillwell">détail des éditions</a>&#93;</small><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Mathematics+and+Its+History&amp;rft.aulast=Stillwell&amp;rft.aufirst=John&amp;rfr_id=info%3Asid%2Ffr.wikipedia.org%3AFormule+d%27Euler"></span></span></span>, p. 294.</span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><a href="#cite_ref-8">↑</a> </span><span class="reference-text"> L. Euler, <i>Introduction à l'analyse infinitésimale</i>, <a rel="nofollow" class="external text" href="https://books.google.fr/books?id=XMo7AAAAcAAJ&amp;hl=fr&amp;pg=PA102">article 138</a>.</span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><a href="#cite_ref-9">↑</a> </span><span class="reference-text"><a href="#Flament2003">Flament 2003</a>, <abbr class="abbr" title="page(s)">p.</abbr>&#160;83-84.</span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><a href="#cite_ref-10">↑</a> </span><span class="reference-text">Voir des exemples dans&#160;: <i>Electromagnetism</i> (<abbr class="abbr" title="Deuxième">2<sup>e</sup></abbr>&#160;édition), I.S. Grant, W.R. Phillips, Manchester Physics Series, 2008 <small style="line-height:1em;">(<a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Sp%C3%A9cial:Ouvrages_de_r%C3%A9f%C3%A9rence/0-471-92712-0" title="Spécial:Ouvrages de référence/0-471-92712-0"><span class="nowrap">0-471-92712-0</span></a>)</small>.</span> </li> </ol></div> <div class="navbox-container" style="clear:both;"> <table class="navbox collapsible noprint autocollapse" style=""> <tbody><tr><th class="navbox-title" colspan="2" style=""><div style="float:left; width:6em; text-align:left"><div class="noprint plainlinks nowrap tnavbar" style="padding:0; font-size:xx-small; color:var(--color-emphasized, #000000);"><a href="/wiki/Mod%C3%A8le:Palette_Nombre_e" title="Modèle:Palette Nombre e"><abbr class="abbr" title="Voir ce modèle.">v</abbr></a>&#160;· <a class="external text" href="https://fr.wikipedia.org/w/index.php?title=Mod%C3%A8le:Palette_Nombre_e&amp;action=edit"><abbr class="abbr" title="Modifier ce modèle. Merci de prévisualiser avant de sauvegarder.">m</abbr></a></div></div><div style="font-size:110%"><a href="/wiki/E_(nombre)" title="E (nombre)">Nombre e</a></div></th> </tr> <tr> <th class="navbox-group" style="">Applications</th> <td class="navbox-list" style=""><div class="liste-horizontale"> <ul><li><a href="/wiki/Int%C3%A9r%C3%AAts_compos%C3%A9s" title="Intérêts composés">Intérêts composés</a></li> <li><a href="/wiki/Identit%C3%A9_d%27Euler" title="Identité d&#39;Euler">Identité d'Euler</a></li> <li><a class="mw-selflink selflink">Formule d'Euler</a></li> <li><a href="/wiki/Demi-vie" title="Demi-vie">Demi-vie</a> <ul><li><a href="/wiki/Croissance_exponentielle" title="Croissance exponentielle">Croissance exponentielle</a></li> <li><a href="/wiki/D%C3%A9croissance_exponentielle" title="Décroissance exponentielle">Décroissance exponentielle</a></li></ul></li></ul> </div></td> </tr> <tr> <th class="navbox-group" style="">Définitions</th> <td class="navbox-list navbox-even" style=""><div class="liste-horizontale"> <ul><li><a href="/wiki/E_(nombre)#Irrationalité" title="E (nombre)">Démonstration de l'irrationalité de e</a></li> <li><a href="/wiki/Repr%C3%A9sentations_de_e" title="Représentations de e">Représentations de e</a></li> <li><a href="/wiki/Th%C3%A9or%C3%A8me_d%27Hermite-Lindemann" title="Théorème d&#39;Hermite-Lindemann">Théorème d'Hermite-Lindemann</a></li></ul> </div></td> </tr> <tr> <th class="navbox-group" style="">Personnes</th> <td class="navbox-list" style=""><div class="liste-horizontale"> <ul><li><a href="/wiki/John_Napier" title="John Napier">John Napier</a></li> <li><small><a href="/wiki/John_Speidell" title="John Speidell">John Speidell</a></small></li> <li><a href="/wiki/Jacques_Bernoulli" title="Jacques Bernoulli">Jacques Bernoulli</a></li> <li><a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a></li></ul> </div></td> </tr> </tbody></table> </div> <ul id="bandeau-portail" class="bandeau-portail"><li><span class="bandeau-portail-element"><span class="bandeau-portail-icone"><span class="noviewer" typeof="mw:File"><a href="/wiki/Portail:Analyse" title="Portail de l&#39;analyse"><img alt="icône décorative" src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e8/Nuvola_apps_kmplot.svg/24px-Nuvola_apps_kmplot.svg.png" decoding="async" width="24" height="24" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e8/Nuvola_apps_kmplot.svg/36px-Nuvola_apps_kmplot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e8/Nuvola_apps_kmplot.svg/48px-Nuvola_apps_kmplot.svg.png 2x" data-file-width="400" data-file-height="400" /></a></span></span> <span class="bandeau-portail-texte"><a href="/wiki/Portail:Analyse" title="Portail:Analyse">Portail de l'analyse</a></span> </span></li> </ul> <!-- NewPP limit report Parsed by mw‐api‐int.codfw.main‐5b65fffc7d‐kjd6x Cached time: 20250214180141 Cache expiry: 2592000 Reduced expiry: false Complications: [show‐toc] CPU time usage: 0.248 seconds Real time usage: 0.488 seconds Preprocessor visited node count: 2265/1000000 Post‐expand include size: 36007/2097152 bytes Template argument size: 3897/2097152 bytes Highest expansion depth: 12/100 Expensive parser function count: 1/500 Unstrip recursion depth: 0/20 Unstrip post‐expand size: 9227/5000000 bytes Lua time usage: 0.082/10.000 seconds Lua memory usage: 3710837/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 261.281 1 -total 21.92% 57.276 5 Modèle:Ouvrage 19.21% 50.190 1 Modèle:Portail 18.82% 49.184 1 Modèle:Feynman_Lectures_on_Physics 9.89% 25.833 1 Modèle:Confusion 9.53% 24.900 2 Modèle:En 9.21% 24.053 1 Modèle:Méta_bandeau 8.99% 23.494 1 Modèle:Indication_de_langue 8.11% 21.193 1 Modèle:Catégorisation_badges 7.56% 19.765 1 Modèle:Suivi_des_biographies --> <!-- Saved in parser cache with key frwiki:pcache:15192:|#|:idhash:canonical and timestamp 20250214180141 and revision id 216924199. Rendering was triggered because: api-parse --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?useformat=desktop&amp;type=1x1&amp;usesul3=0" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Ce document provient de «&#160;<a dir="ltr" href="https://fr.wikipedia.org/w/index.php?title=Formule_d%27Euler&amp;oldid=216924199">https://fr.wikipedia.org/w/index.php?title=Formule_d%27Euler&amp;oldid=216924199</a>&#160;».</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Cat%C3%A9gorie:Accueil" title="Catégorie:Accueil">Catégories</a> : <ul><li><a href="/wiki/Cat%C3%A9gorie:Analyse_complexe" title="Catégorie:Analyse complexe">Analyse complexe</a></li><li><a href="/wiki/Cat%C3%A9gorie:Th%C3%A9or%C3%A8me_d%27analyse" title="Catégorie:Théorème d&#039;analyse">Théorème d'analyse</a></li><li><a href="/wiki/Cat%C3%A9gorie:Leonhard_Euler" title="Catégorie:Leonhard Euler">Leonhard Euler</a></li><li><a href="/wiki/Cat%C3%A9gorie:Exponentielle" title="Catégorie:Exponentielle">Exponentielle</a></li><li><a href="/wiki/Cat%C3%A9gorie:Trigonom%C3%A9trie" title="Catégorie:Trigonométrie">Trigonométrie</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Catégories cachées : <ul><li><a href="/wiki/Cat%C3%A9gorie:Article_contenant_un_appel_%C3%A0_traduction_en_anglais" title="Catégorie:Article contenant un appel à traduction en anglais">Article contenant un appel à traduction en anglais</a></li><li><a href="/wiki/Cat%C3%A9gorie:Portail:Analyse/Articles_li%C3%A9s" title="Catégorie:Portail:Analyse/Articles liés">Portail:Analyse/Articles liés</a></li><li><a href="/wiki/Cat%C3%A9gorie:Portail:Math%C3%A9matiques/Articles_li%C3%A9s" title="Catégorie:Portail:Mathématiques/Articles liés">Portail:Mathématiques/Articles liés</a></li><li><a href="/wiki/Cat%C3%A9gorie:Portail:Sciences/Articles_li%C3%A9s" title="Catégorie:Portail:Sciences/Articles liés">Portail:Sciences/Articles liés</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> La dernière modification de cette page a été faite le 19 juillet 2024 à 07:44.</li> <li id="footer-info-copyright"><span style="white-space: normal"><a href="/wiki/Wikip%C3%A9dia:Citation_et_r%C3%A9utilisation_du_contenu_de_Wikip%C3%A9dia" title="Wikipédia:Citation et réutilisation du contenu de Wikipédia">Droit d'auteur</a>&#160;: les textes sont disponibles sous <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by-sa/4.0/deed.fr">licence Creative Commons attribution, partage dans les mêmes conditions</a>&#160;; d’autres conditions peuvent s’appliquer. Voyez les <a class="external text" href="https://foundation.wikimedia.org/wiki/Policy:Terms_of_Use/fr">conditions d’utilisation</a> pour plus de détails, ainsi que les <a href="/wiki/Wikip%C3%A9dia:Cr%C3%A9dits_graphiques" title="Wikipédia:Crédits graphiques">crédits graphiques</a>. En cas de réutilisation des textes de cette page, voyez <a href="/wiki/Sp%C3%A9cial:Citer/Formule_d%27Euler" title="Spécial:Citer/Formule d&#39;Euler">comment citer les auteurs et mentionner la licence</a>.<br /> Wikipedia® est une marque déposée de la <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, organisation de bienfaisance régie par le paragraphe <a href="/wiki/501c" title="501c">501(c)(3)</a> du code fiscal des États-Unis.</span><br /></li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy/fr">Politique de confidentialité</a></li> <li id="footer-places-about"><a href="/wiki/Wikip%C3%A9dia:%C3%80_propos_de_Wikip%C3%A9dia">À propos de Wikipédia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikip%C3%A9dia:Avertissements_g%C3%A9n%C3%A9raux">Avertissements</a></li> <li id="footer-places-contact"><a href="//fr.wikipedia.org/wiki/Wikipédia:Contact">Contact</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code de conduite</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Développeurs</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/fr.wikipedia.org">Statistiques</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Déclaration sur les témoins (cookies)</a></li> <li id="footer-places-mobileview"><a href="//fr.m.wikipedia.org/w/index.php?title=Formule_d%27Euler&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Version mobile</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" lang="en" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><picture><source media="(min-width: 500px)" srcset="/w/resources/assets/poweredby_mediawiki.svg" width="88" height="31"><img src="/w/resources/assets/mediawiki_compact.svg" alt="Powered by MediaWiki" width="25" height="25" loading="lazy"></picture></a></li> </ul> </footer> </div> </div> </div> <div class="vector-header-container vector-sticky-header-container"> <div id="vector-sticky-header" class="vector-sticky-header"> <div class="vector-sticky-header-start"> <div class="vector-sticky-header-icon-start vector-button-flush-left vector-button-flush-right" aria-hidden="true"> <button class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-sticky-header-search-toggle" tabindex="-1" data-event-name="ui.vector-sticky-search-form.icon"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Rechercher</span> </button> </div> <div role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box"> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail"> <form action="/w/index.php" id="vector-sticky-search-form" class="cdx-search-input cdx-search-input--has-end-button"> <div class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Rechercher sur Wikipédia"> <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Spécial:Recherche"> </div> <button class="cdx-button cdx-search-input__end-button">Rechercher</button> </form> </div> </div> </div> <div class="vector-sticky-header-context-bar"> <nav aria-label="Sommaire" class="vector-toc-landmark"> <div id="vector-sticky-header-toc" class="vector-dropdown mw-portlet mw-portlet-sticky-header-toc vector-sticky-header-toc vector-button-flush-left" > <input type="checkbox" id="vector-sticky-header-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-sticky-header-toc" class="vector-dropdown-checkbox " aria-label="Basculer la table des matières" > <label id="vector-sticky-header-toc-label" for="vector-sticky-header-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Basculer la table des matières</span> </label> <div class="vector-dropdown-content"> <div id="vector-sticky-header-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div class="vector-sticky-header-context-bar-primary" aria-hidden="true" ><span class="mw-page-title-main">Formule d'Euler</span></div> </div> </div> <div class="vector-sticky-header-end" aria-hidden="true"> <div class="vector-sticky-header-icons"> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-talk-sticky-header" tabindex="-1" data-event-name="talk-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbles mw-ui-icon-wikimedia-speechBubbles"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-subject-sticky-header" tabindex="-1" data-event-name="subject-sticky-header"><span class="vector-icon mw-ui-icon-article mw-ui-icon-wikimedia-article"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-history-sticky-header" tabindex="-1" data-event-name="history-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-history mw-ui-icon-wikimedia-wikimedia-history"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only mw-watchlink" id="ca-watchstar-sticky-header" tabindex="-1" data-event-name="watch-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-star mw-ui-icon-wikimedia-wikimedia-star"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-ve-edit-sticky-header" tabindex="-1" data-event-name="ve-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-edit mw-ui-icon-wikimedia-wikimedia-edit"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-edit-sticky-header" tabindex="-1" data-event-name="wikitext-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-wikiText mw-ui-icon-wikimedia-wikimedia-wikiText"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-viewsource-sticky-header" tabindex="-1" data-event-name="ve-edit-protected-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-editLock mw-ui-icon-wikimedia-wikimedia-editLock"></span> <span></span> </a> </div> <div class="vector-sticky-header-buttons"> <button class="cdx-button cdx-button--weight-quiet mw-interlanguage-selector" id="p-lang-btn-sticky-header" tabindex="-1" data-event-name="ui.dropdown-p-lang-btn-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-language mw-ui-icon-wikimedia-wikimedia-language"></span> <span>66 langues</span> </button> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive" id="ca-addsection-sticky-header" tabindex="-1" data-event-name="addsection-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbleAdd-progressive mw-ui-icon-wikimedia-speechBubbleAdd-progressive"></span> <span>Ajouter un sujet</span> </a> </div> <div class="vector-sticky-header-icon-end"> <div class="vector-user-links"> </div> </div> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-b766959bd-tkg7j","wgBackendResponseTime":127,"wgPageParseReport":{"limitreport":{"cputime":"0.248","walltime":"0.488","ppvisitednodes":{"value":2265,"limit":1000000},"postexpandincludesize":{"value":36007,"limit":2097152},"templateargumentsize":{"value":3897,"limit":2097152},"expansiondepth":{"value":12,"limit":100},"expensivefunctioncount":{"value":1,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":9227,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 261.281 1 -total"," 21.92% 57.276 5 Modèle:Ouvrage"," 19.21% 50.190 1 Modèle:Portail"," 18.82% 49.184 1 Modèle:Feynman_Lectures_on_Physics"," 9.89% 25.833 1 Modèle:Confusion"," 9.53% 24.900 2 Modèle:En"," 9.21% 24.053 1 Modèle:Méta_bandeau"," 8.99% 23.494 1 Modèle:Indication_de_langue"," 8.11% 21.193 1 Modèle:Catégorisation_badges"," 7.56% 19.765 1 Modèle:Suivi_des_biographies"]},"scribunto":{"limitreport-timeusage":{"value":"0.082","limit":"10.000"},"limitreport-memusage":{"value":3710837,"limit":52428800}},"cachereport":{"origin":"mw-api-int.codfw.main-5b65fffc7d-kjd6x","timestamp":"20250214180141","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Formule d'Euler","url":"https:\/\/fr.wikipedia.org\/wiki\/Formule_d%27Euler","sameAs":"http:\/\/www.wikidata.org\/entity\/Q184871","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q184871","author":{"@type":"Organization","name":"Contributeurs aux projets Wikimedia"},"publisher":{"@type":"Organization","name":"Fondation Wikimedia, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2003-04-29T19:36:47Z","dateModified":"2024-07-19T06:44:48Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/7\/71\/Euler%27s_formula.svg","headline":"\u00e9galit\u00e9 math\u00e9matique reliant les nombres complexes, la trigonom\u00e9trie et la fonction exponentielle"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10