CINXE.COM
Search results for: geochemical baseline
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: geochemical baseline</title> <meta name="description" content="Search results for: geochemical baseline"> <meta name="keywords" content="geochemical baseline"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="geochemical baseline" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="geochemical baseline"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1142</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: geochemical baseline</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1142</span> Geochemical Baseline and Origin of Trace Elements in Soils and Sediments around Selibe-Phikwe Cu-Ni Mining Town, Botswana</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fiona%20S.%20Motswaiso">Fiona S. Motswaiso</a>, <a href="https://publications.waset.org/abstracts/search?q=Kengo%20Nakamura"> Kengo Nakamura</a>, <a href="https://publications.waset.org/abstracts/search?q=Takeshi%20Komai"> Takeshi Komai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heavy metals may occur naturally in rocks and soils, but elevated quantities of them are being gradually released into the environment by anthropogenic activities such as mining. In order to address issues of heavy metal water and soil pollution, a distinction needs to be made between natural and anthropogenic anomalies. The current study aims at characterizing the spatial distribution of trace elements and evaluate site-specific geochemical background concentrations of trace elements in the mine soils examined, and also to discriminate between lithogenic and anthropogenic sources of enrichment around a copper-nickel mining town in Selibe-Phikwe, Botswana. A total of 20 Soil samples, 11 river sediment, and 9 river water samples were collected from an area of 625m² within the precincts of the mine and the smelter. The concentrations of metals (Cu, Ni, Pb, Zn, Cr, Ni, Mn, As, Pb, and Co) were determined by using an ICP-MS after digestion with aqua regia. Major elements were also determined using ED-XRF. Water pH and EC were measured on site and recorded while soil pH and EC were also determined in the laboratory after performing water elution tests. The highest Cu and Ni concentrations in soil are 593mg/kg and 453mg/kg respectively, which is 3 times higher than the crustal composition values and 2 times higher than the South African minimum allowable levels of heavy metals in soils. The level of copper contamination was higher than that of nickel and other contaminants. Water pH levels ranged from basic (9) to very acidic (3) in areas closer to the mine/smelter. There is high variation in heavy metal concentration, eg. Cu suggesting that some sites depict regional natural background concentrations while other depict anthropogenic sources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contamination" title="contamination">contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=geochemical%20baseline" title=" geochemical baseline"> geochemical baseline</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=soils" title=" soils"> soils</a> </p> <a href="https://publications.waset.org/abstracts/92521/geochemical-baseline-and-origin-of-trace-elements-in-soils-and-sediments-around-selibe-phikwe-cu-ni-mining-town-botswana" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92521.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1141</span> Efficacy and Safety by Baseline A1c with Once-Weekly Dulaglutide in the AWARD Program</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alaa%20Mostafa">Alaa Mostafa</a>, <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Dagogo-Jack"> Samuel Dagogo-Jack</a>, <a href="https://publications.waset.org/abstracts/search?q=Vivian%20Thieu"> Vivian Thieu</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Yu"> Maria Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Nan%20Zhang"> Nan Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Dara%20Schuster"> Dara Schuster</a>, <a href="https://publications.waset.org/abstracts/search?q=Luis-Emilio%20Garcia-Perez"> Luis-Emilio Garcia-Perez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dulaglutide (DU), a once-weekly glucagon-like peptide-1 receptor agonist, was studied in the AWARD clinical trial program in adult patients with type 2 diabetes (T2D) and demonstrated significant hemoglobin A1c (A1c) reduction and potential for weight loss. To evaluate the efficacy and safety of DU 1.5 mg and DU 0.75 mg in patients with T2D by baseline A1c <8.5% or ≥8.5%, a post-hoc analysis was conducted on AWARD-1 to -6 and -8 at 6 months. Across 7 studies, 55% to 82% of the DU-treated patients had a baseline A1c <8.5%, and 18% to 45% had a baseline A1c ≥8.5%. The ranges of A1c reductions with baseline A1c <8.5% and ≥8.5%, respectively, were: DU 1.5 mg: -0.67% to -1.25% and -1.22% to -2.37%; DU 0.75 mg: -0.53% to -1.07% and -1.37% to -2.19%. The A1c reduction from the pooled analysis was greater in patients with baseline A1c ≥8.5% than patients with baseline A1c <8.5%, respectively: DU 1.5 mg: -1.86% and -1.02%; DU 0.75 mg: -1.75% and -0.83%. DU treatments were well tolerated among baseline A1c subgroups. Across the AWARD program, DU 1.5 mg and DU 0.75 mg demonstrated significant A1c reduction in both subgroups with an acceptable safety profile. Compared to patients with baseline A1c <8.5%, patients with baseline A1c ≥8.5% had greater A1c reduction. Disclosures: This study was supported and conducted by Eli Lilly and Company, Indianapolis, IN, USA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=A1c%20reduction" title="A1c reduction">A1c reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=dulaglutide" title=" dulaglutide"> dulaglutide</a>, <a href="https://publications.waset.org/abstracts/search?q=type%202%20diabetes" title=" type 2 diabetes"> type 2 diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=weight%20loss" title=" weight loss"> weight loss</a> </p> <a href="https://publications.waset.org/abstracts/62989/efficacy-and-safety-by-baseline-a1c-with-once-weekly-dulaglutide-in-the-award-program" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62989.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1140</span> Depositional Environment of the Babouchite Rocks of Numidian Formation, Northwestern Tunisia: Mineralogical Study and Geochemical Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ben%20Yahia%20Nouha">Ben Yahia Nouha</a>, <a href="https://publications.waset.org/abstracts/search?q=Harris%20Chris"> Harris Chris</a>, <a href="https://publications.waset.org/abstracts/search?q=Boussen%20Slim"> Boussen Slim</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaabani%20Fredj"> Chaabani Fredj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work has set itself the objective of studying non-detritic siliceous rocks in the extreme northwestern of Tunisia. It aims to discuss the origin and depositional environment of siliceous rocks based on petrographic, mineralogical, and geochemical results. The different sections were made in the area of Babouch and the area of Cap-Serrat. The collected samples were subjected to petrographic, mineralogical, and geochemical characterization using different analytical methods: scanning electron microscopy (SEM), X-ray diffraction (XRD), geochemical analysis (ICP- AES), isotopic geochemistry (δ¹⁸O) to assess their suitability for industrial use. These babouchite shows that the mineralogy consists of quartz as the dominant mineral with the total lack of amorphous silica, while clay represents the minor phase. The petrographic examination revealed allowed to deduce that it is a rock of chemical origin deriving from tests of siliceous organisms (the radiolarians). Chemical analyzes show that SiO₂, Al₂O₃, and Fe₂O₃ represent the most abundant oxides. The other oxides are present in negligible quantity. Geochemical data support a biogenic and non-hydrothermal origin of babouchite silica. Oxygen isotopic has shown that babouchites are formed in an environment with a high temperature, ranging from 56°C to 73°C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=siliceous%20rocks" title="siliceous rocks">siliceous rocks</a>, <a href="https://publications.waset.org/abstracts/search?q=babouchite%20formation" title=" babouchite formation"> babouchite formation</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20analysis" title=" chemical analysis"> chemical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=isotopic%20geochemistry" title=" isotopic geochemistry"> isotopic geochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=Northwestern%20of%20Tunisia" title=" Northwestern of Tunisia"> Northwestern of Tunisia</a> </p> <a href="https://publications.waset.org/abstracts/131969/depositional-environment-of-the-babouchite-rocks-of-numidian-formation-northwestern-tunisia-mineralogical-study-and-geochemical-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1139</span> Mineralogical and Geochemical Constraints on the Origin and Environment of Numidian Siliceous Sedimentary Rocks of the Extreme Northwest Tunisia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ben%20Yahia%20Nouha">Ben Yahia Nouha</a>, <a href="https://publications.waset.org/abstracts/search?q=Harris%20Chris"> Harris Chris</a>, <a href="https://publications.waset.org/abstracts/search?q=Sebei%20Abdelaziz"> Sebei Abdelaziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Boussen%20Slim"> Boussen Slim</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaabani%20Fredj"> Chaabani Fredj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work has set itself the objective of studying non-detritic siliceous rocks of the extreme northwest Tunisia. It aims to examine the origin and their sedimentary depositional environment based on mineralogical and geochemical characteristics. The different sections were located in the area of Babouch and the area of Tabarka. The collected samples were subjected to mineralogical and geochemical characterization using different analytical methods: X-ray diffraction (XRD), geochemical analysis (ICP- AES), isotopic geochemistry (δ18O), to assess their suitability for industrial use. X-ray powder diffraction of the pure siliceous rock indicates quartz as the major mineral, with the total lack of amorphous silica. Trace impurities, such as carbonate and clay minerals, are concealed in the analytical results. The petrographic examination revealed allowed us to deduce that this rock was deriving from tests of siliceous organisms (the radiolarians). The chemical composition shows that SiO2, Al2O3, and Fe2O3 represent the most abundant oxides. The other oxides are present in negligible quantities. Geochemical data support a biogenic and non-hydrothermal origin of babouchite silica. Oxygen isotopic has shown that babouchites were formed in an environment with a high temperature ranging from 56 °C to 73 °C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biogenic%20silica" title="biogenic silica">biogenic silica</a>, <a href="https://publications.waset.org/abstracts/search?q=babouchite%20formation" title=" babouchite formation"> babouchite formation</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20analysis" title=" chemical analysis"> chemical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen%20isotopic" title=" oxygen isotopic"> oxygen isotopic</a>, <a href="https://publications.waset.org/abstracts/search?q=northwest%20tunisia" title=" northwest tunisia"> northwest tunisia</a> </p> <a href="https://publications.waset.org/abstracts/141975/mineralogical-and-geochemical-constraints-on-the-origin-and-environment-of-numidian-siliceous-sedimentary-rocks-of-the-extreme-northwest-tunisia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1138</span> Design of Geochemical Maps of Industrial City Using Gradient Boosting and Geographic Information System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ruslan%20Safarov">Ruslan Safarov</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhanat%20Shomanova"> Zhanat Shomanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuri%20Nossenko"> Yuri Nossenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhandos%20Mussayev"> Zhandos Mussayev</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayana%20Baltabek"> Ayana Baltabek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Geochemical maps of distribution of polluting elements V, Cr, Mn, Co, Ni, Cu, Zn, Mo, Cd, Pb on the territory of the Pavlodar city (Kazakhstan), which is an industrial hub were designed. The samples of soil were taken from 100 locations. Elemental analysis has been performed using XRF. The obtained data was used for training of the computational model with gradient boosting algorithm. The optimal parameters of model as well as the loss function were selected. The computational model was used for prediction of polluting elements concentration for 1000 evenly distributed points. Based on predicted data geochemical maps were created. Additionally, the total pollution index Zc was calculated for every from 1000 point. The spatial distribution of the Zc index was visualized using GIS (QGIS). It was calculated that the maximum coverage area of the territory of the Pavlodar city belongs to the moderately hazardous category (89.7%). The visualization of the obtained data allowed us to conclude that the main source of contamination goes from the industrial zones where the strategic metallurgical and refining plants are placed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pavlodar" title="Pavlodar">Pavlodar</a>, <a href="https://publications.waset.org/abstracts/search?q=geochemical%20map" title=" geochemical map"> geochemical map</a>, <a href="https://publications.waset.org/abstracts/search?q=gradient%20boosting" title=" gradient boosting"> gradient boosting</a>, <a href="https://publications.waset.org/abstracts/search?q=CatBoost" title=" CatBoost"> CatBoost</a>, <a href="https://publications.waset.org/abstracts/search?q=QGIS" title=" QGIS"> QGIS</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20distribution" title=" spatial distribution"> spatial distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a> </p> <a href="https://publications.waset.org/abstracts/163141/design-of-geochemical-maps-of-industrial-city-using-gradient-boosting-and-geographic-information-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163141.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1137</span> Aerodynamic Investigation of Baseline-IV Bird-Inspired BWB Aircraft Design: Improvements over Baseline-III BWB </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20M.%20Nur%20Syazwani">C. M. Nur Syazwani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Ahmad%20Imran"> M. K. Ahmad Imran</a>, <a href="https://publications.waset.org/abstracts/search?q=Rizal%20E.%20M.%20Nasir"> Rizal E. M. Nasir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study on BWB UV begins in UiTM since 2005 and three designs have been studied and published. The latest designs are Baseline-III and inspired by birds that have features and aerodynamics behaviour of cruising birds without flapping capability. The aircraft featuring planform and configuration are similar to the bird. Baseline-III has major flaws particularly in its low lift-to-drag ratio, stability and issues regarding limited controllability. New design known as Baseline-IV replaces straight, swept wing to delta wing and have a broader tail compares to the Baseline-III’s. The objective of the study is to investigate aerodynamics of Baseline-IV bird-inspired BWB aircraft. This will be achieved by theoretical calculation and wind tunnel experiments. The result shows that both theoretical and wind tunnel experiments of Baseline-IV graph of CL and CD versus alpha are quite similar to each other in term of pattern of graph slopes and values. Baseline-IV has higher lift coefficient values at wide range of angle of attack compares to Baseline-III. Baseline-IV also has higher maximum lift coefficient, higher maximum lift-to-drag and lower parasite drag. It has stable pitch moment versus lift slope but negative moment at zero lift for zero angle-of-attack tail setting. At high angle of attack, Baseline-IV does not have stability reversal as shown in Baseline-III. Baseline-IV is proven to have improvements over Baseline-III in terms of lift, lift-to-drag ratio and pitch moment stability at high angle-of-attack. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blended%20wing-body" title="blended wing-body">blended wing-body</a>, <a href="https://publications.waset.org/abstracts/search?q=bird-inspired%20blended%20wing-body" title=" bird-inspired blended wing-body"> bird-inspired blended wing-body</a>, <a href="https://publications.waset.org/abstracts/search?q=aerodynamic" title=" aerodynamic"> aerodynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/24050/aerodynamic-investigation-of-baseline-iv-bird-inspired-bwb-aircraft-design-improvements-over-baseline-iii-bwb" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24050.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">508</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1136</span> Geochemical and Spatial Distribution of Minerals in the Tailings of IFE/IJESA Gold Mine Zone, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oladejo%20S.%20O">Oladejo S. O</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomori%20W.%20B"> Tomori W. B</a>, <a href="https://publications.waset.org/abstracts/search?q=Adebayo%20A.%20O"> Adebayo A. O</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this research is to identify the geochemical and mineralogical characteristics potential of unexplored tailings around the gold deposit region using spatial statistics and map modeling. Some physicochemical parameters such as pH, redox potential, electrical conductivity, cation exchange capacity, total organic carbon, total organic matter, residual humidity, Cation exchange capacity, and particle size were determined from both the mine drains and tailing samples using standard methods. The physicochemical parameters of tailings ranges obtained were pH (6.0 – 7.3), Eh (−16 - 95 Mev), EC (49 - 156 µS/cm), RH (0.20-2.60%), CEC (3.64-6.45 cmol/kg), TOC (3.57-18.62%), TOM (6.15-22.93%). The geochemical oxide composition were identified using Proton Induced X-ray emission and the results indicated that SiO2>Al2O3>Fe2O3>TiO2>K2O>MgO>CaO>Na2O> P2O5>MnO>Cr2O3>SrO>K2O>P2O5. The major mineralogical components in the tailing samples were determined by quantitative X-ray diffraction techniques using the Rietveld method. Geostatistical relationships among the known points were determined using ArcGIS 10.2 software to interpolate mineral concentration with respect to the study area. The Rietveld method gave a general Quartz value of 73.73-92.76%, IImenite as 0.38-4.77%, Kaolinite group as 3.19-20.83%, Muscovite as 0.77-11.70% with a trace of other minerals. The high percentage of quartz is an indication of a sandy environment with a loose binding site. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tailings" title="tailings">tailings</a>, <a href="https://publications.waset.org/abstracts/search?q=geochemical" title=" geochemical"> geochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=mineralogy" title=" mineralogy"> mineralogy</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial" title=" spatial"> spatial</a> </p> <a href="https://publications.waset.org/abstracts/180238/geochemical-and-spatial-distribution-of-minerals-in-the-tailings-of-ifeijesa-gold-mine-zone-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/180238.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1135</span> Malaysian's Shale Formation Characterizations: Geochemical Properties, Mineralogy, Adsorption and Desorption Behavior</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20M.%20Al-Mutarreb">Ahmed M. Al-Mutarreb</a>, <a href="https://publications.waset.org/abstracts/search?q=Shiferaw%20R.%20Jufar"> Shiferaw R. Jufar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Global shale gas resource assessment is still in its preliminary stage in most of the countries including the development of shale gas reservoirs in Malaysia. This project presents the main geochemical and mineral characteristics of few Malaysian’s shale samples which contribute on evaluating shale gas reserve world resource evaluations. Three shale samples from the western part of Peninsular Malaysia (Batu-Caja, Kuala Lumpur, and Johor Baru shale formations) were collected for this study. Total organic carbon wt.%, thermal maturity, kerogen type, mineralogy and adsorption/desorption characteristics are measured at Universiti Teknologi PETRONAS laboratories. Two samples show good potential in TOC results exhibited > 2wt.% exceeding the minimum values of Shale gas potential, while the third revealed < 1.5wt. Mineralogical compositions for the three samples are within the acceptable range percentage% of quartz and clays compared to shale plays in USA. This research’s results are promising and recommend to continue exploring and assessing unconventional shale gas reserves values in these areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shale%20gas%20characterizations" title="shale gas characterizations">shale gas characterizations</a>, <a href="https://publications.waset.org/abstracts/search?q=geochemical%20properties" title=" geochemical properties"> geochemical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=Malaysia" title=" Malaysia"> Malaysia</a>, <a href="https://publications.waset.org/abstracts/search?q=shale%20gas%20reserve" title=" shale gas reserve"> shale gas reserve</a> </p> <a href="https://publications.waset.org/abstracts/74861/malaysians-shale-formation-characterizations-geochemical-properties-mineralogy-adsorption-and-desorption-behavior" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74861.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1134</span> Evaluating the Baseline Chatacteristics of Static Balance in Young Adults</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Abuzayan">K. Abuzayan</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Alabed"> H. Alabed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objectives of this study (baseline study, n = 20) were to implement Matlab procedures for quantifying selected static balance variables, establish baseline data of selected variables which characterize static balance activities in a population of healthy young adult males, and to examine any trial effects on these variables. The results indicated that the implementation of Matlab procedures for quantifying selected static balance variables was practical and enabled baseline data to be established for selected variables. There was no significant trial effect. Recommendations were made for suitable tests to be used in later studies. Specifically it was found that one foot-tiptoes tests either in static balance is too challenging for most participants in normal circumstances. A one foot-flat eyes open test was considered to be representative and challenging for static balance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=static%20balance" title="static balance">static balance</a>, <a href="https://publications.waset.org/abstracts/search?q=base%20of%20support" title=" base of support"> base of support</a>, <a href="https://publications.waset.org/abstracts/search?q=baseline%20data" title=" baseline data"> baseline data</a>, <a href="https://publications.waset.org/abstracts/search?q=young%20adults" title=" young adults"> young adults</a> </p> <a href="https://publications.waset.org/abstracts/10009/evaluating-the-baseline-chatacteristics-of-static-balance-in-young-adults" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10009.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1133</span> Geochemical and Mineralogical Characteristics of Soils in Areas Affected by the Fires of August 2021 at the Ilia Prefecture Greece</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dionisios%20Panagiotaras">Dionisios Panagiotaras</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavlos%20Avramidis"> Pavlos Avramidis</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitrios%20Papoulis"> Dimitrios Papoulis</a>, <a href="https://publications.waset.org/abstracts/search?q=Dionysios%20Koulougliotis"> Dionysios Koulougliotis</a>, <a href="https://publications.waset.org/abstracts/search?q=Dionisis%20C.%20Christodoulopoulos"> Dionisis C. Christodoulopoulos</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitra%20Lekka"> Dimitra Lekka</a>, <a href="https://publications.waset.org/abstracts/search?q=Despoina%20Nifora"> Despoina Nifora</a>, <a href="https://publications.waset.org/abstracts/search?q=Denisa%20Drouvari"> Denisa Drouvari</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandra%20Skalioti"> Alexandra Skalioti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study delineates the geochemical and mineralogical characteristics of soils collected from woodland and forest areas affected by the fires of August 2021 at the Ilia prefecture, Greece. The mineralogical composition of the samples consists of quartz, calcite, albite, oligoclase, anorthite (feldspars), smectite, kaolinite and illite (clays). Quartz ranges from 38.21% to 57.49% with an average of 48.43%, calcite ranges from 2.55% to 25.09% with an average of 13.92%, feldspars ranges from 7.76% to 25.87% with an average of 17.02% and clays ranges from 4.39% to 43.43% with an average of 20.63%. Geochemical analyses of the soil samples applied for total organic carbon (TOC), total nitrogen (TN), total phosphorous (TP), Cu, Zn, Mn and Fe. Statistical analysis of the data shows a positive correlation between clays and Zn, Mn, Fe. TOC and TN show a strong positive correlation, while Fe shows a strong negative correlation with calcite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soils" title="soils">soils</a>, <a href="https://publications.waset.org/abstracts/search?q=geochemistry" title=" geochemistry"> geochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=mineralogy" title=" mineralogy"> mineralogy</a>, <a href="https://publications.waset.org/abstracts/search?q=woodland" title=" woodland"> woodland</a>, <a href="https://publications.waset.org/abstracts/search?q=forest" title=" forest"> forest</a> </p> <a href="https://publications.waset.org/abstracts/173706/geochemical-and-mineralogical-characteristics-of-soils-in-areas-affected-by-the-fires-of-august-2021-at-the-ilia-prefecture-greece" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173706.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1132</span> Spatial and Geostatistical Analysis of Surficial Soils of the Contiguous United States </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rachel%20Hetherington">Rachel Hetherington</a>, <a href="https://publications.waset.org/abstracts/search?q=Chad%20Deering"> Chad Deering</a>, <a href="https://publications.waset.org/abstracts/search?q=Ann%20Maclean"> Ann Maclean</a>, <a href="https://publications.waset.org/abstracts/search?q=Snehamoy%20Chatterjee"> Snehamoy Chatterjee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The U.S. Geological Survey conducted a soil survey and subsequent mineralogical and geochemical analyses of over 4800 samples taken across the contiguous United States between the years 2007 and 2013. At each location, samples were taken from the top 5 cm, the A-horizon, and the C-horizon. Many studies have looked at the correlation between the mineralogical and geochemical content of soils and influencing factors such as parent lithology, climate, soil type, and age, but it seems little has been done in relation to quantifying and assessing the correlation between elements in the soil on a national scale. GIS was used for the mapping and multivariate interpolation of over 40 major and trace elements for surficial soils (0-5 cm depth). Qualitative analysis of the spatial distribution across the U.S. shows distinct patterns amongst elements both within the same periodic groups and within different periodic groups, and therefore with different behavioural characteristics. Results show the emergence of 4 main patterns of high concentration areas: vertically along the west coast, a C-shape formed through the states around Utah and northern Arizona, a V-shape through the Midwest and connecting to the Appalachians, and along the Appalachians. The Band Collection Statistics tool in GIS was used to quantitatively analyse the geochemical raster datasets and calculate a correlation matrix. Patterns emerged, which were not identified in qualitative analysis, many of which are also amongst elements with very different characteristics. Preliminary results show 41 element pairings with a strong positive correlation ( ≥ 0.75). Both qualitative and quantitative analyses on this scale could increase knowledge on the relationships between element distribution and behaviour in surficial soils of the U.S. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=correlation%20matrix" title="correlation matrix">correlation matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=geochemical%20analyses" title=" geochemical analyses"> geochemical analyses</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20distribution%20of%20elements" title=" spatial distribution of elements"> spatial distribution of elements</a>, <a href="https://publications.waset.org/abstracts/search?q=surficial%20soils" title=" surficial soils"> surficial soils</a> </p> <a href="https://publications.waset.org/abstracts/117641/spatial-and-geostatistical-analysis-of-surficial-soils-of-the-contiguous-united-states" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117641.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1131</span> PitMod: The Lorax Pit Lake Hydrodynamic and Water Quality Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Silvano%20Salvador">Silvano Salvador</a>, <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Zarrinderakht"> Maryam Zarrinderakht</a>, <a href="https://publications.waset.org/abstracts/search?q=Alan%20Martin"> Alan Martin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Open pits, which are the result of mining, are filled by water over time until the water reaches the elevation of the local water table and generates mine pit lakes. There are several specific regulations about the water quality of pit lakes, and mining operations should keep the quality of groundwater above pre-defined standards. Therefore, an accurate, acceptable numerical model predicting pit lakes’ water balance and water quality is needed in advance of mine excavation. We carry on analyzing and developing the model introduced by Crusius, Dunbar, et al. (2002) for pit lakes. This model, called “PitMod”, simulates the physical and geochemical evolution of pit lakes over time scales ranging from a few months up to a century or more. Here, a lake is approximated as one-dimensional, horizontally averaged vertical layers. PitMod calculates the time-dependent vertical distribution of physical and geochemical pit lake properties, like temperature, salinity, conductivity, pH, trace metals, and dissolved oxygen, within each model layer. This model considers the effect of pit morphology, climate data, multiple surface and subsurface (groundwater) inflows/outflows, precipitation/evaporation, surface ice formation/melting, vertical mixing due to surface wind stress, convection, background turbulence and equilibrium geochemistry using PHREEQC and linking that to the geochemical reactions. PitMod, which is used and validated in over 50 mines projects since 2002, incorporates physical processes like those found in other lake models such as DYRESM (Imerito 2007). However, unlike DYRESM PitMod also includes geochemical processes, pit wall runoff, and other effects. In addition, PitMod is actively under development and can be customized as required for a particular site. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pit%20lakes" title="pit lakes">pit lakes</a>, <a href="https://publications.waset.org/abstracts/search?q=mining" title=" mining"> mining</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrology" title=" hydrology"> hydrology</a> </p> <a href="https://publications.waset.org/abstracts/160528/pitmod-the-lorax-pit-lake-hydrodynamic-and-water-quality-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160528.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1130</span> Performance Evaluation of Using Genetic Programming Based Surrogate Models for Approximating Simulation Complex Geochemical Transport Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamed%20K.%20Esfahani">Hamed K. Esfahani</a>, <a href="https://publications.waset.org/abstracts/search?q=Bithin%20Datta"> Bithin Datta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transport of reactive chemical contaminant species in groundwater aquifers is a complex and highly non-linear physical and geochemical process especially for real life scenarios. Simulating this transport process involves solving complex nonlinear equations and generally requires huge computational time for a given aquifer study area. Development of optimal remediation strategies in aquifers may require repeated solution of such complex numerical simulation models. To overcome this computational limitation and improve the computational feasibility of large number of repeated simulations, Genetic Programming based trained surrogate models are developed to approximately simulate such complex transport processes. Transport process of acid mine drainage, a hazardous pollutant is first simulated using a numerical simulated model: HYDROGEOCHEM 5.0 for a contaminated aquifer in a historic mine site. Simulation model solution results for an illustrative contaminated aquifer site is then approximated by training and testing a Genetic Programming (GP) based surrogate model. Performance evaluation of the ensemble GP models as surrogate models for the reactive species transport in groundwater demonstrates the feasibility of its use and the associated computational advantages. The results show the efficiency and feasibility of using ensemble GP surrogate models as approximate simulators of complex hydrogeologic and geochemical processes in a contaminated groundwater aquifer incorporating uncertainties in historic mine site. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geochemical%20transport%20simulation" title="geochemical transport simulation">geochemical transport simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=acid%20mine%20drainage" title=" acid mine drainage"> acid mine drainage</a>, <a href="https://publications.waset.org/abstracts/search?q=surrogate%20models" title=" surrogate models"> surrogate models</a>, <a href="https://publications.waset.org/abstracts/search?q=ensemble%20genetic%20programming" title=" ensemble genetic programming"> ensemble genetic programming</a>, <a href="https://publications.waset.org/abstracts/search?q=contaminated%20aquifers" title=" contaminated aquifers"> contaminated aquifers</a>, <a href="https://publications.waset.org/abstracts/search?q=mine%20sites" title=" mine sites"> mine sites</a> </p> <a href="https://publications.waset.org/abstracts/39310/performance-evaluation-of-using-genetic-programming-based-surrogate-models-for-approximating-simulation-complex-geochemical-transport-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39310.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1129</span> Long-Baseline Single-epoch RTK Positioning Method Based on BDS-3 and Galileo Penta-Frequency Ionosphere-Reduced Combinations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liwei%20Liu">Liwei Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuguo%20Pan"> Shuguo Pan</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Gao"> Wang Gao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to take full advantages of the BDS-3 penta-frequency signals in the long-baseline RTK positioning, a long-baseline RTK positioning method based on the BDS-3 penta-frequency ionospheric-reduced (IR) combinations is proposed. First, the low noise and weak ionospheric delay characteristics of the multi-frequency combined observations of BDS-3is analyzed. Second, the multi-frequency extra-wide-lane (EWL)/ wide-lane (WL) combinations with long-wavelengths are constructed. Third, the fixed IR EWL combinations are used to constrain the IR WL, then constrain narrow-lane (NL)ambiguityies and start multi-epoch filtering. There is no need to consider the influence of ionospheric parameters in the third step. Compared with the estimated ionospheric model, the proposed method reduces the number of parameters by half, so it is suitable for the use of multi-frequency and multi-system real-time RTK. The results using real data show that the stepwise fixed model of the IR EWL/WL/NL combinations can realize long-baseline instantaneous cimeter-level positioning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=penta-frequency" title="penta-frequency">penta-frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=ionospheric-reduced%20%28IR%29" title=" ionospheric-reduced (IR)"> ionospheric-reduced (IR)</a>, <a href="https://publications.waset.org/abstracts/search?q=RTK%20positioning" title=" RTK positioning"> RTK positioning</a>, <a href="https://publications.waset.org/abstracts/search?q=long-baseline" title=" long-baseline"> long-baseline</a> </p> <a href="https://publications.waset.org/abstracts/145983/long-baseline-single-epoch-rtk-positioning-method-based-on-bds-3-and-galileo-penta-frequency-ionosphere-reduced-combinations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145983.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1128</span> Prognosis of Interstitial Lung Disease (ILD) Based on Baseline Pulmonary Function Test (PFT) Results in Omani Adult Patients Diagnosed with ILD In Sultan Qaboos University Hospital</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manal%20Al%20Bahri">Manal Al Bahri</a>, <a href="https://publications.waset.org/abstracts/search?q=Saif%20Al%20Mubahisi"> Saif Al Mubahisi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shamsa%20Al%20Shahaimi"> Shamsa Al Shahaimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Asma%20Al%20Qasabi"> Asma Al Qasabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamal%20Al%20Aghbari"> Jamal Al Aghbari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: ILD is a common disease worldwide and in Oman. No previous Omani study was published regarding ILD prognosis based on baseline PFT results and other factors. This study aims to determine the severity of ILD by the baseline PFT, correlate between baseline PFT and outcome, and study other factors that influence disease mortality. Method: It is a retrospective cohort study; data was collected from January 2011 to December 2021 from electronic patient records (EPR). Means, Standard Deviations, frequencies, and Chi-square tests were used to examine the different variables in the study. Results: The total population of the study was 146 patients; 87 (59.6%) were females, and 59 (40.4%) were males. The median age was 59 years. Age at diagnosis, CVA, rheumatological disease, and baseline FVC were found to be statistically significant predictors of mortality .59.6% of the patients are diagnosed with IPF. Most of our study patients had mild disease based on baseline FVC. Death was higher with the more severe disease based on FVC. In mild disease (FVC >70%), 26.9% of the patients died. In moderate disease (FVC 50-69%),55.7% of the patients died, and in the severe group (FVC <50 %), 55.1% died. This was statistically significant with a P value of 0. 001. There is no statistically significant difference in the overall survival distribution between the different groups of DLCO. Conclusion: In our study, we found that ILD is more common among females, but death is more common among males. Based on baseline PFT, we can predict mortality by FVC level, as moderate to severe limitation is associated with a lower survival rate. DLCO was not a statistically significant parameter associated with mortality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PFT" title="PFT">PFT</a>, <a href="https://publications.waset.org/abstracts/search?q=ILD" title=" ILD"> ILD</a>, <a href="https://publications.waset.org/abstracts/search?q=FVC" title=" FVC"> FVC</a>, <a href="https://publications.waset.org/abstracts/search?q=DLCO" title=" DLCO"> DLCO</a>, <a href="https://publications.waset.org/abstracts/search?q=mortality" title=" mortality"> mortality</a> </p> <a href="https://publications.waset.org/abstracts/187425/prognosis-of-interstitial-lung-disease-ild-based-on-baseline-pulmonary-function-test-pft-results-in-omani-adult-patients-diagnosed-with-ild-in-sultan-qaboos-university-hospital" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187425.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">32</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1127</span> Challenge of Baseline Hydrology Estimation at Large-Scale Watersheds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Can%20Liu">Can Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Graham%20Markowitz"> Graham Markowitz</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Balay"> John Balay</a>, <a href="https://publications.waset.org/abstracts/search?q=Ben%20Pratt"> Ben Pratt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Baseline or natural hydrology is commonly employed for hydrologic modeling and quantification of hydrologic alteration due to manmade activities. It can inform planning and policy related efforts for various state and federal water resource agencies to restore natural streamflow flow regimes. A common challenge faced by hydrologists is how to replicate unaltered streamflow conditions, particularly in large watershed settings prone to development and regulation. Three different methods were employed to estimate baseline streamflow conditions for 6 major subbasins the Susquehanna River Basin; those being: 1) incorporation of consumptive water use and reservoir operations back into regulated gaged records; 2) using a map correlation method and flow duration (exceedance probability) regression equations; 3) extending the pre-regulation streamflow records based on the relationship between concurrent streamflows at unregulated and regulated gage locations. Parallel analyses were perform among the three methods and limitations associated with each are presented. Results from these analyses indicate that generating baseline streamflow records at large-scale watersheds remain challenging, even with long-term continuous stream gage records available. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=baseline%20hydrology" title="baseline hydrology">baseline hydrology</a>, <a href="https://publications.waset.org/abstracts/search?q=streamflow%20gage" title=" streamflow gage"> streamflow gage</a>, <a href="https://publications.waset.org/abstracts/search?q=subbasin" title=" subbasin"> subbasin</a>, <a href="https://publications.waset.org/abstracts/search?q=regression" title=" regression"> regression</a> </p> <a href="https://publications.waset.org/abstracts/62920/challenge-of-baseline-hydrology-estimation-at-large-scale-watersheds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62920.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1126</span> Geochemical Composition of Deep and Highly Weathered Soils Leyte and Samar Islands Philippines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Snowie%20Jane%20Galgo">Snowie Jane Galgo</a>, <a href="https://publications.waset.org/abstracts/search?q=Victor%20Asio"> Victor Asio</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Geochemical composition of soils provides vital information about their origin and development. Highly weathered soils are widespread in the islands of Leyte and Samar but limited data have been published in terms of their nature, characteristics and nutrient status. This study evaluated the total elemental composition, properties and nutrient status of eight (8) deep and highly weathered soils in various parts of Leyte and Samar. Sampling was done down to 3 to 4 meters deep. Total amounts of Al₂O₃, As₂O₃, CaO, CdO, Cr₂O₃, CuO, Fe₂O₃, K₂O, MgO, MnO, Na₂O, NiO, P₂O₅, PbO, SO₃, SiO₂, TiO₂, ZnO and ZrO₂ were analyzed using an X-ray analytical microscope for eight soil profiles. Most of the deep and highly weathered soils have probably developed from homogenous parent materials based on the regular distribution with depth of TiO₂ and ZrO₂. Two of the soils indicated high variability with depth of TiO₂ and ZrO₂ suggesting that these soils developed from heterogeneous parent material. Most soils have K₂O and CaO values below those of MgO and Na₂O. This suggests more losses of K₂O and CaO have occurred since they are more mobile in the weathering environment. Most of the soils contain low amounts of other elements such as CuO, ZnO, PbO, NiO, CrO and SO₂. Basic elements such as K₂O and CaO are more mobile in the weathering environment than MgO and Na₂O resulting in higher losses of the former than the latter. Other elements also show small amounts in all soil profile. Thus, this study is very useful for sustainable crop production and environmental conservation in the study area specifically for highly weathered soils which are widespread in the Philippines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=depth%20function" title="depth function">depth function</a>, <a href="https://publications.waset.org/abstracts/search?q=geochemical%20composition" title=" geochemical composition"> geochemical composition</a>, <a href="https://publications.waset.org/abstracts/search?q=highly%20weathered%20soils" title=" highly weathered soils"> highly weathered soils</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20elemental%20composition" title=" total elemental composition"> total elemental composition</a> </p> <a href="https://publications.waset.org/abstracts/83586/geochemical-composition-of-deep-and-highly-weathered-soils-leyte-and-samar-islands-philippines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83586.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1125</span> Geochemical Controls of Salinity in a Typical Acid Mine Drainage Neutralized Groundwater System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Modreck%20Gomo">Modreck Gomo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although the dolomite and calcite carbonates can neutralize Acid Mine Drainage (AMD) and prevent leaching of metals, salinity still remains a huge problem. The study presents a conceptual discussion of geochemical controls of salinity in a typical calcite and dolomite AMD neutralised groundwater systems. Thereafter field evidence is presented to support the conceptual discussions. 1020 field data sets of from a groundwater system reported to be under circumneutral conditions from the neutralization effect of calcite and dolomite is analysed using correlation analysis and bivariate plots. Field evidence indicates that sulphate, calcium and magnesium are strongly and positively correlated to Total Dissolved Solids (TDS) which is used as measure of salinity. In this, a hydrogeochemical system, the dissolution of sulphate, calcium and magnesium form AMD neutralization process contributed 50%, 10% and 5% of the salinity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acid%20mine%20drainage" title="acid mine drainage">acid mine drainage</a>, <a href="https://publications.waset.org/abstracts/search?q=carbonates" title=" carbonates"> carbonates</a>, <a href="https://publications.waset.org/abstracts/search?q=neutralization" title=" neutralization"> neutralization</a>, <a href="https://publications.waset.org/abstracts/search?q=salinity" title=" salinity"> salinity</a> </p> <a href="https://publications.waset.org/abstracts/95133/geochemical-controls-of-salinity-in-a-typical-acid-mine-drainage-neutralized-groundwater-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95133.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1124</span> Rumination Time and Reticuloruminal Temperature around Calving in Eutocic and Dystocic Dairy Cows</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Levente%20Kov%C3%A1cs">Levente Kovács</a>, <a href="https://publications.waset.org/abstracts/search?q=Fruzsina%20Luca%20K%C3%A9z%C3%A9r"> Fruzsina Luca Kézér</a>, <a href="https://publications.waset.org/abstracts/search?q=Ott%C3%B3%20Szenci"> Ottó Szenci</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Prediction of the onset of calving and recognizing difficulties at calving has great importance in decreasing neonatal losses and reducing the risk of health problems in the early postpartum period. In this study, changes of rumination time, reticuloruminal pH and temperature were investigated in eutocic (EUT, n = 10) and dystocic (DYS, n = 8) dairy cows around parturition. Rumination time was continuously recorded using an acoustic biotelemetry system, whereas reticuloruminal pH and temperature were recorded using an indwelling and wireless data transmitting system. The recording period lasted from 3 d before calving until 7 days in milk. For the comparison of rumination time and reticuloruminal characteristics between groups, time to return to baseline (the time interval required to return to baseline from the delivery of the calf) and area under the curve (AUC, both for prepartum and postpartum periods) were calculated for each parameter. Rumination time decreased from baseline 28 h before calving both for EUT and DYS cows (P = 0.023 and P = 0.017, respectively). After 20 h before calving, it decreased onwards to reach 32.4 ± 2.3 and 13.2 ± 2.0 min/4 h between 8 and 4 h before delivery in EUT and DYS cows, respectively, and then it decreased below 10 and 5 min during the last 4 h before calving (P = 0.003 and P = 0.008, respectively). Until 12 h after delivery rumination time reached 42.6 ± 2.7 and 51.0 ± 3.1 min/4 h in DYS and EUT dams, respectively, however, AUC and time to return to baseline suggested lower rumination activity in DYS cows than in EUT dams for the 168-h postpartum observational period (P = 0.012 and P = 0.002, respectively). Reticuloruminal pH decreased from baseline 56 h before calving both for EUT and DYS cows (P = 0.012 and P = 0.016, respectively), but did not differ between groups before delivery. In DYS cows, reticuloruminal temperature decreased from baseline 32 h before calving by 0.23 ± 0.02 °C (P = 0.012), whereas in EUT cows such a decrease was found only 20 h before delivery (0.48 ± 0.05 °C, P < 0.01). AUC of reticuloruminal temperature calculated for the prepartum period was greater in EUT cows than in DYS cows (P = 0.042). During the first 4 h after calving, it decreased from 39.7 ± 0.1 to 39.00 ± 0.1 °C and from 39.8 ± 0.1 to 38.8 ± 0.1 °C in EUT and DYS cows, respectively (P < 0.01 for both groups) and reached baseline levels after 35.4 ± 3.4 and 37.8 ± 4.2 h after calving in EUT and DYS cows, respectively. Based on our results, continuous monitoring of changes in rumination time and reticuloruminal temperature seems to be promising in the early detection of cows with a higher risk of dystocia. Depressed postpartum rumination time of DYS cows highlights the importance of the monitoring of cows experiencing difficulties at calving. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reticuloruminal%20pH" title="reticuloruminal pH">reticuloruminal pH</a>, <a href="https://publications.waset.org/abstracts/search?q=reticuloruminal%20temperature" title=" reticuloruminal temperature"> reticuloruminal temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=rumination%20time" title=" rumination time"> rumination time</a>, <a href="https://publications.waset.org/abstracts/search?q=dairy%20cows" title=" dairy cows"> dairy cows</a>, <a href="https://publications.waset.org/abstracts/search?q=dystocia" title=" dystocia"> dystocia</a> </p> <a href="https://publications.waset.org/abstracts/61949/rumination-time-and-reticuloruminal-temperature-around-calving-in-eutocic-and-dystocic-dairy-cows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61949.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1123</span> The Effect of Acute Rejection and Delayed Graft Function on Renal Transplant Fibrosis in Live Donor Renal Transplantation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wisam%20Ismail">Wisam Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarah%20Hosgood"> Sarah Hosgood</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Nicholson"> Michael Nicholson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research hypothesis is that early post-transplant allograft fibrosis will be linked to donor factors and that acute rejection and/or delayed graft function in the recipient will be independent risk factors for the development of fibrosis. This research hypothesis is to explore whether acute rejection/delay graft function has an effect on the renal transplant fibrosis within the first year post live donor kidney transplant between 1998 and 2009. Methods: The study has been designed to identify five time points of the renal transplant biopsies [0 (pre-transplant), 1 month, 3 months, 6 months and 12 months] for 300 live donor renal transplant patients over 12 years period between March 1997 – August 2009. Paraffin fixed slides were collected from Leicester General Hospital and Leicester Royal Infirmary. These were routinely sectioned at a thickness of 4 Micro millimetres for standardization. Conclusions: Fibrosis at 1 month after the transplant was found significantly associated with baseline fibrosis (p<0.001) and HTN in the transplant recipient (p<0.001). Dialysis after the transplant showed a weak association with fibrosis at 1 month (p=0.07). The negative coefficient for HTN (-0.05) suggests a reduction in fibrosis in the absence of HTN. Fibrosis at 1 month was significantly associated with fibrosis at baseline (p 0.01 and 95%CI 0.11 to 0.67). Fibrosis at 3, 6 or 12 months was not found to be associated with fibrosis at baseline (p=0.70. 0.65 and 0.50 respectively). The amount of fibrosis at 1 month is significantly associated with graft survival (p=0.01 and 95%CI 0.02 to 0.14). Rejection and severity of rejection were not found to be associated with fibrosis at 1 month. The amount of fibrosis at 1 month was significantly associated with graft survival (p=0.02) after adjusting for baseline fibrosis (p=0.01). Both baseline fibrosis and graft survival were significant predictive factors. The amount of fibrosis at 1 month was not found to be significantly associated with rejection (p=0.64) after adjusting for baseline fibrosis (p=0.01). The amount of fibrosis at 1 month was not found to be significantly associated with rejection severity (p=0.29) after adjusting for baseline fibrosis (p=0.04). Fibrosis at baseline and HTN in the recipient were found to be predictive factors of fibrosis at 1 month. (p 0.02, p <0.001 respectively). Age of the donor, their relation to the patient, the pre-op Creatinine, artery, kidney weight and warm time were not found to be significantly associated with fibrosis at 1 month. In this complex model baseline fibrosis, HTN in the recipient and cold time were found to be predictive factors of fibrosis at 1 month (p=0.01,<0.001 and 0.03 respectively). Donor age was found to be a predictive factor of fibrosis at 6 months. The above analysis was repeated for 3, 6 and 12 months. No associations were detected between fibrosis and any of the explanatory variables with the exception of the donor age which was found to be a predictive factor of fibrosis at 6 months. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fibrosis" title="fibrosis">fibrosis</a>, <a href="https://publications.waset.org/abstracts/search?q=transplant" title=" transplant"> transplant</a>, <a href="https://publications.waset.org/abstracts/search?q=renal" title=" renal"> renal</a>, <a href="https://publications.waset.org/abstracts/search?q=rejection" title=" rejection"> rejection</a> </p> <a href="https://publications.waset.org/abstracts/69477/the-effect-of-acute-rejection-and-delayed-graft-function-on-renal-transplant-fibrosis-in-live-donor-renal-transplantation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69477.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1122</span> Geochemical and Petrological Survey in Northern Ethiopia Basement Rocks for Investigation of Gold and Base Metal Mineral Potential in Finarwa, Southeast Tigray, Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siraj%20Beyan%20Mohamed">Siraj Beyan Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Woldia%20University"> Woldia University</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study is accompanied in northern Ethiopian basement rocks, Finarwa area, and its surrounding areas, south eastern Tigray. From the field observations, the geology of the area haven been described and mapped based on mineral composition, texture, structure, and colour of both fresh and weather rocks. Inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectrometry (AAS) have conducted to analysis gold and base metal mineralization. The ore mineral under microscope are commonly base metal sulphides pyrrhotite, Chalcopyrite, pentilanditeoccurring in variable proportions. Galena, chalcopyrite, pyrite, and gold mineral are hosted in quartz vein. Pyrite occurs both in quartz vein and enclosing rocks as a primary mineral. The base metal sulfides occur as disseminated, vein filling, and replacement. Geochemical analyses result determination of the threshold of geochemical anomalies is directly related to the identification of mineralization information. From samples, stream sediment samples and the soil samples indicated that the most promising mineralization occur in the prospect area are gold(Au), copper (Cu), and zinc (Zn). This is also supported by the abundance of chalcopyrite and sphalerite in some highly altered samples. The stream sediment geochemical survey data shows relatively higher values for zinc compared to Pb and Cu. The moderate concentration of the base metals in some of the samples indicates availability base metal mineralization in the study area requiring further investigation. The rock and soil geochemistry shows the significant concentration of gold with maximum value of 0.33ppm and 0.97 ppm in the south western part of the study area. In Finarwa, artisanal gold mining has become an increasingly widespread economic activity of the local people undertaken by socially differentiated groups with a wide range of education levels and economic backgrounds incorporating a wide variety of ‘labour intensive activities without mechanisation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gold" title="gold">gold</a>, <a href="https://publications.waset.org/abstracts/search?q=base%20metal" title=" base metal"> base metal</a>, <a href="https://publications.waset.org/abstracts/search?q=anomaly" title=" anomaly"> anomaly</a>, <a href="https://publications.waset.org/abstracts/search?q=threshold" title=" threshold"> threshold</a> </p> <a href="https://publications.waset.org/abstracts/150608/geochemical-and-petrological-survey-in-northern-ethiopia-basement-rocks-for-investigation-of-gold-and-base-metal-mineral-potential-in-finarwa-southeast-tigray-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150608.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1121</span> Geochemical Study of the Bound Hydrocarbon in the Asphaltene of Biodegraded Oils of Cambay Basin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sayani%20Chatterjee">Sayani Chatterjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Kusum%20Lata%20Pangtey"> Kusum Lata Pangtey</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarita%20Singh"> Sarita Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Harvir%20Singh"> Harvir Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biodegradation leads to a systematic alteration of the chemical and physical properties of crude oil showing sequential depletion of n-alkane, cycloalkanes, aromatic which increases its specific gravity, viscosity and the abundance of heteroatom-containing compounds. The biodegradation leads to a change in the molecular fingerprints and geochemical parameters of degraded oils, thus make source and maturity identification inconclusive or ambiguous. Asphaltene is equivalent to the most labile part of the respective kerogen and generally has high molecular weight. Its complex chemical structure with substantial microporous units makes it suitable to occlude the hydrocarbon expelled from the source. The occluded molecules are well preserved by the macromolecular structure and thus prevented from secondary alterations. They retain primary organic geochemical information over the geological time. The present study involves the extraction of this occluded hydrocarbon from the asphaltene cage through mild oxidative degradation using mild oxidative reagents like Hydrogen Peroxide (H₂O₂) and Acetic Acid (CH₃COOH) on purified asphaltene of the biodegraded oils of Mansa, Lanwa and Santhal fields in Cambay Basin. The study of these extracted occluded hydrocarbons was carried out for establishing oil to oil and oil to source correlation in the Mehsana block of Cambay Basin. The n-alkane and biomarker analysis through GC and GC-MS of these occluded hydrocarbons show similar biomarker imprint as the normal oil in the area and hence correlatable with them. The abundance of C29 steranes, presence of Oleanane, Gammacerane and 4-Methyl sterane depicts that the oils are derived from terrestrial organic matter deposited in the stratified saline water column in the marine environment with moderate maturity (VRc 0.6-0.8). The oil source correlation study suggests that the oils are derived from Jotana-Warosan Low area. The developed geochemical technique to extract the occluded hydrocarbon has effectively resolved the ambiguity that resulted from the inconclusive fingerprint of the biodegraded oil and the method can be also applied in other biodegraded oils as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asphaltene" title="asphaltene">asphaltene</a>, <a href="https://publications.waset.org/abstracts/search?q=biomarkers" title=" biomarkers"> biomarkers</a>, <a href="https://publications.waset.org/abstracts/search?q=correlation" title=" correlation"> correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=mild%20oxidation" title=" mild oxidation"> mild oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=occluded%20hydrocarbon" title=" occluded hydrocarbon"> occluded hydrocarbon</a> </p> <a href="https://publications.waset.org/abstracts/109021/geochemical-study-of-the-bound-hydrocarbon-in-the-asphaltene-of-biodegraded-oils-of-cambay-basin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109021.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1120</span> Machine Learning Based Approach for Measuring Promotion Effectiveness in Multiple Parallel Promotions’ Scenarios</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Revoti%20Prasad%20Bora">Revoti Prasad Bora</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikita%20Katyal"> Nikita Katyal </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Promotion is a key element in the retail business. Thus, analysis of promotions to quantify their effectiveness in terms of Revenue and/or Margin is an essential activity in the retail industry. However, measuring the sales/revenue uplift is based on estimations, as the actual sales/revenue without the promotion is not present. Further, the presence of Halo and Cannibalization in a multiple parallel promotions’ scenario complicates the problem. Calculating Baseline by considering inter-brand/competitor items or using Halo and Cannibalization's impact on Revenue calculations by considering Baseline as an interpretation of items’ unit sales in neighboring nonpromotional weeks individually may not capture the overall Revenue uplift in the case of multiple parallel promotions. Hence, this paper proposes a Machine Learning based method for calculating the Revenue uplift by considering the Halo and Cannibalization impact on the Baseline and the Revenue. In the first section of the proposed methodology, Baseline of an item is calculated by incorporating the impact of the promotions on its related items. In the later section, the Revenue of an item is calculated by considering both Halo and Cannibalization impacts. Hence, this methodology enables correct calculation of the overall Revenue uplift due a given promotion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Halo" title="Halo">Halo</a>, <a href="https://publications.waset.org/abstracts/search?q=Cannibalization" title=" Cannibalization"> Cannibalization</a>, <a href="https://publications.waset.org/abstracts/search?q=promotion" title=" promotion"> promotion</a>, <a href="https://publications.waset.org/abstracts/search?q=Baseline" title=" Baseline"> Baseline</a>, <a href="https://publications.waset.org/abstracts/search?q=temporary%20price%20reduction" title=" temporary price reduction"> temporary price reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=retail" title=" retail"> retail</a>, <a href="https://publications.waset.org/abstracts/search?q=elasticity" title=" elasticity"> elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=cross%20price%20elasticity" title=" cross price elasticity"> cross price elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20forest" title=" random forest"> random forest</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20regression" title=" linear regression "> linear regression </a> </p> <a href="https://publications.waset.org/abstracts/134852/machine-learning-based-approach-for-measuring-promotion-effectiveness-in-multiple-parallel-promotions-scenarios" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134852.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1119</span> Petrology and Petrochemistry of Basement Rocks in Ila Orangun Area, Southwestern Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jayeola%20A.%20O.">Jayeola A. O.</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayodele%20O.%20S."> Ayodele O. S.</a>, <a href="https://publications.waset.org/abstracts/search?q=Olususi%20J.%20I."> Olususi J. I.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> From field studies, six (6) lithological units were identified to be common around the study area, which includes quartzites, granites, granite gneiss, porphyritic granites, amphibolite and pegmatites. Petrographical analysis was done to establish the major mineral assemblages and accessory minerals present in selected rock samples, which represents the major rock types in the area. For the purpose of this study, twenty (20) pulverized rock samples were taken to the laboratory for geochemical analysis with their results used in the classification, as well as suggest the geochemical attributes of the rocks. Results from petrographical studies of the rocks under both plane and cross polarized lights revealed the major minerals identified under thin sections to include quartz, feldspar, biotite, hornblende, plagioclase and muscovite with opaque other accessory minerals, which include actinolite, spinel and myrmekite. Geochemical results obtained and interpreted using various geochemical plots or discrimination plots all classified the rocks in the area as belonging to both the peralkaline metaluminous and peraluminous types. Results for the major oxides ratios produced for Na₂O/K₂O, Al₂O₃/Na₂O + CaO + K₂O and Na₂O + CaO + K₂O/Al₂O₃ show the excess of alumina, Al₂O₃ over the alkaline Na₂O +CaO +K₂O thus suggesting peraluminous rocks. While the excess of the alkali over the alumina suggests the peralkaline metaluminous rock type. The results of correlation coefficient show a perfect strong positive correlation, which shows that they are of same geogenic sources, while negative correlation coefficient values indicate a perfect weak negative correlation, suggesting that they are of heterogeneous geogenic sources. From factor analysis, five component groups were identified as Group 1 consists of Ag-Cr-Ni elemental associations suggesting Ag, Cr, and Ni mineralization, predicting the possibility of sulphide mineralization. in the study area. Group ll and lll consist of As-Ni-Hg-Fe-Sn-Co-Pb-Hg element association, which are pathfinder elements to the mineralization of gold. Group 1V and V consist of Cd-Cu-Ag-Co-Zn, which concentrations are significant to elemental associations and mineralization. In conclusion, from the potassium radiometric anomaly map produced, the eastern section (northeastern and southeastern) is observed to be the hot spot and mineralization zone for the study area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=petrography" title="petrography">petrography</a>, <a href="https://publications.waset.org/abstracts/search?q=Ila%20Orangun" title=" Ila Orangun"> Ila Orangun</a>, <a href="https://publications.waset.org/abstracts/search?q=petrochemistry" title=" petrochemistry"> petrochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=pegmatites" title=" pegmatites"> pegmatites</a>, <a href="https://publications.waset.org/abstracts/search?q=peraluminous" title=" peraluminous"> peraluminous</a> </p> <a href="https://publications.waset.org/abstracts/173497/petrology-and-petrochemistry-of-basement-rocks-in-ila-orangun-area-southwestern-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173497.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1118</span> Organic Facies Classification, Distribution, and Their Geochemical Characteristics in Sirt Basin, Libya </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Albriki">Khaled Albriki</a>, <a href="https://publications.waset.org/abstracts/search?q=Feiyu%20Wang"> Feiyu Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The failed rifted epicratonic Sirt basin is located in the northern margin of the African Plate with an area of approximately 600,000 km2. The organofacies' classification, characterization, and its distribution vertically and horizontally are carried out in 7 main troughs with 32 typical selected wells. 7 geological and geochemical cross sections including Rock-Eval data and % TOC data are considered in order to analyze and to characterize the main organofacies with respect to their geochemical and geological controls and also to remove the ambiguity behind the complexity of the orgnofacies types and distributions in the basin troughs from where the oil and gas are generated and migrated. This study confirmes that there are four different classical types of organofacies distributed in Sirt basin F, D/E, C, and B. these four clasical types of organofacies controls the type and amount of the hydrocarbon discovered in Sirt basin. Oil bulk property data from more than 20 oil and gas fields indicate that D/E organoface are significant oil and gas contributors similar to B organoface. In the western Sirt basin in Zallah-Dur Al Abd, Hagfa, Kotla, and Dur Atallha troughs, F organoface is identified for Etel formation, Kalash formation and Hagfa formation having % TOC < 0.6, whereas the good quality D/E and B organofacies present in Rachmat formation and Sirte shale formation both have % TOC > 1.1. Results from the deepest trough (Ajdabiya), Etel (Gas pron in Whadyat trough), Kalash, and Hagfa constitute F organofacies, mainly. The Rachmat and Sirt shale both have D/E to B organofacies with % TOC > 1.2, thus indicating the best organofacies quality in Ajdabiya trough. In Maragh trough, results show that Etel F organofacies and D/E, C to B organofacies related to Middle Nubian, Rachmat, and Sirte shale have %TOC > 0.66. Towards the eastern Sirt basin, in troughs (Hameimat, Faregh, and Sarir), results show that the Middle Nubian, Etel, Rachmat, and Sirte shales are strongly dominated by D/E, C to B (% TOC > 0.75) organofacies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Etel" title="Etel">Etel</a>, <a href="https://publications.waset.org/abstracts/search?q=Mid-Nubian" title=" Mid-Nubian"> Mid-Nubian</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20facies" title=" organic facies"> organic facies</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachmat" title=" Rachmat"> Rachmat</a>, <a href="https://publications.waset.org/abstracts/search?q=Sirt%20basin" title=" Sirt basin"> Sirt basin</a>, <a href="https://publications.waset.org/abstracts/search?q=Sirte%20shale" title=" Sirte shale "> Sirte shale </a> </p> <a href="https://publications.waset.org/abstracts/87240/organic-facies-classification-distribution-and-their-geochemical-characteristics-in-sirt-basin-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87240.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1117</span> Petrogenesis of the Neoproterozoic Rocks of Megele Area, Asosa, Western Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Temesgen%20Oljira">Temesgen Oljira</a>, <a href="https://publications.waset.org/abstracts/search?q=Olugbenga%20Akindeji%20Okunlola"> Olugbenga Akindeji Okunlola</a>, <a href="https://publications.waset.org/abstracts/search?q=Akinade%20Shadrach%20Olatunji"> Akinade Shadrach Olatunji</a>, <a href="https://publications.waset.org/abstracts/search?q=Dereje%20Ayalew"> Dereje Ayalew</a>, <a href="https://publications.waset.org/abstracts/search?q=Bekele%20Ayele%20Bedada"> Bekele Ayele Bedada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Western Ethiopian Shield (WES) is underlain by volcano-sedimentary terranes, gneissic terranes, and ophiolitic rocks intruded by different granitoid bodies. For the past few years, Neoproterozoic rocks of the Megele area in the western part of the WES have been explored. Understanding the geology of the area and assessing the mineralized area's economic potential requires petrological, geochemical, and geological characterization of the Neoproterozoic granitoids and associated metavolcanic rocks. Thus, the geological, geochemical, and petrogenetic features of Neoproterozoic granitoids and associated metavolcanic rocks were elucidated using a combination of field mapping, petrological, and geochemical study. The Megele area is part of a low-grade volcano-sedimentary zone that has been intruded by mafic (dolerite dyke) and granitoid intrusions (granodiorite, diorite, granite gneiss). The granodiorite, associated diorite, and granite gneiss are calc-alkaline, peraluminous to slightly metaluminous, S-type granitoids formed in volcanic arc subduction (VAG) to syn-collisional (syn-COLD) tectonic setting by fractionation of LREE-enriched, HREE-depleted basaltic magma with considerable crustal input. While the metabasalt is sub-alkaline (tholeiitic), metaluminous bodies are generated at the mid-oceanic ridge tectonic setting by partially melting HREE-depleted and LREE-enriched basaltic magma. The reworking of sediment-loaded crustal blocks at depth in a subduction zone resulted in the production of S-type granitoids. This basaltic magma was supplied from an LREE-enriched, HREE-depleted mantle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractional%20crystallization" title="fractional crystallization">fractional crystallization</a>, <a href="https://publications.waset.org/abstracts/search?q=geochemistry" title=" geochemistry"> geochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=Megele" title=" Megele"> Megele</a>, <a href="https://publications.waset.org/abstracts/search?q=petrogenesis" title=" petrogenesis"> petrogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=s-type%20granite" title=" s-type granite"> s-type granite</a> </p> <a href="https://publications.waset.org/abstracts/149624/petrogenesis-of-the-neoproterozoic-rocks-of-megele-area-asosa-western-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149624.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1116</span> Babouchite Siliceous Rocks: Mineralogical and Geochemical Characterization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ben%20Yahia%20Nouha">Ben Yahia Nouha</a>, <a href="https://publications.waset.org/abstracts/search?q=Sebei%20Abdelaziz"> Sebei Abdelaziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Boussen%20Slim"> Boussen Slim</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaabani%20Fredj"> Chaabani Fredj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work aims to determine mineralogical and geochemical characteristics of siliceous rock levels and to clarify the origin through geochemical arguments. This study was performed on the deposit of Tabarka-Babouch, which belongs to the northwestern of Tunisia; they spread out the later Miocene. Investigations were carried out to study mineralogical structure by XRD and chemical analysis by ICP-AES. The X-ray diffraction (XRD) patterns of the powdered natural rocks show that the Babouchite is composed mainly of quartz and clay minerals (smectite, illite, and kaolinite). Siliceous rocks contain quartz as a major silica mineral, which is characterized by two broad reflections at the vicinity of 4.26Å and 3.34 Å, respectively, with a total lack of opal-CT. That confirms that these siliceous rocks are quartz-rich (can reach 90%). Indeed, the amounts of all clay minerals (ACM), constituted essentially by smectite marked by a close association with illite and kaolinite, are relatively high, where their percentages vary from 7 to 46%. Chemical analyses show that the major oxide contents are consistent with mineralogical observations. It reveals that the siliceous rocks of the Babouchite formation are rich in SiO₂. The data of whole-rock chemical analyses indicate that the SiO₂ content is generally in the range 73-91 wt.%; (average: 80.43 wt.%). The concentration of Al₂O₃, which represent the detrital fractions in the studied samples, varies from 3.99 to 10.55 wt. % and Fe₂O₃ from 0.73 to 4.41wt. %. The low levels recorded in CaO (%) show that the carbonate is considered impurities. However, these rocks contain a low amount of some others oxides, such as the following: Na₂O, MgO, K₂O, and TiO₂. The trace elemental distributions also vary with high Sr (up to 84.55 ppm), Cu (5–127 ppm), and Zn (up to 124 ppm), with a relatively lower concentration of Co (2.43-25.54 ppm), Cr (10–61 ppm) and Pb (8-22ppm). The Babouchite siliceous rocks of northwestern of Tunisia have generally high Al/ (Al+Fe+Mn) values (0.63-0.83). The majority of Al/ (Al+Fe+Mn) values are nearly of 0.6, which is the biogenic end-member. Thus, Al/ (Al+Fe+Mn) values revealed the biogenic origin of silica. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=siliceous%20rocks" title="siliceous rocks">siliceous rocks</a>, <a href="https://publications.waset.org/abstracts/search?q=Babouchite%20formation" title=" Babouchite formation"> Babouchite formation</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20analysis" title=" chemical analysis"> chemical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=biogenic%20silica" title=" biogenic silica"> biogenic silica</a>, <a href="https://publications.waset.org/abstracts/search?q=Northwestern%20of%20Tunisia" title=" Northwestern of Tunisia"> Northwestern of Tunisia</a> </p> <a href="https://publications.waset.org/abstracts/131968/babouchite-siliceous-rocks-mineralogical-and-geochemical-characterization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1115</span> Efficacy of the ExVent Accessory with the O2Vent Optima Oral Appliance in the Treatment of Obstructive Sleep Apnea: A Clinical Trial</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sat%20Sharma">Sat Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonella%20Conflitti"> Antonella Conflitti</a>, <a href="https://publications.waset.org/abstracts/search?q=Hilary%20Reiter"> Hilary Reiter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: The study's purpose was to assess the efficacy of the oral appliance device O2Vent Optima + ExVent as compared to Optima in the treatment of OSA. Methods: A prospective, open-label study conducted at 3 sites included subjects with mild to moderate OSA (AHI ≥ 5 and ≤ 30). Screening Phase: A diagnostic in-lab PSG study was performed to confirm a diagnosis of mild to moderate OSA. Treatment I: Subjects used O2Vent Optima for 6 weeks and underwent an in-lab PSG sleep night while using the O2Vent Optima. Treatment II: Subjects used O2Vent Optima + ExVent for 6 weeks and underwent an in-lab PSG sleep night while using the O2Vent Optima + ExVent Primary Effectiveness Measure: Change in AHI between baseline vs. O2Vent Optima MAD vs. O2Vent Optima + ExVent. Results: Treatment with Optima, Optima + ExVent reduced AHI from 22.5±6.4/hr to 12.6±4.5/hr to 5.9±2.7 (p< 0.005 baseline vs. Optima and Optima + ExVent; p<0.05 Optima MAD vs. Optima + ExVent). The average reduction in AHI with Optima was 43%, and with Optima + ExVent was 72%. The lowest oxygen during sleep increased from 84.6±2.7% to 88.6±2.9% to 91.6±3.2% (p< 0.005 baseline vs. Optima and Optima + ExVent; p<0.05 Optima vs. Optima + ExVent). During the trial, patients on treatment with Optima and Optima + ExVent demonstrated no excessive adverse events or device malfunction. Conclusion: Treatment with O2Vent Optima and O2Vent Optima + ExVent significantly improved OSA compared to the baseline. An even greater benefit was observed with the addition of ExVent to the Optima in mild to moderate OSA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oral%20appliance" title="oral appliance">oral appliance</a>, <a href="https://publications.waset.org/abstracts/search?q=O2Vent" title=" O2Vent"> O2Vent</a>, <a href="https://publications.waset.org/abstracts/search?q=sleep%20dentistry" title=" sleep dentistry"> sleep dentistry</a>, <a href="https://publications.waset.org/abstracts/search?q=sleep%20apnea" title=" sleep apnea"> sleep apnea</a> </p> <a href="https://publications.waset.org/abstracts/167754/efficacy-of-the-exvent-accessory-with-the-o2vent-optima-oral-appliance-in-the-treatment-of-obstructive-sleep-apnea-a-clinical-trial" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167754.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1114</span> Optical Variability of Faint Quasars</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kassa%20Endalamaw%20Rewnu">Kassa Endalamaw Rewnu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The variability properties of a quasar sample, spectroscopically complete to magnitude J = 22.0, are investigated on a time baseline of 2 years using three different photometric bands (U, J and F). The original sample was obtained using a combination of different selection criteria: colors, slitless spectroscopy and variability, based on a time baseline of 1 yr. The main goals of this work are two-fold: first, to derive the percentage of variable quasars on a relatively short time baseline; secondly, to search for new quasar candidates missed by the other selection criteria; and, thus, to estimate the completeness of the spectroscopic sample. In order to achieve these goals, we have extracted all the candidate variable objects from a sample of about 1800 stellar or quasi-stellar objects with limiting magnitude J = 22.50 over an area of about 0.50 deg2. We find that > 65% of all the objects selected as possible variables are either confirmed quasars or quasar candidates on the basis of their colors. This percentage increases even further if we exclude from our lists of variable candidates a number of objects equal to that expected on the basis of `contamination' induced by our photometric errors. The percentage of variable quasars in the spectroscopic sample is also high, reaching about 50%. On the basis of these results, we can estimate that the incompleteness of the original spectroscopic sample is < 12%. We conclude that variability analysis of data with small photometric errors can be successfully used as an efficient and independent (or at least auxiliary) selection method in quasar surveys, even when the time baseline is relatively short. Finally, when corrected for the different intrinsic time lags corresponding to a fixed observed time baseline, our data do not show a statistically significant correlation between variability and either absolute luminosity or redshift. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nuclear%20activity" title="nuclear activity">nuclear activity</a>, <a href="https://publications.waset.org/abstracts/search?q=galaxies" title=" galaxies"> galaxies</a>, <a href="https://publications.waset.org/abstracts/search?q=active%20quasars" title=" active quasars"> active quasars</a>, <a href="https://publications.waset.org/abstracts/search?q=variability" title=" variability"> variability</a> </p> <a href="https://publications.waset.org/abstracts/166872/optical-variability-of-faint-quasars" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166872.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1113</span> A Short-Baseline Dual-Antenna BDS/MEMS-IMU Integrated Navigation System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tijing%20Cai">Tijing Cai</a>, <a href="https://publications.waset.org/abstracts/search?q=Qimeng%20Xu"> Qimeng Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Daijin%20Zhou"> Daijin Zhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper puts forward a short-baseline dual-antenna BDS/MEMS-IMU integrated navigation, constructs the carrier phase double difference model of BDS (BeiDou Navigation Satellite System), and presents a 2-position initial orientation method on BDS. The Extended Kalman-filter has been introduced for the integrated navigation system. The differences between MEMS-IMU and BDS position, velocity and carrier phase indications are used as measurements. To show the performance of the short-baseline dual-antenna BDS/MEMS-IMU integrated navigation system, the experiment results show that the position error is less than 1m, the pitch angle error and roll angle error are less than 0.1°, and the heading angle error is about 1°. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MEMS-IMU%20%28Micro-Electro-Mechanical%20System%20Inertial%20Measurement%20Unit%29" title="MEMS-IMU (Micro-Electro-Mechanical System Inertial Measurement Unit)">MEMS-IMU (Micro-Electro-Mechanical System Inertial Measurement Unit)</a>, <a href="https://publications.waset.org/abstracts/search?q=BDS%20%28BeiDou%20Navigation%20Satellite%20System%29" title=" BDS (BeiDou Navigation Satellite System)"> BDS (BeiDou Navigation Satellite System)</a>, <a href="https://publications.waset.org/abstracts/search?q=dual-antenna" title=" dual-antenna"> dual-antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20navigation" title=" integrated navigation"> integrated navigation</a> </p> <a href="https://publications.waset.org/abstracts/97626/a-short-baseline-dual-antenna-bdsmems-imu-integrated-navigation-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97626.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geochemical%20baseline&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geochemical%20baseline&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geochemical%20baseline&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geochemical%20baseline&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geochemical%20baseline&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geochemical%20baseline&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geochemical%20baseline&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geochemical%20baseline&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geochemical%20baseline&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geochemical%20baseline&page=38">38</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geochemical%20baseline&page=39">39</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geochemical%20baseline&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>