CINXE.COM

Betti number - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Betti number - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"887b007d-7336-40e6-bb13-660229849418","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Betti_number","wgTitle":"Betti number","wgCurRevisionId":1254202492,"wgRevisionId":1254202492,"wgArticleId":346262,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description is different from Wikidata","Algebraic topology","Graph invariants","Topological graph theory","Generating functions"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Betti_number","wgRelevantArticleId":346262,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia", "wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":20000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q429593","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false, "wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups", "ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Betti number - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Betti_number"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Betti_number&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Betti_number"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Betti_number rootpage-Betti_number skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Betti+number" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Betti+number" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Betti+number" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Betti+number" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Geometric_interpretation" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Geometric_interpretation"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Geometric interpretation</span> </div> </a> <ul id="toc-Geometric_interpretation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Formal_definition" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Formal_definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Formal definition</span> </div> </a> <ul id="toc-Formal_definition-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Poincaré_polynomial" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Poincaré_polynomial"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Poincaré polynomial</span> </div> </a> <ul id="toc-Poincaré_polynomial-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Examples" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Examples"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Examples</span> </div> </a> <button aria-controls="toc-Examples-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Examples subsection</span> </button> <ul id="toc-Examples-sublist" class="vector-toc-list"> <li id="toc-Betti_numbers_of_a_graph" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Betti_numbers_of_a_graph"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Betti numbers of a graph</span> </div> </a> <ul id="toc-Betti_numbers_of_a_graph-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Betti_numbers_of_a_simplicial_complex" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Betti_numbers_of_a_simplicial_complex"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Betti numbers of a simplicial complex</span> </div> </a> <ul id="toc-Betti_numbers_of_a_simplicial_complex-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Betti_numbers_of_the_projective_plane" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Betti_numbers_of_the_projective_plane"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Betti numbers of the projective plane</span> </div> </a> <ul id="toc-Betti_numbers_of_the_projective_plane-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Properties" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Properties</span> </div> </a> <button aria-controls="toc-Properties-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Properties subsection</span> </button> <ul id="toc-Properties-sublist" class="vector-toc-list"> <li id="toc-Euler_characteristic" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Euler_characteristic"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Euler characteristic</span> </div> </a> <ul id="toc-Euler_characteristic-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Cartesian_product" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Cartesian_product"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Cartesian product</span> </div> </a> <ul id="toc-Cartesian_product-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Symmetry" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Symmetry"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>Symmetry</span> </div> </a> <ul id="toc-Symmetry-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Different_coefficients" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Different_coefficients"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.4</span> <span>Different coefficients</span> </div> </a> <ul id="toc-Different_coefficients-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-More_examples" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#More_examples"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>More examples</span> </div> </a> <ul id="toc-More_examples-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Relationship_with_dimensions_of_spaces_of_differential_forms" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Relationship_with_dimensions_of_spaces_of_differential_forms"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Relationship with dimensions of spaces of differential forms</span> </div> </a> <ul id="toc-Relationship_with_dimensions_of_spaces_of_differential_forms-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Betti number</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 12 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-12" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">12 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Nombre_de_Betti" title="Nombre de Betti – Catalan" lang="ca" hreflang="ca" data-title="Nombre de Betti" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Betti-Zahl" title="Betti-Zahl – German" lang="de" hreflang="de" data-title="Betti-Zahl" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/N%C3%BAmero_de_Betti" title="Número de Betti – Spanish" lang="es" hreflang="es" data-title="Número de Betti" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%B9%D8%AF%D8%AF_%D8%A8%D8%AA%DB%8C" title="عدد بتی – Persian" lang="fa" hreflang="fa" data-title="عدد بتی" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Nombre_de_Betti" title="Nombre de Betti – French" lang="fr" hreflang="fr" data-title="Nombre de Betti" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%B2%A0%ED%8B%B0_%EC%88%98" title="베티 수 – Korean" lang="ko" hreflang="ko" data-title="베티 수" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Numero_di_Betti" title="Numero di Betti – Italian" lang="it" hreflang="it" data-title="Numero di Betti" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Betti-getal" title="Betti-getal – Dutch" lang="nl" hreflang="nl" data-title="Betti-getal" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%83%99%E3%83%83%E3%83%81%E6%95%B0" title="ベッチ数 – Japanese" lang="ja" hreflang="ja" data-title="ベッチ数" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A7%D0%B8%D1%81%D0%BB%D0%BE_%D0%91%D0%B5%D1%82%D1%82%D0%B8" title="Число Бетти – Russian" lang="ru" hreflang="ru" data-title="Число Бетти" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A7%D0%B8%D1%81%D0%BB%D0%B0_%D0%91%D0%B5%D1%82%D1%82%D1%96" title="Числа Бетті – Ukrainian" lang="uk" hreflang="uk" data-title="Числа Бетті" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E8%B2%9D%E8%92%82%E6%95%B8" title="貝蒂數 – Chinese" lang="zh" hreflang="zh" data-title="貝蒂數" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q429593#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Betti_number" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Betti_number" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Betti_number"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Betti_number&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Betti_number&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Betti_number"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Betti_number&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Betti_number&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Betti_number" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Betti_number" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Betti_number&amp;oldid=1254202492" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Betti_number&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Betti_number&amp;id=1254202492&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FBetti_number"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FBetti_number"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Betti_number&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Betti_number&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q429593" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Roughly, the number of k-dimensional holes on a topological surface</div> <p>In <a href="/wiki/Algebraic_topology" title="Algebraic topology">algebraic topology</a>, the <b>Betti numbers</b> are used to distinguish <a href="/wiki/Topological_space" title="Topological space">topological spaces</a> based on the connectivity of <i>n</i>-dimensional <a href="/wiki/Simplicial_complex" title="Simplicial complex">simplicial complexes</a>. For the most reasonable finite-dimensional <a href="/wiki/Topological_space" title="Topological space">spaces</a> (such as <a href="/wiki/Compact_manifold" class="mw-redirect" title="Compact manifold">compact manifolds</a>, finite <a href="/wiki/Simplicial_complexes" class="mw-redirect" title="Simplicial complexes">simplicial complexes</a> or <a href="/wiki/CW_complexes" class="mw-redirect" title="CW complexes">CW complexes</a>), the sequence of Betti numbers is 0 from some point onward (Betti numbers vanish above the dimension of a space), and they are all finite. </p><p>The <i>n</i><sup>th</sup> Betti number represents the <a href="/wiki/Rank_of_a_group" title="Rank of a group">rank</a> of the <i>n</i><sup>th</sup> <a href="/wiki/Homology_group" class="mw-redirect" title="Homology group">homology group</a>, denoted <i>H</i><sub><i>n</i></sub>, which tells us the maximum number of cuts that can be made before separating a surface into two pieces or 0-cycles, 1-cycles, etc.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> For example, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H_{n}(X)\cong 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>&#x2245;<!-- ≅ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H_{n}(X)\cong 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/859e8f13866d3a53fa6c81a7f7484d2fd44e99c6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.2ex; height:2.843ex;" alt="{\displaystyle H_{n}(X)\cong 0}"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b_{n}(X)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b_{n}(X)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a6cddca019b14fe932b060127d2cbfeffd3718c0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.266ex; height:2.843ex;" alt="{\displaystyle b_{n}(X)=0}"></span>, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H_{n}(X)\cong \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>&#x2245;<!-- ≅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H_{n}(X)\cong \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b8ef9768281c98a79a828e3d10770d08368011b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.588ex; height:2.843ex;" alt="{\displaystyle H_{n}(X)\cong \mathbb {Z} }"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b_{n}(X)=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b_{n}(X)=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db1481910b8fab4d43c4e06535aa81930683e36f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.266ex; height:2.843ex;" alt="{\displaystyle b_{n}(X)=1}"></span>, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H_{n}(X)\cong \mathbb {Z} \oplus \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>&#x2245;<!-- ≅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo>&#x2295;<!-- ⊕ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H_{n}(X)\cong \mathbb {Z} \oplus \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/63563c3749aa3993e5dc518186a4ef60dd391528" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.979ex; height:2.843ex;" alt="{\displaystyle H_{n}(X)\cong \mathbb {Z} \oplus \mathbb {Z} }"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b_{n}(X)=2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b_{n}(X)=2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/533ddc802776a1225c3cf3112e7d803b04272841" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.266ex; height:2.843ex;" alt="{\displaystyle b_{n}(X)=2}"></span>, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H_{n}(X)\cong \mathbb {Z} \oplus \mathbb {Z} \oplus \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>&#x2245;<!-- ≅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo>&#x2295;<!-- ⊕ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo>&#x2295;<!-- ⊕ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H_{n}(X)\cong \mathbb {Z} \oplus \mathbb {Z} \oplus \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aa31803495188b625e5c5f30cd8bff8d5a5f5e63" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.369ex; height:2.843ex;" alt="{\displaystyle H_{n}(X)\cong \mathbb {Z} \oplus \mathbb {Z} \oplus \mathbb {Z} }"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b_{n}(X)=3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b_{n}(X)=3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1634f39cd6d76bf3ad3844ac69fe6dc2c87dc9d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.266ex; height:2.843ex;" alt="{\displaystyle b_{n}(X)=3}"></span>, etc. Note that only the ranks of infinite groups are considered, so for example if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H_{n}(X)\cong \mathbb {Z} ^{k}\oplus \mathbb {Z} /(2)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>&#x2245;<!-- ≅ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo>&#x2295;<!-- ⊕ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H_{n}(X)\cong \mathbb {Z} ^{k}\oplus \mathbb {Z} /(2)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1fbfcc36a9031383420745166af9888f7b2bc14a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.201ex; height:3.176ex;" alt="{\displaystyle H_{n}(X)\cong \mathbb {Z} ^{k}\oplus \mathbb {Z} /(2)}"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} /(2)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} /(2)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3bb59df265fa1a42d2f5c60d0f4706bc8619791b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.685ex; height:2.843ex;" alt="{\displaystyle \mathbb {Z} /(2)}"></span> is the <a href="/wiki/Finite_cyclic_group" class="mw-redirect" title="Finite cyclic group">finite cyclic group</a> of order 2, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b_{n}(X)=k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b_{n}(X)=k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/21175cdb9ce342a083595b04bf545376d76b9563" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.315ex; height:2.843ex;" alt="{\displaystyle b_{n}(X)=k}"></span>. These finite components of the homology groups are their <a href="/wiki/Torsion_subgroup" title="Torsion subgroup">torsion subgroups</a>, and they are denoted by <b>torsion coefficients</b>. </p><p>The term "Betti number" was coined by <a href="/wiki/Henri_Poincar%C3%A9" title="Henri Poincaré">Henri Poincaré</a> after <a href="/wiki/Enrico_Betti" title="Enrico Betti">Enrico Betti</a>. The modern formulation is due to <a href="/wiki/Emmy_Noether#Second_epoch_(1920–1926):_Contributions_to_topology" title="Emmy Noether">Emmy Noether</a>. Betti numbers are used today in fields such as <a href="/wiki/Simplicial_homology" title="Simplicial homology">simplicial homology</a>, <a href="/wiki/Computer_science" title="Computer science">computer science</a> and <a href="/wiki/Digital_images" class="mw-redirect" title="Digital images">digital images</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Geometric_interpretation">Geometric interpretation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Betti_number&amp;action=edit&amp;section=1" title="Edit section: Geometric interpretation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Torus_cycles.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/54/Torus_cycles.png/220px-Torus_cycles.png" decoding="async" width="220" height="299" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/5/54/Torus_cycles.png 1.5x" data-file-width="229" data-file-height="311" /></a><figcaption>For a torus, the first Betti number is <i>b</i><sub>1</sub> = 2 , which can be intuitively thought of as the number of circular "holes"</figcaption></figure> <p>Informally, the <i>k</i>th Betti number refers to the number of <i>k</i>-dimensional <i>holes</i> on a topological surface. A "<i>k</i>-dimensional <i>hole</i>" is a <i>k</i>-dimensional cycle that is not a boundary of a (<i>k</i>+1)-dimensional object. </p><p>The first few Betti numbers have the following definitions for 0-dimensional, 1-dimensional, and 2-dimensional <a href="/wiki/Simplicial_complex" title="Simplicial complex">simplicial complexes</a>: </p> <ul><li><i>b</i><sub>0</sub> is the number of connected components;</li> <li><i>b</i><sub>1</sub> is the number of one-dimensional or "circular" holes;</li> <li><i>b</i><sub>2</sub> is the number of two-dimensional "voids" or "cavities".</li></ul> <p>Thus, for example, a torus has one connected surface component so <i>b</i><sub>0</sub> = 1, two "circular" holes (one equatorial and one <a href="/wiki/Zonal_and_meridional" class="mw-redirect" title="Zonal and meridional">meridional</a>) so <i>b</i><sub>1</sub> = 2, and a single cavity enclosed within the surface so <i>b</i><sub>2</sub> = 1. </p><p>Another interpretation of <i>b</i><sub>k</sub> is the maximum number of <i>k</i>-dimensional curves that can be removed while the object remains connected. For example, the torus remains connected after removing two 1-dimensional curves (equatorial and meridional) so <i>b</i><sub>1</sub> = 2.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p><p>The two-dimensional Betti numbers are easier to understand because we can see the world in 0, 1, 2, and 3-dimensions. </p> <div class="mw-heading mw-heading2"><h2 id="Formal_definition">Formal definition</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Betti_number&amp;action=edit&amp;section=2" title="Edit section: Formal definition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For a non-negative <a href="/wiki/Integer" title="Integer">integer</a>&#160;<i>k</i>, the <i>k</i>th Betti number <i>b</i><sub><i>k</i></sub>(<i>X</i>) of the space <i>X</i> is defined as the <a href="/wiki/Rank_of_an_abelian_group" title="Rank of an abelian group">rank</a> (number of linearly independent generators) of the <a href="/wiki/Abelian_group" title="Abelian group">abelian group</a> <i>H</i><sub><i>k</i></sub>(<i>X</i>), the <i>k</i>th <a href="/wiki/Homology_group" class="mw-redirect" title="Homology group">homology group</a> of&#160;<i>X</i>. The <i>k</i>th homology group is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H_{k}=\ker \delta _{k}/\operatorname {Im} \delta _{k+1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mi>ker</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>Im</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H_{k}=\ker \delta _{k}/\operatorname {Im} \delta _{k+1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6820f0a88e5f80f34a8f895c4da6c85ca5aa4aaf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.732ex; height:2.843ex;" alt="{\displaystyle H_{k}=\ker \delta _{k}/\operatorname {Im} \delta _{k+1}}"></span>, the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta _{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta _{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74fee48740841008fe3a4585440d650dbea735ac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.121ex; height:2.676ex;" alt="{\displaystyle \delta _{k}}"></span>s are the boundary maps of the <a href="/wiki/Simplicial_complex" title="Simplicial complex">simplicial complex</a> and the rank of H<sub>k</sub> is the <i>k</i>th Betti number. Equivalently, one can define it as the <a href="/wiki/Vector_space_dimension" class="mw-redirect" title="Vector space dimension">vector space dimension</a> of <i>H</i><sub><i>k</i></sub>(<i>X</i>;&#160;<b>Q</b>) since the homology group in this case is a vector space over&#160;<b>Q</b>. The <a href="/wiki/Universal_coefficient_theorem" title="Universal coefficient theorem">universal coefficient theorem</a>, in a very simple torsion-free case, shows that these definitions are the same. </p><p>More generally, given a <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">field</a> <i>F</i> one can define <i>b</i><sub><i>k</i></sub>(<i>X</i>,&#160;<i>F</i>), the <i>k</i>th Betti number with coefficients in <i>F</i>, as the vector space dimension of <i>H</i><sub><i>k</i></sub>(<i>X</i>,&#160;<i>F</i>). </p> <div class="mw-heading mw-heading2"><h2 id="Poincaré_polynomial"><span id="Poincar.C3.A9_polynomial"></span>Poincaré polynomial</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Betti_number&amp;action=edit&amp;section=3" title="Edit section: Poincaré polynomial"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <b>Poincaré polynomial</b> of a surface is defined to be the <a href="/wiki/Generating_function" title="Generating function">generating function</a> of its Betti numbers. For example, the Betti numbers of the torus are 1, 2, and 1; thus its Poincaré polynomial is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1+2x+x^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>+</mo> <mn>2</mn> <mi>x</mi> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1+2x+x^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f6e17ac0c9d473449e475ddac2f6ad61cb8db39a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:11.719ex; height:2.843ex;" alt="{\displaystyle 1+2x+x^{2}}"></span>. The same definition applies to any topological space which has a finitely generated homology. </p><p>Given a topological space which has a finitely generated homology, the Poincaré polynomial is defined as the generating function of its Betti numbers, via the polynomial where the coefficient of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/150d38e238991bc4d0689ffc9d2a852547d2658d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.548ex; height:2.343ex;" alt="{\displaystyle x^{n}}"></span> is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/28e2d72f6dd9375c8f1f59f1effd9b4e5492ac97" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.216ex; height:2.509ex;" alt="{\displaystyle b_{n}}"></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Examples">Examples</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Betti_number&amp;action=edit&amp;section=4" title="Edit section: Examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Betti_numbers_of_a_graph">Betti numbers of a graph</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Betti_number&amp;action=edit&amp;section=5" title="Edit section: Betti numbers of a graph"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Consider a <a href="/wiki/Topological_graph_theory" title="Topological graph theory">topological graph</a> <i>G</i> in which the set of vertices is <i>V</i>, the set of edges is <i>E</i>, and the set of connected components is <i>C</i>. As explained in the page on <a href="/wiki/Graph_homology" title="Graph homology">graph homology</a>, its homology groups are given by: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H_{k}(G)={\begin{cases}\mathbb {Z} ^{|C|}&amp;k=0\\\mathbb {Z} ^{|E|+|C|-|V|}&amp;k=1\\\{0\}&amp;{\text{otherwise}}\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>G</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </msup> </mtd> <mtd> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </msup> </mtd> <mtd> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo fence="false" stretchy="false">}</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>otherwise</mtext> </mrow> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H_{k}(G)={\begin{cases}\mathbb {Z} ^{|C|}&amp;k=0\\\mathbb {Z} ^{|E|+|C|-|V|}&amp;k=1\\\{0\}&amp;{\text{otherwise}}\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e21fd5a00d53dbea9ef41aedafa0ad30f71fa409" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:35.324ex; height:9.176ex;" alt="{\displaystyle H_{k}(G)={\begin{cases}\mathbb {Z} ^{|C|}&amp;k=0\\\mathbb {Z} ^{|E|+|C|-|V|}&amp;k=1\\\{0\}&amp;{\text{otherwise}}\end{cases}}}"></span></dd></dl> <p>This may be proved straightforwardly by <a href="/wiki/Mathematical_induction" title="Mathematical induction">mathematical induction</a> on the number of edges. A new edge either increments the number of 1-cycles or decrements the number of connected components. </p><p>Therefore, the "zero-th" Betti number <i>b</i><sub>0</sub>(<i>G</i>) equals |<i>C</i>|, which is simply the number of connected components.<sup id="cite_ref-Hage1996_3-0" class="reference"><a href="#cite_note-Hage1996-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> </p><p>The first Betti number <i>b</i><sub>1</sub>(<i>G</i>) equals |<i>E</i>| + |<i>C</i>| - |<i>V</i>|. It is also called the <a href="/wiki/Cyclomatic_number" class="mw-redirect" title="Cyclomatic number">cyclomatic number</a>—a term introduced by <a href="/wiki/Gustav_Kirchhoff" title="Gustav Kirchhoff">Gustav Kirchhoff</a> before Betti's paper.<sup id="cite_ref-Kotiuga2010_4-0" class="reference"><a href="#cite_note-Kotiuga2010-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> See <a href="/wiki/Cyclomatic_complexity" title="Cyclomatic complexity">cyclomatic complexity</a> for an application to <a href="/wiki/Software_engineering" title="Software engineering">software engineering</a>. </p><p>All other Betti numbers are 0. </p> <div class="mw-heading mw-heading3"><h3 id="Betti_numbers_of_a_simplicial_complex">Betti numbers of a simplicial complex</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Betti_number&amp;action=edit&amp;section=6" title="Edit section: Betti numbers of a simplicial complex"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File"><a href="/wiki/File:Simplicialexample.png" class="mw-file-description"><img alt="Example" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Simplicialexample.png/160px-Simplicialexample.png" decoding="async" width="160" height="292" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/8/87/Simplicialexample.png 1.5x" data-file-width="213" data-file-height="389" /></a><figcaption></figcaption></figure> <p>Consider a <a href="/wiki/Simplicial_complex" title="Simplicial complex">simplicial complex</a> with 0-simplices: a, b, c, and d, 1-simplices: E, F, G, H and I, and the only 2-simplex is J, which is the shaded region in the figure. There is one connected component in this figure (<i>b</i><sub>0</sub>); one hole, which is the unshaded region (<i>b</i><sub>1</sub>); and no "voids" or "cavities" (<i>b</i><sub>2</sub>). </p><p>This means that the rank of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43910602a221b7a4c373791f94793e3008622070" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.985ex; height:2.509ex;" alt="{\displaystyle H_{0}}"></span> is 1, the rank of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4d4d9a872a55b209f2eb7cc23a71e5e1541bd1f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.985ex; height:2.509ex;" alt="{\displaystyle H_{1}}"></span> is 1 and the rank of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7fa4324515cc7343ee952e3840a1bb1aa8c7f74c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.985ex; height:2.509ex;" alt="{\displaystyle H_{2}}"></span> is 0. </p><p>The Betti number sequence for this figure is 1, 1, 0, 0, ...; the Poincaré polynomial is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1+x\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>+</mo> <mi>x</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1+x\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43e308c59c1f1efa99ad225ef13c66e413123aff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.72ex; height:2.343ex;" alt="{\displaystyle 1+x\,}"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Betti_numbers_of_the_projective_plane">Betti numbers of the projective plane</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Betti_number&amp;action=edit&amp;section=7" title="Edit section: Betti numbers of the projective plane"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The homology groups of the <a href="/wiki/Projective_plane" title="Projective plane">projective plane</a> <i>P</i> are:<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H_{k}(P)={\begin{cases}\mathbb {Z} &amp;k=0\\\mathbb {Z} _{2}&amp;k=1\\\{0\}&amp;{\text{otherwise}}\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>P</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mtd> <mtd> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo fence="false" stretchy="false">}</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>otherwise</mtext> </mrow> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H_{k}(P)={\begin{cases}\mathbb {Z} &amp;k=0\\\mathbb {Z} _{2}&amp;k=1\\\{0\}&amp;{\text{otherwise}}\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2826df19ed5ba6ed8afc40e4fd50bdfbd8efe11a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.671ex; width:27.878ex; height:8.509ex;" alt="{\displaystyle H_{k}(P)={\begin{cases}\mathbb {Z} &amp;k=0\\\mathbb {Z} _{2}&amp;k=1\\\{0\}&amp;{\text{otherwise}}\end{cases}}}"></span></dd></dl> <p>Here, <b>Z</b><sub>2</sub> is the <a href="/wiki/Cyclic_group" title="Cyclic group">cyclic group</a> of order 2. The 0-th Betti number is again 1. However, the 1-st Betti number is 0. This is because <i>H</i><sub>1</sub>(<i>P</i>) is a finite group - it does not have any infinite component. The finite component of the group is called the <b>torsion coefficient</b> of <i>P</i>. The (rational) Betti numbers <i>b</i><sub><i>k</i></sub>(<i>X</i>) do not take into account any <a href="/wiki/Torsion_subgroup" title="Torsion subgroup">torsion</a> in the homology groups, but they are very useful basic topological invariants. In the most intuitive terms, they allow one to count the number of <i>holes</i> of different dimensions. </p> <div class="mw-heading mw-heading2"><h2 id="Properties">Properties</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Betti_number&amp;action=edit&amp;section=8" title="Edit section: Properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Euler_characteristic">Euler characteristic</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Betti_number&amp;action=edit&amp;section=9" title="Edit section: Euler characteristic"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For a finite CW-complex <i>K</i> we have </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \chi (K)=\sum _{i=0}^{\infty }(-1)^{i}b_{i}(K,F),\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C7;<!-- χ --></mi> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>K</mi> <mo>,</mo> <mi>F</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \chi (K)=\sum _{i=0}^{\infty }(-1)^{i}b_{i}(K,F),\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6b57ab6d1ab8a1f9ebf70f1edc2610358ae05894" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:26.844ex; height:6.843ex;" alt="{\displaystyle \chi (K)=\sum _{i=0}^{\infty }(-1)^{i}b_{i}(K,F),\,}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \chi (K)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C7;<!-- χ --></mi> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \chi (K)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c09215a6b003dce27b2e3d3aaed8aed927caf1d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.33ex; height:2.843ex;" alt="{\displaystyle \chi (K)}"></span> denotes <a href="/wiki/Euler_characteristic" title="Euler characteristic">Euler characteristic</a> of <i>K</i> and any field&#160;<i>F</i>. </p> <div class="mw-heading mw-heading3"><h3 id="Cartesian_product">Cartesian product</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Betti_number&amp;action=edit&amp;section=10" title="Edit section: Cartesian product"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For any two spaces <i>X</i> and <i>Y</i> we have </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{X\times Y}=P_{X}P_{Y},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> <mo>&#x00D7;<!-- × --></mo> <mi>Y</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{X\times Y}=P_{X}P_{Y},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e917fc8ac3b26c8b4ed895fcb575d8310f8d375d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:15.505ex; height:2.509ex;" alt="{\displaystyle P_{X\times Y}=P_{X}P_{Y},}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{X}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{X}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8348dd8ce7e6f7f4778ee01fa5bdc7b828afd98c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.125ex; height:2.509ex;" alt="{\displaystyle P_{X}}"></span> denotes the <b>Poincaré polynomial</b> of <i>X</i>, (more generally, the <a href="/wiki/Hilbert%E2%80%93Poincar%C3%A9_series" title="Hilbert–Poincaré series">Hilbert–Poincaré series</a>, for infinite-dimensional spaces), i.e., the <a href="/wiki/Generating_function" title="Generating function">generating function</a> of the Betti numbers of <i>X</i>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{X}(z)=b_{0}(X)+b_{1}(X)z+b_{2}(X)z^{2}+\cdots ,\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>+</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mi>z</mi> <mo>+</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>,</mo> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{X}(z)=b_{0}(X)+b_{1}(X)z+b_{2}(X)z^{2}+\cdots ,\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2be6676145cfb6ed4268b20ab0b0483bb3bb543b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-right: -0.387ex; width:42.542ex; height:3.176ex;" alt="{\displaystyle P_{X}(z)=b_{0}(X)+b_{1}(X)z+b_{2}(X)z^{2}+\cdots ,\,\!}"></span></dd></dl> <p>see <a href="/wiki/K%C3%BCnneth_theorem" title="Künneth theorem">Künneth theorem</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Symmetry">Symmetry</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Betti_number&amp;action=edit&amp;section=11" title="Edit section: Symmetry"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If <i>X</i> is <i>n</i>-dimensional manifold, there is symmetry interchanging <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n-k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n-k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b98e1d6a69bccd09a4b9b69bdf03a08c1706c8c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.446ex; height:2.343ex;" alt="{\displaystyle n-k}"></span>, for any <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b_{k}(X)=b_{n-k}(X),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b_{k}(X)=b_{n-k}(X),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b22ea768bc6967f1e179831c081ab100c933ed91" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.761ex; height:2.843ex;" alt="{\displaystyle b_{k}(X)=b_{n-k}(X),}"></span></dd></dl> <p>under conditions (a <i>closed</i> and <i>oriented</i> manifold); see <a href="/wiki/Poincar%C3%A9_duality" title="Poincaré duality">Poincaré duality</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Different_coefficients">Different coefficients</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Betti_number&amp;action=edit&amp;section=12" title="Edit section: Different coefficients"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The dependence on the field <i>F</i> is only through its <a href="/wiki/Characteristic_(field)" class="mw-redirect" title="Characteristic (field)">characteristic</a>. If the homology groups are <a href="/wiki/Torsion_(algebra)" title="Torsion (algebra)">torsion-free</a>, the Betti numbers are independent of <i>F</i>. The connection of <i>p</i>-torsion and the Betti number for <a href="/wiki/Characteristic_p" class="mw-redirect" title="Characteristic p">characteristic&#160;<i>p</i></a>, for <i>p</i> a prime number, is given in detail by the <a href="/wiki/Universal_coefficient_theorem" title="Universal coefficient theorem">universal coefficient theorem</a> (based on <a href="/wiki/Tor_functor" title="Tor functor">Tor functors</a>, but in a simple case). </p> <div class="mw-heading mw-heading2"><h2 id="More_examples">More examples</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Betti_number&amp;action=edit&amp;section=13" title="Edit section: More examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ol><li>The Betti number sequence for a circle is 1, 1, 0, 0, 0, ...; <dl><dd>the Poincaré polynomial is <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1+x\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>+</mo> <mi>x</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1+x\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43e308c59c1f1efa99ad225ef13c66e413123aff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.72ex; height:2.343ex;" alt="{\displaystyle 1+x\,}"></span>.</dd></dl></dd></dl></li> <li>The Betti number sequence for a three-<a href="/wiki/Torus" title="Torus">torus</a> is 1, 3, 3, 1, 0, 0, 0, ... . <dl><dd>the Poincaré polynomial is <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (1+x)^{3}=1+3x+3x^{2}+x^{3}\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mn>3</mn> <mi>x</mi> <mo>+</mo> <mn>3</mn> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (1+x)^{3}=1+3x+3x^{2}+x^{3}\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dfdab40d93b2d2adf94ff2d02579005b924f7d63" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:29.788ex; height:3.176ex;" alt="{\displaystyle (1+x)^{3}=1+3x+3x^{2}+x^{3}\,}"></span>.</dd></dl></dd></dl></li> <li>Similarly, for an <i>n</i>-<a href="/wiki/Torus" title="Torus">torus</a>, <dl><dd>the Poincaré polynomial is <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (1+x)^{n}\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (1+x)^{n}\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/375cb569620a5c398b698ae8f2e4c4b1241edba5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.747ex; height:2.843ex;" alt="{\displaystyle (1+x)^{n}\,}"></span> (by the <a href="/wiki/K%C3%BCnneth_theorem" title="Künneth theorem">Künneth theorem</a>), so the Betti numbers are the <a href="/wiki/Binomial_coefficient" title="Binomial coefficient">binomial coefficients</a>.</dd></dl></dd></dl></li></ol> <p>It is possible for spaces that are infinite-dimensional in an essential way to have an infinite sequence of non-zero Betti numbers. An example is the infinite-dimensional <a href="/wiki/Complex_projective_space" title="Complex projective space">complex projective space</a>, with sequence 1, 0, 1, 0, 1, ... that is periodic, with <a href="/wiki/Period_length" class="mw-redirect" title="Period length">period length</a> 2. In this case the Poincaré function is not a polynomial but rather an infinite series </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1+x^{2}+x^{4}+\dotsb }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1+x^{2}+x^{4}+\dotsb }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4a22da3a63955da66d311329a1de901e08db7d34" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:17.175ex; height:2.843ex;" alt="{\displaystyle 1+x^{2}+x^{4}+\dotsb }"></span>,</dd></dl> <p>which, being a geometric series, can be expressed as the rational function </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{1-x^{2}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{1-x^{2}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/860d7e3de9a9388332bf9047d85e3de0ccf6f2f6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:7.87ex; height:5.676ex;" alt="{\displaystyle {\frac {1}{1-x^{2}}}.}"></span></dd></dl> <p>More generally, any sequence that is periodic can be expressed as a sum of geometric series, generalizing the above. For example <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a,b,c,a,b,c,\dots ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <mi>c</mi> <mo>,</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <mi>c</mi> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a,b,c,a,b,c,\dots ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ebec54a57ded78dd5c39eaba864a0668297a9364" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:16.429ex; height:2.509ex;" alt="{\displaystyle a,b,c,a,b,c,\dots ,}"></span> has the generating function </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(a+bx+cx^{2}\right)/\left(1-x^{3}\right)\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>x</mi> <mo>+</mo> <mi>c</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(a+bx+cx^{2}\right)/\left(1-x^{3}\right)\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df965392611b08bbc831cc0cb3cddefee16b8547" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:25.599ex; height:3.343ex;" alt="{\displaystyle \left(a+bx+cx^{2}\right)/\left(1-x^{3}\right)\,}"></span></dd></dl> <p>and more generally <a href="/wiki/Linear_recursive_sequence" class="mw-redirect" title="Linear recursive sequence">linear recursive sequences</a> are exactly the sequences generated by <a href="/wiki/Rational_functions" class="mw-redirect" title="Rational functions">rational functions</a>; thus the Poincaré series is expressible as a rational function if and only if the sequence of Betti numbers is a linear recursive sequence. </p><p>The Poincaré polynomials of the compact simple <a href="/wiki/Lie_groups" class="mw-redirect" title="Lie groups">Lie groups</a> are: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}P_{SU(n+1)}(x)&amp;=\left(1+x^{3}\right)\left(1+x^{5}\right)\cdots \left(1+x^{2n+1}\right)\\P_{SO(2n+1)}(x)&amp;=\left(1+x^{3}\right)\left(1+x^{7}\right)\cdots \left(1+x^{4n-1}\right)\\P_{Sp(n)}(x)&amp;=\left(1+x^{3}\right)\left(1+x^{7}\right)\cdots \left(1+x^{4n-1}\right)\\P_{SO(2n)}(x)&amp;=\left(1+x^{2n-1}\right)\left(1+x^{3}\right)\left(1+x^{7}\right)\cdots \left(1+x^{4n-5}\right)\\P_{G_{2}}(x)&amp;=\left(1+x^{3}\right)\left(1+x^{11}\right)\\P_{F_{4}}(x)&amp;=\left(1+x^{3}\right)\left(1+x^{11}\right)\left(1+x^{15}\right)\left(1+x^{23}\right)\\P_{E_{6}}(x)&amp;=\left(1+x^{3}\right)\left(1+x^{9}\right)\left(1+x^{11}\right)\left(1+x^{15}\right)\left(1+x^{17}\right)\left(1+x^{23}\right)\\P_{E_{7}}(x)&amp;=\left(1+x^{3}\right)\left(1+x^{11}\right)\left(1+x^{15}\right)\left(1+x^{19}\right)\left(1+x^{23}\right)\left(1+x^{27}\right)\left(1+x^{35}\right)\\P_{E_{8}}(x)&amp;=\left(1+x^{3}\right)\left(1+x^{15}\right)\left(1+x^{23}\right)\left(1+x^{27}\right)\left(1+x^{35}\right)\left(1+x^{39}\right)\left(1+x^{47}\right)\left(1+x^{59}\right)\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> <mi>U</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>&#x22EF;<!-- ⋯ --></mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> <mi>O</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>&#x22EF;<!-- ⋯ --></mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> <mi>p</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>&#x22EF;<!-- ⋯ --></mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> <mi>O</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>&#x22EF;<!-- ⋯ --></mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>5</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>15</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>23</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>9</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>15</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>17</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>23</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>15</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>19</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>23</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>27</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>35</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>8</mn> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>15</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>23</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>27</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>35</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>39</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>47</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>59</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}P_{SU(n+1)}(x)&amp;=\left(1+x^{3}\right)\left(1+x^{5}\right)\cdots \left(1+x^{2n+1}\right)\\P_{SO(2n+1)}(x)&amp;=\left(1+x^{3}\right)\left(1+x^{7}\right)\cdots \left(1+x^{4n-1}\right)\\P_{Sp(n)}(x)&amp;=\left(1+x^{3}\right)\left(1+x^{7}\right)\cdots \left(1+x^{4n-1}\right)\\P_{SO(2n)}(x)&amp;=\left(1+x^{2n-1}\right)\left(1+x^{3}\right)\left(1+x^{7}\right)\cdots \left(1+x^{4n-5}\right)\\P_{G_{2}}(x)&amp;=\left(1+x^{3}\right)\left(1+x^{11}\right)\\P_{F_{4}}(x)&amp;=\left(1+x^{3}\right)\left(1+x^{11}\right)\left(1+x^{15}\right)\left(1+x^{23}\right)\\P_{E_{6}}(x)&amp;=\left(1+x^{3}\right)\left(1+x^{9}\right)\left(1+x^{11}\right)\left(1+x^{15}\right)\left(1+x^{17}\right)\left(1+x^{23}\right)\\P_{E_{7}}(x)&amp;=\left(1+x^{3}\right)\left(1+x^{11}\right)\left(1+x^{15}\right)\left(1+x^{19}\right)\left(1+x^{23}\right)\left(1+x^{27}\right)\left(1+x^{35}\right)\\P_{E_{8}}(x)&amp;=\left(1+x^{3}\right)\left(1+x^{15}\right)\left(1+x^{23}\right)\left(1+x^{27}\right)\left(1+x^{35}\right)\left(1+x^{39}\right)\left(1+x^{47}\right)\left(1+x^{59}\right)\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ad5d09dcb0fa37ddcf6afbed2efeb1c418d4575f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -15.505ex; width:92.812ex; height:32.176ex;" alt="{\displaystyle {\begin{aligned}P_{SU(n+1)}(x)&amp;=\left(1+x^{3}\right)\left(1+x^{5}\right)\cdots \left(1+x^{2n+1}\right)\\P_{SO(2n+1)}(x)&amp;=\left(1+x^{3}\right)\left(1+x^{7}\right)\cdots \left(1+x^{4n-1}\right)\\P_{Sp(n)}(x)&amp;=\left(1+x^{3}\right)\left(1+x^{7}\right)\cdots \left(1+x^{4n-1}\right)\\P_{SO(2n)}(x)&amp;=\left(1+x^{2n-1}\right)\left(1+x^{3}\right)\left(1+x^{7}\right)\cdots \left(1+x^{4n-5}\right)\\P_{G_{2}}(x)&amp;=\left(1+x^{3}\right)\left(1+x^{11}\right)\\P_{F_{4}}(x)&amp;=\left(1+x^{3}\right)\left(1+x^{11}\right)\left(1+x^{15}\right)\left(1+x^{23}\right)\\P_{E_{6}}(x)&amp;=\left(1+x^{3}\right)\left(1+x^{9}\right)\left(1+x^{11}\right)\left(1+x^{15}\right)\left(1+x^{17}\right)\left(1+x^{23}\right)\\P_{E_{7}}(x)&amp;=\left(1+x^{3}\right)\left(1+x^{11}\right)\left(1+x^{15}\right)\left(1+x^{19}\right)\left(1+x^{23}\right)\left(1+x^{27}\right)\left(1+x^{35}\right)\\P_{E_{8}}(x)&amp;=\left(1+x^{3}\right)\left(1+x^{15}\right)\left(1+x^{23}\right)\left(1+x^{27}\right)\left(1+x^{35}\right)\left(1+x^{39}\right)\left(1+x^{47}\right)\left(1+x^{59}\right)\end{aligned}}}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Relationship_with_dimensions_of_spaces_of_differential_forms">Relationship with dimensions of spaces of differential forms</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Betti_number&amp;action=edit&amp;section=14" title="Edit section: Relationship with dimensions of spaces of differential forms"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In geometric situations when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> is a <a href="/wiki/Closed_manifold" title="Closed manifold">closed manifold</a>, the importance of the Betti numbers may arise from a different direction, namely that they predict the dimensions of vector spaces of <a href="/wiki/Closed_differential_form" class="mw-redirect" title="Closed differential form">closed differential forms</a> <i><a href="/wiki/Modular_arithmetic" title="Modular arithmetic">modulo</a></i> <a href="/wiki/Exact_differential_form" class="mw-redirect" title="Exact differential form">exact differential forms</a>. The connection with the definition given above is via three basic results, <a href="/wiki/De_Rham%27s_theorem" class="mw-redirect" title="De Rham&#39;s theorem">de Rham's theorem</a> and <a href="/wiki/Poincar%C3%A9_duality" title="Poincaré duality">Poincaré duality</a> (when those apply), and the <a href="/wiki/Universal_coefficient_theorem" title="Universal coefficient theorem">universal coefficient theorem</a> of <a href="/wiki/Homology_theory" class="mw-redirect" title="Homology theory">homology theory</a>. </p><p>There is an alternate reading, namely that the Betti numbers give the dimensions of spaces of <a href="/wiki/Harmonic_form" class="mw-redirect" title="Harmonic form">harmonic forms</a>. This requires the use of some of the results of <a href="/wiki/Hodge_theory" title="Hodge theory">Hodge theory</a> on the <a href="/wiki/Hodge_Laplacian" class="mw-redirect" title="Hodge Laplacian">Hodge Laplacian</a>. </p><p>In this setting, <a href="/wiki/Morse_theory" title="Morse theory">Morse theory</a> gives a set of inequalities for alternating sums of Betti numbers in terms of a corresponding alternating sum of the number of <a href="/wiki/Critical_point_(mathematics)" title="Critical point (mathematics)">critical points</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fef58cebf23adff9199f17325aefb5515fdca99d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.666ex; height:2.509ex;" alt="{\displaystyle N_{i}}"></span> of a <a href="/wiki/Morse_function" class="mw-redirect" title="Morse function">Morse function</a> of a given <a href="/wiki/Morse_theory" title="Morse theory">index</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b_{i}(X)-b_{i-1}(X)+\cdots \leq N_{i}-N_{i-1}+\cdots .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&#x2264;<!-- ≤ --></mo> <msub> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b_{i}(X)-b_{i-1}(X)+\cdots \leq N_{i}-N_{i-1}+\cdots .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ed22248280bc6d0bff0e68a0864fc5ec332b1fe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:41.646ex; height:2.843ex;" alt="{\displaystyle b_{i}(X)-b_{i-1}(X)+\cdots \leq N_{i}-N_{i-1}+\cdots .}"></span></dd></dl> <p><a href="/wiki/Edward_Witten" title="Edward Witten">Edward Witten</a> gave an explanation of these inequalities by using the Morse function to modify the <a href="/wiki/Exterior_derivative" title="Exterior derivative">exterior derivative</a> in the <a href="/wiki/De_Rham_complex" class="mw-redirect" title="De Rham complex">de Rham complex</a>.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Betti_number&amp;action=edit&amp;section=15" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Topological_data_analysis" title="Topological data analysis">Topological data analysis</a></li> <li><a href="/wiki/Torsion_coefficient_(topology)" class="mw-redirect" title="Torsion coefficient (topology)">Torsion coefficient</a></li> <li><a href="/wiki/Euler_characteristic" title="Euler characteristic">Euler characteristic</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Betti_number&amp;action=edit&amp;section=16" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFBarile,_and_Weisstein" class="citation web cs1">Barile, and Weisstein, Margherita and Eric. <a rel="nofollow" class="external text" href="http://mathworld.wolfram.com/BettiNumber.html">"Betti number"</a>. From MathWorld--A Wolfram Web Resource.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Betti+number&amp;rft.pub=From+MathWorld--A+Wolfram+Web+Resource.&amp;rft.aulast=Barile%2C+and+Weisstein&amp;rft.aufirst=Margherita+and+Eric&amp;rft_id=http%3A%2F%2Fmathworld.wolfram.com%2FBettiNumber.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABetti+number" class="Z3988"></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text">Archived at <a rel="nofollow" class="external text" href="https://ghostarchive.org/varchive/youtube/20211212/XxFGokyYo6g">Ghostarchive</a> and the <a rel="nofollow" class="external text" href="https://web.archive.org/web/20200829013025/https://www.youtube.com/watch?v=XxFGokyYo6g&amp;gl=US&amp;hl=en">Wayback Machine</a>: <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAlbin2019" class="citation web cs1">Albin, Pierre (2019). <a rel="nofollow" class="external text" href="https://www.youtube.com/watch?v=XxFGokyYo6g">"History of algebraic topology"</a>. <i><a href="/wiki/YouTube" title="YouTube">YouTube</a></i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=YouTube&amp;rft.atitle=History+of+algebraic+topology&amp;rft.date=2019&amp;rft.aulast=Albin&amp;rft.aufirst=Pierre&amp;rft_id=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DXxFGokyYo6g&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABetti+number" class="Z3988"></span></span> </li> <li id="cite_note-Hage1996-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-Hage1996_3-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPer_Hage1996" class="citation book cs1">Per Hage (1996). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=ZBdLknuP0BYC&amp;pg=PA49"><i>Island Networks: Communication, Kinship, and Classification Structures in Oceania</i></a>. Cambridge University Press. p.&#160;49. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-55232-5" title="Special:BookSources/978-0-521-55232-5"><bdi>978-0-521-55232-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Island+Networks%3A+Communication%2C+Kinship%2C+and+Classification+Structures+in+Oceania&amp;rft.pages=49&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1996&amp;rft.isbn=978-0-521-55232-5&amp;rft.au=Per+Hage&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DZBdLknuP0BYC%26pg%3DPA49&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABetti+number" class="Z3988"></span></span> </li> <li id="cite_note-Kotiuga2010-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-Kotiuga2010_4-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPeter_Robert_Kotiuga2010" class="citation book cs1">Peter Robert Kotiuga (2010). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=mqLXi0FRIZwC&amp;pg=PA20"><i>A Celebration of the Mathematical Legacy of Raoul Bott</i></a>. American Mathematical Soc. p.&#160;20. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8218-8381-5" title="Special:BookSources/978-0-8218-8381-5"><bdi>978-0-8218-8381-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Celebration+of+the+Mathematical+Legacy+of+Raoul+Bott&amp;rft.pages=20&amp;rft.pub=American+Mathematical+Soc.&amp;rft.date=2010&amp;rft.isbn=978-0-8218-8381-5&amp;rft.au=Peter+Robert+Kotiuga&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DmqLXi0FRIZwC%26pg%3DPA20&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABetti+number" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text">Archived at <a rel="nofollow" class="external text" href="https://ghostarchive.org/varchive/youtube/20211212/NgrIPPqYKjQ">Ghostarchive</a> and the <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130926094324/http://www.youtube.com/watch?v=NgrIPPqYKjQ&amp;list=PL0F555888A4C2329B">Wayback Machine</a>: <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWildberger2012" class="citation web cs1">Wildberger, Norman J. (2012). <a rel="nofollow" class="external text" href="https://www.youtube.com/watch?v=NgrIPPqYKjQ&amp;list=PL6763F57A61FE6FE8&amp;index=41&amp;t=0s">"Delta complexes, Betti numbers and torsion"</a>. <i><a href="/wiki/YouTube" title="YouTube">YouTube</a></i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=YouTube&amp;rft.atitle=Delta+complexes%2C+Betti+numbers+and+torsion&amp;rft.date=2012&amp;rft.aulast=Wildberger&amp;rft.aufirst=Norman+J.&amp;rft_id=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DNgrIPPqYKjQ%26list%3DPL6763F57A61FE6FE8%26index%3D41%26t%3D0s&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABetti+number" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWitten1982" class="citation cs2"><a href="/wiki/Edward_Witten" title="Edward Witten">Witten, Edward</a> (1982), "Supersymmetry and Morse theory", <i><a href="/wiki/Journal_of_Differential_Geometry" title="Journal of Differential Geometry">Journal of Differential Geometry</a></i>, <b>17</b> (4): 661–692, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.4310%2Fjdg%2F1214437492">10.4310/jdg/1214437492</a></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Differential+Geometry&amp;rft.atitle=Supersymmetry+and+Morse+theory&amp;rft.volume=17&amp;rft.issue=4&amp;rft.pages=661-692&amp;rft.date=1982&amp;rft_id=info%3Adoi%2F10.4310%2Fjdg%2F1214437492&amp;rft.aulast=Witten&amp;rft.aufirst=Edward&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABetti+number" class="Z3988"></span><span style="position:relative; top: -2px;"><span typeof="mw:File"><a href="/wiki/Open_access" title="open access publication – free to read"><img alt="Open access icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/77/Open_Access_logo_PLoS_transparent.svg/9px-Open_Access_logo_PLoS_transparent.svg.png" decoding="async" width="9" height="14" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/77/Open_Access_logo_PLoS_transparent.svg/14px-Open_Access_logo_PLoS_transparent.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/77/Open_Access_logo_PLoS_transparent.svg/18px-Open_Access_logo_PLoS_transparent.svg.png 2x" data-file-width="640" data-file-height="1000" /></a></span></span></span> </li> </ol></div></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWarner1983" class="citation cs2">Warner, Frank Wilson (1983), <i>Foundations of differentiable manifolds and Lie groups</i>, New York: Springer, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-387-90894-3" title="Special:BookSources/0-387-90894-3"><bdi>0-387-90894-3</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Foundations+of+differentiable+manifolds+and+Lie+groups&amp;rft.place=New+York&amp;rft.pub=Springer&amp;rft.date=1983&amp;rft.isbn=0-387-90894-3&amp;rft.aulast=Warner&amp;rft.aufirst=Frank+Wilson&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABetti+number" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRoe1998" class="citation cs2">Roe, John (1998), <i>Elliptic Operators, Topology, and Asymptotic Methods</i>, Research Notes in Mathematics Series, vol.&#160;395 (Second&#160;ed.), Boca Raton, FL: Chapman and Hall, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-582-32502-1" title="Special:BookSources/0-582-32502-1"><bdi>0-582-32502-1</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Elliptic+Operators%2C+Topology%2C+and+Asymptotic+Methods&amp;rft.place=Boca+Raton%2C+FL&amp;rft.series=Research+Notes+in+Mathematics+Series&amp;rft.edition=Second&amp;rft.pub=Chapman+and+Hall&amp;rft.date=1998&amp;rft.isbn=0-582-32502-1&amp;rft.aulast=Roe&amp;rft.aufirst=John&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABetti+number" class="Z3988"></span>.</li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Topology" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="3"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Topology" title="Template:Topology"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Topology" title="Template talk:Topology"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Topology" title="Special:EditPage/Template:Topology"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Topology" style="font-size:114%;margin:0 4em"><a href="/wiki/Topology" title="Topology">Topology</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%;background:#e5e5ff;">Fields</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/General_topology" title="General topology">General (point-set)</a></li> <li><a href="/wiki/Algebraic_topology" title="Algebraic topology">Algebraic</a></li> <li><a href="/wiki/Combinatorial_topology" title="Combinatorial topology">Combinatorial</a></li> <li><a href="/wiki/Continuum_(topology)" title="Continuum (topology)">Continuum</a></li> <li><a href="/wiki/Differential_topology" title="Differential topology">Differential</a></li> <li><a href="/wiki/Geometric_topology" title="Geometric topology">Geometric</a> <ul><li><a href="/wiki/Low-dimensional_topology" title="Low-dimensional topology">low-dimensional</a></li></ul></li> <li><a href="/wiki/Homology_(mathematics)" title="Homology (mathematics)">Homology</a> <ul><li><a href="/wiki/Cohomology" title="Cohomology">cohomology</a></li></ul></li> <li><a href="/wiki/Set-theoretic_topology" title="Set-theoretic topology">Set-theoretic</a></li> <li><a href="/wiki/Digital_topology" title="Digital topology">Digital</a></li></ul> </div></td><td class="noviewer navbox-image" rowspan="4" style="width:1px;padding:0 0 0 2px"><div><span typeof="mw:File"><a href="/wiki/Klein_bottle" title="Klein bottle"><img alt="Computer graphics rendering of a Klein bottle" src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b9/Kleinsche_Flasche.png/60px-Kleinsche_Flasche.png" decoding="async" width="60" height="80" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b9/Kleinsche_Flasche.png/90px-Kleinsche_Flasche.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b9/Kleinsche_Flasche.png/120px-Kleinsche_Flasche.png 2x" data-file-width="1171" data-file-height="1561" /></a></span></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;background:#e5e5ff;">Key concepts</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Open_set" title="Open set">Open set</a>&#160;/&#32;<a href="/wiki/Closed_set" title="Closed set">Closed set</a></li> <li><a href="/wiki/Interior_(topology)" title="Interior (topology)">Interior</a></li> <li><a href="/wiki/Continuity_(topology)" class="mw-redirect" title="Continuity (topology)">Continuity</a></li> <li><a href="/wiki/Topological_space" title="Topological space">Space</a> <ul><li><a href="/wiki/Compact_space" title="Compact space">compact</a></li> <li><a href="/wiki/Connected_space" title="Connected space">connected</a></li> <li><a href="/wiki/Hausdorff_space" title="Hausdorff space">Hausdorff</a></li> <li><a href="/wiki/Metric_space" title="Metric space">metric</a></li> <li><a href="/wiki/Uniform_space" title="Uniform space">uniform</a></li></ul></li> <li><a href="/wiki/Homotopy" title="Homotopy">Homotopy</a> <ul><li><a href="/wiki/Homotopy_group" title="Homotopy group">homotopy group</a></li> <li><a href="/wiki/Fundamental_group" title="Fundamental group">fundamental group</a></li></ul></li> <li><a href="/wiki/Simplicial_complex" title="Simplicial complex">Simplicial complex</a></li> <li><a href="/wiki/CW_complex" title="CW complex">CW complex</a></li> <li><a href="/wiki/Polyhedral_complex" title="Polyhedral complex">Polyhedral complex</a></li> <li><a href="/wiki/Manifold" title="Manifold">Manifold</a></li> <li><a href="/wiki/Bundle_(mathematics)" title="Bundle (mathematics)">Bundle (mathematics)</a></li> <li><a href="/wiki/Second-countable_space" title="Second-countable space">Second-countable space</a></li> <li><a href="/wiki/Cobordism" title="Cobordism">Cobordism</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;background:#e5e5ff;">Metrics and properties</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Euler_characteristic" title="Euler characteristic">Euler characteristic</a></li> <li><a class="mw-selflink selflink">Betti number</a></li> <li><a href="/wiki/Winding_number" title="Winding number">Winding number</a></li> <li><a href="/wiki/Chern_class" title="Chern class">Chern number</a></li> <li><a href="/wiki/Orientability" title="Orientability">Orientability</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;background:#e5e5ff;"><a href="/wiki/Category:Theorems_in_topology" title="Category:Theorems in topology">Key results</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Banach_fixed-point_theorem" title="Banach fixed-point theorem">Banach fixed-point theorem</a></li> <li><a href="/wiki/De_Rham_cohomology" title="De Rham cohomology">De Rham cohomology</a></li> <li><a href="/wiki/Invariance_of_domain" title="Invariance of domain">Invariance of domain</a></li> <li><a href="/wiki/Poincar%C3%A9_conjecture" title="Poincaré conjecture">Poincaré conjecture</a></li> <li><a href="/wiki/Tychonoff%27s_theorem" title="Tychonoff&#39;s theorem">Tychonoff's theorem</a></li> <li><a href="/wiki/Urysohn%27s_lemma" title="Urysohn&#39;s lemma">Urysohn's lemma</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="3"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:Topology" title="Category:Topology">Category</a></li> <li><span class="nowrap"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Nuvola_apps_edu_mathematics_blue-p.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/28px-Nuvola_apps_edu_mathematics_blue-p.svg.png" decoding="async" width="28" height="28" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/42px-Nuvola_apps_edu_mathematics_blue-p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/56px-Nuvola_apps_edu_mathematics_blue-p.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span> </span><a href="/wiki/Portal:Mathematics" title="Portal:Mathematics">Mathematics&#32;portal</a></li> <li><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Wikibooks-logo.svg" class="mw-file-description" title="Wikibooks page"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/16px-Wikibooks-logo.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/24px-Wikibooks-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/32px-Wikibooks-logo.svg.png 2x" data-file-width="300" data-file-height="300" /></a></span> <a href="https://en.wikibooks.org/wiki/Topology" class="extiw" title="wikibooks:Topology">Wikibook</a></li> <li><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Wikiversity_logo_2017.svg" class="mw-file-description" title="Wikiversity page"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/16px-Wikiversity_logo_2017.svg.png" decoding="async" width="16" height="13" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/24px-Wikiversity_logo_2017.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/32px-Wikiversity_logo_2017.svg.png 2x" data-file-width="626" data-file-height="512" /></a></span> <a href="https://en.wikiversity.org/wiki/Topology" class="extiw" title="wikiversity:Topology">Wikiversity</a></li> <li><span class="noviewer" typeof="mw:File"><span title="List-Class article"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/16px-Symbol_list_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/23px-Symbol_list_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/31px-Symbol_list_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/List_of_topology_topics" title="List of topology topics">Topics</a> <ul><li><a href="/wiki/List_of_general_topology_topics" title="List of general topology topics">general</a></li> <li><a href="/wiki/List_of_algebraic_topology_topics" title="List of algebraic topology topics">algebraic</a></li> <li><a href="/wiki/List_of_geometric_topology_topics" title="List of geometric topology topics">geometric</a></li></ul></li> <li><span class="noviewer" typeof="mw:File"><span title="List-Class article"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/16px-Symbol_list_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/23px-Symbol_list_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/31px-Symbol_list_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/List_of_important_publications_in_mathematics#Topology" title="List of important publications in mathematics">Publications</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox authority-control" aria-label="Navbox" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a>: National <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q429593#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4231040-4">Germany</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐r6c9v Cached time: 20241122144028 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.447 seconds Real time usage: 0.651 seconds Preprocessor visited node count: 972/1000000 Post‐expand include size: 28954/2097152 bytes Template argument size: 756/2097152 bytes Highest expansion depth: 8/100 Expensive parser function count: 2/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 41263/5000000 bytes Lua time usage: 0.254/10.000 seconds Lua memory usage: 4544974/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 456.385 1 -total 36.71% 167.537 1 Template:Reflist 27.21% 124.165 1 Template:Topology 26.58% 121.300 1 Template:Navbox 23.08% 105.320 3 Template:Cite_web 21.40% 97.674 1 Template:Short_description 13.80% 62.976 2 Template:Pagetype 10.47% 47.789 1 Template:Authority_control 4.17% 19.039 3 Template:Main_other 3.97% 18.122 3 Template:Citation --> <!-- Saved in parser cache with key enwiki:pcache:idhash:346262-0!canonical and timestamp 20241122144028 and revision id 1254202492. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Betti_number&amp;oldid=1254202492">https://en.wikipedia.org/w/index.php?title=Betti_number&amp;oldid=1254202492</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Algebraic_topology" title="Category:Algebraic topology">Algebraic topology</a></li><li><a href="/wiki/Category:Graph_invariants" title="Category:Graph invariants">Graph invariants</a></li><li><a href="/wiki/Category:Topological_graph_theory" title="Category:Topological graph theory">Topological graph theory</a></li><li><a href="/wiki/Category:Generating_functions" title="Category:Generating functions">Generating functions</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 29 October 2024, at 21:47<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Betti_number&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-fp8vw","wgBackendResponseTime":125,"wgPageParseReport":{"limitreport":{"cputime":"0.447","walltime":"0.651","ppvisitednodes":{"value":972,"limit":1000000},"postexpandincludesize":{"value":28954,"limit":2097152},"templateargumentsize":{"value":756,"limit":2097152},"expansiondepth":{"value":8,"limit":100},"expensivefunctioncount":{"value":2,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":41263,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 456.385 1 -total"," 36.71% 167.537 1 Template:Reflist"," 27.21% 124.165 1 Template:Topology"," 26.58% 121.300 1 Template:Navbox"," 23.08% 105.320 3 Template:Cite_web"," 21.40% 97.674 1 Template:Short_description"," 13.80% 62.976 2 Template:Pagetype"," 10.47% 47.789 1 Template:Authority_control"," 4.17% 19.039 3 Template:Main_other"," 3.97% 18.122 3 Template:Citation"]},"scribunto":{"limitreport-timeusage":{"value":"0.254","limit":"10.000"},"limitreport-memusage":{"value":4544974,"limit":52428800},"limitreport-logs":"table#1 {\n}\n"},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-r6c9v","timestamp":"20241122144028","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Betti number","url":"https:\/\/en.wikipedia.org\/wiki\/Betti_number","sameAs":"http:\/\/www.wikidata.org\/entity\/Q429593","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q429593","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2003-10-21T12:00:49Z","dateModified":"2024-10-29T21:47:51Z","headline":"used to distinguish topological spaces based on the connectivity of n-dimensional simplicial complexes"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10