CINXE.COM
Search results for: interal combustion engine
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: interal combustion engine</title> <meta name="description" content="Search results for: interal combustion engine"> <meta name="keywords" content="interal combustion engine"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="interal combustion engine" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="interal combustion engine"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1278</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: interal combustion engine</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1278</span> A Comparison Between the Internal Combustion Engine and Electric Motor in the Automobile</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jack%20Mason">Jack Mason</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Pourmovhed"> Ahmad Pourmovhed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper will discuss the advantages and disadvantages of the internal combustion engine when compared to different types of electric vehicles. The Internal Combustion Engine (ICE)'s overall cost, environmental impact, and usability will all be compared to different types of Electric Vehicles (EVs) including Battery Electric Vehicles (BEVs) and Hydrogen Fuel Cell Electric Vehicles (FCEVs). Also, the ways to solve the issues of the problems each vehicle presents will be discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interal%20combustion%20engine" title="interal combustion engine">interal combustion engine</a>, <a href="https://publications.waset.org/abstracts/search?q=battery%20electric%20vehicle" title=" battery electric vehicle"> battery electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20cell%20electric%20vehicle" title=" fuel cell electric vehicle"> fuel cell electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=emissions" title=" emissions"> emissions</a> </p> <a href="https://publications.waset.org/abstracts/143248/a-comparison-between-the-internal-combustion-engine-and-electric-motor-in-the-automobile" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143248.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1277</span> A Novel Combustion Engine, Design and Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Effati">M. A. Effati</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Hojjati"> M. R. Hojjati</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Razmdideh"> M. Razmdideh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, engine developments have focused on internal combustion engine design call for increased engine power, reduced engine size and improved fuel economy, simultaneously. In this paper, a novel design for combustion engine is proposed. Two combustion chambers were designed in two sides of cylinder. Piston was designed in a way that two sides of piston would transfer heat energy due to combustion to linear motion. This motion would convert to rotary motion through the designed mechanism connected to connecting rod. Connecting rod operation was analyzed to evaluate applied stress in 3000, 4500 and 6000 rpm. Boundary conditions including generated pressure in each side of cylinder in these 3 situations was calculated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combustion%20engine" title="combustion engine">combustion engine</a>, <a href="https://publications.waset.org/abstracts/search?q=design" title=" design"> design</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%0D%0Aelement%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a> </p> <a href="https://publications.waset.org/abstracts/33327/a-novel-combustion-engine-design-and-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33327.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1276</span> Performance and Combustion Characteristics of a DI Diesel Engine Fueled with Jatropha Methyl Esters and its Blends</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ajay%20V.%20Kolhe">Ajay V. Kolhe</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20E.%20Shelke"> R. E. Shelke</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Khandare"> S. S. Khandare</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study discusses the performance and combustion characteristics of a direct injection diesel engine fueled with Jatropha methyl ester (JME). In order to determine the performance and combustion characteristics, the experiments were conducted at the constant speed mode (1500rpm) under the full load condition of the engine on single cylinder 4-stroke CI engine. The result indicated that when the test engine was fuelled with JME, the engine performance slightly weakened, the combustion characteristics slightly changed when compared to petroleum based diesel fuel. The biodiesel caused reduction in carbon monoxide (CO), unburned hydrocarbon (HC) emissions, but they caused to increases in nitrogen oxides (NOx) emissions. The useful brake power obtained is similar to diesel fuel for all loads. Oxygen content in the exhaust is more with JME blend due to the reason that fuel itself contains oxygen. JME as a new Biodiesel and its blends can be used in diesel engines without any engine modification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion" title=" combustion"> combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=CI%20engine" title=" CI engine"> CI engine</a>, <a href="https://publications.waset.org/abstracts/search?q=jatropha%20curcas%20oil" title=" jatropha curcas oil"> jatropha curcas oil</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20and%20emission" title=" performance and emission"> performance and emission</a> </p> <a href="https://publications.waset.org/abstracts/5707/performance-and-combustion-characteristics-of-a-di-diesel-engine-fueled-with-jatropha-methyl-esters-and-its-blends" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5707.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1275</span> Determination of Optimum Torque of an Internal Combustion Engine by Exergy Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Veena%20Chaudhary">Veena Chaudhary</a>, <a href="https://publications.waset.org/abstracts/search?q=Rakesh%20P.%20Gakkhar"> Rakesh P. Gakkhar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, energy and exergy analysis are applied to the experimental data of an internal combustion engine operating on conventional diesel cycle. The experimental data are collected using an engine unit which enables accurate measurements of fuel flow rate, combustion air flow rate, engine load, engine speed and all relevant temperatures. First and second law efficiencies are calculated for different engine speed and compared. Results indicate that the first law (energy) efficiency is maximum at 1700 rpm whereas exergy efficiency is maximum and exergy destruction is minimum at 1900 rpm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diesel%20engine" title="diesel engine">diesel engine</a>, <a href="https://publications.waset.org/abstracts/search?q=exergy%20destruction" title=" exergy destruction"> exergy destruction</a>, <a href="https://publications.waset.org/abstracts/search?q=exergy%20efficiency" title=" exergy efficiency"> exergy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=second%20law%20of%20thermodynamics" title=" second law of thermodynamics"> second law of thermodynamics</a> </p> <a href="https://publications.waset.org/abstracts/51552/determination-of-optimum-torque-of-an-internal-combustion-engine-by-exergy-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1274</span> Study of Dual Fuel Engine as Environmentally Friendly Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nilam%20S.%20Octaviani">Nilam S. Octaviani</a>, <a href="https://publications.waset.org/abstracts/search?q=Semin"> Semin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The diesel engine is an internal combustion engine that uses compressed air to combust. The diesel engines are widely used in the world because it has the most excellent combustion efficiency than other types of internal combustion engine. However, the exhaust emissions of it produce pollutants that are harmful to human health and the environment. Therefore, natural gas used as an alternative fuel using on compression ignition engine to respond those environment issues. This paper aims to discuss the comparison of the technical characteristics and exhaust gases emission from conventional diesel engine and dual fuel diesel engine. According to the study, the dual fuel engine applications have a lower compression pressure and has longer ignition delay compared with normal diesel mode. The engine power is decreased at dual fuel mode. However, the exhaust gases emission on dual fuel engine significantly reduce the nitrogen oxide (NOx), carbon dioxide (CO<sub>2</sub>) and particular metter (PM) emissions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diesel%20engine" title="diesel engine">diesel engine</a>, <a href="https://publications.waset.org/abstracts/search?q=dual%20fuel%20diesel%20engine" title=" dual fuel diesel engine"> dual fuel diesel engine</a>, <a href="https://publications.waset.org/abstracts/search?q=emission%20reduction" title=" emission reduction"> emission reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=technical%20characteristics" title=" technical characteristics"> technical characteristics</a> </p> <a href="https://publications.waset.org/abstracts/61852/study-of-dual-fuel-engine-as-environmentally-friendly-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61852.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1273</span> Modeling of Combustion Process in the Piston Aircraft Engine Using a MCFM-3Z Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Szlachetka">Marcin Szlachetka</a>, <a href="https://publications.waset.org/abstracts/search?q=Konrad%20Pietrykowski"> Konrad Pietrykowski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modeling of a combustion process in a 9-cylinder aircraft engine is presented. The simulations of the combustion process in the IC engine have provided the information on the spatial and time distributions of selected quantities within the combustion chamber of the engine. The numerical analysis results have been compared with the results of indication process of the engine on the test stand. Modeling of combustion process an auto-ignited IC engine in the AVL Fire was carried out within the study. For the calculations, a ECFM-3Z model was used. Verification of simulation results was carried out by comparison of the pressure in the cylinder. The courses of indicated pressure, obtained from the simulations and during the engine tests mounted on a test stand were compared. The engine was braked by the propeller, which results in an adequate external power characteristics. The test object is a modified ASz-62IR engine with the injection system. The engine was running at take-off power. To check the optimum ignition timing regarding power, calculations, tests were performed for 7 different moments of ignition. The analyses of temperature distribution in the cylinder depending on the moments of ignition were carried out. Additional the course of pressure in the cylinder at different angles of ignition delays of the second spark plug were examined. The swirling of the mixture in the combustion chamber was also analysed. It has been shown that the largest vortexes occur in the middle of the chamber, and gets smaller, closer to the combustion chamber walls. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under Grant Agreement No. INNOLOT/I/1/NCBR/2013. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion" title=" combustion"> combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20combustion%20engine" title=" internal combustion engine"> internal combustion engine</a>, <a href="https://publications.waset.org/abstracts/search?q=aircraft%20engine" title=" aircraft engine"> aircraft engine</a> </p> <a href="https://publications.waset.org/abstracts/50210/modeling-of-combustion-process-in-the-piston-aircraft-engine-using-a-mcfm-3z-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50210.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1272</span> The Effect of Combustion Chamber Deposits (CCD) on Homogeneous Change Compression Ignition (HCCI)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulmagid%20A.%20Khattabi">Abdulmagid A. Khattabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20Hablus"> Ahmed A. Hablus</a>, <a href="https://publications.waset.org/abstracts/search?q=Osama%20Ab.%20M.%20Shafah"> Osama Ab. M. Shafah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of this work is to understand how the thermal influence of combustion chamber deposits can be utilized to expand the operating range of HCCI combustion. In order to do this, two main objectives must first be met; tracking deposit formation trends in an HCCI engine and determining the sensitivity of HCCI combustion to CCD. This requires testing that demonstrates the differences in combustion between a clean engine and one with deposits coating the chamber. This will involve a long-term test that tracks the effects of CCD on combustion. The test will start with a clean engine. One baseline HCCI operating point is maintained for the duration of the test during which gradual combustion chamber deposit formation will occur. Combustion parameters, including heat release rates and emissions will be tracked for the duration and compared to the case of a clean engine. This work will begin by detailing the specifics of the test procedure and measurements taken throughout the test. Then a review of the effects of the gradual formation of deposits in the engine will be given. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuels" title="fuels">fuels</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20atomization" title=" fuel atomization"> fuel atomization</a>, <a href="https://publications.waset.org/abstracts/search?q=pattern%20factor" title=" pattern factor"> pattern factor</a>, <a href="https://publications.waset.org/abstracts/search?q=alternate%20fuels%20combustion" title=" alternate fuels combustion"> alternate fuels combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency%20gas%20turbine%20combustion" title=" efficiency gas turbine combustion"> efficiency gas turbine combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=lean%20blow%20out" title=" lean blow out"> lean blow out</a>, <a href="https://publications.waset.org/abstracts/search?q=exhaust%20and%20liner%20wall%20temperature" title=" exhaust and liner wall temperature"> exhaust and liner wall temperature</a> </p> <a href="https://publications.waset.org/abstracts/13801/the-effect-of-combustion-chamber-deposits-ccd-on-homogeneous-change-compression-ignition-hcci" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13801.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">527</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1271</span> Experimental Study of Water Injection into Manifold on Engine Performance and Emissions in Compression Ignition Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Rajmohan">N. Rajmohan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Swaminathan"> M. R. Swaminathan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The performance of a diesel engine depends mainly on mixing of the fuel and air in the combustion chamber. The diesel engine suffers from significant generation of nitric oxide and particulate matter emission due to incomplete combustion. As the fuel is injected directly into the combustion chamber in conventional diesel engines, spatial distributions of air-fuel ratio vary widely from rich to lean in combustion chamber. The NOx is formed in stoichiometric zone and smoke is generated during diffusion combustion period where the combustion rate becomes slower. One of the effective methods to reduce oxides of nitrogen and particulate matter emissions simultaneously is to reduce the intake charge temperature in diesel engines. Therefore, in the present study, the effect of water injection into intake air on performance and emission characteristic of single cylinder CI engine are carried out at different load and constant speed, with variable water to diesel ratio by mass. The water is injected into intake air by an elementary carburetor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=engine%20emission%20control" title="engine emission control">engine emission control</a>, <a href="https://publications.waset.org/abstracts/search?q=oxides%20of%20nitrogen" title=" oxides of nitrogen"> oxides of nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=diesel%20engine" title=" diesel engine"> diesel engine</a>, <a href="https://publications.waset.org/abstracts/search?q=ignition%20engine" title=" ignition engine"> ignition engine</a> </p> <a href="https://publications.waset.org/abstracts/10234/experimental-study-of-water-injection-into-manifold-on-engine-performance-and-emissions-in-compression-ignition-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10234.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1270</span> Combustion Characteristics of Bioethanol-Biodiesel-Diesel Fuel Blends Used in a Common Rail Diesel Engine </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Aydogan">Hasan Aydogan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The changes in the performance, emission and combustion characteristics of bioethanol-safflower biodiesel and diesel fuel blends used in a common rail diesel engine were investigated in this experimental study. E20B20D60 (20% bioethanol, 20% biodiesel, 60% diesel fuel by volume), E30B20D50, E50B20D30 and diesel fuel (D) were used as fuel. The tests were performed at full throttle valve opening and variable engine speeds. The results of the tests showed decreases in engine power, engine torque, carbon monoxide (CO), hydrocarbon (HC) and smoke density values with the use of bioethanol-biodiesel and diesel fuel blends, whereas, increases were observed in nitrogen oxide (NOx) and brake specific fuel consumption (BSFC) values. When combustion characteristics were examined, it was seen that the values were close to one another. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioethanol" title="bioethanol">bioethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title=" biodiesel"> biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=safflower" title=" safflower"> safflower</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion%20characteristics" title=" combustion characteristics"> combustion characteristics</a> </p> <a href="https://publications.waset.org/abstracts/6129/combustion-characteristics-of-bioethanol-biodiesel-diesel-fuel-blends-used-in-a-common-rail-diesel-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6129.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">524</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1269</span> Numerical Investigation of the Effect of the Spark Plug Gap on Engine-Like Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fernanda%20Pinheiro%20Martins">Fernanda Pinheiro Martins</a>, <a href="https://publications.waset.org/abstracts/search?q=Pedro%20Teixeira%20Lacava"> Pedro Teixeira Lacava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this research is to analyze the effects of different spark plug conditions in engine-like conditions by applying computational fluid dynamics analysis. The 3D models applied consist of 3-Zones Extended Coherent Flame (ECFM-3Z) and Imposed Stretch Spark Ignition Model (ISSIM), respectively, for the combustion and the spark plug modelling. For this study, it was applied direct injection fuel system in a single cylinder engine operating with E0. The application of realistic operating conditions (load and speed) to the different cases studied will provide a deeper understanding of the effects of the spark plug gap, a result of parts outwearing in most of the cases, to the development of the combustion in engine-like conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=engine" title="engine">engine</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20injection" title=" direct injection"> direct injection</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion" title=" combustion"> combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=spark%20plug" title=" spark plug"> spark plug</a> </p> <a href="https://publications.waset.org/abstracts/156457/numerical-investigation-of-the-effect-of-the-spark-plug-gap-on-engine-like-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156457.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1268</span> By-Product Alcohol: Fusel Oil as an Alternative Fuel in Spark Ignition Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omar%20Awad">Omar Awad</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Mamat"> R. Mamat</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Yusop"> F. Yusop</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Noor"> M. M. Noor</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20M.%20Yusri"> I. M. Yusri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fusel oil is a by-product obtained through the fermentation of some agricultural products. The fusel oil properties are closer to other alternative combustible types and the limited number of studies on the use of fusel oil as an alcohol derivative in SI engines constitutes to the base of this study. This paper experimentally examined the impacts of a by-product of alcohol, which is fusel oil by blending it with gasoline, on engine performance, combustion characteristics, and emissions in a 4-cylinder SI engine. The test was achieved at different engine speeds and a 60 % throttle valve (load). As results, brake power, BTE, and BSFC of F10 are higher at all engine speeds. Maximum engine BTE was 33.9%, at the lowest BSFC with F10. Moreover, it is worth seeing that the F10 under rich air-fuel ratio has less variation of COVIMEP compared to the F20 and gasoline. F10 represents shorter combustion duration, thereby, the engine power increased. NOx emission for F10 at 4500 rpm was lower than gasoline. The highest value of HC emission is obtained with F10 compared to gasoline and F20 with an average increase of 11% over the engine speed range. CO and CO2 emissions increased when using fusel oil blends. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fusel%20oil" title="fusel oil">fusel oil</a>, <a href="https://publications.waset.org/abstracts/search?q=spark%20ignition%20engine" title=" spark ignition engine"> spark ignition engine</a>, <a href="https://publications.waset.org/abstracts/search?q=by-product%20alcohol" title=" by-product alcohol"> by-product alcohol</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion%20characteristics" title=" combustion characteristics"> combustion characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=engine%20emissions" title=" engine emissions"> engine emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=alternative%20fuel" title=" alternative fuel"> alternative fuel</a> </p> <a href="https://publications.waset.org/abstracts/69504/by-product-alcohol-fusel-oil-as-an-alternative-fuel-in-spark-ignition-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69504.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">473</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1267</span> An Approach towards Elementary Investigation on HCCI Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jitendra%20Sharma">Jitendra Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Here a Homogeneous Charge is used as in a spark-ignited engine, but the charge is compressed to auto ignition as in a diesel. The main difference compared with the Spark Ignition (SI) engine is the lack of flame propagation and hence the independence from turbulence. Compared with the diesel engine. HCCI has a homogeneous charge and have no problems associated with soot and Nox but HC and CO were higher than in SI mode. It was not possible to achieve high IMEP (Indicated Mean Effective Pressure) values with HCCI. The Homogeneous charge compression ignition (HCCI) is an attractive technology because of its high efficiency and low emissions. However, HCCI lakes a direct combustion trigger making control of combustion timing challenging, especially during transients. To aid in HCCI engine control we present a simple model of the HCCI combustion process valid over a range of intake pressures, intake temperatures, equivalence ratios and engine speeds. HCCI a new combustion technology that may develop as an alternative to diesel engines with high efficiency and low Knox and particulate matter emissions. The homogenous charge compression ignition (HCCI) is a promising new engine technology that combines elements of the diesel and gasoline engine operating cycles. HCCI as a way to increase the efficiency of the gasoline engine. The attractive properties are increased fuel efficiency due to reduced throttling losses, increased expansion ratio and higher thermodynamic efficiency. With the advantages there are some mechanical limitations to the operation of the HCCI engine. The implementation of homogenous charge compression ignition (HCCI) to gasoline engines is constrained by many factors. The main drawback of HCCI is the absence of direct combustion timing control. Therefore all the right conditions for auto ignition have to be set before combustion starts. This paper describes the past and current research done on HCCI engine. Many research got considerable success in doing detailed modeling of HCCI combustion. This paper aims at studying the fundamentals of HCCI combustion, the strategy to control the limitation of HCCI engine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HCCI" title="HCCI">HCCI</a>, <a href="https://publications.waset.org/abstracts/search?q=diesel%20engine" title=" diesel engine"> diesel engine</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion" title=" combustion"> combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=elementary%20investigation" title=" elementary investigation"> elementary investigation</a> </p> <a href="https://publications.waset.org/abstracts/21688/an-approach-towards-elementary-investigation-on-hcci-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21688.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1266</span> Numerical Analysis of Engine Performance and Emission of a 2-Stroke Opposed Piston Hydrogen Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bahamin%20Bazooyar">Bahamin Bazooyar</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinyan%20Wang"> Xinyan Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hua%20Zhao"> Hua Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a zero-carbon fuel, hydrogen can be used in combustion engines to avoid carbon emissions. This paper numerically investigates the engine performance of a two-stroke opposed piston hydrogen engine by using three-dimensional (3D) Computational Fluid Dynamics (CFD) simulations. The engine displacement is 12.2 cm, and the compression ratio of 39. RANS simulations with the k-ε turbulence model and coupled chemistry combustion models are performed at an engine speed of 4500 rpm and hydrogen flow rate of up to 100 gr/s. In order to model the hydrogen injection process, the hydrogen nozzle was meshed with refined mesh, and injection pressure varied between 100 and 200 bars. In order to optimize the hydrogen combustion process, the injection timing was optimized between 15 before the top dead center and 10. The results showed that the combustion efficiency was mostly influenced by the injection pressures due to its impact on the fuel/air mixing and charge inhomogeneity. Nitrogen oxide (NOₓ) emissions are well correlated with engine peak temperatures, demonstrating that the thermal NO mechanism is dominant under engine conditions. Through the optimization of hydrogen injection timing and pressure, the peak thermal efficiency of 45 and NOx emission of 15 ppm/kWh can be achieved at an injection timing of 350 CA and pressure of 160 bars. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=engine" title="engine">engine</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title=" hydrogen"> hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=diesel" title=" diesel"> diesel</a>, <a href="https://publications.waset.org/abstracts/search?q=two-stroke" title=" two-stroke"> two-stroke</a>, <a href="https://publications.waset.org/abstracts/search?q=opposed-piston" title=" opposed-piston"> opposed-piston</a>, <a href="https://publications.waset.org/abstracts/search?q=decarbonisation" title=" decarbonisation"> decarbonisation</a> </p> <a href="https://publications.waset.org/abstracts/194593/numerical-analysis-of-engine-performance-and-emission-of-a-2-stroke-opposed-piston-hydrogen-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194593.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">7</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1265</span> The Effect of Micro-Arc Oxidation Coated Piston Crown on Engine Characteristics in a Spark Ignited Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.Velavan">A.Velavan</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20G.%20Saravanan"> C. G. Saravanan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Vikneswaran"> M. Vikneswaran</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20James%20Gunasekaran"> E. James Gunasekaran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In present investigation, experiments were carried out to compare the effect of the ceramic coated piston crown and uncoated piston on combustion, performance and emission characteristics of a port injected Spark Ignited engine. The piston crown was coated with aluminium alloy in the form ceramic oxide layer of thickness 500 µm using micro-arc oxidation technique. This ceramic coating will act as a thermal barrier which reduces in-cylinder heat rejection and increases the durability of the piston by withstanding high temperature and pressure produced during combustion. Flame visualization inside the combustion chamber was carried out using AVL Visioscope combustion analyzer to predict the type of combustion occurs at different load condition. Based on the experimental results, it was found that the coated piston shows an improved thermal efficiency when compared to uncoated piston. This is because more heat presents in the combustion chamber which helps efficient combustion of the fuel. The CO and HC emissions were found to be reduced due to better combustion of the fuel whereas NOx emission was increased due to increase in combustion temperature for ceramic coated piston. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coated%20piston" title="coated piston">coated piston</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-arc%20oxidation" title=" micro-arc oxidation"> micro-arc oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20barrier" title=" thermal barrier"> thermal barrier</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20efficiency" title=" thermal efficiency"> thermal efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=visioscope" title=" visioscope"> visioscope</a> </p> <a href="https://publications.waset.org/abstracts/103542/the-effect-of-micro-arc-oxidation-coated-piston-crown-on-engine-characteristics-in-a-spark-ignited-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1264</span> Development of a Plug-In Hybrid Powertrain System with Double Continuously Variable Transmissions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cheng-Chi%20Yu">Cheng-Chi Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chi-Shiun%20Chiou"> Chi-Shiun Chiou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study developed a plug-in hybrid powertrain system which consisted of two continuous variable transmissions. By matching between the engine, motor, generator, and dual continuous variable transmissions, this integrated power system can take advantages of the components. The hybrid vehicle can be driven by the internal combustion engine, or electric motor alone, or by these two power sources together when the vehicle is driven in hard acceleration or high load. The energy management of this integrated hybrid system controls the power systems based on rule-based control strategy to achieve better fuel economy. When the vehicle driving power demand is low, the internal combustion engine is operating in the low efficiency region, so the internal combustion engine is shut down, and the vehicle is driven by motor only. When the vehicle driving power demand is high, internal combustion engine would operate in the high efficiency region; then the vehicle could be driven by internal combustion engine. This strategy would operate internal combustion engine only in optimal efficiency region to improve the fuel economy. In this research, the vehicle simulation model was built in MATLAB/ Simulink environment. The analysis results showed that the power coupled efficiency of the hybrid powertrain system with dual continuous variable transmissions was better than that of the Honda hybrid system on the market. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plug-in%20hybrid%20power%20system" title="plug-in hybrid power system">plug-in hybrid power system</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20economy" title=" fuel economy"> fuel economy</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=continuously%20variable%20transmission" title=" continuously variable transmission"> continuously variable transmission</a> </p> <a href="https://publications.waset.org/abstracts/50655/development-of-a-plug-in-hybrid-powertrain-system-with-double-continuously-variable-transmissions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50655.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1263</span> Analysis of Automotive Sensor for Engine Knock System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Miroslav%20Gutten">Miroslav Gutten</a>, <a href="https://publications.waset.org/abstracts/search?q=Jozef%20Jurcik"> Jozef Jurcik</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Korenciak"> Daniel Korenciak</a>, <a href="https://publications.waset.org/abstracts/search?q=Milan%20Sebok"> Milan Sebok</a>, <a href="https://publications.waset.org/abstracts/search?q=Matej%20Kuceraa"> Matej Kuceraa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the phenomenon of the undesirable detonation combustion in internal combustion engines. A control unit of the engine monitors these detonations using piezoelectric knock sensors. With the control of these sensors the detonations can be objectively measured just outside the car. If this component provides small amplitude of the output voltage it could happen that there would have been in the areas of the engine ignition combustion. The paper deals with the design of a simple device for the detection of this disorder. A construction of the testing device for the knock sensor suitable for diagnostics of knock combustion in internal combustion engines will be presented. The output signal of presented sensor will be described by Bessel functions. Using the first voltage extremes on the characteristics it is possible to create a reference for the evaluation of the polynomial residue. It should be taken into account that the velocity of sound in air is 330 m/s. This sound impinges on the walls of the combustion chamber and is detected by the sensor. The resonant frequency of the clicking of the motor is usually in the range from 5 kHz to 15 kHz. The sensor worked in the field to 37 kHz, which shall be taken into account on an own sensor resonance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diagnostics" title="diagnostics">diagnostics</a>, <a href="https://publications.waset.org/abstracts/search?q=knock%20sensor" title=" knock sensor"> knock sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=measurement" title=" measurement"> measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=testing%20device" title=" testing device"> testing device</a> </p> <a href="https://publications.waset.org/abstracts/23298/analysis-of-automotive-sensor-for-engine-knock-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23298.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1262</span> Numerical Investigation of Oxy-Fuel Combustion in Gasoline Engine for Carbon Capture and Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhijun%20Peng">Zhijun Peng</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiang%20Li"> Xiang Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Dayou%20Li"> Dayou Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Raouf%20Mobasheri"> Raouf Mobasheri</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdel%20Aitouche"> Abdel Aitouche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To implement carbon capture and storage (CCS) for eliminating carbon dioxide (CO₂) emissions, this paper describes a study on oxy-fuel combustion (OFC) with an ethanol-gasoline dual-fuel spark ignition (DFSI) engine under economical oxygen consumption at low and mid-high loads which was performed by 1D simulation. It is demonstrated that under OFC mode without other optimisation, brake mean effective pressure (BMEP) can meet the requirement at mid-high load, but it has a considerable decline at low load compared to conventional air combustion (CAC) mode. Moreover, there is a considerable deterioration in brake specific fuel consumption (BSFC) compared to that of CAC mode. A practical method is proposed to optimise the DFSI engine performance under OFC mode by changing intake charge components and utilising appropriate water injection (WI) strategies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oxy-fuel%20combustion" title="oxy-fuel combustion">oxy-fuel combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=dual-fuel%20spark%20ignition%20engine" title=" dual-fuel spark ignition engine"> dual-fuel spark ignition engine</a>, <a href="https://publications.waset.org/abstracts/search?q=ethanol" title=" ethanol"> ethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=gasoline" title=" gasoline"> gasoline</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20simulation" title=" computer simulation"> computer simulation</a> </p> <a href="https://publications.waset.org/abstracts/150775/numerical-investigation-of-oxy-fuel-combustion-in-gasoline-engine-for-carbon-capture-and-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150775.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1261</span> Flame Kernel Growth and Related Effects of Spark Plug Electrodes: Fluid Motion Interaction in an Optically Accessible DISI Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Schirru">A. Schirru</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Irimescu"> A. Irimescu</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Merola"> S. Merola</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20d%E2%80%99Adamo"> A. d’Adamo</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Fontanesi"> S. Fontanesi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the aspects that are usually neglected during the design phase of an engine is the effect of the spark plug on the flow field inside the combustion chamber. Because of the difficulties in the experimental investigation of the mutual interaction between flow alteration and early flame kernel convection effect inside the engine combustion chamber, CFD-3D simulation is usually exploited in such cases. Experimentally speaking, a particular type of engine has to be used in order to directly observe the flame propagation process. In this study, a double electrode spark plug was fitted into an optically accessible engine and a high-speed camera was used to capture the initial stages of the combustion process. Both the arc and the kernel phases were observed. Then, a morphologic analysis was carried out and the position of the center of mass of the flame, relative to the spark plug position, was calculated. The crossflow orientation was chosen for the spark plug and the kernel growth process was observed for different air-fuel ratios. It was observed that during a normal cycle the flow field between the electrodes tends to transport the arc deforming it. Because of that, the kernel growth phase takes place away from the electrodes and the flame propagates with a preferential direction dictated by the flow field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Combustion" title="Combustion">Combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=Optically%20Accessible%20Engine" title=" Optically Accessible Engine"> Optically Accessible Engine</a>, <a href="https://publications.waset.org/abstracts/search?q=Spark-Ignition%20Engine" title=" Spark-Ignition Engine"> Spark-Ignition Engine</a>, <a href="https://publications.waset.org/abstracts/search?q=Sparl%20Orientation" title=" Sparl Orientation"> Sparl Orientation</a>, <a href="https://publications.waset.org/abstracts/search?q=Kernel%20Growth" title=" Kernel Growth"> Kernel Growth</a> </p> <a href="https://publications.waset.org/abstracts/122902/flame-kernel-growth-and-related-effects-of-spark-plug-electrodes-fluid-motion-interaction-in-an-optically-accessible-disi-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122902.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1260</span> Influence of Valve Lift Timing on Producer Gas Combustion and Its Modeling Using Two-Stage Wiebe Function</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Sreedhar%20Babu">M. Sreedhar Babu</a>, <a href="https://publications.waset.org/abstracts/search?q=Vishal%20Garg"> Vishal Garg</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20B.%20Akella"> S. B. Akella</a>, <a href="https://publications.waset.org/abstracts/search?q=Shibu%20Clement"> Shibu Clement</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20K.%20S%20Rajan"> N. K. S Rajan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Producer gas is a biomass derived gaseous fuel which is extensively used in internal combustion engines for power generation application. Unlike the conventional hydrocarbon fuels (Gasoline and Natural gas), the combustion properties of producer gas fuel are much different. Therefore, setting of optimal spark time for efficient engine operation is required. Owing to the fluctuating tendency of producer gas composition during gasification process, the heat release patterns (dictating the power output and emissions) obtained are quite different from conventional fuels. It was found that, valve lift timing is yet another factor which influences the burn rate of producer gas fuel, and thus, the heat release rate of the engine. Therefore, the present study was motivated to estimate the influence of valve lift timing analytically (Wiebe model) on the burn rate of producer gas through curve fitting against experimentally obtained mass fraction burn curves of several producer gas compositions. Furthermore, Wiebe models are widely used in zero-dimensional codes for engine parametric studies and are quite popular. This study also addresses the influence of hydrogen and methane concentration of producer gas on combustion trends, which are known to cause dynamics in engine combustion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combustion%20duration%20%28CD%29" title="combustion duration (CD)">combustion duration (CD)</a>, <a href="https://publications.waset.org/abstracts/search?q=crank%20angle%20%28CA%29" title=" crank angle (CA)"> crank angle (CA)</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20fraction%20burnt%20%28MFB%29" title=" mass fraction burnt (MFB)"> mass fraction burnt (MFB)</a>, <a href="https://publications.waset.org/abstracts/search?q=producer%20sas%20%28PG%29" title=" producer sas (PG)"> producer sas (PG)</a>, <a href="https://publications.waset.org/abstracts/search?q=Wiebe%20Combustion%20Model%20%28WCM%29" title=" Wiebe Combustion Model (WCM)"> Wiebe Combustion Model (WCM)</a>, <a href="https://publications.waset.org/abstracts/search?q=wide%20open%20throttle%20%28WOT%29" title=" wide open throttle (WOT)"> wide open throttle (WOT)</a> </p> <a href="https://publications.waset.org/abstracts/64730/influence-of-valve-lift-timing-on-producer-gas-combustion-and-its-modeling-using-two-stage-wiebe-function" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64730.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1259</span> Radial Fuel Injection Computational Fluid Dynamics Model for a Compression Ignition Two-Stroke Opposed Piston Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tytus%20Tulwin">Tytus Tulwin</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafal%20Sochaczewski"> Rafal Sochaczewski</a>, <a href="https://publications.waset.org/abstracts/search?q=Ksenia%20Siadkowska"> Ksenia Siadkowska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Designing a new engine requires a large number of different cases to be considered. Especially different injector parameters and combustion chamber geometries. This is essential when developing an engine with unconventional build – compression ignition, two-stroke operating with direct side injection. Computational Fluid Dynamics modelling allows to test those different conditions and seek for the best conditions with correct combustion. This research presents the combustion results for different injector and combustion chamber cases. The shape of combustion chamber is different than for conventional engines as it requires side injection. This completely changes the optimal shape for the given condition compared to standard automotive heart shaped combustion chamber. Because the injection is not symmetrical there is a strong influence of cylinder swirl and piston motion on the injected fuel stream. The results present the fuel injection phenomena allowing to predict the right injection parameters for a maximum combustion efficiency and minimum piston heat loads. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK "PZL-KALISZ" S.A." and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion" title=" combustion"> combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=injection" title=" injection"> injection</a>, <a href="https://publications.waset.org/abstracts/search?q=opposed%20piston" title=" opposed piston"> opposed piston</a> </p> <a href="https://publications.waset.org/abstracts/81597/radial-fuel-injection-computational-fluid-dynamics-model-for-a-compression-ignition-two-stroke-opposed-piston-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81597.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1258</span> Effect of Injection Strategy on the Performance and Emission of E85 in a Heavy-Duty Engine under Partially Premixed Combustion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Aziz">Amir Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Tuner"> Martin Tuner</a>, <a href="https://publications.waset.org/abstracts/search?q=Sebastian%20Verhelst"> Sebastian Verhelst</a>, <a href="https://publications.waset.org/abstracts/search?q=Oivind%20Andersson"> Oivind Andersson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Partially Premixed Combustion (PPC) is a combustion concept which aims to simultaneously achieve high efficiency and low engine-out emissions. Extending the ignition delay to promote the premixing, has been recognized as one of the key factor to achieve PPC. Fuels with high octane number have been proven to be a good candidates to extend the ignition delay. In this work, E85 (85% ethanol) has been used as a PPC fuel. The aim of this work was to investigate a suitable injection strategy for PPC combustion fueled with E85 in a single-cylinder heavy-duty engine. Single and double injection strategy were applied with different injection timing and the ratio between different injection pulses was varied. The performance and emission were investigated at low load. The results show that the double injection strategy should be preferred for PPC fueled with E85 due to low emissions and high efficiency, while keeping the pressure raise rate at very low levels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=E85" title="E85">E85</a>, <a href="https://publications.waset.org/abstracts/search?q=partially%20premixed%20combustion" title=" partially premixed combustion"> partially premixed combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=injection%20strategy" title=" injection strategy"> injection strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20and%20emission" title=" performance and emission"> performance and emission</a> </p> <a href="https://publications.waset.org/abstracts/85102/effect-of-injection-strategy-on-the-performance-and-emission-of-e85-in-a-heavy-duty-engine-under-partially-premixed-combustion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85102.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1257</span> Effect of Carbon Nanotubes Functionalization with Nitrogen Groups on Pollutant Emissions in an Internal Combustion Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20Gamboa">David Gamboa</a>, <a href="https://publications.waset.org/abstracts/search?q=Bernardo%20Herrera"> Bernardo Herrera</a>, <a href="https://publications.waset.org/abstracts/search?q=Karen%20Cacua"> Karen Cacua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanomaterials have been explored as alternatives to reduce particulate matter from diesel engines, which is one of the most common pollutants of the air in urban centers. However, the use of nanomaterials as additives for diesel has to overcome the instability of the dispersions to be considered viable for commercial use. In this work, functionalization of carbon nanotubes with amide groups was performed to improve the stability of these nanomaterials in a mix of 90% petroleum diesel and 10% palm oil biodiesel (B10) in concentrations of 50 and 100 ppm. The resulting nano fuel was used as the fuel for a stationary internal combustion engine, where the particulate matter, NOx, and CO were measured. The results showed that the use of amide groups significantly enhances the time for the carbon nanotubes to remain suspended in the fuel, and at the same time, these nanomaterials helped to reduce the particulate matter and NOx emissions. However, the CO emissions with nano fuel were higher than those ones with the combustion of B10. These results suggest that carbon nanotubes have thermal and catalytic effects on the combustion of B10. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title="carbon nanotubes">carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=diesel" title=" diesel"> diesel</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20combustion%20engine" title=" internal combustion engine"> internal combustion engine</a>, <a href="https://publications.waset.org/abstracts/search?q=particulate%20matter" title=" particulate matter"> particulate matter</a> </p> <a href="https://publications.waset.org/abstracts/156085/effect-of-carbon-nanotubes-functionalization-with-nitrogen-groups-on-pollutant-emissions-in-an-internal-combustion-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156085.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1256</span> Control-Oriented Enhanced Zero-Dimensional Two-Zone Combustion Modelling of Internal Combustion Engines </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Razieh%20Arian">Razieh Arian</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadi%20Adibi-Asl"> Hadi Adibi-Asl</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates an efficient combustion modeling for cycle simulation of internal combustion engine (ICE) studies. The term “efficient model” means that the models must generate desired simulation results while having fast simulation time. In other words, the efficient model is defined based on the application of the model. The objective of this study is to develop math-based models for control applications or shortly control-oriented models. This study compares different modeling approaches used to model the ICEs such as mean-value models, zero dimensional, quasi-dimensional, and multi-dimensional models for control applications. Mean-value models have been widely used for model-based control applications, but recently by developing advanced simulation tools (e.g. Maple/MapleSim) the higher order models (more complex) could be considered as control-oriented models. This paper presents the enhanced zero-dimensional cycle-by-cycle modeling and simulation of a spark ignition engine with a two-zone combustion model. The simulation results are cross-validated against the simulation results from GT-Power package and show a good agreement in terms of trends and values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Two-zone%20combustion" title="Two-zone combustion">Two-zone combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=control-oriented%20model" title=" control-oriented model"> control-oriented model</a>, <a href="https://publications.waset.org/abstracts/search?q=wiebe%20function" title=" wiebe function"> wiebe function</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20combustion%20engine" title=" internal combustion engine"> internal combustion engine</a> </p> <a href="https://publications.waset.org/abstracts/59939/control-oriented-enhanced-zero-dimensional-two-zone-combustion-modelling-of-internal-combustion-engines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59939.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1255</span> NOx Prediction by Quasi-Dimensional Combustion Model of Hydrogen Enriched Compressed Natural Gas Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anas%20Rao">Anas Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao%20Duan"> Hao Duan</a>, <a href="https://publications.waset.org/abstracts/search?q=Fanhua%20Ma"> Fanhua Ma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The dependency on the fossil fuels can be minimized by using the hydrogen enriched compressed natural gas (HCNG) in the transportation vehicles. However, the NOx emissions of HCNG engines are significantly higher, and this turned to be its major drawback. Therefore, the study of NOx emission of HCNG engines is a very important area of research. In this context, the experiments have been performed at the different hydrogen percentage, ignition timing, air-fuel ratio, manifold-absolute pressure, load and engine speed. Afterwards, the simulation has been accomplished by the quasi-dimensional combustion model of HCNG engine. In order to investigate the NOx emission, the NO mechanism has been coupled to the quasi-dimensional combustion model of HCNG engine. The three NOx mechanism: the thermal NOx, prompt NOx and N2O mechanism have been used to predict NOx emission. For the validation purpose, NO curve has been transformed into NO packets based on the temperature difference of 100 K for the lean-burn and 60 K for stoichiometric condition. While, the width of the packet has been taken as the ratio of crank duration of the packet to the total burnt duration. The combustion chamber of the engine has been divided into three zones, with the zone equal to the product of summation of NO packets and space. In order to check the accuracy of the model, the percentage error of NOx emission has been evaluated, and it lies in the range of ±6% and ±10% for the lean-burn and stoichiometric conditions respectively. Finally, the percentage contribution of each NO formation has been evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quasi-dimensional%20combustion" title="quasi-dimensional combustion ">quasi-dimensional combustion </a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20NO" title=" thermal NO"> thermal NO</a>, <a href="https://publications.waset.org/abstracts/search?q=prompt%20NO" title=" prompt NO"> prompt NO</a>, <a href="https://publications.waset.org/abstracts/search?q=NO%20packet" title=" NO packet"> NO packet</a> </p> <a href="https://publications.waset.org/abstracts/74819/nox-prediction-by-quasi-dimensional-combustion-model-of-hydrogen-enriched-compressed-natural-gas-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74819.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1254</span> A Dual Spark Ignition Timing Influence for the High Power Aircraft Radial Engine Using a CFD Transient Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tytus%20Tulwin">Tytus Tulwin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ksenia%20Siadkowska"> Ksenia Siadkowska</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafa%C5%82%20Sochaczewski"> Rafał Sochaczewski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A high power radial reciprocating engine is characterized by a large displacement volume of a combustion chamber. Choosing the right moment for ignition is important for a high performance or high reliability and ignition certainty. This work shows methods of simulating ignition process and its impact on engine parameters. For given conditions a flame speed is limited when a deflagration combustion takes place. Therefore, a larger length scale of the combustion chamber compared to a standard size automotive engine makes combustion take longer time to propagate. In order to speed up the mixture burn-up time the second spark is introduced. The transient Computational Fluid Dynamics model capable of simulating multicycle engine processes was developed. The CFD model consists of ECFM-3Z combustion and species transport models. A relative ignition timing difference for the both spark sources is constant. The temperature distribution on engine walls was calculated in the separate conjugate heat transfer simulation. The in-cylinder pressure validation was performed for take-off power flight conditions. The influence of ignition timing on parameters like in-cylinder temperature or rate of heat release was analyzed. The most advantageous spark timing for the highest power output was chosen. The conditions around the spark plug locations for the pre-ignition period were analyzed. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under Grant Agreement No. INNOLOT/I/1/NCBR/2013. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion" title=" combustion"> combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=ignition" title=" ignition"> ignition</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=timing" title=" timing "> timing </a> </p> <a href="https://publications.waset.org/abstracts/50252/a-dual-spark-ignition-timing-influence-for-the-high-power-aircraft-radial-engine-using-a-cfd-transient-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50252.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1253</span> Substructure Method for Thermal-Stress Analysis of Liquid-Propellant Rocket Engine Combustion Chamber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olga%20V.%20Korotkaya">Olga V. Korotkaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article is devoted to an important problem of calculation of deflected mode of the combustion chamber and the nozzle end of a new liquid-propellant rocket cruise engine. A special attention is given to the methodology of calculation. Three operating modes are considered. The analysis has been conducted in ANSYS software. The methods of conducted research are mathematical modelling, substructure method, cyclic symmetry, and finite element method. The calculation has been carried out to order of S. P. Korolev Rocket and Space Corporation «Energia». The main results are practical. Proposed methodology and created models would be able to use for a wide range of strength problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combustion%20chamber" title="combustion chamber">combustion chamber</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20symmetry" title=" cyclic symmetry"> cyclic symmetry</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid-propellant%20rocket%20engine" title=" liquid-propellant rocket engine"> liquid-propellant rocket engine</a>, <a href="https://publications.waset.org/abstracts/search?q=nozzle%20end" title=" nozzle end"> nozzle end</a>, <a href="https://publications.waset.org/abstracts/search?q=substructure" title=" substructure"> substructure</a> </p> <a href="https://publications.waset.org/abstracts/3281/substructure-method-for-thermal-stress-analysis-of-liquid-propellant-rocket-engine-combustion-chamber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3281.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">506</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1252</span> A Second Spark Ignition Timing for the High Power Aircraft Radial Engine Using a CFD Transient Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tytus%20Tulwin">Tytus Tulwin</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20Majczak"> Adam Majczak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In aviation most important systems that impact the aircraft flight safety are duplicated. The ASz-62IR aircraft radial engine consists of two spark plugs powered by two separate magnetos. The relative difference in spark timing has an influence on the combustion process. The retardation of the second spark relative to the first spark was analyzed. The CFD simulation was developed as a multicycle transient model. Two independent spark sources imitate two flame fronts after an ignition period. It makes the combustion process shorter but only for certain range of second spark retardation. The model was validated by the in-cylinder pressure comparison. Combustion parameters were analyzed for different second spark retardation values. It was found that the most advantageous ignition timing in means of performance is simultaneous ignition. Nevertheless, for this engine the ignition time of the second spark plug is greatly retarded eliminating the advantageous performance influence. The reason behind this is maintaining high ignition certainty for all engine running conditions and for whole operating rpm range. In aviation the engine reliability is more important than its performance. Introducing electronic ignition system can yield from simultaneous ignition timing by increasing the engine performance and providing good reliability for all flight conditions. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under Grant Agreement No. INNOLOT/I/1/NCBR/2013. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion" title=" combustion"> combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=ignition" title=" ignition"> ignition</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=timing" title=" timing"> timing</a> </p> <a href="https://publications.waset.org/abstracts/50254/a-second-spark-ignition-timing-for-the-high-power-aircraft-radial-engine-using-a-cfd-transient-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50254.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1251</span> Performance Evaluation of Karanja Oil Based Biodiesel Engine Using Modified Genetic Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Bhushan">G. Bhushan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Dhingra"> S. Dhingra</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20K.%20Dubey"> K. K. Dubey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the evaluation of performance (BSFC and BTE), combustion (P<sub>max</sub>) and emission (CO, NO<sub>x</sub>, HC and smoke opacity) parameters of karanja biodiesel in a single cylinder, four stroke, direct injection diesel engine by considering significant engine input parameters (blending ratio, compression ratio and load torque). Multi-objective optimization of performance, combustion and emission parameters is also carried out in a karanja biodiesel engine using hybrid RSM-NSGA-II technique. The pareto optimum solutions are predicted by running the hybrid RSM-NSGA-II technique. Each pareto optimal solution is having its own importance. Confirmation tests are also conducted at randomly selected few pareto solutions to check the authenticity of the results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title="genetic algorithm">genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=rsm" title=" rsm"> rsm</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title=" biodiesel"> biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=karanja" title=" karanja"> karanja</a> </p> <a href="https://publications.waset.org/abstracts/51865/performance-evaluation-of-karanja-oil-based-biodiesel-engine-using-modified-genetic-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51865.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1250</span> Design of Low-Emission Catalytically Stabilized Combustion Chamber Concept</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Annapurna%20Basavaraju">Annapurna Basavaraju</a>, <a href="https://publications.waset.org/abstracts/search?q=Andreas%20Marn"> Andreas Marn</a>, <a href="https://publications.waset.org/abstracts/search?q=Franz%20Heitmeir"> Franz Heitmeir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Advisory Council for Aeronautics Research in Europe (ACARE) is cognizant for the overall reduction of NOx emissions by 80% in its vision 2020. Moreover small turbo engines have higher fuel specific emissions compared to large engines due to their limited combustion chamber size. In order to fulfill these requirements, novel combustion concepts are essential. This motivates to carry out the research on the current state of art, catalytic stabilized combustion chamber using hydrogen in small jet engines which are designed and investigated both numerically and experimentally during this project. Catalytic combustion concepts can also be adopted for low caloric fuels and are therefore not constrained to only hydrogen. However, hydrogen has high heating value and has the major advantage of producing only the nitrogen oxides as pollutants during the combustion, thus eliminating the interest on other emissions such as Carbon monoxides etc. In the present work, the combustion chamber is designed based on the ‘Rich catalytic Lean burn’ concept. The experiments are conducted for the characteristic operating range of an existing engine. This engine has been tested successfully at Institute of Thermal Turbomachinery and Machine Dynamics (ITTM), Technical University Graz. One of the facts that the efficient combustion is a result of proper mixing of fuel-air mixture, considerable significance is given to the selection of appropriate mixer. This led to the design of three diverse configurations of mixers and is investigated experimentally and numerically. Subsequently the best mixer would be equipped in the main combustion chamber and used throughout the experimentation. Furthermore, temperatures and pressures would be recorded at various locations inside the combustion chamber and the exhaust emissions will also be analyzed. The instrumented combustion chamber would be inspected at the engine relevant inlet conditions for nine different sets of catalysts at the Hot Flow Test Facility (HFTF) of the institute. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catalytic%20combustion" title="catalytic combustion">catalytic combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20turbine" title=" gas turbine"> gas turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title=" hydrogen"> hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=mixer" title=" mixer"> mixer</a>, <a href="https://publications.waset.org/abstracts/search?q=NOx%20emissions" title=" NOx emissions"> NOx emissions</a> </p> <a href="https://publications.waset.org/abstracts/71565/design-of-low-emission-catalytically-stabilized-combustion-chamber-concept" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71565.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1249</span> Characterization and Effect of Using Pumpkin Seeds Oil Methyl Ester (PSME) as Fuel in a LHR Diesel Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanbey%20Hazar">Hanbey Hazar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hakan%20Gul"> Hakan Gul</a>, <a href="https://publications.waset.org/abstracts/search?q=Ugur%20Ozturk"> Ugur Ozturk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to decrease the hazardous emissions of the internal combustion engines and to improve the combustion and thermal efficiency, thermal barrier coatings are applied. In this experimental study, cylinder, piston, exhaust, and inlet valves which are combustion chamber components have been coated with a ceramic material, and this earned the engine LHR feature. Cylinder, exhaust and inlet valves of the diesel engine used in the tests were coated with ekabor-2 commercial powder, which is a ceramic material, to a thickness of 50 µm, by using the boriding method. The piston of a diesel engine was coated in 300 µm thickness with bor-based powder by using plasma coating method. Pumpkin seeds oil methyl ester (PSME) was produced by the transesterification method. In addition, dimethoxymethane additive materials were used to improve the properties of diesel fuel, pumpkin seeds oil methyl ester (PSME) and its mixture. Dimethoxymethane was blended with test fuels, which was used as a pilot fuel, at the volumetric ratios of 4% and 8%. Due to thermal barrier coating, the diesel engine's CO, HC, and smoke density values decreased; but, NOx and exhaust gas temperature (EGT) increased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boriding" title="boriding">boriding</a>, <a href="https://publications.waset.org/abstracts/search?q=diesel%20engine" title=" diesel engine"> diesel engine</a>, <a href="https://publications.waset.org/abstracts/search?q=exhaust%20emission" title=" exhaust emission"> exhaust emission</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20barrier%20coating" title=" thermal barrier coating"> thermal barrier coating</a> </p> <a href="https://publications.waset.org/abstracts/31878/characterization-and-effect-of-using-pumpkin-seeds-oil-methyl-ester-psme-as-fuel-in-a-lhr-diesel-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31878.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">477</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=interal%20combustion%20engine&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=interal%20combustion%20engine&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=interal%20combustion%20engine&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=interal%20combustion%20engine&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=interal%20combustion%20engine&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=interal%20combustion%20engine&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=interal%20combustion%20engine&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=interal%20combustion%20engine&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=interal%20combustion%20engine&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=interal%20combustion%20engine&page=42">42</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=interal%20combustion%20engine&page=43">43</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=interal%20combustion%20engine&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>