CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;34 of 34 results for author: <span class="mathjax">Berger, T</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Berger%2C+T">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Berger, T"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Berger%2C+T&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Berger, T"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.02469">arXiv:2502.02469</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.02469">pdf</a>, <a href="https://arxiv.org/format/2502.02469">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> </div> <p class="title is-5 mathjax"> Nowcasting Solar Energetic Particle Events for Mars Missions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=L%C3%B6we%2C+J+L">Jan Leo L枚we</a>, <a href="/search/physics?searchtype=author&amp;query=Khaksarighiri%2C+S">Salman Khaksarighiri</a>, <a href="/search/physics?searchtype=author&amp;query=Wimmer-Schweingruber%2C+R+F">Robert F. Wimmer-Schweingruber</a>, <a href="/search/physics?searchtype=author&amp;query=Hassler%2C+D+M">Donald M. Hassler</a>, <a href="/search/physics?searchtype=author&amp;query=Ehresmann%2C+B">Bent Ehresmann</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+J">Jingnan Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Reitz%2C+G">G眉nther Reitz</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">Thomas Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Matthi%C3%A4%2C+D">Daniel Matthi盲</a>, <a href="/search/physics?searchtype=author&amp;query=Zeitlin%2C+C">Cary Zeitlin</a>, <a href="/search/physics?searchtype=author&amp;query=L%C3%B6ffner%2C+S">Sven L枚ffner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.02469v1-abstract-short" style="display: inline;"> In addition to the omnipresent Galactic Cosmic Rays (GCRs), sudden solar energetic particle (SEP) events present considerable health hazards for manned space missions. These events not only contribute to an increased long-term cancer risk, but can, in extreme cases, cause acute radiation syndromes. Forecasting their imminent occurrence could significantly reduce radiation exposure by warning astro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.02469v1-abstract-full').style.display = 'inline'; document.getElementById('2502.02469v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.02469v1-abstract-full" style="display: none;"> In addition to the omnipresent Galactic Cosmic Rays (GCRs), sudden solar energetic particle (SEP) events present considerable health hazards for manned space missions. These events not only contribute to an increased long-term cancer risk, but can, in extreme cases, cause acute radiation syndromes. Forecasting their imminent occurrence could significantly reduce radiation exposure by warning astronauts to move to shelter. However, all currently available tools are primarily designed for the Earth or Earth-Moon system, which limits their applicability to future Mars missions. To address this, we developed a nowcasting system for SEP events applicable in deep space and on the Martian surface, which serves as a reliable last-resort backup when forecasts fail. The methodology of this system is based on dose rates measured by the Radiation Assessment Detector (RAD) onboard the Mars Science Laboratory (MSL), which recorded 5 SEP events during the seven-month flight to Mars and 16 since its landing on Mars on August 6, 2012. An SEP event is triggered, and an astronaut is warned as soon as dose rates exceed the omnipresent background level by at least 25%. This approach suggests that our system can provide astronauts with at least 30 minutes to avoid both peak radiation exposure and the majority of the cumulative dose from SEP events. Our nowcasting system is robust, easily implementable in real-life scenarios, and achieves a near-zero false alarm rate both in deep space and on the Martian surface. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.02469v1-abstract-full').style.display = 'none'; document.getElementById('2502.02469v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.02001">arXiv:2409.02001</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.02001">pdf</a>, <a href="https://arxiv.org/format/2409.02001">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> </div> <p class="title is-5 mathjax"> Effective dose equivalent estimation for humans on Mars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ralha%2C+M">Miguel Ralha</a>, <a href="/search/physics?searchtype=author&amp;query=Teles%2C+P">Pedro Teles</a>, <a href="/search/physics?searchtype=author&amp;query=Santos%2C+N">Nuno Santos</a>, <a href="/search/physics?searchtype=author&amp;query=Matthi%C3%A4%2C+D">Daniel Matthi盲</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">Thomas Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Cortes%C3%A3o%2C+M">Marta Cortes茫o</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.02001v1-abstract-short" style="display: inline;"> Exposure to cosmic radiation is a major concern in space exploration. On the Martian surface, a complex radiation field is present, formed by a constant influx of galactic cosmic radiation and the secondary particles produced by their interaction with the planet&#39;s atmosphere and regolith. In this work, a Martian environment model was developed using MCNP6 following the guidelines of the 1st Mars S&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02001v1-abstract-full').style.display = 'inline'; document.getElementById('2409.02001v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.02001v1-abstract-full" style="display: none;"> Exposure to cosmic radiation is a major concern in space exploration. On the Martian surface, a complex radiation field is present, formed by a constant influx of galactic cosmic radiation and the secondary particles produced by their interaction with the planet&#39;s atmosphere and regolith. In this work, a Martian environment model was developed using MCNP6 following the guidelines of the 1st Mars Space Radiation Modeling Workshop. The accuracy of the model was tested by comparing particle spectra and dose rate results with other model results and measurements from the Radiation Assessment Detector (RAD) onboard the Curiosity rover, taken between November 15, 2015, and January 15, 2016. The ICRP&#39;s voxel-type computational phantoms were then implemented into the code. Organ dose and effective dose equivalent were assessed for the same time period. The viability of a mission on the surface of Mars for extended periods of time under the assumed conditions was here investigated. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02001v1-abstract-full').style.display = 'none'; document.getElementById('2409.02001v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.06845">arXiv:2312.06845</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.06845">pdf</a>, <a href="https://arxiv.org/format/2312.06845">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> High-Cadence Thermospheric Density Estimation enabled by Machine Learning on Solar Imagery </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Malik%2C+S+A">Shreshth A. Malik</a>, <a href="/search/physics?searchtype=author&amp;query=Walsh%2C+J">James Walsh</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarini%2C+G">Giacomo Acciarini</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T+E">Thomas E. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Baydin%2C+A+G">At谋l谋m G眉ne艧 Baydin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.06845v1-abstract-short" style="display: inline;"> Accurate estimation of thermospheric density is critical for precise modeling of satellite drag forces in low Earth orbit (LEO). Improving this estimation is crucial to tasks such as state estimation, collision avoidance, and re-entry calculations. The largest source of uncertainty in determining thermospheric density is modeling the effects of space weather driven by solar and geomagnetic activit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.06845v1-abstract-full').style.display = 'inline'; document.getElementById('2312.06845v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.06845v1-abstract-full" style="display: none;"> Accurate estimation of thermospheric density is critical for precise modeling of satellite drag forces in low Earth orbit (LEO). Improving this estimation is crucial to tasks such as state estimation, collision avoidance, and re-entry calculations. The largest source of uncertainty in determining thermospheric density is modeling the effects of space weather driven by solar and geomagnetic activity. Current operational models rely on ground-based proxy indices which imperfectly correlate with the complexity of solar outputs and geomagnetic responses. In this work, we directly incorporate NASA&#39;s Solar Dynamics Observatory (SDO) extreme ultraviolet (EUV) spectral images into a neural thermospheric density model to determine whether the predictive performance of the model is increased by using space-based EUV imagery data instead of, or in addition to, the ground-based proxy indices. We demonstrate that EUV imagery can enable predictions with much higher temporal resolution and replace ground-based proxies while significantly increasing performance relative to current operational models. Our method paves the way for assimilating EUV image data into operational thermospheric density forecasting models for use in LEO satellite navigation processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.06845v1-abstract-full').style.display = 'none'; document.getElementById('2312.06845v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted at the Machine Learning and the Physical Sciences workshop, NeurIPS 2023</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.12369">arXiv:2212.12369</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.12369">pdf</a>, <a href="https://arxiv.org/format/2212.12369">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0139825">10.1063/5.0139825 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A compact and versatile cryogenic probe station for quantum device testing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=de+Kruijf%2C+M">Mathieu de Kruijf</a>, <a href="/search/physics?searchtype=author&amp;query=Geyer%2C+S">Simon Geyer</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">Toni Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Mergenthaler%2C+M">Matthias Mergenthaler</a>, <a href="/search/physics?searchtype=author&amp;query=Braakman%2C+F">Floris Braakman</a>, <a href="/search/physics?searchtype=author&amp;query=Warburton%2C+R+J">Richard J. Warburton</a>, <a href="/search/physics?searchtype=author&amp;query=Kuhlmann%2C+A+V">Andreas V. Kuhlmann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.12369v1-abstract-short" style="display: inline;"> Fast feedback from cryogenic electrical characterization measurements is key for the development of scalable quantum computing technology. At room temperature, high-throughput device testing is accomplished with a probe-based solution, where electrical probes are repeatedly positioned onto devices for acquiring statistical data. In this work we present a probe station that can be operated from roo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.12369v1-abstract-full').style.display = 'inline'; document.getElementById('2212.12369v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.12369v1-abstract-full" style="display: none;"> Fast feedback from cryogenic electrical characterization measurements is key for the development of scalable quantum computing technology. At room temperature, high-throughput device testing is accomplished with a probe-based solution, where electrical probes are repeatedly positioned onto devices for acquiring statistical data. In this work we present a probe station that can be operated from room temperature down to below 2$\,$K. Its small size makes it compatible with standard cryogenic measurement setups with a magnet. A large variety of electronic devices can be tested. Here, we demonstrate the performance of the prober by characterizing silicon fin field-effect transistors as a host for quantum dot spin qubits. Such a tool can massively accelerate the design-fabrication-measurement cycle and provide important feedback for process optimization towards building scalable quantum circuits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.12369v1-abstract-full').style.display = 'none'; document.getElementById('2212.12369v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.13981">arXiv:2009.13981</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.13981">pdf</a>, <a href="https://arxiv.org/format/2009.13981">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-020-08777-z">10.1140/epjc/s10052-020-08777-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $^{222}$Rn emanation measurements for the XENON1T experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&amp;query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&amp;query=Angevaare%2C+J+R">J. R. Angevaare</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Barge%2C+D">D. Barge</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauermeister%2C+B">B. Bauermeister</a>, <a href="/search/physics?searchtype=author&amp;query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a> , et al. (118 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.13981v3-abstract-short" style="display: inline;"> The selection of low-radioactive construction materials is of utmost importance for the success of low-energy rare event search experiments. Besides radioactive contaminants in the bulk, the emanation of radioactive radon atoms from material surfaces attains increasing relevance in the effort to further reduce the background of such experiments. In this work, we present the $^{222}$Rn emanation me&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.13981v3-abstract-full').style.display = 'inline'; document.getElementById('2009.13981v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.13981v3-abstract-full" style="display: none;"> The selection of low-radioactive construction materials is of utmost importance for the success of low-energy rare event search experiments. Besides radioactive contaminants in the bulk, the emanation of radioactive radon atoms from material surfaces attains increasing relevance in the effort to further reduce the background of such experiments. In this work, we present the $^{222}$Rn emanation measurements performed for the XENON1T dark matter experiment. Together with the bulk impurity screening campaign, the results enabled us to select the radio-purest construction materials, targeting a $^{222}$Rn activity concentration of 10 $渭$Bq/kg in 3.2 t of xenon. The knowledge of the distribution of the $^{222}$Rn sources allowed us to selectively eliminate critical components in the course of the experiment. The predictions from the emanation measurements were compared to data of the $^{222}$Rn activity concentration in XENON1T. The final $^{222}$Rn activity concentration of (4.5 $\pm$ 0.1) $渭$Bq/kg in the target of XENON1T is the lowest ever achieved in a xenon dark matter experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.13981v3-abstract-full').style.display = 'none'; document.getElementById('2009.13981v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 81, 337 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.08796">arXiv:2007.08796</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.08796">pdf</a>, <a href="https://arxiv.org/format/2007.08796">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2020/11/031">10.1088/1475-7516/2020/11/031 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Projected WIMP Sensitivity of the XENONnT Dark Matter Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=The+XENON+collaboration"> The XENON collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&amp;query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&amp;query=Angevaare%2C+J+R">J. R. Angevaare</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Barge%2C+D">D. Barge</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauermeister%2C+B">B. Bauermeister</a>, <a href="/search/physics?searchtype=author&amp;query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a> , et al. (115 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.08796v2-abstract-short" style="display: inline;"> XENONnT is a dark matter direct detection experiment, utilizing 5.9 t of instrumented liquid xenon, located at the INFN Laboratori Nazionali del Gran Sasso. In this work, we predict the experimental background and project the sensitivity of XENONnT to the detection of weakly interacting massive particles (WIMPs). The expected average differential background rate in the energy region of interest, c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.08796v2-abstract-full').style.display = 'inline'; document.getElementById('2007.08796v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.08796v2-abstract-full" style="display: none;"> XENONnT is a dark matter direct detection experiment, utilizing 5.9 t of instrumented liquid xenon, located at the INFN Laboratori Nazionali del Gran Sasso. In this work, we predict the experimental background and project the sensitivity of XENONnT to the detection of weakly interacting massive particles (WIMPs). The expected average differential background rate in the energy region of interest, corresponding to (1, 13) keV and (4, 50) keV for electronic and nuclear recoils, amounts to $12.3 \pm 0.6$ (keV t y)$^{-1}$ and $(2.2\pm 0.5)\times 10^{-3}$ (keV t y)$^{-1}$, respectively, in a 4 t fiducial mass. We compute unified confidence intervals using the profile construction method, in order to ensure proper coverage. With the exposure goal of 20 t$\,$y, the expected sensitivity to spin-independent WIMP-nucleon interactions reaches a cross-section of $1.4\times10^{-48}$ cm$^2$ for a 50 GeV/c$^2$ mass WIMP at 90% confidence level, more than one order of magnitude beyond the current best limit, set by XENON1T. In addition, we show that for a 50 GeV/c$^2$ WIMP with cross-sections above $2.6\times10^{-48}$ cm$^2$ ($5.0\times10^{-48}$ cm$^2$) the median XENONnT discovery significance exceeds 3$蟽$ (5$蟽$). The expected sensitivity to the spin-dependent WIMP coupling to neutrons (protons) reaches $2.2\times10^{-43}$ cm$^2$ ($6.0\times10^{-42}$ cm$^2$). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.08796v2-abstract-full').style.display = 'none'; document.getElementById('2007.08796v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JCAP11(2020)031 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.03825">arXiv:2003.03825</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.03825">pdf</a>, <a href="https://arxiv.org/format/2003.03825">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-020-8284-0">10.1140/epjc/s10052-020-8284-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Energy resolution and linearity of XENON1T in the MeV energy range </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&amp;query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&amp;query=Angevaare%2C+J">J. Angevaare</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Barge%2C+D">D. Barge</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauermeister%2C+B">B. Bauermeister</a>, <a href="/search/physics?searchtype=author&amp;query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a> , et al. (113 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.03825v2-abstract-short" style="display: inline;"> Xenon dual-phase time projection chambers designed to search for Weakly Interacting Massive Particles have so far shown a relative energy resolution which degrades with energy above $\sim$200 keV due to the saturation effects. This has limited their sensitivity in the search for rare events like the neutrinoless double-beta decay of $^{136}$Xe at its $Q$-value, $Q_{尾尾}\simeq$ 2.46 MeV. For the XEN&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.03825v2-abstract-full').style.display = 'inline'; document.getElementById('2003.03825v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.03825v2-abstract-full" style="display: none;"> Xenon dual-phase time projection chambers designed to search for Weakly Interacting Massive Particles have so far shown a relative energy resolution which degrades with energy above $\sim$200 keV due to the saturation effects. This has limited their sensitivity in the search for rare events like the neutrinoless double-beta decay of $^{136}$Xe at its $Q$-value, $Q_{尾尾}\simeq$ 2.46 MeV. For the XENON1T dual-phase time projection chamber, we demonstrate that the relative energy resolution at 1 $蟽/渭$ is as low as (0.80$\pm$0.02) % in its one-ton fiducial mass, and for single-site interactions at $Q_{尾尾}$. We also present a new signal correction method to rectify the saturation effects of the signal readout system, resulting in more accurate position reconstruction and indirectly improving the energy resolution. The very good result achieved in XENON1T opens up new windows for the xenon dual-phase dark matter detectors to simultaneously search for other rare events. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.03825v2-abstract-full').style.display = 'none'; document.getElementById('2003.03825v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 80, 785 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.12771">arXiv:1907.12771</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.12771">pdf</a>, <a href="https://arxiv.org/format/1907.12771">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.123.241803">10.1103/PhysRevLett.123.241803 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for Light Dark Matter Interactions Enhanced by the Migdal effect or Bremsstrahlung in XENON1T </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&amp;query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Barge%2C+D">D. Barge</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauermeister%2C+B">B. Bauermeister</a>, <a href="/search/physics?searchtype=author&amp;query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a>, <a href="/search/physics?searchtype=author&amp;query=Coderre%2C+D">D. Coderre</a> , et al. (109 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.12771v4-abstract-short" style="display: inline;"> Direct dark matter detection experiments based on a liquid xenon target are leading the search for dark matter particles with masses above $\sim$ 5 GeV/c$^2$, but have limited sensitivity to lighter masses because of the small momentum transfer in dark matter-nucleus elastic scattering. However, there is an irreducible contribution from inelastic processes accompanying the elastic scattering, whic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.12771v4-abstract-full').style.display = 'inline'; document.getElementById('1907.12771v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.12771v4-abstract-full" style="display: none;"> Direct dark matter detection experiments based on a liquid xenon target are leading the search for dark matter particles with masses above $\sim$ 5 GeV/c$^2$, but have limited sensitivity to lighter masses because of the small momentum transfer in dark matter-nucleus elastic scattering. However, there is an irreducible contribution from inelastic processes accompanying the elastic scattering, which leads to the excitation and ionization of the recoiling atom (the Migdal effect) or the emission of a Bremsstrahlung photon. In this letter, we report on a probe of low-mass dark matter with masses down to about 85 MeV/c$^2$ by looking for electronic recoils induced by the Migdal effect and Bremsstrahlung, using data from the XENON1T experiment. Besides the approach of detecting both scintillation and ionization signals, we exploit an approach that uses ionization signals only, which allows for a lower detection threshold. This analysis significantly enhances the sensitivity of XENON1T to light dark matter previously beyond its reach. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.12771v4-abstract-full').style.display = 'none'; document.getElementById('1907.12771v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 123, 241803 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.04717">arXiv:1906.04717</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.04717">pdf</a>, <a href="https://arxiv.org/format/1906.04717">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.100.052014">10.1103/PhysRevD.100.052014 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> XENON1T Dark Matter Data Analysis: Signal Reconstruction, Calibration and Event Selection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauermeister%2C+B">B. Bauermeister</a>, <a href="/search/physics?searchtype=author&amp;query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a>, <a href="/search/physics?searchtype=author&amp;query=Coderre%2C+D">D. Coderre</a>, <a href="/search/physics?searchtype=author&amp;query=Colijn%2C+A+P">A. P. Colijn</a>, <a href="/search/physics?searchtype=author&amp;query=Conrad%2C+J">J. Conrad</a> , et al. (103 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.04717v2-abstract-short" style="display: inline;"> The XENON1T experiment at the Laboratori Nazionali del Gran Sasso is the most sensitive direct detection experiment for dark matter in the form of weakly interacting particles (WIMPs) with masses above $6\,$GeV/$c^2$ scattering off nuclei. The detector employs a dual-phase time projection chamber with 2.0 metric tons of liquid xenon in the target. A one metric $\mathrm{ton}\times\mathrm{year}$ exp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.04717v2-abstract-full').style.display = 'inline'; document.getElementById('1906.04717v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.04717v2-abstract-full" style="display: none;"> The XENON1T experiment at the Laboratori Nazionali del Gran Sasso is the most sensitive direct detection experiment for dark matter in the form of weakly interacting particles (WIMPs) with masses above $6\,$GeV/$c^2$ scattering off nuclei. The detector employs a dual-phase time projection chamber with 2.0 metric tons of liquid xenon in the target. A one metric $\mathrm{ton}\times\mathrm{year}$ exposure of science data was collected between October 2016 and February 2018. This article reports on the performance of the detector during this period and describes details of the data analysis that led to the most stringent exclusion limits on various WIMP-nucleon interaction models to date. In particular, signal reconstruction, event selection and calibration of the detector response to nuclear and electronic recoils in XENON1T are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.04717v2-abstract-full').style.display = 'none'; document.getElementById('1906.04717v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 100, 052014 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.04253">arXiv:1906.04253</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.04253">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1073/pnas.1812905116">10.1073/pnas.1812905116 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Growth Model Interpretation of Planet Size Distribution </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zeng%2C+L">Li Zeng</a>, <a href="/search/physics?searchtype=author&amp;query=Jacobsen%2C+S+B">Stein B. Jacobsen</a>, <a href="/search/physics?searchtype=author&amp;query=Sasselov%2C+D+D">Dimitar D. Sasselov</a>, <a href="/search/physics?searchtype=author&amp;query=Petaev%2C+M+I">Michail I. Petaev</a>, <a href="/search/physics?searchtype=author&amp;query=Vanderburg%2C+A">Andrew Vanderburg</a>, <a href="/search/physics?searchtype=author&amp;query=Lopez-Morales%2C+M">Mercedes Lopez-Morales</a>, <a href="/search/physics?searchtype=author&amp;query=Perez-Mercader%2C+J">Juan Perez-Mercader</a>, <a href="/search/physics?searchtype=author&amp;query=Mattsson%2C+T+R">Thomas R. Mattsson</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+G">Gongjie Li</a>, <a href="/search/physics?searchtype=author&amp;query=Heising%2C+M+Z">Matthew Z. Heising</a>, <a href="/search/physics?searchtype=author&amp;query=Bonomo%2C+A+S">Aldo S. Bonomo</a>, <a href="/search/physics?searchtype=author&amp;query=Damasso%2C+M">Mario Damasso</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T+A">Travis A. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+H">Hao Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Levi%2C+A">Amit Levi</a>, <a href="/search/physics?searchtype=author&amp;query=Wordsworth%2C+R+D">Robin D. Wordsworth</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.04253v1-abstract-short" style="display: inline;"> The radii and orbital periods of 4000+ confirmed/candidate exoplanets have been precisely measured by the Kepler mission. The radii show a bimodal distribution, with two peaks corresponding to smaller planets (likely rocky) and larger intermediate-size planets, respectively. While only the masses of the planets orbiting the brightest stars can be determined by ground-based spectroscopic observatio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.04253v1-abstract-full').style.display = 'inline'; document.getElementById('1906.04253v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.04253v1-abstract-full" style="display: none;"> The radii and orbital periods of 4000+ confirmed/candidate exoplanets have been precisely measured by the Kepler mission. The radii show a bimodal distribution, with two peaks corresponding to smaller planets (likely rocky) and larger intermediate-size planets, respectively. While only the masses of the planets orbiting the brightest stars can be determined by ground-based spectroscopic observations, these observations allow calculation of their average densities placing constraints on the bulk compositions and internal structures. Yet an important question about the composition of planets ranging from 2 to 4 Earth radii still remains. They may either have a rocky core enveloped in a H2-He gaseous envelope (gas dwarfs) or contain a significant amount of multi-component, H2O-dominated ices/fluids (water worlds). Planets in the mass range of 10-15 Earth masses, if half-ice and half-rock by mass, have radii of 2.5 Earth radii, which exactly match the second peak of the exoplanet radius bimodal distribution. Any planet in the 2-4 Earth radii range requires a gas envelope of at most a few mass percentage points, regardless of the core composition. To resolve the ambiguity of internal compositions, we use a growth model and conduct Monte Carlo simulations to demonstrate that many intermediate-size planets are water worlds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.04253v1-abstract-full').style.display = 'none'; document.getElementById('1906.04253v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">PNAS link: https://www.pnas.org/content/116/20/9723 Complete data and mass-radius tables are available at: https://www.cfa.harvard.edu/~lzeng/planetmodels.html</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PNAS May 2019, 116 (20) 9723-9728 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.00819">arXiv:1906.00819</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.00819">pdf</a>, <a href="https://arxiv.org/format/1906.00819">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/14/07/P07016">10.1088/1748-0221/14/07/P07016 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The XENON1T Data Acquisition System </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Barge%2C+D">D. Barge</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauermeister%2C+B">B. Bauermeister</a>, <a href="/search/physics?searchtype=author&amp;query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=B%C3%BCtikofer%2C+L">L. B眉tikofer</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a>, <a href="/search/physics?searchtype=author&amp;query=Coderre%2C+D">D. Coderre</a> , et al. (108 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.00819v2-abstract-short" style="display: inline;"> The XENON1T liquid xenon time projection chamber is the most sensitive detector built to date for the measurement of direct interactions of weakly interacting massive particles with normal matter. The data acquisition system (DAQ) is constructed from commercial, open source, and custom components to digitize signals from the detector and store them for later analysis. The system achieves an extrem&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.00819v2-abstract-full').style.display = 'inline'; document.getElementById('1906.00819v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.00819v2-abstract-full" style="display: none;"> The XENON1T liquid xenon time projection chamber is the most sensitive detector built to date for the measurement of direct interactions of weakly interacting massive particles with normal matter. The data acquisition system (DAQ) is constructed from commercial, open source, and custom components to digitize signals from the detector and store them for later analysis. The system achieves an extremely low signal threshold below a tenth of a photoelectron using a parallelized readout with the global trigger deferred to a later, software stage. The event identification is based on MongoDB database queries and has over 97% efficiency at recognizing interactions at the analysis energy threshold. A readout bandwidth over 300 MB/s is reached in calibration modes and is further expandable via parallelization. This DAQ system was successfully used during three years of operation of XENON1T. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.00819v2-abstract-full').style.display = 'none'; document.getElementById('1906.00819v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 6 figures, submitted to JINST; Version 2 with minor updates to text</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 14 (2019) no.07, P07016 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.03594">arXiv:1903.03594</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1903.03594">pdf</a>, <a href="https://arxiv.org/format/1903.03594">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/14/05/P05005">10.1088/1748-0221/14/05/P05005 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cylindrical Films for Electronics in Low Background Physics Searches </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Odgers%2C+K">K. Odgers</a>, <a href="/search/physics?searchtype=author&amp;query=Giordano%2C+M">M. Giordano</a>, <a href="/search/physics?searchtype=author&amp;query=Lewis%2C+K">K. Lewis</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Freedberg%2C+J">J. Freedberg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.03594v3-abstract-short" style="display: inline;"> A technique for manufacturing thin-film resistors on cylindrical substrates is demonstrated. These devices are aimed for application in rare-event detectors that must minimize radioactive backgrounds from trace impurities in electronic components inside the detector. Cylindrical, conducting Ni films were created via Electron Beam Deposition, using a mechanism that rotates the substrate, to demonst&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.03594v3-abstract-full').style.display = 'inline'; document.getElementById('1903.03594v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.03594v3-abstract-full" style="display: none;"> A technique for manufacturing thin-film resistors on cylindrical substrates is demonstrated. These devices are aimed for application in rare-event detectors that must minimize radioactive backgrounds from trace impurities in electronic components inside the detector. Cylindrical, conducting Ni films were created via Electron Beam Deposition, using a mechanism that rotates the substrate, to demonstrate proof of principle and measure the resistivity on axis and in azimuth. These films are characterized by measurements using a facsimile of the Van Der Pauw method combined with electrostatic simulations. In the two cylindrical samples made we observe anisotropic electrical behavior with resistivities of 1392.5, 888.5 $n 惟m$ around the azimuth and of 81.9, 72.8 $n 惟m$ along the axis of the sample. We show that this anisotropy is not caused just by the electron beam evaporation by measuring a planar rectangle sample made in the same process but without spinning which has estimated resistivities of 66.5, and 71.9 $n 惟m$ in both directions, and calculated resistivity using the standard Van der Pauw equation of $66.1\pm2.8$ $n 惟m$. In spite of the anisotropy in the cylindrical samples, we show that these films can be used as resistors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.03594v3-abstract-full').style.display = 'none'; document.getElementById('1903.03594v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.11297">arXiv:1902.11297</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.11297">pdf</a>, <a href="https://arxiv.org/format/1902.11297">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.99.112009">10.1103/PhysRevD.99.112009 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> XENON1T Dark Matter Data Analysis: Signal &amp; Background Models, and Statistical Inference </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauermeister%2C+B">B. Bauermeister</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a>, <a href="/search/physics?searchtype=author&amp;query=Coderre%2C+D">D. Coderre</a>, <a href="/search/physics?searchtype=author&amp;query=Colijn%2C+A+P">A. P. Colijn</a>, <a href="/search/physics?searchtype=author&amp;query=Conrad%2C+J">J. Conrad</a>, <a href="/search/physics?searchtype=author&amp;query=Cussonneau%2C+J+P">J. P. Cussonneau</a> , et al. (101 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.11297v2-abstract-short" style="display: inline;"> The XENON1T experiment searches for dark matter particles through their scattering off xenon atoms in a 2 tonne liquid xenon target. The detector is a dual-phase time projection chamber, which measures simultaneously the scintillation and ionization signals produced by interactions in target volume, to reconstruct energy and position, as well as the type of the interaction. The background rate in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.11297v2-abstract-full').style.display = 'inline'; document.getElementById('1902.11297v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.11297v2-abstract-full" style="display: none;"> The XENON1T experiment searches for dark matter particles through their scattering off xenon atoms in a 2 tonne liquid xenon target. The detector is a dual-phase time projection chamber, which measures simultaneously the scintillation and ionization signals produced by interactions in target volume, to reconstruct energy and position, as well as the type of the interaction. The background rate in the central volume of XENON1T detector is the lowest achieved so far with a liquid xenon-based direct detection experiment. In this work we describe the response model of the detector, the background and signal models, and the statistical inference procedures used in the dark matter searches with a 1 tonne$\times$year exposure of XENON1T data, that leaded to the best limit to date on WIMP-nucleon spin-independent elastic scatter cross-section for WIMP masses above 6 GeV/c$^2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.11297v2-abstract-full').style.display = 'none'; document.getElementById('1902.11297v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 99, 112009 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.12562">arXiv:1805.12562</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1805.12562">pdf</a>, <a href="https://arxiv.org/format/1805.12562">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.121.111302">10.1103/PhysRevLett.121.111302 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dark Matter Search Results from a One Tonne$\times$Year Exposure of XENON1T </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+M">M. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauermeister%2C+B">B. Bauermeister</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a>, <a href="/search/physics?searchtype=author&amp;query=Coderre%2C+D">D. Coderre</a>, <a href="/search/physics?searchtype=author&amp;query=Colijn%2C+A+P">A. P. Colijn</a>, <a href="/search/physics?searchtype=author&amp;query=Conrad%2C+J">J. Conrad</a> , et al. (95 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.12562v2-abstract-short" style="display: inline;"> We report on a search for Weakly Interacting Massive Particles (WIMPs) using 278.8 days of data collected with the XENON1T experiment at LNGS. XENON1T utilizes a liquid xenon time projection chamber with a fiducial mass of $(1.30 \pm 0.01)$ t, resulting in a 1.0 t$\times$yr exposure. The energy region of interest, [1.4, 10.6] $\mathrm{keV_{ee}}$ ([4.9, 40.9] $\mathrm{keV_{nr}}$), exhibits an ultra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.12562v2-abstract-full').style.display = 'inline'; document.getElementById('1805.12562v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.12562v2-abstract-full" style="display: none;"> We report on a search for Weakly Interacting Massive Particles (WIMPs) using 278.8 days of data collected with the XENON1T experiment at LNGS. XENON1T utilizes a liquid xenon time projection chamber with a fiducial mass of $(1.30 \pm 0.01)$ t, resulting in a 1.0 t$\times$yr exposure. The energy region of interest, [1.4, 10.6] $\mathrm{keV_{ee}}$ ([4.9, 40.9] $\mathrm{keV_{nr}}$), exhibits an ultra-low electron recoil background rate of $(82\substack{+5 \\ -3}\textrm{ (sys)}\pm3\textrm{ (stat)})$ events/$(\mathrm{t}\times\mathrm{yr}\times\mathrm{keV_{ee}})$. No significant excess over background is found and a profile likelihood analysis parameterized in spatial and energy dimensions excludes new parameter space for the WIMP-nucleon spin-independent elastic scatter cross-section for WIMP masses above 6 GeV/c${}^2$, with a minimum of $4.1\times10^{-47}$ cm$^2$ at 30 GeV/c${}^2$ and 90% confidence level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.12562v2-abstract-full').style.display = 'none'; document.getElementById('1805.12562v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures, v2 limit points as csv</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 121, 111302 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.10149">arXiv:1709.10149</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1709.10149">pdf</a>, <a href="https://arxiv.org/format/1709.10149">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.97.092007">10.1103/PhysRevD.97.092007 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Signal Yields of keV Electronic Recoils and Their Discrimination from Nuclear Recoils in Liquid Xenon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+M">M. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Barrow%2C+P">P. Barrow</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauermeister%2C+B">B. Bauermeister</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=B%C3%BCtikofer%2C+L">L. B眉tikofer</a>, <a href="/search/physics?searchtype=author&amp;query=Calv%C3%A9n%2C+J">J. Calv茅n</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cervantes%2C+M">M. Cervantes</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a>, <a href="/search/physics?searchtype=author&amp;query=Coderre%2C+D">D. Coderre</a>, <a href="/search/physics?searchtype=author&amp;query=Colijn%2C+A+P">A. P. Colijn</a> , et al. (94 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.10149v2-abstract-short" style="display: inline;"> We report on the response of liquid xenon to low energy electronic recoils below 15 keV from beta decays of tritium at drift fields of 92 V/cm, 154 V/cm and 366 V/cm using the XENON100 detector. A data-to-simulation fitting method based on Markov Chain Monte Carlo is used to extract the photon yields and recombination fluctuations from the experimental data. The photon yields measured at the two l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.10149v2-abstract-full').style.display = 'inline'; document.getElementById('1709.10149v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.10149v2-abstract-full" style="display: none;"> We report on the response of liquid xenon to low energy electronic recoils below 15 keV from beta decays of tritium at drift fields of 92 V/cm, 154 V/cm and 366 V/cm using the XENON100 detector. A data-to-simulation fitting method based on Markov Chain Monte Carlo is used to extract the photon yields and recombination fluctuations from the experimental data. The photon yields measured at the two lower fields are in agreement with those from literature; additional measurements at a higher field of 366 V/cm are presented. The electronic and nuclear recoil discrimination as well as its dependence on the drift field and photon detection efficiency are investigated at these low energies. The results provide new measurements in the energy region of interest for dark matter searches using liquid xenon. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.10149v2-abstract-full').style.display = 'none'; document.getElementById('1709.10149v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 97, 092007 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.07051">arXiv:1708.07051</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1708.07051">pdf</a>, <a href="https://arxiv.org/format/1708.07051">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-017-5326-3">10.1140/epjc/s10052-017-5326-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The XENON1T Dark Matter Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=XENON+Collaboration"> XENON Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+M">M. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Antunes%2C+B">B. Antunes</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Balata%2C+M">M. Balata</a>, <a href="/search/physics?searchtype=author&amp;query=Barrow%2C+P">P. Barrow</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauermeister%2C+B">B. Bauermeister</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Breskin%2C+A">A. Breskin</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=B%C3%BCtikofer%2C+L">L. B眉tikofer</a>, <a href="/search/physics?searchtype=author&amp;query=Calv%C3%A9n%2C+J">J. Calv茅n</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a> , et al. (120 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.07051v1-abstract-short" style="display: inline;"> The XENON1T experiment at the Laboratori Nazionali del Gran Sasso (LNGS) is the first WIMP dark matter detector operating with a liquid xenon target mass above the ton-scale. Out of its 3.2t liquid xenon inventory, 2.0t constitute the active target of the dual-phase time projection chamber. The scintillation and ionization signals from particle interactions are detected with low-background photomu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.07051v1-abstract-full').style.display = 'inline'; document.getElementById('1708.07051v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.07051v1-abstract-full" style="display: none;"> The XENON1T experiment at the Laboratori Nazionali del Gran Sasso (LNGS) is the first WIMP dark matter detector operating with a liquid xenon target mass above the ton-scale. Out of its 3.2t liquid xenon inventory, 2.0t constitute the active target of the dual-phase time projection chamber. The scintillation and ionization signals from particle interactions are detected with low-background photomultipliers. This article describes the XENON1T instrument and its subsystems as well as strategies to achieve an unprecedented low background level. First results on the detector response and the performance of the subsystems are also presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.07051v1-abstract-full').style.display = 'none'; document.getElementById('1708.07051v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 25 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.03617">arXiv:1708.03617</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1708.03617">pdf</a>, <a href="https://arxiv.org/format/1708.03617">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-018-5565-y">10.1140/epjc/s10052-018-5565-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Intrinsic backgrounds from Rn and Kr in the XENON100 experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=XENON+Collaboration"> XENON Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+M">M. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Barrow%2C+P">P. Barrow</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauermeister%2C+B">B. Bauermeister</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=B%C3%BCtikofer%2C+L">L. B眉tikofer</a>, <a href="/search/physics?searchtype=author&amp;query=Calv%C3%A9n%2C+J">J. Calv茅n</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cervantes%2C+M">M. Cervantes</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a>, <a href="/search/physics?searchtype=author&amp;query=Coderre%2C+D">D. Coderre</a> , et al. (93 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.03617v2-abstract-short" style="display: inline;"> In this paper, we describe the XENON100 data analyses used to assess the target-intrinsic background sources radon ($^{222}$Rn), thoron ($^{220}$Rn) and krypton ($^{85}$Kr). We detail the event selections of high-energy alpha particles and decay-specific delayed coincidences. We derive distributions of the individual radionuclides inside the detector and quantify their abundances during the main t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.03617v2-abstract-full').style.display = 'inline'; document.getElementById('1708.03617v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.03617v2-abstract-full" style="display: none;"> In this paper, we describe the XENON100 data analyses used to assess the target-intrinsic background sources radon ($^{222}$Rn), thoron ($^{220}$Rn) and krypton ($^{85}$Kr). We detail the event selections of high-energy alpha particles and decay-specific delayed coincidences. We derive distributions of the individual radionuclides inside the detector and quantify their abundances during the main three science runs of the experiment over a period of $\sim$ 4 years, from January 2010 to January 2014. We compare our results to external measurements of radon emanation and krypton concentrations where we find good agreement. We report an observed reduction in concentrations of radon daughters that we attribute to the plating-out of charged ions on the negatively biased cathode. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.03617v2-abstract-full').style.display = 'none'; document.getElementById('1708.03617v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">v1: 11 pages, 5 figures, 4 tables; v2: 12 pages, 5 figures, 4 tables, article updated after referee process</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C (2018) 78:132 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.05830">arXiv:1705.05830</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1705.05830">pdf</a>, <a href="https://arxiv.org/format/1705.05830">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.96.022008">10.1103/PhysRevD.96.022008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for WIMP Inelastic Scattering off Xenon Nuclei with XENON100 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+M">M. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Barrow%2C+P">P. Barrow</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauermeister%2C+B">B. Bauermeister</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=B%C3%BCtikofer%2C+L">L. B眉tikofer</a>, <a href="/search/physics?searchtype=author&amp;query=Calv%C3%A9n%2C+J">J. Calv茅n</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cervantes%2C+M">M. Cervantes</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a>, <a href="/search/physics?searchtype=author&amp;query=Coderre%2C+D">D. Coderre</a>, <a href="/search/physics?searchtype=author&amp;query=Colijn%2C+A+P">A. P. Colijn</a> , et al. (91 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.05830v1-abstract-short" style="display: inline;"> We present the first constraints on the spin-dependent, inelastic scattering cross section of Weakly Interacting Massive Particles (WIMPs) on nucleons from XENON100 data with an exposure of 7.64$\times$10$^3$\,kg\,day. XENON100 is a dual-phase xenon time projection chamber with 62\,kg of active mass, operated at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy and designed to search for nuc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.05830v1-abstract-full').style.display = 'inline'; document.getElementById('1705.05830v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.05830v1-abstract-full" style="display: none;"> We present the first constraints on the spin-dependent, inelastic scattering cross section of Weakly Interacting Massive Particles (WIMPs) on nucleons from XENON100 data with an exposure of 7.64$\times$10$^3$\,kg\,day. XENON100 is a dual-phase xenon time projection chamber with 62\,kg of active mass, operated at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy and designed to search for nuclear recoils from WIMP-nucleus interactions. Here we explore inelastic scattering, where a transition to a low-lying excited nuclear state of $^{129}$Xe is induced. The experimental signature is a nuclear recoil observed together with the prompt de-excitation photon. We see no evidence for such inelastic WIMP-$^{129}$Xe interactions. A profile likelihood analysis allows us to set a 90\% C.L. upper limit on the inelastic, spin-dependent WIMP-nucleon cross section of $3.3 \times 10^{-38}$\,cm$^{2}$ at 100\,GeV/c$^2$. This is the most constraining result to date, and sets the pathway for an analysis of this interaction channel in upcoming, larger dual-phase xenon detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.05830v1-abstract-full').style.display = 'none'; document.getElementById('1705.05830v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 96, 022008 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.01828">arXiv:1705.01828</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1705.01828">pdf</a>, <a href="https://arxiv.org/format/1705.01828">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-017-5329-0">10.1140/epjc/s10052-017-5329-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Material radioassay and selection for the XENON1T dark matter experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=XENON+Collaboration"> XENON Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+M">M. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Barrow%2C+P">P. Barrow</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauermeister%2C+B">B. Bauermeister</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=B%C3%BCtikofer%2C+L">L. B眉tikofer</a>, <a href="/search/physics?searchtype=author&amp;query=Calven%2C+J">J. Calven</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cervantes%2C+M">M. Cervantes</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a>, <a href="/search/physics?searchtype=author&amp;query=Coderre%2C+D">D. Coderre</a> , et al. (96 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.01828v1-abstract-short" style="display: inline;"> The XENON1T dark matter experiment aims to detect Weakly Interacting Massive Particles (WIMPs) through low-energy interactions with xenon atoms. To detect such a rare event necessitates the use of radiopure materials to minimize the number of background events within the expected WIMP signal region. In this paper we report the results of an extensive material radioassay campaign for the XENON1T ex&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.01828v1-abstract-full').style.display = 'inline'; document.getElementById('1705.01828v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.01828v1-abstract-full" style="display: none;"> The XENON1T dark matter experiment aims to detect Weakly Interacting Massive Particles (WIMPs) through low-energy interactions with xenon atoms. To detect such a rare event necessitates the use of radiopure materials to minimize the number of background events within the expected WIMP signal region. In this paper we report the results of an extensive material radioassay campaign for the XENON1T experiment. Using gamma-ray spectroscopy and mass spectrometry techniques, systematic measurements of trace radioactive impurities in over one hundred samples within a wide range of materials were performed. The measured activities allowed for stringent selection and placement of materials during the detector construction phase and provided the input for XENON1T detection sensitivity estimates through Monte Carlo simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.01828v1-abstract-full').style.display = 'none'; document.getElementById('1705.01828v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1704.05804">arXiv:1704.05804</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1704.05804">pdf</a>, <a href="https://arxiv.org/format/1704.05804">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2017/10/039">10.1088/1475-7516/2017/10/039 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for magnetic inelastic dark matter with XENON100 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=XENON+collaboration"> XENON collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+M">M. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Barrow%2C+P">P. Barrow</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauermeister%2C+B">B. Bauermeister</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=B%C3%BCtikofer%2C+L">L. B眉tikofer</a>, <a href="/search/physics?searchtype=author&amp;query=Calv%C3%A9n%2C+J">J. Calv茅n</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cervantes%2C+M">M. Cervantes</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a>, <a href="/search/physics?searchtype=author&amp;query=Coderre%2C+D">D. Coderre</a> , et al. (90 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1704.05804v2-abstract-short" style="display: inline;"> We present the first search for dark matter-induced delayed coincidence signals in a dual-phase xenon time projection chamber, using the 224.6 live days of the XENON100 science run II. This very distinct signature is predicted in the framework of magnetic inelastic dark matter which has been proposed to reconcile the modulation signal reported by the DAMA/LIBRA collaboration with the null results&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.05804v2-abstract-full').style.display = 'inline'; document.getElementById('1704.05804v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1704.05804v2-abstract-full" style="display: none;"> We present the first search for dark matter-induced delayed coincidence signals in a dual-phase xenon time projection chamber, using the 224.6 live days of the XENON100 science run II. This very distinct signature is predicted in the framework of magnetic inelastic dark matter which has been proposed to reconcile the modulation signal reported by the DAMA/LIBRA collaboration with the null results from other direct detection experiments. No candidate event has been found in the region of interest and upper limits on the WIMP&#39;s magnetic dipole moment are derived. The scenarios proposed to explain the DAMA/LIBRA modulation signal by magnetic inelastic dark matter interactions of WIMPs with masses of 58.0 GeV/c$^2$ and 122.7 GeV/c$^2$ are excluded at 3.3 $蟽$ and 9.3 $蟽$, respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.05804v2-abstract-full').style.display = 'none'; document.getElementById('1704.05804v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JCAP10(2017)039 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1702.06942">arXiv:1702.06942</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1702.06942">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-017-4902-x">10.1140/epjc/s10052-017-4902-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Online $^{222}$Rn removal by cryogenic distillation in the XENON100 experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=XENON+Collaboration"> XENON Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+M">M. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Barrow%2C+P">P. Barrow</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauermeister%2C+B">B. Bauermeister</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=B%C3%BCtikofer%2C+L">L. B眉tikofer</a>, <a href="/search/physics?searchtype=author&amp;query=Calv%C3%A9n%2C+J">J. Calv茅n</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cervantes%2C+M">M. Cervantes</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a>, <a href="/search/physics?searchtype=author&amp;query=Coderre%2C+D">D. Coderre</a> , et al. (97 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1702.06942v2-abstract-short" style="display: inline;"> We describe the purification of xenon from traces of the radioactive noble gas radon using a cryogenic distillation column. The distillation column is integrated into the gas purification loop of the XENON100 detector for online radon removal. This enabled us to significantly reduce the constant $^{222}$Rn background originating from radon emanation. After inserting an auxiliary $^{222}$Rn emanati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.06942v2-abstract-full').style.display = 'inline'; document.getElementById('1702.06942v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1702.06942v2-abstract-full" style="display: none;"> We describe the purification of xenon from traces of the radioactive noble gas radon using a cryogenic distillation column. The distillation column is integrated into the gas purification loop of the XENON100 detector for online radon removal. This enabled us to significantly reduce the constant $^{222}$Rn background originating from radon emanation. After inserting an auxiliary $^{222}$Rn emanation source in the gas loop, we determined a radon reduction factor of R &gt; 27 (95% C.L.) for the distillation column by monitoring the $^{222}$Rn activity concentration inside the XENON100 detector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.06942v2-abstract-full').style.display = 'none'; document.getElementById('1702.06942v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C (2017) 77: 358 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1701.00769">arXiv:1701.00769</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1701.00769">pdf</a>, <a href="https://arxiv.org/format/1701.00769">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.118.101101">10.1103/PhysRevLett.118.101101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for Electronic Recoil Event Rate Modulation with 4 Years of XENON100 Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=The+XENON+collaboration"> The XENON collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+M">M. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Barrow%2C+P">P. Barrow</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauermeister%2C+B">B. Bauermeister</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Butikofer%2C+L">L. Butikofer</a>, <a href="/search/physics?searchtype=author&amp;query=Calven%2C+J">J. Calven</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cervantes%2C+M">M. Cervantes</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a>, <a href="/search/physics?searchtype=author&amp;query=Coderre%2C+D">D. Coderre</a> , et al. (89 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1701.00769v1-abstract-short" style="display: inline;"> We report on a search for electronic recoil event rate modulation signatures in the XENON100 data accumulated over a period of 4 years, from January 2010 to January 2014. A profile likelihood method, which incorporates the stability of the XENON100 detector and the known electronic recoil background model, is used to quantify the significance of periodicity in the time distribution of events. Ther&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.00769v1-abstract-full').style.display = 'inline'; document.getElementById('1701.00769v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1701.00769v1-abstract-full" style="display: none;"> We report on a search for electronic recoil event rate modulation signatures in the XENON100 data accumulated over a period of 4 years, from January 2010 to January 2014. A profile likelihood method, which incorporates the stability of the XENON100 detector and the known electronic recoil background model, is used to quantify the significance of periodicity in the time distribution of events. There is a weak modulation signature at a period of $431^{+16}_{-14}$ days in the low energy region of $(2.0-5.8)$ keV in the single scatter event sample, with a global significance of $1.9\,蟽$, however no other more significant modulation is observed. The expected annual modulation of a dark matter signal is not compatible with this result. Single scatter events in the low energy region are thus used to exclude the DAMA/LIBRA annual modulation as being due to dark matter electron interactions via axial vector coupling at $5.7\,蟽$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.00769v1-abstract-full').style.display = 'none'; document.getElementById('1701.00769v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 118, 101101 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1612.04284">arXiv:1612.04284</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1612.04284">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-017-4757-1">10.1140/epjc/s10052-017-4757-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Removing krypton from xenon by cryogenic distillation to the ppq level </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=XENON+Collaboration"> XENON Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+M">M. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Barrow%2C+P">P. Barrow</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauermeister%2C+B">B. Bauermeister</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=B%C3%BCtikofer%2C+L">L. B眉tikofer</a>, <a href="/search/physics?searchtype=author&amp;query=Calv%C3%A9n%2C+J">J. Calv茅n</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cervantes%2C+M">M. Cervantes</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a>, <a href="/search/physics?searchtype=author&amp;query=Coderre%2C+D">D. Coderre</a> , et al. (97 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1612.04284v2-abstract-short" style="display: inline;"> The XENON1T experiment aims for the direct detection of dark matter in a cryostat filled with 3.3 tons of liquid xenon. In order to achieve the desired sensitivity, the background induced by radioactive decays inside the detector has to be sufficiently low. One major contributor is the $尾$-emitter $^{85}$Kr which is an intrinsic contamination of the xenon. For the XENON1T experiment a concentratio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.04284v2-abstract-full').style.display = 'inline'; document.getElementById('1612.04284v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1612.04284v2-abstract-full" style="display: none;"> The XENON1T experiment aims for the direct detection of dark matter in a cryostat filled with 3.3 tons of liquid xenon. In order to achieve the desired sensitivity, the background induced by radioactive decays inside the detector has to be sufficiently low. One major contributor is the $尾$-emitter $^{85}$Kr which is an intrinsic contamination of the xenon. For the XENON1T experiment a concentration of natural krypton in xenon $\rm{^{nat}}$Kr/Xe &lt; 200 ppq (parts per quadrillion, 1 ppq = 10$^{-15}$ mol/mol) is required. In this work, the design of a novel cryogenic distillation column using the common McCabe-Thiele approach is described. The system demonstrated a krypton reduction factor of 6.4$\cdot$10$^5$ with thermodynamic stability at process speeds above 3 kg/h. The resulting concentration of $\rm{^{nat}}$Kr/Xe &lt; 26 ppq is the lowest ever achieved, almost one order of magnitude below the requirements for XENON1T and even sufficient for future dark matter experiments using liquid xenon, such as XENONnT and DARWIN. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.04284v2-abstract-full').style.display = 'none'; document.getElementById('1612.04284v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C (2017) 77: 275 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1611.03585">arXiv:1611.03585</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1611.03585">pdf</a>, <a href="https://arxiv.org/format/1611.03585">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.95.072008">10.1103/PhysRevD.95.072008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Results from a Calibration of XENON100 Using a Source of Dissolved Radon-220 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=The+XENON+Collaboration"> The XENON Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+M">M. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Barrow%2C+P">P. Barrow</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauermeister%2C+B">B. Bauermeister</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Butikofer%2C+L">L. Butikofer</a>, <a href="/search/physics?searchtype=author&amp;query=Calven%2C+J">J. Calven</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cervantes%2C+M">M. Cervantes</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a>, <a href="/search/physics?searchtype=author&amp;query=Coderre%2C+D">D. Coderre</a> , et al. (96 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1611.03585v2-abstract-short" style="display: inline;"> A Rn-220 source is deployed on the XENON100 dark matter detector in order to address the challenges in calibration of tonne-scale liquid noble element detectors. We show that the Pb-212 beta emission can be used for low-energy electronic recoil calibration in searches for dark matter. The isotope spreads throughout the entire active region of the detector, and its activity naturally decays below b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.03585v2-abstract-full').style.display = 'inline'; document.getElementById('1611.03585v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1611.03585v2-abstract-full" style="display: none;"> A Rn-220 source is deployed on the XENON100 dark matter detector in order to address the challenges in calibration of tonne-scale liquid noble element detectors. We show that the Pb-212 beta emission can be used for low-energy electronic recoil calibration in searches for dark matter. The isotope spreads throughout the entire active region of the detector, and its activity naturally decays below background level within a week after the source is closed. We find no increase in the activity of the troublesome Rn-222 background after calibration. Alpha emitters are also distributed throughout the detector and facilitate calibration of its response to Rn-222. Using the delayed coincidence of Rn-220/Po-216, we map for the first time the convective motion of particles in the XENON100 detector. Additionally, we make a competitive measurement of the half-life of Po-212, t = 293.9+-(1.0)+-(0.6) ns. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.03585v2-abstract-full').style.display = 'none'; document.getElementById('1611.03585v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 95, 072008 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1609.06154">arXiv:1609.06154</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1609.06154">pdf</a>, <a href="https://arxiv.org/format/1609.06154">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.94.122001">10.1103/PhysRevD.94.122001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> XENON100 Dark Matter Results from a Combination of 477 Live Days </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=XENON100+Collaboration"> XENON100 Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+M">M. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Barrow%2C+P">P. Barrow</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauermeister%2C+B">B. Bauermeister</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=B%C3%BCtikofer%2C+L">L. B眉tikofer</a>, <a href="/search/physics?searchtype=author&amp;query=Calv%C3%A9n%2C+J">J. Calv茅n</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cervantes%2C+M">M. Cervantes</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a>, <a href="/search/physics?searchtype=author&amp;query=Coderre%2C+D">D. Coderre</a> , et al. (92 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1609.06154v3-abstract-short" style="display: inline;"> We report on WIMP search results of the XENON100 experiment, combining three runs summing up to 477 live days from January 2010 to January 2014. Data from the first two runs were already published. A blind analysis was applied to the last run recorded between April 2013 and January 2014 prior to combining the results. The ultra-low electromagnetic background of the experiment, ~$5 \times 10^{-3}$&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.06154v3-abstract-full').style.display = 'inline'; document.getElementById('1609.06154v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1609.06154v3-abstract-full" style="display: none;"> We report on WIMP search results of the XENON100 experiment, combining three runs summing up to 477 live days from January 2010 to January 2014. Data from the first two runs were already published. A blind analysis was applied to the last run recorded between April 2013 and January 2014 prior to combining the results. The ultra-low electromagnetic background of the experiment, ~$5 \times 10^{-3}$ events/(keV$_{\mathrm{ee}}\times$kg$\times$day) before electronic recoil rejection, together with the increased exposure of 48 kg $\times$ yr improves the sensitivity. A profile likelihood analysis using an energy range of (6.6 - 43.3) keV$_{\mathrm{nr}}$ sets a limit on the elastic, spin-independent WIMP-nucleon scattering cross section for WIMP masses above 8 GeV/$c^2$, with a minimum of 1.1 $\times 10^{-45}$ cm$^2$ at 50 GeV/$c^2$ and 90% confidence level. We also report updated constraints on the elastic, spin-dependent WIMP-nucleon cross sections obtained with the same data. We set upper limits on the WIMP-neutron (proton) cross section with a minimum of 2.0 $\times 10^{-40}$ cm$^2$ (52$\times 10^{-40}$ cm$^2$) at a WIMP mass of 50 GeV/$c^2$, at 90% confidence level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.06154v3-abstract-full').style.display = 'none'; document.getElementById('1609.06154v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 13 figures, 2 tables, Limit data points in TeX</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 94, 122001 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1609.03354">arXiv:1609.03354</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1609.03354">pdf</a>, <a href="https://arxiv.org/format/1609.03354">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.95.024605">10.1103/PhysRevC.95.024605 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for Two-Neutrino Double Electron Capture of $^{124}$Xe with XENON100 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=The+XENON+Collaboration"> The XENON Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+M">M. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Barrow%2C+P">P. Barrow</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauermeister%2C+B">B. Bauermeister</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=B%C3%BCtikofer%2C+L">L. B眉tikofer</a>, <a href="/search/physics?searchtype=author&amp;query=Calv%C3%A9n%2C+J">J. Calv茅n</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cervantes%2C+M">M. Cervantes</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a>, <a href="/search/physics?searchtype=author&amp;query=Coderre%2C+D">D. Coderre</a> , et al. (92 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1609.03354v2-abstract-short" style="display: inline;"> Two-neutrino double electron capture is a rare nuclear decay where two electrons are simultaneously captured from the atomic shell. For $^{124}$Xe this process has not yet been observed and its detection would provide a new reference for nuclear matrix element calculations. We have conducted a search for two-neutrino double electron capture from the K-shell of $^{124}$Xe using 7636 kg$\cdot$d of d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.03354v2-abstract-full').style.display = 'inline'; document.getElementById('1609.03354v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1609.03354v2-abstract-full" style="display: none;"> Two-neutrino double electron capture is a rare nuclear decay where two electrons are simultaneously captured from the atomic shell. For $^{124}$Xe this process has not yet been observed and its detection would provide a new reference for nuclear matrix element calculations. We have conducted a search for two-neutrino double electron capture from the K-shell of $^{124}$Xe using 7636 kg$\cdot$d of data from the XENON100 dark matter detector. Using a Bayesian analysis we observed no significant excess above background, leading to a lower 90 % credibility limit on the half-life $T_{1/2}&gt;6.5\times10^{20}$ yr. We also evaluated the sensitivity of the XENON1T experiment, which is currently being commissioned, and find a sensitivity of $T_{1/2}&gt;6.1\times10^{22}$ yr after an exposure of 2 t$\cdot$yr. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.03354v2-abstract-full').style.display = 'none'; document.getElementById('1609.03354v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. C 95, 024605, Published 13 February 2017 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1606.07001">arXiv:1606.07001</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1606.07001">pdf</a>, <a href="https://arxiv.org/format/1606.07001">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2016/11/017">10.1088/1475-7516/2016/11/017 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> DARWIN: towards the ultimate dark matter detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Amsler%2C+C">C. Amsler</a>, <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Arazi%2C+L">L. Arazi</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Barrow%2C+P">P. Barrow</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Beskers%2C+B">B. Beskers</a>, <a href="/search/physics?searchtype=author&amp;query=Breskin%2C+A">A. Breskin</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Buetikofer%2C+L">L. Buetikofer</a>, <a href="/search/physics?searchtype=author&amp;query=Calven%2C+J">J. Calven</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a>, <a href="/search/physics?searchtype=author&amp;query=Coderre%2C+D">D. Coderre</a> , et al. (94 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1606.07001v1-abstract-short" style="display: inline;"> DARk matter WImp search with liquid xenoN (DARWIN) will be an experiment for the direct detection of dark matter using a multi-ton liquid xenon time projection chamber at its core. Its primary goal will be to explore the experimentally accessible parameter space for Weakly Interacting Massive Particles (WIMPs) in a wide mass-range, until neutrino interactions with the target become an irreducible&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.07001v1-abstract-full').style.display = 'inline'; document.getElementById('1606.07001v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1606.07001v1-abstract-full" style="display: none;"> DARk matter WImp search with liquid xenoN (DARWIN) will be an experiment for the direct detection of dark matter using a multi-ton liquid xenon time projection chamber at its core. Its primary goal will be to explore the experimentally accessible parameter space for Weakly Interacting Massive Particles (WIMPs) in a wide mass-range, until neutrino interactions with the target become an irreducible background. The prompt scintillation light and the charge signals induced by particle interactions in the xenon will be observed by VUV sensitive, ultra-low background photosensors. Besides its excellent sensitivity to WIMPs above a mass of 5 GeV/c2, such a detector with its large mass, low-energy threshold and ultra-low background level will also be sensitive to other rare interactions. It will search for solar axions, galactic axion-like particles and the neutrinoless double-beta decay of 136-Xe, as well as measure the low-energy solar neutrino flux with &lt;1% precision, observe coherent neutrino-nucleus interactions, and detect galactic supernovae. We present the concept of the DARWIN detector and discuss its physics reach, the main sources of backgrounds and the ongoing detector design and R&amp;D efforts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.07001v1-abstract-full').style.display = 'none'; document.getElementById('1606.07001v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JCAP 1611 (2016) no.11, 017 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1605.06262">arXiv:1605.06262</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1605.06262">pdf</a>, <a href="https://arxiv.org/format/1605.06262">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.94.092001">10.1103/PhysRevD.94.092001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A low-mass dark matter search using ionization signals in XENON100 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=XENON100+Collaboration"> XENON100 Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+M">M. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Barrow%2C+P">P. Barrow</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauermeister%2C+B">B. Bauermeister</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+E+B+S">E. Brown S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Buss%2C+A">A. Buss</a>, <a href="/search/physics?searchtype=author&amp;query=B%C3%BCtikofer%2C+L">L. B眉tikofer</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cervantes%2C+M">M. Cervantes</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a>, <a href="/search/physics?searchtype=author&amp;query=Coderre%2C+D">D. Coderre</a>, <a href="/search/physics?searchtype=author&amp;query=Colijn%2C+A+P">A. P. Colijn</a> , et al. (86 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1605.06262v4-abstract-short" style="display: inline;"> We perform a low-mass dark matter search using an exposure of 30\,kg$\times$yr with the XENON100 detector. By dropping the requirement of a scintillation signal and using only the ionization signal to determine the interaction energy, we lowered the energy threshold for detection to 0.7\,keV for nuclear recoils. No dark matter detection can be claimed because a complete background model cannot be&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.06262v4-abstract-full').style.display = 'inline'; document.getElementById('1605.06262v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1605.06262v4-abstract-full" style="display: none;"> We perform a low-mass dark matter search using an exposure of 30\,kg$\times$yr with the XENON100 detector. By dropping the requirement of a scintillation signal and using only the ionization signal to determine the interaction energy, we lowered the energy threshold for detection to 0.7\,keV for nuclear recoils. No dark matter detection can be claimed because a complete background model cannot be constructed without a primary scintillation signal. Instead, we compute an upper limit on the WIMP-nucleon scattering cross section under the assumption that every event passing our selection criteria could be a signal event. Using an energy interval from 0.7\,keV to 9.1\,keV, we derive a limit on the spin-independent WIMP-nucleon cross section that excludes WIMPs with a mass of 6\,GeV/$c^2$ above $1.4 \times 10^{-41}$\,cm$^2$ at 90\% confidence level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.06262v4-abstract-full').style.display = 'none'; document.getElementById('1605.06262v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages; 7 figures; PRD. Additional file in source material, s2stot, contains the full list of events passing all selection cuts. Limit data points in TeX; Corrected LUX points used for comparison and respective reference in figure 5</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 94, 092001 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1512.07501">arXiv:1512.07501</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1512.07501">pdf</a>, <a href="https://arxiv.org/format/1512.07501">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2016/04/027">10.1088/1475-7516/2016/04/027 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Physics reach of the XENON1T dark matter experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=The+XENON+collaboration"> The XENON collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+M">M. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Arazi%2C+L">L. Arazi</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Balan%2C+C">C. Balan</a>, <a href="/search/physics?searchtype=author&amp;query=Barrow%2C+P">P. Barrow</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauermeister%2C+B">B. Bauermeister</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P">P. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Breskin%2C+A">A. Breskin</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=B%C3%BCtikofer%2C+L">L. B眉tikofer</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cervantes%2C+M">M. Cervantes</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a> , et al. (91 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1512.07501v2-abstract-short" style="display: inline;"> The XENON1T experiment is currently in the commissioning phase at the Laboratori Nazionali del Gran Sasso, Italy. In this article we study the experiment&#39;s expected sensitivity to the spin-independent WIMP-nucleon interaction cross section, based on Monte Carlo predictions of the electronic and nuclear recoil backgrounds. The total electronic recoil background in $1$ tonne fiducial volume and (&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.07501v2-abstract-full').style.display = 'inline'; document.getElementById('1512.07501v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1512.07501v2-abstract-full" style="display: none;"> The XENON1T experiment is currently in the commissioning phase at the Laboratori Nazionali del Gran Sasso, Italy. In this article we study the experiment&#39;s expected sensitivity to the spin-independent WIMP-nucleon interaction cross section, based on Monte Carlo predictions of the electronic and nuclear recoil backgrounds. The total electronic recoil background in $1$ tonne fiducial volume and ($1$, $12$) keV electronic recoil equivalent energy region, before applying any selection to discriminate between electronic and nuclear recoils, is $(1.80 \pm 0.15) \cdot 10^{-4}$ ($\rm{kg} \cdot day \cdot keV)^{-1}$, mainly due to the decay of $^{222}\rm{Rn}$ daughters inside the xenon target. The nuclear recoil background in the corresponding nuclear recoil equivalent energy region ($4$, $50$) keV, is composed of $(0.6 \pm 0.1)$ ($\rm{t} \cdot y)^{-1}$ from radiogenic neutrons, $(1.8 \pm 0.3) \cdot 10^{-2}$ ($\rm{t} \cdot y)^{-1}$ from coherent scattering of neutrinos, and less than $0.01$ ($\rm{t} \cdot y)^{-1}$ from muon-induced neutrons. The sensitivity of XENON1T is calculated with the Profile Likelihood Ratio method, after converting the deposited energy of electronic and nuclear recoils into the scintillation and ionization signals seen in the detector. We take into account the systematic uncertainties on the photon and electron emission model, and on the estimation of the backgrounds, treated as nuisance parameters. The main contribution comes from the relative scintillation efficiency $\mathcal{L}_\mathrm{eff}$, which affects both the signal from WIMPs and the nuclear recoil backgrounds. After a $2$ y measurement in $1$ t fiducial volume, the sensitivity reaches a minimum cross section of $1.6 \cdot 10^{-47}$ cm$^2$ at m$_蠂$=$50$ GeV/$c^2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.07501v2-abstract-full').style.display = 'none'; document.getElementById('1512.07501v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 December, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 18 figures, published by JCAP</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JCAP04(2016)027 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1408.6777">arXiv:1408.6777</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1408.6777">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Neural computation at the thermal limit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Levy%2C+W+B">William B. Levy</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">Toby Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Fleidervish%2C+I+A">Ilya A. Fleidervish</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1408.6777v2-abstract-short" style="display: inline;"> Although several measurements and analyses support the idea that the brain is energy-optimized, there is one disturbing, contradictory observation: In theory, computation limited by thermal noise can occur as cheaply as ~$2.9\cdot 10^{-21}$ joules per bit (kTln2). Unfortunately, for a neuron the ostensible discrepancy from this minimum is startling - ignoring inhibition the discrepancy is $10^7$ t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1408.6777v2-abstract-full').style.display = 'inline'; document.getElementById('1408.6777v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1408.6777v2-abstract-full" style="display: none;"> Although several measurements and analyses support the idea that the brain is energy-optimized, there is one disturbing, contradictory observation: In theory, computation limited by thermal noise can occur as cheaply as ~$2.9\cdot 10^{-21}$ joules per bit (kTln2). Unfortunately, for a neuron the ostensible discrepancy from this minimum is startling - ignoring inhibition the discrepancy is $10^7$ times this amount and taking inhibition into account $&gt;10^9$. Here we point out that what has been defined as neural computation is actually a combination of computation and neural communication: the communication costs, transmission from each excitatory postsynaptic activation to the S4-gating-charges of the fast Na+ channels of the initial segment (fNa&#39;s), dominate the joule-costs. Making this distinction between communication to the initial segment and computation at the initial segment (i.e., adding up of the activated fNa&#39;s) implies that the size of the average synaptic event reaching the fNa&#39;s is the size of the standard deviation of the thermal noise. Moreover, defining computation as the addition of activated fNa&#39;s, yields a biophysically plausible mechanism for approaching the desired minimum. This mechanism, requiring something like the electrical engineer&#39;s equalizer (not much more than the action potential generating conductances), only operates at threshold. This active filter modifies the last few synaptic excitations, providing barely enough energy to allow the last sub-threshold gating charge to transport. That is, the last, threshold-achieving S4-subunit activation requires an energy that matches the information being provided by the last few synaptic events, a ratio that is near kTln2 joules per bit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1408.6777v2-abstract-full').style.display = 'none'; document.getElementById('1408.6777v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 August, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1302.4548">arXiv:1302.4548</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1302.4548">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.radmeas.2013.01.045">10.1016/j.radmeas.2013.01.045 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Thermoluminescence fading studies: Implications for long-duration space measurements in Low Earth Orbit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bilski%2C+P">P. Bilski</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Hajek%2C+M">M. Hajek</a>, <a href="/search/physics?searchtype=author&amp;query=Twardak%2C+A">A. Twardak</a>, <a href="/search/physics?searchtype=author&amp;query=Koerner%2C+C">C. Koerner</a>, <a href="/search/physics?searchtype=author&amp;query=Reitz%2C+G">G. Reitz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1302.4548v1-abstract-short" style="display: inline;"> Within a 1.5 year comprehensive fading experiment several batches of LiF:Mg,Ti and LiF:Mg,Cu,P thermoluminescence detectors (TLDs) were studied. The TLDs originated from two manufacturers and were processed by three laboratories using different annealing and readout conditions. The TLDs were irradiated with two radiation modalities (gamma-rays and thermal neutrons) and were stored at two temperatu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1302.4548v1-abstract-full').style.display = 'inline'; document.getElementById('1302.4548v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1302.4548v1-abstract-full" style="display: none;"> Within a 1.5 year comprehensive fading experiment several batches of LiF:Mg,Ti and LiF:Mg,Cu,P thermoluminescence detectors (TLDs) were studied. The TLDs originated from two manufacturers and were processed by three laboratories using different annealing and readout conditions. The TLDs were irradiated with two radiation modalities (gamma-rays and thermal neutrons) and were stored at two temperatures (-17.4C and +18.5C). The goal of the experiment was to verify the stability of TLDs in the context of their application in long-term measurements in space. The results revealed that the response of all TLDs is stable within 10% for the studied temperature range. No influence of the radiation type was found. These results indicate that for the properly oven-annealed LiF TLDs, fading is not a significant problem, even for measuring periods longer than a year. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1302.4548v1-abstract-full').style.display = 'none'; document.getElementById('1302.4548v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2013. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1208.3431">arXiv:1208.3431</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1208.3431">pdf</a>, <a href="https://arxiv.org/ps/1208.3431">ps</a>, <a href="https://arxiv.org/format/1208.3431">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/2041-8205/758/2/L37">10.1088/2041-8205/758/2/L37 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> SDO/AIA Detection of Solar Prominence Formation within a Coronal Cavity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T+E">Thomas E. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+W">Wei Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Low%2C+B+C">B. C. Low</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1208.3431v2-abstract-short" style="display: inline;"> We report the first analyses of SDO/AIA observations of the formation of a quiescent polar crown prominence in a coronal cavity. The He II 304 脜 (log T_{max} ~ 4.8 K) data show both the gradual disappearance of the prominence due to vertical drainage and lateral transport of plasma followed by the formation of a new prominence some 12 hours later. The formation of the prominence is preceded by the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1208.3431v2-abstract-full').style.display = 'inline'; document.getElementById('1208.3431v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1208.3431v2-abstract-full" style="display: none;"> We report the first analyses of SDO/AIA observations of the formation of a quiescent polar crown prominence in a coronal cavity. The He II 304 脜 (log T_{max} ~ 4.8 K) data show both the gradual disappearance of the prominence due to vertical drainage and lateral transport of plasma followed by the formation of a new prominence some 12 hours later. The formation of the prominence is preceded by the appearance of a bright emission &#34;cloud&#34; in the central region of the coronal cavity. The peak brightness of the cloud progressively shifts in time from the Fe XIV 211 脜 channel, through the Fe XII 193 脜 channel, to the Fe IX 171 脜 channel (log T_{max} ~ 6.2, 6.1, 5.8 K, respectively) while simultaneously decreasing in altitude. Filter ratio analysis estimates the initial temperature of the cloud in the cavity to be approximately log T \sim 6.25 K with evidence of cooling over time. The subsequent growth of the prominence is accompanied by darkening of the cavity in the 211 脜 channel. The observations imply the possibility of prominence formation via in situ condensation of hot plasma from the coronal cavity, in support of the proposed process of magneto-thermal convection in coronal magnetic flux ropes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1208.3431v2-abstract-full').style.display = 'none'; document.getElementById('1208.3431v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 August, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures, accepted by The Astrophysical Journal Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Astrophysical Journal Letters, 758:L37 (7pp), 2012 October 20 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1201.4352">arXiv:1201.4352</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1201.4352">pdf</a>, <a href="https://arxiv.org/format/1201.4352">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Simulations of Buoyant Plumes in Solar Prominences </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Hurlburt%2C+N">Neal Hurlburt</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">Thomas Berger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1201.4352v1-abstract-short" style="display: inline;"> Observations of solar prominences reveal a complex, dynamic flow field within them. The flow field within quiescent prominences is characterized by long ``threads&#39;&#39; and dark ``bubbles&#39;&#39; that fall and rise (respectively) in a thin sheet. The flow field in active prominences display more helical motions that travel along the axis of the prominence. We explore the possible dynamics of both of these w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1201.4352v1-abstract-full').style.display = 'inline'; document.getElementById('1201.4352v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1201.4352v1-abstract-full" style="display: none;"> Observations of solar prominences reveal a complex, dynamic flow field within them. The flow field within quiescent prominences is characterized by long ``threads&#39;&#39; and dark ``bubbles&#39;&#39; that fall and rise (respectively) in a thin sheet. The flow field in active prominences display more helical motions that travel along the axis of the prominence. We explore the possible dynamics of both of these with the aid of 2.5D MHD simulations. Our model, compressible plasma possesses density and temperature gradients and resides in magnetic field configurations that mimc those of a solar prominence. We present results of various configurations and discuss the nonlinear behavior of the resulting dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1201.4352v1-abstract-full').style.display = 'none'; document.getElementById('1201.4352v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/astro-ph/0101224">arXiv:astro-ph/0101224</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/astro-ph/0101224">pdf</a>, <a href="https://arxiv.org/ps/astro-ph/0101224">ps</a>, <a href="https://arxiv.org/format/astro-ph/0101224">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics">astro-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.86.5894">10.1103/PhysRevLett.86.5894 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spatio-Temporal Scaling of Solar Surface Flows </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lawrence%2C+J+K">J. K. Lawrence</a>, <a href="/search/physics?searchtype=author&amp;query=Cadavid%2C+A+C">A. C. Cadavid</a>, <a href="/search/physics?searchtype=author&amp;query=Ruzmaikin%2C+A">A. Ruzmaikin</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T+E">T. E. Berger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="astro-ph/0101224v4-abstract-short" style="display: inline;"> The Sun provides an excellent natural laboratory for nonlinear phenomena. We use motions of magnetic bright points on the solar surface, at the smallest scales yet observed, to study the small scale dynamics of the photospheric plasma. The paths of the bright points are analyzed within a continuous time random walk framework. Their spatial and temporal scaling suggest that the observed motions a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('astro-ph/0101224v4-abstract-full').style.display = 'inline'; document.getElementById('astro-ph/0101224v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="astro-ph/0101224v4-abstract-full" style="display: none;"> The Sun provides an excellent natural laboratory for nonlinear phenomena. We use motions of magnetic bright points on the solar surface, at the smallest scales yet observed, to study the small scale dynamics of the photospheric plasma. The paths of the bright points are analyzed within a continuous time random walk framework. Their spatial and temporal scaling suggest that the observed motions are the walks of imperfectly correlated tracers on a turbulent fluid flow in the lanes between granular convection cells. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('astro-ph/0101224v4-abstract-full').style.display = 'none'; document.getElementById('astro-ph/0101224v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 April, 2001; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 January, 2001; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2001. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Now Accepted by Physical Review Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Letters, 86, 5894 (2001) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10