CINXE.COM

Search results for: monotone matrices

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: monotone matrices</title> <meta name="description" content="Search results for: monotone matrices"> <meta name="keywords" content="monotone matrices"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="monotone matrices" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="monotone matrices"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 373</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: monotone matrices</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">373</span> Geometric and Algebraic Properties of the Eigenvalues of Monotone Matrices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brando%20Vagenende">Brando Vagenende</a>, <a href="https://publications.waset.org/abstracts/search?q=Marie-Anne%20Guerry"> Marie-Anne Guerry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For stochastic matrices of any order, the geometric description of the convex set of eigenvalues is completely known. The purpose of this study is to investigate the subset of the monotone matrices. This type of matrix appears in contexts such as intergenerational occupational mobility, equal-input modeling, and credit ratings-based systems. Monotone matrices are stochastic matrices in which each row stochastically dominates the previous row. The monotonicity property of a stochastic matrix can be expressed by a nonnegative lower-order matrix with the same eigenvalues as the original monotone matrix (except for the eigenvalue 1). Specifically, the aim of this research is to focus on the properties of eigenvalues of monotone matrices. For those matrices up to order 3, there already exists a complete description of the convex set of eigenvalues. For monotone matrices of order at least 4, this study gives, through simulations, more insight into the geometric description of their eigenvalues. Furthermore, this research treats in a geometric and algebraic way the properties of eigenvalues of monotone matrices of order at least 4. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eigenvalues%20of%20matrices" title="eigenvalues of matrices">eigenvalues of matrices</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20Markov%20chains" title=" finite Markov chains"> finite Markov chains</a>, <a href="https://publications.waset.org/abstracts/search?q=monotone%20matrices" title=" monotone matrices"> monotone matrices</a>, <a href="https://publications.waset.org/abstracts/search?q=nonnegative%20matrices" title=" nonnegative matrices"> nonnegative matrices</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20matrices" title=" stochastic matrices"> stochastic matrices</a> </p> <a href="https://publications.waset.org/abstracts/179294/geometric-and-algebraic-properties-of-the-eigenvalues-of-monotone-matrices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179294.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">372</span> Monotone Rational Trigonometric Interpolation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Uzma%20Bashir">Uzma Bashir</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamaludin%20Md.%20Ali"> Jamaludin Md. Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is concerned with the visualization of monotone data using a piece-wise C1 rational trigonometric interpolating scheme. Four positive shape parameters are incorporated in the structure of rational trigonometric spline. Conditions on two of these parameters are derived to attain the monotonicity of monotone data and other two are left-free. Figures are used widely to exhibit that the proposed scheme produces graphically smooth monotone curves. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=trigonometric%20splines" title="trigonometric splines">trigonometric splines</a>, <a href="https://publications.waset.org/abstracts/search?q=monotone%20data" title=" monotone data"> monotone data</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20preserving" title=" shape preserving"> shape preserving</a>, <a href="https://publications.waset.org/abstracts/search?q=C1%20monotone%20interpolant" title=" C1 monotone interpolant"> C1 monotone interpolant</a> </p> <a href="https://publications.waset.org/abstracts/5079/monotone-rational-trigonometric-interpolation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5079.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">371</span> Heuristic to Generate Random X-Monotone Polygons</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamaljit%20Pati">Kamaljit Pati</a>, <a href="https://publications.waset.org/abstracts/search?q=Manas%20Kumar%20Mohanty"> Manas Kumar Mohanty</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjib%20Sadhu"> Sanjib Sadhu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A heuristic has been designed to generate a random simple monotone polygon from a given set of ‘n’ points lying on a 2-Dimensional plane. Our heuristic generates a random monotone polygon in O(n) time after O(nℓogn) preprocessing time which is improved over the previous work where a random monotone polygon is produced in the same O(n) time but the preprocessing time is O(k) for n < k < n2. However, our heuristic does not generate all possible random polygons with uniform probability. The space complexity of our proposed heuristic is O(n). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sorting" title="sorting">sorting</a>, <a href="https://publications.waset.org/abstracts/search?q=monotone%20polygon" title=" monotone polygon"> monotone polygon</a>, <a href="https://publications.waset.org/abstracts/search?q=visibility" title=" visibility"> visibility</a>, <a href="https://publications.waset.org/abstracts/search?q=chain" title=" chain"> chain</a> </p> <a href="https://publications.waset.org/abstracts/19252/heuristic-to-generate-random-x-monotone-polygons" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19252.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">370</span> Convergence of Generalized Jacobi, Gauss-Seidel and Successive Overrelaxation Methods for Various Classes of Matrices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manideepa%20Saha">Manideepa Saha</a>, <a href="https://publications.waset.org/abstracts/search?q=Jahnavi%20Chakrabarty"> Jahnavi Chakrabarty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Generalized Jacobi (GJ) and Generalized Gauss-Seidel (GGS) methods are most effective than conventional Jacobi and Gauss-Seidel methods for solving linear system of equations. It is known that GJ and GGS methods converge for strictly diagonally dominant (SDD) and for M-matrices. In this paper, we study the convergence of GJ and GGS converge for symmetric positive definite (SPD) matrices, L-matrices and H-matrices. We introduce a generalization of successive overrelaxation (SOR) method for solving linear systems and discuss its convergence for the classes of SDD matrices, SPD matrices, M-matrices, L-matrices and for H-matrices. Advantages of generalized SOR method are established through numerical experiments over GJ, GGS, and SOR methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convergence" title="convergence">convergence</a>, <a href="https://publications.waset.org/abstracts/search?q=Gauss-Seidel" title=" Gauss-Seidel"> Gauss-Seidel</a>, <a href="https://publications.waset.org/abstracts/search?q=iterative%20method" title=" iterative method"> iterative method</a>, <a href="https://publications.waset.org/abstracts/search?q=Jacobi" title=" Jacobi"> Jacobi</a>, <a href="https://publications.waset.org/abstracts/search?q=SOR" title=" SOR"> SOR</a> </p> <a href="https://publications.waset.org/abstracts/97280/convergence-of-generalized-jacobi-gauss-seidel-and-successive-overrelaxation-methods-for-various-classes-of-matrices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97280.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">369</span> On the Construction of Lightweight Circulant Maximum Distance Separable Matrices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qinyi%20Mei">Qinyi Mei</a>, <a href="https://publications.waset.org/abstracts/search?q=Li-Ping%20Wang"> Li-Ping Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> MDS matrices are of great significance in the design of block ciphers and hash functions. In the present paper, we investigate the problem of constructing MDS matrices which are both lightweight and low-latency. We propose a new method of constructing lightweight MDS matrices using circulant matrices which can be implemented efficiently in hardware. Furthermore, we provide circulant MDS matrices with as few bit XOR operations as possible for the classical dimensions 4 &times; 4, 8 &times; 8 over the space of linear transformations over finite field F42 . In contrast to previous constructions of MDS matrices, our constructions have achieved fewer XORs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=linear%20diffusion%20layer" title="linear diffusion layer">linear diffusion layer</a>, <a href="https://publications.waset.org/abstracts/search?q=circulant%20matrix" title=" circulant matrix"> circulant matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=lightweight" title=" lightweight"> lightweight</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20distance%20separable%20%28MDS%29%20matrix" title="maximum distance separable (MDS) matrix">maximum distance separable (MDS) matrix</a> </p> <a href="https://publications.waset.org/abstracts/64109/on-the-construction-of-lightweight-circulant-maximum-distance-separable-matrices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64109.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">368</span> Conditions on Expressing a Matrix as a Sum of α-Involutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ric%20Joseph%20R.%20Murillo">Ric Joseph R. Murillo</a>, <a href="https://publications.waset.org/abstracts/search?q=Edna%20N.%20Gueco"> Edna N. Gueco</a>, <a href="https://publications.waset.org/abstracts/search?q=Dennis%20I.%20Merino"> Dennis I. Merino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Let F be C or R, where C and R are the set of complex numbers and real numbers, respectively, and n be a natural number. An n-by-n matrix A over the field F is called an α-involutory matrix or an α-involution if there exists an α in the field such that the square of the matrix is equal to αI, where I is the n-by-n identity matrix. If α is a complex number or a nonnegative real number, then an n-by-n matrix A over the field F can be written as a sum of n-by-n α-involutory matrices over the field F if and only if the trace of that matrix is an integral multiple of the square root of α. Meanwhile, if α is a negative real number, then a 2n-by-2n matrix A over R can be written as a sum of 2n-by-2n α-involutory matrices over R if and only the trace of the matrix is zero. Some other properties of α-involutory matrices are also determined <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%CE%B1-involutory%20Matrices" title="α-involutory Matrices">α-involutory Matrices</a>, <a href="https://publications.waset.org/abstracts/search?q=sum%20of%20%CE%B1-involutory%20Matrices" title=" sum of α-involutory Matrices"> sum of α-involutory Matrices</a>, <a href="https://publications.waset.org/abstracts/search?q=Trace" title=" Trace"> Trace</a>, <a href="https://publications.waset.org/abstracts/search?q=Matrix%20Theory" title=" Matrix Theory"> Matrix Theory</a> </p> <a href="https://publications.waset.org/abstracts/95131/conditions-on-expressing-a-matrix-as-a-sum-of-a-involutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95131.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">367</span> Existence and Uniqueness of Solutions to Singular Higher Order Two-Point BVPs on Time Scales</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhenjie%20Liu">Zhenjie Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the existence and uniqueness of solutions for singular higher order boundary value problems on time scales by using mixed monotone method. The theorems obtained are very general. For the different time scale, the problem may be the corresponding continuous or discrete boundary value problem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mixed%20monotone%20operator" title="mixed monotone operator">mixed monotone operator</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20value%20problem" title=" boundary value problem"> boundary value problem</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20scale" title=" time scale"> time scale</a>, <a href="https://publications.waset.org/abstracts/search?q=green%27s%20function" title=" green&#039;s function"> green&#039;s function</a>, <a href="https://publications.waset.org/abstracts/search?q=positive%20solution" title=" positive solution"> positive solution</a>, <a href="https://publications.waset.org/abstracts/search?q=singularity" title=" singularity"> singularity</a> </p> <a href="https://publications.waset.org/abstracts/7268/existence-and-uniqueness-of-solutions-to-singular-higher-order-two-point-bvps-on-time-scales" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7268.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">366</span> Reconstruction of Binary Matrices Satisfying Neighborhood Constraints by Simulated Annealing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Divyesh%20Patel">Divyesh Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Tanuja%20Srivastava"> Tanuja Srivastava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper considers the NP-hard problem of reconstructing binary matrices satisfying exactly-1-4-adjacency constraint from its row and column projections. This problem is formulated into a maximization problem. The objective function gives a measure of adjacency constraint for the binary matrices. The maximization problem is solved by the simulated annealing algorithm and experimental results are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discrete%20tomography" title="discrete tomography">discrete tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=exactly-1-4-adjacency" title=" exactly-1-4-adjacency"> exactly-1-4-adjacency</a>, <a href="https://publications.waset.org/abstracts/search?q=simulated%20annealing" title=" simulated annealing"> simulated annealing</a>, <a href="https://publications.waset.org/abstracts/search?q=binary%20matrices" title=" binary matrices"> binary matrices</a> </p> <a href="https://publications.waset.org/abstracts/8505/reconstruction-of-binary-matrices-satisfying-neighborhood-constraints-by-simulated-annealing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8505.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">365</span> On Hankel Matrices Approach to Interpolation Problem in Infinite and Finite Fields</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ivan%20Baravy">Ivan Baravy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Interpolation problem, as it was initially posed in terms of polynomials, is well researched. However, further mathematical developments extended it significantly. Trigonometric interpolation is widely used in Fourier analysis, while its generalized representation as exponential interpolation is applicable to such problem of mathematical physics as modelling of Ziegler-Biersack-Littmark repulsive interatomic potentials. Formulated for finite fields, this problem arises in decoding Reed--Solomon codes. This paper shows the relation between different interpretations of the problem through the class of matrices of special structure - Hankel matrices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Berlekamp-Massey%20algorithm" title="Berlekamp-Massey algorithm">Berlekamp-Massey algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=exponential%20interpolation" title=" exponential interpolation"> exponential interpolation</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20fields" title=" finite fields"> finite fields</a>, <a href="https://publications.waset.org/abstracts/search?q=Hankel%20matrices" title=" Hankel matrices"> Hankel matrices</a>, <a href="https://publications.waset.org/abstracts/search?q=Hankel%20polynomials" title=" Hankel polynomials"> Hankel polynomials</a> </p> <a href="https://publications.waset.org/abstracts/21861/on-hankel-matrices-approach-to-interpolation-problem-in-infinite-and-finite-fields" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21861.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">364</span> Split Monotone Inclusion and Fixed Point Problems in Real Hilbert Spaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Francis%20O.%20Nwawuru">Francis O. Nwawuru</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The convergence analysis of split monotone inclusion problems and fixed point problems of certain nonlinear mappings are investigated in the setting of real Hilbert spaces. Inertial extrapolation term in the spirit of Polyak is incorporated to speed up the rate of convergence. Under standard assumptions, a strong convergence of the proposed algorithm is established without computing the resolvent operator or involving Yosida approximation method. The stepsize involved in the algorithm does not depend on the spectral radius of the linear operator. Furthermore, applications of the proposed algorithm in solving some related optimization problems are also considered. Our result complements and extends numerous results in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fixedpoint" title="fixedpoint">fixedpoint</a>, <a href="https://publications.waset.org/abstracts/search?q=hilbertspace" title=" hilbertspace"> hilbertspace</a>, <a href="https://publications.waset.org/abstracts/search?q=monotonemapping" title=" monotonemapping"> monotonemapping</a>, <a href="https://publications.waset.org/abstracts/search?q=resolventoperators" title=" resolventoperators"> resolventoperators</a> </p> <a href="https://publications.waset.org/abstracts/183967/split-monotone-inclusion-and-fixed-point-problems-in-real-hilbert-spaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183967.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">52</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">363</span> Applications of Probabilistic Interpolation via Orthogonal Matrices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dariusz%20Jacek%20Jak%C3%B3bczak">Dariusz Jacek Jakóbczak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mathematics and computer science are interested in methods of 2D curve interpolation and extrapolation using the set of key points (knots). A proposed method of Hurwitz- Radon Matrices (MHR) is such a method. This novel method is based on the family of Hurwitz-Radon (HR) matrices which possess columns composed of orthogonal vectors. Two-dimensional curve is interpolated via different functions as probability distribution functions: polynomial, sinus, cosine, tangent, cotangent, logarithm, exponent, arcsin, arccos, arctan, arcctg or power function, also inverse functions. It is shown how to build the orthogonal matrix operator and how to use it in a process of curve reconstruction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=2D%20data%20interpolation" title="2D data interpolation">2D data interpolation</a>, <a href="https://publications.waset.org/abstracts/search?q=hurwitz-radon%20matrices" title=" hurwitz-radon matrices"> hurwitz-radon matrices</a>, <a href="https://publications.waset.org/abstracts/search?q=MHR%20method" title=" MHR method"> MHR method</a>, <a href="https://publications.waset.org/abstracts/search?q=probabilistic%20modeling" title=" probabilistic modeling"> probabilistic modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=curve%20extrapolation" title=" curve extrapolation"> curve extrapolation</a> </p> <a href="https://publications.waset.org/abstracts/32599/applications-of-probabilistic-interpolation-via-orthogonal-matrices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32599.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">525</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">362</span> Effect of Steel Fibers on Flexural Behavior of Normal and High Strength Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20M.%20Aldossari">K. M. Aldossari</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20A.%20Elsaigh"> W. A. Elsaigh</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20J.%20Shannag"> M. J. Shannag</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experimental study was conducted to investigate the effect of hooked-end steel fibers on the flexural behavior of normal and high strength concrete matrices. The fiber content appropriate for the concrete matrices investigated was also determined based on flexural tests on standard prisms. Parameters investigated include: Matrix compressive strength ranging from 45 MPa to 70 MPa, corresponding to normal and high strength concrete matrices respectively; Fiber volume fraction including 0, 0.5%, 0.76%, and 1%, equivalent to 0, 40, 60, and 80 kg/m3 of hooked-end steel fibers respectively. Test results indicated that flexural strength and toughness of normal and high strength concrete matrices were significantly improved with the increase in the fiber content added; Whereas a slight improvement in compressive strength was observed for the same matrices. Furthermore, the test results indicated that the effect of increasing the fiber content was more pronounced on increasing the flexural strength of high strength concrete than that of normal concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete" title="concrete">concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20strength" title=" flexural strength"> flexural strength</a>, <a href="https://publications.waset.org/abstracts/search?q=toughness" title=" toughness"> toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20fibers" title=" steel fibers"> steel fibers</a> </p> <a href="https://publications.waset.org/abstracts/2834/effect-of-steel-fibers-on-flexural-behavior-of-normal-and-high-strength-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2834.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">496</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">361</span> The Norm, Singular Value and Condition Number Analysis for the Hadamard Matrices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emine%20Tu%C4%9Fba%20Aky%C3%BCz">Emine Tuğba Akyüz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the analysis of Hadamard matrices, which is a special type of matrix, was made under three headings: norms, singular values, condition number. Six norm types was applied to Hadamard matrices and the relationship between the results and the size of the matrix has been studied. As a result of the investigation when 2-norm was used on the problem Hx =f, the equation ‖x‖_2= ‖f‖_2/√n was shown (H is n-dimensional Hadamard matrix). Related with this, the relationship between the the singular value of H and 2-norm and eigenvalues was shown. Then, the evaluation of condition number for Hx =f was made. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=condition%20number" title="condition number">condition number</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadamard%20matrix" title=" Hadamard matrix"> Hadamard matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=norm" title=" norm"> norm</a>, <a href="https://publications.waset.org/abstracts/search?q=singular%20value" title=" singular value"> singular value</a> </p> <a href="https://publications.waset.org/abstracts/9350/the-norm-singular-value-and-condition-number-analysis-for-the-hadamard-matrices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9350.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">360</span> On Block Vandermonde Matrix Constructed from Matrix Polynomial Solvents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malika%20Yaici">Malika Yaici</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamel%20Hariche"> Kamel Hariche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In control engineering, systems described by matrix fractions are studied through properties of block roots, also called solvents. These solvents are usually dealt with in a block Vandermonde matrix form. Inverses and determinants of Vandermonde matrices and block Vandermonde matrices are used in solving problems of numerical analysis in many domains but require costly computations. Even though Vandermonde matrices are well known and method to compute inverse and determinants are many and, generally, based on interpolation techniques, methods to compute the inverse and determinant of a block Vandermonde matrix have not been well studied. In this paper, some properties of these matrices and iterative algorithms to compute the determinant and the inverse of a block Vandermonde matrix are given. These methods are deducted from the partitioned matrix inversion and determinant computing methods. Due to their great size, parallelization may be a solution to reduce the computations cost, so a parallelization of these algorithms is proposed and validated by a comparison using algorithmic complexity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=block%20vandermonde%20matrix" title="block vandermonde matrix">block vandermonde matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=solvents" title=" solvents"> solvents</a>, <a href="https://publications.waset.org/abstracts/search?q=matrix%20polynomial" title=" matrix polynomial"> matrix polynomial</a>, <a href="https://publications.waset.org/abstracts/search?q=matrix%20inverse" title=" matrix inverse"> matrix inverse</a>, <a href="https://publications.waset.org/abstracts/search?q=matrix%20determinant" title=" matrix determinant"> matrix determinant</a>, <a href="https://publications.waset.org/abstracts/search?q=parallelization" title=" parallelization"> parallelization</a> </p> <a href="https://publications.waset.org/abstracts/89115/on-block-vandermonde-matrix-constructed-from-matrix-polynomial-solvents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89115.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">359</span> The Influence of Covariance Hankel Matrix Dimension on Algorithms for VARMA Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Celina%20Pestano-Gabino">Celina Pestano-Gabino</a>, <a href="https://publications.waset.org/abstracts/search?q=Concepcion%20Gonzalez-Concepcion"> Concepcion Gonzalez-Concepcion</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Candelaria%20Gil-Fari%C3%B1a"> M. Candelaria Gil-Fariña</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Some estimation methods for VARMA models, and Multivariate Time Series Models in general, rely on the use of a Hankel matrix. It is known that if the data sample is populous enough and the dimension of the Hankel matrix is unnecessarily large, this may result in an unnecessary number of computations as well as in numerical problems. In this sense, the aim of this paper is two-fold. First, we provide some theoretical results for these matrices which translate into a lower dimension for the matrices normally used in the algorithms. This contribution thus serves to improve those methods from a numerical and, presumably, statistical point of view. Second, we have chosen an estimation algorithm to illustrate in practice our improvements. The results we obtained in a simulation of VARMA models show that an increase in the size of the Hankel matrix beyond the theoretical bound proposed as valid does not necessarily lead to improved practical results. Therefore, for future research, we propose conducting similar studies using any of the linear system estimation methods that depend on Hankel matrices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=covariances%20Hankel%20matrices" title="covariances Hankel matrices">covariances Hankel matrices</a>, <a href="https://publications.waset.org/abstracts/search?q=Kronecker%20indices" title=" Kronecker indices"> Kronecker indices</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20identification" title=" system identification"> system identification</a>, <a href="https://publications.waset.org/abstracts/search?q=VARMA%20models" title=" VARMA models"> VARMA models</a> </p> <a href="https://publications.waset.org/abstracts/55669/the-influence-of-covariance-hankel-matrix-dimension-on-algorithms-for-varma-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55669.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">243</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">358</span> On the System of Split Equilibrium and Fixed Point Problems in Real Hilbert Spaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Francis%20O.%20Nwawuru">Francis O. Nwawuru</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeremiah%20N.%20Ezeora"> Jeremiah N. Ezeora</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a new algorithm for solving the system of split equilibrium and fixed point problems in real Hilbert spaces is considered. The equilibrium bifunction involves a nite family of pseudo-monotone mappings, which is an improvement over monotone operators. More so, it turns out that the solution of the finite family of nonexpansive mappings. The regularized parameters do not depend on Lipschitz constants. Also, the computations of the stepsize, which plays a crucial role in the convergence analysis of the proposed method, do require prior knowledge of the norm of the involved bounded linear map. Furthermore, to speed up the rate of convergence, an inertial term technique is introduced in the proposed method. Under standard assumptions on the operators and the control sequences, using a modified Halpern iteration method, we establish strong convergence, a desired result in applications. Finally, the proposed scheme is applied to solve some optimization problems. The result obtained improves numerous results announced earlier in this direction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=equilibrium" title="equilibrium">equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=Hilbert%20spaces" title=" Hilbert spaces"> Hilbert spaces</a>, <a href="https://publications.waset.org/abstracts/search?q=fixed%20point" title=" fixed point"> fixed point</a>, <a href="https://publications.waset.org/abstracts/search?q=nonexpansive%20mapping" title=" nonexpansive mapping"> nonexpansive mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=extragradient%20method" title=" extragradient method"> extragradient method</a>, <a href="https://publications.waset.org/abstracts/search?q=regularized%20equilibrium" title=" regularized equilibrium"> regularized equilibrium</a> </p> <a href="https://publications.waset.org/abstracts/184412/on-the-system-of-split-equilibrium-and-fixed-point-problems-in-real-hilbert-spaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184412.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">48</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">357</span> Buckling of Plates on Foundation with Different Types of Sides Support</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20N.%20Suri">Ali N. Suri</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20A.%20Al-Makhlufi"> Ahmad A. Al-Makhlufi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper the problem of buckling of plates on foundation of finite length and with different side support is studied. The Finite Strip Method is used as tool for the analysis. This method uses finite strip elastic, foundation, and geometric matrices to build the assembly matrices for the whole structure, then after introducing boundary conditions at supports, the resulting reduced matrices is transformed into a standard Eigenvalue-Eigenvector problem. The solution of this problem will enable the determination of the buckling load, the associated buckling modes and the buckling wave length. To carry out the buckling analysis starting from the elastic, foundation, and geometric stiffness matrices for each strip a computer program FORTRAN list is developed. Since stiffness matrices are function of wave length of buckling, the computer program used an iteration procedure to find the critical buckling stress for each value of foundation modulus and for each boundary condition. The results showed the use of elastic medium to support plates subject to axial load increase a great deal the buckling load, the results found are very close with those obtained by other analytical methods and experimental work. The results also showed that foundation compensates the effect of the weakness of some types of constraint of side support and maximum benefit found for plate with one side simply supported the other free. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buckling" title="buckling">buckling</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20strip" title=" finite strip"> finite strip</a>, <a href="https://publications.waset.org/abstracts/search?q=different%20sides%20support" title=" different sides support"> different sides support</a>, <a href="https://publications.waset.org/abstracts/search?q=plates%20on%20foundation" title=" plates on foundation"> plates on foundation</a> </p> <a href="https://publications.waset.org/abstracts/1681/buckling-of-plates-on-foundation-with-different-types-of-sides-support" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1681.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">243</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">356</span> Numerical Solution for Integro-Differential Equations by Using Quartic B-Spline Wavelet and Operational Matrices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khosrow%20Maleknejad">Khosrow Maleknejad</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaser%20Rostami"> Yaser Rostami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, semi-orthogonal B-spline scaling functions and wavelets and their dual functions are presented to approximate the solutions of integro-differential equations.The B-spline scaling functions and wavelets, their properties and the operational matrices of derivative for this function are presented to reduce the solution of integro-differential equations to the solution of algebraic equations. Here we compute B-spline scaling functions of degree 4 and their dual, then we will show that by using them we have better approximation results for the solution of integro-differential equations in comparison with less degrees of scaling functions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C4%B1ntegro-differential%20equations" title="ıntegro-differential equations">ıntegro-differential equations</a>, <a href="https://publications.waset.org/abstracts/search?q=quartic%20B-spline%20wavelet" title=" quartic B-spline wavelet"> quartic B-spline wavelet</a>, <a href="https://publications.waset.org/abstracts/search?q=operational%20matrices" title=" operational matrices"> operational matrices</a>, <a href="https://publications.waset.org/abstracts/search?q=dual%20functions" title=" dual functions"> dual functions</a> </p> <a href="https://publications.waset.org/abstracts/5002/numerical-solution-for-integro-differential-equations-by-using-quartic-b-spline-wavelet-and-operational-matrices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5002.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">355</span> The UAV Feasibility Trajectory Prediction Using Convolution Neural Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adrien%20Marque">Adrien Marque</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Delahaye"> Daniel Delahaye</a>, <a href="https://publications.waset.org/abstracts/search?q=Pierre%20Mar%C3%A9chal"> Pierre Maréchal</a>, <a href="https://publications.waset.org/abstracts/search?q=Isabelle%20Berry"> Isabelle Berry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wind direction and uncertainty are crucial in aircraft or unmanned aerial vehicle trajectories. By computing wind covariance matrices on each spatial grid point, these spatial grids can be defined as images with symmetric positive definite matrix elements. A data pre-processing step, a specific convolution, a specific max-pooling, and a specific flatten layers are implemented to process such images. Then, the neural network is applied to spatial grids, whose elements are wind covariance matrices, to solve classification problems related to the feasibility of unmanned aerial vehicles based on wind direction and wind uncertainty. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20direction" title="wind direction">wind direction</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty%20level" title=" uncertainty level"> uncertainty level</a>, <a href="https://publications.waset.org/abstracts/search?q=unmanned%20aerial%20vehicle" title=" unmanned aerial vehicle"> unmanned aerial vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=convolution%20neural%20network" title=" convolution neural network"> convolution neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=SPD%20matrices" title=" SPD matrices"> SPD matrices</a> </p> <a href="https://publications.waset.org/abstracts/188367/the-uav-feasibility-trajectory-prediction-using-convolution-neural-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188367.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">50</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">354</span> A Hybrid Classical-Quantum Algorithm for Boundary Integral Equations of Scattering Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Damir%20Latypov">Damir Latypov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A hybrid classical-quantum algorithm to solve boundary integral equations (BIE) arising in problems of electromagnetic and acoustic scattering is proposed. The quantum speed-up is due to a Quantum Linear System Algorithm (QLSA). The original QLSA of Harrow et al. provides an exponential speed-up over the best-known classical algorithms but only in the case of sparse systems. Due to the non-local nature of integral operators, matrices arising from discretization of BIEs, are, however, dense. A QLSA for dense matrices was introduced in 2017. Its runtime as function of the system's size N is bounded by O(√Npolylog(N)). The run time of the best-known classical algorithm for an arbitrary dense matrix scales as O(N².³⁷³). Instead of exponential as in case of sparse matrices, here we have only a polynomial speed-up. Nevertheless, sufficiently high power of this polynomial, ~4.7, should make QLSA an appealing alternative. Unfortunately for the QLSA, the asymptotic separability of the Green's function leads to high compressibility of the BIEs matrices. Classical fast algorithms such as Multilevel Fast Multipole Method (MLFMM) take advantage of this fact and reduce the runtime to O(Nlog(N)), i.e., the QLSA is only quadratically faster than the MLFMM. To be truly impactful for computational electromagnetics and acoustics engineers, QLSA must provide more substantial advantage than that. We propose a computational scheme which combines elements of the classical fast algorithms with the QLSA to achieve the required performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20linear%20system%20algorithm" title="quantum linear system algorithm">quantum linear system algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20integral%20equations" title=" boundary integral equations"> boundary integral equations</a>, <a href="https://publications.waset.org/abstracts/search?q=dense%20matrices" title=" dense matrices"> dense matrices</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20scattering%20theory" title=" electromagnetic scattering theory"> electromagnetic scattering theory</a> </p> <a href="https://publications.waset.org/abstracts/130056/a-hybrid-classical-quantum-algorithm-for-boundary-integral-equations-of-scattering-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130056.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">353</span> Structural Damage Detection via Incomplete Model Data Using Output Data Only</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Noor%20Al-qayyim">Ahmed Noor Al-qayyim</a>, <a href="https://publications.waset.org/abstracts/search?q=Barlas%20%C3%96zden%20%C3%87a%C4%9Flayan"> Barlas Özden Çağlayan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Structural failure is caused mainly by damage that often occurs on structures. Many researchers focus on obtaining very efficient tools to detect the damage in structures in the early state. In the past decades, a subject that has received considerable attention in literature is the damage detection as determined by variations in the dynamic characteristics or response of structures. This study presents a new damage identification technique. The technique detects the damage location for the incomplete structure system using output data only. The method indicates the damage based on the free vibration test data by using “Two Points - Condensation (TPC) technique”. This method creates a set of matrices by reducing the structural system to two degrees of freedom systems. The current stiffness matrices are obtained from optimization of the equation of motion using the measured test data. The current stiffness matrices are compared with original (undamaged) stiffness matrices. High percentage changes in matrices’ coefficients lead to the location of the damage. TPC technique is applied to the experimental data of a simply supported steel beam model structure after inducing thickness change in one element. Where two cases are considered, the method detects the damage and determines its location accurately in both cases. In addition, the results illustrate that these changes in stiffness matrix can be a useful tool for continuous monitoring of structural safety using ambient vibration data. Furthermore, its efficiency proves that this technique can also be used for big structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damage%20detection" title="damage detection">damage detection</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=signals%20processing" title=" signals processing"> signals processing</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20health%20monitoring" title=" structural health monitoring"> structural health monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=two%20points%E2%80%93condensation" title=" two points–condensation"> two points–condensation</a> </p> <a href="https://publications.waset.org/abstracts/37035/structural-damage-detection-via-incomplete-model-data-using-output-data-only" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37035.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">352</span> The Effects of a Thin Liquid Layer on the Hydrodynamic Machine Rotor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaroslav%20Krutil">Jaroslav Krutil</a>, <a href="https://publications.waset.org/abstracts/search?q=Franti%C5%A1ek%20Pochyl%C3%BD"> František Pochylý</a>, <a href="https://publications.waset.org/abstracts/search?q=Simona%20Fialov%C3%A1"> Simona Fialová</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladim%C3%ADr%20Hab%C3%A1n"> Vladimír Habán</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A mathematical model of the additional effects of the liquid in the hydrodynamic gap is presented in the paper. An in-compressible viscous fluid is considered. Based on computational modeling are determined the matrices of mass, stiffness and damping. The mathematical model is experimentally verified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20modeling" title="computational modeling">computational modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20model" title=" mathematical model"> mathematical model</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamic%20gap" title=" hydrodynamic gap"> hydrodynamic gap</a>, <a href="https://publications.waset.org/abstracts/search?q=matrices%20of%20mass" title=" matrices of mass"> matrices of mass</a>, <a href="https://publications.waset.org/abstracts/search?q=stiffness%20and%20damping" title=" stiffness and damping"> stiffness and damping</a> </p> <a href="https://publications.waset.org/abstracts/22442/the-effects-of-a-thin-liquid-layer-on-the-hydrodynamic-machine-rotor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22442.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">557</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">351</span> Ultrasonic Agglomeration of Protein Matrices and Its Effect on Thermophysical, Macro- and Microstructural Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniela%20Rivera-Tobar%20Mario%20Perez-Won">Daniela Rivera-Tobar Mario Perez-Won</a>, <a href="https://publications.waset.org/abstracts/search?q=Roberto%20Lemus-Mondaca"> Roberto Lemus-Mondaca</a>, <a href="https://publications.waset.org/abstracts/search?q=Gipsy%20Tabilo-Munizaga"> Gipsy Tabilo-Munizaga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Different dietary trends worldwide seek to consume foods with anti-inflammatory properties, rich in antioxidants, proteins, and unsaturated fatty acids that lead to better metabolic, intestinal, mental, and cardiac health. In this sense, food matrices with high protein content based on macro and microalgae are an excellent alternative to meet the new needs of consumers. An emerging and environmentally friendly technology for producing protein matrices is ultrasonic agglomeration. It consists of the formation of permanent bonds between particles, improving the agglomeration of the matrix compared to conventionally agglomerated products (compression). Among the advantages of this process are the reduction of nutrient loss and the avoidance of binding agents. The objective of this research was to optimize the ultrasonic agglomeration process in matrices composed of Spirulina (Arthrospira platensis) powder and Cochayuyo (Durvillae Antartica) flour, by means of the response variable (Young's modulus) and the independent variables were the process conditions (percentage of ultrasonic amplitude: 70, 80 and 90; ultrasonic agglomeration times and cycles: 20, 25 and 30 seconds, and 3, 4 and 5). It was evaluated using a central composite design and analyzed using response surface methodology. In addition, the effects of agglomeration on thermophysical and microstructural properties were evaluated. It was determined that ultrasonic compression with 80 and 90% amplitude caused conformational changes according to Fourier infrared spectroscopy (FTIR) analysis, the best condition with respect to observed microstructure images (SEM) and differential scanning calorimetry (DSC) analysis, was the condition of 90% amplitude 25 and 30 seconds with 3 and 4 cycles of ultrasound. In conclusion, the agglomerated matrices present good macro and microstructural properties which would allow the design of food systems with better nutritional and functional properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20agglomeration" title="ultrasonic agglomeration">ultrasonic agglomeration</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20properties%20of%20food" title=" physical properties of food"> physical properties of food</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20matrices" title=" protein matrices"> protein matrices</a>, <a href="https://publications.waset.org/abstracts/search?q=macro%20and%20microalgae" title=" macro and microalgae"> macro and microalgae</a> </p> <a href="https://publications.waset.org/abstracts/172168/ultrasonic-agglomeration-of-protein-matrices-and-its-effect-on-thermophysical-macro-and-microstructural-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172168.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">350</span> A New Approach to Interval Matrices and Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Obaid%20Algahtani">Obaid Algahtani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An interval may be defined as a convex combination as follows: I=[a,b]={x_α=(1-α)a+αb: α∈[0,1]}. Consequently, we may adopt interval operations by applying the scalar operation point-wise to the corresponding interval points: I ∙J={x_α∙y_α ∶ αϵ[0,1],x_α ϵI ,y_α ϵJ}, With the usual restriction 0∉J if ∙ = ÷. These operations are associative: I+( J+K)=(I+J)+ K, I*( J*K)=( I*J )* K. These two properties, which are missing in the usual interval operations, will enable the extension of the usual linear system concepts to the interval setting in a seamless manner. The arithmetic introduced here avoids such vague terms as ”interval extension”, ”inclusion function”, determinants which we encounter in the engineering literature that deal with interval linear systems. On the other hand, these definitions were motivated by our attempt to arrive at a definition of interval random variables and investigate the corresponding statistical properties. We feel that they are the natural ones to handle interval systems. We will enable the extension of many results from usual state space models to interval state space models. The interval state space model we will consider here is one of the form X_((t+1) )=AX_t+ W_t, Y_t=HX_t+ V_t, t≥0, where A∈ 〖IR〗^(k×k), H ∈ 〖IR〗^(p×k) are interval matrices and 〖W 〗_t ∈ 〖IR〗^k,V_t ∈〖IR〗^p are zero – mean Gaussian white-noise interval processes. This feeling is reassured by the numerical results we obtained in a simulation examples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interval%20analysis" title="interval analysis">interval analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=interval%20matrices" title=" interval matrices"> interval matrices</a>, <a href="https://publications.waset.org/abstracts/search?q=state%20space%20model" title=" state space model"> state space model</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalman%20Filter" title=" Kalman Filter"> Kalman Filter</a> </p> <a href="https://publications.waset.org/abstracts/20692/a-new-approach-to-interval-matrices-and-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20692.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">349</span> Mechanical Properties of Polyurethane Scaffolds Reinforced with Green Nanofibers for Applications in Soft Tissue Regeneration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Abu%20Ghalia">Mustafa Abu Ghalia</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaser%20Dahman"> Yaser Dahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new class of polyurethane (PU) reinforced with green bacterial cellulose nanofibers (BC) were prepared using a solvent casting method, with the goal of fabricating green nanocomposites. Four series classes of BC (1, 2.5, 5, and 10 wt%) were reinforced into PU matrices via BC surface modification and subsequently BC-grafted into PU throughout silane coupling agent to improve BC dispersion and its interfacial interaction. The experiment results from the tensile tester were evaluated according to the response surface method (RSM) for optimizing the impacts of variable parameters, pore size, porosity, and BC contents on the mechanical properties. The compressive strength for PU-5 BC wt% was about 9.8 MPa, and decrease when being generated prosperity to recorded at 4.9 MPa. Nielson model was applied to investigate the BC stress concentration on the PU matrices. Likewise, krenche and Hapli-Tasi model were employed to evaluate the BC nanofiber reinforcement potential and BC orientation into PU matrices. The analysis of variance (ANOVA) demonstrated that only BC loading has a significant effect in increases tensile strength, young’s modulus, and a flexural modulus of the PU-BC nanocomposites. The optimal factors of the variables experiment confirmed to be 5 wt% for BC, 230 for pore size, and 80 % for porosity. Scanning electron microscopy (SEM) micrographs showed that the uniform distribution of nanofibers in the PU matrices with the addition of BC 5 wt %. Hydrolytic degradation revealed that the weight loss in PU-BC scaffold is higher than PU-BC wt %. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polyurethane%20scaffold" title="polyurethane scaffold">polyurethane scaffold</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20engineering" title=" tissue engineering"> tissue engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=polyurethane" title=" polyurethane"> polyurethane</a> </p> <a href="https://publications.waset.org/abstracts/138391/mechanical-properties-of-polyurethane-scaffolds-reinforced-with-green-nanofibers-for-applications-in-soft-tissue-regeneration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138391.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">348</span> Local Radial Basis Functions for Helmholtz Equation in Seismic Inversion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hebert%20Montegranario">Hebert Montegranario</a>, <a href="https://publications.waset.org/abstracts/search?q=Mauricio%20Londo%C3%B1o"> Mauricio Londoño </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solutions of Helmholtz equation are essential in seismic imaging methods like full wave inversion, which needs to solve many times the wave equation. Traditional methods like Finite Element Method (FEM) or Finite Differences (FD) have sparse matrices but may suffer the so called pollution effect in the numerical solutions of Helmholtz equation for large values of the wave number. On the other side, global radial basis functions have a better accuracy but produce full matrices that become unstable. In this research we combine the virtues of both approaches to find numerical solutions of Helmholtz equation, by applying a meshless method that produce sparse matrices by local radial basis functions. We solve the equation with absorbing boundary conditions of the kind Clayton-Enquist and PML (Perfect Matched Layers) and compared with results in standard literature, showing a promising performance by tackling both the pollution effect and matrix instability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Helmholtz%20equation" title="Helmholtz equation">Helmholtz equation</a>, <a href="https://publications.waset.org/abstracts/search?q=meshless%20methods" title=" meshless methods"> meshless methods</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20imaging" title=" seismic imaging"> seismic imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=wavefield%20inversion" title=" wavefield inversion"> wavefield inversion</a> </p> <a href="https://publications.waset.org/abstracts/33679/local-radial-basis-functions-for-helmholtz-equation-in-seismic-inversion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33679.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">547</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">347</span> Classical and Bayesian Inference of the Generalized Log-Logistic Distribution with Applications to Survival Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdisalam%20Hassan%20Muse">Abdisalam Hassan Muse</a>, <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Mwalili"> Samuel Mwalili</a>, <a href="https://publications.waset.org/abstracts/search?q=Oscar%20Ngesa"> Oscar Ngesa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A generalized log-logistic distribution with variable shapes of the hazard rate was introduced and studied, extending the log-logistic distribution by adding an extra parameter to the classical distribution, leading to greater flexibility in analysing and modeling various data types. The proposed distribution has a large number of well-known lifetime special sub-models such as; Weibull, log-logistic, exponential, and Burr XII distributions. Its basic mathematical and statistical properties were derived. The method of maximum likelihood was adopted for estimating the unknown parameters of the proposed distribution, and a Monte Carlo simulation study is carried out to assess the behavior of the estimators. The importance of this distribution is that its tendency to model both monotone (increasing and decreasing) and non-monotone (unimodal and bathtub shape) or reversed “bathtub” shape hazard rate functions which are quite common in survival and reliability data analysis. Furthermore, the flexibility and usefulness of the proposed distribution are illustrated in a real-life data set and compared to its sub-models; Weibull, log-logistic, and BurrXII distributions and other parametric survival distributions with 3-parmaeters; like the exponentiated Weibull distribution, the 3-parameter lognormal distribution, the 3- parameter gamma distribution, the 3-parameter Weibull distribution, and the 3-parameter log-logistic (also known as shifted log-logistic) distribution. The proposed distribution provided a better fit than all of the competitive distributions based on the goodness-of-fit tests, the log-likelihood, and information criterion values. Finally, Bayesian analysis and performance of Gibbs sampling for the data set are also carried out. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hazard%20rate%20function" title="hazard rate function">hazard rate function</a>, <a href="https://publications.waset.org/abstracts/search?q=log-logistic%20distribution" title=" log-logistic distribution"> log-logistic distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20likelihood%20estimation" title=" maximum likelihood estimation"> maximum likelihood estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20log-logistic%20distribution" title=" generalized log-logistic distribution"> generalized log-logistic distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=survival%20data" title=" survival data"> survival data</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20simulation" title=" Monte Carlo simulation"> Monte Carlo simulation</a> </p> <a href="https://publications.waset.org/abstracts/139326/classical-and-bayesian-inference-of-the-generalized-log-logistic-distribution-with-applications-to-survival-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139326.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">346</span> Radical Scavenging Activity of Protein Extracts from Pulse and Oleaginous Seeds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Silvia%20Gastaldello">Silvia Gastaldello</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Grillo"> Maria Grillo</a>, <a href="https://publications.waset.org/abstracts/search?q=Luca%20Tassoni"> Luca Tassoni</a>, <a href="https://publications.waset.org/abstracts/search?q=Claudio%20Maran"> Claudio Maran</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefano%20Balbo"> Stefano Balbo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Antioxidants are nowadays attractive not only for the countless benefits to the human and animal health, but also for the perspective of use as food preservative instead of synthetic chemical molecules. In this study, the radical scavenging activity of six protein extracts from pulse and oleaginous seeds was evaluated. The selected matrices are Pisum sativum (yellow pea from two different origins), Carthamus tinctorius (safflower), Helianthus annuus (sunflower), Lupinus luteus cv Mister (lupin) and Glycine max (soybean), since they are economically interesting for both human and animal nutrition. The seeds were grinded and proteins extracted from 20mg powder with a specific vegetal-extraction kit. Proteins have been quantified through Bradford protocol and scavenging activity was revealed using DPPH assay, based on radical DPPH (2,2-diphenyl-1-picrylhydrazyl) absorbance decrease in the presence of antioxidants molecules. Different concentrations of the protein extract (1, 5, 10, 50, 100, 500 µg/ml) were mixed with DPPH solution (DPPH 0,004% in ethanol 70% v/v). Ascorbic acid was used as a scavenging activity standard reference, at the same six concentrations of protein extracts, while DPPH solution was used as control. Samples and standard were prepared in triplicate and incubated for 30 minutes in dark at room temperature, the absorbance was read at 517nm (ABS30). Average and standard deviation of absorbance values were calculated for each concentration of samples and standard. Statistical analysis using t-students and p-value were performed to assess the statistical significance of the scavenging activity difference between the samples (or standard) and control (ABSctrl). The percentage of antioxidant activity has been calculated using the formula [(ABSctrl-ABS30)/ABSctrl]*100. The obtained results demonstrate that all matrices showed antioxidant activity. Ascorbic acid, used as standard, exhibits a 96% scavenging activity at the concentration of 500 µg/ml. At the same conditions, sunflower, safflower and yellow peas revealed the highest antioxidant performance among the matrices analyzed, with an activity of 74%, 68% and 70% respectively (p < 0.005). Although lupin and soybean exhibit a lower antioxidant activity compared to the other matrices, they showed a percentage of 46 and 36 respectively. All these data suggest the possibility to use undervalued edible matrices as antioxidants source. However, further studies are necessary to investigate a possible synergic effect of several matrices as well as the impact of industrial processes for a large-scale approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidants" title="antioxidants">antioxidants</a>, <a href="https://publications.waset.org/abstracts/search?q=DPPH%20assay" title=" DPPH assay"> DPPH assay</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20matrices" title=" natural matrices"> natural matrices</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetal%20proteins" title=" vegetal proteins"> vegetal proteins</a> </p> <a href="https://publications.waset.org/abstracts/69686/radical-scavenging-activity-of-protein-extracts-from-pulse-and-oleaginous-seeds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69686.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">345</span> On the Well-Posedness of Darcy–Forchheimer Power Model Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Johnson%20Audu">Johnson Audu</a>, <a href="https://publications.waset.org/abstracts/search?q=Faisal%20Fairag"> Faisal Fairag</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In a bounded subset of R^d, d=2 or 3, we consider the Darcy-Forchheimer power model with the exponent 1 < m ≤ 2 for a single-phase strong-inertia fluid flow in a porous medium. Under necessary compatibility condition, and some mild regularity assumptions on the interior and the boundary data, we prove the existence and uniqueness of solution (u, p) in L^(m+1 ) (Ω)^d X (W^(1,(m+1)/m) (Ω)^d ⋂L_0^2 (Ω)^d) and its stability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=porous%20media" title="porous media">porous media</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20law" title=" power law"> power law</a>, <a href="https://publications.waset.org/abstracts/search?q=strong%20inertia" title=" strong inertia"> strong inertia</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear" title=" nonlinear"> nonlinear</a>, <a href="https://publications.waset.org/abstracts/search?q=monotone%20type" title=" monotone type"> monotone type</a> </p> <a href="https://publications.waset.org/abstracts/62820/on-the-well-posedness-of-darcy-forchheimer-power-model-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62820.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">344</span> Polymer Matrices Based on Natural Compounds: Synthesis and Characterization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sonia%20Kudlacik-Kramarczyk">Sonia Kudlacik-Kramarczyk</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20Drabczyk"> Anna Drabczyk</a>, <a href="https://publications.waset.org/abstracts/search?q=Dagmara%20Malina"> Dagmara Malina</a>, <a href="https://publications.waset.org/abstracts/search?q=Bozena%20Tyliszczak"> Bozena Tyliszczak</a>, <a href="https://publications.waset.org/abstracts/search?q=Agnieszka%20Sobczak-Kupiec"> Agnieszka Sobczak-Kupiec</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: In the preparation of polymer materials, compounds of natural origin are currently gaining more and more interest. This is particularly noticeable in the case of synthesis of materials considered for biomedical use. Then, selected material has to meet many requirements. It should be characterized by non-toxicity, biodegradability and biocompatibility. Therefore special attention is directed to substances such as polysaccharides, proteins or substances that are the basic building components of proteins, i.e. amino acids. These compounds may be crosslinked with other reagents that leads to the preparation of polymer matrices. Such amino acids as e.g. cysteine or histidine. On the other hand, previously mentioned requirements may be met by polymers obtained as a result of biosynthesis, e.g. polyhydroxybutyrate. This polymer belongs to the group of aliphatic polyesters that is synthesized by microorganisms (selected strain of bacteria) under specific conditions. It is possible to modify matrices based on given polymer with substances of various origin. Such a modification may result in the change of their properties or/and in providing the material with new features desirable in viewpoint of specific application. Described materials are synthesized using UV radiation. Process of photopolymerization is fast, waste-free and enables to obtain final products with favorable properties. Methodology: Polymer matrices have been prepared by means of photopolymerization. First step involved the preparation of solutions of particular reagents and mixing them in the appropriate ratio. Next, crosslinking agent and photoinitiator have been added to the reaction mixture and the whole was poured into the Petri dish and treated with UV radiation. After the synthesis, polymer samples were dried at room temperature and subjected to the numerous analyses aimed at the determining their physicochemical properties. Firstly, sorption properties of obtained polymer matrices have been determined. Next, mechanical properties have been characterized, i.e. tensile strength. The ability to deformation under applied stress of all prepared polymer matrices has been checked. Such a property is important in viewpoint of the application of analyzed materials e.g. as wound dressings. Wound dressings have to be elastic because depending on the location of the wound and its mobility, such a dressing has to adhere properly to the wound. Furthermore, considering the use of the materials for biomedical purposes it is essential to determine its behavior in environments simulating these ones occurring in human body. Therefore incubation studies using selected liquids have also been conducted. Conclusions: As a result of photopolymerization process, polymer matrices based on natural compounds have been prepared. These exhibited favorable mechanical properties and swelling ability. Moreover, biocompatibility in relation to simulated body fluids has been stated. Therefore it can be concluded that analyzed polymer matrices constitute an interesting materials that may be considered for biomedical use and may be subjected to the further more advanced analyses using specific cell lines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photopolymerization" title="photopolymerization">photopolymerization</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20matrices" title=" polymer matrices"> polymer matrices</a>, <a href="https://publications.waset.org/abstracts/search?q=simulated%20body%20fluids" title=" simulated body fluids"> simulated body fluids</a>, <a href="https://publications.waset.org/abstracts/search?q=swelling%20properties" title=" swelling properties"> swelling properties</a> </p> <a href="https://publications.waset.org/abstracts/107390/polymer-matrices-based-on-natural-compounds-synthesis-and-characterization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107390.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=monotone%20matrices&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=monotone%20matrices&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=monotone%20matrices&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=monotone%20matrices&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=monotone%20matrices&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=monotone%20matrices&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=monotone%20matrices&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=monotone%20matrices&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=monotone%20matrices&amp;page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=monotone%20matrices&amp;page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=monotone%20matrices&amp;page=12">12</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=monotone%20matrices&amp;page=13">13</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=monotone%20matrices&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10