CINXE.COM

Creating Shape Memory Polymers from Biobased Resources - Sustainable Polymer & Energy - Full-Text HTML - SCIEPublish

<!DOCTYPE html> <html class="no-js" lang="en"> <head> <meta charset="utf-8" /> <meta http-equiv="x-ua-compatible" content="ie=edge" /> <title>Creating Shape Memory Polymers from Biobased Resources - Sustainable Polymer &amp; Energy - Full-Text HTML - SCIEPublish</title> <meta name="keywords" content="SCIE Publishing, SCIEPublish, open access, fast publication" /> <meta name="description" content="SCIEPublish is an international open-access journal publishing service provider run by SCIE Publishing Limited, dedicated to supporting and inspiring scientists or institutions/societies who aspire to publish high-quality journals." /> <meta name="viewport" content="width=device-width,user-scalable=no,initial-scale=1.0,maximum-scale=1.0,minimum-scale=1.0"> <meta name="title" content="Creating Shape Memory Polymers from Biobased Resources"> <link rel="image_src" href="https://www.sciepublish.com/uploads/2024/11/28/1732766802sFYf.jpg"> <meta name="dc.title" content="Creating Shape Memory Polymers from Biobased Resources"> <meta name="dc.creator" content="Kun Luo"> <meta name="dc.creator" content="Zhi-Yuan Xu"> <meta name="dc.creator" content="Rui Zhan"> <meta name="dc.creator" content="Ke-Ke Yang"> <meta name="dc.type" content="Review"> <meta name="dc.source" content="Sustainable Polymer &amp; Energy 2023, Vol. 1, Page 10009"> <meta name="dc.date" content="2023-07-24"> <meta name="dc.identifier" content="10.35534/spe.2023.10009"> <meta name="dc.publisher" content="SCIEPublish"> <meta name="dc.rights" content="http://creativecommons.org/licenses/by/4.0/"> <meta name="dc.format" content="application/pdf"> <meta name="dc.language" content="en"> <meta name="dc.description" content="Developing polymer materials from biomass is a promising pathway to address serious environmental and resource issues. To date, a series of biobased general polymer materials have been successfully industrialized. However, exploring highly valuable functional polymers and intelligent polymer materials from biomass, such as shape memory polymers (SMPs) and self-healing materials, is still a great challenge. The present review intends to bridge a sustainable pathway for the creation of SMPs from biobased resources. Thus, we first recall some backgrounds of the design principle of SMPs and highlight the biobased monomers or building blocks for SMPs, and then we focus on the main varieties of biobased SMPs to clarify their fabricating approaches, functionalizing strategies, new manufacturing methods and the application potential."> <meta name="dc.subject" content="Shape memory polymer"> <meta name="dc.subject" content="Biobased"> <meta name="dc.subject" content="Vitrimers"> <meta name="dc.subject" content="Polyesters"> <meta name="dc.subject" content="4D printing"> <meta name="prism.issn" content="2958-7700"> <meta name="prism.publicationName" content="Sustainable Polymer &amp; Energy"> <meta name="prism.publicationDate" content="2023-07-24"> <meta name="prism.volume" content="1"> <meta name="prism.number" content="2"> <meta name="prism.section" content="Review"> <meta name="prism.startingPage" content="10009"> <meta name="citation_issn" content="2958-7700"> <meta name="citation_journal_title" content="Sustainable Polymer &amp; Energy"> <meta name="citation_publisher" content="SCIEPublish"> <meta name="citation_title" content="Creating Shape Memory Polymers from Biobased Resources"> <meta name="citation_publication_date" content="2023/07"> <meta name="citation_online_date" content="2023/07/24"> <meta name="citation_volume" content="1"> <meta name="citation_issue" content="2"> <meta name="citation_firstpage" content="10009"> <meta name="citation_author" content="Luo, Kun"> <meta name="citation_author" content="Xu, Zhi-Yuan"> <meta name="citation_author" content="Zhan, Rui"> <meta name="citation_author" content="Yang, Ke-Ke"> <meta name="citation_doi" content="10.35534/spe.2023.10009"> <meta name="citation_abstract_html_url" content="https://www.sciepublish.com/article/pii/54"> <meta name="citation_pdf_url" content="https://www.sciepublish.com/index/article/view_full_text/id/54"> <link rel="alternate" type="application/pdf" title="PDF Full-Text" href="https://www.sciepublish.com/index/article/view_full_text/id/54"> <meta name="fulltext_pdf" content="https://www.sciepublish.com/index/article/view_full_text/id/54"> <link rel="alternate" type="text/html" title="HTML Full-Text" href="https://www.sciepublish.com/article/pii/54"> <meta name="citation_fulltext_html_url" content="https://www.sciepublish.com/article/pii/54"> <meta name="fulltext_html" content="https://www.sciepublish.com/article/pii/54"> <meta property="og:site_name" content="SCIEPUBLISH" /> <meta property="og:type" content="Review" /> <meta property="og:url" content="https://www.sciepublish.com/article/pii/54" /> <meta property="og:title" content="Creating Shape Memory Polymers from Biobased Resources" /> <meta property="og:description" content="Developing polymer materials from biomass is a promising pathway to address serious environmental and resource issues. To date, a series of biobased general polymer materials have been successfully industrialized. However, exploring highly valuable functional polymers and intelligent polymer materials from biomass, such as shape memory polymers (SMPs) and self-healing materials, is still a great challenge. The present review intends to bridge a sustainable pathway for the creation of SMPs from biobased resources. Thus, we first recall some backgrounds of the design principle of SMPs and highlight the biobased monomers or building blocks for SMPs, and then we focus on the main varieties of biobased SMPs to clarify their fabricating approaches, functionalizing strategies, new manufacturing methods and the application potential." /> <meta property="og:image" content="https://www.sciepublish.com/uploads/2023/07/26/b21c96c1a980b25ed41be1c82d31d527.png" /> <meta property="og:image:secure_url" content="https://www.sciepublish.com/uploads/2023/07/26/b21c96c1a980b25ed41be1c82d31d527.png" /> <meta name="twitter:site" content="@sciepublish"> <meta name="twitter:image" content="https://www.sciepublish.com/uploads/2023/07/26/b21c96c1a980b25ed41be1c82d31d527.png" /> <meta name="twitter:card" content="summary_large_image"> <link rel="shortcut icon" type="image/x-icon" href="/favicon.ico" /> <link rel="stylesheet" href="/static/css/bootstrap.css" /> <link rel="stylesheet" href="/static/font/bootstrap-icons.css"> <link rel="stylesheet" href="/static/css/lightbox.css" /> <link rel="stylesheet" href="/static/css/theme.css?74" /> <link rel="stylesheet" href="/static/css/common.css?115" /> <link rel="stylesheet" href="/static/css/ckeditorStyle.css?2" /> <link rel="stylesheet" href="/static/css/select-mania.min.css" /> <script src="/static/js/jquery-3.7.1.min.js"></script> <script src="/static/js/lightbox.js"></script> <script src="/static/js/bootstrap.bundle.min.js"></script> <script src="/static/js/select-mania.js"></script> <link rel="stylesheet" href="/static/katex/katex.min.css"> <script src="/static/katex/katex.min.js"></script> <script src="/static/katex/contrib/auto-render.min.js"></script> <style> .katex{ font-size: 1rem!important; } .html-disp-formula-info .katex{ font-size: 1.2rem!important; } .tooltip-inner{ /* min-width: 40rem; */ width: auto; max-width: 40rem; padding: 1rem; text-align: left; } .tooltip-inner .html-fig_img, .tooltip-inner .html-figpopup-table { padding: 1.5rem 1.5rem 1rem; background-color: #FFFeFa; border: 1px solid #e9ded8; border-radius: 5px; margin: 1.5rem 0 2rem; } .tooltip-inner .html-figpopup-table{margin-top:1rem;} .tooltip-inner .html-fig_img img, .tooltip-inner .html-figpopup-table img{ width: 100%; } .centered-div { max-width: 60%; position: fixed; top: 50%; left: 50%; transform: translate(-50%, -50%); z-index: 1000; background-color: rgba(255, 255, 255, 1); padding: 20px; border: 1px solid #ccc; box-shadow: 0 2px 5px rgba(0,0,0,0.2); } .topic-collection a{ display: block; font-size: .85rem; line-height: 1.5; } topic-collection h6.article-menu-collapse{ font-weight: 700; } .popover-content { width: 500px; } .popover { max-width:95%; } dl.html-disc dd { margin-top: 0.2em; margin-bottom: 0em; } dl.html-disc dd p { text-indent: 0em; margin-left: 0; } dl.html-disc dt { float: left; clear: left; text-align: right; font-weight: 500; margin-bottom: 0px; } .details__content .meta-info .article-item td ol li { list-style-type: decimal; padding-left: 10px; margin-left: 20px; list-style-position: outside; } </style> </head> <body class="header-no-fixed"> <header> <nav class="navbar navbar-expand-lg navbar-light my-body-container"> <div class="navbar-left"> <a href="/" class="uk-navbar-item" alt="Back to the homepage"> <svg xmlns="http://www.w3.org/2000/svg" class="navbar-logo" xml:space="preserve" version="1.0" viewBox="0 0 5.08 1.933"> <path d="M1.021 1.245a.29.29 0 0 1-.211-.054l-.027-.023-.003-.003.056-.066.003.004a.3.3 0 0 0 .043.033.2.2 0 0 0 .128.027l.024-.007.019-.01a.07.07 0 0 0 .022-.032.1.1 0 0 0 0-.036l-.004-.014a.1.1 0 0 0-.016-.02.1.1 0 0 0-.027-.017L.994 1.01.919.98a.3.3 0 0 1-.076-.05.14.14 0 0 1-.034-.067.2.2 0 0 1 0-.06.13.13 0 0 1 .027-.056.2.2 0 0 1 .049-.041A.2.2 0 0 1 .95.683a.3.3 0 0 1 .07-.001.2.2 0 0 1 .06.017.3.3 0 0 1 .075.05l.003.003-.05.061L1.103.81a.2.2 0 0 0-.053-.034.2.2 0 0 0-.063-.013.1.1 0 0 0-.046.008L.925.78a.06.06 0 0 0-.023.047l.001.015.006.012a.1.1 0 0 0 .018.02.1.1 0 0 0 .027.017L.97.899l.016.006.074.032a.3.3 0 0 1 .058.033.14.14 0 0 1 .051.08.2.2 0 0 1 0 .07.15.15 0 0 1-.048.081.2.2 0 0 1-.062.035zm.527-.002a.24.24 0 0 1-.1 0 .23.23 0 0 1-.125-.069.2.2 0 0 1-.051-.089.3.3 0 0 1-.019-.119.4.4 0 0 1 .02-.12.3.3 0 0 1 .052-.09.23.23 0 0 1 .176-.076.3.3 0 0 1 .064.01.3.3 0 0 1 .053.025.2.2 0 0 1 .04.034l.002.003-.052.061L1.605.81A.2.2 0 0 0 1.56.776a.2.2 0 0 0-.037-.012.15.15 0 0 0-.082.013.13.13 0 0 0-.049.039l-.018.029a.2.2 0 0 0-.022.073.4.4 0 0 0 .002.104.2.2 0 0 0 .014.05.2.2 0 0 0 .023.04.14.14 0 0 0 .066.047.15.15 0 0 0 .107-.009l.028-.017.025-.023.003-.004.051.06-.002.003a.3.3 0 0 1-.076.059.2.2 0 0 1-.045.015m.314-.004h-.09V.69h.095v.549zm.485 0h-.331V.69h.328v.08H2.11v.141h.198v.082H2.11v.165h.242v.08zm.215 0h-.09V.69h.169a.4.4 0 0 1 .083.008L2.76.71l.031.016a.13.13 0 0 1 .044.053q.009.015.012.036a.22.22 0 0 1-.012.121l-.018.03a.176.176 0 0 1-.09.057.3.3 0 0 1-.084.011h-.076v.205zm.005-.472v.19h.068a.2.2 0 0 0 .056-.006.1.1 0 0 0 .038-.018.1.1 0 0 0 .022-.031.1.1 0 0 0 .007-.045l-.003-.03a.07.07 0 0 0-.028-.04L2.703.776 2.671.769 2.633.767zm.539.48a.2.2 0 0 1-.067-.003.1.1 0 0 1-.075-.07.3.3 0 0 1-.013-.09V.827h.093v.248a.3.3 0 0 0 .007.055l.008.017.012.012.016.007.02.002a.1.1 0 0 0 .033-.006.1.1 0 0 0 .03-.019.2.2 0 0 0 .03-.032V.826h.093v.413h-.078l-.006-.057a.2.2 0 0 1-.078.057zm.548-.002-.034.003-.03-.003-.029-.01A.2.2 0 0 1 3.51 1.2l-.007.039h-.075V.645h.093q0 .11-.002.219l.01-.008A.2.2 0 0 1 3.59.823a.2.2 0 0 1 .043-.007.2.2 0 0 1 .07.015.15.15 0 0 1 .07.074.2.2 0 0 1 .022.076.4.4 0 0 1 0 .095.3.3 0 0 1-.029.082.2.2 0 0 1-.079.075zm-.07-.077a.1.1 0 0 0 .046-.002.1.1 0 0 0 .043-.032l.015-.028a.2.2 0 0 0 .01-.036.3.3 0 0 0-.006-.114A.1.1 0 0 0 3.68.93.07.07 0 0 0 3.64.9.1.1 0 0 0 3.59.899l-.023.008-.023.015-.023.02v.193a.2.2 0 0 0 .043.027zm.424.08h-.015a.1.1 0 0 1-.051-.013l-.017-.016-.011-.022-.007-.026-.002-.031V.645h.093v.5L4 1.16l.003.004.003.003.008.002h.008l.005-.001h.004l.013.071-.004.002-.009.002zm.22-.01H4.14V.827h.093v.413zm-.026-.48L4.187.76q-.009 0-.016-.002L4.157.753a.05.05 0 0 1-.02-.02.1.1 0 0 1-.008-.027L4.13.69a.05.05 0 0 1 .027-.032L4.17.653a.07.07 0 0 1 .045.005.05.05 0 0 1 .03.048.1.1 0 0 1-.009.028.1.1 0 0 1-.02.019zm.315.488a.25.25 0 0 1-.19-.054l-.004-.003.045-.062.004.003a.3.3 0 0 0 .053.034.13.13 0 0 0 .058.012l.022-.002.016-.005.013-.008.009-.01a.05.05 0 0 0 .007-.025q0-.006-.002-.012l-.005-.01-.008-.009-.011-.008-.028-.014-.016-.006-.017-.007a.4.4 0 0 1-.079-.041.1.1 0 0 1-.028-.034L4.348.964 4.345.939a.12.12 0 0 1 .023-.07.1.1 0 0 1 .038-.033A.2.2 0 0 1 4.46.82a.2.2 0 0 1 .13.022l.037.024.003.003-.045.059-.003-.003A.2.2 0 0 0 4.54.9a.1.1 0 0 0-.065-.008.1.1 0 0 0-.027.012l-.007.01a.04.04 0 0 0-.007.022q0 .006.002.01l.005.01a.1.1 0 0 0 .017.015l.027.013.016.006.016.006.063.028.019.013a.1.1 0 0 1 .029.035l.008.023a.13.13 0 0 1-.008.077.1.1 0 0 1-.03.04.14.14 0 0 1-.05.027zm.307-.007h-.088V.645h.092q0 .115-.002.229a.3.3 0 0 1 .05-.038.2.2 0 0 1 .048-.017.2.2 0 0 1 .068.002.1.1 0 0 1 .057.038q.01.014.018.033A.314.314 0 0 1 5.08.98v.258h-.093V.99L4.985.96 4.98.936 4.97.92 4.96.907 4.943.9a.1.1 0 0 0-.037 0 .1.1 0 0 0-.03.011l-.016.01-.032.03v.288z" /> <path d="M1.844 1.377a.97.97 0 0 1-.878.563A.963.963 0 0 1 0 .974.964.964 0 0 1 .966.007a.96.96 0 0 1 .865.536l-.048.024A.92.92 0 0 0 .966.062a.91.91 0 0 0-.912.912.91.91 0 0 0 .912.912.91.91 0 0 0 .83-.532z" class="logo-circle" /> </svg> </a> </div> <button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbarSupportedContent" aria-controls="navbarSupportedContent" aria-expanded="false" aria-label="Toggle navigation"> <div class="btn-menu"> <span></span> <span></span> <span></span> </div> </button> <div class="collapse navbar-collapse" id="navbarSupportedContent"> <div class="nav-form-search"> <form class="form-search" method="get" action="/index/search/index.html"> <input class="search-input" type="text" name="search" placeholder="What are you looking for?" autofocus /> <button type="submit">Search</button> </form> </div> <ul class="navbar-nav uk-navbar-nav"> <li class="nav-item "> <a class="nav-link" href="/">Home</a> </li> <li class="nav-item "> <a class="nav-link" href="/About_SCIEPublish">About</a> </li> <li class="nav-item uk-active"> <a class="nav-link" href="/index/journals/index">Journals</a> </li> <li class="nav-item "> <a class="nav-link" href="/news/list">News</a> </li> </ul> <a class="js-navbar-toggle sc-icon-button sc-transition" title="Search" href="#"> <svg xmlns="http://www.w3.org/2000/svg" width="20" height="20" fill="currentColor" class="bi bi-search" viewBox="0 0 16 16"> <path d="M11.742 10.344a6.5 6.5 0 1 0-1.397 1.398h-.001c.03.04.062.078.098.115l3.85 3.85a1 1 0 0 0 1.415-1.414l-3.85-3.85a1.007 1.007 0 0 0-.115-.1zM12 6.5a5.5 5.5 0 1 1-11 0 5.5 5.5 0 0 1 11 0z"/> </svg> <svg xmlns="http://www.w3.org/2000/svg" width="20" height="20" fill="currentColor" class="bi bi-x-lg" viewBox="0 0 16 16"> <path d="M2.146 2.854a.5.5 0 1 1 .708-.708L8 7.293l5.146-5.147a.5.5 0 0 1 .708.708L8.707 8l5.147 5.146a.5.5 0 0 1-.708.708L8 8.707l-5.146 5.147a.5.5 0 0 1-.708-.708L7.293 8 2.146 2.854Z"/> </svg> </a> <a class="uk-button sc-transition" href="/my/submitting">Publish with us</a> <a class="text-login" title="Sign in" href="/index/user/login.html"> Sign in </a> </div> </nav> </header> <section class="breadcrumbs pt-3"> <div class="my-body-container"> <nav aria-label="breadcrumb"> <ol class="breadcrumb p-0 mb-0"> <li class="breadcrumb-item" title="Home"> <a href="/">Home</a> <svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" fill="currentColor" class="bi bi-chevron-right ml-1 mr-1" viewBox="0 0 16 16"> <path fill-rule="evenodd" d="M4.646 1.646a.5.5 0 0 1 .708 0l6 6a.5.5 0 0 1 0 .708l-6 6a.5.5 0 0 1-.708-.708L10.293 8 4.646 2.354a.5.5 0 0 1 0-.708z"/> </svg> </li> <li class="breadcrumb-item" title="Journals"> <a href="/index/journals/index">Journals</a> <svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" fill="currentColor" class="bi bi-chevron-right ml-1 mr-1" viewBox="0 0 16 16"> <path fill-rule="evenodd" d="M4.646 1.646a.5.5 0 0 1 .708 0l6 6a.5.5 0 0 1 0 .708l-6 6a.5.5 0 0 1-.708-.708L10.293 8 4.646 2.354a.5.5 0 0 1 0-.708z"/> </svg> </li> <li class="breadcrumb-item" title="spe"> <a href="/journals/spe">spe</a> <svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" fill="currentColor" class="bi bi-chevron-right ml-1 mr-1" viewBox="0 0 16 16"> <path fill-rule="evenodd" d="M4.646 1.646a.5.5 0 0 1 .708 0l6 6a.5.5 0 0 1 0 .708l-6 6a.5.5 0 0 1-.708-.708L10.293 8 4.646 2.354a.5.5 0 0 1 0-.708z"/> </svg> </li> <li class="breadcrumb-item" title="Volume 1"> <a href="/journals/spe/roll/1">Volume 1</a> <svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" fill="currentColor" class="bi bi-chevron-right ml-1 mr-1" viewBox="0 0 16 16"> <path fill-rule="evenodd" d="M4.646 1.646a.5.5 0 0 1 .708 0l6 6a.5.5 0 0 1 0 .708l-6 6a.5.5 0 0 1-.708-.708L10.293 8 4.646 2.354a.5.5 0 0 1 0-.708z"/> </svg> </li> <li class="breadcrumb-item" title="Issue 2"> <a href="/journals/spe/roll/1/2">Issue 2</a> <svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" fill="currentColor" class="bi bi-chevron-right ml-1 mr-1" viewBox="0 0 16 16"> <path fill-rule="evenodd" d="M4.646 1.646a.5.5 0 0 1 .708 0l6 6a.5.5 0 0 1 0 .708l-6 6a.5.5 0 0 1-.708-.708L10.293 8 4.646 2.354a.5.5 0 0 1 0-.708z"/> </svg> </li> <li class="breadcrumb-item active" aria-current="page" title='10.35534/spe.2023.10009'>10.35534/spe.2023.10009</li> </ol> </nav> </div> </section> <section class="fixed-title"> <div class="my-body-container d-flex align-items-center border-bottom border-dark pt-2 pb-2"> <div class="item-img"> <a class="d-flex align-items-center" href="/journals/spe"> <div class="cover-img"> <img src="/uploads/2024/11/28/1732766802sFYf.jpg" alt="Sustainable Polymer &amp; Energy-logo" /> </div> <h6 class="flex-grow-1 pl-2" title="Sustainable Polymer &amp; Energy">Sustainable Polymer &amp; Energy</h6> </a> </div> <h2 class="journals-text" title="Creating Shape Memory Polymers from Biobased Resources">Creating Shape Memory Polymers from Biobased Resources</h2> </div> </section> <section class="page-items mt-3"> <div class="d-flex my-body-container border-dark border-top pt-4 collapse show" id="rightCollapse"> <div class="left-items-260 mr-3"> <div class="left-content d-flex"> <div class="left-content-item"> <div class="item-img"> <a class="d-flex align-items-center" href="/journals/spe"> <div class="cover-img"> <img src="/uploads/2024/11/28/1732766802sFYf.jpg" alt="Sustainable Polymer &amp; Energy-logo" /> </div> <h6 class="flex-grow-1 pl-2">Sustainable Polymer &amp; Energy</h6> </a> </div> <div class="btn-bottom"> <a class="sc-btn-submit d-flex align-items-center justify-content-center mt-3" href="/my/submitting/journal/30"> Submit to SPE <svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" fill="currentColor" class="bi bi-chevron-double-right ml-1" viewBox="0 0 16 16"> <path fill-rule="evenodd" d="M3.646 1.646a.5.5 0 0 1 .708 0l6 6a.5.5 0 0 1 0 .708l-6 6a.5.5 0 0 1-.708-.708L9.293 8 3.646 2.354a.5.5 0 0 1 0-.708z"></path> <path fill-rule="evenodd" d="M7.646 1.646a.5.5 0 0 1 .708 0l6 6a.5.5 0 0 1 0 .708l-6 6a.5.5 0 0 1-.708-.708L13.293 8 7.646 2.354a.5.5 0 0 1 0-.708z"></path> </svg> </a> <a class="sc-cite-modal sc-btn-submit d-flex align-items-center justify-content-center mt-2" href="/index/article/download_article/id/54.html"> <span>Download PDF</span> </a> <!-- Modal --> <div class="sc-cite-modal sc-btn-submit d-flex align-items-center justify-content-center border-0 mt-2" data-toggle="modal" data-target="#citeModal"> Cite This Article </div> </div> <!-- collapse --> <div class="article-menu-collapse d-flex justify-content-between mt-2"> <h6 class="mb-0 d-flex align-items-center">Contents</h6> <div class="btn-collapse pt-2 pb-2 pl-2" data-toggle="collapse" data-target="#articleMenuCollapse" aria-expanded="true" aria-controls="articleMenuCollapse"> <svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="currentColor" class="bi bi-chevron-up" viewBox="0 0 16 16"> <path fill-rule="evenodd" d="M7.646 4.646a.5.5 0 0 1 .708 0l6 6a.5.5 0 0 1-.708.708L8 5.707l-5.646 5.647a.5.5 0 0 1-.708-.708l6-6z"/> </svg> </div> </div> <div class="articleMenuCollapse-column p-0" id="articleMenuCollapse"> <div class="menu pt-2"> <div class="list-group" id="article-menu-float"> <a class="list-group-item list-group-item-action" href="#link-introduction">1. Introduction</a> <a class="list-group-item list-group-item-action" href="#link-materials-and-methods">2. Principle of Design SMPs</a> <a class="list-group-item list-group-item-action" href="#link-theory-calculation">3. Biobased Monomers and Their Polymers</a> <a class="list-group-item list-group-item-action" href="#link-results">4. Creating SMPs from Biobased Resources</a> <a class="list-group-item list-group-item-action" href="#link-discussion">5. 4D Printing Biobased SMPs</a> <a class="list-group-item list-group-item-action" href="#link-conclusions">6. Summary and Outlook</a> <a class="list-group-item list-group-item-action" href="#link-supplementary-materials">Acknowledgments</a> <a class="list-group-item list-group-item-action" href="#link-appendix">Author Contributions</a> <a class="list-group-item list-group-item-action" href="#link-appendix-b">Ethics Statement</a> <a class="list-group-item list-group-item-action" href="#link-acknowledgments">Funding</a> <a class="list-group-item list-group-item-action" href="#link-author-contributions">Declaration of Competing Interest</a> <a class="list-group-item list-group-item-action" href="#html-references_list">References</a> </div> </div> </div> </div> <span class="btn-out" data-toggle="collapse" data-target="#rightCollapse" aria-expanded="true" aria-controls="rightCollapse"> <svg xmlns="http://www.w3.org/2000/svg" width="26" height="26" fill="currentColor" class="bi bi-chevron-bar-left" viewBox="0 0 16 16"> <path fill-rule="evenodd" d="M11.854 3.646a.5.5 0 0 1 0 .708L8.207 8l3.647 3.646a.5.5 0 0 1-.708.708l-4-4a.5.5 0 0 1 0-.708l4-4a.5.5 0 0 1 .708 0zM4.5 1a.5.5 0 0 0-.5.5v13a.5.5 0 0 0 1 0v-13a.5.5 0 0 0-.5-.5z"/> </svg> </span> </div> </div> <div class="blog-detailss-wrap flex-grow-1"> <div class="details__content pb-30"> <div class="articlelei access-tags d-flex justify-content-between"> <p class="mb-0 d-flex align-items-center"> <span class="btn-text classdise mr-1">Review</span> <span class="btn-text textdise">Open Access</span> </p> <div class="share-buttons social-share d-flex align-items-center mb-2" data-initialized="true"> Share This Article: <a href="" class="share-btn social-share-icon twitter-btn icon-twitter d-flex align-items-center justify-content-center" title="Share on Twitter"> <svg t="1713929395475" class="icon" viewBox="0 0 1399 1024" fill="currentColor" version="1.1" xmlns="http://www.w3.org/2000/svg" p-id="8742" width="20" height="20"> <path d="M282.021569 119.281213l323.998199 433.216256-326.044203 352.222995h73.379441l285.451142-308.376452 230.636674 308.376452h249.713149l-342.227762-457.583832 303.479459-327.855419h-73.379441l-262.886398 284.008876-212.407111-284.008876h-249.713149z m107.909957 54.051408h114.71879l506.578928 677.328049h-114.718791l-506.578927-677.328049z" p-id="8743"></path> </svg> </a> <a href="" class="share-btn social-share-icon facebook-btn icon-facebook d-flex align-items-center justify-content-center" title="Share on Facebook"> <svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="currentColor" class="bi bi-facebook" viewBox="0 0 16 16"> <path d="M16 8.049c0-4.446-3.582-8.05-8-8.05C3.58 0-.002 3.603-.002 8.05c0 4.017 2.926 7.347 6.75 7.951v-5.625h-2.03V8.05H6.75V6.275c0-2.017 1.195-3.131 3.022-3.131.876 0 1.791.157 1.791.157v1.98h-1.009c-.993 0-1.303.621-1.303 1.258v1.51h2.218l-.354 2.326H9.25V16c3.824-.604 6.75-3.934 6.75-7.951z"/> </svg> </a> <a href="mailto:?subject=Creating Shape Memory Polymers from Biobased Resources&body=https%3A%2F%2Fwww.sciepublish.com%2Farticle%2Fpii%2F54" class="share-btn social-share-icon email-btn icon-email d-flex align-items-center justify-content-center" id="email-share-btn" title="Share on Email"> <svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="currentColor" class="bi bi-envelope-fill" viewBox="0 0 16 16"> <path d="M.05 3.555A2 2 0 0 1 2 2h12a2 2 0 0 1 1.95 1.555L8 8.414.05 3.555ZM0 4.697v7.104l5.803-3.558L0 4.697ZM6.761 8.83l-6.57 4.027A2 2 0 0 0 2 14h12a2 2 0 0 0 1.808-1.144l-6.57-4.027L8 9.586l-1.239-.757Zm3.436-.586L16 11.801V4.697l-5.803 3.546Z"/> </svg> </a> <a href="" class="share-btn social-share-icon LinkedIn-btn icon-linkedin d-flex align-items-center justify-content-center" id="email-LinkedIn-btn" title="Share on LinkedIn"> <svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="currentColor" class="bi bi-linkedin" viewBox="0 0 16 16"> <path d="M0 1.146C0 .513.526 0 1.175 0h13.65C15.474 0 16 .513 16 1.146v13.708c0 .633-.526 1.146-1.175 1.146H1.175C.526 16 0 15.487 0 14.854V1.146zm4.943 12.248V6.169H2.542v7.225h2.401zm-1.2-8.212c.837 0 1.358-.554 1.358-1.248-.015-.709-.52-1.248-1.342-1.248-.822 0-1.359.54-1.359 1.248 0 .694.521 1.248 1.327 1.248h.016zm4.908 8.212V9.359c0-.216.016-.432.08-.586.173-.431.568-.878 1.232-.878.869 0 1.216.662 1.216 1.634v3.865h2.401V9.25c0-2.22-1.184-3.252-2.764-3.252-1.274 0-1.845.7-2.165 1.193v.025h-.016a5.54 5.54 0 0 1 .016-.025V6.169h-2.4c.03.678 0 7.225 0 7.225h2.4z"/> </svg> </a> <a href="" class="share-btn social-share-icon wechat-btn icon-wechat d-flex align-items-center justify-content-center" id="wechat-share-btn" title="Share on WeChat"> <svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="currentColor" class="bi bi-wechat" viewBox="0 0 16 16"> <path d="M11.176 14.429c-2.665 0-4.826-1.8-4.826-4.018 0-2.22 2.159-4.02 4.824-4.02S16 8.191 16 10.411c0 1.21-.65 2.301-1.666 3.036a.324.324 0 0 0-.12.366l.218.81a.616.616 0 0 1 .029.117.166.166 0 0 1-.162.162.177.177 0 0 1-.092-.03l-1.057-.61a.519.519 0 0 0-.256-.074.509.509 0 0 0-.142.021 5.668 5.668 0 0 1-1.576.22ZM9.064 9.542a.647.647 0 1 0 .557-1 .645.645 0 0 0-.646.647.615.615 0 0 0 .09.353Zm3.232.001a.646.646 0 1 0 .546-1 .645.645 0 0 0-.644.644.627.627 0 0 0 .098.356Z"/> <path d="M0 6.826c0 1.455.781 2.765 2.001 3.656a.385.385 0 0 1 .143.439l-.161.6-.1.373a.499.499 0 0 0-.032.14.192.192 0 0 0 .193.193c.039 0 .077-.01.111-.029l1.268-.733a.622.622 0 0 1 .308-.088c.058 0 .116.009.171.025a6.83 6.83 0 0 0 1.625.26 4.45 4.45 0 0 1-.177-1.251c0-2.936 2.785-5.02 5.824-5.02.05 0 .1 0 .15.002C10.587 3.429 8.392 2 5.796 2 2.596 2 0 4.16 0 6.826Zm4.632-1.555a.77.77 0 1 1-1.54 0 .77.77 0 0 1 1.54 0Zm3.875 0a.77.77 0 1 1-1.54 0 .77.77 0 0 1 1.54 0Z"/> </svg> </a> </div> </div> <h1 class="mb-2 acquiesce-title">Creating Shape Memory Polymers from Biobased Resources</h1> <div class="affiliation mb-1"> <div class="affiliation_author"> <span class="mr-2"> <a href="https://scholar.google.com/scholar?q=Kun Luo" target="_blank">Kun Luo</a> <sup></sup> </span> <span class="mr-2"> <a href="https://scholar.google.com/scholar?q=Zhi-Yuan Xu" target="_blank">Zhi-Yuan Xu</a> <sup></sup> </span> <span class="mr-2"> <a href="https://scholar.google.com/scholar?q=Rui Zhan" target="_blank">Rui Zhan</a> <sup></sup> </span> <span class="mr-2"> <a href="https://scholar.google.com/scholar?q=Ke-Ke Yang" target="_blank">Ke-Ke Yang</a> <sup>*</sup> <a href="mailto:kkyang@scu.edu.cn"> <sup><i class="bi bi-envelope-fill"></i></sup> </a> <a href="https://orcid.org/0000-0002-7019-6059" target="_blank" rel="noopener noreferrer"> <img src="/static/img/orcid.png" title="ORCID" style="position: relative; width: 13px; margin-left: 0px; max-width: 13px !important; height: auto; top: -7px;"> </a> </span> </div> </div> <div class="d-flex mb-1"> <div class="information-collapse mr-4"> Author Information </div> <!-- <div class="information-collapse articleInformation"> Article Information </div> --> </div> <div class="articledz"> <div class="affiliation_zt"> <div class="information-item affiliation_at collapse pl-2 pr-2 pb-2"> <div class="affiliation d-flex"> <div class="affiliation_nameno"> The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China </div> </div> <div class="affiliation d-flex"> <div class="affiliation_sup mr-2"><sup>*</sup></div> <div class="affiliation_name flex-grow-1"> Authors to whom correspondence should be addressed. </div> </div> </div> </div> <div class="d-flex align-items-center"> <div class="mr-2 d-flex align-items-center"><span>Views:</span><b class="ml-2">3714</b></div> <div class="mr-2 d-flex align-items-center"><span>Downloads:</span><b class="ml-2">418</b></div> <a tabindex="0" class="mr-2 align-items-center cursor-pointer" style="display: none;" data-bind="popover1" data-container="body" data-toggle="popover" data-trigger="focus" data-placement="bottom"> <span>Citations:</span> <b class="ml-2">0</b> </a> </div> <div class="information-item pb-3"> <div class="articledoi"> <em>Sustainable Polymer &amp; Energy</em> <b>2023</b>, <em>1</em> (2), 10009;&nbsp; <a href="https://doi.org/10.35534/spe.2023.10009" target="_blank">https://doi.org/10.35534/spe.2023.10009</a> </div> <p class="d-flex fal-title mb-0"> <i class="fal fa-calendar-alt"></i> <span class="mr-3">Received: 16 April 2023</span> <span class="mr-3">Accepted: 17 July 2023</span> <span class="mr-3">Published: 24 July 2023</span> </p> </div> <div class="articleneir pull-item d-flex"> <a href="http://creativecommons.org/licenses/by/4.0/" itemprop="license" rel="license" data-license="by" class="pull-left pt-1"> <img src="/style/image/iconby.png" alt="Creative Commons"> </a> <p class="flex-grow-1 ml-2"> © 2023 The authors. This is an open access article under the Creative Commons Attribution 4.0 International License (<a href="https://creativecommons.org/licenses/by/4.0/" target="_blank">https://creativecommons.org/licenses/by/4.0/</a>). </p> </div> <div class="meta-info text-break border-top border-dark pt-3 mt-3"> <div class="articleneir abstract"> <span>ABSTRACT:</span> Developing polymer materials from biomass is a promising pathway to address serious environmental and resource issues. To date, a series of biobased general polymer materials have been successfully industrialized. However, exploring highly valuable functional polymers and intelligent polymer materials from biomass, such as shape memory polymers (SMPs) and self-healing materials, is still a great challenge. The present review intends to bridge a sustainable pathway for the creation of SMPs from biobased resources. Thus, we first recall some backgrounds of the design principle of SMPs and highlight the biobased monomers or building blocks for SMPs, and then we focus on the main varieties of biobased SMPs to clarify their fabricating approaches, functionalizing strategies, new manufacturing methods and the application potential. </div> <div class="articleneir mt-2 keywords"> <span>Keywords:</span> Shape memory polymer; Biobased; Vitrimers; Polyesters; 4D printing </div> <div class="article-item pt-4"> <h2 class="border-bottom"> <a id="link-introduction" class="anchor-66"></a> 1. Introduction </h2> <div class="link-introduction article-item-text pt-2">Polymer materials have been widely used in daily life, industry, agriculture, military, biomaterials, and other fields due to their advantages of low density, high specific strength, easy processing, corrosion resistance, and so on. However, most commercialized polymer materials come from fossil resources and petrochemicals, and a large number of undegradable products have been abandoned after a short period of service. It will cause serious resource and environmental problems if they have not been disposed of properly. In this context, developing biobased polymer materials become an emerging and sustainable pathway because it can reduce the consumption of fossil resources and decrease atmospheric CO<sub>2</sub> emissions [<a href='#B1' class='html-bibr' title='1'>1</a>]. Generally, there are two main routes to obtaining biobased polymers. One is utilizing natural polymers or their modified products directly, such as abundant cellulose, starch, lignin, and their derivatives, and several products have been industrialized. Another route is polymerizing biobased monomers or precursors, including aliphatic diols, dicarboxylic acids, hydroxy acids, diamines, and aromatic molecules that are produced via biotechnology from diverse biomass including agricultural crops, wood and forestry residues or (micro)algae [<a href='#B2' class='html-bibr' title='2'>2</a>,<a href='#B3' class='html-bibr' title='3'>3</a>,<a href='#B4' class='html-bibr' title='4'>4</a>]. The typical industrialized biobased polymers via this approach include polylactic acid (PLA), poly (butylene adipate-co-terephthalate) (PBAT), polybutylene succinate (PBS), and green polyolefins [<a href='#B5' class='html-bibr' title='5'>5</a>,<a href='#B6' class='html-bibr' title='6'>6</a>]. To date, researchers have not been satisfied with developing general polymer materials from biomass materials but turned their attention to highly valuable functional polymers and intelligent polymer materials, such as vitrimers [<a href='#B1' class='html-bibr' title='1'>1</a>,<a href='#B7' class='html-bibr' title='7'>7</a>,<a href='#B8' class='html-bibr' title='8'>8</a>,<a href='#B9' class='html-bibr' title='9'>9</a>,<a href='#B10' class='html-bibr' title='10'>10</a>,<a href='#B11' class='html-bibr' title='11'>11</a>,<a href='#B12' class='html-bibr' title='12'>12</a>], self-healing materials [<a href='#B13' class='html-bibr' title='13'>13</a>,<a href='#B14' class='html-bibr' title='14'>14</a>,<a href='#B15' class='html-bibr' title='15'>15</a>,<a href='#B16' class='html-bibr' title='16'>16</a>,<a href='#B17' class='html-bibr' title='17'>17</a>,<a href='#B18' class='html-bibr' title='18'>18</a>,<a href='#B19' class='html-bibr' title='19'>19</a>,<a href='#B20' class='html-bibr' title='20'>20</a>,<a href='#B21' class='html-bibr' title='21'>21</a>], and shape memory polymers (SMPs) [<a href='#B22' class='html-bibr' title='22'>22</a>,<a href='#B23' class='html-bibr' title='23'>23</a>,<a href='#B24' class='html-bibr' title='24'>24</a>,<a href='#B25' class='html-bibr' title='25'>25</a>,<a href='#B26' class='html-bibr' title='26'>26</a>,<a href='#B27' class='html-bibr' title='27'>27</a>,<a href='#B28' class='html-bibr' title='28'>28</a>,<a href='#B29' class='html-bibr' title='29'>29</a>,<a href='#B30' class='html-bibr' title='30'>30</a>,<a href='#B31' class='html-bibr' title='31'>31</a>]. Amongst, SMPs have the unique capacity to recover their original shapes from a temporarily deformed shape in response to external stimulus, which makes them attract tremendous attention from both academia and industry. To date, the molecular mechanisms of shape memory effects (SMEs) [<a href='#B32' class='html-bibr' title='32'>32</a>,<a href='#B33' class='html-bibr' title='33'>33</a>,<a href='#B34' class='html-bibr' title='34'>34</a>,<a href='#B35' class='html-bibr' title='35'>35</a>,<a href='#B36' class='html-bibr' title='36'>36</a>] have been profoundly disclosed, and various stimulus-response shape-shifting modes have been well-established, allowing SMPs widely applied in actuators, sensors, smart textiles [<a href='#B36' class='html-bibr' title='36'>36</a>,<a href='#B37' class='html-bibr' title='37'>37</a>], biomaterials [<a href='#B38' class='html-bibr' title='38'>38</a>,<a href='#B39' class='html-bibr' title='39'>39</a>] and space deploying devices [<a href='#B40' class='html-bibr' title='40'>40</a>]. Scientists can easily create SMPs more sustainably by using various biobased monomers or precursors after a full understanding of the molecular mechanism of SMEs. As we know, a lot of polymers with proper thermal transitions (e.g., crystalline-melting transition or glass transition), such as aliphatic polyesters, polyurethanes, and epoxy, can be utilized as building blocks for SMPs. Delightfully, the biomass synthetic pathway of this kind of polymers has been well-established, bringing great challenges as well as opportunities for the development of SMPs. Although many excellent reviews that focused on SMPs and biobased polymer material have been published by various groups active in these two areas respectively, it remains very necessary to unveil the latest notable progress aroused from the organic combination of these two areas. The main purpose of the current review is to clarify the bridge between the SMP building blocks and the biomass resources and highlight the creating approaches, functionalizing strategies, and the application of this new class of SMPs from biobased chemicals. </div> <h2 class="border-bottom"> <a id="link-materials-and-methods" class="anchor-66"></a> 2. Principle of Design SMPs </h2> <div class="link-materials-and-methods article-item-text">Designing SMPs from biomass resources can be regarded as a sustainable and promising direction, but the rational and wisely fabricating strategy is also very crucial. For this purpose, a deep understanding of the mechanism of SMEs is imperative. As we know, the phenomenon of shape memory was first observed in the metal alloy in 1951, and the first SMP product, heat-shrinkable cross-linked polyethylene (PE), was commercialized in the 1960s [<a href='#B41' class='html-bibr' title='41'>41</a>]. After decades of intensive investigation, the basic molecular working mechanisms of shape memory effects have been deeply revealed, and SMPs with diverse structures have been developed under this guidance. <em>2.1. Molecular Structure and Mechanism for SMPs</em> Essentially, as schematically illustrated in <a href='#Figure1' class='html-fig html-figpopup'>Figure 1</a>a, SMPs can be divided into two functional units, netpoints and molecular switches. The netpoints are responsible for defining and memorizing the permanent shape of a SMP, and molecular switches answer for shape fixing and recovering. Generally, netpoints can be formed by physical or chemical cross-linking; the former involves physical interactions, stable chain entanglements, crystalline and glassy polymer segments [<a href='#B42' class='html-bibr' title='42'>42</a>], while the latter includes covalent chemical bonds, interpenetrating networks, or recently highly concerned dynamic networks [<a href='#B43' class='html-bibr' title='43'>43</a>,<a href='#B44' class='html-bibr' title='44'>44</a>,<a href='#B45' class='html-bibr' title='45'>45</a>]. The molecular switch is the key point to determining what kind of stimuli a SMP responds to. The most popular category involves polymer segments with thermal phase transition, such as glass transition for amorphous polymers [<a href='#B46' class='html-bibr' title='46'>46</a>,<a href='#B47' class='html-bibr' title='47'>47</a>,<a href='#B48' class='html-bibr' title='48'>48</a>], crystallization-melting transition for semicrystalline polymers [<a href='#B49' class='html-bibr' title='49'>49</a>] and liquid crystal-isotropic phase transition for liquid crystal polymers [<a href='#B50' class='html-bibr' title='50'>50</a>], etc. Naturally, the obtained SMPs are thermal-responsive. With the development of polymer science, some dynamic chemical and physical structures gradually act as molecular switches [<a href='#B51' class='html-bibr' title='51'>51</a>], such as hydrogen bonding interactions [<a href='#B52' class='html-bibr' title='52'>52</a>], reversible coordination interactions [<a href='#B53' class='html-bibr' title='53'>53</a>] and host-guest recognition interactions [<a href='#B54' class='html-bibr' title='54'>54</a>]. Taking advantage of these molecular switches, SMEs could be triggered by light, water, pH stimulus, and so on. Due to the nonthermal nature of the stimulus, this kind of SMPs is also called athermal SMPs. Besides classifying the SMPs by different stimuli, they also can be classified by shape-shifting modes as one-way SMPs (1W-SMPs) and two-way SMPs (2W-SMPs), the shape change of 1W-SMPs is irreversible and can only follow the path from temporary shape to permanent shape, meanwhile, 2W-SMPs can reversibly transform between two shapes. According to the number of shapes that can be displayed during the shape memory cycle, SMPs also include dual-, triple- and multi-SMPs. <em>2.2. Thermal-responsive SMPs</em> Thermal-responsive dual SMPs are conventional, and widely investigated in recent decades, many polymers exhibit a thermally induced SMEs based on phase transition. The phase transition can be vitrification/glass transition, crystallization/melting transition and liquid crystal phase-isotropic transition with a transition temperature (<em>T</em><sub>trans</sub>) of glass transition temperature (<em>T</em><sub>g</sub>), melting temperature (<em>T</em><sub>m</sub>) and liquid-crystalline clearing temperature (<em>T</em><sub>cl</sub>), respectively. Commonly, a full SMEs cycle of a 1W-SMP includes programming and recovery steps (<a href='#Figure1' class='html-fig html-figpopup'>Figure 1</a>b). Taking a semicrystalline chemically-crosslinked network as an example, the detailed procedure can be described as follows: when SMPs are heated above the melting transition temperature (<em>T</em><sub>trans</sub>), the polymer segments exhibit rubbery elasticity and gain better mobility; the SMPs could be deformed under the action of external forces, after cooling to a fixing temperature (<em>T</em> < <em>T</em><sub>trans</sub>, <em>T</em> should be below the crystallization temperature <em>T</em><sub>c</sub>) under the external force, the polymer chains are frozen and the SMPs are in temporary shape after unloading the external force. When the SMPs are reheated above Ttrans without external stress, the chain motility is reactivated and the SMPs regain their permanent shape owing to the action of entropic elasticity [<a href='#B36' class='html-bibr' title='36'>36</a>]. After a full understanding of the working mechanism of thermal-induced SMEs, one can easily design a SMP from numerous polymer candidates. Due to most polymers equipping either a <em>T</em><sub>g</sub> or a <em>T</em><sub>m</sub>, the <em>T</em><sub>g</sub>-based and Tm-based SMPs become the most common types. To meet the requirements in different application fields, the comprehensive performance of the materials such as mechanical properties also needs to be considered beside the SMEs with an adaptable Ttrans. For <em>T</em><sub>m</sub>-based SMPs, the semi-crystalline polymer segments, such as polyolefins and their derivatives PE [<a href='#B41' class='html-bibr' title='41'>41</a>], ethylene-vinyl acetate copolymer (EVA) [<a href='#B55' class='html-bibr' title='55'>55</a>,<a href='#B56' class='html-bibr' title='56'>56</a>,<a href='#B57' class='html-bibr' title='57'>57</a>], aliphatic polyester poly(ε-caprolactone) (PCL) [<a href='#B58' class='html-bibr' title='58'>58</a>], poly(p-dioxanone) [<a href='#B59' class='html-bibr' title='59'>59</a>], or aliphatic polyethers poly(ethylene glycol) (PEG) [<a href='#B42' class='html-bibr' title='42'>42</a>,<a href='#B60' class='html-bibr' title='60'>60</a>], poly(tetramethylene glycol) (PTMEG) [<a href='#B61' class='html-bibr' title='61'>61</a>], can be employed as molecular switches. Moreover, it may realize triple- or multi-SMEs by introducing two or more segments with independent Tm into one SMPs [<a href='#B62' class='html-bibr' title='62'>62</a>,<a href='#B63' class='html-bibr' title='63'>63</a>,<a href='#B64' class='html-bibr' title='64'>64</a>]. For <em>T</em><sub>g</sub>-based SMPs, beyond traditional dual-shape systems, several new strategies have been developed for more functionalities. For example, Poulin and coworkers reported a shape and temperature memory composite nanotube fiber based on polyvinyl alcohol (PVA) with broad glass transition that induced by a large fraction of carbon nanotubes [<a href='#B62' class='html-bibr' title='62'>62</a>]. Xie first realized dual-, triple-, and at least quadruple-SMEs in the perfluorosulphonic acid ionomer (PFSA), which has only one broad glass transition [<a href='#B65' class='html-bibr' title='65'>65</a>]. Inspired by this strategy, different polymer systems with a broad glass transition were developed to achieve multi-SMEs, including poly(methyl methacrylate)/PEG semi-interpenetrating polymer networks containing broadened glass transition [<a href='#B66' class='html-bibr' title='66'>66</a>], linear gradient poly(styrene-methyl acrylate) copolymers with controllable broadening glass transition [<a href='#B67' class='html-bibr' title='67'>67</a>]. Liquid crystalline elastomers (LCEs) are typical Tcl-based systems, and various mesogens, including commercially available liquid crystal monomers RM82, RM257, NBch15, etc., have been employed to develop the LCEs.<div class='html-fig-wrap'><div class='html-fig_img'><div class='html-figpopup html-figpopup-link' href='#Figure1'><img data-large='/uploads/2023/07/26/b21c96c1a980b25ed41be1c82d31d527.png' data-original='/uploads/2023/07/26/b21c96c1a980b25ed41be1c82d31d527.png' src='/uploads/2023/07/26/b21c96c1a980b25ed41be1c82d31d527.png'><a class='html-expand html-figpopup' href='#Figure1'></a></div></div><div class='html-fig_description'><b><a href='#Figure1' class='html-fig html-figpopup'>Figure 1</a>. </b>(<b>a</b>) The schematic molecular mechanism of the SMPs in a full review [<a href='#B68' class='html-bibr' title='68'>68</a>] (Copyright 2019 Elsevier B.V.), (<b>b</b>) thermal-induced SMEs [<a href='#B36' class='html-bibr' title='36'>36</a>] (Copyright 2015 Elsevier Ltd), (<b>c</b>) photo-induced SMEs [<a href='#B69' class='html-bibr' title='69'>69</a>] (Copyright 2005 Nature Publishing Group), and (<b>d</b>) chemical-induced SMEs [<a href='#B51' class='html-bibr' title='51'>51</a>] (Copyright 2017 American Chemical Society).</div></div>Except for the most common heat stimuli, indirect heating methods were also developed for the convenience of remote control during shape recovery. By incorporating functional fillers into the SMP matrix, different forms of energy such as electricity, magnetism and light can be converted into thermal energy and induce heat within materials to trigger the shape recovery process. Electrical-responsive SMPs could be obtained by adding conductive fillers such as carbon nanotubes, carbon black, carbon fibers and metal powders into SMPs [<a href='#B70' class='html-bibr' title='70'>70</a>,<a href='#B71' class='html-bibr' title='71'>71</a>]. When the conductive percolation network is constructed in a thermal-responsive SMP matrix, the shape recovery can be triggered by Joules heating. Similarly in magnetic-responsive SMPs, the composites containing Fe3O4 magnetic nanoparticles have been reported [<a href='#B72' class='html-bibr' title='72'>72</a>,<a href='#B73' class='html-bibr' title='73'>73</a>,<a href='#B74' class='html-bibr' title='74'>74</a>]. Via photo-thermal effect, light-responsive SMPs also can be achieved by irradiating light of certain wavelengths onto SMP composites containing carbon powders or metal nanofillers via photo-thermal effect [<a href='#B75' class='html-bibr' title='75'>75</a>,<a href='#B76' class='html-bibr' title='76'>76</a>,<a href='#B77' class='html-bibr' title='77'>77</a>]. <em>2.3. Athermal SMPs Based on Reversible Switches</em> Besides the above-mentioned different kinds of thermal-responsive SMPs concerning about phase-transition, various athermal SMPs were also devised so that SMEs can be triggered under nonthermal conditions, expanding the scope of the shape programming approaches. The key factor in designing nonthermal SMPs is incorporating reversible switches into polymer chains, and thus, some light-responsive or chemical-responsive groups have attracted the great attention of the researchers. As an external stimulus, light has the unique feature that it can be localized in time and space, which brings great advantage to precise control of a SMP in remote mode. The athermal light-responsive SMP was first developed by Lendlein and coworkers via incorporating cinnamic acid groups into a polymer matrix (<a href='#Figure1' class='html-fig html-figpopup'>Figure 1</a>c), the light-induced SMEs can be triggered by photo-reversible [2+2] cycloaddition reaction under UV light with different wavelengths [<a href='#B69' class='html-bibr' title='69'>69</a>]. Similar chemical groups, including anthracenes and coumarin, also can occur reversible photo-cycloaddition reactions, which makes more possibility for SMPs design. Our group [<a href='#B60' class='html-bibr' title='60'>60</a>,<a href='#B61' class='html-bibr' title='61'>61</a>,<a href='#B63' class='html-bibr' title='63'>63</a>,<a href='#B78' class='html-bibr' title='78'>78</a>] developed a series of SMPs by introducing anthracene groups into PLA-PEG copolymers, realizing light-induced SMEs, triple-SMEs, 2W-SMEs, and photo-patterning. In addition to the photo-cycloaddition reaction, azo-benzene molecules with photo-isomerization properties were also employed as molecular switches [<a href='#B79' class='html-bibr' title='79'>79</a>,<a href='#B80' class='html-bibr' title='80'>80</a>]. Apart from UV light stimuli, chemical stimuli can also trigger the shape recovery process under athermal conditions. Taking advantage of supramolecular interactions as molecular switches to construct novel SMPs, various athermal chemical-responsive SMPs have been designed, which greatly broadened the triggering methods and application of SMPs [<a href='#B51' class='html-bibr' title='51'>51</a>,<a href='#B81' class='html-bibr' title='81'>81</a>,<a href='#B82' class='html-bibr' title='82'>82</a>,<a href='#B83' class='html-bibr' title='83'>83</a>,<a href='#B84' class='html-bibr' title='84'>84</a>,<a href='#B85' class='html-bibr' title='85'>85</a>] (<a href='#Figure1' class='html-fig html-figpopup'>Figure 1</a>d). Supramolecular chemistry including hydrogen bonding, host−guest interactions, metal coordination, ionic interactions, and hydrophobic interactions have been employed for the construction of SMPs. Since their structures can be reversibly modulated by chemical environment, they are ideal molecular switches working under nonthermal conditions [<a href='#B83' class='html-bibr' title='83'>83</a>,<a href='#B84' class='html-bibr' title='84'>84</a>,<a href='#B86' class='html-bibr' title='86'>86</a>]. For example, in early 2005, Huang et al. [<a href='#B85' class='html-bibr' title='85'>85</a>] discovered the unique water-induced shape memory effects in a shape memory polyurethane (SMPU) based on the gradient variation of glass transition temperature caused by the weakening of hydrogen bonding after immersing in room temperature water. Zhang et al. [<a href='#B87' class='html-bibr' title='87'>87</a>] prepared pH-sensitive SMPs by cross-linking β-cyclodextrin modified alginate and diethylenetriamine-modified alginate, which was triggered by the formation and dissociation of β-cyclodextrin and diethylenetriamine inclusion complexes. </div> <h2 class="border-bottom"> <a id="link-theory-calculation" class="anchor-66"></a> 3. Biobased Monomers and Their Polymers </h2> <div class="link-theory-calculation article-item-text">Biobased monomers have a wide range of resources, which can convert by cellulose, lignin, fatty acids, vegetable oil, terpenoids, starch, sugars, proteins and other biosources. According to the chemical composition and structure of biobased monomers, they can be roughly divided into two categories: aliphatic monomers and aromatic monomers. Aliphatic monomers include various dicarboxylic acids, diols, polyols, amide and their ramification, for example, succinic acid, fumaric acid, itaconic acid, citric acid, hydroxyalkanoic acid, lactic acid, levulinic acid, adipic acid, 1,3-propanediol, 1,4-butanediol, 1,4:3,6-dianhydrohexitols, ethylene glycol, 1,8-octanediol, glycerol, D-sorbitol, 1,4-butanediamine, 1,5-pentanediamine, 1,6-hexanediamine, 1,8-octanediamine, 1,10-decanediamine, bioethylene, biopropylene and so on. Aromatic monomers include lactones, furan, vanillin and their ramification, for example, 3-hydroxybutyrolactone, propiolactone, angelilactone, γ-valerolactone, ε-caprolactone, 5-(hydroxymethyl)furfural, 2,5-furandicarboxylic acid, vanillic acid, divanillyl diol, terephthalic acid, vanillin and so on. Succinic acid (SA) is widely present in nature, it has been listed as one of the 12 high-potential bio-based platform chemicals by the US Department of Energy (DOE) and become a potential substitute for current petrochemical production [<a href='#B88' class='html-bibr' title='88'>88</a>,<a href='#B89' class='html-bibr' title='89'>89</a>]. As a commodity chemical and precursor in the chemical industry, it is widely used in food, medicine, green solvents, biodegradable polymers and plasticizers [<a href='#B90' class='html-bibr' title='90'>90</a>,<a href='#B91' class='html-bibr' title='91'>91</a>,<a href='#B92' class='html-bibr' title='92'>92</a>,<a href='#B93' class='html-bibr' title='93'>93</a>]. Moreover, SA can also be chemically converted into a variety of important industrial chemicals such as 1,4-butanediol, butadiene, tetrahydrofuran and other monomers of biodegradable polymers. Itaconic acid (IA), another important high-potential bio-based platform chemical by US DOE [<a href='#B89' class='html-bibr' title='89'>89</a>], is also an important organic acid with a covalent double bond that is widely applied in plastics, medicine, textile, and paint as an alternative to the precursor of polymers and chemical intermediates based on petrochemical production [<a href='#B94' class='html-bibr' title='94'>94</a>,<a href='#B95' class='html-bibr' title='95'>95</a>,<a href='#B96' class='html-bibr' title='96'>96</a>]. Hydroxyalkanoic acid (HA) and its derivatives, as a special category in aliphatic acid, have been used to create a series of aliphatic polyesters [<a href='#B97' class='html-bibr' title='97'>97</a>,<a href='#B98' class='html-bibr' title='98'>98</a>,<a href='#B99' class='html-bibr' title='99'>99</a>,<a href='#B100' class='html-bibr' title='100'>100</a>], such as poly(3-hydroxybutyric acid), poly(3-hydroxypropionate), poly(4-hydroxybutyrate), poly(3-hydroxy-5-phenylvaleric acid) [<a href='#B101' class='html-bibr' title='101'>101</a>,<a href='#B102' class='html-bibr' title='102'>102</a>,<a href='#B103' class='html-bibr' title='103'>103</a>]. Lactic acid (2-hydroxypropionic acid, LA) is an important organic acid with both D-LA and L-LA enantiomeric forms existing as a result of the chiral carbon in molecular structure. Due to the wide range of applications, the demand for LA has increased significantly. Food waste, agricultural waste and lignocellulose have been explored to gain more economical and renewable fermentation substrates [<a href='#B104' class='html-bibr' title='104'>104</a>,<a href='#B105' class='html-bibr' title='105'>105</a>]. As a fundamental monomer of various polymers, LA has been widely applied in textiles and cosmetics [<a href='#B106' class='html-bibr' title='106'>106</a>,<a href='#B107' class='html-bibr' title='107'>107</a>,<a href='#B108' class='html-bibr' title='108'>108</a>]. Aliphatic diols are fundamental chemicals with two hydroxyl groups in the molecular structure that have a range of applications in basal chemicals, fuels, medicine, and polymer synthesis [<a href='#B109' class='html-bibr' title='109'>109</a>,<a href='#B110' class='html-bibr' title='110'>110</a>,<a href='#B111' class='html-bibr' title='111'>111</a>,<a href='#B112' class='html-bibr' title='112'>112</a>]. In particular, those platform green chemicals that can be biotechnologically produced by direct microbial bioconversion of biomass, including 1,2-propanediol (1,2-PDO), 1,3-propanediol (1,3-PDO), 1,4-butanediol (1,4-BDO) and 2,3-butanediol (2,3-BDO). Amongst, 1,3-PDO is a vital monomer of polytrimethylene terephthalate (PTT) with terephthalic acid (TPA) being the other. 1,4-BDO can convert to produce various products including the important biodegradable product polybutylene succinate and polyesters [<a href='#B113' class='html-bibr' title='113'>113</a>,<a href='#B114' class='html-bibr' title='114'>114</a>]. The platform chemicals furfural (FF) and 5-hydroxymethylfurfural (HMF) initiate the origin point for the synthesis of furan-based monomers as a result of their production from C5 and C6 saccharide-based renewable biomass resources [<a href='#B115' class='html-bibr' title='115'>115</a>,<a href='#B116' class='html-bibr' title='116'>116</a>,<a href='#B117' class='html-bibr' title='117'>117</a>,<a href='#B118' class='html-bibr' title='118'>118</a>] (abundant biomass carbon source such as rice husks, sugarcane bagasse, wheat bran, corncobs, oat and sawdust [<a href='#B119' class='html-bibr' title='119'>119</a>]). Furfuryl alcohol not only is the most important monomer in furan-based polymer synthesis but also set up the chemical platform of furfural-based subproduct development. Similarly, HMF as a vital chemical is mainly produced from fructose in biomass conversion, which is listed in the “Top 10 +4” as additions for an updated evaluation of DEO top 12 list of biobased chemicals [<a href='#B89' class='html-bibr' title='89'>89</a>]. Many intermediate chemicals and monomers can be converted by catalysis and oxidation of HMF, including 2,5-Furandicarboxylic acid, 5-Hydroxymethylfuroic acid, 2,5-Bishydroxymethylfuran, 2,5-Dimethylfuran, levulinic acid, adipic acid, 1,6-Hexanediol, caprolactone and caprolactam [<a href='#B120' class='html-bibr' title='120'>120</a>,<a href='#B121' class='html-bibr' title='121'>121</a>]. 2,5-Furandicarboxylic acid (FDCA) is a most attractive furan-based diacid as a platform chemical [<a href='#B90' class='html-bibr' title='90'>90</a>,<a href='#B122' class='html-bibr' title='122'>122</a>,<a href='#B123' class='html-bibr' title='123'>123</a>], which is normally synthesized through the oxidation of HMF [<a href='#B124' class='html-bibr' title='124'>124</a>]. As one of the most abundant biomass resources, lignin is the main feedstock of renewable aromatic compounds [<a href='#B125' class='html-bibr' title='125'>125</a>,<a href='#B126' class='html-bibr' title='126'>126</a>,<a href='#B127' class='html-bibr' title='127'>127</a>,<a href='#B128' class='html-bibr' title='128'>128</a>]. Vanillin (4-hydroxy-3-methoxybenzaldehyde), as a representative oxidative product of lignin, is another important renewable aromatic compound containing functional groups such as aldehyde, phenol, and ether. Although vanillin cannot be directly applied to synthesize polyesters because there is no bifunctional esterification group in its molecule structure, the phenolic hydroxyl and aldehyde groups of vanillin can be easily modified into diols, diacids/diesters, or hydroxy acids/hydroxyesters [<a href='#B129' class='html-bibr' title='129'>129</a>]. Due to its great mouldability of the active functional group, vanillin has become an important intermediate monomer of various polymers, such as acrylic polymers, polyesters, epoxy polymers, polyacetals, phenolic resins, polyaldimines, polyalkenes and polybenzoxazines, as well as other polymers from the reductive coupling of aldehyde [<a href='#B130' class='html-bibr' title='130'>130</a>,<a href='#B131' class='html-bibr' title='131'>131</a>,<a href='#B132' class='html-bibr' title='132'>132</a>,<a href='#B133' class='html-bibr' title='133'>133</a>,<a href='#B134' class='html-bibr' title='134'>134</a>]. Vegetable oils are another important family of biomass resources, mainly composed of triglycerides with fatty acid chains [<a href='#B135' class='html-bibr' title='135'>135</a>,<a href='#B136' class='html-bibr' title='136'>136</a>,<a href='#B137' class='html-bibr' title='137'>137</a>,<a href='#B138' class='html-bibr' title='138'>138</a>]. Due to the C-C double bonds of unsaturated fatty acids, vegetable oils and their derivative are widely applied in the preparation of biobased promising polymers such as polyurethane, polyamide, vitrimer, epoxy, polyester, polyether and polyolefins [<a href='#B139' class='html-bibr' title='139'>139</a>,<a href='#B140' class='html-bibr' title='140'>140</a>,<a href='#B141' class='html-bibr' title='141'>141</a>,<a href='#B142' class='html-bibr' title='142'>142</a>,<a href='#B143' class='html-bibr' title='143'>143</a>]. Castor oil, soybean oil, linseed oil, oleic acids, etc. are important vegetable oil-based monomers to produce polymers using various methods including condensation, free radical copolymerization, cationic and olefin metathesis [<a href='#B142' class='html-bibr' title='142'>142</a>,<a href='#B144' class='html-bibr' title='144'>144</a>,<a href='#B145' class='html-bibr' title='145'>145</a>,<a href='#B146' class='html-bibr' title='146'>146</a>]. Moreover, researchers convert vegetable oils onto polyols, polyacids and epoxy monomers to develop novel polymers with different structures and properties through functional strategies [<a href='#B147' class='html-bibr' title='147'>147</a>,<a href='#B148' class='html-bibr' title='148'>148</a>,<a href='#B149' class='html-bibr' title='149'>149</a>]. These biobased monomers have also been summarized in <a href='#Table1' class='html-table html-tablepopup'>Table 1</a>. <div class='html-fig-wrap'><div class='html-table_wrap_discription'><b>Table 1. </b>Various biobased monomers for biobased polymers reported in references.<div class='html-figpopup-table html-figpopup-link'><img data-large='/uploads/2024/06/28/be30b75224046e84526e0f8d6d54141a.png' data-original='/uploads/2024/06/28/be30b75224046e84526e0f8d6d54141a.png' src='/uploads/2024/06/28/be30b75224046e84526e0f8d6d54141a.png'><a class='html-expand html-tablepopup' href='#Table1'></a></div></div></div></div> <h2 class="border-bottom"> <a id="link-results" class="anchor-66"></a> 4. Creating SMPs from Biobased Resources </h2> <div class="link-results article-item-text"><em>4.1. Biobased Shape Memory Polyesters and Polyurethanes</em> As the most common types in thermally-induced SMPs, shape memory polyesters and polyurethanes are easily tailored and fabricated from numerous kinds of diacid, diol, and diisocyanate. Bio-based platform chemicals already contain abundant dicarboxylic acids, diols, polyols, and so on, which provide a great convenience for developing biobased shape memory polyester and polyurethanes. It is well known that PLA is one of the commercialized biobased and biodegradable aliphatic polyesters, and it is also a good candidate for designing SMPs intended for general use or biomaterials [<a href='#B143' class='html-bibr' title='143'>143</a>,<a href='#B154' class='html-bibr' title='154'>154</a>,<a href='#B155' class='html-bibr' title='155'>155</a>,<a href='#B156' class='html-bibr' title='156'>156</a>,<a href='#B157' class='html-bibr' title='157'>157</a>]. In 2005, Lendlein et al. [<a href='#B154' class='html-bibr' title='154'>154</a>] developed a completely amorphous and biodegradable shape memory copolyester-urethane network by employing an oligo [(rac-lactide)-co-glycolide] as switching segments (<a href='#Figure2' class='html-fig html-figpopup'>Figure 2</a>a), which could show a more homogenous degradation than the semicrystalline polymers. Chen et al. [<a href='#B155' class='html-bibr' title='155'>155</a>] reported a full biobased shape memory PLA/natural rubber composite with a co-continuous structure via a dynamical vulcanizing strategy. Biodegradable PBS is another biobased aliphatic polyester that has been utilized to design SMPs and also has been intensively investigated. In our previous work [<a href='#B42' class='html-bibr' title='42'>42</a>], we designed a series of shape memory copolymers combined with a PBS hard segment and PEG soft segment that could be triggered by body temperature, which showed great potential in the application of biomaterials. Besides the industrialized biobased aliphatic polyesters, the researchers begin to focus on the other available biobased monomers. Guo and Zhang [<a href='#B158' class='html-bibr' title='158'>158</a>,<a href='#B159' class='html-bibr' title='159'>159</a>] reported a new kind of biobased poly(propylene sebacate) from 1,3-propanediol, sebacic acid, and itaconic acid as the main raw materials, whose transition temperature and shape recovery speed could be tuned by changing the composition of the products (<a href='#Figure2' class='html-fig html-figpopup'>Figure 2</a>b). The authors furtherly introduced the Boehmite (BM) nanoplatelets into biobased poly(propylene sebacate) (PPSe) to form the shape memory composites with significantly improved mechanical properties (<a href='#Figure2' class='html-fig html-figpopup'>Figure 2</a>c). Recently, furan-based monomers have attracted the interest of researchers for the potential application in biobased SMPs. Zhou et al. [<a href='#B30' class='html-bibr' title='30'>30</a>] prepared a series of shape memory copolymers poly(ethylene 2,5-furandicarboxylate)-poly(ethylene glycol) (PEFEGs) from biobased ethylene glycol (EG), 2,5-furandicarboxylic acid (FDCA), and PEG (<a href='#Figure2' class='html-fig html-figpopup'>Figure 2</a>d). Besides a good SMEs, the presence of the rigid ring structure also enable the material to the excellent thermal stability.<div class='html-fig-wrap'><div class='html-fig_img'><div class='html-figpopup html-figpopup-link' href='#Figure2'><img data-large='/uploads/2023/07/26/00f4e12bcaee0963724bf23641ebbbe6.png' data-original='/uploads/2023/07/26/00f4e12bcaee0963724bf23641ebbbe6.png' src='/uploads/2023/07/26/00f4e12bcaee0963724bf23641ebbbe6.png'><a class='html-expand html-figpopup' href='#Figure2'></a></div></div><div class='html-fig_description'><b><a href='#Figure2' class='html-fig html-figpopup'>Figure 2</a>. </b>Biobased shape memory polyesters and polyurethanes. (<b>a</b>) Biobased SMP based on PLLA [<a href='#B154' class='html-bibr' title='154'>154</a>] (Copyright 2005, Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim). (<b>b</b>) Biobased SMP based on poly(propylene sebacate) [<a href='#B158' class='html-bibr' title='158'>158</a>] (Copyright 2011 American Chemical Society) and (<b>c</b>) its Boehmite-contained nanocomposites [<a href='#B159' class='html-bibr' title='159'>159</a>] (Copyright 2012 American Chemical Society). (<b>d</b>) Biobased SMP based on poly(ethylene 2,5-furandicarboxylate) [<a href='#B30' class='html-bibr' title='30'>30</a>] (Copyright 2018 Elsevier Ltd).</div></div><em>4.2. Biobased Shape Memory Epoxy</em> Epoxy is a typical thermosetting resin owning excellent dimensional stability, chemical resistance, and superior mechanical properties, these features enable the shape memory epoxy to be applied in more harsh environments. Developing biobased shape memory epoxy from renewable resources has been considered a promising way [<a href='#B136' class='html-bibr' title='136'>136</a>]. The general fabricating strategy is to epoxidize the biomass chemicals with proper functional groups at first, and then cure the epoxy precursors to obtain the shape memory epoxy resins. Epoxidized soybean oil (ESO) is an important raw material to develop biobased epoxy [<a href='#B160' class='html-bibr' title='160'>160</a>,<a href='#B161' class='html-bibr' title='161'>161</a>]. Tsujimoto et al. [<a href='#B27' class='html-bibr' title='27'>27</a>] reported a biobased shape memory polyESO/PLLA by incorporating PLLA into acid-catalyzed cured ESO, which exhibited not only desirable mechanical performance but also excellent SMEs (<a href='#Figure3' class='html-fig html-figpopup'>Figure 3</a>a). Yuan et al. [<a href='#B24' class='html-bibr' title='24'>24</a>] prepared shape memory networks from gallic acid and epoxidized olive oiled via a thiol-epoxy curing approach. Isosorbide is also a good candidate for biobased epoxy. It has been modified to biobased epoxy and diamine monomer by Zhu et al. [<a href='#B162' class='html-bibr' title='162'>162</a>] (<a href='#Figure3' class='html-fig html-figpopup'>Figure 3</a>b), and the cured resin possessed a good shape memory effect as well as satisfied thermal stability owing to the presence of stiff ring structures. Eugenol is another important bioresource that has been explored to design biobased shape memory epoxy. For example, Zhang et al. [<a href='#B163' class='html-bibr' title='163'>163</a>] developed a multifunctional biobased epoxy by employing a eugenol-derived epoxy with succinic anhydride to realize shape memory, repairing and recyclability (<a href='#Figure3' class='html-fig html-figpopup'>Figure 3</a>c). Miao et al. [<a href='#B164' class='html-bibr' title='164'>164</a>] fabricated dynamic cross-linked shape memory epoxy resin by decorating eugenol to trifunctional epoxy monomer and then curing with the disulfide bond-contained harder to pursue the reconfigurable feature. Tannic acid is also an attractive biomass derivative with a unique topological structure and abundant reactive groups, and not surprisingly, it has been utilized to develop shape memory epoxy thermosets, which can also exhibit high mechanical strength, damping, and recyclability (<a href='#Figure3' class='html-fig html-figpopup'>Figure 3</a>d) [<a href='#B165' class='html-bibr' title='165'>165</a>].<div class='html-fig-wrap'><div class='html-fig_img'><div class='html-figpopup html-figpopup-link' href='#Figure3'><img data-large='/uploads/2023/07/26/b4da7544041f54b3cf92fe7f8ff86a4e.png' data-original='/uploads/2023/07/26/b4da7544041f54b3cf92fe7f8ff86a4e.png' src='/uploads/2023/07/26/b4da7544041f54b3cf92fe7f8ff86a4e.png'><a class='html-expand html-figpopup' href='#Figure3'></a></div></div><div class='html-fig_description'><b><a href='#Figure3' class='html-fig html-figpopup'>Figure 3</a>. </b>Biobased shape memory epoxy. (<b>a</b>) Shape memory epoxy based on polyESO/PLLA [<a href='#B27' class='html-bibr' title='27'>27</a>] (Copyright 2014 American Chemical Society). (<b>b</b>) Shape memory epoxy derived from isosorbide [<a href='#B162' class='html-bibr' title='162'>162</a>] (Copyright 2016, Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim). (<b>c</b>) Shape memory epoxy derived from eugenol [<a href='#B163' class='html-bibr' title='163'>163</a>] (Copyright 2017 American Chemical Society). (<b>d</b>) Shape memory epoxy derived from tannic acid [<a href='#B165' class='html-bibr' title='165'>165</a>] (Copyright 2019 American Chemical Society).</div></div><em>4.3. Biobased SMPs with Self-healing Capacity</em> Recently, with the increasing demand of sustainable polymer materials, self-healing materials have become the fast-growing category in smart materials. It also brings great opportunity and challenge for researchers to design biobased materials by combining shape memory and self-healing performances via a rational fabricating strategy from biobased resources. From the view of the working mechanism, the self-healing of polymers can be classified into two families: extrinsic and intrinsic. Amongst, intrinsic self-healing has been considered the most promising strategy. To design intrinsic self-healing polymers, two factors need to be concerned, one is the mobility of the chain that may promote its diffusion in the damaged area, and the other is the presence of the reversible bond in the matrix and its ability for reformation at suitable conditions. To date, various reversible bonds have been utilized to construct self-healing materials, including supramolecular interactions such as hydrogen bonds, π-π stacking, ionic interactions and metal-ligand interactions, as well as dynamic covalent bonds such as Diels-Adler reactions, acylhydrazone bonds, ester bonds, disulfide bonds, alkoxyamine bonds [<a href='#B21' class='html-bibr' title='21'>21</a>,<a href='#B166' class='html-bibr' title='166'>166</a>,<a href='#B167' class='html-bibr' title='167'>167</a>]. Supramolecular interactions commonly have low bonding energy but excellent reversibility in mild conditions, which may endow the materials with outstanding healing efficiencies. Introducing hydrogen bonding is a facile approach to designing a self-healing system, and certainly, it also works in a biobased SMP [<a href='#B19' class='html-bibr' title='19'>19</a>,<a href='#B167' class='html-bibr' title='167'>167</a>,<a href='#B168' class='html-bibr' title='168'>168</a>]. Hu et al. [<a href='#B169' class='html-bibr' title='169'>169</a>] introduced a hydrogen-bonding hindered phenol (AO-80) into a biobased PLA thermoplastic polyurethane (PLA-TPU), which was beneficial for the improvement of energy dissipation and self-healing performance. The results showed that a comprehensive self-healing efficiency of samples reached 81.98% in 5 min at 90 °C determined from both yield strength and elongation at break (<a href='#Figure4' class='html-fig html-figpopup'>Figure 4</a>a). Besides, the hydrogen bonding interaction caused the increase of the <em>T</em><sub>g</sub> enabling this shape-memory composite to respond to the human body temperature. Frankly, it is still a great challenge for scientists to balance self-healing efficiency and mechanical properties, and recently several synergistic strategies have been developed to serve this dilemma. For example, Zhang et al. [<a href='#B170' class='html-bibr' title='170'>170</a>] reported an ionomeric elastomer composite with excellent recyclability, self-healing, and shape-memory properties based on lignin ramification. Importantly, this lignin/elastomer composite showed excellent mechanical properties as a result of the synergistic effect of the lignin domains and sacrificial coordination bonds (<a href='#Figure4' class='html-fig html-figpopup'>Figure 4</a>b). In addition, remote control and targeted activation are fascinating characteristics for self-healing SMPs, and they can be facilitately realized by incorporating photothermal conversion fillers into the matrix. NIR light and heat-triggered SMEs and controllable self-healing performance were demonstrated by Wang et al. [<a href='#B171' class='html-bibr' title='171'>171</a>] in a CNTs-graft-poly(tetrahydrofurfury methacryla-co-lauryl acrylate-co-1-vinylimidazole) copolymer via the association and dissociation process of the supramolecular connections between VI and Zn<sup>2+</sup> under the photothermal conversion of CNTs (<a href='#Figure4' class='html-fig html-figpopup'>Figure 4</a>c), which exhibited self-healing capacities both under heating and NIR light-actuating, and the healing efficiencies of tensile strength reached 93.2% at 60 °C for 4 h and 83.6% within 60 s, respectively.<div class='html-fig-wrap'><div class='html-fig_img'><div class='html-figpopup html-figpopup-link' href='#Figure4'><img data-large='/uploads/2023/07/26/8b5a7dfce02312f9398cee490d40e8e8.png' data-original='/uploads/2023/07/26/8b5a7dfce02312f9398cee490d40e8e8.png' src='/uploads/2023/07/26/8b5a7dfce02312f9398cee490d40e8e8.png'><a class='html-expand html-figpopup' href='#Figure4'></a></div></div><div class='html-fig_description'><b><a href='#Figure4' class='html-fig html-figpopup'>Figure 4</a>. </b>Biobased SMPs with self-healing capacity based on dynamic noncovalent bonds. (<b>a</b>) Schematic illustration of the self-healing mechanism based on hydrogen bonds [<a href='#B169' class='html-bibr' title='169'>169</a>] (Copyright 2022 Wiley-VCH Gmbh). (<b>b</b>) Ionomeric elastomer composites based on lignin ramification [<a href='#B170' class='html-bibr' title='170'>170</a>] (Copyright 2022 American Chemical Society). (<b>c</b>) Illustration of the association and disassociation process of Zn<sup>2+</sup>/VI metal-ligand bonds in response to NIR light stimulus [<a href='#B171' class='html-bibr' title='171'>171</a>] (Copyright 2021 Elsevier Ltd).</div></div>Recently, various dynamic covalent bonds have been explored to create versatile vitrimers [<a href='#B172' class='html-bibr' title='172'>172</a>] or covalent adaptable networks (CANs) [<a href='#B173' class='html-bibr' title='173'>173</a>] that may possess self-healing, reprocessiable and recyclable features. Concerning biobased SMPs, it is crucial to well-adapt the dynamic bond with functional groups in biobased monomers as well as the resultant products. The exchangeable ester bond is one of the most favorable dynamic bonds used in vitrimers or CANs, including biobased shape memory systems. Feng et al. [<a href='#B174' class='html-bibr' title='174'>174</a>] prepared a series of biobased vitrimers with self-healable, recyclable and multiple responsive properties, via transesterification reaction between epoxy natural rubber (ENR) and dodecanedioic acids with the presence of aniline trimer (ACAT) (<a href='#Figure5' class='html-fig html-figpopup'>Figure 5</a>a), and the authors verified that ACAT played a role of catalyst for transesterification reactions to ensure the reconfiguration of network topology and also accelerate the self-healing process, resulting a self-healing efficiency of 80% in the hot stage at 200 °C for 30 min according to the recovery ratio of tensile energy. In another example, a fully biobased vitrimer deriving from epoxidized soybean oil (ESO) and fumaropimaric acid (FPA) was produced by reacting the rich epoxy groups of ESO with the anhydride and carboxyl groups [<a href='#B175' class='html-bibr' title='175'>175</a>], the resultant transesterification-based ESO-FPA vitrimer equipped excellent self-healing and shape-memory properties (<a href='#Figure5' class='html-fig html-figpopup'>Figure 5</a>b). Recently, a dynamic boronic ester bond was chosen to construct multifunctional networks from sustainable Eucommia ulmoides gum [<a href='#B176' class='html-bibr' title='176'>176</a>]. The obtained network is crystalline and owns a wide range of melting temperature that allows it to exhibit two-way shape-memory behavior whether under constant stress or stress-free conditions. Meanwhile, the dynamic characteristic of the boronic ester bond endows it with an excellent self-healing efficiency of tensile strength near 100% at 80 °C for 12 h, and the incorporating multiwalled carbon nanotubes enable the formed composite to respond to NIR light (<a href='#Figure5' class='html-fig html-figpopup'>Figure 5</a>c). Li et al. [<a href='#B177' class='html-bibr' title='177'>177</a>] prepared TA-based polyurethane networks (TA-PU) with dynamic phenol-carbamate via reacting biobased monomer tannic acid (TA) with isocyanate groups. The target TA-PU not only displayed powerful shape-memory performance but also showed a good balance between robust mechanical properties and high self-healing efficiency (the tensile strength recovered 91.2% after healing at 120 °C for 2 h) (<a href='#Figure5' class='html-fig html-figpopup'>Figure 5</a>d). Although self-healing polymers can repair mechanical damage autonomously, difficulties remain in achieving efficient and repeatable recovery of multiple forms and structures of damage. There is an auxiliary strategy to promote healing that takes advantage of the shape memory effect to make the damaged interface contact with each other (<a href='#Figure6' class='html-fig html-figpopup'>Figure 6</a>) [<a href='#B178' class='html-bibr' title='178'>178</a>,<a href='#B179' class='html-bibr' title='179'>179</a>]. Taking advantage of the change in chain segment conformation and viscoelastic characteristics of the glass transition process in SMPs may potentially allow materials to be equipped a sufficient molecular mobility for gradual self-closure and self-healing of damages under the appropriate stimulation. This shape memory-assisted self-healing strategy was also demonstrated in biobased systems. Lu et al. [<a href='#B180' class='html-bibr' title='180'>180</a>] prepared a biobased sustainable shape-memory and self-healing elastomer with the semi-interpenetrating network by green bulk radical polymerization of furfural, ethyl cellulose and fatty-acid-derived monomers. The prepared elastomers exhibited excellent multiple shape memory effects owing to a broad glass transition of semi-interpenetrating polymer networks. More importantly, the SMEs promoted the diffusion and rearrangement of molecular chains at the crack interfaces and led to a significant enhancement of healing efficiency, e.g., 81.2% of healing efficiency of the elongation at break at 80 °C for 5 min. Fu et al. [<a href='#B178' class='html-bibr' title='178'>178</a>] reported a biobased polymer with shape-memory effect and self-healing performance based on poly(propylene carbonate) and microfibrillated cellulose, the authors also verified that the composites with good shape memory ability also showed excellent scratch resistance and scratch self-healing behavior (the elongation recovered almost completely in oven at 60 °C).<div class='html-fig-wrap'><div class='html-fig_img'><div class='html-figpopup html-figpopup-link' href='#Figure5'><img data-large='/uploads/2023/07/26/3e83969ef61761e0475c533bed61aa46.png' data-original='/uploads/2023/07/26/3e83969ef61761e0475c533bed61aa46.png' src='/uploads/2023/07/26/3e83969ef61761e0475c533bed61aa46.png'><a class='html-expand html-figpopup' href='#Figure5'></a></div></div><div class='html-fig_description'><b><a href='#Figure5' class='html-fig html-figpopup'>Figure 5</a>. </b>Biobased SMPs with the self-healing capacity based on dynamic covalent bond. (<b>a</b>) Mechanism of NIR-induced multistage shape recovery performance based on transesterification reactions [<a href='#B174' class='html-bibr' title='174'>174</a>] (Copyright 2018 American Chemical Society). (<b>b</b>) The ESO-FPA biobased vitrimer equipped with excellent self-healing and shape-memory properties [<a href='#B175' class='html-bibr' title='175'>175</a>] (Copyright 2019 Elsevier Ltd). (<b>c</b>) Schematic illustration for the preparation of the NIR light-driven switch [<a href='#B176' class='html-bibr' title='176'>176</a>] (Copyright 2023 American Chemical Society). (<b>d</b>) Schematic mechanism of the thermally induced self-healing behavior based on dynamic phenol-carbamate [<a href='#B177' class='html-bibr' title='177'>177</a>] (Copyright 2021 Elsevier Ltd).</div></div><div class='html-fig-wrap'><div class='html-fig_img'><div class='html-figpopup html-figpopup-link' href='#Figure6'><img data-large='/uploads/2023/07/26/a99e47c16bc2ff37f554328fc70ec057.png' data-original='/uploads/2023/07/26/a99e47c16bc2ff37f554328fc70ec057.png' src='/uploads/2023/07/26/a99e47c16bc2ff37f554328fc70ec057.png'><a class='html-expand html-figpopup' href='#Figure6'></a></div></div><div class='html-fig_description'><b><a href='#Figure6' class='html-fig html-figpopup'>Figure 6</a>. </b>Schematic illustration of the shape-memory-assisted self-healing concept [<a href='#B178' class='html-bibr' title='178'>178</a>] (Copyright 2014 Royal Society of Chemistry).</div></div> </div> <h2 class="border-bottom"> <a id="link-discussion" class="anchor-66"></a> 5. 4D Printing Biobased SMPs </h2> <div class="link-discussion article-item-text">3D printing technology, as known as additive manufacturing, is committed to fabricating complex three-dimensional structures based on computer-aided design technology that is beyond the capacity of traditional manufacturing methods. In 2013, a new term “4D printing” was first proposed by Skylar Tibbit at a TED talk [<a href='#B181' class='html-bibr' title='181'>181</a>]. Compared with 3D printing, 4D printing increases the dimension of time which can be achieved by shape and property changes of 3D objects depending on time. Although 4D printing is developed from 3D printing, the most significant characteristic that distinguishes it from 3D printing endows a dynamic intelligent response deformation for static 3D objects. At present, 4D printing is a highly functional and refined technology, in which different printing devices and approaches adapt to the optimal structure of differentiated material properties [<a href='#B182' class='html-bibr' title='182'>182</a>]. These manufacturing methods include fused deposition modeling (FDM), direct ink-writing (DIW), stereolithography (SLA), digital light processing (DLP), and selective laser sintering (SLS) [<a href='#B183' class='html-bibr' title='183'>183</a>]. With the development of 4D printing technology, SMPs have once again ushered in optimized technological innovations and a wide range of applications. Printed SMP objects have a wide range of potential applications in biomedical devices [<a href='#B184' class='html-bibr' title='184'>184</a>,<a href='#B185' class='html-bibr' title='185'>185</a>,<a href='#B186' class='html-bibr' title='186'>186</a>,<a href='#B187' class='html-bibr' title='187'>187</a>], flexible electronic devices [<a href='#B188' class='html-bibr' title='188'>188</a>], smart actuators [<a href='#B189' class='html-bibr' title='189'>189</a>], smart wearable devices [<a href='#B190' class='html-bibr' title='190'>190</a>], and aerospace [<a href='#B191' class='html-bibr' title='191'>191</a>]. Biobased shape memory objects based on 4D printing in many vital fields also have significant advantages. With the demand increase for 3D printed downstream products in different industry fields, functionalized materials have been introduced into 3D printing processes. FDM is a convenient technology to print thermoplastics, and biobased SMPs are no exception. PLA is a typical thermoplastic that can be printed by FDM. Hua et al. [<a href='#B192' class='html-bibr' title='192'>192</a>] fabricated photo-responsive actuators based on PLA and multi-walled carbon nanotubes via FDM printing (<a href='#Figure7' class='html-fig html-figpopup'>Figure 7</a>a). FDM was also employed to print the PLA/PCL-based bio-polyurethanes [<a href='#B193' class='html-bibr' title='193'>193</a>], and a moderate cross-linking was established by using chitooligosaccharide (COS) to promote the microphase-separated structure, which resulted in a desirable printability and presumptive shape memory behavior (<a href='#Figure7' class='html-fig html-figpopup'>Figure 7</a>b). However, FDM still has inevitable disadvantages, since the interlayer force of printed materials only depends on a physical interaction that brings the apparent anisotropy of mechanical properties. In our previous work [<a href='#B194' class='html-bibr' title='194'>194</a>], we put forward a UV-assisted FDM strategy to print fully biobased shape memory copolyesters derived from biobased monomers dimethyl itaconate, dimethyl sebacate, and 1,4-butanediol, the in-situ photo-crosslinking during the FDM printing greatly enhanced the interlayer adhesion, and thus, the printed object displayed a good mechanical performance with low anisotropy effect, as well as a desirable SMEs as an overheat protection carrier (<a href='#Figure7' class='html-fig html-figpopup'>Figure 7</a>c).<div class='html-fig-wrap'><div class='html-fig_img'><div class='html-figpopup html-figpopup-link' href='#Figure7'><img data-large='/uploads/2023/07/26/ec3c9684949f55931b9473efe86e3db8.png' data-original='/uploads/2023/07/26/ec3c9684949f55931b9473efe86e3db8.png' src='/uploads/2023/07/26/ec3c9684949f55931b9473efe86e3db8.png'><a class='html-expand html-figpopup' href='#Figure7'></a></div></div><div class='html-fig_description'><b><a href='#Figure7' class='html-fig html-figpopup'>Figure 7</a>. </b>Application of 4D printing biobased SMPs. (<b>a</b>) Shape recovery process of the actuator under near-infrared irradiation and recovery to the original shape [<a href='#B192' class='html-bibr' title='192'>192</a>] (Copyright 2018 Royal Society of Chemistry). (<b>b</b>) Thermal stimulus-response process of 4D printed snowflake models [<a href='#B193' class='html-bibr' title='193'>193</a>] (Copyright 2022 Elsevier Ltd). (<b>c</b>) 4D printed objects of fully biobased shape memory copolyesters [<a href='#B194' class='html-bibr' title='194'>194</a>] (Copyright 2022 American Chemical Society). </div></div>4D printing exhibits great advantages in the manufacture of biomaterials or biomedical devices, especially in the personalized customization and precise control of implantation structures. Furthermore, invasive surgery generally desires to avoid an open surgical wound, while the stimulus-response deformation of SMPs is considered to be the most promising approach [<a href='#B195' class='html-bibr' title='195'>195</a>]. In general, biomedical devices require excellent biocompatibility, biodegradability, suitable mechanical property, low biotoxicity, and even no toxicity. PLA and its ramifications are the most widely used 4D printing substrates [<a href='#B196' class='html-bibr' title='196'>196</a>]. Leng et al. [<a href='#B197' class='html-bibr' title='197'>197</a>] designed a series of biobased and remotely controllable shape memory occlusion devices by FDM printing technology (<a href='#Figure8' class='html-fig html-figpopup'>Figure 8</a>a), which achieved a self-expanded performance after minimally invasive implantation under a certain strength magnetic field. A similar material was applied in bone repair to match the complex bone defect shape (<a href='#Figure8' class='html-fig html-figpopup'>Figure 8</a>b) [<a href='#B73' class='html-bibr' title='73'>73</a>] and bioinspired tracheal scaffold combined with 4D printing (<a href='#Figure8' class='html-fig html-figpopup'>Figure 8</a>c) [<a href='#B198' class='html-bibr' title='198'>198</a>]. FDM also can be used to print the sacrificing materials for porous scaffolds. Zhang et al. [<a href='#B199' class='html-bibr' title='199'>199</a>] fabricated a cytocompatibility porous scaffold based on biobased castor oil/PCL copolyester by removing a FDM printed PLA sacrificing materials from the cured matrix to simulate the nonuniform distribution of porosity found within natural tissues, and the resultant scaffold displayed enhanced attachment, proliferation, and differentiation. The authors also developed a smart biomedical scaffold from photocurable biobased soybean oil epoxidized acrylate using an SLA printing strategy. The obtained scaffold showed good biocompatibility and SMEs that can be triggered by body temperature (<a href='#Figure8' class='html-fig html-figpopup'>Figure 8</a>d) [<a href='#B200' class='html-bibr' title='200'>200</a>]. Moreover, the remote responsive SMPs have significant advantages in precise control compared with body temperature stimulation. Graphene oxide functionalized polybutylene succinate/PLA biobased materials (GO-PBS/PLA) showed attractive photothermal performance under near-infrared irradiation, and the printed porous scaffold confirmed the feasibility of precise and remotely controllable structure transformation (<a href='#Figure8' class='html-fig html-figpopup'>Figure 8</a>e) [<a href='#B201' class='html-bibr' title='201'>201</a>]. <div class='html-fig-wrap'><div class='html-fig_img'><div class='html-figpopup html-figpopup-link' href='#Figure8'><img data-large='/uploads/2023/07/26/1f2f7655854b5605d4e3d37406dd5afc.png' data-original='/uploads/2023/07/26/1f2f7655854b5605d4e3d37406dd5afc.png' src='/uploads/2023/07/26/1f2f7655854b5605d4e3d37406dd5afc.png'><a class='html-expand html-figpopup' href='#Figure8'></a></div></div><div class='html-fig_description'><b><a href='#Figure8' class='html-fig html-figpopup'>Figure 8</a>. </b>Biomedical application of 4D printing biobased SMPs: (<b>a</b>) 4D printed biodegradable and remotely controllable shape memory occlusion devices [<a href='#B197' class='html-bibr' title='197'>197</a>] (Copyright 2019, Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim). (<b>b</b>) 4D printed structures in the shape of spinal bone defect [<a href='#B73' class='html-bibr' title='73'>73</a>] (Copyright 2019 Elsevier Ltd). (<b>c</b>) 4D printing of bioinspired tracheal scaffold [<a href='#B198' class='html-bibr' title='198'>198</a>] (Copyright 2019 Elsevier Ltd). (<b>d</b>) Schematic of soybean oil epoxidized acrylate fabrication process from raw material through resin fabrication and application [<a href='#B200' class='html-bibr' title='200'>200</a>] (Copyright 2016 Springer Nature). (<b>e</b>) the precise and remotely controllable transformation process of GO-PBS/PLA porous scaffold [<a href='#B201' class='html-bibr' title='201'>201</a>] (Copyright 2021 Elsevier Ltd).</div></div> </div> <h2 class="border-bottom"> <a id="link-conclusions" class="anchor-66"></a> 6. Summary and Outlook </h2> <div class="link-conclusions article-item-text">The extensive research on SMPs greatly enriches their molecular mechanisms, stimulus types, and actuating mode, and has resulted numerous fascinating systems, which exhibit tremendous potential in actuators, sensors, smart textiles, biomaterials and space deploying devices. While the main trend at present is focused on the structure, performance and application of SMPs, we should not ignore the increasing demand for more sustainable materials, since the environment and resources are globally crucial issues. Creating SMPs from sustainable and renewable resources become an important development concept, which draws the great interest of researchers. The recent fast development of the industrialization for biobased monomers, provides various building blocks for biobased SMPs. For instance, versatile biobased polyesters, polyurethanes, epoxies, and vitrimers have been developed, which show promising application prospects in general materials as well as the biomaterials field. Nevertheless, the present biobased SMPs are far away from the practical demands, and several challenges still need to be addressed in the future, including exploring adaptive biobased monomers, more economical synthesis routes, rational tailoring of the architecture of SMPs, and establishing more facile manufacturing strategies.</div> <h2 class="border-bottom"> <a id="link-supplementary-materials" class="anchor-66"></a> Acknowledgments </h2> <div class="link-supplementary-materials article-item-text">This work was financially supported by the Science and Technology Planning Project of Sichuan Province (2022YFSY0017), 111 Project (B20001) and the Fundamental Research Funds for the Central Universities.</div> <h2 class="border-bottom"> <a id="link-appendix" class="anchor-66"></a> Author Contributions </h2> <div class="link-appendix article-item-text">References collection, K. Luo, Z. Y. Xu and R. Zhan; Writing – Original Draft Preparation, K. Luo, Z. Y. Xu and R. Zhan; Writing – Review & Editing, K.K. Yang; Funding Acquisition, K.K. Yang. </div> <h2 class="border-bottom"> <a id="link-appendix-b" class="anchor-66"></a> Ethics Statement </h2> <div class="link-appendix-b article-item-text">Not applicable.</div> <h2 class="border-bottom"> <a id="link-acknowledgments" class="anchor-66"></a> Funding </h2> <div class="link-acknowledgments article-item-text">This research was funded by [Science and Technology Planning Project of Sichuan Province] grant number [2022YFSY0017], [111 Project]” grant number [B20001] and Fundamental Research Funds for the Central Universities. </div> <h2 class="border-bottom"> <a id="link-author-contributions" class="anchor-66"></a> Declaration of Competing Interest </h2> <div class="link-author-contributions article-item-text">The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. </div> <div class="link-ethics-statement article-item-text"></div> <div class="link-informed-consent-statement article-item-text"></div> <div class="link-funding article-item-text"></div> <div class="link-declaration-competing-interest article-item-text"></div> <h2 class="border-bottom"> <a id="html-references_list" class="anchor-66"></a> References </h2> <div class="references_zt"> <div class="references_at"> <div class="references html-x" id='B1'> <div class="references_sup">1.</div> <div class="references_name"> Lucherelli MA, Duval A, Averous L. Biobased vitrimers: Towards sustainable and adaptable performing polymer materials.&nbsp;<i> Prog. Polym. Sci. </i><b> 2022</b>,<i> 127,</i> 101515. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Biobased vitrimers: Towards sustainable and adaptable performing polymer materials.&nbsp;&publication_year=2022&author=Lucherelli MA&author=Duval A&author=Averous L. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B2'> <div class="references_sup">2.</div> <div class="references_name"> Mou Z, Chen EYX. Polyesters and Poly(ester-urethane)s from Biobased Difuranic Polyols.&nbsp;<i> ACS Sustain. Chem. Eng. </i><b> 2016</b>,<i> 4,</i> 7118–7129. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Polyesters and Poly(ester-urethane)s from Biobased Difuranic Polyols.&nbsp;&publication_year=2016&author=Mou Z&author=Chen EYX. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B3'> <div class="references_sup">3.</div> <div class="references_name"> Chen Q, Du J-h, Xie H-b, Zhao Z-b, Zheng Q. Studies on Preparation and Properties of Bio-based Polymeric Monomers and Their Bio-based Polymers. Acta Polym. Sin. 2016, 1330–1358. doi:10.11777/j.issn1000-3304.2016.16154. </div> </div> <div class="references html-x" id='B4'> <div class="references_sup">4.</div> <div class="references_name"> Valerio O, Misra M, Mohanty AK. Poly(glycerol-co-diacids) Polyesters: From Glycerol Biorefinery to Sustainable Engineering Applications, A Review.&nbsp;<i> ACS Sustain. Chem. Eng. </i><b> 2018</b>,<i> 6,</i> 5681–5693. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Poly(glycerol-co-diacids) Polyesters: From Glycerol Biorefinery to Sustainable Engineering Applications, A Review.&nbsp;&publication_year=2018&author=Valerio O&author=Misra M&author=Mohanty AK. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B5'> <div class="references_sup">5.</div> <div class="references_name"> Taroncher-Oldenburg G, Marshall A. Trends in biotech literature 2006.&nbsp;<i> Nat. Biotechnol. </i><b> 2007</b>,<i> 25,</i> 961. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Trends in biotech literature 2006.&nbsp;&publication_year=2007&author=Taroncher-Oldenburg G&author=Marshall A. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B6'> <div class="references_sup">6.</div> <div class="references_name"> Cantarutti C, Dinu R, Mija A. Polyhydroxybutyrate Bioresins with High Thermal Stability by Cross-linking with Resorcinol Diglycidyl Ether.&nbsp;<i> Biomacromolecules </i><b> 2020</b>,<i> 21,</i> 3447–3458. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Polyhydroxybutyrate Bioresins with High Thermal Stability by Cross-linking with Resorcinol Diglycidyl Ether.&nbsp;&publication_year=2020&author=Cantarutti C&author=Dinu R&author=Mija A. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B7'> <div class="references_sup">7.</div> <div class="references_name"> Dhers S, Vantomme G, Averous L. A fully bio-based polyimine vitrimer derived from fructose.<i> Green Chem. </i><b> 2019</b>,<i> 21,</i> 1596–1601. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=A fully bio-based polyimine vitrimer derived from fructose.&publication_year=2019&author=Dhers S&author=Vantomme G&author=Averous L. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B8'> <div class="references_sup">8.</div> <div class="references_name"> Fei M, Liu T, Zhao B, Otero A, Chang Y-C, Zhang J. From Glassy Plastic to Ductile Elastomer: Vegetable Oil-Based UV-Curable Vitrimers and Their Potential Use in 3D Printing.&nbsp;<i> ACS Appl. Polym. Mater. </i><b> 2021</b>,<i> 3,</i> 2470–2479. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=From Glassy Plastic to Ductile Elastomer: Vegetable Oil-Based UV-Curable Vitrimers and Their Potential Use in 3D Printing.&nbsp;&publication_year=2021&author=Fei M&author=Liu T&author=Zhao B&author=Otero A&author=Chang Y-C&author=Zhang J. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B9'> <div class="references_sup">9.</div> <div class="references_name"> Jia P, Shi Y, Song F, Bei Y, Huang C, Zhang M, et al. Bio-based and degradable vitrimer-graphene/graphene oxide composites with self-healing ability stimulated by heat, electricity and microwave as temperature and fire warning sensors.&nbsp;<i> Compos. Sci. Technol. </i><b> 2022</b>,<i> 227,</i> 109573. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Bio-based and degradable vitrimer-graphene/graphene oxide composites with self-healing ability stimulated by heat, electricity and microwave as temperature and fire warning sensors.&nbsp;&publication_year=2022&author=Jia P&author=Shi Y&author=Song F&author=Bei Y&author=Huang C&author=Zhang M&author=et al. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B10'> <div class="references_sup">10.</div> <div class="references_name"> Li W, Xiao L, Huang J, Wang Y, Nie X, Chen J. Bio-based epoxy vitrimer for recyclable and carbon fiber reinforced materials: Synthesis and structure-property relationship.&nbsp;<i> Compos. Sci. Technol. </i><b> 2022</b>,<i> 227,</i> 109575. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Bio-based epoxy vitrimer for recyclable and carbon fiber reinforced materials: Synthesis and structure-property relationship.&nbsp;&publication_year=2022&author=Li W&author=Xiao L&author=Huang J&author=Wang Y&author=Nie X&author=Chen J. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B11'> <div class="references_sup">11.</div> <div class="references_name"> Liu T, Fei M-e, Zhao B-m, Zhang J-w. Progress in Biobased Vitrimers.&nbsp;<i> Acta Polym. Sin. </i><b> 2020</b>,<i> 51,</i> 817–832. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Progress in Biobased Vitrimers.&nbsp;&publication_year=2020&author=Liu T&author=Fei M-e&author=Zhao B-m&author=Zhang J-w. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B12'> <div class="references_sup">12.</div> <div class="references_name"> Zhu Y, Gao F, Zhong J, Shen L, Lin Y. Renewable castor oil and DL-limonene derived fully bio-based vinylogous urethane vitrimers.&nbsp;<i> Eur. Polym. J. </i><b> 2020</b>,<i> 135,</i> 109865. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Renewable castor oil and DL-limonene derived fully bio-based vinylogous urethane vitrimers.&nbsp;&publication_year=2020&author=Zhu Y&author=Gao F&author=Zhong J&author=Shen L&author=Lin Y. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B13'> <div class="references_sup">13.</div> <div class="references_name"> Altuna FI, Antonacci J, Arenas GF, Pettarin V, Hoppe CE, Williams RJJ. Photothermal triggering of self-healing processes applied to the reparation of bio-based polymer networks.&nbsp;<i> Mater. Res. Express </i><b> 2016</b>,<i> 3,</i> 045003. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Photothermal triggering of self-healing processes applied to the reparation of bio-based polymer networks.&nbsp;&publication_year=2016&author=Altuna FI&author=Antonacci J&author=Arenas GF&author=Pettarin V&author=Hoppe CE&author=Williams RJJ. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B14'> <div class="references_sup">14.</div> <div class="references_name"> Gu L, Wu Q-Y. Recyclable bio-based crosslinked polyurethanes with self-healing ability.&nbsp;<i> J. Appl. Polym. Sci. </i><b> 2018</b>,<i> 135,</i> 46272. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Recyclable bio-based crosslinked polyurethanes with self-healing ability.&nbsp;&publication_year=2018&author=Gu L&author=Wu Q-Y. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B15'> <div class="references_sup">15.</div> <div class="references_name"> Huang J, Zhang J, Zhu G, Yu X, Hu Y, Shang Q, et al. Self-healing, high-performance, and high-biobased-content UV-curable coatings derived from rubber seed oil and itaconic acid.&nbsp;<i> Prog. Org. Coat. </i><b> 2021</b>,<i> 159,</i> 106391. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Self-healing, high-performance, and high-biobased-content UV-curable coatings derived from rubber seed oil and itaconic acid.&nbsp;&publication_year=2021&author=Huang J&author=Zhang J&author=Zhu G&author=Yu X&author=Hu Y&author=Shang Q&author=et al. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B16'> <div class="references_sup">16.</div> <div class="references_name"> Hui Y, Wen Z-B, Pilate F, Xie H, Fan C-J, Du L, et al. A facile strategy to fabricate highly-stretchable self-healing poly(vinyl alcohol) hybrid hydrogels based on metal-ligand interactions and hydrogen bonding.&nbsp;<i> Polym. Chem. </i><b> 2016</b>,<i> 7,</i> 7269–7277. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=A facile strategy to fabricate highly-stretchable self-healing poly(vinyl alcohol) hybrid hydrogels based on metal-ligand interactions and hydrogen bonding.&nbsp;&publication_year=2016&author=Hui Y&author=Wen Z-B&author=Pilate F&author=Xie H&author=Fan C-J&author=Du L&author=et al. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B17'> <div class="references_sup">17.</div> <div class="references_name"> Lai S-M, Liu J-L, Huang Y-H. Preparation of Self-healing Natural Rubber/Polycaprolactone (NR/PCL) Blends.&nbsp;<i> J. Macromol. Sci. Part B-Phys. </i><b> 2020</b>,<i> 59,</i> 587–607. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Preparation of Self-healing Natural Rubber/Polycaprolactone (NR/PCL) Blends.&nbsp;&publication_year=2020&author=Lai S-M&author=Liu J-L&author=Huang Y-H. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B18'> <div class="references_sup">18.</div> <div class="references_name"> Li W, Xiao L, Wang Y, Chen J, Nie X. Self-healing silicon-containing eugenol-based epoxy resin based on disulfide bond exchange: Synthesis and structure-property relationships.&nbsp;<i> Polymer </i><b> 2021</b>,<i> 229,</i> 123967. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Self-healing silicon-containing eugenol-based epoxy resin based on disulfide bond exchange: Synthesis and structure-property relationships.&nbsp;&publication_year=2021&author=Li W&author=Xiao L&author=Wang Y&author=Chen J&author=Nie X. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B19'> <div class="references_sup">19.</div> <div class="references_name"> Yang Y, Urban MW. Self-healing polymeric materials.&nbsp;<i> Chem. Soc. Rev. </i><b> 2013</b>,<i> 42,</i> 7446–7467. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Self-healing polymeric materials.&nbsp;&publication_year=2013&author=Yang Y&author=Urban MW. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B20'> <div class="references_sup">20.</div> <div class="references_name"> Zhang J, Huang J, Zhu G, Yu X, Cheng J, Liu Z, et al. Self-healing, recyclable, and removable UV-curable coatings derived from tung oil and malic acid.&nbsp;<i> Green Chem. </i><b> 2021</b>,<i> 23,</i> 5875–5886. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Self-healing, recyclable, and removable UV-curable coatings derived from tung oil and malic acid.&nbsp;&publication_year=2021&author=Zhang J&author=Huang J&author=Zhu G&author=Yu X&author=Cheng J&author=Liu Z&author=et al. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B21'> <div class="references_sup">21.</div> <div class="references_name"> Zhu M, Liu J, Gan L, Long M. Research progress in bio-based self-healing materials.&nbsp;<i> Eur. Polym. J. </i><b> 2020</b>,<i> 129,</i> 109651. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Research progress in bio-based self-healing materials.&nbsp;&publication_year=2020&author=Zhu M&author=Liu J&author=Gan L&author=Long M. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B22'> <div class="references_sup">22.</div> <div class="references_name"> Ali ES, Khiar ASA, Zubir SA, Zulkeple ZAZ. Electrical conductivity of biobased shape memory polyurethane filled with CNT.&nbsp;<i> Mater. Sci. Forum </i><b> 2017</b>,<i> 880,</i> 69–72. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Electrical conductivity of biobased shape memory polyurethane filled with CNT.&nbsp;&publication_year=2017&author=Ali ES&author=Khiar ASA&author=Zubir SA&author=Zulkeple ZAZ. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B23'> <div class="references_sup">23.</div> <div class="references_name"> Capiel G, Marcovich NE, Mosiewicki MA. Shape memory polymer networks based on methacrylated fatty acids.&nbsp;<i> Eur. Polym. J. </i><b> 2019</b>,<i> 116,</i> 321–329. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Shape memory polymer networks based on methacrylated fatty acids.&nbsp;&publication_year=2019&author=Capiel G&author=Marcovich NE&author=Mosiewicki MA. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B24'> <div class="references_sup">24.</div> <div class="references_name"> Feng Y, Hu Y, Man L, Yuan T, Zhang C, Yang Z. &nbsp;Biobased thiol-epoxy shape memory networks from gallic acid and vegetable oils.&nbsp;<i> Eur. Polym. J. </i><b> 2019</b>,<i> 112,</i> 619–628. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=&nbsp;Biobased thiol-epoxy shape memory networks from gallic acid and vegetable oils.&nbsp;&publication_year=2019&author=Feng Y&author=Hu Y&author=Man L&author=Yuan T&author=Zhang C&author=Yang Z." target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B25'> <div class="references_sup">25.</div> <div class="references_name"> Petrovic ZS, Milic J, Zhang F, Ilavsky J. Fast-responding bio-based shape memory thermoplastic polyurethanes.&nbsp;<i> Polymer </i><b> 2017</b>,<i> 121,</i> 26–37. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Fast-responding bio-based shape memory thermoplastic polyurethanes.&nbsp;&publication_year=2017&author=Petrovic ZS&author=Milic J&author=Zhang F&author=Ilavsky J. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B26'> <div class="references_sup">26.</div> <div class="references_name"> Saralegi A, Foster EJ, Weder C, Eceiza A, Angeles Corcuera M. Thermoplastic shape-memory polyurethanes based on natural oils.&nbsp;<i> Smart Mater. Struct. </i><b> 2014</b>,<i> 23,</i> 025033. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Thermoplastic shape-memory polyurethanes based on natural oils.&nbsp;&publication_year=2014&author=Saralegi A&author=Foster EJ&author=Weder C&author=Eceiza A&author=Angeles Corcuera M. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B27'> <div class="references_sup">27.</div> <div class="references_name"> Tsujimoto T, Uyama H. Full Biobased Polymeric Material from Plant Oil and Poly(lactic acid) with a Shape Memory Property.&nbsp;<i> ACS Sustain. Chem. Eng. </i><b> 2014</b>,<i> 2,</i> 2057–2062. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Full Biobased Polymeric Material from Plant Oil and Poly(lactic acid) with a Shape Memory Property.&nbsp;&publication_year=2014&author=Tsujimoto T&author=Uyama H. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B28'> <div class="references_sup">28.</div> <div class="references_name"> Tsujimoto T, Takeshita K, Uyama H. Bio-based Epoxy Resins from Epoxidized Plant Oils and Their Shape Memory Behaviors.&nbsp;<i> J. Am. Oil Chem. Soc. </i><b> 2016</b>,<i> 93,</i> 1663–1669. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Bio-based Epoxy Resins from Epoxidized Plant Oils and Their Shape Memory Behaviors.&nbsp;&publication_year=2016&author=Tsujimoto T&author=Takeshita K&author=Uyama H. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B29'> <div class="references_sup">29.</div> <div class="references_name"> Vechambre C, Chaunier L, Lourdin D. Novel Shape-Memory Materials Based on Potato Starch.&nbsp;<i> Macromol. Mater. Eng. </i><b> 2010</b>,<i> 295,</i> 115–122. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Novel Shape-Memory Materials Based on Potato Starch.&nbsp;&publication_year=2010&author=Vechambre C&author=Chaunier L&author=Lourdin D. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B30'> <div class="references_sup">30.</div> <div class="references_name"> Wang G, Jiang M, Zhang Q, Wang R, Zhou G. Biobased multiblock copolymers: Synthesis, properties and shape memory performance of poly(ethylene 2,5-furandicarboxylate)-b-ly(ethylene glycol).&nbsp;<i> Polym. Degrad. Stab. </i><b> 2017</b>,<i> 144,</i> 121–127. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Biobased multiblock copolymers: Synthesis, properties and shape memory performance of poly(ethylene 2,5-furandicarboxylate)-b-ly(ethylene glycol).&nbsp;&publication_year=2017&author=Wang G&author=Jiang M&author=Zhang Q&author=Wang R&author=Zhou G. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B31'> <div class="references_sup">31.</div> <div class="references_name"> Calvo-Correas T, Gabilondo N, Alonso-Varona A, Palomares T, Angeles Corcuera M, Eceiza A. Shape-memory properties of crosslinked biobased polyurethanes.<i> Eur. Polym. J. </i><b> 2016</b>,<i> 78,</i> 253–263. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Shape-memory properties of crosslinked biobased polyurethanes.&publication_year=2016&author=Calvo-Correas T&author=Gabilondo N&author=Alonso-Varona A&author=Palomares T&author=Angeles Corcuera M&author=Eceiza A. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B32'> <div class="references_sup">32.</div> <div class="references_name"> Behl M, Lendlein A. Shape-memory polymers.&nbsp;<i> Mater. Today </i><b> 2007</b>,<i> 10,</i> 20–28. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Shape-memory polymers.&nbsp;&publication_year=2007&author=Behl M&author=Lendlein A. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B33'> <div class="references_sup">33.</div> <div class="references_name"> Liu C, Qin H, Mather PT. Review of progress in shape-memory polymers.&nbsp;<i> J. Mater. Chem. </i><b> 2007</b>,<i> 17,</i> 1543–1558. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Review of progress in shape-memory polymers.&nbsp;&publication_year=2007&author=Liu C&author=Qin H&author=Mather PT. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B34'> <div class="references_sup">34.</div> <div class="references_name"> Huang WM, Yang B, Zhao Y, Ding Z. Thermo-moisture responsive polyurethane shape-memory polymer and composites: a review.&nbsp;<i> J. Mater. Chem. </i><b> 2010</b>,<i> 20,</i> 3367–3381. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Thermo-moisture responsive polyurethane shape-memory polymer and composites: a review.&nbsp;&publication_year=2010&author=Huang WM&author=Yang B&author=Zhao Y&author=Ding Z. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B35'> <div class="references_sup">35.</div> <div class="references_name"> Wu Y, Lin Y, Zhou Y, Zuo F, Zheng Z, Ding X. Light-Induced Shape Memory Polymer Materials.&nbsp;<i> Progr. Chem. </i><b> 2012</b>,<i> 24,</i> 2004–2010. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Light-Induced Shape Memory Polymer Materials.&nbsp;&publication_year=2012&author=Wu Y&author=Lin Y&author=Zhou Y&author=Zuo F&author=Zheng Z&author=Ding X. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B36'> <div class="references_sup">36.</div> <div class="references_name"> Zhao Q, Qi HJ, Xie T. &nbsp;Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding.&nbsp;<i> Prog. Polym. Sci. </i><b> 2015</b>,<i> 49,</i> 79–120. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=&nbsp;Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding.&nbsp;&publication_year=2015&author=Zhao Q&author=Qi HJ&author=Xie T." target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B37'> <div class="references_sup">37.</div> <div class="references_name"> Biswas MC, Chakraborty S, Bhattacharjee A, Mohammed Z. 4D Printing of Shape Memory Materials for Textiles: Mechanism, Mathematical Modeling, and Challenges.&nbsp;<i> Adv. Funct. Mater. </i><b> 2021</b>,<i> 31,</i> 202100257. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=4D Printing of Shape Memory Materials for Textiles: Mechanism, Mathematical Modeling, and Challenges.&nbsp;&publication_year=2021&author=Biswas MC&author=Chakraborty S&author=Bhattacharjee A&author=Mohammed Z. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B38'> <div class="references_sup">38.</div> <div class="references_name"> Safranski DL, Smith KE, Gall K. Mechanical Requirements of Shape-Memory Polymers in Biomedical Devices.&nbsp;<i> Polym. Rev. </i><b> 2013</b>,<i> 53,</i> 76–91. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Mechanical Requirements of Shape-Memory Polymers in Biomedical Devices.&nbsp;&publication_year=2013&author=Safranski DL&author=Smith KE&author=Gall K. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B39'> <div class="references_sup">39.</div> <div class="references_name"> Lendlein A, Behl M, Hiebl B, Wischke C. Shape-memory polymers as a technology platform for biomedical applications.&nbsp;<i> Expert Rev. Med. Devices </i><b> 2010</b>,<i> 7,</i> 357–379. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Shape-memory polymers as a technology platform for biomedical applications.&nbsp;&publication_year=2010&author=Lendlein A&author=Behl M&author=Hiebl B&author=Wischke C. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B40'> <div class="references_sup">40.</div> <div class="references_name"> Liu Y, Du H, Liu L, Leng J. Shape memory polymers and their composites in aerospace applications: a review.&nbsp;<i> Smart Mater. Struct. </i><b> 2014</b>,<i> 23,</i> 023001. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Shape memory polymers and their composites in aerospace applications: a review.&nbsp;&publication_year=2014&author=Liu Y&author=Du H&author=Liu L&author=Leng J. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B41'> <div class="references_sup">41.</div> <div class="references_name"> Rainer WC, Redding EM, Hitov JJ, Sloan AW, Stewart WD. Polyethylene Product and Process. US Patent 3144398, 1964. </div> </div> <div class="references html-x" id='B42'> <div class="references_sup">42.</div> <div class="references_name"> Huang C-L, Jiao L, Zhang J-J, Zeng J-B, Yang K-K, Wang Y-Z. Poly(butylene succinate)-poly(ethylene glycol) multiblock copolymer: Synthesis, structure, properties and shape memory performance.&nbsp;<i> Polym. Chem. </i><b> 2012</b>,<i> 3,</i> 800–808. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Poly(butylene succinate)-poly(ethylene glycol) multiblock copolymer: Synthesis, structure, properties and shape memory performance.&nbsp;&publication_year=2012&author=Huang C-L&author=Jiao L&author=Zhang J-J&author=Zeng J-B&author=Yang K-K&author=Wang Y-Z. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B43'> <div class="references_sup">43.</div> <div class="references_name"> Li W, Liu Y, Leng J. Programmable and Shape-Memorizing Information Carriers.&nbsp;<i> ACS Appl. Mater. Interfaces </i><b> 2017</b>,<i> 9,</i> 44792–44798. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Programmable and Shape-Memorizing Information Carriers.&nbsp;&publication_year=2017&author=Li W&author=Liu Y&author=Leng J. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B44'> <div class="references_sup">44.</div> <div class="references_name"> Xiao L, Wei M, Zhan M, Zhang J, Xie H, Deng X, et al. Novel triple-shape PCU/PPDO interpenetrating polymer networks constructed by self-complementary quadruple hydrogen bonding and covalent bonding.&nbsp;<i> Polym. Chem.</i><b> 2014</b>,<i> 5,</i> 2231–2241. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Novel triple-shape PCU/PPDO interpenetrating polymer networks constructed by self-complementary quadruple hydrogen bonding and covalent bonding.&nbsp;&publication_year=2014&author=Xiao L&author=Wei M&author=Zhan M&author=Zhang J&author=Xie H&author=Deng X&author=et al. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B45'> <div class="references_sup">45.</div> <div class="references_name"> Agarwal P, Chopra M, Archer LA. Nanoparticle Netpoints for Shape-Memory Polymers.&nbsp;<i> Angew. Chem.-Intl. Edit. </i><b> 2011</b>,<i> 50,</i> 8670–8673. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Nanoparticle Netpoints for Shape-Memory Polymers.&nbsp;&publication_year=2011&author=Agarwal P&author=Chopra M&author=Archer LA. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B46'> <div class="references_sup">46.</div> <div class="references_name"> Zheng X, Zhou S, Li X, Weng H. Shape memory properties of poly(D,L-lactide)/hydroxyapatite composites.&nbsp;<i> Biomaterials </i><b> 2006</b>,<i> 27,</i> 4288–4295. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Shape memory properties of poly(D,L-lactide)/hydroxyapatite composites.&nbsp;&publication_year=2006&author=Zheng X&author=Zhou S&author=Li X&author=Weng H. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B47'> <div class="references_sup">47.</div> <div class="references_name"> Wang L, Zhang F, Liu Y, Du S, Leng J. Photosensitive Composite Inks for Digital Light Processing Four-Dimensional Printing of Shape Memory Capture Devices.&nbsp;<i> ACS Appl. Mater. Interfaces </i><b> 2021</b>,<i> 13,</i> 18110–18119. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Photosensitive Composite Inks for Digital Light Processing Four-Dimensional Printing of Shape Memory Capture Devices.&nbsp;&publication_year=2021&author=Wang L&author=Zhang F&author=Liu Y&author=Du S&author=Leng J. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B48'> <div class="references_sup">48.</div> <div class="references_name"> Mei H, Zhao B, Gao Y, Li L, Liu L, Zheng S. Block Copolymer Networks Composed of Poly(epsilon-caprolactone) and Polyethylene with Triple Shape Memory Properties.&nbsp;<i> Chin. J. Polym. Sci. </i><b> 2022</b>,<i> 40,</i> 185–196. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Block Copolymer Networks Composed of Poly(epsilon-caprolactone) and Polyethylene with Triple Shape Memory Properties.&nbsp;&publication_year=2022&author=Mei H&author=Zhao B&author=Gao Y&author=Li L&author=Liu L&author=Zheng S. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B49'> <div class="references_sup">49.</div> <div class="references_name"> Yang C-S, Wu H-C, Sun J-S, Hsiao H-M, Wang T-W. Thermo-Induced Shape-Memory PEG-PCL Copolymer as a Dual Drug-Eluting Biodegradable Stent.&nbsp;<i> ACS Appl. Mater. Interfaces </i><b> 2013</b>,<i> 5,</i> 10985–10994. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Thermo-Induced Shape-Memory PEG-PCL Copolymer as a Dual Drug-Eluting Biodegradable Stent.&nbsp;&publication_year=2013&author=Yang C-S&author=Wu H-C&author=Sun J-S&author=Hsiao H-M&author=Wang T-W. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B50'> <div class="references_sup">50.</div> <div class="references_name"> Wen Z-B, Liu D, Li X-Y, Zhu C-H, Shao R-F, Visvanathan R, et al. Fabrication of Liquid Crystalline Polyurethane Networks with a Pendant Azobenzene Group to Access Thermal/Photoresponsive Shape-Memory Effects.&nbsp;<i> ACS Appl. Mater. Interfaces </i><b> 2017</b>,<i> 9,</i> 24947–24954. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Fabrication of Liquid Crystalline Polyurethane Networks with a Pendant Azobenzene Group to Access Thermal/Photoresponsive Shape-Memory Effects.&nbsp;&publication_year=2017&author=Wen Z-B&author=Liu D&author=Li X-Y&author=Zhu C-H&author=Shao R-F&author=Visvanathan R&author=et al. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B51'> <div class="references_sup">51.</div> <div class="references_name"> Jiang Z-C, Xiao Y-Y, Kang Y, Pan M, Li B-J, Zhang S. Shape Memory Polymers Based on Supramolecular Interactions.&nbsp;<i> ACS Appl. Mater. Interfaces </i><b> 2017</b>,<i> 9,</i> 20276–20293. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Shape Memory Polymers Based on Supramolecular Interactions.&nbsp;&publication_year=2017&author=Jiang Z-C&author=Xiao Y-Y&author=Kang Y&author=Pan M&author=Li B-J&author=Zhang S. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B52'> <div class="references_sup">52.</div> <div class="references_name"> Chen S, Hu J, Yuen C, Chan L. Novel moisture-sensitive shape memory polyurethanes containing pyridine moieties.&nbsp;<i> Polymer</i><b> 2009</b>,<i> 50,</i> 4424–4428. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Novel moisture-sensitive shape memory polyurethanes containing pyridine moieties.&nbsp;&publication_year=2009&author=Chen S&author=Hu J&author=Yuen C&author=Chan L. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B53'> <div class="references_sup">53.</div> <div class="references_name"> Kumpfer JR, Rowan SJ. Thermo-, Photo-, and Chemo-Responsive Shape-Memory Properties from Photo-Cross-Linked Metallo-Supramolecular Polymers.&nbsp;<i> J. Am. Chem. Soc. </i><b> 2011</b>,<i> 133,</i> 12866–12874. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Thermo-, Photo-, and Chemo-Responsive Shape-Memory Properties from Photo-Cross-Linked Metallo-Supramolecular Polymers.&nbsp;&publication_year=2011&author=Kumpfer JR&author=Rowan SJ. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B54'> <div class="references_sup">54.</div> <div class="references_name"> Dong Z-Q, Cao Y, Yuan Q-J, Wang Y-F, Li J-H, Li B-J, et al. Redox- and Glucose-Induced Shape-Memory Polymers. <i> Macromol. Rapid Commun.</i><b> 2013</b>,<i> 34,</i> 867–872. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Redox- and Glucose-Induced Shape-Memory Polymers. &publication_year=2013&author=Dong Z-Q&author=Cao Y&author=Yuan Q-J&author=Wang Y-F&author=Li J-H&author=Li B-J&author=et al. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B55'> <div class="references_sup">55.</div> <div class="references_name"> Kratz K, Madbouly SA, Wagermaier W, Lendlein A. Temperature-Memory Polymer Networks with Crystallizable Controlling Units.<i> Adv. Mater. </i><b> 2011</b>,<i> 23,</i> 4058–4062. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Temperature-Memory Polymer Networks with Crystallizable Controlling Units.&publication_year=2011&author=Kratz K&author=Madbouly SA&author=Wagermaier W&author=Lendlein A. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B56'> <div class="references_sup">56.</div> <div class="references_name"> Xie H, Li L, Deng X-Y, Cheng C-Y, Yang K-K, Wang Y-Z. Reinforcement of shape-memory poly(ethylene-co-vinyl acetate) by carbon fibre to access robust recovery capability under resistant condition.&nbsp;<i> Compos. Sci. Technol. </i><b> 2018</b>,<i> 157,</i> 202–208. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Reinforcement of shape-memory poly(ethylene-co-vinyl acetate) by carbon fibre to access robust recovery capability under resistant condition.&nbsp;&publication_year=2018&author=Xie H&author=Li L&author=Deng X-Y&author=Cheng C-Y&author=Yang K-K&author=Wang Y-Z. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B57'> <div class="references_sup">57.</div> <div class="references_name"> Xie H, Li L, Cheng C-Y, Yang K-K, Wang Y-Z. Poly(ethylene-co-vinyl acetate)/graphene shape-memory actuator with a cyclic thermal/light dual-sensitive capacity.&nbsp;<i> Compos. Sci. Technol. </i><b> 2019</b>,<i> 173,</i> 41–46. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Poly(ethylene-co-vinyl acetate)/graphene shape-memory actuator with a cyclic thermal/light dual-sensitive capacity.&nbsp;&publication_year=2019&author=Xie H&author=Li L&author=Cheng C-Y&author=Yang K-K&author=Wang Y-Z. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B58'> <div class="references_sup">58.</div> <div class="references_name"> Wei M, Zhan M, Yu D, Xie H, He M, Yang K, et al. Novel Poly(tetramethylene ether)glycol and Poly(epsilon-caprolactone) Based Dynamic Network via Quadruple Hydrogen Bonding with Triple-Shape Effect and Self-Healing Capacity.&nbsp;<i> ACS Appl. Mater. Interfaces </i><b> 2015</b>,<i> 7,</i> 2585–2596. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Novel Poly(tetramethylene ether)glycol and Poly(epsilon-caprolactone) Based Dynamic Network via Quadruple Hydrogen Bonding with Triple-Shape Effect and Self-Healing Capacity.&nbsp;&publication_year=2015&author=Wei M&author=Zhan M&author=Yu D&author=Xie H&author=He M&author=Yang K&author=et al. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B59'> <div class="references_sup">59.</div> <div class="references_name"> Zhang J, Niu Y, Huang C, Xiao L, Chen Z, Yang K, et al. Self-healable and recyclable triple-shape PPDO-PTMEG co-network constructed through thermoreversible Diels-Alder reaction.&nbsp;<i> Polym. Chem. </i><b> 2012</b>,<i> 3,</i> 1390–1393. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Self-healable and recyclable triple-shape PPDO-PTMEG co-network constructed through thermoreversible Diels-Alder reaction.&nbsp;&publication_year=2012&author=Zhang J&author=Niu Y&author=Huang C&author=Xiao L&author=Chen Z&author=Yang K&author=et al. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B60'> <div class="references_sup">60.</div> <div class="references_name"> Xie H, He M-J, Deng X-Y, Du L, Fan C-J, Yang K-K, et al. Design of Poly(L-lactide)-Poly(ethylene glycol) Copolymer with Light-Induced Shape-Memory Effect Triggered by Pendant Anthracene Groups.&nbsp;<i> ACS Appl. Mater. Interfaces </i><b> 2016</b>,<i> 8,</i> 9431–9439. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Design of Poly(L-lactide)-Poly(ethylene glycol) Copolymer with Light-Induced Shape-Memory Effect Triggered by Pendant Anthracene Groups.&nbsp;&publication_year=2016&author=Xie H&author=He M-J&author=Deng X-Y&author=Du L&author=Fan C-J&author=Yang K-K&author=et al. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B61'> <div class="references_sup">61.</div> <div class="references_name"> Xie H, Cheng C-Y, Deng X-Y, Fan C-J, Du L, Yang K-K, et al. Creating Poly(tetramethylene oxide) Glycol-Based Networks with Tunable Two-Way Shape Memory Effects via Temperature-Switched Netpoints.&nbsp;<i> Macromolecules </i><b> 2017</b>,<i> 50,</i> 5155–5164. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Creating Poly(tetramethylene oxide) Glycol-Based Networks with Tunable Two-Way Shape Memory Effects via Temperature-Switched Netpoints.&nbsp;&publication_year=2017&author=Xie H&author=Cheng C-Y&author=Deng X-Y&author=Fan C-J&author=Du L&author=Yang K-K&author=et al. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B62'> <div class="references_sup">62.</div> <div class="references_name"> Miaudet P, Derre A, Maugey M, Zakri C, Piccione PM, Inoubli R, et al. Shape and temperature memory of nanocomposites with broadened glass transition.&nbsp;<i> Science </i><b> 2007</b>,<i> 318,</i> 1294–1296. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Shape and temperature memory of nanocomposites with broadened glass transition.&nbsp;&publication_year=2007&author=Miaudet P&author=Derre A&author=Maugey M&author=Zakri C&author=Piccione PM&author=Inoubli R&author=et al. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B63'> <div class="references_sup">63.</div> <div class="references_name"> Xie H, Cheng C-Y, Du L, Fan C-J, Deng X-Y, Yang K-K, et al. A Facile Strategy to Construct PDLLA-PTMEG Network with Triple-Shape Effect via Photo-Cross-Linking of Anthracene Groups.&nbsp;<i> Macromolecules </i><b> 2016</b>,<i> 49,</i> 3845–3855. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=A Facile Strategy to Construct PDLLA-PTMEG Network with Triple-Shape Effect via Photo-Cross-Linking of Anthracene Groups.&nbsp;&publication_year=2016&author=Xie H&author=Cheng C-Y&author=Du L&author=Fan C-J&author=Deng X-Y&author=Yang K-K&author=et al. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B64'> <div class="references_sup">64.</div> <div class="references_name"> Xiao LP, Wei M, Zhan MQ, Zhang JJ, Xie H, Deng XY, et al. Novel triple-shape PCU/PPDO interpenetrating polymer networks constructed by self-complementary quadruple hydrogen bonding and covalent bonding.&nbsp;<i> Polym. Chem. </i><b> 2014</b>,<i> 5,</i> 2231–2241. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Novel triple-shape PCU/PPDO interpenetrating polymer networks constructed by self-complementary quadruple hydrogen bonding and covalent bonding.&nbsp;&publication_year=2014&author=Xiao LP&author=Wei M&author=Zhan MQ&author=Zhang JJ&author=Xie H&author=Deng XY&author=et al. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B65'> <div class="references_sup">65.</div> <div class="references_name"> Xie T. Tunable polymer multi-shape memory effect.&nbsp;<i> Nature </i><b> 2010</b>,<i> 464,</i> 267–270. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Tunable polymer multi-shape memory effect.&nbsp;&publication_year=2010&author=Xie T. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B66'> <div class="references_sup">66.</div> <div class="references_name"> Li J, Liu T, Xia S, Pan Y, Zheng ZH, Ding XB, et al. A versatile approach to achieve quintuple-shape memory effect by semi-interpenetrating polymer networks containing broadened glass transition and crystalline segments.&nbsp;<i> J. Mater. Chem. </i><b> 2011</b>,<i> 21,</i> 12213–12217. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=A versatile approach to achieve quintuple-shape memory effect by semi-interpenetrating polymer networks containing broadened glass transition and crystalline segments.&nbsp;&publication_year=2011&author=Li J&author=Liu T&author=Xia S&author=Pan Y&author=Zheng ZH&author=Ding XB&author=et al. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B67'> <div class="references_sup">67.</div> <div class="references_name"> Luo Y, Guo Y, Gao X, Li B-G, Xie T. A General Approach Towards Thermoplastic Multishape-Memory Polymers via Sequence Structure Design.&nbsp;<i> Adv. Mater. </i><b> 2013</b>,<i> 25,</i> 743–748. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=A General Approach Towards Thermoplastic Multishape-Memory Polymers via Sequence Structure Design.&nbsp;&publication_year=2013&author=Luo Y&author=Guo Y&author=Gao X&author=Li B-G&author=Xie T. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B68'> <div class="references_sup">68.</div> <div class="references_name"> Xie H, Yang K-K, Wang Y-Z. Photo-cross-linking: A powerful and versatile strategy to develop shape-memory polymers.&nbsp;<i> Prog. Polym. Sci. </i><b> 2019</b>,<i> 95,</i> 32–64. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Photo-cross-linking: A powerful and versatile strategy to develop shape-memory polymers.&nbsp;&publication_year=2019&author=Xie H&author=Yang K-K&author=Wang Y-Z. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B69'> <div class="references_sup">69.</div> <div class="references_name"> Lendlein A, Jiang HY, Junger O, Langer R. Light-induced shape-memory polymers.&nbsp;<i> Nature </i><b> 2005</b>,<i> 434,</i> 879–882. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Light-induced shape-memory polymers.&nbsp;&publication_year=2005&author=Lendlein A&author=Jiang HY&author=Junger O&author=Langer R. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B70'> <div class="references_sup">70.</div> <div class="references_name"> Liu Y, Lv H, Lan X, Leng J, Du S. Review of electro-active shape-memory polymer composite.&nbsp;<i> Compos. Sci. Technol. </i><b> 2009</b>,<i> 69,</i> 2064–2068. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Review of electro-active shape-memory polymer composite.&nbsp;&publication_year=2009&author=Liu Y&author=Lv H&author=Lan X&author=Leng J&author=Du S. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B71'> <div class="references_sup">71.</div> <div class="references_name"> Qi X, Xiu H, Wei Y, Zhou Y, Guo Y, Huang R, et al. Enhanced shape memory property of polylactide/thermoplastic poly(ether)urethane composites via carbon black self-networking induced co-continuous structure.&nbsp;<i> Compos. Sci. Technol. </i><b> 2017</b>,<i> 139,</i> 8–16. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Enhanced shape memory property of polylactide/thermoplastic poly(ether)urethane composites via carbon black self-networking induced co-continuous structure.&nbsp;&publication_year=2017&author=Qi X&author=Xiu H&author=Wei Y&author=Zhou Y&author=Guo Y&author=Huang R&author=et al. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B72'> <div class="references_sup">72.</div> <div class="references_name"> Razzaq MY, Behl M, Noechel U, Lendlein A. Magnetically controlled shape-memory effects of hybrid nanocomposites from oligo(omega-pentadecalactone) and covalently integrated magnetite nanoparticles.&nbsp;<i> Polymer </i><b> 2014</b>,<i> 55,</i> 5953–5960. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Magnetically controlled shape-memory effects of hybrid nanocomposites from oligo(omega-pentadecalactone) and covalently integrated magnetite nanoparticles.&nbsp;&publication_year=2014&author=Razzaq MY&author=Behl M&author=Noechel U&author=Lendlein A. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B73'> <div class="references_sup">73.</div> <div class="references_name"> Zhang F, Wang L, Zheng Z, Liu Y, Leng J. Magnetic programming of 4D printed shape memory composite structures.&nbsp;<i> Compos. Part A-Appl. Sci. Manuf. </i><b> 2019</b>,<i> 125,</i> 105571. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Magnetic programming of 4D printed shape memory composite structures.&nbsp;&publication_year=2019&author=Zhang F&author=Wang L&author=Zheng Z&author=Liu Y&author=Leng J. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B74'> <div class="references_sup">74.</div> <div class="references_name"> Du L, Xu Z, Fan C-J, Xiang G, Yang K-K, Wang Y-Z. A Fascinating Metallo-Supramolecular Polymer Network with Thermal/Magnetic/Light-Responsive Shape-Memory Effects Anchored by Fe<sub>3</sub>O<sub>4</sub> Nanoparticles.&nbsp;<i> Macromolecules </i><b> 2018</b>,<i> 51,</i> 705–715. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=A Fascinating Metallo-Supramolecular Polymer Network with Thermal/Magnetic/Light-Responsive Shape-Memory Effects Anchored by Fe3O4 Nanoparticles.&nbsp;&publication_year=2018&author=Du L&author=Xu Z&author=Fan C-J&author=Xiang G&author=Yang K-K&author=Wang Y-Z. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B75'> <div class="references_sup">75.</div> <div class="references_name"> Zhang H, Xia H, Zhao Y. Optically triggered and spatially controllable shape-memory polymer-gold nanoparticle composite materials.&nbsp;<i> J. Mater. Chem. </i><b> 2012</b>,<i> 22,</i> 845–849. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Optically triggered and spatially controllable shape-memory polymer-gold nanoparticle composite materials.&nbsp;&publication_year=2012&author=Zhang H&author=Xia H&author=Zhao Y. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B76'> <div class="references_sup">76.</div> <div class="references_name"> Zhang H, Zhao Y. Polymers with Dual Light-Triggered Functions of Shape Memory and Healing Using Gold Nanoparticles.&nbsp;<i> ACS Appl. Mater. Interfaces </i><b> 2013</b>,<i> 5,</i> 13069–13075. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Polymers with Dual Light-Triggered Functions of Shape Memory and Healing Using Gold Nanoparticles.&nbsp;&publication_year=2013&author=Zhang H&author=Zhao Y." target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B77'> <div class="references_sup">77.</div> <div class="references_name"> Yang Z, Wang Q, Wang T. Dual-Triggered and Thermally Reconfigurable Shape Memory Graphene-Vitrimer Composites.<i> ACS Appl. Mater. Interfaces </i><b> 2016</b>,<i> 8,</i> 21691–21699. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Dual-Triggered and Thermally Reconfigurable Shape Memory Graphene-Vitrimer Composites.&publication_year=2016&author=Yang Z&author=Wang Q&author=Wang T. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B78'> <div class="references_sup">78.</div> <div class="references_name"> Xie H, Cheng C-Y, Li L, Deng X-Y, Yang K-K, Wang Y-Z. Integrating shape-memory technology and photo-imaging on a polymer platform for a high-security information storage medium.&nbsp;<i> J. Mater. Chem. C </i><b> 2018</b>,<i> 6,</i> 10422–10427. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Integrating shape-memory technology and photo-imaging on a polymer platform for a high-security information storage medium.&nbsp;&publication_year=2018&author=Xie H&author=Cheng C-Y&author=Li L&author=Deng X-Y&author=Yang K-K&author=Wang Y-Z. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B79'> <div class="references_sup">79.</div> <div class="references_name"> Zhang X, Zhu C, Xu B, Qin L, Wei J, Yu Y. Rapid, Localized, and Athermal Shape Memory Performance Triggered by Photoswitchable Glass Transition Temperature.&nbsp;<i> ACS Appl. Mater. Interfaces </i><b> 2019</b>,<i> 11,</i> 46212–46218. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Rapid, Localized, and Athermal Shape Memory Performance Triggered by Photoswitchable Glass Transition Temperature.&nbsp;&publication_year=2019&author=Zhang X&author=Zhu C&author=Xu B&author=Qin L&author=Wei J&author=Yu Y. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B80'> <div class="references_sup">80.</div> <div class="references_name"> Lu X, Guo S, Tong X, Xia H, Zhao Y. Tunable Photocontrolled Motions Using Stored Strain Energy in Malleable Azobenzene Liquid Crystalline Polymer Actuators.&nbsp;<i> Adv. Mater. </i><b> 2017</b>,<i> 29,</i> 1606467. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Tunable Photocontrolled Motions Using Stored Strain Energy in Malleable Azobenzene Liquid Crystalline Polymer Actuators.&nbsp;&publication_year=2017&author=Lu X&author=Guo S&author=Tong X&author=Xia H&author=Zhao Y. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B81'> <div class="references_sup">81.</div> <div class="references_name"> Qi X, Jing M, Liu Z, Dong P, Liu T, Fu Q. Microfibrillated cellulose reinforced bio-based poly(propylene carbonate) with dual-responsive shape memory properties.&nbsp;<i> RSC Adv. </i><b> 2016</b>,<i> 6,</i> 7560–7567. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Microfibrillated cellulose reinforced bio-based poly(propylene carbonate) with dual-responsive shape memory properties.&nbsp;&publication_year=2016&author=Qi X&author=Jing M&author=Liu Z&author=Dong P&author=Liu T&author=Fu Q. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B82'> <div class="references_sup">82.</div> <div class="references_name"> Maraveas C, Bayer IS, Bartzanas T. 4D printing: Perspectives for the production of sustainable plastics for agriculture.&nbsp;<i> Biotechnol. Adv. </i><b> 2022</b>,<i> 54,</i> 107785. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=4D printing: Perspectives for the production of sustainable plastics for agriculture.&nbsp;&publication_year=2022&author=Maraveas C&author=Bayer IS&author=Bartzanas T. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B83'> <div class="references_sup">83.</div> <div class="references_name"> Liu Y, Li Y, Chen H, Yang G, Zheng X, Zhou S. Water-induced shape-memory poly(D,L-lactide)/microcrystalline cellulose composites.&nbsp;<i> Carbohydr. Polym. </i><b> 2014</b>,<i> 104,</i> 101–108. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Water-induced shape-memory poly(D,L-lactide)/microcrystalline cellulose composites.&nbsp;&publication_year=2014&author=Liu Y&author=Li Y&author=Chen H&author=Yang G&author=Zheng X&author=Zhou S. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B84'> <div class="references_sup">84.</div> <div class="references_name"> Wang C, Wang H, Zou F, Chen S, Wang Y. Development of Polyhydroxyalkanoate-Based Polyurethane with Water-Thermal Response Shape-Memory Behavior as New 3D Elastomers Scaffolds.&nbsp;<i> Polymers </i><b> 2019</b>,<i> 11,</i> 1030. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Development of Polyhydroxyalkanoate-Based Polyurethane with Water-Thermal Response Shape-Memory Behavior as New 3D Elastomers Scaffolds.&nbsp;&publication_year=2019&author=Wang C&author=Wang H&author=Zou F&author=Chen S&author=Wang Y. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B85'> <div class="references_sup">85.</div> <div class="references_name"> Huang WM, Yang B, An L, Li C, Chan YS. Water-driven programmable polyurethane shape memory polymer: Demonstration and mechanism.&nbsp;<i> Appl. Phys. Lett. </i><b> 2005</b>,<i> 86,</i> 1880448. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Water-driven programmable polyurethane shape memory polymer: Demonstration and mechanism.&nbsp;&publication_year=2005&author=Huang WM&author=Yang B&author=An L&author=Li C&author=Chan YS. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B86'> <div class="references_sup">86.</div> <div class="references_name"> Li Y, Chen H, Liu D, Wang W, Liu Y, Zhou S. pH-Responsive Shape Memory Poly(ethylene glycol)-Poly(epsilon-caprolactone)-based Polyurethane/Cellulose Nanocrystals Nanocomposite.&nbsp;<i> ACS Appl. Mater. Interfaces </i><b> 2015</b>,<i> 7,</i> 12988–12999. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=pH-Responsive Shape Memory Poly(ethylene glycol)-Poly(epsilon-caprolactone)-based Polyurethane/Cellulose Nanocrystals Nanocomposite.&nbsp;&publication_year=2015&author=Li Y&author=Chen H&author=Liu D&author=Wang W&author=Liu Y&author=Zhou S. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B87'> <div class="references_sup">87.</div> <div class="references_name"> Han X-J, Dong Z-Q, Fan M-M, Liu Y, Li J-H, Wang Y-F, et al. pH-Induced Shape-Memory Polymers.&nbsp;<i> Macromol. Rapid Commun. </i><b> 2012</b>,<i> 33,</i> 1055–1060. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=pH-Induced Shape-Memory Polymers.&nbsp;&publication_year=2012&author=Han X-J&author=Dong Z-Q&author=Fan M-M&author=Liu Y&author=Li J-H&author=Wang Y-F&author=et al. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B88'> <div class="references_sup">88.</div> <div class="references_name"> Dodds DR, Gross RA. Chemicals from biomass.&nbsp;<i> Science</i><b> 2007</b>,<i> 318,</i> 1250–1251. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Chemicals from biomass.&nbsp;&publication_year=2007&author=Dodds DR&author=Gross RA." target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B89'> <div class="references_sup">89.</div> <div class="references_name"> Werpy T, Petersen G. <em>Top Value Added Chemicals from Biomass: Volume i-results of Screening for Potential Candidates from Sugars and Synthesis Gas</em>; Technical Report; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2004. </div> </div> <div class="references html-x" id='B90'> <div class="references_sup">90.</div> <div class="references_name"> Jiang Y, Loos K. Enzymatic Synthesis of Biobased Polyesters and Polyamides.&nbsp;<i> Polymers </i><b> 2016</b>,<i> 8,</i> 243. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Enzymatic Synthesis of Biobased Polyesters and Polyamides.&nbsp;&publication_year=2016&author=Jiang Y&author=Loos K. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B91'> <div class="references_sup">91.</div> <div class="references_name"> Verma M, Mandyal P, Singh D, Gupta N. Recent Developments in Heterogeneous Catalytic Routes for the Sustainable Production of Succinic Acid from Biomass Resources.&nbsp;<i> ChemSusChem </i><b> 2020</b>,<i> 13,</i> 4026–4034. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Recent Developments in Heterogeneous Catalytic Routes for the Sustainable Production of Succinic Acid from Biomass Resources.&nbsp;&publication_year=2020&author=Verma M&author=Mandyal P&author=Singh D&author=Gupta N. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B92'> <div class="references_sup">92.</div> <div class="references_name"> Short GN, Nguyen HTH, Scheurle PI, Miller SA. Aromatic polyesters from biosuccinic acid.&nbsp;<i> Polym. Chem. </i><b> 2018</b>,<i> 9,</i> 4113–4119. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Aromatic polyesters from biosuccinic acid.&nbsp;&publication_year=2018&author=Short GN&author=Nguyen HTH&author=Scheurle PI&author=Miller SA. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B93'> <div class="references_sup">93.</div> <div class="references_name"> Tachibana Y, Masuda T, Funabashi M, Kunioka M. Chemical Synthesis of Fully Biomass-Based Poly(butylene succinate) from Inedible-Biomass-Based Furfural and Evaluation of Its Biomass Carbon Ratio.&nbsp;<i> Biomacromolecules </i><b> 2010</b>,<i> 11,</i> 2760–2765. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Chemical Synthesis of Fully Biomass-Based Poly(butylene succinate) from Inedible-Biomass-Based Furfural and Evaluation of Its Biomass Carbon Ratio.&nbsp;&publication_year=2010&author=Tachibana Y&author=Masuda T&author=Funabashi M&author=Kunioka M. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B94'> <div class="references_sup">94.</div> <div class="references_name"> De Carvalho JC, Magalhaes AI Jr, Soccol CR. Biobased itaconic acid market and research trends - is it really a promising chemical?&nbsp;<i> Chim. Oggi-Chem. Today </i><b> 2018</b>,<i> 36,</i> 56–58. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Biobased itaconic acid market and research trends - is it really a promising chemical?&nbsp;&publication_year=2018&author=De Carvalho JC&author=Magalhaes AI Jr&author=Soccol CR. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B95'> <div class="references_sup">95.</div> <div class="references_name"> Mondala AH. Direct fungal fermentation of lignocellulosic biomass into itaconic, fumaric, and malic acids: current and future prospects.&nbsp;<i> J. Ind. Microbiol. Biotechnol. </i><b> 2015</b>,<i> 42,</i> 487–506. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Direct fungal fermentation of lignocellulosic biomass into itaconic, fumaric, and malic acids: current and future prospects.&nbsp;&publication_year=2015&author=Mondala AH. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B96'> <div class="references_sup">96.</div> <div class="references_name"> Kumar S, Krishnan S, Samal SK, Mohanty S, Nayak SK. Itaconic acid used as a versatile building block for the synthesis of renewable resource-based resins and polyesters for future prospective: a review.&nbsp;<i> Polym. Int. </i><b> 2017</b>,<i> 66,</i> 1349–1363. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Itaconic acid used as a versatile building block for the synthesis of renewable resource-based resins and polyesters for future prospective: a review.&nbsp;&publication_year=2017&author=Kumar S&author=Krishnan S&author=Samal SK&author=Mohanty S&author=Nayak SK. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B97'> <div class="references_sup">97.</div> <div class="references_name"> Mika LT, Csefalvay E, Nemeth A. Catalytic Conversion of Carbohydrates to Initial Platform Chemicals: Chemistry and Sustainability.&nbsp;<i> Chem. Rev. </i><b> 2018</b>,<i> 118,</i> 505–613. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Catalytic Conversion of Carbohydrates to Initial Platform Chemicals: Chemistry and Sustainability.&nbsp;&publication_year=2018&author=Mika LT&author=Csefalvay E&author=Nemeth A. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B98'> <div class="references_sup">98.</div> <div class="references_name"> Gupta AP, Kumar V. New emerging trends in synthetic biodegradable polymers - Polylactide: A critique.&nbsp;<i> Eur. Polym. J. </i><b> 2007</b>,<i> 43,</i> 4053–4074. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=New emerging trends in synthetic biodegradable polymers - Polylactide: A critique.&nbsp;&publication_year=2007&author=Gupta AP&author=Kumar V." target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B99'> <div class="references_sup">99.</div> <div class="references_name"> Chen G-Q. A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry.&nbsp;<i> Chem. Soc. Rev. </i><b> 2009</b>,<i> 38,</i> 2434–2446. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry.&nbsp;&publication_year=2009&author=Chen G-Q. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B100'> <div class="references_sup">100.</div> <div class="references_name"> Chen G-Q, Wu Q. The application of polyhydroxyalkanoates as tissue engineering materials.&nbsp;<i> Biomaterials </i><b> 2005</b>,<i> 26,</i> 6565–6578. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=The application of polyhydroxyalkanoates as tissue engineering materials.&nbsp;&publication_year=2005&author=Chen G-Q&author=Wu Q. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B101'> <div class="references_sup">101.</div> <div class="references_name"> Chen G-Q, Patel MK. Plastics Derived from Biological Sources: Present and Future: A Technical and Environmental Review.&nbsp;<i> Chem. Rev. </i><b> 2012</b>,<i> 112,</i> 2082–2099. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Plastics Derived from Biological Sources: Present and Future: A Technical and Environmental Review.&nbsp;&publication_year=2012&author=Chen G-Q&author=Patel MK. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B102'> <div class="references_sup">102.</div> <div class="references_name"> Matsumoto Ki, Taguchi S. Biosynthetic polyesters consisting of 2-hydroxyalkanoic acids: current challenges and unresolved questions.&nbsp;<i> Appl. Microbiol. Biotechnol. </i><b> 2013</b>,<i> 97,</i> 8011–8021. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Biosynthetic polyesters consisting of 2-hydroxyalkanoic acids: current challenges and unresolved questions.&nbsp;&publication_year=2013&author=Matsumoto Ki&author=Taguchi S. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B103'> <div class="references_sup">103.</div> <div class="references_name"> Philip S, Keshavarz T, Roy I. Polyhydroxyalkanoates: biodegradable polymers with a range of applications.&nbsp;<i> J. Chem. Technol. Biotechnol. </i><b> 2007</b>,<i> 82,</i> 233–247. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Polyhydroxyalkanoates: biodegradable polymers with a range of applications.&nbsp;&publication_year=2007&author=Philip S&author=Keshavarz T&author=Roy I. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B104'> <div class="references_sup">104.</div> <div class="references_name"> Li Y, Wang L, Ju J, Yu B, Ma Y. Efficient production of polymer-grade D-lactate by Sporolactobacillus laevolacticus DSM442 with agricultural waste cottonseed as the sole nitrogen source.&nbsp;<i> Bioresour. Technol. </i><b> 2013</b>,<i> 142,</i> 186–191. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Efficient production of polymer-grade D-lactate by Sporolactobacillus laevolacticus DSM442 with agricultural waste cottonseed as the sole nitrogen source.&nbsp;&publication_year=2013&author=Li Y&author=Wang L&author=Ju J&author=Yu B&author=Ma Y. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B105'> <div class="references_sup">105.</div> <div class="references_name"> Cubas-Cano E, Gonzalez-Fernandez C, Ballesteros M, Tomas-Pejo E. Biotechnological advances in lactic acid production by lactic acid bacteria: lignocellulose as novel substrate.&nbsp;<i> Biofuels Bioprod. Biorefin. </i><b> 2018</b>,<i> 12,</i> 290–303. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Biotechnological advances in lactic acid production by lactic acid bacteria: lignocellulose as novel substrate.&nbsp;&publication_year=2018&author=Cubas-Cano E&author=Gonzalez-Fernandez C&author=Ballesteros M&author=Tomas-Pejo E. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B106'> <div class="references_sup">106.</div> <div class="references_name"> Ajala EO, Olonade YO, Ajala MA, Akinpelu GS. Lactic Acid Production from Lignocellulose - A Review of Major Challenges and Selected Solutions.&nbsp;<i> Chembioeng. Rev. </i><b> 2020</b>,<i> 7,</i> 38–49. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Lactic Acid Production from Lignocellulose - A Review of Major Challenges and Selected Solutions.&nbsp;&publication_year=2020&author=Ajala EO&author=Olonade YO&author=Ajala MA&author=Akinpelu GS. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B107'> <div class="references_sup">107.</div> <div class="references_name"> Datta R, Henry M. Lactic acid: recent advances in products, processes and technologies - a review.&nbsp;<i> J. Chem. Technol. Biotechnol. </i><b> 2006</b>,<i> 81,</i> 1119–1129. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Lactic acid: recent advances in products, processes and technologies - a review.&nbsp;&publication_year=2006&author=Datta R&author=Henry M. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B108'> <div class="references_sup">108.</div> <div class="references_name"> Nampoothiri KM, Nair NR, John RP. An overview of the recent developments in polylactide (PLA) research.&nbsp;<i> Bioresour. Technol. </i><b> 2010</b>,<i> 101,</i> 8493–8501. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=An overview of the recent developments in polylactide (PLA) research.&nbsp;&publication_year=2010&author=Nampoothiri KM&author=Nair NR&author=John RP. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B109'> <div class="references_sup">109.</div> <div class="references_name"> Lei L, Ding T, Shi R, Liu Q, Zhang L, Chen D, et al. Synthesis, characterization and in vitro degradation of a novel degradable poly((1,2-propanediol-sebacate)-citrate) bioelastomer.&nbsp;<i> Polym. Degrad. Stab. </i><b> 2007</b>,<i> 92,</i> 389–396. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Synthesis, characterization and in vitro degradation of a novel degradable poly((1,2-propanediol-sebacate)-citrate) bioelastomer.&nbsp;&publication_year=2007&author=Lei L&author=Ding T&author=Shi R&author=Liu Q&author=Zhang L&author=Chen D&author=et al. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B110'> <div class="references_sup">110.</div> <div class="references_name"> Sousa AF, Vilela C, Fonseca AC, Matos M, Freire CSR, Gruter G-JM, et al. Biobased polyesters and other polymers from 2,5-furandicarboxylic acid: a tribute to furan excellency.&nbsp;<i> Polym. Chem. </i><b> 2015</b>,<i> 6,</i> 5961–5983. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Biobased polyesters and other polymers from 2,5-furandicarboxylic acid: a tribute to furan excellency.&nbsp;&publication_year=2015&author=Sousa AF&author=Vilela C&author=Fonseca AC&author=Matos M&author=Freire CSR&author=Gruter G-JM&author=et al. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B111'> <div class="references_sup">111.</div> <div class="references_name"> Woodruff MA, Hutmacher DW. The return of a forgotten polymer-Polycaprolactone in the 21st century.&nbsp;<i> Prog. Polym. Sci. </i><b> 2010</b>,<i> 35,</i> 1217–1256. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=The return of a forgotten polymer-Polycaprolactone in the 21st century.&nbsp;&publication_year=2010&author=Woodruff MA&author=Hutmacher DW. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B112'> <div class="references_sup">112.</div> <div class="references_name"> Hu X, Li Y, Gao Y, Wang R, Wang Z, Kang H, et al. Renewable and super-toughened poly (butylene succinate) with bio-based elastomers: Preparation, compatibility and performances.&nbsp;<i> Eur. Polym. J.</i><b> 2019</b>,<i> 116,</i> 438–444. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Renewable and super-toughened poly (butylene succinate) with bio-based elastomers: Preparation, compatibility and performances.&nbsp;&publication_year=2019&author=Hu X&author=Li Y&author=Gao Y&author=Wang R&author=Wang Z&author=Kang H&author=et al. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B113'> <div class="references_sup">113.</div> <div class="references_name"> Guo H, Liu H, Jin Y, Zhang R, Yu Y, Deng L, et al. Advances in research on the bio-production of 1,4-butanediol by the engineered microbes.&nbsp;<i> Biochem. Eng. J. </i><b> 2022</b>,<i> 185,</i> 108478. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Advances in research on the bio-production of 1,4-butanediol by the engineered microbes.&nbsp;&publication_year=2022&author=Guo H&author=Liu H&author=Jin Y&author=Zhang R&author=Yu Y&author=Deng L&author=et al. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B114'> <div class="references_sup">114.</div> <div class="references_name"> Wang J, Jain R, Shen X, Sun X, Cheng M, Liao JC, et al. Rational engineering of diol dehydratase enables 1,4-butanediol biosynthesis from xylose.&nbsp;<i> Metab. Eng. </i><b> 2017</b>,<i> 40,</i> 148–156. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Rational engineering of diol dehydratase enables 1,4-butanediol biosynthesis from xylose.&nbsp;&publication_year=2017&author=Wang J&author=Jain R&author=Shen X&author=Sun X&author=Cheng M&author=Liao JC&author=et al. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B115'> <div class="references_sup">115.</div> <div class="references_name"> Gandini A. Furans as offspring of sugars and polysaccharides and progenitors of a family of remarkable polymers: a review of recent progress.&nbsp;<i> Polym. Chem. </i><b> 2010</b>,<i> 1,</i> 245–251. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Furans as offspring of sugars and polysaccharides and progenitors of a family of remarkable polymers: a review of recent progress.&nbsp;&publication_year=2010&author=Gandini A. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B116'> <div class="references_sup">116.</div> <div class="references_name"> Klein R, Wurm FR. Aliphatic Polyethers: Classical Polymers for the 21st Century.&nbsp;<i> Macromol. Rapid Commun. </i><b> 2015</b>,<i> 36,</i> 1147–1165. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Aliphatic Polyethers: Classical Polymers for the 21st Century.&nbsp;&publication_year=2015&author=Klein R&author=Wurm FR. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B117'> <div class="references_sup">117.</div> <div class="references_name"> Amarasekara AS, Singh TB, Larkin E, Hasan MA, Fan H-J. NaOH catalyzed condensation reactions between levulinic acid and biomass derived furan-aldehydes in water.<i> Ind. Crops Prod. </i><b> 2015</b>,<i> 65,</i> 546–549. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=NaOH catalyzed condensation reactions between levulinic acid and biomass derived furan-aldehydes in water.&publication_year=2015&author=Amarasekara AS&author=Singh TB&author=Larkin E&author=Hasan MA&author=Fan H-J. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B118'> <div class="references_sup">118.</div> <div class="references_name"> Zhang D, Dumont M-J. Advances in Polymer Precursors and Bio-Based Polymers Synthesized from 5-Hydroxymethylfurfural.&nbsp;<i> J. Polym. Sci. Pol. Chem.</i><b> 2017</b>,<i> 55,</i> 1478–1492. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Advances in Polymer Precursors and Bio-Based Polymers Synthesized from 5-Hydroxymethylfurfural.&nbsp;&publication_year=2017&author=Zhang D&author=Dumont M-J." target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B119'> <div class="references_sup">119.</div> <div class="references_name"> Delidovich I, Hausoul PJC, Deng L, Pfuetzenreuter R, Rose M, Palkovits R. Alternative Monomers Based on Lignocellulose and Their Use for Polymer Production.&nbsp;<i> Chem. Rev. </i><b> 2016</b>,<i> 116,</i> 1540–1599. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Alternative Monomers Based on Lignocellulose and Their Use for Polymer Production.&nbsp;&publication_year=2016&author=Delidovich I&author=Hausoul PJC&author=Deng L&author=Pfuetzenreuter R&author=Rose M&author=Palkovits R. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B120'> <div class="references_sup">120.</div> <div class="references_name"> van Putten R-J, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG. Hydroxymethylfurfural, A Versatile Platform Chemical Made from Renewable Resources.&nbsp;<i> Chem. Rev. </i><b> 2013</b>,<i> 113,</i> 1499–1597. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Hydroxymethylfurfural, A Versatile Platform Chemical Made from Renewable Resources.&nbsp;&publication_year=2013&author=van Putten R-J&author=van der Waal JC&author=de Jong E&author=Rasrendra CB&author=Heeres HJ&author=de Vries JG. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B121'> <div class="references_sup">121.</div> <div class="references_name"> Cantarutti C, Dinu R, Mija A. Biorefinery Byproducts and Epoxy Biorenewable Monomers: A Structural Elucidation of Humins and Triglycidyl Ether of Phloroglucinol Cross-Linking.&nbsp;<i> Biomacromolecules </i><b> 2020</b>,<i> 21,</i> 517–533. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Biorefinery Byproducts and Epoxy Biorenewable Monomers: A Structural Elucidation of Humins and Triglycidyl Ether of Phloroglucinol Cross-Linking.&nbsp;&publication_year=2020&author=Cantarutti C&author=Dinu R&author=Mija A. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B122'> <div class="references_sup">122.</div> <div class="references_name"> Jiang Y, Woortman AJJ, van Ekenstein GORA, Petrovic DM, Loos K. Enzymatic Synthesis of Biobased Polyesters Using 2,5-Bis(hydroxymethyl)furan as the Building Block.&nbsp;<i> Biomacromolecules </i><b> 2014</b>,<i> 15,</i> 2482–2493. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Enzymatic Synthesis of Biobased Polyesters Using 2,5-Bis(hydroxymethyl)furan as the Building Block.&nbsp;&publication_year=2014&author=Jiang Y&author=Woortman AJJ&author=van Ekenstein GORA&author=Petrovic DM&author=Loos K. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B123'> <div class="references_sup">123.</div> <div class="references_name"> Cureton LT, Napadensky E, Annunziato C, La Scala JJ. The effect of furan molecular units on the glass transition and thermal degradation temperatures of polyamides.&nbsp;<i> J. Appl. Polym. Sci. </i><b> 2017</b>,<i> 134,</i> 45514. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=The effect of furan molecular units on the glass transition and thermal degradation temperatures of polyamides.&nbsp;&publication_year=2017&author=Cureton LT&author=Napadensky E&author=Annunziato C&author=La Scala JJ. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B124'> <div class="references_sup">124.</div> <div class="references_name"> Dijkman WP, Groothuis DE, Fraaije MW. Enzyme-Catalyzed Oxidation of 5-Hydroxymethylfurfural to Furan-2,5-dicarboxylic Acid.&nbsp;<i> Angew. Chem.-Intl. Edit. </i><b> 2014</b>,<i> 53,</i> 6515–6518. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Enzyme-Catalyzed Oxidation of 5-Hydroxymethylfurfural to Furan-2,5-dicarboxylic Acid.&nbsp;&publication_year=2014&author=Dijkman WP&author=Groothuis DE&author=Fraaije MW. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B125'> <div class="references_sup">125.</div> <div class="references_name"> Balachandran VS, Jadhav SR, Vemula PK, John G. Recent advances in cardanol chemistry in a nutshell: from a nut to nanomaterials.&nbsp;<i> Chem. Soc. Rev. </i><b> 2013</b>,<i> 42,</i> 427–438. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Recent advances in cardanol chemistry in a nutshell: from a nut to nanomaterials.&nbsp;&publication_year=2013&author=Balachandran VS&author=Jadhav SR&author=Vemula PK&author=John G. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B126'> <div class="references_sup">126.</div> <div class="references_name"> Aouf C, Nouailhas H, Fache M, Caillol S, Boutevin B, Fulcrand H. Multi-functionalization of gallic acid. Synthesis of a novel bio-based epoxy resin.&nbsp;<i> Eur. Polym. J. </i><b> 2013</b>,<i> 49,</i> 1185–1195. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Multi-functionalization of gallic acid. Synthesis of a novel bio-based epoxy resin.&nbsp;&publication_year=2013&author=Aouf C&author=Nouailhas H&author=Fache M&author=Caillol S&author=Boutevin B&author=Fulcrand H. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B127'> <div class="references_sup">127.</div> <div class="references_name"> Priefert H, Rabenhorst J, Steinbuchel A. Biotechnological production of vanillin.<i> Appl. Microbiol. Biotechnol. </i><b> 2001</b>,<i> 56,</i> 296–314. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Biotechnological production of vanillin.&publication_year=2001&author=Priefert H&author=Rabenhorst J&author=Steinbuchel A. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B128'> <div class="references_sup">128.</div> <div class="references_name"> Dinu R, Lafont U, Damiano O, Mija A. High Glass Transition Materials from Sustainable Epoxy Resins with Potential Applications in the Aerospace and Space Sectors.&nbsp;<i> ACS Appl. Polym. Mater. </i><b> 2022</b>,<i> 4,</i> 3636–3646. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=High Glass Transition Materials from Sustainable Epoxy Resins with Potential Applications in the Aerospace and Space Sectors.&nbsp;&publication_year=2022&author=Dinu R&author=Lafont U&author=Damiano O&author=Mija A. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B129'> <div class="references_sup">129.</div> <div class="references_name"> Zhang Q, Song M, Xu Y, Wang W, Wang Z, Zhang L. Bio-based polyesters: Recent progress and future prospects.&nbsp;<i> Prog. Polym. Sci. </i><b> 2021</b>,<i> 120,</i> 101430. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Bio-based polyesters: Recent progress and future prospects.&nbsp;&publication_year=2021&author=Zhang Q&author=Song M&author=Xu Y&author=Wang W&author=Wang Z&author=Zhang L. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B130'> <div class="references_sup">130.</div> <div class="references_name"> Fache M, Boutevin B, Caillol S. Epoxy thermosets from model mixtures of the lignin-to-vanillin process.&nbsp;<i> Green Chem. </i><b> 2016</b>,<i> 18,</i> 712–725. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Epoxy thermosets from model mixtures of the lignin-to-vanillin process.&nbsp;&publication_year=2016&author=Fache M&author=Boutevin B&author=Caillol S. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B131'> <div class="references_sup">131.</div> <div class="references_name"> Amarasekara AS, Wiredu B, Razzaq A. Vanillin based polymers: I. An electrochemical route to polyvanillin.&nbsp;<i> Green Chem. </i><b> 2012</b>,<i> 14,</i> 2395–2397. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Vanillin based polymers: I. An electrochemical route to polyvanillin.&nbsp;&publication_year=2012&author=Amarasekara AS&author=Wiredu B&author=Razzaq A. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B132'> <div class="references_sup">132.</div> <div class="references_name"> Fache M, Viola A, Auvergne R, Boutevin B, Caillol S. Biobased epoxy thermosets from vanillin-derived oligomers.&nbsp;<i> Eur. Polym. J. </i><b> 2015</b>,<i> 68,</i> 526–535. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Biobased epoxy thermosets from vanillin-derived oligomers.&nbsp;&publication_year=2015&author=Fache M&author=Viola A&author=Auvergne R&author=Boutevin B&author=Caillol S. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B133'> <div class="references_sup">133.</div> <div class="references_name"> Mialon L, Pemba AG, Miller SA. Biorenewable polyethylene terephthalate mimics derived from lignin and acetic acid.<i> Green Chem. </i><b> 2010</b>,<i> 12,</i> 1704–1706. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Biorenewable polyethylene terephthalate mimics derived from lignin and acetic acid.&publication_year=2010&author=Mialon L&author=Pemba AG&author=Miller SA. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B134'> <div class="references_sup">134.</div> <div class="references_name"> Firdaus M, Meier MAR. Renewable co-polymers derived from vanillin and fatty acid derivatives.&nbsp;<i> Eur. Polym. J. </i><b> 2013</b>,<i> 49,</i> 156–166. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Renewable co-polymers derived from vanillin and fatty acid derivatives.&nbsp;&publication_year=2013&author=Firdaus M&author=Meier MAR. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B135'> <div class="references_sup">135.</div> <div class="references_name"> Islam MR, Beg MDH, Jamari SS. Development of Vegetable-Oil-Based Polymers.&nbsp;<i> J. Appl. Polym. Sci. </i><b> 2014</b>,<i> 131,</i> 40787. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Development of Vegetable-Oil-Based Polymers.&nbsp;&publication_year=2014&author=Islam MR&author=Beg MDH&author=Jamari SS. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B136'> <div class="references_sup">136.</div> <div class="references_name"> Tran TN, Di Mauro C, Graillot A, Mija A. Monitoring the structure-reactivity relationship in epoxidized perilla and safflower oil thermosetting resins.&nbsp;<i> Polym. Chem.</i><b> 2020</b>,<i> 11,</i> 5088–5097. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Monitoring the structure-reactivity relationship in epoxidized perilla and safflower oil thermosetting resins.&nbsp;&publication_year=2020&author=Tran TN&author=Di Mauro C&author=Graillot A&author=Mija A. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B137'> <div class="references_sup">137.</div> <div class="references_name"> Di Mauro C, Mija A. Influence of the Presence of Disulphide Bonds in Aromatic or Aliphatic Dicarboxylic Acid Hardeners Used to Produce Reprocessable Epoxidized Thermosets.&nbsp;<i> Polymers </i><b> 2021</b>,<i> 13,</i> 534. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Influence of the Presence of Disulphide Bonds in Aromatic or Aliphatic Dicarboxylic Acid Hardeners Used to Produce Reprocessable Epoxidized Thermosets.&nbsp;&publication_year=2021&author=Di Mauro C&author=Mija A. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B138'> <div class="references_sup">138.</div> <div class="references_name"> Di Mauro C, Malburet S, Graillot A, Mija A. Recyclable, Repairable, and Reshapable (3R) Thermoset Materials with Shape Memory Properties from Bio-Based Epoxidized Vegetable Oils.&nbsp;<i> ACS Appl. Bio Mater. </i><b> 2020</b>,<i> 3,</i> 8094–8104. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Recyclable, Repairable, and Reshapable (3R) Thermoset Materials with Shape Memory Properties from Bio-Based Epoxidized Vegetable Oils.&nbsp;&publication_year=2020&author=Di Mauro C&author=Malburet S&author=Graillot A&author=Mija A. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B139'> <div class="references_sup">139.</div> <div class="references_name"> Di Mauro C, Genua A, Mija A. Building thermally and chemically reversible covalent bonds in vegetable oil based epoxy thermosets. Influence of epoxy-hardener ratio in promoting recyclability.&nbsp;<i> Mater. Adv. </i><b> 2020</b>,<i> 1,</i> 1788–1798. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Building thermally and chemically reversible covalent bonds in vegetable oil based epoxy thermosets. Influence of epoxy-hardener ratio in promoting recyclability.&nbsp;&publication_year=2020&author=Di Mauro C&author=Genua A&author=Mija A. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B140'> <div class="references_sup">140.</div> <div class="references_name"> Xia Y, Larock RC. Vegetable oil-based polymeric materials: synthesis, properties, and applications.&nbsp;<i> Green Chem. </i><b> 2010</b>,<i> 12,</i> 1893–1909. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Vegetable oil-based polymeric materials: synthesis, properties, and applications.&nbsp;&publication_year=2010&author=Xia Y&author=Larock RC. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B141'> <div class="references_sup">141.</div> <div class="references_name"> Dinu R, Briand N, Mija A. Influence of Keratin on Epoxidized Linseed Oil Curing and Thermoset Performances.&nbsp;<i> ACS Sustain. Chem. Eng. </i><b> 2021</b>,<i> 9,</i> 15641–15652. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Influence of Keratin on Epoxidized Linseed Oil Curing and Thermoset Performances.&nbsp;&publication_year=2021&author=Dinu R&author=Briand N&author=Mija A. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B142'> <div class="references_sup">142.</div> <div class="references_name"> Di Mauro C, Genua A, Mija A. Kinetical Study, Thermo-Mechanical Characteristics and Recyclability of Epoxidized Camelina Oil Cured with Antagonist Structure (Aliphatic/Aromatic) or Functionality (Acid/Amine) Hardeners.&nbsp;<i> Polymers</i><b> 2021</b>,<i> 13,</i> 2503. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Kinetical Study, Thermo-Mechanical Characteristics and Recyclability of Epoxidized Camelina Oil Cured with Antagonist Structure (Aliphatic/Aromatic) or Functionality (Acid/Amine) Hardeners.&nbsp;&publication_year=2021&author=Di Mauro C&author=Genua A&author=Mija A. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B143'> <div class="references_sup">143.</div> <div class="references_name"> Di Mauro C, Genua A, Rymarczyk M, Dobbels C, Malburet S, Graillot A, et al. Chemical and mechanical reprocessed resins and bio-composites based on five epoxidized vegetable oils thermosets reinforced with flax fibers or PLA woven.&nbsp;<i> Compos. Sci. Technol. </i><b> 2021</b>,<i> 205,</i> 108678. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Chemical and mechanical reprocessed resins and bio-composites based on five epoxidized vegetable oils thermosets reinforced with flax fibers or PLA woven.&nbsp;&publication_year=2021&author=Di Mauro C&author=Genua A&author=Rymarczyk M&author=Dobbels C&author=Malburet S&author=Graillot A&author=et al. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B144'> <div class="references_sup">144.</div> <div class="references_name"> Tan SG, Chow WS. Biobased Epoxidized Vegetable Oils and Its Greener Epoxy Blends: A Review.&nbsp;<i> Polym.-Plast. Technol. Eng. </i><b> 2010</b>,<i> 49,</i> 1581–1590. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Biobased Epoxidized Vegetable Oils and Its Greener Epoxy Blends: A Review.&nbsp;&publication_year=2010&author=Tan SG&author=Chow WS. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B145'> <div class="references_sup">145.</div> <div class="references_name"> Di Mauro C, Thi-Nguyet T, Mija A. One-Pot Terpolymerization Synthesis of High Carbon Biocontent Recyclable Epoxy Thermosets and Their Composites with Flax Woven Fibers.<i> ACS Sustain. Chem. Eng. </i><b> 2021</b>,<i> 9,</i> 8526–8538. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=One-Pot Terpolymerization Synthesis of High Carbon Biocontent Recyclable Epoxy Thermosets and Their Composites with Flax Woven Fibers.&publication_year=2021&author=Di Mauro C&author=Thi-Nguyet T&author=Mija A. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B146'> <div class="references_sup">146.</div> <div class="references_name"> John G, Nagarajan S, Vemula PK, Silverman JR, Pillai CKS. Natural monomers: A mine for functional and sustainable materials - Occurrence, chemical modification and polymerization.&nbsp;<i> Prog. Polym. Sci. </i><b> 2019</b>,<i> 92,</i> 158–209. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Natural monomers: A mine for functional and sustainable materials - Occurrence, chemical modification and polymerization.&nbsp;&publication_year=2019&author=John G&author=Nagarajan S&author=Vemula PK&author=Silverman JR&author=Pillai CKS. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B147'> <div class="references_sup">147.</div> <div class="references_name"> Abbasi A, Nasef MM, Yahya WZN. Copolymerization of vegetable oils and bio-based monomers with elemental sulfur: A new promising route for bio-based polymers.&nbsp;<i> Sustain. Chem. Pharm. </i><b> 2019</b>,<i> 13,</i> 100158. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Copolymerization of vegetable oils and bio-based monomers with elemental sulfur: A new promising route for bio-based polymers.&nbsp;&publication_year=2019&author=Abbasi A&author=Nasef MM&author=Yahya WZN. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B148'> <div class="references_sup">148.</div> <div class="references_name"> Pfister DP, Xia Y, Larock RC. Recent Advances in Vegetable Oil-Based Polyurethanes.<i> ChemSusChem </i><b> 2011</b>,<i> 4,</i> 703–717. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Recent Advances in Vegetable Oil-Based Polyurethanes.&publication_year=2011&author=Pfister DP&author=Xia Y&author=Larock RC. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B149'> <div class="references_sup">149.</div> <div class="references_name"> Dinu R, Pidvoronia A, Lafont U, Damiano O, Mija A. High performance, recyclable and sustainable by design natural polyphenol-based epoxy polyester thermosets.&nbsp;<i> Green Chem. </i><b> 2023</b>,<i> 25,</i> 2327–2337. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=High performance, recyclable and sustainable by design natural polyphenol-based epoxy polyester thermosets.&nbsp;&publication_year=2023&author=Dinu R&author=Pidvoronia A&author=Lafont U&author=Damiano O&author=Mija A. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B150'> <div class="references_sup">150.</div> <div class="references_name"> Abd El-Wahab H, Abd El-Fattah M, Ghazy MBM. Synthesis and characterization of new modified anti-corrosive polyesteramide resins incorporated pyromellitimide ring for surface coating.&nbsp;<i> Prog. Org. Coat. </i><b> 2011</b>,<i> 72,</i> 353–359. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Synthesis and characterization of new modified anti-corrosive polyesteramide resins incorporated pyromellitimide ring for surface coating.&nbsp;&publication_year=2011&author=Abd El-Wahab H&author=Abd El-Fattah M&author=Ghazy MBM. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B151'> <div class="references_sup">151.</div> <div class="references_name"> Palaskar DV, Boyer A, Cloutet E, Alfos C, Cramail H. Synthesis of Biobased Polyurethane from Oleic and Ricinoleic Acids as the Renewable Resources via the AB-Type Self-Condensation Approach.&nbsp;<i> Biomacromolecules </i><b> 2010</b>,<i> 11,</i> 1202–1211. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Synthesis of Biobased Polyurethane from Oleic and Ricinoleic Acids as the Renewable Resources via the AB-Type Self-Condensation Approach.&nbsp;&publication_year=2010&author=Palaskar DV&author=Boyer A&author=Cloutet E&author=Alfos C&author=Cramail H." target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B152'> <div class="references_sup">152.</div> <div class="references_name"> Tran TN, Di Mauro C, Malburet S, Graillot A, Mija A. Dual Cross-linking of Epoxidized Linseed Oil with Combined Aliphatic/Aromatic Diacids Containing Dynamic S-S Bonds Generating Recyclable Thermosets.&nbsp;<i> ACS Appl. Bio Mater. </i><b> 2020</b>,<i> 3,</i> 7550–7561. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Dual Cross-linking of Epoxidized Linseed Oil with Combined Aliphatic/Aromatic Diacids Containing Dynamic S-S Bonds Generating Recyclable Thermosets.&nbsp;&publication_year=2020&author=Tran TN&author=Di Mauro C&author=Malburet S&author=Graillot A&author=Mija A. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B153'> <div class="references_sup">153.</div> <div class="references_name"> Mutlu H, Meier MAR. Castor oil as a renewable resource for the chemical industry.&nbsp;<i> Eur. J. Lipid Sci. Technol. </i><b> 2010</b>,<i> 112,</i> 10–30. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Castor oil as a renewable resource for the chemical industry.&nbsp;&publication_year=2010&author=Mutlu H&author=Meier MAR. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B154'> <div class="references_sup">154.</div> <div class="references_name"> Alteheld A, Feng YK, Kelch S, Lendlein A. Biodegradable, amorphous copolyester-urethane networks having shape-memory properties.&nbsp;<i> Angew. Chem.-Intl. Edit. </i><b> 2005</b>,<i> 44,</i> 1188–1192. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Biodegradable, amorphous copolyester-urethane networks having shape-memory properties.&nbsp;&publication_year=2005&author=Alteheld A&author=Feng YK&author=Kelch S&author=Lendlein A. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B155'> <div class="references_sup">155.</div> <div class="references_name"> Yuan D, Chen Z, Xu C, Chen K, Chen Y. Fully Biobased Shape Memory Material Based on Novel Cocontinuous Structure in Poly(Lactic Acid)/Natural Rubber TPVs Fabricated via Peroxide-Induced Dynamic Vulcanization and in Situ Interfacial Compatibilization.&nbsp;<i> ACS Sustain. Chem. Eng. </i><b> 2015</b>,<i> 3,</i> 2856–2865. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Fully Biobased Shape Memory Material Based on Novel Cocontinuous Structure in Poly(Lactic Acid)/Natural Rubber TPVs Fabricated via Peroxide-Induced Dynamic Vulcanization and in Situ Interfacial Compatibilization.&nbsp;&publication_year=2015&author=Yuan D&author=Chen Z&author=Xu C&author=Chen K&author=Chen Y. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B156'> <div class="references_sup">156.</div> <div class="references_name"> Samuel C, Barrau S, Lefebvre J-M, Raquez J-M, Dubois P. Designing Multiple-Shape Memory Polymers with Miscible Polymer Blends: Evidence and Origins of a Triple-Shape Memory Effect for Miscible PLLA/PMMA Blends.&nbsp;<i> Macromolecules </i><b> 2014</b>,<i> 47,</i> 6791–6803. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Designing Multiple-Shape Memory Polymers with Miscible Polymer Blends: Evidence and Origins of a Triple-Shape Memory Effect for Miscible PLLA/PMMA Blends.&nbsp;&publication_year=2014&author=Samuel C&author=Barrau S&author=Lefebvre J-M&author=Raquez J-M&author=Dubois P. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B157'> <div class="references_sup">157.</div> <div class="references_name"> Odent J, Raquez J-M, Samuel C, Barrau S, Enotiadis A, Dubois P, et al. Shape-Memory Behavior of Polylactide/Silica Ionic Hybrids.&nbsp;<i> Macromolecules </i><b> 2017</b>,<i> 50,</i> 2896–2905. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Shape-Memory Behavior of Polylactide/Silica Ionic Hybrids.&nbsp;&publication_year=2017&author=Odent J&author=Raquez J-M&author=Samuel C&author=Barrau S&author=Enotiadis A&author=Dubois P&author=et al. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B158'> <div class="references_sup">158.</div> <div class="references_name"> Guo B, Chen Y, Lei Y, Zhang L, Zhou WY, Rabie ABM, et al. Biobased Poly(propylene sebacate) as Shape Memory Polymer with Tunable Switching Temperature for Potential Biomedical Applications.&nbsp;<i> Biomacromolecules</i><b> 2011</b>,<i> 12,</i> 1312–1321. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Biobased Poly(propylene sebacate) as Shape Memory Polymer with Tunable Switching Temperature for Potential Biomedical Applications.&nbsp;&publication_year=2011&author=Guo B&author=Chen Y&author=Lei Y&author=Zhang L&author=Zhou WY&author=Rabie ABM&author=et al." target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B159'> <div class="references_sup">159.</div> <div class="references_name"> Guo W, Kang H, Chen Y, Guo B, Zhang L. Stronger and Faster Degradable Biobased Poly(propylene sebacate) as Shape Memory Polymer by Incorporating Boehmite Nanoplatelets.&nbsp;<i> ACS Appl. Mater. Interfaces </i><b> 2012</b>,<i> 4,</i> 4006–4014. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Stronger and Faster Degradable Biobased Poly(propylene sebacate) as Shape Memory Polymer by Incorporating Boehmite Nanoplatelets.&nbsp;&publication_year=2012&author=Guo W&author=Kang H&author=Chen Y&author=Guo B&author=Zhang L. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B160'> <div class="references_sup">160.</div> <div class="references_name"> di Mauro C, Thi-Nguyet T, Graillot A, Mija A. Enhancing the Recyclability of a Vegetable Oil-Based Epoxy Thermoset through Initiator Influence.&nbsp;<i> ACS Sustain. Chem. Eng. </i><b> 2020</b>,<i> 8,</i> 7690–7700. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Enhancing the Recyclability of a Vegetable Oil-Based Epoxy Thermoset through Initiator Influence.&nbsp;&publication_year=2020&author=di Mauro C&author=Thi-Nguyet T&author=Graillot A&author=Mija A. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B161'> <div class="references_sup">161.</div> <div class="references_name"> Di Mauro C, Malburet S, Genua A, Graillot A, Mija A. Sustainable Series of New Epoxidized Vegetable Oil-Based Thermosets with Chemical Recycling Properties.&nbsp;<i> Biomacromolecules </i><b> 2020</b>,<i> 21,</i> 3923–3935. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Sustainable Series of New Epoxidized Vegetable Oil-Based Thermosets with Chemical Recycling Properties.&nbsp;&publication_year=2020&author=Di Mauro C&author=Malburet S&author=Genua A&author=Graillot A&author=Mija A. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B162'> <div class="references_sup">162.</div> <div class="references_name"> Li C, Dai J, Liu X, Jiang Y, Ma S, Zhu J. Green Synthesis of a Bio-Based Epoxy Curing Agent from Isosorbide in Aqueous Condition and Shape Memory Properties Investigation of the Cured Resin.<i> Macromol. Chem. Phys. </i><b> 2016</b>,<i> 217,</i> 1439–1447. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Green Synthesis of a Bio-Based Epoxy Curing Agent from Isosorbide in Aqueous Condition and Shape Memory Properties Investigation of the Cured Resin.&publication_year=2016&author=Li C&author=Dai J&author=Liu X&author=Jiang Y&author=Ma S&author=Zhu J. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B163'> <div class="references_sup">163.</div> <div class="references_name"> Liu T, Hao C, Wang L, Li Y, Liu W, Xin J, et al. Eugenol-Derived Biobased Epoxy: Shape Memory, Repairing, and Recyclability.&nbsp;<i> Macromolecules </i><b> 2017</b>,<i> 50,</i> 8588–8597. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Eugenol-Derived Biobased Epoxy: Shape Memory, Repairing, and Recyclability.&nbsp;&publication_year=2017&author=Liu T&author=Hao C&author=Wang L&author=Li Y&author=Liu W&author=Xin J&author=et al. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B164'> <div class="references_sup">164.</div> <div class="references_name"> Miao J-T, Ge M, Wu Y, Chou TY, Wang H, Zheng L, et al. Eugenol-derived reconfigurable high-performance epoxy resin for self-deployable smart 3D structures.&nbsp;<i> Eur. Polym. J.</i><b> 2020</b>,<i> 134,</i> 109805. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Eugenol-derived reconfigurable high-performance epoxy resin for self-deployable smart 3D structures.&nbsp;&publication_year=2020&author=Miao J-T&author=Ge M&author=Wu Y&author=Chou TY&author=Wang H&author=Zheng L&author=et al. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B165'> <div class="references_sup">165.</div> <div class="references_name"> Feng X, Fan J, Li A, Li G. Biobased Tannic Acid Cross-Linked Epoxy Thermosets with Hierarchical Molecular Structure and Tunable Properties: Damping, Shape Memory, and Recyclability.&nbsp;<i> ACS Sustain. Chem. Eng. </i><b> 2020</b>,<i> 8,</i> 874–883. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Biobased Tannic Acid Cross-Linked Epoxy Thermosets with Hierarchical Molecular Structure and Tunable Properties: Damping, Shape Memory, and Recyclability.&nbsp;&publication_year=2020&author=Feng X&author=Fan J&author=Li A&author=Li G. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B166'> <div class="references_sup">166.</div> <div class="references_name"> Wang S, Urban MW. Self-healing polymers.&nbsp;<i> Nat. Rev. Mater. </i><b> 2020</b>,<i> 5,</i> 562–583. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Self-healing polymers.&nbsp;&publication_year=2020&author=Wang S&author=Urban MW. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B167'> <div class="references_sup">167.</div> <div class="references_name"> Hornat CC, Urban MW. Shape memory effects in self-healing polymers.<i> Prog. Polym. Sci. </i><b> 2020</b>,<i> 102,</i> 101208. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Shape memory effects in self-healing polymers.&publication_year=2020&author=Hornat CC&author=Urban MW. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B168'> <div class="references_sup">168.</div> <div class="references_name"> Hia IL, Vahedi V, Pasbakhsh P. Self-Healing Polymer Composites: Prospects, Challenges, and Applications.&nbsp;<i> Polym. Rev.</i><b> 2016</b>,<i> 56,</i> 225–261. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Self-Healing Polymer Composites: Prospects, Challenges, and Applications.&nbsp;&publication_year=2016&author=Hia IL&author=Vahedi V&author=Pasbakhsh P. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B169'> <div class="references_sup">169.</div> <div class="references_name"> Shou T, Zhai MY, Wu YW, Wu SZ, Hu SK, Zhao XY, et al. Bio-Based, Recyclable and Self-Healing Polyurethane Composites with High Energy Dissipation and Shape Memory.&nbsp;<i> Macromol. Rapid Commun. </i><b> 2022</b>,<i> 43,</i> 2200486. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Bio-Based, Recyclable and Self-Healing Polyurethane Composites with High Energy Dissipation and Shape Memory.&nbsp;&publication_year=2022&author=Shou T&author=Zhai MY&author=Wu YW&author=Wu SZ&author=Hu SK&author=Zhao XY&author=et al. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B170'> <div class="references_sup">170.</div> <div class="references_name"> Zhang GG, Tian CR, Shi JW, Zhang X, Liu J, Tan TW, et al. Mechanically Robust, Self-Repairable, Shape Memory and Recyclable Ionomeric Elastomer Composites with Renewable Lignin via Interfacial Metal-Ligand Interactions.&nbsp;<i> ACS Appl. Mater. Interfaces </i><b> 2022</b>,<i> 14,</i> 38216–38227. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Mechanically Robust, Self-Repairable, Shape Memory and Recyclable Ionomeric Elastomer Composites with Renewable Lignin via Interfacial Metal-Ligand Interactions.&nbsp;&publication_year=2022&author=Zhang GG&author=Tian CR&author=Shi JW&author=Zhang X&author=Liu J&author=Tan TW&author=et al. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B171'> <div class="references_sup">171.</div> <div class="references_name"> Wang F, Wang WT, Zhang C, Tang JN, Zeng XR, Wan XJ. Scalable manufactured bio-based polymer nanocomposite with instantaneous near-infrared light-actuated targeted shape memory and remote-controlled accurate self-healing.&nbsp;<i> Compos. Pt. B-Eng. </i><b> 2021</b>,<i> 219,</i> 108927. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Scalable manufactured bio-based polymer nanocomposite with instantaneous near-infrared light-actuated targeted shape memory and remote-controlled accurate self-healing.&nbsp;&publication_year=2021&author=Wang F&author=Wang WT&author=Zhang C&author=Tang JN&author=Zeng XR&author=Wan XJ. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B172'> <div class="references_sup">172.</div> <div class="references_name"> Capelot M, Unterlass MM, Tournilhac F, Leibler L. Catalytic Control of the Vitrimer Glass Transition. <i> ACS Macro Lett.</i><b> 2012</b>,<i> 1,</i> 789–792. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=&publication_year=2012&author=Capelot M&author=Unterlass MM&author=Tournilhac F&author=Leibler L. Catalytic Control of the Vitrimer Glass Transition. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B173'> <div class="references_sup">173.</div> <div class="references_name"> Kloxin CJ, Scott TF, Adzima BJ, Bowman CN. Covalent Adaptable Networks (CANS): A Unique Paradigm in Cross-Linked Polymers.&nbsp;<i> Macromolecules </i><b> 2010</b>,<i> 43,</i> 2643–2653. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Covalent Adaptable Networks (CANS): A Unique Paradigm in Cross-Linked Polymers.&nbsp;&publication_year=2010&author=Kloxin CJ&author=Scott TF&author=Adzima BJ&author=Bowman CN. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B174'> <div class="references_sup">174.</div> <div class="references_name"> Feng ZB, Hu J, Zuo HL, Ning NY, Zhang LQ, Yu B, et al. Photothermal-Induced Self-Healable and Reconfigurable Shape Memory Bio-Based Elastomer with Recyclable Ability.&nbsp;<i> ACS Appl. Mater. Interfaces </i><b> 2019</b>,<i> 11,</i> 1469–1479. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Photothermal-Induced Self-Healable and Reconfigurable Shape Memory Bio-Based Elastomer with Recyclable Ability.&nbsp;&publication_year=2019&author=Feng ZB&author=Hu J&author=Zuo HL&author=Ning NY&author=Zhang LQ&author=Yu B&author=et al." target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B175'> <div class="references_sup">175.</div> <div class="references_name"> Yang XX, Guo LZ, Xu X, Shang SB, Liu H. A fully bio-based epoxy vitrimer: Self-healing, triple-shape memory and reprocessing triggered by dynamic covalent bond exchange.&nbsp;<i> Mater. Des.</i><b> 2020</b>,<i> 186,</i> 108248. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=A fully bio-based epoxy vitrimer: Self-healing, triple-shape memory and reprocessing triggered by dynamic covalent bond exchange.&nbsp;&publication_year=2020&author=Yang XX&author=Guo LZ&author=Xu X&author=Shang SB&author=Liu H. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B176'> <div class="references_sup">176.</div> <div class="references_name"> Qi X, Pan CL, Zhang LQ, Yue DM. Bio-Based, Self-Healing, Recyclable, Reconfigurable Multifunctional Polymers with Both One-Way and Two-Way Shape Memory Properties.&nbsp;<i> ACS Appl. Mater. Interfaces </i><b> 2023</b>,<i> 15,</i> 3497–3506. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Bio-Based, Self-Healing, Recyclable, Reconfigurable Multifunctional Polymers with Both One-Way and Two-Way Shape Memory Properties.&nbsp;&publication_year=2023&author=Qi X&author=Pan CL&author=Zhang LQ&author=Yue DM. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B177'> <div class="references_sup">177.</div> <div class="references_name"> Liu Y, Zhang ZT, Wang JC, Xie TL, Sun LY, Yang KF, et al. Renewable tannic acid based self-healing polyurethane with dynamic phenol-carbamate network: Simultaneously showing robust mechanical properties, reprocessing ability and shape memory.&nbsp;<i> Polymer </i><b> 2021</b>,<i> 228,</i> 123860. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Renewable tannic acid based self-healing polyurethane with dynamic phenol-carbamate network: Simultaneously showing robust mechanical properties, reprocessing ability and shape memory.&nbsp;&publication_year=2021&author=Liu Y&author=Zhang ZT&author=Wang JC&author=Xie TL&author=Sun LY&author=Yang KF&author=et al. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B178'> <div class="references_sup">178.</div> <div class="references_name"> Qi X, Yang G, Jing M, Fu Q, Chiu F-C. Microfibrillated cellulose-reinforced bio-based poly(propylene carbonate) with dual shape memory and self-healing properties.&nbsp;<i> J. Mater. Chem. A </i><b> 2014</b>,<i> 2,</i> 20393–20401. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Microfibrillated cellulose-reinforced bio-based poly(propylene carbonate) with dual shape memory and self-healing properties.&nbsp;&publication_year=2014&author=Qi X&author=Yang G&author=Jing M&author=Fu Q&author=Chiu F-C. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B179'> <div class="references_sup">179.</div> <div class="references_name"> Rodriguez ED, Luo XF, Mather PT. Linear/Network Poly(epsilon-caprolactone) Blends Exhibiting Shape Memory Assisted Self-Healing (SMASH).&nbsp;<i> ACS Appl. Mater. Interfaces </i><b> 2011</b>,<i> 3,</i> 152–161. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Linear/Network Poly(epsilon-caprolactone) Blends Exhibiting Shape Memory Assisted Self-Healing (SMASH).&nbsp;&publication_year=2011&author=Rodriguez ED&author=Luo XF&author=Mather PT. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B180'> <div class="references_sup">180.</div> <div class="references_name"> Lu C, Liu Y, Liu X, Wang C, Wang J, Chu F. Sustainable Multiple- and Multistimulus-Shape-Memory and Self-Healing Elastomers with Semi-interpenetrating Network Derived from Biomass via Bulk Radical Polymerization.&nbsp;<i> ACS Sustain. Chem. Eng. </i><b> 2018</b>,<i> 6,</i> 6527–6535. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Sustainable Multiple- and Multistimulus-Shape-Memory and Self-Healing Elastomers with Semi-interpenetrating Network Derived from Biomass via Bulk Radical Polymerization.&nbsp;&publication_year=2018&author=Lu C&author=Liu Y&author=Liu X&author=Wang C&author=Wang J&author=Chu F. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B181'> <div class="references_sup">181.</div> <div class="references_name"> Tibbits S. 4D Printing: Multi‐Material Shape Change.&nbsp;<i> Archit. Des. </i><b> 2014</b>,<i> 84,</i> 116–121. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=4D Printing: Multi‐Material Shape Change.&nbsp;&publication_year=2014&author=Tibbits S. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B182'> <div class="references_sup">182.</div> <div class="references_name"> Tan LJ, Zhu W, Zhou K. Recent Progress on Polymer Materials for Additive Manufacturing.&nbsp;<i> Adv. Funct. Mater. </i><b> 2020</b>,<i> 30,</i> 2003062. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Recent Progress on Polymer Materials for Additive Manufacturing.&nbsp;&publication_year=2020&author=Tan LJ&author=Zhu W&author=Zhou K. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B183'> <div class="references_sup">183.</div> <div class="references_name"> Ryan KR, Down MP, Banks CE. Future of additive manufacturing: Overview of 4D and 3D printed smart and advanced materials and their applications.&nbsp;<i> Chem. Eng. J. </i><b> 2021</b>,<i> 403,</i> 126162. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Future of additive manufacturing: Overview of 4D and 3D printed smart and advanced materials and their applications.&nbsp;&publication_year=2021&author=Ryan KR&author=Down MP&author=Banks CE. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B184'> <div class="references_sup">184.</div> <div class="references_name"> Zhao W, Yue C, Liu L, Liu Y, Leng J. Research Progress of Shape Memory Polymer and 4D Printing in Biomedical Application.&nbsp;<i> Adv. Healthc. Mater. </i><b> 2022</b>,<i> 12,</i> 2201975. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Research Progress of Shape Memory Polymer and 4D Printing in Biomedical Application.&nbsp;&publication_year=2022&author=Zhao W&author=Yue C&author=Liu L&author=Liu Y&author=Leng J. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B185'> <div class="references_sup">185.</div> <div class="references_name"> Li Y, Zhang F, Liu Y, Leng J. 4D printed shape memory polymers and their structures for biomedical applications.&nbsp;<i> Sci. China-Technol. Sci. </i><b> 2020</b>,<i> 63,</i> 545–560. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=4D printed shape memory polymers and their structures for biomedical applications.&nbsp;&publication_year=2020&author=Li Y&author=Zhang F&author=Liu Y&author=Leng J. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B186'> <div class="references_sup">186.</div> <div class="references_name"> Zhang C, Cai D, Liao P, Su J-W, Deng H, Vardhanabhuti B, et al. 4D Printing of shape-memory polymeric scaffolds for adaptive biomedical implantation.&nbsp;<i> Acta Biomater. </i><b> 2021</b>,<i> 122,</i> 101–110. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=4D Printing of shape-memory polymeric scaffolds for adaptive biomedical implantation.&nbsp;&publication_year=2021&author=Zhang C&author=Cai D&author=Liao P&author=Su J-W&author=Deng H&author=Vardhanabhuti B&author=et al. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B187'> <div class="references_sup">187.</div> <div class="references_name"> Hu X, Zhao W, Zhang Z, Xie J, He J, Cao J, et al. Novel 3D printed shape-memory PLLA-TMC/GA-TMC scaffolds for bone tissue engineering with the improved mechanical properties and degradability.&nbsp;<i> Chin. Chem. Lett. </i><b> 2023</b>,<i> 34,</i> 107451. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Novel 3D printed shape-memory PLLA-TMC/GA-TMC scaffolds for bone tissue engineering with the improved mechanical properties and degradability.&nbsp;&publication_year=2023&author=Hu X&author=Zhao W&author=Zhang Z&author=Xie J&author=He J&author=Cao J&author=et al. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B188'> <div class="references_sup">188.</div> <div class="references_name"> Zarek M, Layani M, Cooperstein I, Sachyani E, Cohn D, Magdassi S. 3D Printing of Shape Memory Polymers for Flexible Electronic Devices.&nbsp;<i> Adv. Mater. </i><b> 2016</b>,<i> 28,</i> 4449. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=3D Printing of Shape Memory Polymers for Flexible Electronic Devices.&nbsp;&publication_year=2016&author=Zarek M&author=Layani M&author=Cooperstein I&author=Sachyani E&author=Cohn D&author=Magdassi S. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B189'> <div class="references_sup">189.</div> <div class="references_name"> Lu X, Zhang H, Fei G, Yu B, Tong X, Xia H, et al. Liquid-Crystalline Dynamic Networks Doped with Gold Nanorods Showing Enhanced Photocontrol of Actuation.&nbsp;<i> Adv. Mater. </i><b> 2018</b>,<i> 30,</i> 1706597. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Liquid-Crystalline Dynamic Networks Doped with Gold Nanorods Showing Enhanced Photocontrol of Actuation.&nbsp;&publication_year=2018&author=Lu X&author=Zhang H&author=Fei G&author=Yu B&author=Tong X&author=Xia H&author=et al. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B190'> <div class="references_sup">190.</div> <div class="references_name"> Liu R, Kuang X, Deng J, Wang Y-C, Wang AC, Ding W, et al. Shape Memory Polymers for Body Motion Energy Harvesting and Self-Powered Mechanosensing.&nbsp;<i> Adv. Mater. </i><b> 2018</b>,<i> 30,</i> 1705195. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Shape Memory Polymers for Body Motion Energy Harvesting and Self-Powered Mechanosensing.&nbsp;&publication_year=2018&author=Liu R&author=Kuang X&author=Deng J&author=Wang Y-C&author=Wang AC&author=Ding W&author=et al. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B191'> <div class="references_sup">191.</div> <div class="references_name"> Akbari S, Sakhaei AH, Kowsari K, Yang B, Serjouei A, Zhang Y, et al. Enhanced multimaterial 4D printing with active hinges.&nbsp;<i> Smart Mater. Struct. </i><b> 2018</b>,<i> 27,</i> 065027. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Enhanced multimaterial 4D printing with active hinges.&nbsp;&publication_year=2018&author=Akbari S&author=Sakhaei AH&author=Kowsari K&author=Yang B&author=Serjouei A&author=Zhang Y&author=et al. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B192'> <div class="references_sup">192.</div> <div class="references_name"> Hua D, Zhang X, Ji Z, Yan C, Yu B, Li Y, et al. 3D printing of shape changing composites for constructing flexible paper-based photothermal bilayer actuators.&nbsp;<i> J. Mater. Chem. C </i><b> 2018</b>,<i> 6,</i> 2123–2131. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=3D printing of shape changing composites for constructing flexible paper-based photothermal bilayer actuators.&nbsp;&publication_year=2018&author=Hua D&author=Zhang X&author=Ji Z&author=Yan C&author=Yu B&author=Li Y&author=et al. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B193'> <div class="references_sup">193.</div> <div class="references_name"> Song M, Liu X, Yue H, Li S, Guo J. 4D printing of PLA/PCL-based bio-polyurethane via moderate cross-linking to adjust the microphase separation.&nbsp;<i> Polymer </i><b> 2022</b>,<i> 256,</i> 125190. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=4D printing of PLA/PCL-based bio-polyurethane via moderate cross-linking to adjust the microphase separation.&nbsp;&publication_year=2022&author=Song M&author=Liu X&author=Yue H&author=Li S&author=Guo J. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B194'> <div class="references_sup">194.</div> <div class="references_name"> Wu D, Leng Y-M, Fan C-J, Xu Z-Y, Li L, Shi L-Y, et al. 4D Printing of a Fully Biobased Shape Memory Copolyester via a UV-Assisted FDM Strategy.&nbsp;<i> ACS Sustain. Chem. Eng. </i><b> 2022</b>,<i> 10,</i> 6304–6312. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=4D Printing of a Fully Biobased Shape Memory Copolyester via a UV-Assisted FDM Strategy.&nbsp;&publication_year=2022&author=Wu D&author=Leng Y-M&author=Fan C-J&author=Xu Z-Y&author=Li L&author=Shi L-Y&author=et al. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B195'> <div class="references_sup">195.</div> <div class="references_name"> Wang X, He Y, Liu Y, Leng J. Advances in shape memory polymers: Remote actuation, multi-stimuli control, 4D printing and prospective applications.&nbsp;<i> Mater. Sci. Eng. R-Rep. </i><b> 2022</b>,<i> 151,</i> 100702. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Advances in shape memory polymers: Remote actuation, multi-stimuli control, 4D printing and prospective applications.&nbsp;&publication_year=2022&author=Wang X&author=He Y&author=Liu Y&author=Leng J. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B196'> <div class="references_sup">196.</div> <div class="references_name"> Muthe LP, Pickering K, Gauss C. A Review of 3D/4D Printing of Poly-Lactic Acid Composites with Bio-Derived Reinforcements. Compos.&nbsp;<i> Part C Open Access </i><b> 2022</b>,<i> 8,</i> 100271. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=A Review of 3D/4D Printing of Poly-Lactic Acid Composites with Bio-Derived Reinforcements. Compos.&nbsp;&publication_year=2022&author=Muthe LP&author=Pickering K&author=Gauss C. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B197'> <div class="references_sup">197.</div> <div class="references_name"> Lin C, Lv J, Li Y, Zhang F, Li J, Liu Y, et al. 4D-Printed Biodegradable and Remotely Controllable Shape Memory Occlusion Devices.&nbsp;<i> Adv. Funct. Mater. </i><b> 2019</b>,<i> 29,</i> 1906569. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=4D-Printed Biodegradable and Remotely Controllable Shape Memory Occlusion Devices.&nbsp;&publication_year=2019&author=Lin C&author=Lv J&author=Li Y&author=Zhang F&author=Li J&author=Liu Y&author=et al. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B198'> <div class="references_sup">198.</div> <div class="references_name"> Zhao W, Zhang F, Leng J, Liu Y. Personalized 4D printing of bioinspired tracheal scaffold concept based on magnetic stimulated shape memory composites.&nbsp;<i> Compos. Sci. Technol. </i><b> 2019</b>,<i> 184,</i> 107866. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Personalized 4D printing of bioinspired tracheal scaffold concept based on magnetic stimulated shape memory composites.&nbsp;&publication_year=2019&author=Zhao W&author=Zhang F&author=Leng J&author=Liu Y. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B199'> <div class="references_sup">199.</div> <div class="references_name"> Miao S, Zhu W, Castro NJ, Leng J, Zhang LG. Four-Dimensional Printing Hierarchy Scaffolds with Highly Biocompatible Smart Polymers for Tissue Engineering Applications.&nbsp;<i> Tissue Eng. Part C-Methods </i><b> 2016</b>,<i> 22,</i> 952–963. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Four-Dimensional Printing Hierarchy Scaffolds with Highly Biocompatible Smart Polymers for Tissue Engineering Applications.&nbsp;&publication_year=2016&author=Miao S&author=Zhu W&author=Castro NJ&author=Leng J&author=Zhang LG. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B200'> <div class="references_sup">200.</div> <div class="references_name"> Miao S, Zhu W, Castro NJ, Nowicki M, Zhou X, Cui H, et al. 4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate.&nbsp;<i> Sci. Rep. </i><b> 2016</b>,<i> 6,</i> 27226. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate.&nbsp;&publication_year=2016&author=Miao S&author=Zhu W&author=Castro NJ&author=Nowicki M&author=Zhou X&author=Cui H&author=et al. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B201'> <div class="references_sup">201.</div> <div class="references_name"> Lin C, Liu L, Liu Y, Leng J. 4D printing of shape memory polybutylene succinate/polylactic acid (PBS/PLA) and its potential applications.&nbsp;<i> Compos. Struct. </i><b> 2022</b>,<i> 279,</i> 114729. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=4D printing of shape memory polybutylene succinate/polylactic acid (PBS/PLA) and its potential applications.&nbsp;&publication_year=2022&author=Lin C&author=Liu L&author=Liu Y&author=Leng J. " target="_blank">Google Scholar</a>]</span> </div> </div> </div> </div> </div> </div> </div> </div> </div> </div> </section> <div class="modal fade cite-modal" id="citeModal" tabindex="-1" aria-labelledby="exampleModalLabel" aria-hidden="true"> <div class="modal-dialog modal-dialog-centered"> <div class="modal-content border-0"> <div class="modal-body pt-5 pl-5 pr-5 pb-4"> <h3 class="pb-2 border-bottom border-dark">Cite This Article</h3> <h6 class="mt-4 d-flex justify-content-between"> SCIEPublish Style </h6> <p class="modal-text2 text-justify">Luo K, Xu Z-Y, Zhan R, Yang K-K. Creating Shape Memory Polymers from Biobased Resources. <i>Sustainable Polymer &amp; Energy</i> <b>2023</b>, <i>1</i>, 10009. https://doi.org/10.35534/spe.2023.10009</p> <h6 class="mt-3 d-flex justify-content-between text-justify"> AMA Style </h6> <p class="modal-text2 text-justify">Luo K, Xu Z-Y, Zhan R, Yang K-K. Creating Shape Memory Polymers from Biobased Resources. <i>Sustainable Polymer &amp; Energy</i>. 2023; 1(2):10009. https://doi.org/10.35534/spe.2023.10009</p> </div> <button type="button" class="btn btn-close" data-dismiss="modal"> <svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" fill="currentColor" class="bi bi-x-lg" viewBox="0 0 16 16"> <path d="M2.146 2.854a.5.5 0 1 1 .708-.708L8 7.293l5.146-5.147a.5.5 0 0 1 .708.708L8.707 8l5.147 5.146a.5.5 0 0 1-.708.708L8 8.707l-5.146 5.147a.5.5 0 0 1-.708-.708L7.293 8 2.146 2.854Z"></path> </svg> </button> </div> </div> </div> <div class="modal modal-amplification-img" id="imgModal" tabindex="-1" aria-labelledby="imgModal" aria-hidden="true"> <div class="modal-dialog modal-xl modal-dialog-centered modal-dialog-scrollable modal-dialog-img"> <div class="modal-content"> <button type="button" class="btn btn-close" data-dismiss="modal"> <svg xmlns="http://www.w3.org/2000/svg" width="20" height="20" fill="currentColor" class="bi bi-x-lg" viewBox="0 0 16 16"> <path d="M2.146 2.854a.5.5 0 1 1 .708-.708L8 7.293l5.146-5.147a.5.5 0 0 1 .708.708L8.707 8l5.147 5.146a.5.5 0 0 1-.708.708L8 8.707l-5.146 5.147a.5.5 0 0 1-.708-.708L7.293 8 2.146 2.854Z"></path> </svg> </button> <div class="modal-body"> </div> </div> </div> </div> <link rel="stylesheet" href="/static/css/share.min.css?3" /> <script src="/static/js/social-share.min.js"></script> <script> var $config = { image:"https://www.sciepublish.com/uploads/2023/07/26/b21c96c1a980b25ed41be1c82d31d527.png", origin:'', wechatQrcodeTitle: "WeChat Share", // WeChat QR code prompt text wechatQrcodeHelper: '<p>Scan QR code</p> <p>This article can be shared to your WeChat.</p>', }; socialShare('.social-share', $config); </script> <script> document.addEventListener("DOMContentLoaded", function() { /**/ var stopScroll = $(document).scrollTop(), column = $('.left-content'), fixedTitle = $('.fixed-title'), acquiesceTitle = $('.acquiesce-title'), acquiesceTitleTop = acquiesceTitle.offset().top; $(window).scroll(function(){ var scrollTop = $(this).scrollTop(); if(scrollTop > acquiesceTitleTop){ column.addClass('fixed'); fixedTitle.addClass('fixed'); }else{ column.removeClass('fixed'); fixedTitle.removeClass('fixed'); } }) if (stopScroll > acquiesceTitleTop ){ column.addClass('fixed'); fixedTitle.addClass('fixed'); } //Anchor navigation $('body').scrollspy({ target: '#article-menu-float' }) //tab switch $('.information-collapse').each(function(){ $(this).click(function(){ $(this).toggleClass('active').siblings().removeClass('active'); $(".information-item").eq($(this).index()).slideToggle().siblings().slideUp(); }) }) function markdownReplace(text) { // Replace the oblique body, bold it to HTML // /article/pii/21 text = text.replace(/&lt;/g, '<'); //article/pii/166 text = text.replace(/&gt;/g, '>'); // text = text.replace(/\*\*(.+?)\*\*/g, "<b>$1</b>"); text = text.replace(/\*(.+?)\*/g, "<i>$1</i>"); // article/pii/18 text = text.replace(/&amp;/g, '&');//&#42; /article/pii/181#Figure5 中的* // text = text.replace(/\\\$/g, '$'); //article/pii/19 return text; } // Treatment of non -serial list function replaceConsecutiveBulletsWithList(text) { // Regular expression matching continuously with • starting line const regex = /^(?:•\s.*\n?)+/gm; // Replace the matching line, convert it to <ul> and <li> elements return text.replace(regex, (match) => { // Remove the • and the subsequent blank characters at the beginning of each line, and convert it to <li> element const listItems = match.split('\n').map(line => { return line.replace(/^•\s/, '').trim() ? `<li>${line.replace(/^•\s/, '').trim()}</li>` : ''; }).join(''); // If there is a list item, the package is wrapped in the <ul> label return `<ul>${listItems}</ul>`; }); } // Pre -predetermined formula rendering global indexes window.formula = {}; // Treatment to find a third -level and four -level title, sort out the P label that is not available in the text document.querySelectorAll('.article-item-text').forEach(element => { element.innerHTML = replaceConsecutiveBulletsWithList(element.innerHTML); // Forwards <em> 3.1. Serine Integrase-Mediated DNA Assembly Between Two Plasmids </em> element.innerHTML = element.innerHTML.replace(/(<h[1-6].+?>)/gi, '\r\n$1'); //TODO There is a change in the middle of the H tag to cause problems element.innerHTML = element.innerHTML.replace(/(<\/h[1-6]\s*>)/gi, '$1\r\n'); element.innerHTML = element.innerHTML.replace(/<(em|i)>(\d+\.\d+\..+?)<\/(em|i)>/gi, '\r\n<h4 class="value4">$2</h4>\r\n'); // Processing replacement of level 4 title element.innerHTML = element.innerHTML.replace(/>\s*(\d+\.\d+\.\d+\.\s*.*?)(?=\s*\n|$)/g, '>\r\n<h5 class="value5">$1</h5>\r\n'); element.innerHTML = element.innerHTML.replace(/^\s*(\d+\.\d+\.\d+\.\s*.*?)(?=\s*\n|$)/gm, '\r\n<h5 class="value5">$1</h5>\r\n'); // Processing replacement three -level title element.innerHTML = element.innerHTML.replace(/\*+(\d+\.\d+\..+?)\*+\s+/g, '\r\n<h4 class="value4">$1</h4>\r\n'); // Treatment P tag element.innerHTML = element.innerHTML.replace(/<p.+?>(.+?)<\/p>/gi, '\r\n$1\r\n'); let lastP = document.createElement('p'); Array.from(element.childNodes).forEach(node=> { if (node.childElementCount == 0 && node.textContent.trim().length == 0){ // Delete the empty node element.removeChild(node); } // Handle the title if (/H[1-6]/i.test(node.nodeName)){ if (lastP.childElementCount > 0 || lastP.textContent.trim().length > 0){ // Lastp is not an empty node. element.appendChild(lastP); lastP = document.createElement('p'); } element.appendChild(node); return; } // Check the HTML-Disp-Formula-Info node if (node.classList && node.classList.contains('html-disp-formula-info')){ if (lastP.childElementCount > 0 || lastP.textContent.trim().length > 0){ element.appendChild(lastP); lastP = document.createElement('p'); } element.appendChild(node); // Treatment of the text formula in the chapter renderMathInElement(node, { delimiters: [ {left: '```latex', right: '```', display: true}, ], throwOnError : false }); const label = node.querySelector('.formula > label'); if (label === null){ return; } var numMatch = label.textContent.match(/\d+/g) if (!numMatch){ return; } const html_pics = node.querySelector('.html_pics') if (html_pics){ formula["Equation"+numMatch[0]]=html_pics.innerHTML; } return; } // Treatment textbooks if (node.nodeType === 3) { var lines = node.nodeValue.split(/\r?\n/); if (lines.length == 1){ // No change, it may be the content of the previous P tag if (node.nodeValue.trim().length > 0){ lastP.appendChild(node); } return; } lines.forEach((line, index)=> { if (index >0){ // Other changes may be the new P tag, the old P label is moved in if (lastP.childElementCount > 0 || lastP.textContent.trim().length > 0){ element.appendChild(lastP); lastP = document.createElement('p'); } } if (line.trim().length > 0){ lastP.appendChild(document.createTextNode(line)); } }); element.removeChild(node); return; } if (node.classList.contains('html-fig-wrap')){ if (lastP.childElementCount > 0 || lastP.textContent.trim().length > 0){ element.appendChild(lastP); lastP = document.createElement('p'); } } //Other situations are the content of the previous P tag lastP.appendChild(node); }); if (lastP.childElementCount > 0 || lastP.textContent.trim().length > 0){ element.appendChild(lastP); } if (element.childElementCount == 0 && element.textContent.trim().length == 0){ // Delete the empty node element.parentNode.removeChild(element); } function capitalizeFirstLetter(str) { return str.charAt(0).toUpperCase() + str.slice(1); } // Find the picture form formula without setting the A tag, and give a tag element.innerHTML = element.innerHTML.replace(/(?<!<[A-Z]+.*?>\s*|[A-Z])(Figure|Table|Scheme|Equation)\s+(\(([A-Z]?\d+)\)|([A-Z]?\d+))(?<!\s*<\/a>)/gi, function(match, $2,$3) { match = capitalizeFirstLetter(match); return '<a href="#'+ capitalizeFirstLetter($2) + $3.replace(/\(|\)/g,'') +'">'+ match +'</a>'; }); // Remove Markdown element.innerHTML = markdownReplace(element.innerHTML); // Find a super -text link without setting A tags, give a tagnk without setting A tags, give a tagnk without setting A tags, give a tag element.innerHTML = element.innerHTML.replace(/(?<!<a.+?>\s*)https?:\/\/[^\s\/]+(\/[^\s<]*)*[^.\s](?<!\s*<\/a>)/gi, function(match) { return '<a href="'+ match.replace(/[.,,。;\s]+$/, '') +'" target="_blank">'+ match +'</a>'; } ); // Add a box to the formula quotation element.querySelectorAll('a[href^="#Equation"]').forEach(auchor=>{ const id= auchor.getAttribute('href').slice(1); if (formula[id]){ $(auchor).tooltip({ html: true , delay: { "show": 200, "hide": 200 },title:$('<div class="formulaTip">').html(formula[id])}); } }); // Handling in -line formula renderMathInElement(element, { delimiters: [ {left: '$$', right: '$$', display: false}, ], throwOnError : false }); }); document.querySelectorAll("div.articleneir.abstract").forEach(element => { renderMathInElement(element, { delimiters: [ {left: '$$', right: '$$', display: false}, ], throwOnError : false }); }); // Processing reference document.querySelectorAll(".html-bibr").forEach(link => { link.removeAttribute('title'); const target = document.querySelector(link.getAttribute('href')+'.references > .references_name'); if (target){ $(link).tooltip({ html: true , delay: { "show": 200, "hide": 200 },title:target.innerHTML}); } }); document.querySelectorAll(".references").forEach(ref => { if (ref.id){ const a = document.createElement("a"); a.name=ref.id; a.classList.add("anchor-abs-66"); ref.removeAttribute("id"); ref.insertBefore(a, ref.firstChild); } }); // Treat the display area of ​​the formula formula of the picture form, remove the A tag, set the anchor point document.querySelectorAll('.html-fig-wrap .html-fig_description,.html-fig-wrap .html-table_wrap_discription').forEach(element => { element.innerHTML = markdownReplace(element.innerHTML); const match = element.firstChild.textContent.match(/(Figure|Table|Scheme) [A-Z]?\d+/g); if (match){ element.firstChild.textContent = element.firstChild.textContent let id= match[0].replace(" ","") const target = document.createElement("a"); target.name=id; target.classList.add("anchor"); element.parentNode.insertBefore(target, element.parentNode.firstChild); document.querySelectorAll("a[href='#"+id+"']").forEach(auchor => { $(auchor).tooltip({ html: true , delay: { "show": 1000, "hide": 100 },title:$(element.parentNode).html()}); }); } }); // Processing keywords const keywordsContainer = document.querySelector('.keywords') if (keywordsContainer){ let title; while(child = keywordsContainer.firstChild){ // Take out the first non -empty element in Keywords if (child.textContent.trim().length>0){ title = child; title.appendChild(document.createTextNode(' ')); keywordsContainer.removeChild(child); break; } keywordsContainer.removeChild(child); } let listLinks = []; let link = document.createElement('a'); Array.from(keywordsContainer.childNodes).forEach(node=> { // Treatment text nodes if (node.nodeType === 3) { var ks = node.nodeValue.split(/(?<!&#(?:x[0-9a-fA-F]{1,5}|\d{1,6}))[;]/); if (ks.length == 1){ // There is no separatist, no new link is created if (link.lastChild && link.lastChild.nodeType === 3){ //Condented text nodes link.lastChild.nodeValue += ks[0]; }else{ link.appendChild(node); } return; }else{ ks.forEach((k, index)=> { if (index==0){ // In the first paragraph, do not create a new LINK, and the merger with the previous merger if (link.lastChild && link.lastChild.nodeType === 3){ //Condented text nodes link.lastChild.nodeValue += k; return; } }else{ // Means encounter; create a new link listLinks.push(link); link = document.createElement('a'); } link.appendChild(document.createTextNode(k.trim())); }); return; } }else{ link.appendChild(node); } }); if (link.innerText.trim().length>0){ listLinks.push(link); } keywordsContainer.innerHTML = ""; keywordsContainer.appendChild(title); listLinks.forEach((link, index, array)=> { link.href = "/index/search/index.html?search="+link.innerHTML.trim().replace(/ /g, '+');// TODO :Angle/lowering/small capitalization keywordsContainer.appendChild(link); if (index !== array.length - 1) { keywordsContainer.appendChild(document.createTextNode('; ')); } }); } // Treatment reference copy document.querySelectorAll('.cite-modal h6 ').forEach(h6 => { let a = document.createElement('a'); let h6Text = h6.textContent.trim(); h6.appendChild(a); a.href = "#"; a.textContent = "Copy"; a.onclick = function(e) { if (h6.nextElementSibling) { navigator.clipboard.writeText(h6.nextElementSibling.textContent.replace(/\r\n|\n|\r/g, '')).then(function() { $('#citeModal').modal('hide'); // showToast(h6Text + ' copied to clipboard!'); }, function() { showToast('Failed to copy '+h6Text+' to clipboard.'); }); } e.preventDefault(); }; }); //Picture amplification var $imgModal = $('#imgModal'), $imgModalBody = $imgModal.find('.modal-body'); $(".html-figpopup-link").each(function(){ var dataSrc = $(this).children('img').attr('data-large'); $(this).attr({ 'data-toggle': 'modal', 'data-target': '#imgModal' }) $(this).on('click', function () { $imgModalBody.append(`<img src="`+dataSrc+`" class="amplification-img">`); }) }); $imgModal.on('hidden.bs.modal', function (event) { $imgModalBody.children('img').remove(); }) //The picture is enlarged again $imgModal.on('shown.bs.modal', function (event) { $imgModalBody.children('img').on('click', function () { $(this).parent().parent().toggleClass('toggle-img'); }) }) // Process doi // Doi reference the magazine $.ajax({ type: 'GET', url: '/api/article/doi/id/54', dataType:"json", success: function(data){ var doiEL =""; $.each(data.doi_list, function(k, v) { doiEL += "<p>" + v.title + "." + " <em>" + v.source + "</em>" + " " + "<b>" + v.year + "</b>. " + "[" + "<a target='_blank' href='http://dx.doi.org/" + v.doi + "'>CrossRef</a>" + "]" +"</p>"; }) if (data.doi_count > 0) { $("[data-bind='popover1'] > b").text(data.doi_count); $("[data-bind='popover1']").addClass('d-flex'); $("[data-bind='popover1']").popover({ trigger: 'focus', html: true, delay: { "show": 100, "hide": 500 }, content: function(){ return doiEL; }, }); } }, timeout: 5000, error: function(jqXHR,textStatus){ } }) }) function showToast(message) { var toast = document.createElement('div'); toast.classList.add('toast', 'centered-div', 'show'); toast.setAttribute('role', 'alert'); toast.setAttribute('aria-live', 'assertive'); toast.setAttribute('aria-atomic', 'true'); var toastBody = document.createElement('div'); toastBody.classList.add('toast-body'); toastBody.textContent = message; toast.appendChild(toastBody); document.body.appendChild(toast); setTimeout(function () { toast.classList.remove('show'); toast.classList.add('hide'); setTimeout(function () { document.body.removeChild(toast); }, 500); }, 3000); } </script> <!-- Footer --> <footer class="mt-1"> <div class="my-body-container pt-4 pb-4"> <div class="fotter-top"> <div> <div class="item-text"> <h3>About</h3> <ul> <li> <a href="/About_SCIEPublish" title="About SClEPublish">About SClEPublish</a> </li> <li> <a href="/Management_Team" title="Management Team">Management Team</a> </li> <li> <a href="/Careers" title="Careers">Careers</a> </li> <li> <a href="/Contact" title="Contact">Contact</a> </li> </ul> </div> <div class="item-text"> <h3>Policies</h3> <ul> <li> <a href="/Peer_Review_Policy" title="Peer Review Policy">Peer Review Policy</a> </li> <li> <a href="/Open_Access_Policy" title="Open Access Policy">Open Access Policy</a> </li> <li> <a href="/Licensing_and_Copyright" title="Licensing and Copyright">Licensing and Copyright</a> </li> <li> <a href="/Editorial_Policy" title="Editorial Policy">Editorial Policy</a> </li> <li> <a href="/Advertising_Policy" title="Advertising Policy">Advertising Policy</a> </li> </ul> </div> <div class="item-text"> <h3>Information</h3> <ul> <li> <a href="/For_Authors" title="For Authors">For Authors</a> </li> <li> <a href="/For_Reviewers" title="For Reviewers">For Reviewers</a> </li> <li> <a href="/For_Editors" title="For Editors">For Editors</a> </li> </ul> </div> <div class="item-text item-text-membership"> <h3>A Member of</h3> <ul> <li class="membership-img1"> <a href="https://stm-assoc.org/" target="_blank" rel="nofollow"> <img src="/style/image/stm2024-logo.png"> </a> </li> <li class="membership-img2"> <a href="https://www.alpsp.org/" target="_blank" rel="nofollow" title=""> <img src="/style/image/alpsp-logo.png" alt=""> </a> </li> <!-- <li class="membership-img3"> <a href="https://publicationethics.org/publisher-membership-application-form-1" target="_blank" rel="nofollow" title=""> <img src="/style/image/cope-logo.png" alt=""> </a> </li> --> </ul> </div> </div> <div class="item-text item-text-right"> <h3> <svg xmlns="http://www.w3.org/2000/svg" class="navbar-logo" xml:space="preserve" version="1.0" viewBox="0 0 5.08 1.933"> <path d="M1.021 1.245a.29.29 0 0 1-.211-.054l-.027-.023-.003-.003.056-.066.003.004a.3.3 0 0 0 .043.033.2.2 0 0 0 .128.027l.024-.007.019-.01a.07.07 0 0 0 .022-.032.1.1 0 0 0 0-.036l-.004-.014a.1.1 0 0 0-.016-.02.1.1 0 0 0-.027-.017L.994 1.01.919.98a.3.3 0 0 1-.076-.05.14.14 0 0 1-.034-.067.2.2 0 0 1 0-.06.13.13 0 0 1 .027-.056.2.2 0 0 1 .049-.041A.2.2 0 0 1 .95.683a.3.3 0 0 1 .07-.001.2.2 0 0 1 .06.017.3.3 0 0 1 .075.05l.003.003-.05.061L1.103.81a.2.2 0 0 0-.053-.034.2.2 0 0 0-.063-.013.1.1 0 0 0-.046.008L.925.78a.06.06 0 0 0-.023.047l.001.015.006.012a.1.1 0 0 0 .018.02.1.1 0 0 0 .027.017L.97.899l.016.006.074.032a.3.3 0 0 1 .058.033.14.14 0 0 1 .051.08.2.2 0 0 1 0 .07.15.15 0 0 1-.048.081.2.2 0 0 1-.062.035zm.527-.002a.24.24 0 0 1-.1 0 .23.23 0 0 1-.125-.069.2.2 0 0 1-.051-.089.3.3 0 0 1-.019-.119.4.4 0 0 1 .02-.12.3.3 0 0 1 .052-.09.23.23 0 0 1 .176-.076.3.3 0 0 1 .064.01.3.3 0 0 1 .053.025.2.2 0 0 1 .04.034l.002.003-.052.061L1.605.81A.2.2 0 0 0 1.56.776a.2.2 0 0 0-.037-.012.15.15 0 0 0-.082.013.13.13 0 0 0-.049.039l-.018.029a.2.2 0 0 0-.022.073.4.4 0 0 0 .002.104.2.2 0 0 0 .014.05.2.2 0 0 0 .023.04.14.14 0 0 0 .066.047.15.15 0 0 0 .107-.009l.028-.017.025-.023.003-.004.051.06-.002.003a.3.3 0 0 1-.076.059.2.2 0 0 1-.045.015m.314-.004h-.09V.69h.095v.549zm.485 0h-.331V.69h.328v.08H2.11v.141h.198v.082H2.11v.165h.242v.08zm.215 0h-.09V.69h.169a.4.4 0 0 1 .083.008L2.76.71l.031.016a.13.13 0 0 1 .044.053q.009.015.012.036a.22.22 0 0 1-.012.121l-.018.03a.176.176 0 0 1-.09.057.3.3 0 0 1-.084.011h-.076v.205zm.005-.472v.19h.068a.2.2 0 0 0 .056-.006.1.1 0 0 0 .038-.018.1.1 0 0 0 .022-.031.1.1 0 0 0 .007-.045l-.003-.03a.07.07 0 0 0-.028-.04L2.703.776 2.671.769 2.633.767zm.539.48a.2.2 0 0 1-.067-.003.1.1 0 0 1-.075-.07.3.3 0 0 1-.013-.09V.827h.093v.248a.3.3 0 0 0 .007.055l.008.017.012.012.016.007.02.002a.1.1 0 0 0 .033-.006.1.1 0 0 0 .03-.019.2.2 0 0 0 .03-.032V.826h.093v.413h-.078l-.006-.057a.2.2 0 0 1-.078.057zm.548-.002-.034.003-.03-.003-.029-.01A.2.2 0 0 1 3.51 1.2l-.007.039h-.075V.645h.093q0 .11-.002.219l.01-.008A.2.2 0 0 1 3.59.823a.2.2 0 0 1 .043-.007.2.2 0 0 1 .07.015.15.15 0 0 1 .07.074.2.2 0 0 1 .022.076.4.4 0 0 1 0 .095.3.3 0 0 1-.029.082.2.2 0 0 1-.079.075zm-.07-.077a.1.1 0 0 0 .046-.002.1.1 0 0 0 .043-.032l.015-.028a.2.2 0 0 0 .01-.036.3.3 0 0 0-.006-.114A.1.1 0 0 0 3.68.93.07.07 0 0 0 3.64.9.1.1 0 0 0 3.59.899l-.023.008-.023.015-.023.02v.193a.2.2 0 0 0 .043.027zm.424.08h-.015a.1.1 0 0 1-.051-.013l-.017-.016-.011-.022-.007-.026-.002-.031V.645h.093v.5L4 1.16l.003.004.003.003.008.002h.008l.005-.001h.004l.013.071-.004.002-.009.002zm.22-.01H4.14V.827h.093v.413zm-.026-.48L4.187.76q-.009 0-.016-.002L4.157.753a.05.05 0 0 1-.02-.02.1.1 0 0 1-.008-.027L4.13.69a.05.05 0 0 1 .027-.032L4.17.653a.07.07 0 0 1 .045.005.05.05 0 0 1 .03.048.1.1 0 0 1-.009.028.1.1 0 0 1-.02.019zm.315.488a.25.25 0 0 1-.19-.054l-.004-.003.045-.062.004.003a.3.3 0 0 0 .053.034.13.13 0 0 0 .058.012l.022-.002.016-.005.013-.008.009-.01a.05.05 0 0 0 .007-.025q0-.006-.002-.012l-.005-.01-.008-.009-.011-.008-.028-.014-.016-.006-.017-.007a.4.4 0 0 1-.079-.041.1.1 0 0 1-.028-.034L4.348.964 4.345.939a.12.12 0 0 1 .023-.07.1.1 0 0 1 .038-.033A.2.2 0 0 1 4.46.82a.2.2 0 0 1 .13.022l.037.024.003.003-.045.059-.003-.003A.2.2 0 0 0 4.54.9a.1.1 0 0 0-.065-.008.1.1 0 0 0-.027.012l-.007.01a.04.04 0 0 0-.007.022q0 .006.002.01l.005.01a.1.1 0 0 0 .017.015l.027.013.016.006.016.006.063.028.019.013a.1.1 0 0 1 .029.035l.008.023a.13.13 0 0 1-.008.077.1.1 0 0 1-.03.04.14.14 0 0 1-.05.027zm.307-.007h-.088V.645h.092q0 .115-.002.229a.3.3 0 0 1 .05-.038.2.2 0 0 1 .048-.017.2.2 0 0 1 .068.002.1.1 0 0 1 .057.038q.01.014.018.033A.314.314 0 0 1 5.08.98v.258h-.093V.99L4.985.96 4.98.936 4.97.92 4.96.907 4.943.9a.1.1 0 0 0-.037 0 .1.1 0 0 0-.03.011l-.016.01-.032.03v.288z" /> <path d="M1.844 1.377a.97.97 0 0 1-.878.563A.963.963 0 0 1 0 .974.964.964 0 0 1 .966.007a.96.96 0 0 1 .865.536l-.048.024A.92.92 0 0 0 .966.062a.91.91 0 0 0-.912.912.91.91 0 0 0 .912.912.91.91 0 0 0 .83-.532z" class="logo-circle" /> </svg> </h3> <div class="text-share"> <a href="https://x.com/SCIEPublish" class="share-btn twitter-btn" title="Share on Twitter" target="_blank"> <svg t="1713929395475" class="icon" width="32" height="32" viewBox="0 0 1399 1024" fill="#000000" version="1.1" xmlns="http://www.w3.org/2000/svg" p-id="8742"> <path d="M282.021569 119.281213l323.998199 433.216256-326.044203 352.222995h73.379441l285.451142-308.376452 230.636674 308.376452h249.713149l-342.227762-457.583832 303.479459-327.855419h-73.379441l-262.886398 284.008876-212.407111-284.008876h-249.713149z m107.909957 54.051408h114.71879l506.578928 677.328049h-114.718791l-506.578927-677.328049z" p-id="8743"></path> </svg> </a> <a href="" class="share-btn LinkedIn-btn" id="email-LinkedIn-btn" title="Share on LinkedIn" target="_blank"> <svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" fill="#000000" class="bi bi-linkedin" viewBox="0 0 16 16"> <path d="M0 1.146C0 .513.526 0 1.175 0h13.65C15.474 0 16 .513 16 1.146v13.708c0 .633-.526 1.146-1.175 1.146H1.175C.526 16 0 15.487 0 14.854V1.146zm4.943 12.248V6.169H2.542v7.225h2.401zm-1.2-8.212c.837 0 1.358-.554 1.358-1.248-.015-.709-.52-1.248-1.342-1.248-.822 0-1.359.54-1.359 1.248 0 .694.521 1.248 1.327 1.248h.016zm4.908 8.212V9.359c0-.216.016-.432.08-.586.173-.431.568-.878 1.232-.878.869 0 1.216.662 1.216 1.634v3.865h2.401V9.25c0-2.22-1.184-3.252-2.764-3.252-1.274 0-1.845.7-2.165 1.193v.025h-.016a5.54 5.54 0 0 1 .016-.025V6.169h-2.4c.03.678 0 7.225 0 7.225h2.4z"/> </svg> </a> <a href="javaScript:void(0)" class="share-btn wechat-btn" id="wechat-share-btn"> <svg xmlns="http://www.w3.org/2000/svg" width="26" height="26" fill="#000000" class="bi bi-wechat" viewBox="0 0 16 16"> <path d="M11.176 14.429c-2.665 0-4.826-1.8-4.826-4.018 0-2.22 2.159-4.02 4.824-4.02S16 8.191 16 10.411c0 1.21-.65 2.301-1.666 3.036a.324.324 0 0 0-.12.366l.218.81a.616.616 0 0 1 .029.117.166.166 0 0 1-.162.162.177.177 0 0 1-.092-.03l-1.057-.61a.519.519 0 0 0-.256-.074.509.509 0 0 0-.142.021 5.668 5.668 0 0 1-1.576.22ZM9.064 9.542a.647.647 0 1 0 .557-1 .645.645 0 0 0-.646.647.615.615 0 0 0 .09.353Zm3.232.001a.646.646 0 1 0 .546-1 .645.645 0 0 0-.644.644.627.627 0 0 0 .098.356Z"/> <path d="M0 6.826c0 1.455.781 2.765 2.001 3.656a.385.385 0 0 1 .143.439l-.161.6-.1.373a.499.499 0 0 0-.032.14.192.192 0 0 0 .193.193c.039 0 .077-.01.111-.029l1.268-.733a.622.622 0 0 1 .308-.088c.058 0 .116.009.171.025a6.83 6.83 0 0 0 1.625.26 4.45 4.45 0 0 1-.177-1.251c0-2.936 2.785-5.02 5.824-5.02.05 0 .1 0 .15.002C10.587 3.429 8.392 2 5.796 2 2.596 2 0 4.16 0 6.826Zm4.632-1.555a.77.77 0 1 1-1.54 0 .77.77 0 0 1 1.54 0Zm3.875 0a.77.77 0 1 1-1.54 0 .77.77 0 0 1 1.54 0Z"/> </svg> <div class="cord"> <div class="img"> <img src="/style/image/wechat.jpg" alt="SCIEPublish wechat" /> </div> </div> </a> <a href="mailto:office@sciepublish.org" class="share-btn email-btn" id="email-share-btn" title="Share on Email" target="_blank"> <svg xmlns="http://www.w3.org/2000/svg" width="26" height="26" fill="#000000" class="bi bi-envelope-fill" viewBox="0 0 16 16"> <path d="M.05 3.555A2 2 0 0 1 2 2h12a2 2 0 0 1 1.95 1.555L8 8.414.05 3.555ZM0 4.697v7.104l5.803-3.558L0 4.697ZM6.761 8.83l-6.57 4.027A2 2 0 0 0 2 14h12a2 2 0 0 0 1.808-1.144l-6.57-4.027L8 9.586l-1.239-.757Zm3.436-.586L16 11.801V4.697l-5.803 3.546Z"/> </svg> </a> </div> </div> </div> <div class="copyright-box mt-4 mb-0 pt-3 pb-0"> <p class="text-left">Copyright © 2021-2025 SCIE Publishing Ltd. unless otherwise stated.</p> <p class="text-right"> <a href="/Privacy" title="Privacy">Privacy</a> <!-- <a href="" title="Cookies">Cookies</a> --> <a href="/Terms_of_Use" title="Terms of Use">Terms of Use</a> </p> </div> </div> </footer> <!-- Back-top --> <div class="back-top"> <div class="d-flex justify-content-center align-items-center flex-wrap"> <svg xmlns="http://www.w3.org/2000/svg" width="20" height="20" fill="currentColor" class="bi bi-chevron-up" viewBox="0 0 16 16"> <path fill-rule="evenodd" d="M7.646 4.646a.5.5 0 0 1 .708 0l6 6a.5.5 0 0 1-.708.708L8 5.707l-5.646 5.647a.5.5 0 0 1-.708-.708l6-6z"/> </svg> <span>TOP</span> </div> </div> <!-- Toast --> <div class="toast-container"> <div class="toast" id="liveToast" role="alert" data-delay="3000" aria-live="assertive" aria-atomic="true"> <div class="toast-header"> <strong class="mr-auto">Message</strong> <button type="button" class="ml-2 mb-1 close" data-dismiss="toast" aria-label="Close"> <span aria-hidden="true">&times;</span> </button> </div> <div class="toast-body"> </div> </div> </div> <script> $(function () { $('.js-navbar-toggle').on('click', function () { $('header nav').toggleClass('nav-search-active'); }); var windowHeight = $(window).height(), header = $('header'), backTop = $('.back-top'); $(window).scroll(function(){ var scrollTop = $(this).scrollTop(); scrollTop > 0 ? header.addClass('fixed') : header.removeClass('fixed'); scrollTop > windowHeight ? backTop.addClass('fixed') : backTop.removeClass('fixed'); }) backTop.click(function(){ $("body,html").animate({scrollTop:0},300); }) $(".article-abseract.clamp").each(function () { $(this).click(function () { $(this).toggleClass("clamp-open"); }); }); //初始化select $('select.select-mania').selectMania(); }) $('.logout').click(function () { $.get('/index/user/login_out', function (res) { if (res.err == 0) { window.location.href = res.data layer.msg('exit successfully!') } else { layer.msg('Exit failed!') } }) }) </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10