CINXE.COM
Search results for: natural energy
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: natural energy</title> <meta name="description" content="Search results for: natural energy"> <meta name="keywords" content="natural energy"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="natural energy" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="natural energy"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 13281</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: natural energy</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13281</span> Realization of Sustainable Urban Society by Personal Electric Transporter and Natural Energy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuichi%20Miyamoto">Yuichi Miyamoto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In regards to the energy sector in the modern period, two points were raised. First is a vast and growing energy demand, and second is an environmental impact associated with it. The enormous consumption of fossil fuel to the mobile unit is leading to its rapid depletion. Nuclear power is not the only problem. A modal shift that utilizes personal transporters and independent power, in order to realize a sustainable society, is very effective. The paper proposes that the world will continue to work on this. Energy of the future society, innovation in battery technology and the use of natural energy is a big key. And it is also necessary in order to save on energy consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20energy" title="natural energy">natural energy</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20shift" title=" modal shift"> modal shift</a>, <a href="https://publications.waset.org/abstracts/search?q=personal%20transportation" title=" personal transportation"> personal transportation</a>, <a href="https://publications.waset.org/abstracts/search?q=battery" title=" battery"> battery</a> </p> <a href="https://publications.waset.org/abstracts/8079/realization-of-sustainable-urban-society-by-personal-electric-transporter-and-natural-energy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8079.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13280</span> Natural Gas Production Forecasts Using Diffusion Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Abud%20Darda">Md. Abud Darda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Different options for natural gas production in wide geographic areas may be described through diffusion of innovation models. This type of modeling approach provides an indirect estimate of an ultimately recoverable resource, URR, capture the quantitative effects of observed strategic interventions, and allow ex-ante assessments of future scenarios over time. In order to ensure a sustainable energy policy, it is important to forecast the availability of this natural resource. Considering a finite life cycle, in this paper we try to investigate the natural gas production of Myanmar and Algeria, two important natural gas provider in the world energy market. A number of homogeneous and heterogeneous diffusion models, with convenient extensions, have been used. Models validation has also been performed in terms of prediction capability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diffusion%20models" title="diffusion models">diffusion models</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20forecast" title=" energy forecast"> energy forecast</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20gas" title=" natural gas"> natural gas</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20production" title=" nonlinear production"> nonlinear production</a> </p> <a href="https://publications.waset.org/abstracts/88346/natural-gas-production-forecasts-using-diffusion-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13279</span> Reducing Energy Consumption in Architectural Spaces by Optimizing Natural Light Transmission</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parisa%20Javid">Parisa Javid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In architecture, daylight contributes to humans' mental and physical well-being and reduces the consumption of fossil fuels. Accordingly, Iran's rich architecture has valuable achievements and experiences that should be recognized and introduced to the Iranian and international architecture communities. There are many ways to reduce energy consumption in buildings, but electricity accounts for a large part of that consumption. Lighting up spaces with natural light is a significant factor in reducing energy consumption and preventing electricity dissipation. Aside from being expensive, electric lighting systems cause excessive heat and physical injury (eyes). This study is based on library records and documents. Modern lighting systems are used to reduce energy consumption in the interior of a building to allow for optimal transmission of natural light. It discusses how to use natural light in architecture and the benefits of natural light in buildings. Solar energy can be used more efficiently, and electrical power can be saved in residential, administrative, commercial, and educational buildings by using new methods such as light tubes and mirror directors. Modern lighting systems, natural light, and reduced energy consumption are keywords for these systems, which quickly return their investment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modern%20lighting%20systems" title="modern lighting systems">modern lighting systems</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20light" title=" natural light"> natural light</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced%20energy%20consumption" title=" reduced energy consumption"> reduced energy consumption</a> </p> <a href="https://publications.waset.org/abstracts/150538/reducing-energy-consumption-in-architectural-spaces-by-optimizing-natural-light-transmission" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13278</span> Research on Natural Lighting Design of Atriums Based on Energy-Saving Aim</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fan%20Yu">Fan Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An atrium is a place for natural climate exchanging of indoor and outdoor space of buildings, which plays an active role in the overall energy conservation, climate control and environmental purification of buildings. Its greatest contribution is serving as a natural light collector and distributor to solve the problem of natural lighting in large and deep spaces. However, in real situations, the atrium space often results in energy consumption due to improper design in considering its big size and large amount use of glass. Based on the purpose of energy conservation of buildings, this paper emphasizes the significance of natural lighting of atriums. Through literature research, case analysis and other methods, four factors, namely: the light transmittance through the top of the atrium, the geometric proportion of the atrium space, the size and position of windows and the material of the surface of walls in the atrium, were studied, and the influence of different architectural compositions on the natural light distribution of the atrium is discussed. Relying on the analysis of relevant cases, it is proposed that when designing the natural lighting of the atrium, the height and width of the atrium should be paid attention to, the atrium walls are required being rough surfaces and the atrium top-level windows need to be minimized in order to introduce more natural light into the buildings and achieve the purpose of energy conservation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20conservation" title="energy conservation">energy conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=atrium" title=" atrium"> atrium</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20lighting" title=" natural lighting"> natural lighting</a>, <a href="https://publications.waset.org/abstracts/search?q=architectural%20design" title=" architectural design"> architectural design</a> </p> <a href="https://publications.waset.org/abstracts/97105/research-on-natural-lighting-design-of-atriums-based-on-energy-saving-aim" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97105.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13277</span> Thermodynamic Analysis of GT Cycle with Naphtha or Natural Gas as the Fuel: A Thermodynamic Comparison</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Arpit">S. Arpit</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20K.%20Das"> P. K. Das</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Dash"> S. K. Dash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a comparative study is done between two fuels, naphtha and natural gas (NG), for a gas turbine (GT) plant of 32.5 MW with the same thermodynamic configuration. From the energy analysis, it is confirmed that the turbine inlet temperature (TIT) of the gas turbine in the case of natural gas is higher as compared to naphtha, and hence the isentropic efficiency of the turbine is better. The result from the exergy analysis also confirms that due to high turbine inlet temperature in the case of natural gas, exergy destruction in combustion chamber is less. But comparing two fuels for overall analysis, naphtha has higher energy and exergetic efficiency as compared to natural gas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exergy%20analysis" title="exergy analysis">exergy analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20turbine" title=" gas turbine"> gas turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=naphtha" title=" naphtha"> naphtha</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20gas" title=" natural gas"> natural gas</a> </p> <a href="https://publications.waset.org/abstracts/101550/thermodynamic-analysis-of-gt-cycle-with-naphtha-or-natural-gas-as-the-fuel-a-thermodynamic-comparison" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101550.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13276</span> Conservation of Energy in Households in Urban Areas in India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aashee%20Garg">Aashee Garg</a>, <a href="https://publications.waset.org/abstracts/search?q=Anusha%20Agarwal"> Anusha Agarwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> India, as a country is very rich in terms of natural resources however as citizens, we have not respected this fact and have been continuously exploiting nature’s gift to mankind. Further as the population is ever increasing, the load on the consumption of resources is unprecedented. This has led to the depletion of natural resources such as coal, oil, gas etc., apart from the pollution it causes. It is time that we shift from use of these conventional resources to more effective new ways of energy generation. We should develop and encourage usage of renewable resources such as wind and solar in households to conserve energy in place of the above mentioned nonrenewable energy sources. This paper deals with the most effective ways in which the households in India can conserve energy thus reducing effect on environment and depletion of limited resources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title="energy consumption">energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=resources" title=" resources"> resources</a>, <a href="https://publications.waset.org/abstracts/search?q=India" title=" India"> India</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20resources%20and%20environment" title=" renewable resources and environment"> renewable resources and environment</a> </p> <a href="https://publications.waset.org/abstracts/20224/conservation-of-energy-in-households-in-urban-areas-in-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20224.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">436</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13275</span> Comprehensive Study of Renewable Energy Resources and Present Scenario in India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aparna%20Bhat">Aparna Bhat</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajeshwari%20Hegde"> Rajeshwari Hegde</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Renewable energy sources also called non-conventional energy sources that are continuously replenished by natural processes. For example, solar energy, wind energy, bio-energy- bio-fuels grown sustain ably), hydropower etc., are some of the examples of renewable energy sources. A renewable energy system converts the energy found in sunlight, wind, falling-water, sea-waves, geothermal heat, or biomass into a form, we can use such as heat or electricity. Most of the renewable energy comes either directly or indirectly from sun and wind and can never be exhausted, and therefore they are called renewable. This paper presents a review about conventional and renewable energy scenario of India. The paper also presents current status, major achievements and future aspects of renewable energy in India and implementing renewable for the future is also been presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title="solar energy">solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=renewabe%20energy" title=" renewabe energy"> renewabe energy</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20energy" title=" wind energy"> wind energy</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-diesel" title=" bio-diesel"> bio-diesel</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=feedin" title=" feedin"> feedin</a> </p> <a href="https://publications.waset.org/abstracts/19854/comprehensive-study-of-renewable-energy-resources-and-present-scenario-in-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19854.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">614</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13274</span> Windcatcher as Sustainable Solution for Natural Ventilation in Hot Arid Regions: A Case Study of Saudi Arabia </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Payam%20Nejat">Payam Nejat</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Jomehzadeh"> Fatemeh Jomehzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhamad%20Zaimi%20Abd.%20Majid"> Muhamad Zaimi Abd. Majid</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd.Badruddin%20Yusof"> Mohd.Badruddin Yusof</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasrul%20Haidar%20Ismail"> Hasrul Haidar Ismail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, building energy consumption has become an international issue especially in developing countries such as Saudi Arabia. In Saudi Arabia 14% of total final energy consumption is utilized in the building sector. Due to hot arid climate, 60% of total building energy consumption in this country is associated with cooling systems. In addition in 2011, this country was one of top ten CO2 emitting countries which illustrate the significance of renewable resources to sustaining the energy consumption. Wind as an important renewable energy can play a prominent role to supply natural ventilation inside the building and windcatcher as a traditional technique can be implemented for this purpose. In this paper the different types of windcatchers, its performance and function was reviewed. It can be concluded due high temperature and low humidity in most area of Saudi Arabia this technique can be successfully be employed and help to reduce fossil energy consumption and related CO2 emissions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20ventilation" title="natural ventilation">natural ventilation</a>, <a href="https://publications.waset.org/abstracts/search?q=windcatcher" title=" windcatcher"> windcatcher</a>, <a href="https://publications.waset.org/abstracts/search?q=wind" title=" wind"> wind</a>, <a href="https://publications.waset.org/abstracts/search?q=badgir" title=" badgir "> badgir </a> </p> <a href="https://publications.waset.org/abstracts/14268/windcatcher-as-sustainable-solution-for-natural-ventilation-in-hot-arid-regions-a-case-study-of-saudi-arabia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14268.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">593</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13273</span> Assessment of Korea's Natural Gas Portfolio Considering Panama Canal Expansion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juhan%20Kim">Juhan Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinsoo%20Kim"> Jinsoo Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> South Korea cannot import natural gas in any form other than LNG because of the division of South and North Korea. Further, the high proportion of natural gas in the national energy mix makes this resource crucial for energy security in Korea. Expansion of Panama Canal will allow for reducing the cost of shipping between the Far East and U.S East. Panama Canal expansion can have significant impacts on South Korea. Due to this situation, we review the natural gas optimal portfolio by considering the uniqueness of the Korean Natural gas market and expansion of Panama Canal. In order to assess Korea’s natural gas optimal portfolio, we developed natural gas portfolio model. The model comprises two steps. First, to obtain the optimal long-term spot contract ratio, the study examines the price level and the correlation between spot and long-term contracts by using the Markowitz, portfolio model. The optimal long-term spot contract ratio follows the efficient frontier of the cost/risk level related to this price level and degree of correlation. Second, by applying the obtained long-term contract purchase ratio as the constraint in the linear programming portfolio model, we determined the natural gas optimal import portfolio that minimizes total intangible and tangible costs. Using this model, we derived the optimal natural gas portfolio considering the expansion of Panama Canal. Based on these results, we assess the portfolio for natural gas import to Korea from the perspective of energy security and present some relevant policy proposals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20gas" title="natural gas">natural gas</a>, <a href="https://publications.waset.org/abstracts/search?q=Panama%20Canal" title=" Panama Canal"> Panama Canal</a>, <a href="https://publications.waset.org/abstracts/search?q=portfolio%20analysis" title=" portfolio analysis"> portfolio analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=South%20Korea" title=" South Korea"> South Korea</a> </p> <a href="https://publications.waset.org/abstracts/67569/assessment-of-koreas-natural-gas-portfolio-considering-panama-canal-expansion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67569.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13272</span> The Effects of the War between Russia and Ukraine on Qatar’s Fossil and Renewable Energy Policies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rahmat%20Hajimineh">Rahmat Hajimineh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ebrahim%20Rezaei%20Rad"> Ebrahim Rezaei Rad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The war between Russia and Ukraine is considered a very important event in international relations, especially after the end of the Cold War, a war that has had wide dimensions since its beginning. Dimensions that, in addition to political issues, have especially affected the world economy and especially the two countries. The most important issue in the field of the economy that was affected by the war between Russia and Ukraine was the issue of energy. Russia is one of the largest producers and suppliers of natural gas for European countries, and 40% of European gas is supplied by Russia. For this reason, it is natural that European countries have problems in this regard. On the other hand, Ukraine is considered the gateway to Europe for Russia regarding the export of natural gas. The war in Ukraine has had severe effects on gas and energy in Europe. From this point of view, European countries are looking to diversify their energy path by switching to renewable energies, and they are also looking at other energy-producing countries like Qatar to meet their energy needs. In this article, we are trying to investigate the impact of the war between Russia and Ukraine on Qatar's policies in the field of fossil and renewable energy. The descriptive-analytical method and the theoretical framework of energy security have been used to review this article. Based on this, the article examines the situation of fossil and renewable energies in Qatar and, on the other hand, the effects of the war in Ukraine on both energies in Qatar. The findings of this article also indicate that Qatar has made changes in its energy policies after the war in Ukraine, which seems to be possible due to its high potential, especially in the field of renewable and fossil energy. There is an export of surplus production of this country to other countries, especially European countries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ukraine%20War" title="Ukraine War">Ukraine War</a>, <a href="https://publications.waset.org/abstracts/search?q=fossil%20fuels" title=" fossil fuels"> fossil fuels</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20security" title=" energy security"> energy security</a>, <a href="https://publications.waset.org/abstracts/search?q=Qatar" title=" Qatar"> Qatar</a> </p> <a href="https://publications.waset.org/abstracts/155801/the-effects-of-the-war-between-russia-and-ukraine-on-qatars-fossil-and-renewable-energy-policies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155801.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13271</span> The Role of Natural Gas in Reducing Carbon Emissions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20Nami%20Almutairi">Abdulrahman Nami Almutairi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the face of escalating climate change concerns, the concept of smart cities emerges as a promising approach to mitigate carbon emissions and move towards carbon neutrality. This paper provides a comprehensive review of the role of Natural Gas in achieving carbon neutrality. Natural gas has often been seen as a transitional fuel in the context of reducing carbon emissions. Its main role stems from being cleaner than coal and oil when burned for electricity generation and industrial processes. The urgent need to address this global issue has prompted a global shift towards cleaner energy sources and sustainable practices. In this endeavor, natural gas has emerged as a pivotal player, hailed for its potential to mitigate carbon emissions, and facilitate the transition to a low-carbon economy. With its lower carbon intensity compared to conventional fossil fuels, natural gas presents itself as a promising alternative for meeting energy demands while reducing environmental impact. As the world stands at a critical juncture in the fight against climate change, exploring the potential of natural gas as a transitional fuel offers insights into pathways towards a more sustainable and resilient future. By critically evaluating its opportunities and challenges, we can harness the potential of natural gas as a transitional fuel while advancing towards a cleaner, more resilient energy system. Through collaborative efforts and informed decision-making, we can pave the way for a future where energy is not only abundant but also environmentally sustainable and socially equitable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20gas" title="natural gas">natural gas</a>, <a href="https://publications.waset.org/abstracts/search?q=clean%20fuel" title=" clean fuel"> clean fuel</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20emissions" title=" carbon emissions"> carbon emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20warming" title=" global warming"> global warming</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20protection" title=" environmental protection"> environmental protection</a> </p> <a href="https://publications.waset.org/abstracts/186823/the-role-of-natural-gas-in-reducing-carbon-emissions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186823.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">43</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13270</span> Acoustic and Thermal Insulating Materials Based on Natural Fibres Used in Floor Construction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jitka%20Hroudova">Jitka Hroudova</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiri%20Zach"> Jiri Zach</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The majority of contemporary insulation materials commonly used in the building industry is made from non-renewable raw materials; furthermore, their production often brings high energy costs. A long-term trend as far as sustainable development is concerned has been the reduction of energy and material demands of building material production. One of the solutions is the possibility of using easily renewable natural raw material sources which are considerably more ecological and their production is mostly less energy-consuming compared to the production of normal insulations (mineral wool, polystyrene). The paper describes the results of research focused on the development of thermal and acoustic insulation materials based on natural fibres intended for floor constructions. Given the characteristic open porosity of natural fibre materials, the hygrothermal behaviour of the developed materials was studied. Especially the influence of relative humidity and temperature on thermal insulation properties was observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Green%20thermal%20and%20acoustic%20insulating%20materials" title="Green thermal and acoustic insulating materials">Green thermal and acoustic insulating materials</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20fibres" title=" natural fibres"> natural fibres</a>, <a href="https://publications.waset.org/abstracts/search?q=technical%20hemp" title=" technical hemp"> technical hemp</a>, <a href="https://publications.waset.org/abstracts/search?q=flax" title=" flax"> flax</a>, <a href="https://publications.waset.org/abstracts/search?q=floor%20construction" title=" floor construction"> floor construction</a> </p> <a href="https://publications.waset.org/abstracts/15542/acoustic-and-thermal-insulating-materials-based-on-natural-fibres-used-in-floor-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13269</span> Synthesis and Performance Adsorbent from Coconut Shells Polyetheretherketone for Natural Gas Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Umar%20Hayatu%20Sidik">Umar Hayatu Sidik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The natural gas vehicle represents a cost-competitive, lower-emission alternative to the gasoline-fuelled vehicle. The immediate challenge that confronts natural gas is increasing its energy density. This paper addresses the question of energy density by reviewing the storage technologies for natural gas with improved adsorbent. Technical comparisons are made between storage systems containing adsorbent and conventional compressed natural gas based on the associated amount of moles contained with Compressed Natural Gas (CNG) and Adsorbed Natural Gas (ANG). We also compare gas storage in different cylinder types (1, 2, 3 and 4) based on weight factor and storage capacity. For the storage tank system, we discussed the concept of carbon adsorbents, when used in CNG tanks, offer a means of increasing onboard fuel storage and, thereby, increase the driving range of the vehicle. It confirms that the density of the stored gas in ANG is higher than that of compressed natural gas (CNG) operated at the same pressure. The obtained experimental data were correlated using linear regression analysis with common adsorption kinetic (Pseudo-first order and Pseudo-second order) and isotherm models (Sip and Toth). The pseudo-second-order kinetics describe the best fitness with a correlation coefficient of 9945 at 35 bar. For adsorption isotherms, the Sip model shows better fitness with the regression coefficient (R2) of 0.9982 and with the lowest RSMD value of 0.0148. The findings revealed the potential of adsorbent in natural gas storage applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20gas" title="natural gas">natural gas</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorbent" title=" adsorbent"> adsorbent</a>, <a href="https://publications.waset.org/abstracts/search?q=compressed%20natural%20gas" title=" compressed natural gas"> compressed natural gas</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a> </p> <a href="https://publications.waset.org/abstracts/177820/synthesis-and-performance-adsorbent-from-coconut-shells-polyetheretherketone-for-natural-gas-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177820.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">60</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13268</span> Application of PV/Wind-Based Green Energy to Power Cellular Base Station</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Francis%20Okodede">Francis Okodede</a>, <a href="https://publications.waset.org/abstracts/search?q=Edafe%20Lucky%20Okotie"> Edafe Lucky Okotie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conventional energy sources based on oil, coal, and natural gas has posed a trait to environment and to human health. Green energy stands as an alternative because it has proved to be eco-friendly. The prospective of renewable energy sources are quite vast as they can, in principle, meet many times the world’s energy demand. Renewable energy sources, such as wind and solar, can provide sustainable energy services based on the use of routinely available indigenous resources. New renewable energy sources (solar energy, wind energy, and modern bio-energy) are currently contributing immensely to global energy demand. A number of studies have shown the potential and contribution of renewable energy to global energy supplies, indicating that in the second half of the 21st century, it is going to be a major source and driver in the telecommunication sector. Green energy contribution might reach as much as 50 percent of global energy demands if the right policies are in place. This work suggests viable non-conventional means of energy supply to power a cellular base station. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=base%20station" title="base station">base station</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20storage" title=" energy storage"> energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20energy" title=" green energy"> green energy</a>, <a href="https://publications.waset.org/abstracts/search?q=rotor%20efficiency" title=" rotor efficiency"> rotor efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20energy" title=" wind energy"> wind energy</a> </p> <a href="https://publications.waset.org/abstracts/165681/application-of-pvwind-based-green-energy-to-power-cellular-base-station" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165681.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13267</span> Supply Chain of Energy Resources and Its Alternatives Due to the Arab Spring: The Case of Egyptian Natural Gas Flow to Jordan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moh%E2%80%99d%20Anwer%20Al-Shboul">Moh’d Anwer Al-Shboul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The year 2011 was a challenging year for Jordanian economy, which felt a variety of effects from the Arab Spring which took place in neighboring countries. Since February, 5th 2012, the Arab Gas Supply Pipeline, which carries natural gas from Egypt through the Sinai Peninsula and to Jordan and Israel, has been attacked more than 39 times. Jordan imported about 80 percent of its necessity of natural gas (about 250 million cubic feet of natural gas per day) from Egypt to generate particularly electricity, with the reminder of being produced locally. Jordan has utilized multiple alternatives to address the interruption of available natural gas supply from Egypt. The Jordanian distributed power plants now rely on the use of heavy fuel oil and diesel for electricity generation, in this case, it costs Jordan about four times than natural gas. The substitution of Egyptian natural gas supplies by fuel oil and diesel, coupled with the 32 percent rise in global fuel prices, has increased Jordan’s energy import bill by over 50 percent in 2011, reaching more than 16 percent of the 2011 GDP. The increase in the cost of electricity generation pushed the Jordanian economy to borrow from multiple internal and external resource channels, thus increasing the public debt. The Jordanian government’s short-term solution to the reduced natural gas supply from Egypt was alternatively purchasing the necessary quantities from some Gulf countries such as Qatar and/or Saudi Arabia, which can be imported with two possible methods. The first method is to rent a ship equipped with a liquefied natural gas (LNG) terminal, which is currently operating. The second method requires equipping the Aqaba port with an LNG terminal, which also currently is operating. In the long-term, a viable solution to depending on importing expensive and often unreliable natural gas supplies from surrounding countries is to depend more heavily on renewable supply energy, including solar, wind, and water energy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20supply%20resources" title="energy supply resources">energy supply resources</a>, <a href="https://publications.waset.org/abstracts/search?q=Arab%20spring" title=" Arab spring"> Arab spring</a>, <a href="https://publications.waset.org/abstracts/search?q=liquefied%20natural%20gas" title=" liquefied natural gas"> liquefied natural gas</a>, <a href="https://publications.waset.org/abstracts/search?q=pipeline" title=" pipeline"> pipeline</a>, <a href="https://publications.waset.org/abstracts/search?q=Jordan" title=" Jordan"> Jordan</a> </p> <a href="https://publications.waset.org/abstracts/89947/supply-chain-of-energy-resources-and-its-alternatives-due-to-the-arab-spring-the-case-of-egyptian-natural-gas-flow-to-jordan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89947.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13266</span> Environment Problems of Energy Exploitation and Utilization in Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aliyu%20Mohammed%20Lawal">Aliyu Mohammed Lawal </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problems placed on the environment as a result of energy generation and usage in Nigeria is: potential damage to the environment health by CO, CO2, SOx, and NOx, effluent gas emissions and global warming. For instance in the year 2004 in Nigeria energy consumption was 58% oil and 34% natural gas but about 94 million metric tons of CO2 was emitted out of which 64% came from fossil fuels while about 35% came from fuel wood. The findings from this research on how to alleviate these problems are that long term sustainable development solutions should be enhanced globally; energy should be used more rationally renewable energy resources should be exploited and the existing emissions should be controlled to tolerate limits because the increase in energy demand in Nigeria places enormous strain on current energy facilities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=effluent%20gas" title="effluent gas">effluent gas</a>, <a href="https://publications.waset.org/abstracts/search?q=emissions" title=" emissions"> emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=NOx" title=" NOx"> NOx</a>, <a href="https://publications.waset.org/abstracts/search?q=SOx" title=" SOx "> SOx </a> </p> <a href="https://publications.waset.org/abstracts/42935/environment-problems-of-energy-exploitation-and-utilization-in-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42935.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13265</span> Energy Efficient Retrofitting and Optimization of Dual Mixed Refrigerant Natural Gas Liquefaction Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Abdul%20Qyyum">Muhammad Abdul Qyyum</a>, <a href="https://publications.waset.org/abstracts/search?q=Kinza%20Qadeer"> Kinza Qadeer</a>, <a href="https://publications.waset.org/abstracts/search?q=Moonyong%20Lee"> Moonyong Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Globally, liquefied natural gas (LNG) has drawn interest as a green energy source in comparison with other fossil fuels, mainly because of its ease of transport and low carbon dioxide emissions. It is expected that demand for LNG will grow steadily over the next few decades. In addition, because the demand for clean energy is increasing, LNG production facilities are expanding into new natural gas reserves across the globe. However, LNG production is an energy and cost intensive process because of the huge power requirements for compression and refrigeration. Therefore, one of the major challenges in the LNG industry is to improve the energy efficiency of existing LNG processes through economic and ecological strategies. The advancement in expansion devices such as two-phase cryogenic expander (TPE) and cryogenic hydraulic turbine (HT) were exploited for energy and cost benefits in natural gas liquefaction. Retrofitting the conventional Joule–Thompson (JT) valve with TPE and HT have the potential to improve the energy efficiency of LNG processes. This research investigated the potential feasibility of the retrofitting of a dual mixed refrigerant (DMR) process by replacing the isenthalpic expansion with isentropic expansion corresponding to energy efficient LNG production. To fully take the potential benefit of the proposed process retrofitting, the proposed DMR schemes were optimized by using a Coggins optimization approach, which was implemented in Microsoft Visual Studio (MVS) environment and linked to the rigorous HYSYS® model. The results showed that the required energy of the proposed isentropic expansion based DMR process could be saved up to 26.5% in comparison with the conventional isenthalpic based DMR process using the JT valves. Utilization of the recovered energy into boosting the natural gas feed pressure could further improve the energy efficiency of the LNG process up to 34% as compared to the base case. This work will help the process engineers to overcome the challenges relating to energy efficiency and safety concerns of LNG processes. Furthermore, the proposed retrofitting scheme can also be implemented to improve the energy efficiency of other isenthalpic expansion based energy intensive cryogenic processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cryogenic%20liquid%20turbine" title="cryogenic liquid turbine">cryogenic liquid turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=Coggins%20optimization" title=" Coggins optimization"> Coggins optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=dual%20mixed%20refrigerant" title=" dual mixed refrigerant"> dual mixed refrigerant</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficient%20LNG%20process" title=" energy efficient LNG process"> energy efficient LNG process</a>, <a href="https://publications.waset.org/abstracts/search?q=two-phase%20expander" title=" two-phase expander"> two-phase expander</a> </p> <a href="https://publications.waset.org/abstracts/82708/energy-efficient-retrofitting-and-optimization-of-dual-mixed-refrigerant-natural-gas-liquefaction-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82708.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13264</span> The Role of Metallic Mordant in Natural Dyeing Process: Experimental and Quantum Study on Color Fastness</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bo-Gaun%20Chen">Bo-Gaun Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chiung-Hui%20Huang"> Chiung-Hui Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Mei-Ching%20Chiang"> Mei-Ching Chiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuo-Hsing%20Lee"> Kuo-Hsing Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-Chen%20Ho"> Chia-Chen Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=Chin-Ping%20Huang"> Chin-Ping Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chin-Heng%20Tien"> Chin-Heng Tien</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is known that the natural dyeing of cloth results moderate color, but with poor color fastness. This study points out the correlation between the macroscopic color fastness of natural dye to the cotton fiber and the microscopic binding energy of dye molecule to the cellulose. With the additive metallic mordant, the new-formed coordination bond bridges the dye to the fiber surface and thus affects the color fastness as well as the color appearance. The density functional theory (DFT) calculation is therefore used to explore the most possible mechanism during the dyeing process. Finally, the experimental results reflect the strong effect of three different metal ions on the natural dyeing clothes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=binding%20energy" title="binding energy">binding energy</a>, <a href="https://publications.waset.org/abstracts/search?q=color%20fastness" title=" color fastness"> color fastness</a>, <a href="https://publications.waset.org/abstracts/search?q=density%20functional%20theory%20%28DFT%29" title=" density functional theory (DFT)"> density functional theory (DFT)</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20dyeing" title=" natural dyeing"> natural dyeing</a>, <a href="https://publications.waset.org/abstracts/search?q=metallic%20mordant" title=" metallic mordant"> metallic mordant</a> </p> <a href="https://publications.waset.org/abstracts/37833/the-role-of-metallic-mordant-in-natural-dyeing-process-experimental-and-quantum-study-on-color-fastness" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37833.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">558</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13263</span> Role of Non-Renewable and Renewable Energy for Sustainable Electricity Generation in Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hussain%20Ali%20Bekhet">Hussain Ali Bekhet</a>, <a href="https://publications.waset.org/abstracts/search?q=Nor%20Hamisham%20Harun"> Nor Hamisham Harun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this paper is to give a comprehensive review of non-renewable energy and renewable energy utilization in Malaysia, including hydropower, solar photovoltaic, biomass and biogas technologies. Malaysia mainly depends on non-renewable energy (natural gas, coal and crude oil) for electricity generation. Therefore, this paper provides a comprehensive review of the energy sector and discusses diversification of electricity generation as a strategy for providing sustainable energy in Malaysia. Energy policies and strategies to protect the non-renewable energy utilization also are highlighted, focusing in the different sources of energy available for high and sustained economic growth. Emphasis is also placed on a discussion of the role of renewable energy as an alternative source for the increase of electricity supply security. It is now evident that to achieve sustainable development through renewable energy, energy policies and strategies have to be well designed and supported by the government, industries (firms), and individual or community participation. The hope is to create a positive impact on sustainable development through renewable sources for current and future generations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malaysia" title="Malaysia">Malaysia</a>, <a href="https://publications.waset.org/abstracts/search?q=non-renewable%20energy" title=" non-renewable energy"> non-renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20energy" title=" sustainable energy"> sustainable energy</a> </p> <a href="https://publications.waset.org/abstracts/54485/role-of-non-renewable-and-renewable-energy-for-sustainable-electricity-generation-in-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54485.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13262</span> Krill-Herd Step-Up Approach Based Energy Efficiency Enhancement Opportunities in the Offshore Mixed Refrigerant Natural Gas Liquefaction Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kinza%20Qadeer">Kinza Qadeer</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Abdul%20Qyyum"> Muhammad Abdul Qyyum</a>, <a href="https://publications.waset.org/abstracts/search?q=Moonyong%20%20Lee"> Moonyong Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural gas has become an attractive energy source in comparison with other fossil fuels because of its lower CO₂ and other air pollutant emissions. Therefore, compared to the demand for coal and oil, that for natural gas is increasing rapidly world-wide. The transportation of natural gas over long distances as a liquid (LNG) preferable for several reasons, including economic, technical, political, and safety factors. However, LNG production is an energy-intensive process due to the tremendous amount of power requirements for compression of refrigerants, which provide sufficient cold energy to liquefy natural gas. Therefore, one of the major issues in the LNG industry is to improve the energy efficiency of existing LNG processes through a cost-effective approach that is 'optimization'. In this context, a bio-inspired Krill-herd (KH) step-up approach was examined to enhance the energy efficiency of a single mixed refrigerant (SMR) natural gas liquefaction (LNG) process, which is considered as a most promising candidate for offshore LNG production (FPSO). The optimal design of a natural gas liquefaction processes involves multivariable non-linear thermodynamic interactions, which lead to exergy destruction and contribute to process irreversibility. As key decision variables, the optimal values of mixed refrigerant flow rates and process operating pressures were determined based on the herding behavior of krill individuals corresponding to the minimum energy consumption for LNG production. To perform the rigorous process analysis, the SMR process was simulated in Aspen Hysys® software and the resulting model was connected with the Krill-herd approach coded in MATLAB. The optimal operating conditions found by the proposed approach significantly reduced the overall energy consumption of the SMR process by ≤ 22.5% and also improved the coefficient of performance in comparison with the base case. The proposed approach was also compared with other well-proven optimization algorithms, such as genetic and particle swarm optimization algorithms, and was found to exhibit a superior performance over these existing approaches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title="energy efficiency">energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=Krill-herd" title=" Krill-herd"> Krill-herd</a>, <a href="https://publications.waset.org/abstracts/search?q=LNG" title=" LNG"> LNG</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20mixed%20refrigerant" title=" single mixed refrigerant"> single mixed refrigerant</a> </p> <a href="https://publications.waset.org/abstracts/82739/krill-herd-step-up-approach-based-energy-efficiency-enhancement-opportunities-in-the-offshore-mixed-refrigerant-natural-gas-liquefaction-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82739.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13261</span> A Preliminary Exploration of the German Federal Government's Energy Crisis from the Processes of Decision Entrapment Behavior: The Case of the Nord Stream 1 and 2 Shutdowns</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chia%20Han%20Lee">Chia Han Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Without energy, the economy would grind to a halt. Germany's prosperity and security depend on a reliable and affordable energy supply. In recent years, Germany's energy policy has undergone major changes. Due to the sharp turn in energy, Germany cannot extend the service of nuclear power plants and can only find a rapid transition energy source: natural gas for a limited time. This study attempts to use processes of decision entrapment behavior and document analysis to explain research questions. Through primary and secondary information such as official reports, parliamentary minutes, media interview records, and speech records, the author sorted out the important events experienced by the three coalition governments (Gerhard Schröder, Angela Merkel, and Olaf Scholz) and the relationship between Nord Stream 1 and Nord Stream 2 with primary and secondary sources. Also, compare it with the processes of decision entrapment behavior, which designed in this study, and divide it into four stages to explore its key elements one by one. In this regard, the following conclusions are drawn: First, from the perspective of processes of decision entrapment behavior, Merkel’s government firmly believes that she can overcome difficulties because of her past experience in crisis management capabilities. However, the outbreak of war between Ukraine and Russia was beyond Merkel's planning. Second, in the face of the crisis, the Scholz’s government increased the import of natural gas from other countries and began to import liquefied natural gas to make up for the energy gap of Russian natural gas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=german%20research" title="german research">german research</a>, <a href="https://publications.waset.org/abstracts/search?q=nord%20stream%20gas%20pipeline" title=" nord stream gas pipeline"> nord stream gas pipeline</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20policy" title=" energy policy"> energy policy</a>, <a href="https://publications.waset.org/abstracts/search?q=processes%20of%20decision%20entrapment%20behavior" title=" processes of decision entrapment behavior"> processes of decision entrapment behavior</a> </p> <a href="https://publications.waset.org/abstracts/186627/a-preliminary-exploration-of-the-german-federal-governments-energy-crisis-from-the-processes-of-decision-entrapment-behavior-the-case-of-the-nord-stream-1-and-2-shutdowns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186627.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">38</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13260</span> Power Recovery in Egyptian Natural Gas Pressure Reduction Stations Using Turboexpander Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamel%20A.%20Elshorbagy">Kamel A. Elshorbagy</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20A.%20Hussein"> Mohamed A. Hussein</a>, <a href="https://publications.waset.org/abstracts/search?q=Rola%20S.%20Afify"> Rola S. Afify</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural gas pressure reduction is typically achieved using pressure reducing valves, where isenthalpic expansion takes place with considerable amount of wasted energy in an irreversible throttling process of the gas. Replacing gas-throttling process by an expansion process in a turbo expander (TE) converts the pressure of natural gas into mechanical energy transmitted to a loading device (i.e. an electric generator). This paper investigates the performance of a turboexpander system for power recovery at natural gas pressure reduction stations. There is a considerable temperature drop associated with the turboexpander process. Essential preheating is required, using gas fired boilers, to avoid undesirable effects of a low outlet temperature. Various system configurations were simulated by the general flow sheet simulator HYSYS and factors affecting the overall performance of the systems were investigated. Power outputs and fuel requirements were found using typical gas flow variation data. The simulation was performed for two case studies in which real input data are used. These case studies involve a domestic (commercial) and an industrial natural gas pressure reduction stations in Egypt. Economic studies of using the turboexpander system in both of the two natural gas pressure reduction stations are conducted using precise data obtained through communication with several companies working in this field. The results of economic analysis, for the two case studies, prove that using turboexpander systems in Egyptian natural gas reduction stations can be a successful project for energy conservation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20gas" title="natural gas">natural gas</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20recovery" title=" power recovery"> power recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=reduction%20stations" title=" reduction stations"> reduction stations</a>, <a href="https://publications.waset.org/abstracts/search?q=turboexpander%20systems" title=" turboexpander systems"> turboexpander systems</a> </p> <a href="https://publications.waset.org/abstracts/42685/power-recovery-in-egyptian-natural-gas-pressure-reduction-stations-using-turboexpander-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42685.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13259</span> Energy in the Nexus of Defense and Border Security: Securing Energy Deposits in the Natuna Islands of Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Debby%20Rizqie%20Amelia%20Gustin">Debby Rizqie Amelia Gustin</a>, <a href="https://publications.waset.org/abstracts/search?q=Purnomo%20Yusgiantoro"> Purnomo Yusgiantoro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrocarbon energy is still pivotal to today’s economy, but its existence is continually declining. Thus, preserving future energy supply has become the national interest of many countries, which they cater in various way, from importing to expansion and occupation. Underwater of Natuna islands in Indonesia deposits great amount of natural gas reserved, numbered to 46 TCF (trillion cubic feet), which is highly potential to meet Indonesia future energy demand. On the other hand, there could be a possibility that others also seek this natural resources. Natuna is located in the borderline of Indonesia, directly adjacent to the South China Sea, an area which is prolonged to conflict. It is a challenge for Indonesia government to preserve their energy deposit in Natuna islands and to response accordingly if the tension in South China Sea rises. This paper examines that nowadays defense and border security is not only a matter of guarding a country from foreign invasion, but also securing its resources accumulated on the borderline. Countries with great amount of energy deposits on their borderline need to build up their defense capacity continually, to ensure their territory along with their energy deposits is free from any interferences. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=border%20security" title="border security">border security</a>, <a href="https://publications.waset.org/abstracts/search?q=defense" title=" defense"> defense</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a>, <a href="https://publications.waset.org/abstracts/search?q=national%20interest" title=" national interest"> national interest</a>, <a href="https://publications.waset.org/abstracts/search?q=threat" title=" threat"> threat</a> </p> <a href="https://publications.waset.org/abstracts/61497/energy-in-the-nexus-of-defense-and-border-security-securing-energy-deposits-in-the-natuna-islands-of-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61497.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13258</span> Study on Natural Light Distribution Inside the Room by Using Sudare as an Outside Horizontal Blind in Tropical Country of Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Agus%20Hariyadi">Agus Hariyadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroatsu%20Fukuda"> Hiroatsu Fukuda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In tropical country like Indonesia, especially in Jakarta, most of the energy consumption on building is for the cooling system, the second one is from lighting electric consumption. One of the passive design strategy that can be done is optimizing the use of natural light from the sun. In this area, natural light is always available almost every day around the year. Natural light have many effect on building. It can reduce the need of electrical lighting but also increase the external load. Another thing that have to be considered in the use of natural light is the visual comfort from occupant inside the room. To optimize the effectiveness of natural light need some modification of façade design. By using external shading device, it can minimize the external load that introduces into the room, especially from direct solar radiation which is the 80 % of the external energy load that introduces into the building. It also can control the distribution of natural light inside the room and minimize glare in the perimeter zone of the room. One of the horizontal blind that can be used for that purpose is Sudare. It is traditional Japanese blind that have been used long time in Japanese traditional house especially in summer. In its original function, Sudare is used to prevent direct solar radiation but still introducing natural ventilation. It has some physical characteristics that can be utilize to optimize the effectiveness of natural light. In this research, different scale of Sudare will be simulated using EnergyPlus and DAYSIM simulation software. EnergyPlus is a whole building energy simulation program to model both energy consumption—for heating, cooling, ventilation, lighting, and plug and process loads—and water use in buildings, while DAYSIM is a validated, RADIANCE-based daylighting analysis software that models the annual amount of daylight in and around buildings. The modelling will be done in Ladybug and Honeybee plugin. These are two open source plugins for Grasshopper and Rhinoceros 3D that help explore and evaluate environmental performance which will directly be connected to EnergyPlus and DAYSIM engines. Using the same model will maintain the consistency of the same geometry used both in EnergyPlus and DAYSIM. The aims of this research is to find the best configuration of façade design which can reduce the external load from the outside of the building to minimize the need of energy for cooling system but maintain the natural light distribution inside the room to maximize the visual comfort for occupant and minimize the need of electrical energy consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fa%C3%A7ade" title="façade">façade</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20light" title=" natural light"> natural light</a>, <a href="https://publications.waset.org/abstracts/search?q=blind" title=" blind"> blind</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a> </p> <a href="https://publications.waset.org/abstracts/48848/study-on-natural-light-distribution-inside-the-room-by-using-sudare-as-an-outside-horizontal-blind-in-tropical-country-of-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48848.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13257</span> The Environmental Challenges of Energy Generation and Usage in Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aliyu%20Mohammed%20Lawal">Aliyu Mohammed Lawal</a>, <a href="https://publications.waset.org/abstracts/search?q=Dahiru%20Ya%27u%20Gital"> Dahiru Ya'u Gital</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problems placed on the environment as a result of energy generation and usage in Nigeria are: Potential damage to the environment health by Co, Co2, Sox and Nox effluent gas emissions and global warming. For instance in the year 2004 in Nigeria energy consumption was 58% oil and 34% natural gas but about 94 million metric tons of Co2 was emitted out of which 64% came from fossil fuels while about 35% came from fuel wood. The findings from this research on how to alleviate these problems are that long term sustainable development solutions should be enhanced globally; energy should be used more rationally renewable energy resources should be exploited and the existing emissions should be controlled to tolerate limits because the increase in energy demand in Nigeria places enormous strain on current energy facilities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20generation" title="energy generation">energy generation</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20health" title=" environmental health"> environmental health</a>, <a href="https://publications.waset.org/abstracts/search?q=effluent%20gas%20emission" title=" effluent gas emission"> effluent gas emission</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20warming" title=" global warming"> global warming</a>, <a href="https://publications.waset.org/abstracts/search?q=fossil%20fuel" title=" fossil fuel"> fossil fuel</a> </p> <a href="https://publications.waset.org/abstracts/31297/the-environmental-challenges-of-energy-generation-and-usage-in-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31297.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13256</span> The Importance of Zenithal Lighting Systems for Natural Light Gains and for Local Energy Generation in Brazil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ana%20Paula%20Esteves">Ana Paula Esteves</a>, <a href="https://publications.waset.org/abstracts/search?q=Diego%20S.%20Caetano"> Diego S. Caetano</a>, <a href="https://publications.waset.org/abstracts/search?q=Louise%20L.%20B.%20Lomardo"> Louise L. B. Lomardo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an approach on the advantages of using adequate coverage in the zenithal lighting typology in various areas of architectural production, while at the same time to encourage to the design concerns inherent in this choice of roofing in Brazil. Understanding that sustainability needs to cover several aspects, a roofing system such as zenithal lighting system can contribute to the provision of better quality natural light for the interior of the building, which is related to the good health and welfare; it will also be able to contribute for the sustainable aspects and environmental needs, when it allows the generation of energy in semitransparent or opacity photovoltaic solutions and economize the artificial lightning. When the energy balance in the building is positive, that is, when the building generates more energy than it consumes, it may fit into the Net Zero Energy Building concept. The zenithal lighting systems could be an important ally in Brazil, when solved the burden of heat gains, participate in the set of pro-efficiency actions in search of "zero energy buildings". The paper presents comparative three cases of buildings that have used this feature in search of better environmental performance, both in light comfort and sustainability as a whole. Two of these buildings are examples in Europe: the Notley Green School in the UK and the Isofóton factory in Spain. The third building with these principles of shed´s roof is located in Brazil: the Ipel´s factory in São Paulo. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20lighting" title="natural lighting">natural lighting</a>, <a href="https://publications.waset.org/abstracts/search?q=net%20zero%20energy%20building" title=" net zero energy building"> net zero energy building</a>, <a href="https://publications.waset.org/abstracts/search?q=sheds" title=" sheds"> sheds</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-transparent%20photovoltaics" title=" semi-transparent photovoltaics"> semi-transparent photovoltaics</a> </p> <a href="https://publications.waset.org/abstracts/83206/the-importance-of-zenithal-lighting-systems-for-natural-light-gains-and-for-local-energy-generation-in-brazil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83206.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13255</span> Numerical Study of Natural Convection in Isothermal Open Cavities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gaurav%20Prabhudesai">Gaurav Prabhudesai</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaetan%20Brill"> Gaetan Brill</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The sun's energy source comes from a hydrogen-to-helium thermonuclear reaction, generating a temperature of about 5760 K on its outer layer. On account of this high temperature, energy is radiated by the sun, a part of which reaches the earth. This sunlight, even after losing part of its energy en-route to scattering and absorption, provides a time and space averaged solar flux of 174.7 W/m^2 striking the earth’s surface. According to one study, the solar energy striking earth’s surface in one and a half hour is more than the energy consumption that was recorded in the year 2001 from all sources combined. Thus, technology for extraction of solar energy holds much promise for solving energy crisis. Of the many technologies developed in this regard, Concentrating Solar Power (CSP) plants with central solar tower and receiver system are very impressive because of their capability to provide a renewable energy that can be stored in the form of heat. One design of central receiver towers is an open cavity where sunlight is concentrated into by using mirrors (also called heliostats). This concentrated solar flux produces high temperature inside the cavity which can be utilized in an energy conversion process. The amount of energy captured is reduced by losses occurring at the cavity through all three modes viz., radiation to the atmosphere, conduction to the adjoining structure and convection. This study investigates the natural convection losses to the environment from the receiver. Computational fluid dynamics were used to simulate the fluid flow and heat transfer of the receiver; since no analytical solution can be obtained and no empirical correlations exist for the given geometry. The results provide guide lines for predicting natural convection losses for hexagonal and circular shaped open cavities. Additionally, correlations are given for various inclination angles and aspect ratios. These results provide methods to minimize natural convection through careful design of receiver geometry and modification of the inclination angle, and aspect ratio of the cavity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concentrated%20solar%20power%20%28CSP%29" title="concentrated solar power (CSP)">concentrated solar power (CSP)</a>, <a href="https://publications.waset.org/abstracts/search?q=central%20receivers" title=" central receivers"> central receivers</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title=" natural convection"> natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20cavities" title=" open cavities"> open cavities</a> </p> <a href="https://publications.waset.org/abstracts/22296/numerical-study-of-natural-convection-in-isothermal-open-cavities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22296.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13254</span> Efficiency-Based Model for Solar Urban Planning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20F.%20Amado">M. F. Amado</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Amado"> A. Amado</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Poggi"> F. Poggi</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Correia%20de%20Freitas"> J. Correia de Freitas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Today it is widely understood that global energy consumption patterns are directly related to the ongoing urban expansion and development process. This expansion is based on the natural growth of human activities and has left most urban areas totally dependent on fossil fuel derived external energy inputs. This status-quo of production, transportation, storage and consumption of energy has become inefficient and is set to become even more so when the continuous increases in energy demand are factored in. The territorial management of land use and related activities is a central component in the search for more efficient models of energy use, models that can meet current and future regional, national and European goals. In this paper, a methodology is developed and discussed with the aim of improving energy efficiency at the municipal level. The development of this methodology is based on the monitoring of energy consumption and its use patterns resulting from the natural dynamism of human activities in the territory and can be utilized to assess sustainability at the local scale. A set of parameters and indicators are defined with the objective of constructing a systemic model based on the optimization, adaptation and innovation of the current energy framework and the associated energy consumption patterns. The use of the model will enable local governments to strike the necessary balance between human activities, economic development, and the local and global environment while safeguarding fairness in the energy sector. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20urban%20planning" title="solar urban planning">solar urban planning</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20smart%20city" title=" solar smart city"> solar smart city</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20development" title=" urban development"> urban development</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a> </p> <a href="https://publications.waset.org/abstracts/3571/efficiency-based-model-for-solar-urban-planning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3571.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13253</span> Independent Village Planning Based Eco Village and Save Energy in Region of Maritime Tourism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhamad%20Rasyid%20Angkotasan">Muhamad Rasyid Angkotasan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Eco-village is an ecosystem where the countryside or urban communities that are inside trying to integrate the social environment with low impact way of life to achieve this, they integrate the various aspects of ecological design, agriculture permanent, ecological building and the alternative energy. Eco-village in question is eco-village conducted on of marine tourism areas, where natural resources are very good, without ignoring the global issue of climate change. Desperately needed a source of energy, which can support the fulfillment of energy needs in a sustainable. Fulfillment of energy sources that offer is the use or application of environmentally friendly technologies of usage is still very low in Indonesia, the technology namely the Ocean Thermal Energy Conversion (OTEC), OTEC is expected to be a source of the alternative energy, which can support the goal of eco-village of the region's of marine tourism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eco%20village" title="eco village">eco village</a>, <a href="https://publications.waset.org/abstracts/search?q=saving%20energy" title=" saving energy"> saving energy</a>, <a href="https://publications.waset.org/abstracts/search?q=ocean%20thermal%20energy%20conversion" title=" ocean thermal energy conversion"> ocean thermal energy conversion</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20engineering" title=" environmental engineering"> environmental engineering</a> </p> <a href="https://publications.waset.org/abstracts/24705/independent-village-planning-based-eco-village-and-save-energy-in-region-of-maritime-tourism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24705.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13252</span> Construction Sustainability Improvement through Using Recycled Aggregates in Concrete Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhiqiang%20Zhu">Zhiqiang Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Khalegh%20Barati"> Khalegh Barati</a>, <a href="https://publications.waset.org/abstracts/search?q=Xuesong%20Shen"> Xuesong Shen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the energy consumption caused by the construction industry, the public is paying more and more attention to the sustainability of the buildings. With the advancement of research on recycled aggregates, it has become possible to replace natural aggregates with recycled aggregates and to achieve a reduction in energy consumption of materials during construction. The purpose of this paper is to quantitatively compare the emergy consumption of natural aggregate concrete (NAC) and recycled aggregate concrete (RAC). To do so, the emergy analysis method is adopted. Using this technique, it can effectively analyze different forms of energy and substance. The main analysis object is the direct and indirect emergy consumption of the stages in concrete production. Therefore, for indirect energy, consumption of production machinery and transportation vehicle also need to be considered. Finally, the emergy values required to produce the two concrete types are compared to analyze whether the RAC can reduce emergy consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable%20construction" title="sustainable construction">sustainable construction</a>, <a href="https://publications.waset.org/abstracts/search?q=NAC" title=" NAC"> NAC</a>, <a href="https://publications.waset.org/abstracts/search?q=RAC" title=" RAC"> RAC</a>, <a href="https://publications.waset.org/abstracts/search?q=emergy" title=" emergy"> emergy</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a> </p> <a href="https://publications.waset.org/abstracts/116662/construction-sustainability-improvement-through-using-recycled-aggregates-in-concrete-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116662.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20energy&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20energy&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20energy&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20energy&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20energy&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20energy&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20energy&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20energy&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20energy&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20energy&page=442">442</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20energy&page=443">443</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20energy&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>