CINXE.COM

Search results for: oxygen isotopic

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: oxygen isotopic</title> <meta name="description" content="Search results for: oxygen isotopic"> <meta name="keywords" content="oxygen isotopic"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="oxygen isotopic" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="oxygen isotopic"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1502</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: oxygen isotopic</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1502</span> Chemical and Oxygen Isotope Analysis of Roman Glasses from Northern Greece</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Karalis">P. Karalis</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Dotsika"> E. Dotsika</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Godelitsas"> A. Godelitsas</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Tassi"> M. Tassi</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Ignatiadou"> D. Ignatiadou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glass artefacts originated from Northern Greece, dated between 1st and 6th AC, were analyzed for their oxygen isotopic and chemical compositions in order to identify their raw materials provenance. The chemical composition of these glasses is rather heterogeneous although they are all obtained with natron as flux, having both K₂O and MgO contents lower than 1.5 wt%. The majority of these samples have a homogeneous oxygen isotopic composition (𝛿18O= 16‰,), which is equal to or very close to the mean value of “Roman” glass (from about 15‰ to 16.0‰). The rest of the samples present heavily enriched 𝛿18O values that indicate that their raw materials differ from those normally used in Roman and Medieval glass production, and this matches with the possibility of the different origins of these materials. So, all these fragments are soda-lime-silica natron-glass produced from natron, possibly coming from more than one source. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ancient%20glass" title="ancient glass">ancient glass</a>, <a href="https://publications.waset.org/abstracts/search?q=provenance%20of%20raw%20materials%20of%20ancient%20glass" title=" provenance of raw materials of ancient glass"> provenance of raw materials of ancient glass</a>, <a href="https://publications.waset.org/abstracts/search?q=roman%20glass" title=" roman glass"> roman glass</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen%20isotope%20analysis%20in%20glass" title=" oxygen isotope analysis in glass"> oxygen isotope analysis in glass</a> </p> <a href="https://publications.waset.org/abstracts/151620/chemical-and-oxygen-isotope-analysis-of-roman-glasses-from-northern-greece" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151620.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1501</span> Mineralogical and Geochemical Constraints on the Origin and Environment of Numidian Siliceous Sedimentary Rocks of the Extreme Northwest Tunisia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ben%20Yahia%20Nouha">Ben Yahia Nouha</a>, <a href="https://publications.waset.org/abstracts/search?q=Harris%20Chris"> Harris Chris</a>, <a href="https://publications.waset.org/abstracts/search?q=Sebei%20Abdelaziz"> Sebei Abdelaziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Boussen%20Slim"> Boussen Slim</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaabani%20Fredj"> Chaabani Fredj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work has set itself the objective of studying non-detritic siliceous rocks of the extreme northwest Tunisia. It aims to examine the origin and their sedimentary depositional environment based on mineralogical and geochemical characteristics. The different sections were located in the area of Babouch and the area of Tabarka. The collected samples were subjected to mineralogical and geochemical characterization using different analytical methods: X-ray diffraction (XRD), geochemical analysis (ICP- AES), isotopic geochemistry (δ18O), to assess their suitability for industrial use. X-ray powder diffraction of the pure siliceous rock indicates quartz as the major mineral, with the total lack of amorphous silica. Trace impurities, such as carbonate and clay minerals, are concealed in the analytical results. The petrographic examination revealed allowed us to deduce that this rock was deriving from tests of siliceous organisms (the radiolarians). The chemical composition shows that SiO2, Al2O3, and Fe2O3 represent the most abundant oxides. The other oxides are present in negligible quantities. Geochemical data support a biogenic and non-hydrothermal origin of babouchite silica. Oxygen isotopic has shown that babouchites were formed in an environment with a high temperature ranging from 56 °C to 73 °C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biogenic%20silica" title="biogenic silica">biogenic silica</a>, <a href="https://publications.waset.org/abstracts/search?q=babouchite%20formation" title=" babouchite formation"> babouchite formation</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20analysis" title=" chemical analysis"> chemical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen%20isotopic" title=" oxygen isotopic"> oxygen isotopic</a>, <a href="https://publications.waset.org/abstracts/search?q=northwest%20tunisia" title=" northwest tunisia"> northwest tunisia</a> </p> <a href="https://publications.waset.org/abstracts/141975/mineralogical-and-geochemical-constraints-on-the-origin-and-environment-of-numidian-siliceous-sedimentary-rocks-of-the-extreme-northwest-tunisia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1500</span> Isotopic Evidence (He, Ne, Ar) for Deep Fluid in the Caucasus Continental Collision Zone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Larisa%20Liamina">Larisa Liamina</a>, <a href="https://publications.waset.org/abstracts/search?q=Vasily%20Lavrushin"> Vasily Lavrushin</a>, <a href="https://publications.waset.org/abstracts/search?q=Salvatore%20Inguaggiato"> Salvatore Inguaggiato</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents and summarizes the results of researching the isotopic signature of helium in the deep fluid eastern part of the Southern slope of the Greater Caucasus and the Lesser Caucasus (Azerbaijan and Armenia) for the period from 2010 to 2016. The results of isotope ratios of 3He/4He in 59 samples of the gas phase of geothermal fluids and mud volcanoes are presented. New data have been obtained not only on the isotopic ratios of helium, but also neon and argon. The R/Ra ratio was analyzed along the Ankara-Sevan ophiolite structure. The patterns of lateral variations of the 3He/4He ratio of different geological structural elements of the studied region are revealed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=isotopes%20helium" title="isotopes helium">isotopes helium</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20fluids" title=" deep fluids"> deep fluids</a>, <a href="https://publications.waset.org/abstracts/search?q=tectonic%20structures" title=" tectonic structures"> tectonic structures</a>, <a href="https://publications.waset.org/abstracts/search?q=Caucasus" title=" Caucasus"> Caucasus</a> </p> <a href="https://publications.waset.org/abstracts/186125/isotopic-evidence-he-ne-ar-for-deep-fluid-in-the-caucasus-continental-collision-zone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186125.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">45</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1499</span> Depositional Environment of the Babouchite Rocks of Numidian Formation, Northwestern Tunisia: Mineralogical Study and Geochemical Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ben%20Yahia%20Nouha">Ben Yahia Nouha</a>, <a href="https://publications.waset.org/abstracts/search?q=Harris%20Chris"> Harris Chris</a>, <a href="https://publications.waset.org/abstracts/search?q=Boussen%20Slim"> Boussen Slim</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaabani%20Fredj"> Chaabani Fredj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work has set itself the objective of studying non-detritic siliceous rocks in the extreme northwestern of Tunisia. It aims to discuss the origin and depositional environment of siliceous rocks based on petrographic, mineralogical, and geochemical results. The different sections were made in the area of Babouch and the area of Cap-Serrat. The collected samples were subjected to petrographic, mineralogical, and geochemical characterization using different analytical methods: scanning electron microscopy (SEM), X-ray diffraction (XRD), geochemical analysis (ICP- AES), isotopic geochemistry (δ¹⁸O) to assess their suitability for industrial use. These babouchite shows that the mineralogy consists of quartz as the dominant mineral with the total lack of amorphous silica, while clay represents the minor phase. The petrographic examination revealed allowed to deduce that it is a rock of chemical origin deriving from tests of siliceous organisms (the radiolarians). Chemical analyzes show that SiO₂, Al₂O₃, and Fe₂O₃ represent the most abundant oxides. The other oxides are present in negligible quantity. Geochemical data support a biogenic and non-hydrothermal origin of babouchite silica. Oxygen isotopic has shown that babouchites are formed in an environment with a high temperature, ranging from 56°C to 73°C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=siliceous%20rocks" title="siliceous rocks">siliceous rocks</a>, <a href="https://publications.waset.org/abstracts/search?q=babouchite%20formation" title=" babouchite formation"> babouchite formation</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20analysis" title=" chemical analysis"> chemical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=isotopic%20geochemistry" title=" isotopic geochemistry"> isotopic geochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=Northwestern%20of%20Tunisia" title=" Northwestern of Tunisia"> Northwestern of Tunisia</a> </p> <a href="https://publications.waset.org/abstracts/131969/depositional-environment-of-the-babouchite-rocks-of-numidian-formation-northwestern-tunisia-mineralogical-study-and-geochemical-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1498</span> The Stable Isotopic Composition of Pedogenic Carbonate in the Minusinsk Basin, South Siberia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jessica%20Vasil%27chuk">Jessica Vasil&#039;chuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20Ivanova"> Elena Ivanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavel%20Krechetov"> Pavel Krechetov</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Litvinsky"> Vladimir Litvinsky</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadine%20Budantseva"> Nadine Budantseva</a>, <a href="https://publications.waset.org/abstracts/search?q=Julia%20Chizhova"> Julia Chizhova</a>, <a href="https://publications.waset.org/abstracts/search?q=Yurij%20Vasil%27chuk"> Yurij Vasil&#039;chuk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbonate minerals’ isotopic composition is widely used as a proxy for environmental parameters of the past. Pedogenic carbonate coatings on lower surfaces of coarse rock fragments are studied in order to indicate the climatic conditions and predominant vegetation under which they were formed. The purpose of the research is to characterize the isotopic composition of carbonate pedofeatures in soils of Minusink Hollow and estimate its correlation with isotopic composition of soil pore water, precipitation, vegetation and parent material. The samples of pedogenic carbonates, vegetation, carbonate parent material, soil water and precipitation water were analyzed using the Delta-V mass spectrometer with options of a gas bench and element analyser. The soils we studied are mainly Kastanozems that are poorly moisturized, therefore soil pore water was extracted by ethanol. Oxygen and carbon isotopic composition of pedogenic carbonates was analyzed in 3 key sites. Kazanovka Khakass state national reserve, Hankul salt lake, region of Sayanogorsk aluminum smelter. Vegetation photosynthetic pathway in the region is mainly C3. δ18O values of carbonate coatings in soils of Kazanovka vary in a range from −7.49 to −10.5‰ (vs V-PDB), and the smallest value −13.9‰ corresponds the coatings found between two buried soil horizons which 14C dates are 4.6 and 5.2 kyr BP. That may indicate cooler conditions of late Holocene than nowadays. In Sayanogorsk carbonates’ δ18O range is from −8.3 to −11.1‰ and near the Hankul Lake is from −9.0 to −10.2‰ all ranges are quite similar and may indicate coatings’ uniform formation conditions. δ13C values of carbonate coatings in Kazanovka vary from −2.5 to −6.7‰, the highest values correspond to the soils of Askiz and Syglygkug rivers former floodplains. For Sayanogorsk the range is from −4.9 to −6.8‰ and for Hankul from −2.3 to −5.7‰, where the highest value is for the modern salt crust. δ13C values of coatings strongly decrease from inner (older) to outer (younger) layers of coatings, that can indicate differences connected with the diffusion of organic material. Carbonate parent material δ18O value in the region vary from −11.1 to −12.0‰ and δ13C values vary from −4.9 to −5.7‰. Soil pore water δ18O values that determine the oxygen isotope composition of carbonates vary due to the processes of transpiration and mixing in the studied sites in a wide range of −2.0 to −13.5‰ (vs V-SMOW). Precipitation waters show δ18O values from -6.6‰ in May and -19.0‰ in January (snow) due to the temperature difference. The main conclusions are as follows: pedogenic carbonates δ13C values (−7…−2,5‰) show no correlation with modern C3 vegetation δ13C values (−30…−26‰), expected values under such vegetation are (−19…−15‰) but are closer to C4 vegetation. Late Holocene climate for the Minusinsk Hollow according to obtained data on isotope composition of carbonates and soil pore water chemical composition was dryer and cooler than present, that does not contradict with paleocarpology data obtained for the region. The research was supported by Russian Science Foundation (grant №14-27-00083). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon" title="carbon">carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen" title=" oxygen"> oxygen</a>, <a href="https://publications.waset.org/abstracts/search?q=pedogenic%20carbonates" title=" pedogenic carbonates"> pedogenic carbonates</a>, <a href="https://publications.waset.org/abstracts/search?q=South%20Siberia" title=" South Siberia"> South Siberia</a>, <a href="https://publications.waset.org/abstracts/search?q=stable%20isotopes" title=" stable isotopes"> stable isotopes</a> </p> <a href="https://publications.waset.org/abstracts/58769/the-stable-isotopic-composition-of-pedogenic-carbonate-in-the-minusinsk-basin-south-siberia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58769.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1497</span> Oxygen and Sulfur Isotope Composition of Gold Bearing Granite Gneiss and Quartz Veins of Megele Area, Western Ethiopia: Implication for Fluid Source</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Temesgen%20Oljira">Temesgen Oljira</a>, <a href="https://publications.waset.org/abstracts/search?q=Olugbenga%20Akindeji%20Okunlola"> Olugbenga Akindeji Okunlola</a>, <a href="https://publications.waset.org/abstracts/search?q=Akinade%20Shadrach%20Olatunji"> Akinade Shadrach Olatunji</a>, <a href="https://publications.waset.org/abstracts/search?q=Dereje%20Ayalew"> Dereje Ayalew</a>, <a href="https://publications.waset.org/abstracts/search?q=Bekele%20A.%20Bedada"> Bekele A. Bedada</a>, <a href="https://publications.waset.org/abstracts/search?q=Tasin%20Godlove%20Bafon"> Tasin Godlove Bafon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Megele area gold-bearing Neoproterozoic rocks in the Western Ethiopian Shield has been under exploration for the last few decades. The geochemical and ore petrological characterization of the gold-bearing granite gneiss and associated quartz vein is crucial in understanding the gold's genesis. The present study concerns the ore petrological, geochemical, and stable O2 and S characterization of the gold-bearing granite gneiss and associated quartz vein. This area is known for its long history of placer gold mining. The presence of quartz veins of different generations and orientations, visible sulfide mineralization, and oxidation suggests that the Megele area is geologically fertile for mineralization. The Au and base metals analysis also indicate that Megele area rocks are characterized by Cu (2-22 ppm av. 7.83 ppm), Zn (2-53 ppm av. 29.33 ppm), Co (1-27 ppm av. 13.33 ppm), Ni (2-16 ppm av. 10 ppm), Pb (5-10 ppm av. 8.33 ppm), Au (1-5 ppb av. 2.11 ppb), Ag (0.5 ppm), As (5-12 ppm av. 7.83 ppm), Cd (0.5ppm), Li (0.5 ppm), Mo (1-4 ppm av. 1.6 ppm), Sc (5-13 ppm av. 9.3 ppm), and Tl (10 ppm). The oxygen isotope (δ18O) values of gold-bearing granite gneiss and associated quartz veins range from +8.6 to +11.5 ‰, suggesting the mixing of metamorphic water with magmatic water within the ore-forming fluid. The Sulfur isotope (δ34S) values of gold-bearing granite gneiss range from -1.92 to -0.45 ‰ (mean value of -1.13 ‰) indicating the narrow range of value. This suggests that the sulfides have been precipitated from the fluid system originating from a single source of the magmatic component under sulfur isotopic fractionation equilibrium condition. The tectonic setting of the host rocks, the occurrence of ore bodies, mineral assemblages of the host rocks and proposed ore-forming fluids of the Megele area gold prospects have similarities with features of orogenic gold deposit. The δ18O and δ34S isotopic values also suggested a metamorphic origin with the magmatic components. Thus, the Megele gold prospect could be related to an orogenic gold deposit related to metamorphism and associated intrusions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluid%20source" title="fluid source">fluid source</a>, <a href="https://publications.waset.org/abstracts/search?q=gold%20mineralization" title=" gold mineralization"> gold mineralization</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen%20isotope" title=" oxygen isotope"> oxygen isotope</a>, <a href="https://publications.waset.org/abstracts/search?q=stable%20isotope" title=" stable isotope"> stable isotope</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfur%20isotope" title=" sulfur isotope"> sulfur isotope</a> </p> <a href="https://publications.waset.org/abstracts/169023/oxygen-and-sulfur-isotope-composition-of-gold-bearing-granite-gneiss-and-quartz-veins-of-megele-area-western-ethiopia-implication-for-fluid-source" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169023.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1496</span> The Chromitites of the Collo Ultramafic Rocks (NE Algeria): Two Generations Evidenced From Petrological, Mineralogical and Isotopic Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rabah%20Laouar">Rabah Laouar</a>, <a href="https://publications.waset.org/abstracts/search?q=Yahia%20Boudra"> Yahia Boudra</a>, <a href="https://publications.waset.org/abstracts/search?q=Adel%20Satouh"> Adel Satouh</a>, <a href="https://publications.waset.org/abstracts/search?q=Adrian%20Boyce"> Adrian Boyce</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ultramafic rocks of the Collo region crop out as « stratified » masses that cross-cut older metamorphic formation of the basement. These rocks are mainly peridotites and serpentinites. The peridotites are composed of olivine, orthopyroxene, clinopyroxene and spinel (chromite). The chemical composition of these lherzolites show a magnesian character with high MgO contents (34.4 to 37.5%), high Cr (0.14 to 0.27%), Ni (0.14 to 0.26%) and Co (34 to 133 ppm) and low CaO and Al₂O₃ (0.02 to 2.2 and 0.5 to 2.8 % respectively). They represent a residue (restite) of a mantle magmas partial melting. The chromite which represents about 2 to 3% of the rock is a ubiquitous mineral and shows two different generations: primary idiomorphic millimetric crystals and secondary very fine, xenomorphic and interstitial aggregates. The primary chromites are alumino-ferro-magnesian crystals. They show high Al₂O₃ (25.77% to 27.36%) and MgO (10.70% to 13.36%). Cr# (100*Cr/ (Al+Cr)) varies between 45 and 48, and Mg# (100*Mg/Mg+Fe₂+) varies between 49 and 59. On the other hand, the secondary interstitial grains are iron-rich chromites; they show low Al₂O₃ (4.67% to 9.54%) and MgO (4.60% to 4.65%). Cr# is relatively high (77 to 88) whereas Mg# show relatively low values, varying between 22 and 25. Oxygen isotopic composition of both types of chromites is consistent with their derivation from a mantle source (ð¹⁸O vary between +3.9 and +5.2‰), though a contribution of ¹⁶O-rich component to the secondary chromites is not ruled out. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=peridotites" title="peridotites">peridotites</a>, <a href="https://publications.waset.org/abstracts/search?q=serpentinites" title=" serpentinites"> serpentinites</a>, <a href="https://publications.waset.org/abstracts/search?q=chromite" title=" chromite"> chromite</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20melting" title=" partial melting"> partial melting</a>, <a href="https://publications.waset.org/abstracts/search?q=collo" title=" collo"> collo</a>, <a href="https://publications.waset.org/abstracts/search?q=Algeria" title=" Algeria"> Algeria</a> </p> <a href="https://publications.waset.org/abstracts/157039/the-chromitites-of-the-collo-ultramafic-rocks-ne-algeria-two-generations-evidenced-from-petrological-mineralogical-and-isotopic-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157039.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1495</span> Tritium Activities in Romania, Potential Support for Development of ITER Project</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gheorghe%20Ionita">Gheorghe Ionita</a>, <a href="https://publications.waset.org/abstracts/search?q=Sebastian%20Brad"> Sebastian Brad</a>, <a href="https://publications.waset.org/abstracts/search?q=Ioan%20Stefanescu"> Ioan Stefanescu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In any fusion device, tritium plays a key role both as a fuel component and, due to its radioactivity and easy incorporation, as tritiated water (HTO). As for the ITER project, to reduce the constant potential of tritium emission, there will be implemented a Water Detritiation System (WDS) and an Isotopic Separation System (ISS). In the same time, during operation of fission CANDU reactors, the tritium content increases in the heavy water used as moderator and cooling agent (due to neutron activation) and it has to be reduced, too. In Romania, at the National Institute for Cryogenics and Isotopic Technologies (ICIT Rm-Valcea), there is an Experimental Pilot Plant for Tritium Removal (Exp. TRF), with the aim of providing technical data on the design and operation of an industrial plant for heavy water depreciation of CANDU reactors from Cernavoda NPP. The selected technology is based on the catalyzed isotopic exchange process between deuterium and liquid water (LPCE) combined with the cryogenic distillation process (CD). This paper presents an updated review of activities in the field carried out in Romania after the year 2000 and in particular those related to the development and operation of Tritium Removal Experimental Pilot Plant. It is also presented a comparison between the experimental pilot plant and industrial plant to be implemented at Cernavoda NPP. The similarities between the experimental pilot plant from ICIT Rm-Valcea and water depreciation and isotopic separation systems from ITER are also presented and discussed. Many aspects or 'opened issues' relating to WDS and ISS could be checked and clarified by a special research program, developed within ExpTRF. By these achievements and results, ICIT Rm - Valcea has proved its expertise and capability concerning tritium management therefore its competence may be used within ITER project. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ITER%20project" title="ITER project">ITER project</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20water%20detritiation" title=" heavy water detritiation"> heavy water detritiation</a>, <a href="https://publications.waset.org/abstracts/search?q=tritium%20removal" title=" tritium removal"> tritium removal</a>, <a href="https://publications.waset.org/abstracts/search?q=isotopic%20exchange" title=" isotopic exchange"> isotopic exchange</a> </p> <a href="https://publications.waset.org/abstracts/22454/tritium-activities-in-romania-potential-support-for-development-of-iter-project" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1494</span> Chemometric Determination of the Geographical Origin of Milk Samples in Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shima%20Behkami">Shima Behkami</a>, <a href="https://publications.waset.org/abstracts/search?q=Nor%20Shahirul%20Umirah%20Idris"> Nor Shahirul Umirah Idris</a>, <a href="https://publications.waset.org/abstracts/search?q=Sharifuddin%20Md.%20Zain"> Sharifuddin Md. Zain</a>, <a href="https://publications.waset.org/abstracts/search?q=Kah%20Hin%20Low"> Kah Hin Low</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehrdad%20Gholami"> Mehrdad Gholami</a>, <a href="https://publications.waset.org/abstracts/search?q=Nima%20A.%20Behkami"> Nima A. Behkami</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Firdaus%20Kamaruddin"> Ahmad Firdaus Kamaruddin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, Inductively Coupled Plasma Mass Spectrometry (ICP-MS), Isotopic Ratio Mass Spectrometry (IRMS) and Ultrasound Milko Tester were used to study milk samples obtained from various geographical locations in Malaysia. ICP-MS was used to determine the concentration of trace elements in milk, water and soil samples obtained from seven dairy farms at different geographical locations in peninsular Malaysia. IRMS was used to analyze the milk samples for isotopic ratios of δ13C, 15N and 18O. Nutritional parameters in the milk samples were determined using an ultrasound milko tester. Data obtained from these measurements were evaluated by Principal Component Analysis (PCA) and Hierarchical Analysis (HA) as a preliminary step in determining geographical origin of these milk samples. It is observed that the isotopic ratios and a number of the nutritional parameters are responsible for the discrimination of the samples. It was also observed that it is possible to determine the geographical origin of these milk samples solely by the isotopic ratios of δ13C, 15N and 18O. The accuracy of the geographical discrimination is demonstrated when several milk samples from a milk factory taken from one of the regions under study were appropriately assigned to the correct PCA cluster. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inductively%20coupled%20plasma%20mass%20spectroscopy%20ICP-MS" title="inductively coupled plasma mass spectroscopy ICP-MS">inductively coupled plasma mass spectroscopy ICP-MS</a>, <a href="https://publications.waset.org/abstracts/search?q=isotope%20ratio%20mass%20spectroscopy%20IRMS" title=" isotope ratio mass spectroscopy IRMS"> isotope ratio mass spectroscopy IRMS</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a>, <a href="https://publications.waset.org/abstracts/search?q=principal%20component%20analysis" title=" principal component analysis"> principal component analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20analysis" title=" hierarchical analysis"> hierarchical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=geographical%20origin" title=" geographical origin"> geographical origin</a>, <a href="https://publications.waset.org/abstracts/search?q=milk" title=" milk"> milk</a> </p> <a href="https://publications.waset.org/abstracts/10260/chemometric-determination-of-the-geographical-origin-of-milk-samples-in-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10260.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1493</span> The EAO2 in Essouabaa, Tebessa, Algeria: An Example of Facies to Organic Matter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sihem%20Salmi%20Laouar">Sihem Salmi Laouar</a>, <a href="https://publications.waset.org/abstracts/search?q=Khoudair%20Chabane"> Khoudair Chabane</a>, <a href="https://publications.waset.org/abstracts/search?q=Rabah%20Laouar"> Rabah Laouar</a>, <a href="https://publications.waset.org/abstracts/search?q=Adrian%20J.%20Boyce%20et%20Anthony%20E.%20Fallick"> Adrian J. Boyce et Anthony E. Fallick </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The solid mass of Essouabaa belongs paléogéography to the field téthysian and belonged to the area of the Mounts of Mellègue. This area was not saved by the oceanic-2 event anoxic (EAO-2) which was announced, over one short period, around the limit cénomanian-turonian. In the solid mass of Essouabba, the dominant sediments, pertaining to this period, are generally fine, dark, laminated and sometimes rolled deposits. They contain a rather rich planktonic microfaune, pyrite, and grains of phosphate, thus translating an environment rather deep and reducing rather deep and reducing. For targeting well the passage Cénomanian-Turonian (C-T) in the solid mass of Essouabaa, of the studies lithological and biostratigraphic were combined with the data of the isotopic analyses carbon and oxygen like with the contents of CaCO3. The got results indicate that this passage is marked by a biological event translated by the appearance of the "filaments" like by a positive excursion of the δ13C and δ18O. The cénomanian-turonian passage in the solid mass of Essouabaa represents a good example where during the oceanic event anoxic a facies with organic matter with contents of COT which can reach 1.36%. C E massive presents biostratigraphic and isotopic similarities with those obtained as well in the areas bordering (ex: Tunisia and Morocco) that throughout the world. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=limit%20c%C3%A9nomanian-turonian%20%28C-T%29" title="limit cénomanian-turonian (C-T)">limit cénomanian-turonian (C-T)</a>, <a href="https://publications.waset.org/abstracts/search?q=COT" title=" COT"> COT</a>, <a href="https://publications.waset.org/abstracts/search?q=filaments" title=" filaments"> filaments</a>, <a href="https://publications.waset.org/abstracts/search?q=event%20anoxic%202%20%28EAO-2%29" title=" event anoxic 2 (EAO-2)"> event anoxic 2 (EAO-2)</a>, <a href="https://publications.waset.org/abstracts/search?q=stable%20isotopes" title=" stable isotopes"> stable isotopes</a>, <a href="https://publications.waset.org/abstracts/search?q=mounts%20of%20Mell%C3%A8gue" title=" mounts of Mellègue"> mounts of Mellègue</a>, <a href="https://publications.waset.org/abstracts/search?q=Algeria" title=" Algeria"> Algeria</a> </p> <a href="https://publications.waset.org/abstracts/25989/the-eao2-in-essouabaa-tebessa-algeria-an-example-of-facies-to-organic-matter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25989.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">515</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1492</span> Hydrochemistry and Stable Isotopes (ẟ18O and ẟ2H) Tools Applied to the Study of Karst Aquifers in Wonderfonteinspruit Valley: North West, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naziha%20Mokadem">Naziha Mokadem</a>, <a href="https://publications.waset.org/abstracts/search?q=Rainier%20Dennis"> Rainier Dennis</a>, <a href="https://publications.waset.org/abstracts/search?q=Ingrid%20Dennis"> Ingrid Dennis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In South Africa, Karst aquifers are receiving greater attention since they provide large supplies of water which is used for domestic and agricultural purposes as well as for industry. Accordingly, a better insight into the origin of water mineralization and the geochemical processes controlling the recharge of the aquifer is crucial. Analyses of geochemical and environmental isotopes could lead to relevant information regarding karstification and infiltration processes, groundwater chemistry and isotopy. A study was conducted in a typical karst landscape of Wonderfonteinspruit catchment, also known as Wonderfonteinspruit Valley in North-western -South Africa. Furthermore, fifty-two samples were collected from (35 boreholes, 5 surface waters, 4 Dams, 4 springs, 1 canal, 2 pipelines, 1 cave) within the study area for hydrochemistry and 2H and 18O analysis. The determination of the anions (Cl-, SO42-, NO2, NO3-) were performed using Metrohm ion chromatography, model: 761 compact IC, with a precision of ± 0.001 mg/l. While, the cations (Na+, Mg2+, K+, Ca2+) were determined using Metrohm ion chromatography, Model: ICP-MS 7500 series. The alkalinity (Alk) was determined by pH meter with volumetric titration using HCL to pH 4.5; 4.2; and 8.2. In addition, 18O and 2H relative to the Vienna-Standard Mean Ocean Water (RVSMOW), were determined by picarro L2130-I Isotopic H2O (Cavity Ringdown laser spectrometer, Picarro Ltd). The hydrochemical analysis of Wonderfonteinspruit groundwater showed a dominance of the cations Ca-Mg and the anion HCO3. Piper diagram shows that the groundwater sample of study area is characterized by four hydrochemical facies: Two main groups: (1) Ca–Mg–Cl–SO4; (2) Ca–Mg–HCO3 and two minor groups: (3) Ca–Mg–Cl; (4) Na–K–HCO3. The majority of boreholes of Malmani (Transvaal Supergroup) aquifer are plotted in Ca–Mg–HCO3.Oxygen-18 (18O‰SMOW) and deuterium (D‰SMOW) isotopic data indicate that the aquifer’s recharge is influenced by two phenomena; precipitation rates for most of the samples and river flow (Wonderfonteinspruit, Middelvieinspruit, Renfonteinspruit) for some samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=South%20Africa" title="South Africa">South Africa</a>, <a href="https://publications.waset.org/abstracts/search?q=Wonderfonteinspruit%20Valley" title=" Wonderfonteinspruit Valley"> Wonderfonteinspruit Valley</a>, <a href="https://publications.waset.org/abstracts/search?q=isotopic" title=" isotopic"> isotopic</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrochemical" title=" hydrochemical"> hydrochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=carbonate%20aquifers" title=" carbonate aquifers"> carbonate aquifers</a> </p> <a href="https://publications.waset.org/abstracts/106126/hydrochemistry-and-stable-isotopes-18o-and-2h-tools-applied-to-the-study-of-karst-aquifers-in-wonderfonteinspruit-valley-north-west-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106126.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1491</span> Carbonate Crusts in Jordan: Records of Groundwater Flow, Carbon Fluxes, Tectonic Movement and Climate Change</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nizar%20Abu-Jaber">Nizar Abu-Jaber</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Late Pleistocene and Holocene carbonate crusts in the south of Jordan were studied using a combination of field documentation, petrography, geochemical and isotopic techniques. These surficial crusts and vein deposits appear to have formed as a result of interaction between near-surface groundwater, surficial soil and sediments and rising carbon dioxide. Rising mantle CO2 dissolves in the water to create carbonic acid, which in turn dissolves the calcite in the soil in the sediments. When the pH rises later due to degassing, the carbonate crusts are left in the places where the water was flowing in veins, channels and interfaces between high and low permeability materials. The crusts have the potential for being important records of natural and human agencies on the landscape of the area. They reflect the isotopic composition of the waters in which they precipitated in, and also contain isotopic information about the aeolian calcium fluxes affecting the area (using strontium isotopes). Moreover, changing stream valley base levels can be identified and measured, which can help quantify the rates of tectonic movement. Finally, human activities such and channel construction and terrace building can be identified and traced temporally and spatially using these deposits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anthropogenic%20change" title="anthropogenic change">anthropogenic change</a>, <a href="https://publications.waset.org/abstracts/search?q=carbonate%20crusts" title=" carbonate crusts"> carbonate crusts</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20change" title=" environmental change"> environmental change</a>, <a href="https://publications.waset.org/abstracts/search?q=Jordan" title=" Jordan"> Jordan</a> </p> <a href="https://publications.waset.org/abstracts/60842/carbonate-crusts-in-jordan-records-of-groundwater-flow-carbon-fluxes-tectonic-movement-and-climate-change" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60842.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1490</span> Groundwater Recharge Pattern in East and West Coast of India: Evidence of Dissimilar Moisture Sources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ajit%20Kumar%20Behera">Ajit Kumar Behera</a>, <a href="https://publications.waset.org/abstracts/search?q=Saranya%20P."> Saranya P.</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudhir%20Kumar"> Sudhir Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Krishnakumar%20A"> Krishnakumar A</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The stable isotope (δ¹⁸ O and δ²H) composition of groundwater of the coastal areas of Periyar and Mahanadi basins falling along East and West coast of India during North-East (NE) monsoon season have been studied. The east and west coast regions are surrounded by the Bay of Bengal and the Arabian Sea respectively, which are considered to be the primary sources for precipitation over India. The major difference between the Bay of Bengal and the Arabian Sea is that a number of large rivers feed the Bay of Bengal, whereas the Arabian Sea is fed by very few small rivers, resulting in enriched stable isotopic composition of the Arabian Sea than the Bay of Bengal. Previous studies have reported depleted ratios of stable isotopes during Northeast monsoon along East and West coasts due to the influence of the Bay of Bengal moisture source. The isotopic composition of groundwater of the Mahanadi delta in the east coast region varies from -6.87 ‰ to -3.40 ‰ for δ¹⁸ O and -45.42 ‰ to -22.43‰ for δ²H. However, the groundwater of the Periyar basin in the west coast has enriched stable isotope value varying from -4.3‰ to -2.5 ‰ for δ¹⁸ O and for δ²H from -23.7 to -6.4 ‰ which is a characteristic of South-West monsoon season. This suggests the groundwater system of the Mahanadi delta and the Periyar basins are influenced by dissimilar moisture sources. The δ¹⁸ O and δ² H relationship (δ²H= 6.513 δ¹⁸ O - 1.39) and d-excess value (< 10) in the east coast region indicates the influence of NE monsoon implying the quick groundwater recharge after precipitation with significant amount of evaporation. In contrast, the δ¹⁸ O and δ²H regression line (δ²H= 8.408 δ¹⁸ O + 11.71) with high d-excess value (>10) in the west coast region implies delayed recharge due to SW monsoon. The observed isotopic enrichment in west coast suggests that NE winter monsoon rainfall does not replenish groundwater quick enough to produce isotopic depletion during the season. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arabian%20sea" title="Arabian sea">Arabian sea</a>, <a href="https://publications.waset.org/abstracts/search?q=bay%20of%20Bengal" title=" bay of Bengal"> bay of Bengal</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater" title=" groundwater"> groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=monsoon" title=" monsoon"> monsoon</a>, <a href="https://publications.waset.org/abstracts/search?q=stable%20isotope" title=" stable isotope"> stable isotope</a> </p> <a href="https://publications.waset.org/abstracts/77283/groundwater-recharge-pattern-in-east-and-west-coast-of-india-evidence-of-dissimilar-moisture-sources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77283.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1489</span> The Amount of Organic Phosphates (Like DPG) Existing in Blood is Determining Factor of Mammal’s Bulk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramin%20Amirmardfar">Ramin Amirmardfar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Throughout Necessary oxygen should be supplied for all cells of a mammal at any moment through blood to make it possible remain alive all cells the mammal’s body. In case a mammal’s bulk is large, there is a farther distance between cells in different tissues and mammals’ heart. Therefore red blood cells in bulky mammal’s body should be capable of conveying oxygen to farther distances. To make it practical, oxygen should be glued red blood cells tenaciously. In other words, cohesion strength of oxygen to red blood cell of bulky mammal’s blood should be much more than the same of small mammal’s blood. In mammal’s bodies, the controlling factor of amount of cohesion of oxygen to red blood cell, are organic phosphates (like DPG). The less DPG in red blood cells of a mammal, the more cohesion of oxygen to red blood cell (at the same rate). As much as oxygen is glued more tenacious to red blood cells, oxygen could been carried to farther distance and as much as oxygen could be conveyed to farther points of heart, bulk of mammal could be larger at the same rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mammals%20size" title="mammals size">mammals size</a>, <a href="https://publications.waset.org/abstracts/search?q=animals%20size" title=" animals size"> animals size</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20phosphates" title=" organic phosphates"> organic phosphates</a>, <a href="https://publications.waset.org/abstracts/search?q=DPG" title=" DPG"> DPG</a>, <a href="https://publications.waset.org/abstracts/search?q=red%20blood%20cell" title=" red blood cell"> red blood cell</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolism" title=" metabolism"> metabolism</a> </p> <a href="https://publications.waset.org/abstracts/12665/the-amount-of-organic-phosphates-like-dpg-existing-in-blood-is-determining-factor-of-mammals-bulk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12665.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1488</span> Highly Sensitive, Low-Cost Oxygen Gas Sensor Based on ZnO Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xin%20Chang">Xin Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Daping%20Chu"> Daping Chu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oxygen gas sensing technology has progressed since the last century and it has been extensively used in a wide range of applications such as controlling the combustion process by sensing the oxygen level in the exhaust gas of automobiles to ensure the catalytic converter is in a good working condition. Similar sensors are also used in industrial boilers to make the combustion process economic and environmentally friendly. Different gas sensing mechanisms have been developed: ceramic-based potentiometric equilibrium sensors and semiconductor-based sensors by oxygen absorption. In this work, we present a highly sensitive and low-cost oxygen gas sensor based on Zinc Oxide nanoparticles (average particle size of 35nm) dispersion in ethanol. The sensor is able to measure the pressure range from 103 mBar to 10-5 mBar with a sensitivity of more than 102 mA/Bar. The sensor is also erasable with heat. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title="nanoparticles">nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen" title=" oxygen"> oxygen</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor" title=" sensor"> sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnO" title=" ZnO"> ZnO</a> </p> <a href="https://publications.waset.org/abstracts/102985/highly-sensitive-low-cost-oxygen-gas-sensor-based-on-zno-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102985.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1487</span> Modeling of Oxygen Supply Profiles in Stirred-Tank Aggregated Stem Cells Cultivation Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vytautas%20Galvanauskas">Vytautas Galvanauskas</a>, <a href="https://publications.waset.org/abstracts/search?q=Vykantas%20Grincas"> Vykantas Grincas</a>, <a href="https://publications.waset.org/abstracts/search?q=Rimvydas%20Simutis"> Rimvydas Simutis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates a possible practical solution for reasonable oxygen supply during the pluripotent stem cells expansion processes, where the stem cells propagate as aggregates in stirred-suspension bioreactors. Low glucose and low oxygen concentrations are preferred for efficient proliferation of pluripotent stem cells. However, strong oxygen limitation, especially inside of cell aggregates, can lead to cell starvation and death. In this research, the oxygen concentration profile inside of stem cell aggregates in a stem cell expansion process was predicted using a modified oxygen diffusion model. This profile can be realized during the stem cells cultivation process by manipulating the oxygen concentration in inlet gas or inlet gas flow. The proposed approach is relatively simple and may be attractive for installation in a real pluripotent stem cell expansion processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aggregated%20stem%20cells" title="aggregated stem cells">aggregated stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=dissolved%20oxygen%20profiles" title=" dissolved oxygen profiles"> dissolved oxygen profiles</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=stirred-tank" title=" stirred-tank"> stirred-tank</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20expansion" title=" 3D expansion"> 3D expansion</a> </p> <a href="https://publications.waset.org/abstracts/49847/modeling-of-oxygen-supply-profiles-in-stirred-tank-aggregated-stem-cells-cultivation-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49847.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1486</span> Blood Oxygen Saturation Measurement System Using Broad-Band Light Source with LabVIEW Program</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Myoung%20Ah%20Kim">Myoung Ah Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong%20Ho%20Sin"> Dong Ho Sin</a>, <a href="https://publications.waset.org/abstracts/search?q=Chul%20Gyu%20Song"> Chul Gyu Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Blood oxygen saturation system is a well-established, noninvasive photoplethysmographic method to monitor vital signs. Conventional blood oxygen saturation measurements for the two LED light source is the ambiguity of the oxygen saturation measurement principle and the measurement results greatly influenced and heat and motion artifact. A high accuracy in order to solve these problems blood oxygen saturation measuring method has been proposed using a broadband light source that can be easily understood by the algorithm. The measurement of blood oxygen saturation based on broad-band light source has advantage of simple testing facility and easy understanding. Broadband light source based on blood oxygen saturation measuring program proposed in this paper is a combination of LabVIEW and MATLAB. Using the wavelength range of 450 nm-750 nm using a floating light absorption of oxyhemoglobin and deoxyhemoglobin to measure the blood oxygen saturation. Hand movement is to fix the probe to the motor stage in order to prevent oxygen saturation measurement that affect the sample and probe kept constant interval. Experimental results show that the proposed method noticeably increases the accuracy and saves time compared with the conventional methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oxygen%20saturation" title="oxygen saturation">oxygen saturation</a>, <a href="https://publications.waset.org/abstracts/search?q=broad-band%20light%20source" title=" broad-band light source"> broad-band light source</a>, <a href="https://publications.waset.org/abstracts/search?q=CCD" title=" CCD"> CCD</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20reflectance%20theory" title=" light reflectance theory"> light reflectance theory</a> </p> <a href="https://publications.waset.org/abstracts/40627/blood-oxygen-saturation-measurement-system-using-broad-band-light-source-with-labview-program" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40627.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1485</span> Combining Bio-Molecular and Isotopic Tools to Determine the Fate of Halogenated Compounds in Polluted Groundwater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Balaban">N. Balaban</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Buernstein"> A. Buernstein</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Gelman"> F. Gelman</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Ronen"> Z. Ronen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Brominated flame retardants are widespread pollutants, and are known to be toxic, carcinogenic, endocrinic disrupting as well as recalcitrant. The industrial complex Neot Hovav, in the Northern Negev, Israel, is situated above a fractured chalk aquitard, which is polluted by a wide variety of halogenated organic compounds. Two of the abundant pollutants found in the site are Dibromoneopentyl-glycol (DBNPG) and tribromoneopentyl-alcohol (TBNPA). Due to the elusive nature of the groundwater flow, it is difficult to connect between the spatial changes in contaminant concentrations to degradation. In this study, we attempt to determine whether these compounds are biodegraded in the groundwater, and to gain a better understanding concerning the bacterial community in the groundwater. This was achieved through the application of compound-specific isotope analysis (CSIA) of carbon (13^C/12^C) and bromine (81^Br/79^Br), and new-generation MiSeq pyrosequencing. The sampled boreholes were distributed among three main areas of the industrial complex: around the production plant of TBNPA and DBNPG; along the Hovav Wadi (small ephemeral stream) which crosses and drains the industrial complex; and downstream to the industrial area. TBNPA and DBNPG are found in all three areas, with no clear connection to the proximity of the borehole to the production plant. Initial isotopic data of TBNPA from boreholes in the area surrounding the production plant, reveal no changes in the carbon and bromine isotopic values. When observing the microbial groundwater community, the dominant phylum is Proteobacteria. Known anaerobic dehalogenating bacteria such as Dehalococcoides from the Chloroflexi phylum have also been detected. A statistical comparison of the groundwater microbial diversity using a multi-variant ordination of non-metric multidimensional scaling (NMDS) reveals three main clusters in accordance to spatial location in the industrial complex: all the boreholes sampled adjacent to the production plant cluster together and separately from the Wadi Hovav boreholes cluster and the downstream to the industrial area borehole cluster. This work provides the basis for the development and implication of an isotopic fractionation based tool for assessing the biodegradation of brominated organic compounds in contaminated environments, and a novel attempt to characterize the spatial microbial diversity in the contaminated site. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodegradation" title="biodegradation">biodegradation</a>, <a href="https://publications.waset.org/abstracts/search?q=brominated%20flame%20retardants" title=" brominated flame retardants"> brominated flame retardants</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater" title=" groundwater"> groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=isotopic%20fractionation" title=" isotopic fractionation"> isotopic fractionation</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20diversity" title=" microbial diversity "> microbial diversity </a> </p> <a href="https://publications.waset.org/abstracts/49813/combining-bio-molecular-and-isotopic-tools-to-determine-the-fate-of-halogenated-compounds-in-polluted-groundwater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49813.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1484</span> Evaluation of Biochemical Oxygen Demand and Dissolved Oxygen for Thames River by Using Stream Water Quality Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghassan%20Al-Dulaimi">Ghassan Al-Dulaimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper studied the biochemical parameter (BOD5) and (DO) for the Thames River (Canada-Ontario). Water samples have been collected from Thames River along different points between Chatham to Woodstock and were analysed for various water quality parameters during the low flow season (April). The study involves the application of the stream water quality model QUAL2K model to simulate and predict the dissolved oxygen (DO) and biochemical oxygen demand (BOD5) profiles for Thames River in a stretch of 251 kilometers. The model output showed that DO in the entire river was within the limit of not less than 4 mg/L. For Carbonaceous Biochemical Oxygen Demand CBOD, the entire river may be divided into two main reaches; the first one is extended from Chatham City (0 km) to London (150 km) and has a CBOD concentration of 2 mg/L, and the second reach has CBOD range (2–4) mg/L in which begins from London city and extend to near Woodstock city (73km). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biochemical%20oxygen%20demand" title="biochemical oxygen demand">biochemical oxygen demand</a>, <a href="https://publications.waset.org/abstracts/search?q=dissolved%20oxygen" title=" dissolved oxygen"> dissolved oxygen</a>, <a href="https://publications.waset.org/abstracts/search?q=Thames%20river" title=" Thames river"> Thames river</a>, <a href="https://publications.waset.org/abstracts/search?q=QUAL2K%20model" title=" QUAL2K model"> QUAL2K model</a> </p> <a href="https://publications.waset.org/abstracts/158505/evaluation-of-biochemical-oxygen-demand-and-dissolved-oxygen-for-thames-river-by-using-stream-water-quality-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158505.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1483</span> The Sr-Nd Isotope Data of the Platreef Rocks from the Northern Limb of the Bushveld Igneous Complex: Evidence of Contrasting Magma Composition and Origin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tshipeng%20Mwenze">Tshipeng Mwenze</a>, <a href="https://publications.waset.org/abstracts/search?q=Charles%20Okujeni"> Charles Okujeni</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdi%20Siad"> Abdi Siad</a>, <a href="https://publications.waset.org/abstracts/search?q=Russel%20Bailie"> Russel Bailie</a>, <a href="https://publications.waset.org/abstracts/search?q=Dirk%20Frei"> Dirk Frei</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcelene%20Voigt"> Marcelene Voigt</a>, <a href="https://publications.waset.org/abstracts/search?q=Petrus%20Le%20Roux"> Petrus Le Roux</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Platreef is a platinum group element (PGE) deposit in the northern limb of the Bushveld Igneous Complex (BIC) which was emplaced as a series of mafic and ultramafic sills between the Main Zone (MZ) and the country rocks. The PGE mineralisation in the Platreef is hosted in different rock types, and its distribution and style vary with depth and along strike. This study contributes towards understanding the processes involved in the genesis of the Platreef. Twenty-four Platreef (2 harzburgites, 4 olivine pyroxenites, 17 feldspathic pyroxenites and 1 gabbronorite) and few MZ (1 gabbronorite and 1 leucogabbronorite) quarter core samples were collected from four drill cores (e.g., TN754, TN200, SS339, and OY482) and analysed for whole-rock Sr-Nd isotope data. The results show positive ɛNd values (+3.53 to +7.51) for harzburgites suggesting their parental magmas derived from the depleted Mantle. The remaining Platreef rocks have negative ɛNd values (-2.91 to -22.88) and show significant variations in Sr-Nd isotopic compositions. The first group of Platreef samples has relatively high isotopic compositions (ɛNd= -2.91 to -5.68; ⁸⁷Sr/⁸⁶Sri= 0.709177 - 0.711998). The second group of Platreef samples has Sr ratios (⁸⁷Sr/⁸⁶Sri= 0.709816-0.712106) overlapping with samples of the first group but slightly lower ɛNd values (-7.44 to -8.39). Lastly, the third group of Platreef samples has low ɛNd values (-10.82 to -14.32) and low Sr ratios (⁸⁷Sr/⁸⁶Sri= 0.707545-0.710042) than those from samples of the two Platreef groups mentioned above. There is, however, a Platreef sample with ɛNd value (-5.26) in range with the Platreef samples of the first group, but its Sr ratio (0.707281) is the lowest even when compared to samples of the third Platreef group. There are also five other Platreef samples which have either anomalous ɛNd or Sr ratios which make it difficult to assess their isotopic compositions relative to other samples. These isotopic variations for the Platreef samples indicate both multiple sources and multiple magma chambers where varying crustal contamination styles have operated during the evolution of these magmas prior their emplacements into the Platreef setting as sills. Furthermore, the MZ rocks have different Sr-Nd isotopic compositions (For OY482 gabbronorite [ɛNd= +0.65; ⁸⁷Sr/⁸⁶Sri= 0.711746]; for TN754 leucogabbronorite [ɛNd= -7.44; ⁸⁷Sr/⁸⁶Sri= 0.709322]) which do not only indicate different MZ magma chambers, but also different magmas from those of the Platreef. Although the Platreef is still considered a single stratigraphic unit in the northern limb of the BIC, its genesis involved multiple magmatic processes which evolved independently from each other. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crustal%20contamination%20styles" title="crustal contamination styles">crustal contamination styles</a>, <a href="https://publications.waset.org/abstracts/search?q=magma%20chambers" title=" magma chambers"> magma chambers</a>, <a href="https://publications.waset.org/abstracts/search?q=magma%20sources" title=" magma sources"> magma sources</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20sills%20emplacement" title=" multiple sills emplacement"> multiple sills emplacement</a> </p> <a href="https://publications.waset.org/abstracts/96022/the-sr-nd-isotope-data-of-the-platreef-rocks-from-the-northern-limb-of-the-bushveld-igneous-complex-evidence-of-contrasting-magma-composition-and-origin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96022.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1482</span> Studies on the Solubility of Oxygen in Water Using a Hose to fill the Air with Different Shapes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wichan%20Lertlop">Wichan Lertlop</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research is to study the solubility of oxygen in water taking the form of aeration pipes that have different shaped objectives of the research to compare the amount of oxygen dissolved in the water, whice take the form of aeration pipes. Shaped differently When aeration 5 minutes on air for 10 minutes, and when air fills 30 minutes, as well as compare the durability of the oxygen is dissolved in the water of the inlet air refueling shaped differently when you fill the air 30 minutes and when. aeration and 60 minutes populations used in this study, the population of pond water from Rajabhat University in February 2014 used in this study consists of 1. Aerator 2. Hose using a hose to fill the air with 3 different shape, different shapes pyramid whose base is on the water tank. Shaped rectangular water tank onto the ground. And shapes in a vertical pipe. 3 meter, dissolved oxygen, dissolved in water to get the calibration standard. 4. The clock for timer 5. Three water tanks which are 39 cm wide, 51 cm long and 32 cm high. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aeration" title="aeration">aeration</a>, <a href="https://publications.waset.org/abstracts/search?q=dissolve%20oxygen" title=" dissolve oxygen"> dissolve oxygen</a>, <a href="https://publications.waset.org/abstracts/search?q=different%20shapes" title=" different shapes"> different shapes</a> </p> <a href="https://publications.waset.org/abstracts/10005/studies-on-the-solubility-of-oxygen-in-water-using-a-hose-to-fill-the-air-with-different-shapes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1481</span> A Study of the Growth of Single-Phase Mg0.5Zn0.5O Films for UV LED</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hong%20Seung%20Kim">Hong Seung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang%20Hoi%20Kim"> Chang Hoi Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Lili%20Yue"> Lili Yue</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Single-phase, high band gap energy Zn0.5Mg0.5O films were grown under oxygen pressure, using pulse laser deposition with a Zn0.5Mg0.5O target. Structural characterization studies revealed that the crystal structures of the ZnX-1MgXO films could be controlled via changes in the oxygen pressure. TEM analysis showed that the thickness of the deposited Zn1-xMgxO thin films was 50–75 nm. As the oxygen pressure increased, we found that one axis of the crystals did not show a very significant increase in the crystallization compared with that observed at low oxygen pressure. The X-ray diffraction peak intensity for the hexagonal-ZnMgO (002) plane increased relative to that for the cubic-ZnMgO (111) plane. The corresponding c-axis of the h-ZnMgO lattice constant increased from 5.141 to 5.148 Å, and the a-axis of the c-ZnMgO lattice constant decreased from 4.255 to 4.250 Å. EDX analysis showed that the Mg content in the mixed-phase ZnMgO films decreased significantly, from 54.25 to 46.96 at.%. As the oxygen pressure was increased from 100 to 150 mTorr, the absorption edge red-shifted from 3.96 to 3.81 eV; however, a film grown at the highest oxygen pressure tested here (200 mTorr). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MgO" title="MgO">MgO</a>, <a href="https://publications.waset.org/abstracts/search?q=UV%20LED" title=" UV LED"> UV LED</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnMgO" title=" ZnMgO"> ZnMgO</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnO" title=" ZnO"> ZnO</a> </p> <a href="https://publications.waset.org/abstracts/6244/a-study-of-the-growth-of-single-phase-mg05zn05o-films-for-uv-led" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1480</span> Computational Quantum Mechanics Study of Oxygen as Substitutional Atom in Diamond</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20M.%20Etmimi">K. M. Etmimi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Sghayer"> A. A. Sghayer</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Gsiea"> A. M. Gsiea</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Abutruma"> A. M. Abutruma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Relatively few chemical species can be incorporated into diamond during CVD growth, and until recently the uptake of oxygen was thought to be low perhaps as a consequence of a short surface residence time. Within the literature, there is speculation regarding spectroscopic evidence for O in diamond, but no direct evidence. For example, the N3 and OK1 EPR centres have been tentatively assigned models made up from complexes of substitutional N and substitutional oxygen. In this study, we report density-functional calculations regarding the stability, electronic structures, geometry and hyperfine interaction of substitutional oxygen in diamond and show that the C2v, S=1 configuration very slightly lower in energy than the other configurations (C3v, Td, and C2v with S=0). The electronic structure of O in diamond generally gives rise to two defect-related energy states in the band gap one a non-degenerate a1 state lying near the middle of the energy gap and the other a threefold-degenerate t2 state located close to the conduction band edges. The anti-bonding a1 and t2 states will be occupied by one to three electrons for O+, O and O− respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DFT" title="DFT">DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen" title=" oxygen"> oxygen</a>, <a href="https://publications.waset.org/abstracts/search?q=diamond" title=" diamond"> diamond</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperfine" title=" hyperfine"> hyperfine</a> </p> <a href="https://publications.waset.org/abstracts/19564/computational-quantum-mechanics-study-of-oxygen-as-substitutional-atom-in-diamond" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19564.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1479</span> Development of Soft-Core System for Heart Rate and Oxygen Saturation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Caje%20F.%20Pinto">Caje F. Pinto</a>, <a href="https://publications.waset.org/abstracts/search?q=Jivan%20S.%20Parab"> Jivan S. Parab</a>, <a href="https://publications.waset.org/abstracts/search?q=Gourish%20M.%20Naik"> Gourish M. Naik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is about the development of non-invasive heart rate and oxygen saturation in human blood using Altera NIOS II soft-core processor system. In today&#39;s world, monitoring oxygen saturation and heart rate is very important in hospitals to keep track of low oxygen levels in blood. We have designed an Embedded System On Peripheral Chip (SOPC) reconfigurable system by interfacing two LED&rsquo;s of different wavelengths (660 nm/940 nm) with a single photo-detector to measure the absorptions of hemoglobin species at different wavelengths. The implementation of the interface with Finger Probe and Liquid Crystal Display (LCD) was carried out using NIOS II soft-core system running on Altera NANO DE0 board having target as Cyclone IVE. This designed system is used to monitor oxygen saturation in blood and heart rate for different test subjects. The designed NIOS II processor based non-invasive heart rate and oxygen saturation was verified with another Operon Pulse oximeter for 50 measurements on 10 different subjects. It was found that the readings taken were very close to the Operon Pulse oximeter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heart%20rate" title="heart rate">heart rate</a>, <a href="https://publications.waset.org/abstracts/search?q=NIOS%20II" title=" NIOS II"> NIOS II</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen%20saturation" title=" oxygen saturation"> oxygen saturation</a>, <a href="https://publications.waset.org/abstracts/search?q=photoplethysmography" title=" photoplethysmography"> photoplethysmography</a>, <a href="https://publications.waset.org/abstracts/search?q=soft-core" title=" soft-core"> soft-core</a>, <a href="https://publications.waset.org/abstracts/search?q=SOPC" title=" SOPC"> SOPC</a> </p> <a href="https://publications.waset.org/abstracts/82788/development-of-soft-core-system-for-heart-rate-and-oxygen-saturation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82788.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1478</span> Mid-Temperature Methane-Based Chemical Looping Reforming for Hydrogen Production via Iron-Based Oxygen Carrier Particles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yang%20Li">Yang Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Mingkai%20Liu"> Mingkai Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiong%20Rao"> Qiong Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhongrui%20Gai"> Zhongrui Gai</a>, <a href="https://publications.waset.org/abstracts/search?q=Ying%20Pan"> Ying Pan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongguang%20Jin"> Hongguang Jin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrogen is an ideal and potential energy carrier due to its high energy efficiency and low pollution. An alternative and promising approach to hydrogen generation is the chemical looping steam reforming of methane (CL-SRM) over iron-based oxygen carriers. However, the process faces challenges such as high reaction temperature (>850 ℃) and low methane conversion. We demonstrate that Ni-mixed Fe-based oxygen carrier particles have significantly improved the methane conversion and hydrogen production rate in the range of 450-600 ℃ under atmospheric pressure. The effect on the reaction reactivity of oxygen carrier particles mixed with different Ni-based particle mass ratios has been determined in the continuous unit. More than 85% of methane conversion has been achieved at 600 ℃, and hydrogen can be produced in both reduction and oxidation steps. Moreover, the iron-based oxygen carrier particles exhibited good cyclic performance during 150 consecutive redox cycles at 600 ℃. The mid-temperature iron-based oxygen carrier particles, integrated with a moving-bed chemical looping system, might provide a powerful approach toward more efficient and scalable hydrogen production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20looping" title="chemical looping">chemical looping</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20production" title=" hydrogen production"> hydrogen production</a>, <a href="https://publications.waset.org/abstracts/search?q=mid-temperature" title=" mid-temperature"> mid-temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen%20carrier%20particles" title=" oxygen carrier particles"> oxygen carrier particles</a> </p> <a href="https://publications.waset.org/abstracts/162319/mid-temperature-methane-based-chemical-looping-reforming-for-hydrogen-production-via-iron-based-oxygen-carrier-particles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162319.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1477</span> Heat Transfer Analysis of a Multiphase Oxygen Reactor Heated by a Helical Tube in the Cu-Cl Cycle of a Hydrogen Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20W.%20Abdulrahman">Mohammed W. Abdulrahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the thermochemical water splitting process by Cu-Cl cycle, oxygen gas is produced by an endothermic thermolysis process at a temperature of 530<sup>o</sup>C. Oxygen production reactor is a three-phase reactor involving cuprous chloride molten salt, copper oxychloride solid reactant and oxygen gas. To perform optimal performance, the oxygen reactor requires accurate control of heat transfer to the molten salt and decomposing solid particles within the thermolysis reactor. In this paper, the scale up analysis of the oxygen reactor that is heated by an internal helical tube is performed from the perspective of heat transfer. A heat balance of the oxygen reactor is investigated to analyze the size of the reactor that provides the required heat input for different rates of hydrogen production. It is found that the helical tube wall and the service side constitute the largest thermal resistances of the oxygen reactor system. In the analysis of this paper, the Cu-Cl cycle is assumed to be heated by two types of nuclear reactor, which are HTGR and CANDU SCWR. It is concluded that using CANDU SCWR requires more heat transfer rate by 3-4 times than that when using HTGR. The effect of the reactor aspect ratio is also studied and it is found that increasing the aspect ratio decreases the number of reactors and the rate of decrease in the number of reactors decreases by increasing the aspect ratio. Comparisons between the results of this study and pervious results of material balances in the oxygen reactor show that the size of the oxygen reactor is dominated by the heat balance rather than the material balance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title="heat transfer">heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=Cu-Cl%20cycle" title=" Cu-Cl cycle"> Cu-Cl cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20production" title=" hydrogen production"> hydrogen production</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen" title=" oxygen"> oxygen</a>, <a href="https://publications.waset.org/abstracts/search?q=clean%20energy" title=" clean energy"> clean energy</a> </p> <a href="https://publications.waset.org/abstracts/45088/heat-transfer-analysis-of-a-multiphase-oxygen-reactor-heated-by-a-helical-tube-in-the-cu-cl-cycle-of-a-hydrogen-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45088.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1476</span> Influence of La0.1Sr0.9Co1-xFexO3-δ Catalysts on Oxygen Permeation Using Mixed Conductor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Muto">Y. Muto</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Araki"> S. Araki</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Yamamoto"> H. Yamamoto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The separation of oxygen is one key technology to improve the efficiency and to reduce the cost for the processed of the partial oxidation of the methane and the condensation of the carbon dioxide. Particularly, carbon dioxide at high concentration would be obtained by the combustion using pure oxygen separated from air. However, the oxygen separation process occupied the large part of energy consumption. Therefore, it is considered that the membrane technologies enable to separation at lower cost and lower energy consumption than conventional methods. In this study, it is examined that the separation of oxygen using membranes of mixed conductors. Oxygen permeation through the membrane is occurred by the following three processes. At first, the oxygen molecules dissociate into oxygen ion at feed side of the membrane, subsequently, oxygen ions diffuse in the membrane. Finally, oxygen ions recombine to form the oxygen molecule. Therefore, it is expected that the membrane of thickness and material, or catalysts of the dissociation and recombination affect the membrane performance. However, there is little article about catalysts for the dissociation and recombination. We confirmed the performance of La0.6Sr0.4Co1.0O3-δ (LSC) based catalyst which was commonly used as the dissociation and recombination. It is known that the adsorbed amount of oxygen increase with the increase of doped Fe content in B site of LSC. We prepared the catalysts of La0.1Sr0.9Co0.9Fe0.1O3-δ(C9F1), La0.1Sr0.9Co0.5Fe0.5O3-δ(C5F5) and La0.1Sr0.9Co0.3Fe0.7O3-δ(C7F3). Also, we used Pr2NiO4 type mixed conductor as a membrane material. (Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+δ(PLNCG) shows the high oxygen permeability and the stability against carbon dioxide. Oxygen permeation experiments were carried out using a homemade apparatus at 850 -975 °C. The membrane was sealed with Pyrex glass at both end of the outside dense alumina tubes. To measure the oxygen permeation rate, air was fed to the film side at 50 ml min-1, helium as the sweep gas and reference gas was fed at 20 ml min-1. The flow rates of the sweep gas and the gas permeated through the membrane were measured using flow meter and the gas concentrations were determined using a gas chromatograph. Then, the permeance of the oxygen was determined using the flow rate and the concentration of the gas on the permeate side of the membrane. The increase of oxygen permeation was observed with increasing temperature. It is considered that this is due to the catalytic activities are increased with increasing temperature. Another reason is the increase of oxygen diffusivity in the bulk of membrane. The oxygen permeation rate is improved by using catalyst of LSC or LSCF. The oxygen permeation rate of membrane with LSCF showed higher than that of membrane with LSC. Furthermore, in LSCF catalysts, oxygen permeation rate increased with the increase of the doped amount of Fe. It is considered that this is caused by the increased of adsorbed amount of oxygen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=membrane%20separation" title="membrane separation">membrane separation</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen%20permeation" title=" oxygen permeation"> oxygen permeation</a>, <a href="https://publications.waset.org/abstracts/search?q=K2NiF4-type%20structure" title=" K2NiF4-type structure"> K2NiF4-type structure</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20conductor" title=" mixed conductor"> mixed conductor</a> </p> <a href="https://publications.waset.org/abstracts/35526/influence-of-la01sr09co1-xfexo3-d-catalysts-on-oxygen-permeation-using-mixed-conductor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35526.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">519</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1475</span> In-situ Oxygen Enrichment for UCG</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adesola%20O.%20Orimoloye">Adesola O. Orimoloye</a>, <a href="https://publications.waset.org/abstracts/search?q=Edward%20Gobina"> Edward Gobina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Membrane separation technology is still considered as an emerging technology in the mining sector and does not yet have the widespread acceptance that it has in other industrial sectors. Underground Coal Gasification (UCG), wherein coal is converted to gas in-situ, is a safer alternative to mining method that retains all pollutants underground making the process environmentally friendly. In-situ combustion of coal for power generation allows access to more of the physical global coal resource than would be included in current economically recoverable reserve estimates. Where mining is no longer taking place, for economic or geological reasons, controlled gasification permits exploitation of the deposit (again a reaction of coal to form a synthesis gas) of coal seams in situ. The oxygen supply stage is one of the most expensive parts of any gasification project but the use of membranes is a potentially attractive approach for producing oxygen-enriched air. In this study, a variety of cost-effective membrane materials that gives an optimal amount of oxygen concentrations in the range of interest was designed and tested at diverse operating conditions. Oxygen-enriched atmosphere improves the combustion temperature but a decline is observed if oxygen concentration exceeds optimum. Experimental result also reveals the preparatory method, apparatus and performance of the fabricated membrane. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=membranes" title="membranes">membranes</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen-enrichment" title=" oxygen-enrichment"> oxygen-enrichment</a>, <a href="https://publications.waset.org/abstracts/search?q=gasification" title=" gasification"> gasification</a>, <a href="https://publications.waset.org/abstracts/search?q=coal" title=" coal"> coal</a> </p> <a href="https://publications.waset.org/abstracts/21622/in-situ-oxygen-enrichment-for-ucg" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1474</span> Microwave-Assisted Synthesis of RuO2-TiO2 Electrodes with Improved Chlorine and Oxygen Evolutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tran%20Le%20Luu">Tran Le Luu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeyong%20Yoon"> Jeyong Yoon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> RuO2-TiO2 electrode now becomes popular in the chlor-alkali industry because of high electrocatalytic and stability with chlorine and oxygen evolutions. Using alternative green method for preparation RuO2-TiO2 electrode is necessary to reduce the cost, time. In addition, it is needed to increase the electrocatalyst performance, stability, and environmental compatibility. In this study, the Ti/RuO2-TiO2 electrodes were synthesized using sol-gel method under microwave irradiation and investigated for the anodic chlorine and oxygen evolutions. This method produced small size and uniform distribution of RuO2-TiO2 nanoparticles with mean diameter of 8-10 nm on the big crack size surface which contributes for the increasing of the outer active surface area. The chlorine, oxygen evolution efficiency and stability comparisons show considerably higher for microwave-assisted coated electrodes than for those obtained by the conventional heating method. The microwave-assisted sol-gel route has been identified as a novel and powerful method for quick synthesis of RuO2–TiO2 electrodes with excellent chlorine and oxygen evolution performances. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RuO2" title="RuO2">RuO2</a>, <a href="https://publications.waset.org/abstracts/search?q=electro-catalyst" title=" electro-catalyst"> electro-catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel" title=" sol-gel"> sol-gel</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave" title=" microwave"> microwave</a>, <a href="https://publications.waset.org/abstracts/search?q=chlorine" title=" chlorine"> chlorine</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen%20evolution" title=" oxygen evolution"> oxygen evolution</a> </p> <a href="https://publications.waset.org/abstracts/47602/microwave-assisted-synthesis-of-ruo2-tio2-electrodes-with-improved-chlorine-and-oxygen-evolutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47602.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1473</span> Impact of Water Storage Structures on Groundwater Recharge in Jeloula Basin, Central Tunisia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Farid">I. Farid</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Zouari"> K. Zouari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An attempt has been made to examine the effect of water storage structures on groundwater recharge in a semi-arid agroclimatic setting in Jeloula Basin (Central Tunisia). In this area, surface water in rivers is seasonal, and therefore groundwater is the perennial source of water supply for domestic and agricultural purposes. Three pumped storage water power plants (PSWPP) have been built to increase the overall water availability in the basin and support agricultural livelihoods of rural smallholders. The scale and geographical dispersion of these multiple lakes restrict the understanding of these coupled human-water systems and the identification of adequate strategies to support riparian farmers. In the present review, hydrochemistry and isotopic tools were combined to get an insight into the processes controlling mineralization and recharge conditions in the investigated aquifer system. This study showed a slight increase in the groundwater level, especially after the artificial recharge operations and a decline when the water volume moves down during drought periods. Chemical data indicate that the main sources of salinity in the waters are related to water-rock interactions. Data inferred from stable isotopes in groundwater samples indicated recharge with modern rainfall. The investigated surface water samples collected from the PSWPP are affected by a significant evaporation and reveal large seasonal variations, which could be controlled by the water volume changes in the open surface reservoirs and the meteorological conditions during evaporation, condensation, and precipitation. The geochemical information is comparable to the isotopic results and illustrates that the chemical and isotopic signatures of reservoir waters differ clearly from those of groundwaters. These data confirm that the contribution of the artificial recharge operations from the PSWPP is very limited. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeloula%20basin" title="Jeloula basin">Jeloula basin</a>, <a href="https://publications.waset.org/abstracts/search?q=recharge" title=" recharge"> recharge</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrochemistry" title=" hydrochemistry"> hydrochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=isotopes" title=" isotopes"> isotopes</a> </p> <a href="https://publications.waset.org/abstracts/120257/impact-of-water-storage-structures-on-groundwater-recharge-in-jeloula-basin-central-tunisia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120257.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oxygen%20isotopic&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oxygen%20isotopic&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oxygen%20isotopic&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oxygen%20isotopic&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oxygen%20isotopic&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oxygen%20isotopic&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oxygen%20isotopic&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oxygen%20isotopic&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oxygen%20isotopic&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oxygen%20isotopic&amp;page=50">50</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oxygen%20isotopic&amp;page=51">51</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oxygen%20isotopic&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10