CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 66 results for author: <span class="mathjax">Bu, J</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cs" aria-role="search"> Searching in archive <strong>cs</strong>. <a href="/search/?searchtype=author&amp;query=Bu%2C+J">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Bu, J"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Bu%2C+J&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Bu, J"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Bu%2C+J&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Bu%2C+J&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Bu%2C+J&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.12781">arXiv:2411.12781</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.12781">pdf</a>, <a href="https://arxiv.org/format/2411.12781">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> FGP: Feature-Gradient-Prune for Efficient Convolutional Layer Pruning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Lv%2C+Q">Qingsong Lv</a>, <a href="/search/cs?searchtype=author&amp;query=Sun%2C+J">Jiasheng Sun</a>, <a href="/search/cs?searchtype=author&amp;query=Zhou%2C+S">Sheng Zhou</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+L">Liangcheng Li</a>, <a href="/search/cs?searchtype=author&amp;query=Gao%2C+Y">Yun Gao</a>, <a href="/search/cs?searchtype=author&amp;query=Qiao%2C+S">Sun Qiao</a>, <a href="/search/cs?searchtype=author&amp;query=Song%2C+J">Jie Song</a>, <a href="/search/cs?searchtype=author&amp;query=Bu%2C+J">Jiajun Bu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.12781v1-abstract-short" style="display: inline;"> To reduce computational overhead while maintaining model performance, model pruning techniques have been proposed. Among these, structured pruning, which removes entire convolutional channels or layers, significantly enhances computational efficiency and is compatible with hardware acceleration. However, existing pruning methods that rely solely on image features or gradients often result in the r&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12781v1-abstract-full').style.display = 'inline'; document.getElementById('2411.12781v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.12781v1-abstract-full" style="display: none;"> To reduce computational overhead while maintaining model performance, model pruning techniques have been proposed. Among these, structured pruning, which removes entire convolutional channels or layers, significantly enhances computational efficiency and is compatible with hardware acceleration. However, existing pruning methods that rely solely on image features or gradients often result in the retention of redundant channels, negatively impacting inference efficiency. To address this issue, this paper introduces a novel pruning method called Feature-Gradient Pruning (FGP). This approach integrates both feature-based and gradient-based information to more effectively evaluate the importance of channels across various target classes, enabling a more accurate identification of channels that are critical to model performance. Experimental results demonstrate that the proposed method improves both model compactness and practicality while maintaining stable performance. Experiments conducted across multiple tasks and datasets show that FGP significantly reduces computational costs and minimizes accuracy loss compared to existing methods, highlighting its effectiveness in optimizing pruning outcomes. The source code is available at: https://github.com/FGP-code/FGP. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12781v1-abstract-full').style.display = 'none'; document.getElementById('2411.12781v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.12248">arXiv:2411.12248</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.12248">pdf</a>, <a href="https://arxiv.org/format/2411.12248">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Neuro-3D: Towards 3D Visual Decoding from EEG Signals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Guo%2C+Z">Zhanqiang Guo</a>, <a href="/search/cs?searchtype=author&amp;query=Wu%2C+J">Jiamin Wu</a>, <a href="/search/cs?searchtype=author&amp;query=Song%2C+Y">Yonghao Song</a>, <a href="/search/cs?searchtype=author&amp;query=Bu%2C+J">Jiahui Bu</a>, <a href="/search/cs?searchtype=author&amp;query=Mai%2C+W">Weijian Mai</a>, <a href="/search/cs?searchtype=author&amp;query=Zheng%2C+Q">Qihao Zheng</a>, <a href="/search/cs?searchtype=author&amp;query=Ouyang%2C+W">Wanli Ouyang</a>, <a href="/search/cs?searchtype=author&amp;query=Song%2C+C">Chunfeng Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.12248v2-abstract-short" style="display: inline;"> Human&#39;s perception of the visual world is shaped by the stereo processing of 3D information. Understanding how the brain perceives and processes 3D visual stimuli in the real world has been a longstanding endeavor in neuroscience. Towards this goal, we introduce a new neuroscience task: decoding 3D visual perception from EEG signals, a neuroimaging technique that enables real-time monitoring of ne&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12248v2-abstract-full').style.display = 'inline'; document.getElementById('2411.12248v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.12248v2-abstract-full" style="display: none;"> Human&#39;s perception of the visual world is shaped by the stereo processing of 3D information. Understanding how the brain perceives and processes 3D visual stimuli in the real world has been a longstanding endeavor in neuroscience. Towards this goal, we introduce a new neuroscience task: decoding 3D visual perception from EEG signals, a neuroimaging technique that enables real-time monitoring of neural dynamics enriched with complex visual cues. To provide the essential benchmark, we first present EEG-3D, a pioneering dataset featuring multimodal analysis data and extensive EEG recordings from 12 subjects viewing 72 categories of 3D objects rendered in both videos and images. Furthermore, we propose Neuro-3D, a 3D visual decoding framework based on EEG signals. This framework adaptively integrates EEG features derived from static and dynamic stimuli to learn complementary and robust neural representations, which are subsequently utilized to recover both the shape and color of 3D objects through the proposed diffusion-based colored point cloud decoder. To the best of our knowledge, we are the first to explore EEG-based 3D visual decoding. Experiments indicate that Neuro-3D not only reconstructs colored 3D objects with high fidelity, but also learns effective neural representations that enable insightful brain region analysis. The dataset and associated code will be made publicly available. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12248v2-abstract-full').style.display = 'none'; document.getElementById('2411.12248v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.11641">arXiv:2411.11641</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.11641">pdf</a>, <a href="https://arxiv.org/format/2411.11641">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> TSINR: Capturing Temporal Continuity via Implicit Neural Representations for Time Series Anomaly Detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Li%2C+M">Mengxuan Li</a>, <a href="/search/cs?searchtype=author&amp;query=Liu%2C+K">Ke Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+H">Hongyang Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Bu%2C+J">Jiajun Bu</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+H">Hongwei Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+H">Haishuai Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.11641v2-abstract-short" style="display: inline;"> Time series anomaly detection aims to identify unusual patterns in data or deviations from systems&#39; expected behavior. The reconstruction-based methods are the mainstream in this task, which learn point-wise representation via unsupervised learning. However, the unlabeled anomaly points in training data may cause these reconstruction-based methods to learn and reconstruct anomalous data, resulting&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11641v2-abstract-full').style.display = 'inline'; document.getElementById('2411.11641v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.11641v2-abstract-full" style="display: none;"> Time series anomaly detection aims to identify unusual patterns in data or deviations from systems&#39; expected behavior. The reconstruction-based methods are the mainstream in this task, which learn point-wise representation via unsupervised learning. However, the unlabeled anomaly points in training data may cause these reconstruction-based methods to learn and reconstruct anomalous data, resulting in the challenge of capturing normal patterns. In this paper, we propose a time series anomaly detection method based on implicit neural representation (INR) reconstruction, named TSINR, to address this challenge. Due to the property of spectral bias, TSINR enables prioritizing low-frequency signals and exhibiting poorer performance on high-frequency abnormal data. Specifically, we adopt INR to parameterize time series data as a continuous function and employ a transformer-based architecture to predict the INR of given data. As a result, the proposed TSINR method achieves the advantage of capturing the temporal continuity and thus is more sensitive to discontinuous anomaly data. In addition, we further design a novel form of INR continuous function to learn inter- and intra-channel information, and leverage a pre-trained large language model to amplify the intense fluctuations in anomalies. Extensive experiments demonstrate that TSINR achieves superior overall performance on both univariate and multivariate time series anomaly detection benchmarks compared to other state-of-the-art reconstruction-based methods. Our codes are available. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11641v2-abstract-full').style.display = 'none'; document.getElementById('2411.11641v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by SIGKDD 2025</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.07722">arXiv:2411.07722</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.07722">pdf</a>, <a href="https://arxiv.org/format/2411.07722">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Is Cognition consistent with Perception? Assessing and Mitigating Multimodal Knowledge Conflicts in Document Understanding </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Shao%2C+Z">Zirui Shao</a>, <a href="/search/cs?searchtype=author&amp;query=Luo%2C+C">Chuwei Luo</a>, <a href="/search/cs?searchtype=author&amp;query=Zhu%2C+Z">Zhaoqing Zhu</a>, <a href="/search/cs?searchtype=author&amp;query=Xing%2C+H">Hangdi Xing</a>, <a href="/search/cs?searchtype=author&amp;query=Yu%2C+Z">Zhi Yu</a>, <a href="/search/cs?searchtype=author&amp;query=Zheng%2C+Q">Qi Zheng</a>, <a href="/search/cs?searchtype=author&amp;query=Bu%2C+J">Jiajun Bu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.07722v1-abstract-short" style="display: inline;"> Multimodal large language models (MLLMs) have shown impressive capabilities in document understanding, a rapidly growing research area with significant industrial demand in recent years. As a multimodal task, document understanding requires models to possess both perceptual and cognitive abilities. However, current MLLMs often face conflicts between perception and cognition. Taking a document VQA&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07722v1-abstract-full').style.display = 'inline'; document.getElementById('2411.07722v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.07722v1-abstract-full" style="display: none;"> Multimodal large language models (MLLMs) have shown impressive capabilities in document understanding, a rapidly growing research area with significant industrial demand in recent years. As a multimodal task, document understanding requires models to possess both perceptual and cognitive abilities. However, current MLLMs often face conflicts between perception and cognition. Taking a document VQA task (cognition) as an example, an MLLM might generate answers that do not match the corresponding visual content identified by its OCR (perception). This conflict suggests that the MLLM might struggle to establish an intrinsic connection between the information it &#34;sees&#34; and what it &#34;understands.&#34; Such conflicts challenge the intuitive notion that cognition is consistent with perception, hindering the performance and explainability of MLLMs. In this paper, we define the conflicts between cognition and perception as Cognition and Perception (C&amp;P) knowledge conflicts, a form of multimodal knowledge conflicts, and systematically assess them with a focus on document understanding. Our analysis reveals that even GPT-4o, a leading MLLM, achieves only 68.6% C&amp;P consistency. To mitigate the C&amp;P knowledge conflicts, we propose a novel method called Multimodal Knowledge Consistency Fine-tuning. This method first ensures task-specific consistency and then connects the cognitive and perceptual knowledge. Our method significantly reduces C&amp;P knowledge conflicts across all tested MLLMs and enhances their performance in both cognitive and perceptual tasks in most scenarios. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07722v1-abstract-full').style.display = 'none'; document.getElementById('2411.07722v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Preprint</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.02265">arXiv:2411.02265</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.02265">pdf</a>, <a href="https://arxiv.org/format/2411.02265">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Hunyuan-Large: An Open-Source MoE Model with 52 Billion Activated Parameters by Tencent </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Sun%2C+X">Xingwu Sun</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+Y">Yanfeng Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Huang%2C+Y">Yiqing Huang</a>, <a href="/search/cs?searchtype=author&amp;query=Xie%2C+R">Ruobing Xie</a>, <a href="/search/cs?searchtype=author&amp;query=Zhu%2C+J">Jiaqi Zhu</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+K">Kai Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+S">Shuaipeng Li</a>, <a href="/search/cs?searchtype=author&amp;query=Yang%2C+Z">Zhen Yang</a>, <a href="/search/cs?searchtype=author&amp;query=Han%2C+J">Jonny Han</a>, <a href="/search/cs?searchtype=author&amp;query=Shu%2C+X">Xiaobo Shu</a>, <a href="/search/cs?searchtype=author&amp;query=Bu%2C+J">Jiahao Bu</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+Z">Zhongzhi Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Huang%2C+X">Xuemeng Huang</a>, <a href="/search/cs?searchtype=author&amp;query=Lian%2C+F">Fengzong Lian</a>, <a href="/search/cs?searchtype=author&amp;query=Yang%2C+S">Saiyong Yang</a>, <a href="/search/cs?searchtype=author&amp;query=Yan%2C+J">Jianfeng Yan</a>, <a href="/search/cs?searchtype=author&amp;query=Zeng%2C+Y">Yuyuan Zeng</a>, <a href="/search/cs?searchtype=author&amp;query=Ren%2C+X">Xiaoqin Ren</a>, <a href="/search/cs?searchtype=author&amp;query=Yu%2C+C">Chao Yu</a>, <a href="/search/cs?searchtype=author&amp;query=Wu%2C+L">Lulu Wu</a>, <a href="/search/cs?searchtype=author&amp;query=Mao%2C+Y">Yue Mao</a>, <a href="/search/cs?searchtype=author&amp;query=Xia%2C+J">Jun Xia</a>, <a href="/search/cs?searchtype=author&amp;query=Yang%2C+T">Tao Yang</a>, <a href="/search/cs?searchtype=author&amp;query=Zheng%2C+S">Suncong Zheng</a>, <a href="/search/cs?searchtype=author&amp;query=Wu%2C+K">Kan Wu</a> , et al. (83 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.02265v3-abstract-short" style="display: inline;"> In this paper, we introduce Hunyuan-Large, which is currently the largest open-source Transformer-based mixture of experts model, with a total of 389 billion parameters and 52 billion activation parameters, capable of handling up to 256K tokens. We conduct a thorough evaluation of Hunyuan-Large&#39;s superior performance across various benchmarks including language understanding and generation, logica&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02265v3-abstract-full').style.display = 'inline'; document.getElementById('2411.02265v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.02265v3-abstract-full" style="display: none;"> In this paper, we introduce Hunyuan-Large, which is currently the largest open-source Transformer-based mixture of experts model, with a total of 389 billion parameters and 52 billion activation parameters, capable of handling up to 256K tokens. We conduct a thorough evaluation of Hunyuan-Large&#39;s superior performance across various benchmarks including language understanding and generation, logical reasoning, mathematical problem-solving, coding, long-context, and aggregated tasks, where it outperforms LLama3.1-70B and exhibits comparable performance when compared to the significantly larger LLama3.1-405B model. Key practice of Hunyuan-Large include large-scale synthetic data that is orders larger than in previous literature, a mixed expert routing strategy, a key-value cache compression technique, and an expert-specific learning rate strategy. Additionally, we also investigate the scaling laws and learning rate schedule of mixture of experts models, providing valuable insights and guidances for future model development and optimization. The code and checkpoints of Hunyuan-Large are released to facilitate future innovations and applications. Codes: https://github.com/Tencent/Hunyuan-Large Models: https://huggingface.co/tencent/Tencent-Hunyuan-Large <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02265v3-abstract-full').style.display = 'none'; document.getElementById('2411.02265v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 4 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.06241">arXiv:2410.06241</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.06241">pdf</a>, <a href="https://arxiv.org/format/2410.06241">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> BroadWay: Boost Your Text-to-Video Generation Model in a Training-free Way </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Bu%2C+J">Jiazi Bu</a>, <a href="/search/cs?searchtype=author&amp;query=Ling%2C+P">Pengyang Ling</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+P">Pan Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Wu%2C+T">Tong Wu</a>, <a href="/search/cs?searchtype=author&amp;query=Dong%2C+X">Xiaoyi Dong</a>, <a href="/search/cs?searchtype=author&amp;query=Zang%2C+Y">Yuhang Zang</a>, <a href="/search/cs?searchtype=author&amp;query=Cao%2C+Y">Yuhang Cao</a>, <a href="/search/cs?searchtype=author&amp;query=Lin%2C+D">Dahua Lin</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+J">Jiaqi Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.06241v2-abstract-short" style="display: inline;"> The text-to-video (T2V) generation models, offering convenient visual creation, have recently garnered increasing attention. Despite their substantial potential, the generated videos may present artifacts, including structural implausibility, temporal inconsistency, and a lack of motion, often resulting in near-static video. In this work, we have identified a correlation between the disparity of t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06241v2-abstract-full').style.display = 'inline'; document.getElementById('2410.06241v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.06241v2-abstract-full" style="display: none;"> The text-to-video (T2V) generation models, offering convenient visual creation, have recently garnered increasing attention. Despite their substantial potential, the generated videos may present artifacts, including structural implausibility, temporal inconsistency, and a lack of motion, often resulting in near-static video. In this work, we have identified a correlation between the disparity of temporal attention maps across different blocks and the occurrence of temporal inconsistencies. Additionally, we have observed that the energy contained within the temporal attention maps is directly related to the magnitude of motion amplitude in the generated videos. Based on these observations, we present BroadWay, a training-free method to improve the quality of text-to-video generation without introducing additional parameters, augmenting memory or sampling time. Specifically, BroadWay is composed of two principal components: 1) Temporal Self-Guidance improves the structural plausibility and temporal consistency of generated videos by reducing the disparity between the temporal attention maps across various decoder blocks. 2) Fourier-based Motion Enhancement enhances the magnitude and richness of motion by amplifying the energy of the map. Extensive experiments demonstrate that BroadWay significantly improves the quality of text-to-video generation with negligible additional cost. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06241v2-abstract-full').style.display = 'none'; document.getElementById('2410.06241v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.15502">arXiv:2407.15502</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.15502">pdf</a>, <a href="https://arxiv.org/format/2407.15502">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> WebRPG: Automatic Web Rendering Parameters Generation for Visual Presentation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Shao%2C+Z">Zirui Shao</a>, <a href="/search/cs?searchtype=author&amp;query=Gao%2C+F">Feiyu Gao</a>, <a href="/search/cs?searchtype=author&amp;query=Xing%2C+H">Hangdi Xing</a>, <a href="/search/cs?searchtype=author&amp;query=Zhu%2C+Z">Zepeng Zhu</a>, <a href="/search/cs?searchtype=author&amp;query=Yu%2C+Z">Zhi Yu</a>, <a href="/search/cs?searchtype=author&amp;query=Bu%2C+J">Jiajun Bu</a>, <a href="/search/cs?searchtype=author&amp;query=Zheng%2C+Q">Qi Zheng</a>, <a href="/search/cs?searchtype=author&amp;query=Yao%2C+C">Cong Yao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.15502v1-abstract-short" style="display: inline;"> In the era of content creation revolution propelled by advancements in generative models, the field of web design remains unexplored despite its critical role in modern digital communication. The web design process is complex and often time-consuming, especially for those with limited expertise. In this paper, we introduce Web Rendering Parameters Generation (WebRPG), a new task that aims at autom&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15502v1-abstract-full').style.display = 'inline'; document.getElementById('2407.15502v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.15502v1-abstract-full" style="display: none;"> In the era of content creation revolution propelled by advancements in generative models, the field of web design remains unexplored despite its critical role in modern digital communication. The web design process is complex and often time-consuming, especially for those with limited expertise. In this paper, we introduce Web Rendering Parameters Generation (WebRPG), a new task that aims at automating the generation for visual presentation of web pages based on their HTML code. WebRPG would contribute to a faster web development workflow. Since there is no existing benchmark available, we develop a new dataset for WebRPG through an automated pipeline. Moreover, we present baseline models, utilizing VAE to manage numerous elements and rendering parameters, along with custom HTML embedding for capturing essential semantic and hierarchical information from HTML. Extensive experiments, including customized quantitative evaluations for this specific task, are conducted to evaluate the quality of the generated results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15502v1-abstract-full').style.display = 'none'; document.getElementById('2407.15502v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted at ECCV 2024. The dataset and code can be accessed at https://github.com/AlibabaResearch/AdvancedLiterateMachinery/tree/main/DocumentUnderstanding/WebRPG</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.15355">arXiv:2407.15355</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.15355">pdf</a>, <a href="https://arxiv.org/format/2407.15355">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Attention Beats Linear for Fast Implicit Neural Representation Generation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+S">Shuyi Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Liu%2C+K">Ke Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Gu%2C+J">Jingjun Gu</a>, <a href="/search/cs?searchtype=author&amp;query=Cai%2C+X">Xiaoxu Cai</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+Z">Zhihua Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Bu%2C+J">Jiajun Bu</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+H">Haishuai Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.15355v1-abstract-short" style="display: inline;"> Implicit Neural Representation (INR) has gained increasing popularity as a data representation method, serving as a prerequisite for innovative generation models. Unlike gradient-based methods, which exhibit lower efficiency in inference, the adoption of hyper-network for generating parameters in Multi-Layer Perceptrons (MLP), responsible for executing INR functions, has surfaced as a promising an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15355v1-abstract-full').style.display = 'inline'; document.getElementById('2407.15355v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.15355v1-abstract-full" style="display: none;"> Implicit Neural Representation (INR) has gained increasing popularity as a data representation method, serving as a prerequisite for innovative generation models. Unlike gradient-based methods, which exhibit lower efficiency in inference, the adoption of hyper-network for generating parameters in Multi-Layer Perceptrons (MLP), responsible for executing INR functions, has surfaced as a promising and efficient alternative. However, as a global continuous function, MLP is challenging in modeling highly discontinuous signals, resulting in slow convergence during the training phase and inaccurate reconstruction performance. Moreover, MLP requires massive representation parameters, which implies inefficiencies in data representation. In this paper, we propose a novel Attention-based Localized INR (ANR) composed of a localized attention layer (LAL) and a global MLP that integrates coordinate features with data features and converts them to meaningful outputs. Subsequently, we design an instance representation framework that delivers a transformer-like hyper-network to represent data instances as a compact representation vector. With instance-specific representation vector and instance-agnostic ANR parameters, the target signals are well reconstructed as a continuous function. We further address aliasing artifacts with variational coordinates when obtaining the super-resolution inference results. Extensive experimentation across four datasets showcases the notable efficacy of our ANR method, e.g. enhancing the PSNR value from 37.95dB to 47.25dB on the CelebA dataset. Code is released at https://github.com/Roninton/ANR. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15355v1-abstract-full').style.display = 'none'; document.getElementById('2407.15355v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accept by ECCV 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.12358">arXiv:2407.12358</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.12358">pdf</a>, <a href="https://arxiv.org/format/2407.12358">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> ProcTag: Process Tagging for Assessing the Efficacy of Document Instruction Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Shen%2C+Y">Yufan Shen</a>, <a href="/search/cs?searchtype=author&amp;query=Luo%2C+C">Chuwei Luo</a>, <a href="/search/cs?searchtype=author&amp;query=Zhu%2C+Z">Zhaoqing Zhu</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+Y">Yang Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Zheng%2C+Q">Qi Zheng</a>, <a href="/search/cs?searchtype=author&amp;query=Yu%2C+Z">Zhi Yu</a>, <a href="/search/cs?searchtype=author&amp;query=Bu%2C+J">Jiajun Bu</a>, <a href="/search/cs?searchtype=author&amp;query=Yao%2C+C">Cong Yao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.12358v1-abstract-short" style="display: inline;"> Recently, large language models (LLMs) and multimodal large language models (MLLMs) have demonstrated promising results on document visual question answering (VQA) task, particularly after training on document instruction datasets. An effective evaluation method for document instruction data is crucial in constructing instruction data with high efficacy, which, in turn, facilitates the training of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12358v1-abstract-full').style.display = 'inline'; document.getElementById('2407.12358v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.12358v1-abstract-full" style="display: none;"> Recently, large language models (LLMs) and multimodal large language models (MLLMs) have demonstrated promising results on document visual question answering (VQA) task, particularly after training on document instruction datasets. An effective evaluation method for document instruction data is crucial in constructing instruction data with high efficacy, which, in turn, facilitates the training of LLMs and MLLMs for document VQA. However, most existing evaluation methods for instruction data are limited to the textual content of the instructions themselves, thereby hindering the effective assessment of document instruction datasets and constraining their construction. In this paper, we propose ProcTag, a data-oriented method that assesses the efficacy of document instruction data. ProcTag innovatively performs tagging on the execution process of instructions rather than the instruction text itself. By leveraging the diversity and complexity of these tags to assess the efficacy of the given dataset, ProcTag enables selective sampling or filtering of document instructions. Furthermore, DocLayPrompt, a novel semi-structured layout-aware document prompting strategy, is proposed for effectively representing documents. Experiments demonstrate that sampling existing open-sourced and generated document VQA/instruction datasets with ProcTag significantly outperforms current methods for evaluating instruction data. Impressively, with ProcTag-based sampling in the generated document datasets, only 30.5\% of the document instructions are required to achieve 100\% efficacy compared to the complete dataset. The code is publicly available at https://github.com/AlibabaResearch/AdvancedLiterateMachinery/tree/main/DocumentUnderstanding/ProcTag. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12358v1-abstract-full').style.display = 'none'; document.getElementById('2407.12358v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.11052">arXiv:2407.11052</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.11052">pdf</a>, <a href="https://arxiv.org/format/2407.11052">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Revisiting, Benchmarking and Understanding Unsupervised Graph Domain Adaptation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Liu%2C+M">Meihan Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+Z">Zhen Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Tang%2C+J">Jiachen Tang</a>, <a href="/search/cs?searchtype=author&amp;query=Bu%2C+J">Jiajun Bu</a>, <a href="/search/cs?searchtype=author&amp;query=He%2C+B">Bingsheng He</a>, <a href="/search/cs?searchtype=author&amp;query=Zhou%2C+S">Sheng Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.11052v2-abstract-short" style="display: inline;"> Unsupervised Graph Domain Adaptation (UGDA) involves the transfer of knowledge from a label-rich source graph to an unlabeled target graph under domain discrepancies. Despite the proliferation of methods designed for this emerging task, the lack of standard experimental settings and fair performance comparisons makes it challenging to understand which and when models perform well across different&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11052v2-abstract-full').style.display = 'inline'; document.getElementById('2407.11052v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.11052v2-abstract-full" style="display: none;"> Unsupervised Graph Domain Adaptation (UGDA) involves the transfer of knowledge from a label-rich source graph to an unlabeled target graph under domain discrepancies. Despite the proliferation of methods designed for this emerging task, the lack of standard experimental settings and fair performance comparisons makes it challenging to understand which and when models perform well across different scenarios. To fill this gap, we present the first comprehensive benchmark for unsupervised graph domain adaptation named GDABench, which encompasses 16 algorithms across 5 datasets with 74 adaptation tasks. Through extensive experiments, we observe that the performance of current UGDA models varies significantly across different datasets and adaptation scenarios. Specifically, we recognize that when the source and target graphs face significant distribution shifts, it is imperative to formulate strategies to effectively address and mitigate graph structural shifts. We also find that with appropriate neighbourhood aggregation mechanisms, simple GNN variants can even surpass state-of-the-art UGDA baselines. To facilitate reproducibility, we have developed an easy-to-use library PyGDA for training and evaluating existing UGDA methods, providing a standardized platform in this community. Our source codes and datasets can be found at: https://github.com/pygda-team/pygda. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11052v2-abstract-full').style.display = 'none'; document.getElementById('2407.11052v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by NeurIPS-24</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.05338">arXiv:2406.05338</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.05338">pdf</a>, <a href="https://arxiv.org/format/2406.05338">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> MotionClone: Training-Free Motion Cloning for Controllable Video Generation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Ling%2C+P">Pengyang Ling</a>, <a href="/search/cs?searchtype=author&amp;query=Bu%2C+J">Jiazi Bu</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+P">Pan Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Dong%2C+X">Xiaoyi Dong</a>, <a href="/search/cs?searchtype=author&amp;query=Zang%2C+Y">Yuhang Zang</a>, <a href="/search/cs?searchtype=author&amp;query=Wu%2C+T">Tong Wu</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+H">Huaian Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+J">Jiaqi Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Jin%2C+Y">Yi Jin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.05338v6-abstract-short" style="display: inline;"> Motion-based controllable video generation offers the potential for creating captivating visual content. Existing methods typically necessitate model training to encode particular motion cues or incorporate fine-tuning to inject certain motion patterns, resulting in limited flexibility and generalization. In this work, we propose MotionClone, a training-free framework that enables motion cloning f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05338v6-abstract-full').style.display = 'inline'; document.getElementById('2406.05338v6-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.05338v6-abstract-full" style="display: none;"> Motion-based controllable video generation offers the potential for creating captivating visual content. Existing methods typically necessitate model training to encode particular motion cues or incorporate fine-tuning to inject certain motion patterns, resulting in limited flexibility and generalization. In this work, we propose MotionClone, a training-free framework that enables motion cloning from reference videos to versatile motion-controlled video generation, including text-to-video and image-to-video. Based on the observation that the dominant components in temporal-attention maps drive motion synthesis, while the rest mainly capture noisy or very subtle motions, MotionClone utilizes sparse temporal attention weights as motion representations for motion guidance, facilitating diverse motion transfer across varying scenarios. Meanwhile, MotionClone allows for the direct extraction of motion representation through a single denoising step, bypassing the cumbersome inversion processes and thus promoting both efficiency and flexibility. Extensive experiments demonstrate that MotionClone exhibits proficiency in both global camera motion and local object motion, with notable superiority in terms of motion fidelity, textual alignment, and temporal consistency. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05338v6-abstract-full').style.display = 'none'; document.getElementById('2406.05338v6-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 14 figures, https://bujiazi.github.io/motionclone.github.io/</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.04553">arXiv:2406.04553</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.04553">pdf</a>, <a href="https://arxiv.org/format/2406.04553">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Retrieval">cs.IR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Better Late Than Never: Formulating and Benchmarking Recommendation Editing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Lai%2C+C">Chengyu Lai</a>, <a href="/search/cs?searchtype=author&amp;query=Zhou%2C+S">Sheng Zhou</a>, <a href="/search/cs?searchtype=author&amp;query=Jiang%2C+Z">Zhimeng Jiang</a>, <a href="/search/cs?searchtype=author&amp;query=Tan%2C+Q">Qiaoyu Tan</a>, <a href="/search/cs?searchtype=author&amp;query=Bei%2C+Y">Yuanchen Bei</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+J">Jiawei Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+N">Ningyu Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Bu%2C+J">Jiajun Bu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.04553v2-abstract-short" style="display: inline;"> Recommendation systems play a pivotal role in suggesting items to users based on their preferences. However, in online platforms, these systems inevitably offer unsuitable recommendations due to limited model capacity, poor data quality, or evolving user interests. Enhancing user experience necessitates efficiently rectify such unsuitable recommendation behaviors. This paper introduces a novel and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.04553v2-abstract-full').style.display = 'inline'; document.getElementById('2406.04553v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.04553v2-abstract-full" style="display: none;"> Recommendation systems play a pivotal role in suggesting items to users based on their preferences. However, in online platforms, these systems inevitably offer unsuitable recommendations due to limited model capacity, poor data quality, or evolving user interests. Enhancing user experience necessitates efficiently rectify such unsuitable recommendation behaviors. This paper introduces a novel and significant task termed recommendation editing, which focuses on modifying known and unsuitable recommendation behaviors. Specifically, this task aims to adjust the recommendation model to eliminate known unsuitable items without accessing training data or retraining the model. We formally define the problem of recommendation editing with three primary objectives: strict rectification, collaborative rectification, and concentrated rectification. Three evaluation metrics are developed to quantitatively assess the achievement of each objective. We present a straightforward yet effective benchmark for recommendation editing using novel Editing Bayesian Personalized Ranking Loss. To demonstrate the effectiveness of the proposed method, we establish a comprehensive benchmark that incorporates various methods from related fields. Codebase is available at https://github.com/cycl2018/Recommendation-Editing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.04553v2-abstract-full').style.display = 'none'; document.getElementById('2406.04553v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.04299">arXiv:2406.04299</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.04299">pdf</a>, <a href="https://arxiv.org/format/2406.04299">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Social and Information Networks">cs.SI</span> </div> </div> <p class="title is-5 mathjax"> NoisyGL: A Comprehensive Benchmark for Graph Neural Networks under Label Noise </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Wang%2C+Z">Zhonghao Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Sun%2C+D">Danyu Sun</a>, <a href="/search/cs?searchtype=author&amp;query=Zhou%2C+S">Sheng Zhou</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+H">Haobo Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Fan%2C+J">Jiapei Fan</a>, <a href="/search/cs?searchtype=author&amp;query=Huang%2C+L">Longtao Huang</a>, <a href="/search/cs?searchtype=author&amp;query=Bu%2C+J">Jiajun Bu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.04299v2-abstract-short" style="display: inline;"> Graph Neural Networks (GNNs) exhibit strong potential in node classification task through a message-passing mechanism. However, their performance often hinges on high-quality node labels, which are challenging to obtain in real-world scenarios due to unreliable sources or adversarial attacks. Consequently, label noise is common in real-world graph data, negatively impacting GNNs by propagating inc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.04299v2-abstract-full').style.display = 'inline'; document.getElementById('2406.04299v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.04299v2-abstract-full" style="display: none;"> Graph Neural Networks (GNNs) exhibit strong potential in node classification task through a message-passing mechanism. However, their performance often hinges on high-quality node labels, which are challenging to obtain in real-world scenarios due to unreliable sources or adversarial attacks. Consequently, label noise is common in real-world graph data, negatively impacting GNNs by propagating incorrect information during training. To address this issue, the study of Graph Neural Networks under Label Noise (GLN) has recently gained traction. However, due to variations in dataset selection, data splitting, and preprocessing techniques, the community currently lacks a comprehensive benchmark, which impedes deeper understanding and further development of GLN. To fill this gap, we introduce NoisyGL in this paper, the first comprehensive benchmark for graph neural networks under label noise. NoisyGL enables fair comparisons and detailed analyses of GLN methods on noisy labeled graph data across various datasets, with unified experimental settings and interface. Our benchmark has uncovered several important insights that were missed in previous research, and we believe these findings will be highly beneficial for future studies. We hope our open-source benchmark library will foster further advancements in this field. The code of the benchmark can be found in https://github.com/eaglelab-zju/NoisyGL. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.04299v2-abstract-full').style.display = 'none'; document.getElementById('2406.04299v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 15 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.00452">arXiv:2406.00452</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.00452">pdf</a>, <a href="https://arxiv.org/format/2406.00452">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Towards a Unified Framework of Clustering-based Anomaly Detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Fang%2C+Z">Zeyu Fang</a>, <a href="/search/cs?searchtype=author&amp;query=Gu%2C+M">Ming Gu</a>, <a href="/search/cs?searchtype=author&amp;query=Zhou%2C+S">Sheng Zhou</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+J">Jiawei Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Tan%2C+Q">Qiaoyu Tan</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+H">Haishuai Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Bu%2C+J">Jiajun Bu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.00452v1-abstract-short" style="display: inline;"> Unsupervised Anomaly Detection (UAD) plays a crucial role in identifying abnormal patterns within data without labeled examples, holding significant practical implications across various domains. Although the individual contributions of representation learning and clustering to anomaly detection are well-established, their interdependencies remain under-explored due to the absence of a unified the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.00452v1-abstract-full').style.display = 'inline'; document.getElementById('2406.00452v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.00452v1-abstract-full" style="display: none;"> Unsupervised Anomaly Detection (UAD) plays a crucial role in identifying abnormal patterns within data without labeled examples, holding significant practical implications across various domains. Although the individual contributions of representation learning and clustering to anomaly detection are well-established, their interdependencies remain under-explored due to the absence of a unified theoretical framework. Consequently, their collective potential to enhance anomaly detection performance remains largely untapped. To bridge this gap, in this paper, we propose a novel probabilistic mixture model for anomaly detection to establish a theoretical connection among representation learning, clustering, and anomaly detection. By maximizing a novel anomaly-aware data likelihood, representation learning and clustering can effectively reduce the adverse impact of anomalous data and collaboratively benefit anomaly detection. Meanwhile, a theoretically substantiated anomaly score is naturally derived from this framework. Lastly, drawing inspiration from gravitational analysis in physics, we have devised an improved anomaly score that more effectively harnesses the combined power of representation learning and clustering. Extensive experiments, involving 17 baseline methods across 30 diverse datasets, validate the effectiveness and generalization capability of the proposed method, surpassing state-of-the-art methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.00452v1-abstract-full').style.display = 'none'; document.getElementById('2406.00452v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.20640">arXiv:2405.20640</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.20640">pdf</a>, <a href="https://arxiv.org/format/2405.20640">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Social and Information Networks">cs.SI</span> </div> </div> <p class="title is-5 mathjax"> Heterophilous Distribution Propagation for Graph Neural Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Zheng%2C+Z">Zhuonan Zheng</a>, <a href="/search/cs?searchtype=author&amp;query=Zhou%2C+S">Sheng Zhou</a>, <a href="/search/cs?searchtype=author&amp;query=Xu%2C+H">Hongjia Xu</a>, <a href="/search/cs?searchtype=author&amp;query=Gu%2C+M">Ming Gu</a>, <a href="/search/cs?searchtype=author&amp;query=Xu%2C+Y">Yilun Xu</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+A">Ao Li</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+Y">Yuhong Li</a>, <a href="/search/cs?searchtype=author&amp;query=Gu%2C+J">Jingjun Gu</a>, <a href="/search/cs?searchtype=author&amp;query=Bu%2C+J">Jiajun Bu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.20640v1-abstract-short" style="display: inline;"> Graph Neural Networks (GNNs) have achieved remarkable success in various graph mining tasks by aggregating information from neighborhoods for representation learning. The success relies on the homophily assumption that nearby nodes exhibit similar behaviors, while it may be violated in many real-world graphs. Recently, heterophilous graph neural networks (HeterGNNs) have attracted increasing atten&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.20640v1-abstract-full').style.display = 'inline'; document.getElementById('2405.20640v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.20640v1-abstract-full" style="display: none;"> Graph Neural Networks (GNNs) have achieved remarkable success in various graph mining tasks by aggregating information from neighborhoods for representation learning. The success relies on the homophily assumption that nearby nodes exhibit similar behaviors, while it may be violated in many real-world graphs. Recently, heterophilous graph neural networks (HeterGNNs) have attracted increasing attention by modifying the neural message passing schema for heterophilous neighborhoods. However, they suffer from insufficient neighborhood partition and heterophily modeling, both of which are critical but challenging to break through. To tackle these challenges, in this paper, we propose heterophilous distribution propagation (HDP) for graph neural networks. Instead of aggregating information from all neighborhoods, HDP adaptively separates the neighbors into homophilous and heterphilous parts based on the pseudo assignments during training. The heterophilous neighborhood distribution is learned with orthogonality-oriented constraint via a trusted prototype contrastive learning paradigm. Both the homophilous and heterophilous patterns are propagated with a novel semantic-aware message passing mechanism. We conduct extensive experiments on 9 benchmark datasets with different levels of homophily. Experimental results show that our method outperforms representative baselines on heterophilous datasets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.20640v1-abstract-full').style.display = 'none'; document.getElementById('2405.20640v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.17768">arXiv:2405.17768</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.17768">pdf</a>, <a href="https://arxiv.org/format/2405.17768">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Social and Information Networks">cs.SI</span> </div> </div> <p class="title is-5 mathjax"> Revisiting the Message Passing in Heterophilous Graph Neural Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Zheng%2C+Z">Zhuonan Zheng</a>, <a href="/search/cs?searchtype=author&amp;query=Bei%2C+Y">Yuanchen Bei</a>, <a href="/search/cs?searchtype=author&amp;query=Zhou%2C+S">Sheng Zhou</a>, <a href="/search/cs?searchtype=author&amp;query=Ma%2C+Y">Yao Ma</a>, <a href="/search/cs?searchtype=author&amp;query=Gu%2C+M">Ming Gu</a>, <a href="/search/cs?searchtype=author&amp;query=XU%2C+H">HongJia XU</a>, <a href="/search/cs?searchtype=author&amp;query=Lai%2C+C">Chengyu Lai</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+J">Jiawei Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Bu%2C+J">Jiajun Bu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.17768v1-abstract-short" style="display: inline;"> Graph Neural Networks (GNNs) have demonstrated strong performance in graph mining tasks due to their message-passing mechanism, which is aligned with the homophily assumption that adjacent nodes exhibit similar behaviors. However, in many real-world graphs, connected nodes may display contrasting behaviors, termed as heterophilous patterns, which has attracted increased interest in heterophilous G&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.17768v1-abstract-full').style.display = 'inline'; document.getElementById('2405.17768v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.17768v1-abstract-full" style="display: none;"> Graph Neural Networks (GNNs) have demonstrated strong performance in graph mining tasks due to their message-passing mechanism, which is aligned with the homophily assumption that adjacent nodes exhibit similar behaviors. However, in many real-world graphs, connected nodes may display contrasting behaviors, termed as heterophilous patterns, which has attracted increased interest in heterophilous GNNs (HTGNNs). Although the message-passing mechanism seems unsuitable for heterophilous graphs due to the propagation of class-irrelevant information, it is still widely used in many existing HTGNNs and consistently achieves notable success. This raises the question: why does message passing remain effective on heterophilous graphs? To answer this question, in this paper, we revisit the message-passing mechanisms in heterophilous graph neural networks and reformulate them into a unified heterophilious message-passing (HTMP) mechanism. Based on HTMP and empirical analysis, we reveal that the success of message passing in existing HTGNNs is attributed to implicitly enhancing the compatibility matrix among classes. Moreover, we argue that the full potential of the compatibility matrix is not completely achieved due to the existence of incomplete and noisy semantic neighborhoods in real-world heterophilous graphs. To bridge this gap, we introduce a new approach named CMGNN, which operates within the HTMP mechanism to explicitly leverage and improve the compatibility matrix. A thorough evaluation involving 10 benchmark datasets and comparative analysis against 13 well-established baselines highlights the superior performance of the HTMP mechanism and CMGNN method. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.17768v1-abstract-full').style.display = 'none'; document.getElementById('2405.17768v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.16366">arXiv:2404.16366</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.16366">pdf</a>, <a href="https://arxiv.org/format/2404.16366">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Guarding Graph Neural Networks for Unsupervised Graph Anomaly Detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Bei%2C+Y">Yuanchen Bei</a>, <a href="/search/cs?searchtype=author&amp;query=Zhou%2C+S">Sheng Zhou</a>, <a href="/search/cs?searchtype=author&amp;query=Shi%2C+J">Jinke Shi</a>, <a href="/search/cs?searchtype=author&amp;query=Ma%2C+Y">Yao Ma</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+H">Haishuai Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Bu%2C+J">Jiajun Bu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.16366v1-abstract-short" style="display: inline;"> Unsupervised graph anomaly detection aims at identifying rare patterns that deviate from the majority in a graph without the aid of labels, which is important for a variety of real-world applications. Recent advances have utilized Graph Neural Networks (GNNs) to learn effective node representations by aggregating information from neighborhoods. This is motivated by the hypothesis that nodes in the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.16366v1-abstract-full').style.display = 'inline'; document.getElementById('2404.16366v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.16366v1-abstract-full" style="display: none;"> Unsupervised graph anomaly detection aims at identifying rare patterns that deviate from the majority in a graph without the aid of labels, which is important for a variety of real-world applications. Recent advances have utilized Graph Neural Networks (GNNs) to learn effective node representations by aggregating information from neighborhoods. This is motivated by the hypothesis that nodes in the graph tend to exhibit consistent behaviors with their neighborhoods. However, such consistency can be disrupted by graph anomalies in multiple ways. Most existing methods directly employ GNNs to learn representations, disregarding the negative impact of graph anomalies on GNNs, resulting in sub-optimal node representations and anomaly detection performance. While a few recent approaches have redesigned GNNs for graph anomaly detection under semi-supervised label guidance, how to address the adverse effects of graph anomalies on GNNs in unsupervised scenarios and learn effective representations for anomaly detection are still under-explored. To bridge this gap, in this paper, we propose a simple yet effective framework for Guarding Graph Neural Networks for Unsupervised Graph Anomaly Detection (G3AD). Specifically, G3AD introduces two auxiliary networks along with correlation constraints to guard the GNNs from inconsistent information encoding. Furthermore, G3AD introduces an adaptive caching module to guard the GNNs from solely reconstructing the observed data that contains anomalies. Extensive experiments demonstrate that our proposed G3AD can outperform seventeen state-of-the-art methods on both synthetic and real-world datasets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.16366v1-abstract-full').style.display = 'none'; document.getElementById('2404.16366v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.01467">arXiv:2403.01467</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.01467">pdf</a>, <a href="https://arxiv.org/format/2403.01467">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1145/3589334.3645507">10.1145/3589334.3645507 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Collaborate to Adapt: Source-Free Graph Domain Adaptation via Bi-directional Adaptation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+Z">Zhen Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Liu%2C+M">Meihan Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+A">Anhui Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+H">Hongyang Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+Z">Zhao Li</a>, <a href="/search/cs?searchtype=author&amp;query=Bu%2C+J">Jiajun Bu</a>, <a href="/search/cs?searchtype=author&amp;query=He%2C+B">Bingsheng He</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.01467v1-abstract-short" style="display: inline;"> Unsupervised Graph Domain Adaptation (UGDA) has emerged as a practical solution to transfer knowledge from a label-rich source graph to a completely unlabelled target graph. However, most methods require a labelled source graph to provide supervision signals, which might not be accessible in the real-world settings due to regulations and privacy concerns. In this paper, we explore the scenario of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.01467v1-abstract-full').style.display = 'inline'; document.getElementById('2403.01467v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.01467v1-abstract-full" style="display: none;"> Unsupervised Graph Domain Adaptation (UGDA) has emerged as a practical solution to transfer knowledge from a label-rich source graph to a completely unlabelled target graph. However, most methods require a labelled source graph to provide supervision signals, which might not be accessible in the real-world settings due to regulations and privacy concerns. In this paper, we explore the scenario of source-free unsupervised graph domain adaptation, which tries to address the domain adaptation problem without accessing the labelled source graph. Specifically, we present a novel paradigm called GraphCTA, which performs model adaptation and graph adaptation collaboratively through a series of procedures: (1) conduct model adaptation based on node&#39;s neighborhood predictions in target graph considering both local and global information; (2) perform graph adaptation by updating graph structure and node attributes via neighborhood contrastive learning; and (3) the updated graph serves as an input to facilitate the subsequent iteration of model adaptation, thereby establishing a collaborative loop between model adaptation and graph adaptation. Comprehensive experiments are conducted on various public datasets. The experimental results demonstrate that our proposed model outperforms recent source-free baselines by large margins. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.01467v1-abstract-full').style.display = 'none'; document.getElementById('2403.01467v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by WWW-2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.05660">arXiv:2402.05660</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.05660">pdf</a>, <a href="https://arxiv.org/format/2402.05660">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Rethinking Propagation for Unsupervised Graph Domain Adaptation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Liu%2C+M">Meihan Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Fang%2C+Z">Zeyu Fang</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+Z">Zhen Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Gu%2C+M">Ming Gu</a>, <a href="/search/cs?searchtype=author&amp;query=Zhou%2C+S">Sheng Zhou</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+X">Xin Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Bu%2C+J">Jiajun Bu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.05660v1-abstract-short" style="display: inline;"> Unsupervised Graph Domain Adaptation (UGDA) aims to transfer knowledge from a labelled source graph to an unlabelled target graph in order to address the distribution shifts between graph domains. Previous works have primarily focused on aligning data from the source and target graph in the representation space learned by graph neural networks (GNNs). However, the inherent generalization capabilit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.05660v1-abstract-full').style.display = 'inline'; document.getElementById('2402.05660v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.05660v1-abstract-full" style="display: none;"> Unsupervised Graph Domain Adaptation (UGDA) aims to transfer knowledge from a labelled source graph to an unlabelled target graph in order to address the distribution shifts between graph domains. Previous works have primarily focused on aligning data from the source and target graph in the representation space learned by graph neural networks (GNNs). However, the inherent generalization capability of GNNs has been largely overlooked. Motivated by our empirical analysis, we reevaluate the role of GNNs in graph domain adaptation and uncover the pivotal role of the propagation process in GNNs for adapting to different graph domains. We provide a comprehensive theoretical analysis of UGDA and derive a generalization bound for multi-layer GNNs. By formulating GNN Lipschitz for k-layer GNNs, we show that the target risk bound can be tighter by removing propagation layers in source graph and stacking multiple propagation layers in target graph. Based on the empirical and theoretical analysis mentioned above, we propose a simple yet effective approach called A2GNN for graph domain adaptation. Through extensive experiments on real-world datasets, we demonstrate the effectiveness of our proposed A2GNN framework. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.05660v1-abstract-full').style.display = 'none'; document.getElementById('2402.05660v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by AAAI-24</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.17050">arXiv:2401.17050</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.17050">pdf</a>, <a href="https://arxiv.org/format/2401.17050">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> ViTree: Single-path Neural Tree for Step-wise Interpretable Fine-grained Visual Categorization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Lao%2C+D">Danning Lao</a>, <a href="/search/cs?searchtype=author&amp;query=Liu%2C+Q">Qi Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Bu%2C+J">Jiazi Bu</a>, <a href="/search/cs?searchtype=author&amp;query=Yan%2C+J">Junchi Yan</a>, <a href="/search/cs?searchtype=author&amp;query=Shen%2C+W">Wei Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.17050v1-abstract-short" style="display: inline;"> As computer vision continues to advance and finds widespread applications across various domains, the need for interpretability in deep learning models becomes paramount. Existing methods often resort to post-hoc techniques or prototypes to explain the decision-making process, which can be indirect and lack intrinsic illustration. In this research, we introduce ViTree, a novel approach for fine-gr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.17050v1-abstract-full').style.display = 'inline'; document.getElementById('2401.17050v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.17050v1-abstract-full" style="display: none;"> As computer vision continues to advance and finds widespread applications across various domains, the need for interpretability in deep learning models becomes paramount. Existing methods often resort to post-hoc techniques or prototypes to explain the decision-making process, which can be indirect and lack intrinsic illustration. In this research, we introduce ViTree, a novel approach for fine-grained visual categorization that combines the popular vision transformer as a feature extraction backbone with neural decision trees. By traversing the tree paths, ViTree effectively selects patches from transformer-processed features to highlight informative local regions, thereby refining representations in a step-wise manner. Unlike previous tree-based models that rely on soft distributions or ensembles of paths, ViTree selects a single tree path, offering a clearer and simpler decision-making process. This patch and path selectivity enhances model interpretability of ViTree, enabling better insights into the model&#39;s inner workings. Remarkably, extensive experimentation validates that this streamlined approach surpasses various strong competitors and achieves state-of-the-art performance while maintaining exceptional interpretability which is proved by multi-perspective methods. Code can be found at https://github.com/SJTU-DeepVisionLab/ViTree. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.17050v1-abstract-full').style.display = 'none'; document.getElementById('2401.17050v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.05010">arXiv:2401.05010</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.05010">pdf</a>, <a href="https://arxiv.org/format/2401.05010">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Less is More: A Closer Look at Semantic-based Few-Shot Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Zhou%2C+C">Chunpeng Zhou</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+H">Haishuai Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Yuan%2C+X">Xilu Yuan</a>, <a href="/search/cs?searchtype=author&amp;query=Yu%2C+Z">Zhi Yu</a>, <a href="/search/cs?searchtype=author&amp;query=Bu%2C+J">Jiajun Bu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.05010v2-abstract-short" style="display: inline;"> Few-shot Learning aims to learn and distinguish new categories with a very limited number of available images, presenting a significant challenge in the realm of deep learning. Recent researchers have sought to leverage the additional textual or linguistic information of these rare categories with a pre-trained language model to facilitate learning, thus partially alleviating the problem of insuff&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.05010v2-abstract-full').style.display = 'inline'; document.getElementById('2401.05010v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.05010v2-abstract-full" style="display: none;"> Few-shot Learning aims to learn and distinguish new categories with a very limited number of available images, presenting a significant challenge in the realm of deep learning. Recent researchers have sought to leverage the additional textual or linguistic information of these rare categories with a pre-trained language model to facilitate learning, thus partially alleviating the problem of insufficient supervision signals. However, the full potential of the textual information and pre-trained language model have been underestimated in the few-shot learning till now, resulting in limited performance enhancements. To address this, we propose a simple but effective framework for few-shot learning tasks, specifically designed to exploit the textual information and language model. In more detail, we explicitly exploit the zero-shot capability of the pre-trained language model with the learnable prompt. And we just add the visual feature with the textual feature for inference directly without the intricate designed fusion modules in previous works. Additionally, we apply the self-ensemble and distillation to further enhance these components. Our extensive experiments conducted across four widely used few-shot datasets demonstrate that our simple framework achieves impressive results. Particularly noteworthy is its outstanding performance in the 1-shot learning task, surpassing state-of-the-art methods by an average of 3.0\% in classification accuracy. \footnote{We will make the source codes of the proposed framework publicly available upon acceptance. }. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.05010v2-abstract-full').style.display = 'none'; document.getElementById('2401.05010v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.16251">arXiv:2312.16251</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.16251">pdf</a>, <a href="https://arxiv.org/format/2312.16251">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> MetaScript: Few-Shot Handwritten Chinese Content Generation via Generative Adversarial Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Xue%2C+X">Xiangyuan Xue</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+K">Kailing Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Bu%2C+J">Jiazi Bu</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+Q">Qirui Li</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+Z">Zhiyuan Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.16251v1-abstract-short" style="display: inline;"> In this work, we propose MetaScript, a novel Chinese content generation system designed to address the diminishing presence of personal handwriting styles in the digital representation of Chinese characters. Our approach harnesses the power of few-shot learning to generate Chinese characters that not only retain the individual&#39;s unique handwriting style but also maintain the efficiency of digital&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.16251v1-abstract-full').style.display = 'inline'; document.getElementById('2312.16251v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.16251v1-abstract-full" style="display: none;"> In this work, we propose MetaScript, a novel Chinese content generation system designed to address the diminishing presence of personal handwriting styles in the digital representation of Chinese characters. Our approach harnesses the power of few-shot learning to generate Chinese characters that not only retain the individual&#39;s unique handwriting style but also maintain the efficiency of digital typing. Trained on a diverse dataset of handwritten styles, MetaScript is adept at producing high-quality stylistic imitations from minimal style references and standard fonts. Our work demonstrates a practical solution to the challenges of digital typography in preserving the personal touch in written communication, particularly in the context of Chinese script. Notably, our system has demonstrated superior performance in various evaluations, including recognition accuracy, inception score, and Frechet inception distance. At the same time, the training conditions of our model are easy to meet and facilitate generalization to real applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.16251v1-abstract-full').style.display = 'none'; document.getElementById('2312.16251v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.05526">arXiv:2312.05526</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.05526">pdf</a>, <a href="https://arxiv.org/format/2312.05526">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Reinforcement Neighborhood Selection for Unsupervised Graph Anomaly Detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Bei%2C+Y">Yuanchen Bei</a>, <a href="/search/cs?searchtype=author&amp;query=Zhou%2C+S">Sheng Zhou</a>, <a href="/search/cs?searchtype=author&amp;query=Tan%2C+Q">Qiaoyu Tan</a>, <a href="/search/cs?searchtype=author&amp;query=Xu%2C+H">Hao Xu</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+H">Hao Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+Z">Zhao Li</a>, <a href="/search/cs?searchtype=author&amp;query=Bu%2C+J">Jiajun Bu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.05526v1-abstract-short" style="display: inline;"> Unsupervised graph anomaly detection is crucial for various practical applications as it aims to identify anomalies in a graph that exhibit rare patterns deviating significantly from the majority of nodes. Recent advancements have utilized Graph Neural Networks (GNNs) to learn high-quality node representations for anomaly detection by aggregating information from neighborhoods. However, the presen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.05526v1-abstract-full').style.display = 'inline'; document.getElementById('2312.05526v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.05526v1-abstract-full" style="display: none;"> Unsupervised graph anomaly detection is crucial for various practical applications as it aims to identify anomalies in a graph that exhibit rare patterns deviating significantly from the majority of nodes. Recent advancements have utilized Graph Neural Networks (GNNs) to learn high-quality node representations for anomaly detection by aggregating information from neighborhoods. However, the presence of anomalies may render the observed neighborhood unreliable and result in misleading information aggregation for node representation learning. Selecting the proper neighborhood is critical for graph anomaly detection but also challenging due to the absence of anomaly-oriented guidance and the interdependence with representation learning. To address these issues, we utilize the advantages of reinforcement learning in adaptively learning in complex environments and propose a novel method that incorporates Reinforcement neighborhood selection for unsupervised graph ANomaly Detection (RAND). RAND begins by enriching the candidate neighbor pool of the given central node with multiple types of indirect neighbors. Next, RAND designs a tailored reinforcement anomaly evaluation module to assess the reliability and reward of considering the given neighbor. Finally, RAND selects the most reliable subset of neighbors based on these rewards and introduces an anomaly-aware aggregator to amplify messages from reliable neighbors while diminishing messages from unreliable ones. Extensive experiments on both three synthetic and two real-world datasets demonstrate that RAND outperforms the state-of-the-art methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.05526v1-abstract-full').style.display = 'none'; document.getElementById('2312.05526v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">1O pages, 7 figures, accepted by ICDM2023</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.14184">arXiv:2310.14184</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.14184">pdf</a>, <a href="https://arxiv.org/format/2310.14184">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Partition Speeds Up Learning Implicit Neural Representations Based on Exponential-Increase Hypothesis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Liu%2C+K">Ke Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Liu%2C+F">Feng Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+H">Haishuai Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Ma%2C+N">Ning Ma</a>, <a href="/search/cs?searchtype=author&amp;query=Bu%2C+J">Jiajun Bu</a>, <a href="/search/cs?searchtype=author&amp;query=Han%2C+B">Bo Han</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.14184v1-abstract-short" style="display: inline;"> $\textit{Implicit neural representations}$ (INRs) aim to learn a $\textit{continuous function}$ (i.e., a neural network) to represent an image, where the input and output of the function are pixel coordinates and RGB/Gray values, respectively. However, images tend to consist of many objects whose colors are not perfectly consistent, resulting in the challenge that image is actually a $\textit{disc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.14184v1-abstract-full').style.display = 'inline'; document.getElementById('2310.14184v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.14184v1-abstract-full" style="display: none;"> $\textit{Implicit neural representations}$ (INRs) aim to learn a $\textit{continuous function}$ (i.e., a neural network) to represent an image, where the input and output of the function are pixel coordinates and RGB/Gray values, respectively. However, images tend to consist of many objects whose colors are not perfectly consistent, resulting in the challenge that image is actually a $\textit{discontinuous piecewise function}$ and cannot be well estimated by a continuous function. In this paper, we empirically investigate that if a neural network is enforced to fit a discontinuous piecewise function to reach a fixed small error, the time costs will increase exponentially with respect to the boundaries in the spatial domain of the target signal. We name this phenomenon the $\textit{exponential-increase}$ hypothesis. Under the $\textit{exponential-increase}$ hypothesis, learning INRs for images with many objects will converge very slowly. To address this issue, we first prove that partitioning a complex signal into several sub-regions and utilizing piecewise INRs to fit that signal can significantly speed up the convergence. Based on this fact, we introduce a simple partition mechanism to boost the performance of two INR methods for image reconstruction: one for learning INRs, and the other for learning-to-learn INRs. In both cases, we partition an image into different sub-regions and dedicate smaller networks for each part. In addition, we further propose two partition rules based on regular grids and semantic segmentation maps, respectively. Extensive experiments validate the effectiveness of the proposed partitioning methods in terms of learning INR for a single image (ordinary learning framework) and the learning-to-learn framework. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.14184v1-abstract-full').style.display = 'none'; document.getElementById('2310.14184v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.01436">arXiv:2310.01436</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.01436">pdf</a>, <a href="https://arxiv.org/format/2310.01436">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Graph Neural Architecture Search with GPT-4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Wang%2C+H">Haishuai Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Gao%2C+Y">Yang Gao</a>, <a href="/search/cs?searchtype=author&amp;query=Zheng%2C+X">Xin Zheng</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+P">Peng Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+H">Hongyang Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Bu%2C+J">Jiajun Bu</a>, <a href="/search/cs?searchtype=author&amp;query=Yu%2C+P+S">Philip S. Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.01436v2-abstract-short" style="display: inline;"> Graph Neural Architecture Search (GNAS) has shown promising results in automatically designing graph neural networks. However, GNAS still requires intensive human labor with rich domain knowledge to design the search space and search strategy. In this paper, we integrate GPT-4 into GNAS and propose a new GPT-4 based Graph Neural Architecture Search method (GPT4GNAS for short). The basic idea of ou&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.01436v2-abstract-full').style.display = 'inline'; document.getElementById('2310.01436v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.01436v2-abstract-full" style="display: none;"> Graph Neural Architecture Search (GNAS) has shown promising results in automatically designing graph neural networks. However, GNAS still requires intensive human labor with rich domain knowledge to design the search space and search strategy. In this paper, we integrate GPT-4 into GNAS and propose a new GPT-4 based Graph Neural Architecture Search method (GPT4GNAS for short). The basic idea of our method is to design a new class of prompts for GPT-4 to guide GPT-4 toward the generative task of graph neural architectures. The prompts consist of descriptions of the search space, search strategy, and search feedback of GNAS. By iteratively running GPT-4 with the prompts, GPT4GNAS generates more accurate graph neural networks with fast convergence. Experimental results show that embedding GPT-4 into GNAS outperforms the state-of-the-art GNAS methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.01436v2-abstract-full').style.display = 'none'; document.getElementById('2310.01436v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.11052">arXiv:2308.11052</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.11052">pdf</a>, <a href="https://arxiv.org/format/2308.11052">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Beyond Discriminative Regions: Saliency Maps as Alternatives to CAMs for Weakly Supervised Semantic Segmentation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Maruf%2C+M">M. Maruf</a>, <a href="/search/cs?searchtype=author&amp;query=Daw%2C+A">Arka Daw</a>, <a href="/search/cs?searchtype=author&amp;query=Dutta%2C+A">Amartya Dutta</a>, <a href="/search/cs?searchtype=author&amp;query=Bu%2C+J">Jie Bu</a>, <a href="/search/cs?searchtype=author&amp;query=Karpatne%2C+A">Anuj Karpatne</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.11052v1-abstract-short" style="display: inline;"> In recent years, several Weakly Supervised Semantic Segmentation (WS3) methods have been proposed that use class activation maps (CAMs) generated by a classifier to produce pseudo-ground truths for training segmentation models. While CAMs are good at highlighting discriminative regions (DR) of an image, they are known to disregard regions of the object that do not contribute to the classifier&#39;s pr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.11052v1-abstract-full').style.display = 'inline'; document.getElementById('2308.11052v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.11052v1-abstract-full" style="display: none;"> In recent years, several Weakly Supervised Semantic Segmentation (WS3) methods have been proposed that use class activation maps (CAMs) generated by a classifier to produce pseudo-ground truths for training segmentation models. While CAMs are good at highlighting discriminative regions (DR) of an image, they are known to disregard regions of the object that do not contribute to the classifier&#39;s prediction, termed non-discriminative regions (NDR). In contrast, attribution methods such as saliency maps provide an alternative approach for assigning a score to every pixel based on its contribution to the classification prediction. This paper provides a comprehensive comparison between saliencies and CAMs for WS3. Our study includes multiple perspectives on understanding their similarities and dissimilarities. Moreover, we provide new evaluation metrics that perform a comprehensive assessment of WS3 performance of alternative methods w.r.t. CAMs. We demonstrate the effectiveness of saliencies in addressing the limitation of CAMs through our empirical studies on benchmark datasets. Furthermore, we propose random cropping as a stochastic aggregation technique that improves the performance of saliency, making it a strong alternative to CAM for WS3. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.11052v1-abstract-full').style.display = 'none'; document.getElementById('2308.11052v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 13 figures, 4 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.05309">arXiv:2308.05309</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.05309">pdf</a>, <a href="https://arxiv.org/format/2308.05309">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Social and Information Networks">cs.SI</span> </div> </div> <p class="title is-5 mathjax"> Homophily-enhanced Structure Learning for Graph Clustering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Gu%2C+M">Ming Gu</a>, <a href="/search/cs?searchtype=author&amp;query=Yang%2C+G">Gaoming Yang</a>, <a href="/search/cs?searchtype=author&amp;query=Zhou%2C+S">Sheng Zhou</a>, <a href="/search/cs?searchtype=author&amp;query=Ma%2C+N">Ning Ma</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+J">Jiawei Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Tan%2C+Q">Qiaoyu Tan</a>, <a href="/search/cs?searchtype=author&amp;query=Liu%2C+M">Meihan Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Bu%2C+J">Jiajun Bu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.05309v3-abstract-short" style="display: inline;"> Graph clustering is a fundamental task in graph analysis, and recent advances in utilizing graph neural networks (GNNs) have shown impressive results. Despite the success of existing GNN-based graph clustering methods, they often overlook the quality of graph structure, which is inherent in real-world graphs due to their sparse and multifarious nature, leading to subpar performance. Graph structur&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.05309v3-abstract-full').style.display = 'inline'; document.getElementById('2308.05309v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.05309v3-abstract-full" style="display: none;"> Graph clustering is a fundamental task in graph analysis, and recent advances in utilizing graph neural networks (GNNs) have shown impressive results. Despite the success of existing GNN-based graph clustering methods, they often overlook the quality of graph structure, which is inherent in real-world graphs due to their sparse and multifarious nature, leading to subpar performance. Graph structure learning allows refining the input graph by adding missing links and removing spurious connections. However, previous endeavors in graph structure learning have predominantly centered around supervised settings, and cannot be directly applied to our specific clustering tasks due to the absence of ground-truth labels. To bridge the gap, we propose a novel method called \textbf{ho}mophily-enhanced structure \textbf{le}arning for graph clustering (HoLe). Our motivation stems from the observation that subtly enhancing the degree of homophily within the graph structure can significantly improve GNNs and clustering outcomes. To realize this objective, we develop two clustering-oriented structure learning modules, i.e., hierarchical correlation estimation and cluster-aware sparsification. The former module enables a more accurate estimation of pairwise node relationships by leveraging guidance from latent and clustering spaces, while the latter one generates a sparsified structure based on the similarity matrix and clustering assignments. Additionally, we devise a joint optimization approach alternating between training the homophily-enhanced structure learning and GNN-based clustering, thereby enforcing their reciprocal effects. Extensive experiments on seven benchmark datasets of various types and scales, across a range of clustering metrics, demonstrate the superiority of HoLe against state-of-the-art baselines. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.05309v3-abstract-full').style.display = 'none'; document.getElementById('2308.05309v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages with 7 figures. Accepted by CIKM&#39;23</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.04779">arXiv:2308.04779</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.04779">pdf</a>, <a href="https://arxiv.org/format/2308.04779">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Multi-View Fusion and Distillation for Subgrade Distresses Detection based on 3D-GPR </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Zhou%2C+C">Chunpeng Zhou</a>, <a href="/search/cs?searchtype=author&amp;query=Ning%2C+K">Kangjie Ning</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+H">Haishuai Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Yu%2C+Z">Zhi Yu</a>, <a href="/search/cs?searchtype=author&amp;query=Zhou%2C+S">Sheng Zhou</a>, <a href="/search/cs?searchtype=author&amp;query=Bu%2C+J">Jiajun Bu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.04779v1-abstract-short" style="display: inline;"> The application of 3D ground-penetrating radar (3D-GPR) for subgrade distress detection has gained widespread popularity. To enhance the efficiency and accuracy of detection, pioneering studies have attempted to adopt automatic detection techniques, particularly deep learning. However, existing works typically rely on traditional 1D A-scan, 2D B-scan or 3D C-scan data of the GPR, resulting in eith&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.04779v1-abstract-full').style.display = 'inline'; document.getElementById('2308.04779v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.04779v1-abstract-full" style="display: none;"> The application of 3D ground-penetrating radar (3D-GPR) for subgrade distress detection has gained widespread popularity. To enhance the efficiency and accuracy of detection, pioneering studies have attempted to adopt automatic detection techniques, particularly deep learning. However, existing works typically rely on traditional 1D A-scan, 2D B-scan or 3D C-scan data of the GPR, resulting in either insufficient spatial information or high computational complexity. To address these challenges, we introduce a novel methodology for the subgrade distress detection task by leveraging the multi-view information from 3D-GPR data. Moreover, we construct a real multi-view image dataset derived from the original 3D-GPR data for the detection task, which provides richer spatial information compared to A-scan and B-scan data, while reducing computational complexity compared to C-scan data. Subsequently, we develop a novel \textbf{M}ulti-\textbf{V}iew \textbf{V}usion and \textbf{D}istillation framework, \textbf{GPR-MVFD}, specifically designed to optimally utilize the multi-view GPR dataset. This framework ingeniously incorporates multi-view distillation and attention-based fusion to facilitate significant feature extraction for subgrade distresses. In addition, a self-adaptive learning mechanism is adopted to stabilize the model training and prevent performance degeneration in each branch. Extensive experiments conducted on this new GPR benchmark demonstrate the effectiveness and efficiency of our proposed framework. Our framework outperforms not only the existing GPR baselines, but also the state-of-the-art methods in the fields of multi-view learning, multi-modal learning, and knowledge distillation. We will release the constructed multi-view GPR dataset with expert-annotated labels and the source codes of the proposed framework. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.04779v1-abstract-full').style.display = 'none'; document.getElementById('2308.04779v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.02813">arXiv:2307.02813</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.02813">pdf</a>, <a href="https://arxiv.org/format/2307.02813">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Social and Information Networks">cs.SI</span> </div> </div> <p class="title is-5 mathjax"> CPDG: A Contrastive Pre-Training Method for Dynamic Graph Neural Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Bei%2C+Y">Yuanchen Bei</a>, <a href="/search/cs?searchtype=author&amp;query=Xu%2C+H">Hao Xu</a>, <a href="/search/cs?searchtype=author&amp;query=Zhou%2C+S">Sheng Zhou</a>, <a href="/search/cs?searchtype=author&amp;query=Chi%2C+H">Huixuan Chi</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+H">Haishuai Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+M">Mengdi Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+Z">Zhao Li</a>, <a href="/search/cs?searchtype=author&amp;query=Bu%2C+J">Jiajun Bu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.02813v3-abstract-short" style="display: inline;"> Dynamic graph data mining has gained popularity in recent years due to the rich information contained in dynamic graphs and their widespread use in the real world. Despite the advances in dynamic graph neural networks (DGNNs), the rich information and diverse downstream tasks have posed significant difficulties for the practical application of DGNNs in industrial scenarios. To this end, in this pa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.02813v3-abstract-full').style.display = 'inline'; document.getElementById('2307.02813v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.02813v3-abstract-full" style="display: none;"> Dynamic graph data mining has gained popularity in recent years due to the rich information contained in dynamic graphs and their widespread use in the real world. Despite the advances in dynamic graph neural networks (DGNNs), the rich information and diverse downstream tasks have posed significant difficulties for the practical application of DGNNs in industrial scenarios. To this end, in this paper, we propose to address them by pre-training and present the Contrastive Pre-Training Method for Dynamic Graph Neural Networks (CPDG). CPDG tackles the challenges of pre-training for DGNNs, including generalization capability and long-short term modeling capability, through a flexible structural-temporal subgraph sampler along with structural-temporal contrastive pre-training schemes. Extensive experiments conducted on both large-scale research and industrial dynamic graph datasets show that CPDG outperforms existing methods in dynamic graph pre-training for various downstream tasks under three transfer settings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.02813v3-abstract-full').style.display = 'none'; document.getElementById('2307.02813v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 8 figures, accepted by ICDE2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.15562">arXiv:2305.15562</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.15562">pdf</a>, <a href="https://arxiv.org/format/2305.15562">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Let There Be Order: Rethinking Ordering in Autoregressive Graph Generation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Bu%2C+J">Jie Bu</a>, <a href="/search/cs?searchtype=author&amp;query=Mehrab%2C+K+S">Kazi Sajeed Mehrab</a>, <a href="/search/cs?searchtype=author&amp;query=Karpatne%2C+A">Anuj Karpatne</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.15562v1-abstract-short" style="display: inline;"> Conditional graph generation tasks involve training a model to generate a graph given a set of input conditions. Many previous studies employ autoregressive models to incrementally generate graph components such as nodes and edges. However, as graphs typically lack a natural ordering among their components, converting a graph into a sequence of tokens is not straightforward. While prior works most&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.15562v1-abstract-full').style.display = 'inline'; document.getElementById('2305.15562v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.15562v1-abstract-full" style="display: none;"> Conditional graph generation tasks involve training a model to generate a graph given a set of input conditions. Many previous studies employ autoregressive models to incrementally generate graph components such as nodes and edges. However, as graphs typically lack a natural ordering among their components, converting a graph into a sequence of tokens is not straightforward. While prior works mostly rely on conventional heuristics or graph traversal methods like breadth-first search (BFS) or depth-first search (DFS) to convert graphs to sequences, the impact of ordering on graph generation has largely been unexplored. This paper contributes to this problem by: (1) highlighting the crucial role of ordering in autoregressive graph generation models, (2) proposing a novel theoretical framework that perceives ordering as a dimensionality reduction problem, thereby facilitating a deeper understanding of the relationship between orderings and generated graph accuracy, and (3) introducing &#34;latent sort,&#34; a learning-based ordering scheme to perform dimensionality reduction of graph tokens. Our experimental results showcase the effectiveness of latent sort across a wide range of graph generation tasks, encouraging future works to further explore and develop learning-based ordering schemes for autoregressive graph generation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.15562v1-abstract-full').style.display = 'none'; document.getElementById('2305.15562v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">39 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.15705">arXiv:2303.15705</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.15705">pdf</a>, <a href="https://arxiv.org/format/2303.15705">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> </div> </div> <p class="title is-5 mathjax"> Translate the Beauty in Songs: Jointly Learning to Align Melody and Translate Lyrics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Li%2C+C">Chengxi Li</a>, <a href="/search/cs?searchtype=author&amp;query=Fan%2C+K">Kai Fan</a>, <a href="/search/cs?searchtype=author&amp;query=Bu%2C+J">Jiajun Bu</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+B">Boxing Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Huang%2C+Z">Zhongqiang Huang</a>, <a href="/search/cs?searchtype=author&amp;query=Yu%2C+Z">Zhi Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.15705v1-abstract-short" style="display: inline;"> Song translation requires both translation of lyrics and alignment of music notes so that the resulting verse can be sung to the accompanying melody, which is a challenging problem that has attracted some interests in different aspects of the translation process. In this paper, we propose Lyrics-Melody Translation with Adaptive Grouping (LTAG), a holistic solution to automatic song translation by&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.15705v1-abstract-full').style.display = 'inline'; document.getElementById('2303.15705v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.15705v1-abstract-full" style="display: none;"> Song translation requires both translation of lyrics and alignment of music notes so that the resulting verse can be sung to the accompanying melody, which is a challenging problem that has attracted some interests in different aspects of the translation process. In this paper, we propose Lyrics-Melody Translation with Adaptive Grouping (LTAG), a holistic solution to automatic song translation by jointly modeling lyrics translation and lyrics-melody alignment. It is a novel encoder-decoder framework that can simultaneously translate the source lyrics and determine the number of aligned notes at each decoding step through an adaptive note grouping module. To address data scarcity, we commissioned a small amount of training data annotated specifically for this task and used large amounts of augmented data through back-translation. Experiments conducted on an English-Chinese song translation data set show the effectiveness of our model in both automatic and human evaluation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.15705v1-abstract-full').style.display = 'none'; document.getElementById('2303.15705v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.03730">arXiv:2303.03730</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.03730">pdf</a>, <a href="https://arxiv.org/format/2303.03730">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> LORE: Logical Location Regression Network for Table Structure Recognition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Xing%2C+H">Hangdi Xing</a>, <a href="/search/cs?searchtype=author&amp;query=Gao%2C+F">Feiyu Gao</a>, <a href="/search/cs?searchtype=author&amp;query=Long%2C+R">Rujiao Long</a>, <a href="/search/cs?searchtype=author&amp;query=Bu%2C+J">Jiajun Bu</a>, <a href="/search/cs?searchtype=author&amp;query=Zheng%2C+Q">Qi Zheng</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+L">Liangcheng Li</a>, <a href="/search/cs?searchtype=author&amp;query=Yao%2C+C">Cong Yao</a>, <a href="/search/cs?searchtype=author&amp;query=Yu%2C+Z">Zhi Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.03730v1-abstract-short" style="display: inline;"> Table structure recognition (TSR) aims at extracting tables in images into machine-understandable formats. Recent methods solve this problem by predicting the adjacency relations of detected cell boxes, or learning to generate the corresponding markup sequences from the table images. However, they either count on additional heuristic rules to recover the table structures, or require a huge amount&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.03730v1-abstract-full').style.display = 'inline'; document.getElementById('2303.03730v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.03730v1-abstract-full" style="display: none;"> Table structure recognition (TSR) aims at extracting tables in images into machine-understandable formats. Recent methods solve this problem by predicting the adjacency relations of detected cell boxes, or learning to generate the corresponding markup sequences from the table images. However, they either count on additional heuristic rules to recover the table structures, or require a huge amount of training data and time-consuming sequential decoders. In this paper, we propose an alternative paradigm. We model TSR as a logical location regression problem and propose a new TSR framework called LORE, standing for LOgical location REgression network, which for the first time combines logical location regression together with spatial location regression of table cells. Our proposed LORE is conceptually simpler, easier to train and more accurate than previous TSR models of other paradigms. Experiments on standard benchmarks demonstrate that LORE consistently outperforms prior arts. Code is available at https:// github.com/AlibabaResearch/AdvancedLiterateMachinery/tree/main/DocumentUnderstanding/LORE-TSR. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.03730v1-abstract-full').style.display = 'none'; document.getElementById('2303.03730v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.04031">arXiv:2211.04031</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.04031">pdf</a>, <a href="https://arxiv.org/format/2211.04031">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Hilbert Distillation for Cross-Dimensionality Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Qin%2C+D">Dian Qin</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+H">Haishuai Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Liu%2C+Z">Zhe Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Xu%2C+H">Hongjia Xu</a>, <a href="/search/cs?searchtype=author&amp;query=Zhou%2C+S">Sheng Zhou</a>, <a href="/search/cs?searchtype=author&amp;query=Bu%2C+J">Jiajun Bu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.04031v1-abstract-short" style="display: inline;"> 3D convolutional neural networks have revealed superior performance in processing volumetric data such as video and medical imaging. However, the competitive performance by leveraging 3D networks results in huge computational costs, which are far beyond that of 2D networks. In this paper, we propose a novel Hilbert curve-based cross-dimensionality distillation approach that facilitates the knowled&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.04031v1-abstract-full').style.display = 'inline'; document.getElementById('2211.04031v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.04031v1-abstract-full" style="display: none;"> 3D convolutional neural networks have revealed superior performance in processing volumetric data such as video and medical imaging. However, the competitive performance by leveraging 3D networks results in huge computational costs, which are far beyond that of 2D networks. In this paper, we propose a novel Hilbert curve-based cross-dimensionality distillation approach that facilitates the knowledge of 3D networks to improve the performance of 2D networks. The proposed Hilbert Distillation (HD) method preserves the structural information via the Hilbert curve, which maps high-dimensional (&gt;=2) representations to one-dimensional continuous space-filling curves. Since the distilled 2D networks are supervised by the curves converted from dimensionally heterogeneous 3D features, the 2D networks are given an informative view in terms of learning structural information embedded in well-trained high-dimensional representations. We further propose a Variable-length Hilbert Distillation (VHD) method to dynamically shorten the walking stride of the Hilbert curve in activation feature areas and lengthen the stride in context feature areas, forcing the 2D networks to pay more attention to learning from activation features. The proposed algorithm outperforms the current state-of-the-art distillation techniques adapted to cross-dimensionality distillation on two classification tasks. Moreover, the distilled 2D networks by the proposed method achieve competitive performance with the original 3D networks, indicating the lightweight distilled 2D networks could potentially be the substitution of cumbersome 3D networks in the real-world scenario. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.04031v1-abstract-full').style.display = 'none'; document.getElementById('2211.04031v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted at NeurIPS 2022</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.13648">arXiv:2208.13648</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.13648">pdf</a>, <a href="https://arxiv.org/format/2208.13648">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.ins.2023.119202">10.1016/j.ins.2023.119202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamic Data-Free Knowledge Distillation by Easy-to-Hard Learning Strategy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Li%2C+J">Jingru Li</a>, <a href="/search/cs?searchtype=author&amp;query=Zhou%2C+S">Sheng Zhou</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+L">Liangcheng Li</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+H">Haishuai Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Yu%2C+Z">Zhi Yu</a>, <a href="/search/cs?searchtype=author&amp;query=Bu%2C+J">Jiajun Bu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.13648v3-abstract-short" style="display: inline;"> Data-free knowledge distillation (DFKD) is a widely-used strategy for Knowledge Distillation (KD) whose training data is not available. It trains a lightweight student model with the aid of a large pretrained teacher model without any access to training data. However, existing DFKD methods suffer from inadequate and unstable training process, as they do not adjust the generation target dynamically&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.13648v3-abstract-full').style.display = 'inline'; document.getElementById('2208.13648v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.13648v3-abstract-full" style="display: none;"> Data-free knowledge distillation (DFKD) is a widely-used strategy for Knowledge Distillation (KD) whose training data is not available. It trains a lightweight student model with the aid of a large pretrained teacher model without any access to training data. However, existing DFKD methods suffer from inadequate and unstable training process, as they do not adjust the generation target dynamically based on the status of the student model during learning. To address this limitation, we propose a novel DFKD method called CuDFKD. It teaches students by a dynamic strategy that gradually generates easy-to-hard pseudo samples, mirroring how humans learn. Besides, CuDFKD adapts the generation target dynamically according to the status of student model. Moreover, We provide a theoretical analysis of the majorization minimization (MM) algorithm and explain the convergence of CuDFKD. To measure the robustness and fidelity of DFKD methods, we propose two more metrics, and experiments shows CuDFKD has comparable performance to state-of-the-art (SOTA) DFKD methods on all datasets. Experiments also present that our CuDFKD has the fastest convergence and best robustness over other SOTA DFKD methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.13648v3-abstract-full').style.display = 'none'; document.getElementById('2208.13648v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by Information Sciences, Proof version provided</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.10844">arXiv:2208.10844</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.10844">pdf</a>, <a href="https://arxiv.org/format/2208.10844">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> CLOWER: A Pre-trained Language Model with Contrastive Learning over Word and Character Representations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Chen%2C+B">Borun Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Tang%2C+H">Hongyin Tang</a>, <a href="/search/cs?searchtype=author&amp;query=Bu%2C+J">Jiahao Bu</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+K">Kai Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+J">Jingang Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+Q">Qifan Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Zheng%2C+H">Hai-Tao Zheng</a>, <a href="/search/cs?searchtype=author&amp;query=Wu%2C+W">Wei Wu</a>, <a href="/search/cs?searchtype=author&amp;query=Yu%2C+L">Liqian Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.10844v2-abstract-short" style="display: inline;"> Pre-trained Language Models (PLMs) have achieved remarkable performance gains across numerous downstream tasks in natural language understanding. Various Chinese PLMs have been successively proposed for learning better Chinese language representation. However, most current models use Chinese characters as inputs and are not able to encode semantic information contained in Chinese words. While rece&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.10844v2-abstract-full').style.display = 'inline'; document.getElementById('2208.10844v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.10844v2-abstract-full" style="display: none;"> Pre-trained Language Models (PLMs) have achieved remarkable performance gains across numerous downstream tasks in natural language understanding. Various Chinese PLMs have been successively proposed for learning better Chinese language representation. However, most current models use Chinese characters as inputs and are not able to encode semantic information contained in Chinese words. While recent pre-trained models incorporate both words and characters simultaneously, they usually suffer from deficient semantic interactions and fail to capture the semantic relation between words and characters. To address the above issues, we propose a simple yet effective PLM CLOWER, which adopts the Contrastive Learning Over Word and charactER representations. In particular, CLOWER implicitly encodes the coarse-grained information (i.e., words) into the fine-grained representations (i.e., characters) through contrastive learning on multi-grained information. CLOWER is of great value in realistic scenarios since it can be easily incorporated into any existing fine-grained based PLMs without modifying the production pipelines.Extensive experiments conducted on a range of downstream tasks demonstrate the superior performance of CLOWER over several state-of-the-art baselines. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.10844v2-abstract-full').style.display = 'none'; document.getElementById('2208.10844v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in COLING 2022</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.02338">arXiv:2207.02338</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.02338">pdf</a>, <a href="https://arxiv.org/format/2207.02338">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Mitigating Propagation Failures in Physics-informed Neural Networks using Retain-Resample-Release (R3) Sampling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Daw%2C+A">Arka Daw</a>, <a href="/search/cs?searchtype=author&amp;query=Bu%2C+J">Jie Bu</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+S">Sifan Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Perdikaris%2C+P">Paris Perdikaris</a>, <a href="/search/cs?searchtype=author&amp;query=Karpatne%2C+A">Anuj Karpatne</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.02338v3-abstract-short" style="display: inline;"> Despite the success of physics-informed neural networks (PINNs) in approximating partial differential equations (PDEs), PINNs can sometimes fail to converge to the correct solution in problems involving complicated PDEs. This is reflected in several recent studies on characterizing the &#34;failure modes&#34; of PINNs, although a thorough understanding of the connection between PINN failure modes and samp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.02338v3-abstract-full').style.display = 'inline'; document.getElementById('2207.02338v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.02338v3-abstract-full" style="display: none;"> Despite the success of physics-informed neural networks (PINNs) in approximating partial differential equations (PDEs), PINNs can sometimes fail to converge to the correct solution in problems involving complicated PDEs. This is reflected in several recent studies on characterizing the &#34;failure modes&#34; of PINNs, although a thorough understanding of the connection between PINN failure modes and sampling strategies is missing. In this paper, we provide a novel perspective of failure modes of PINNs by hypothesizing that training PINNs relies on successful &#34;propagation&#34; of solution from initial and/or boundary condition points to interior points. We show that PINNs with poor sampling strategies can get stuck at trivial solutions if there are propagation failures, characterized by highly imbalanced PDE residual fields. To mitigate propagation failures, we propose a novel Retain-Resample-Release sampling (R3) algorithm that can incrementally accumulate collocation points in regions of high PDE residuals with little to no computational overhead. We provide an extension of R3 sampling to respect the principle of causality while solving time-dependent PDEs. We theoretically analyze the behavior of R3 sampling and empirically demonstrate its efficacy and efficiency in comparison with baselines on a variety of PDE problems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.02338v3-abstract-full').style.display = 'none'; document.getElementById('2207.02338v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">39 pages, 53 figures, 6 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.11821">arXiv:2206.11821</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.11821">pdf</a>, <a href="https://arxiv.org/format/2206.11821">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jksuci.2022.10.028">10.1016/j.jksuci.2022.10.028 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Survey of DeFi Security: Challenges and Opportunities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Li%2C+W">Wenkai Li</a>, <a href="/search/cs?searchtype=author&amp;query=Bu%2C+J">Jiuyang Bu</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+X">Xiaoqi Li</a>, <a href="/search/cs?searchtype=author&amp;query=Peng%2C+H">Hongli Peng</a>, <a href="/search/cs?searchtype=author&amp;query=Niu%2C+Y">Yuanzheng Niu</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+Y">Yuqing Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.11821v3-abstract-short" style="display: inline;"> DeFi, or Decentralized Finance, is based on a distributed ledger called blockchain technology. Using blockchain, DeFi may customize the execution of predetermined operations between parties. The DeFi system use blockchain technology to execute user transactions, such as lending and exchanging. The total value locked in DeFi decreased from \$200 billion in April 2022 to \$80 billion in July 2022, i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.11821v3-abstract-full').style.display = 'inline'; document.getElementById('2206.11821v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.11821v3-abstract-full" style="display: none;"> DeFi, or Decentralized Finance, is based on a distributed ledger called blockchain technology. Using blockchain, DeFi may customize the execution of predetermined operations between parties. The DeFi system use blockchain technology to execute user transactions, such as lending and exchanging. The total value locked in DeFi decreased from \$200 billion in April 2022 to \$80 billion in July 2022, indicating that security in this area remained problematic. In this paper, we address the deficiency in DeFi security studies. To our best knowledge, our paper is the first to make a systematic analysis of DeFi security. First, we summarize the DeFi-related vulnerabilities in each blockchain layer. Additionally, application-level vulnerabilities are also analyzed. Then we classify and analyze real-world DeFi attacks based on the principles that correlate to the vulnerabilities. In addition, we collect optimization strategies from the data, network, consensus, smart contract, and application layers. And then, we describe the weaknesses and technical approaches they address. On the basis of this comprehensive analysis, we summarize several challenges and possible future directions in DeFi to offer ideas for further research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.11821v3-abstract-full').style.display = 'none'; document.getElementById('2206.11821v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of King Saud University - Computer and Information Sciences, 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.07579">arXiv:2206.07579</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.07579">pdf</a>, <a href="https://arxiv.org/ps/2206.07579">ps</a>, <a href="https://arxiv.org/format/2206.07579">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> A Comprehensive Survey on Deep Clustering: Taxonomy, Challenges, and Future Directions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Zhou%2C+S">Sheng Zhou</a>, <a href="/search/cs?searchtype=author&amp;query=Xu%2C+H">Hongjia Xu</a>, <a href="/search/cs?searchtype=author&amp;query=Zheng%2C+Z">Zhuonan Zheng</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+J">Jiawei Chen</a>, <a href="/search/cs?searchtype=author&amp;query=li%2C+Z">Zhao li</a>, <a href="/search/cs?searchtype=author&amp;query=Bu%2C+J">Jiajun Bu</a>, <a href="/search/cs?searchtype=author&amp;query=Wu%2C+J">Jia Wu</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+X">Xin Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Zhu%2C+W">Wenwu Zhu</a>, <a href="/search/cs?searchtype=author&amp;query=Ester%2C+M">Martin Ester</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.07579v1-abstract-short" style="display: inline;"> Clustering is a fundamental machine learning task which has been widely studied in the literature. Classic clustering methods follow the assumption that data are represented as features in a vectorized form through various representation learning techniques. As the data become increasingly complicated and complex, the shallow (traditional) clustering methods can no longer handle the high-dimension&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.07579v1-abstract-full').style.display = 'inline'; document.getElementById('2206.07579v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.07579v1-abstract-full" style="display: none;"> Clustering is a fundamental machine learning task which has been widely studied in the literature. Classic clustering methods follow the assumption that data are represented as features in a vectorized form through various representation learning techniques. As the data become increasingly complicated and complex, the shallow (traditional) clustering methods can no longer handle the high-dimensional data type. With the huge success of deep learning, especially the deep unsupervised learning, many representation learning techniques with deep architectures have been proposed in the past decade. Recently, the concept of Deep Clustering, i.e., jointly optimizing the representation learning and clustering, has been proposed and hence attracted growing attention in the community. Motivated by the tremendous success of deep learning in clustering, one of the most fundamental machine learning tasks, and the large number of recent advances in this direction, in this paper we conduct a comprehensive survey on deep clustering by proposing a new taxonomy of different state-of-the-art approaches. We summarize the essential components of deep clustering and categorize existing methods by the ways they design interactions between deep representation learning and clustering. Moreover, this survey also provides the popular benchmark datasets, evaluation metrics and open-source implementations to clearly illustrate various experimental settings. Last but not least, we discuss the practical applications of deep clustering and suggest challenging topics deserving further investigations as future directions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.07579v1-abstract-full').style.display = 'none'; document.getElementById('2206.07579v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Github Repo: https://github.com/zhoushengisnoob/DeepClustering</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.09524">arXiv:2205.09524</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.09524">pdf</a>, <a href="https://arxiv.org/format/2205.09524">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> </div> <p class="title is-5 mathjax"> Security Analysis of DeFi: Vulnerabilities, Attacks and Advances </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Li%2C+W">Wenkai Li</a>, <a href="/search/cs?searchtype=author&amp;query=Bu%2C+J">Jiuyang Bu</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+X">Xiaoqi Li</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+X">Xianyi Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.09524v1-abstract-short" style="display: inline;"> Decentralized finance (DeFi) in Ethereum is a financial ecosystem built on the blockchain that has locked over 200 billion USD until April 2022. All transaction information is transparent and open when transacting through the DeFi protocol, which has led to a series of attacks. Several studies have attempted to optimize it from both economic and technical perspectives. However, few works analyze t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.09524v1-abstract-full').style.display = 'inline'; document.getElementById('2205.09524v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.09524v1-abstract-full" style="display: none;"> Decentralized finance (DeFi) in Ethereum is a financial ecosystem built on the blockchain that has locked over 200 billion USD until April 2022. All transaction information is transparent and open when transacting through the DeFi protocol, which has led to a series of attacks. Several studies have attempted to optimize it from both economic and technical perspectives. However, few works analyze the vulnerabilities and optimizations of the entire DeFi system. In this paper, we first systematically analyze vulnerabilities related to DeFi in Ethereum at several levels, then we investigate real-world attacks. Finally, we summarize the achievements of DeFi optimization and provide some future directions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.09524v1-abstract-full').style.display = 'none'; document.getElementById('2205.09524v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.00684">arXiv:2110.00684</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.00684">pdf</a>, <a href="https://arxiv.org/format/2110.00684">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Learning Compact Representations of Neural Networks using DiscriminAtive Masking (DAM) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Bu%2C+J">Jie Bu</a>, <a href="/search/cs?searchtype=author&amp;query=Daw%2C+A">Arka Daw</a>, <a href="/search/cs?searchtype=author&amp;query=Maruf%2C+M">M. Maruf</a>, <a href="/search/cs?searchtype=author&amp;query=Karpatne%2C+A">Anuj Karpatne</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.00684v1-abstract-short" style="display: inline;"> A central goal in deep learning is to learn compact representations of features at every layer of a neural network, which is useful for both unsupervised representation learning and structured network pruning. While there is a growing body of work in structured pruning, current state-of-the-art methods suffer from two key limitations: (i) instability during training, and (ii) need for an additiona&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.00684v1-abstract-full').style.display = 'inline'; document.getElementById('2110.00684v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.00684v1-abstract-full" style="display: none;"> A central goal in deep learning is to learn compact representations of features at every layer of a neural network, which is useful for both unsupervised representation learning and structured network pruning. While there is a growing body of work in structured pruning, current state-of-the-art methods suffer from two key limitations: (i) instability during training, and (ii) need for an additional step of fine-tuning, which is resource-intensive. At the core of these limitations is the lack of a systematic approach that jointly prunes and refines weights during training in a single stage, and does not require any fine-tuning upon convergence to achieve state-of-the-art performance. We present a novel single-stage structured pruning method termed DiscriminAtive Masking (DAM). The key intuition behind DAM is to discriminatively prefer some of the neurons to be refined during the training process, while gradually masking out other neurons. We show that our proposed DAM approach has remarkably good performance over various applications, including dimensionality reduction, recommendation system, graph representation learning, and structured pruning for image classification. We also theoretically show that the learning objective of DAM is directly related to minimizing the L0 norm of the masking layer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.00684v1-abstract-full').style.display = 'none'; document.getElementById('2110.00684v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 11 figures, 7 tables, Accepted to NeurIPS 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.08306">arXiv:2109.08306</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.08306">pdf</a>, <a href="https://arxiv.org/format/2109.08306">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> SentiPrompt: Sentiment Knowledge Enhanced Prompt-Tuning for Aspect-Based Sentiment Analysis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Li%2C+C">Chengxi Li</a>, <a href="/search/cs?searchtype=author&amp;query=Gao%2C+F">Feiyu Gao</a>, <a href="/search/cs?searchtype=author&amp;query=Bu%2C+J">Jiajun Bu</a>, <a href="/search/cs?searchtype=author&amp;query=Xu%2C+L">Lu Xu</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+X">Xiang Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Gu%2C+Y">Yu Gu</a>, <a href="/search/cs?searchtype=author&amp;query=Shao%2C+Z">Zirui Shao</a>, <a href="/search/cs?searchtype=author&amp;query=Zheng%2C+Q">Qi Zheng</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+N">Ningyu Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+Y">Yongpan Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Yu%2C+Z">Zhi Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.08306v1-abstract-short" style="display: inline;"> Aspect-based sentiment analysis (ABSA) is an emerging fine-grained sentiment analysis task that aims to extract aspects, classify corresponding sentiment polarities and find opinions as the causes of sentiment. The latest research tends to solve the ABSA task in a unified way with end-to-end frameworks. Yet, these frameworks get fine-tuned from downstream tasks without any task-adaptive modificati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.08306v1-abstract-full').style.display = 'inline'; document.getElementById('2109.08306v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.08306v1-abstract-full" style="display: none;"> Aspect-based sentiment analysis (ABSA) is an emerging fine-grained sentiment analysis task that aims to extract aspects, classify corresponding sentiment polarities and find opinions as the causes of sentiment. The latest research tends to solve the ABSA task in a unified way with end-to-end frameworks. Yet, these frameworks get fine-tuned from downstream tasks without any task-adaptive modification. Specifically, they do not use task-related knowledge well or explicitly model relations between aspect and opinion terms, hindering them from better performance. In this paper, we propose SentiPrompt to use sentiment knowledge enhanced prompts to tune the language model in the unified framework. We inject sentiment knowledge regarding aspects, opinions, and polarities into prompt and explicitly model term relations via constructing consistency and polarity judgment templates from the ground truth triplets. Experimental results demonstrate that our approach can outperform strong baselines on Triplet Extraction, Pair Extraction, and Aspect Term Extraction with Sentiment Classification by a notable margin. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.08306v1-abstract-full').style.display = 'none'; document.getElementById('2109.08306v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7pages, under blind review</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.09987">arXiv:2108.09987</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.09987">pdf</a>, <a href="https://arxiv.org/format/2108.09987">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TMI.2021.3098703">10.1109/TMI.2021.3098703 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Efficient Medical Image Segmentation Based on Knowledge Distillation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Qin%2C+D">Dian Qin</a>, <a href="/search/cs?searchtype=author&amp;query=Bu%2C+J">Jiajun Bu</a>, <a href="/search/cs?searchtype=author&amp;query=Liu%2C+Z">Zhe Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Shen%2C+X">Xin Shen</a>, <a href="/search/cs?searchtype=author&amp;query=Zhou%2C+S">Sheng Zhou</a>, <a href="/search/cs?searchtype=author&amp;query=Gu%2C+J">Jingjun Gu</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+Z">Zhijua Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Wu%2C+L">Lei Wu</a>, <a href="/search/cs?searchtype=author&amp;query=Dai%2C+H">Huifen Dai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.09987v1-abstract-short" style="display: inline;"> Recent advances have been made in applying convolutional neural networks to achieve more precise prediction results for medical image segmentation problems. However, the success of existing methods has highly relied on huge computational complexity and massive storage, which is impractical in the real-world scenario. To deal with this problem, we propose an efficient architecture by distilling kno&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.09987v1-abstract-full').style.display = 'inline'; document.getElementById('2108.09987v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.09987v1-abstract-full" style="display: none;"> Recent advances have been made in applying convolutional neural networks to achieve more precise prediction results for medical image segmentation problems. However, the success of existing methods has highly relied on huge computational complexity and massive storage, which is impractical in the real-world scenario. To deal with this problem, we propose an efficient architecture by distilling knowledge from well-trained medical image segmentation networks to train another lightweight network. This architecture empowers the lightweight network to get a significant improvement on segmentation capability while retaining its runtime efficiency. We further devise a novel distillation module tailored for medical image segmentation to transfer semantic region information from teacher to student network. It forces the student network to mimic the extent of difference of representations calculated from different tissue regions. This module avoids the ambiguous boundary problem encountered when dealing with medical imaging but instead encodes the internal information of each semantic region for transferring. Benefited from our module, the lightweight network could receive an improvement of up to 32.6% in our experiment while maintaining its portability in the inference phase. The entire structure has been verified on two widely accepted public CT datasets LiTS17 and KiTS19. We demonstrate that a lightweight network distilled by our method has non-negligible value in the scenario which requires relatively high operating speed and low storage usage. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.09987v1-abstract-full').style.display = 'none'; document.getElementById('2108.09987v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by IEEE TMI, Code Avalivable</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.05507">arXiv:2108.05507</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.05507">pdf</a>, <a href="https://arxiv.org/format/2108.05507">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Distilling Holistic Knowledge with Graph Neural Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Zhou%2C+S">Sheng Zhou</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+Y">Yucheng Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+D">Defang Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+J">Jiawei Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+X">Xin Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+C">Can Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Bu%2C+J">Jiajun Bu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.05507v1-abstract-short" style="display: inline;"> Knowledge Distillation (KD) aims at transferring knowledge from a larger well-optimized teacher network to a smaller learnable student network.Existing KD methods have mainly considered two types of knowledge, namely the individual knowledge and the relational knowledge. However, these two types of knowledge are usually modeled independently while the inherent correlations between them are largely&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.05507v1-abstract-full').style.display = 'inline'; document.getElementById('2108.05507v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.05507v1-abstract-full" style="display: none;"> Knowledge Distillation (KD) aims at transferring knowledge from a larger well-optimized teacher network to a smaller learnable student network.Existing KD methods have mainly considered two types of knowledge, namely the individual knowledge and the relational knowledge. However, these two types of knowledge are usually modeled independently while the inherent correlations between them are largely ignored. It is critical for sufficient student network learning to integrate both individual knowledge and relational knowledge while reserving their inherent correlation. In this paper, we propose to distill the novel holistic knowledge based on an attributed graph constructed among instances. The holistic knowledge is represented as a unified graph-based embedding by aggregating individual knowledge from relational neighborhood samples with graph neural networks, the student network is learned by distilling the holistic knowledge in a contrastive manner. Extensive experiments and ablation studies are conducted on benchmark datasets, the results demonstrate the effectiveness of the proposed method. The code has been published in https://github.com/wyc-ruiker/HKD <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.05507v1-abstract-full').style.display = 'none'; document.getElementById('2108.05507v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by ICCV 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.06735">arXiv:2107.06735</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.06735">pdf</a>, <a href="https://arxiv.org/format/2107.06735">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Semi-Supervised Hypothesis Transfer for Source-Free Domain Adaptation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Ma%2C+N">Ning Ma</a>, <a href="/search/cs?searchtype=author&amp;query=Bu%2C+J">Jiajun Bu</a>, <a href="/search/cs?searchtype=author&amp;query=Lu%2C+L">Lixian Lu</a>, <a href="/search/cs?searchtype=author&amp;query=Wen%2C+J">Jun Wen</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+Z">Zhen Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Zhou%2C+S">Sheng Zhou</a>, <a href="/search/cs?searchtype=author&amp;query=Yan%2C+X">Xifeng Yan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.06735v1-abstract-short" style="display: inline;"> Domain Adaptation has been widely used to deal with the distribution shift in vision, language, multimedia etc. Most domain adaptation methods learn domain-invariant features with data from both domains available. However, such a strategy might be infeasible in practice when source data are unavailable due to data-privacy concerns. To address this issue, we propose a novel adaptation method via hy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.06735v1-abstract-full').style.display = 'inline'; document.getElementById('2107.06735v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.06735v1-abstract-full" style="display: none;"> Domain Adaptation has been widely used to deal with the distribution shift in vision, language, multimedia etc. Most domain adaptation methods learn domain-invariant features with data from both domains available. However, such a strategy might be infeasible in practice when source data are unavailable due to data-privacy concerns. To address this issue, we propose a novel adaptation method via hypothesis transfer without accessing source data at adaptation stage. In order to fully use the limited target data, a semi-supervised mutual enhancement method is proposed, in which entropy minimization and augmented label propagation are used iteratively to perform inter-domain and intra-domain alignments. Compared with state-of-the-art methods, the experimental results on three public datasets demonstrate that our method gets up to 19.9% improvements on semi-supervised adaptation tasks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.06735v1-abstract-full').style.display = 'none'; document.getElementById('2107.06735v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.06707">arXiv:2107.06707</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.06707">pdf</a>, <a href="https://arxiv.org/format/2107.06707">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.knosys.2022.110208">10.1016/j.knosys.2022.110208 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Uncertainty-Guided Mixup for Semi-Supervised Domain Adaptation without Source Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Ma%2C+N">Ning Ma</a>, <a href="/search/cs?searchtype=author&amp;query=Bu%2C+J">Jiajun Bu</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+Z">Zhen Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Zhou%2C+S">Sheng Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.06707v1-abstract-short" style="display: inline;"> Present domain adaptation methods usually perform explicit representation alignment by simultaneously accessing the source data and target data. However, the source data are not always available due to the privacy preserving consideration or bandwidth limitation. Source-free domain adaptation aims to solve the above problem by performing domain adaptation without accessing the source data. The ada&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.06707v1-abstract-full').style.display = 'inline'; document.getElementById('2107.06707v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.06707v1-abstract-full" style="display: none;"> Present domain adaptation methods usually perform explicit representation alignment by simultaneously accessing the source data and target data. However, the source data are not always available due to the privacy preserving consideration or bandwidth limitation. Source-free domain adaptation aims to solve the above problem by performing domain adaptation without accessing the source data. The adaptation paradigm is receiving more and more attention in recent years, and multiple works have been proposed for unsupervised source-free domain adaptation. However, without utilizing any supervised signal and source data at the adaptation stage, the optimization of the target model is unstable and fragile. To alleviate the problem, we focus on semi-supervised domain adaptation under source-free setting. More specifically, we propose uncertainty-guided Mixup to reduce the representation&#39;s intra-domain discrepancy and perform inter-domain alignment without directly accessing the source data. Finally, we conduct extensive semi-supervised domain adaptation experiments on various datasets. Our method outperforms the recent semi-supervised baselines and the unsupervised variant also achieves competitive performance. The experiment codes will be released in the future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.06707v1-abstract-full').style.display = 'none'; document.getElementById('2107.06707v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> 11 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Volume 262, 28 February 2023, 110208 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.04104">arXiv:2104.04104</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.04104">pdf</a>, <a href="https://arxiv.org/format/2104.04104">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Image-based Virtual Fitting Room </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Huang%2C+Z">Zhiling Huang</a>, <a href="/search/cs?searchtype=author&amp;query=Bu%2C+J">Junwen Bu</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+J">Jie Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.04104v1-abstract-short" style="display: inline;"> Virtual fitting room is a challenging task yet useful feature for e-commerce platforms and fashion designers. Existing works can only detect very few types of fashion items. Besides they did poorly in changing the texture and style of the selected fashion items. In this project, we propose a novel approach to address this problem. We firstly used Mask R-CNN to find the regions of different fashion&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.04104v1-abstract-full').style.display = 'inline'; document.getElementById('2104.04104v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.04104v1-abstract-full" style="display: none;"> Virtual fitting room is a challenging task yet useful feature for e-commerce platforms and fashion designers. Existing works can only detect very few types of fashion items. Besides they did poorly in changing the texture and style of the selected fashion items. In this project, we propose a novel approach to address this problem. We firstly used Mask R-CNN to find the regions of different fashion items, and secondly used Neural Style Transfer to change the style of the selected fashion items. The dataset we used is composed of images from PaperDoll dataset and annotations provided by eBay&#39;s ModaNet. We trained 8 models and our best model massively outperformed baseline models both quantitatively and qualitatively, with 68.72% mAP, 0.2% ASDR. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.04104v1-abstract-full').style.display = 'none'; document.getElementById('2104.04104v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.06605">arXiv:2103.06605</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.06605">pdf</a>, <a href="https://arxiv.org/format/2103.06605">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> ASAP: A Chinese Review Dataset Towards Aspect Category Sentiment Analysis and Rating Prediction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Bu%2C+J">Jiahao Bu</a>, <a href="/search/cs?searchtype=author&amp;query=Ren%2C+L">Lei Ren</a>, <a href="/search/cs?searchtype=author&amp;query=Zheng%2C+S">Shuang Zheng</a>, <a href="/search/cs?searchtype=author&amp;query=Yang%2C+Y">Yang Yang</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+J">Jingang Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+F">Fuzheng Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Wu%2C+W">Wei Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.06605v2-abstract-short" style="display: inline;"> Sentiment analysis has attracted increasing attention in e-commerce. The sentiment polarities underlying user reviews are of great value for business intelligence. Aspect category sentiment analysis (ACSA) and review rating prediction (RP) are two essential tasks to detect the fine-to-coarse sentiment polarities. %Considering the sentiment of the aspects(ACSA) and the overall review rating(RP) sim&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.06605v2-abstract-full').style.display = 'inline'; document.getElementById('2103.06605v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.06605v2-abstract-full" style="display: none;"> Sentiment analysis has attracted increasing attention in e-commerce. The sentiment polarities underlying user reviews are of great value for business intelligence. Aspect category sentiment analysis (ACSA) and review rating prediction (RP) are two essential tasks to detect the fine-to-coarse sentiment polarities. %Considering the sentiment of the aspects(ACSA) and the overall review rating(RP) simultaneously has the potential to improve the overall performance. ACSA and RP are highly correlated and usually employed jointly in real-world e-commerce scenarios. While most public datasets are constructed for ACSA and RP separately, which may limit the further exploitation of both tasks. To address the problem and advance related researches, we present a large-scale Chinese restaurant review dataset \textbf{ASAP} including $46,730$ genuine reviews from a leading online-to-offline (O2O) e-commerce platform in China. Besides a $5$-star scale rating, each review is manually annotated according to its sentiment polarities towards $18$ pre-defined aspect categories. We hope the release of the dataset could shed some light on the fields of sentiment analysis. Moreover, we propose an intuitive yet effective joint model for ACSA and RP. Experimental results demonstrate that the joint model outperforms state-of-the-art baselines on both tasks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.06605v2-abstract-full').style.display = 'none'; document.getElementById('2103.06605v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 Pages, 5 Figures, Accepted at NAACL 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.06032">arXiv:2103.06032</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.06032">pdf</a>, <a href="https://arxiv.org/format/2103.06032">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Multimedia">cs.MM</span> </div> </div> <p class="title is-5 mathjax"> Cross-modal Image Retrieval with Deep Mutual Information Maximization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Gu%2C+C">Chunbin Gu</a>, <a href="/search/cs?searchtype=author&amp;query=Bu%2C+J">Jiajun Bu</a>, <a href="/search/cs?searchtype=author&amp;query=Zhou%2C+X">Xixi Zhou</a>, <a href="/search/cs?searchtype=author&amp;query=Yao%2C+C">Chengwei Yao</a>, <a href="/search/cs?searchtype=author&amp;query=Ma%2C+D">Dongfang Ma</a>, <a href="/search/cs?searchtype=author&amp;query=Yu%2C+Z">Zhi Yu</a>, <a href="/search/cs?searchtype=author&amp;query=Yan%2C+X">Xifeng Yan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.06032v1-abstract-short" style="display: inline;"> In this paper, we study the cross-modal image retrieval, where the inputs contain a source image plus some text that describes certain modifications to this image and the desired image. Prior work usually uses a three-stage strategy to tackle this task: 1) extract the features of the inputs; 2) fuse the feature of the source image and its modified text to obtain fusion feature; 3) learn a similari&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.06032v1-abstract-full').style.display = 'inline'; document.getElementById('2103.06032v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.06032v1-abstract-full" style="display: none;"> In this paper, we study the cross-modal image retrieval, where the inputs contain a source image plus some text that describes certain modifications to this image and the desired image. Prior work usually uses a three-stage strategy to tackle this task: 1) extract the features of the inputs; 2) fuse the feature of the source image and its modified text to obtain fusion feature; 3) learn a similarity metric between the desired image and the source image + modified text by using deep metric learning. Since classical image/text encoders can learn the useful representation and common pair-based loss functions of distance metric learning are enough for cross-modal retrieval, people usually improve retrieval accuracy by designing new fusion networks. However, these methods do not successfully handle the modality gap caused by the inconsistent distribution and representation of the features of different modalities, which greatly influences the feature fusion and similarity learning. To alleviate this problem, we adopt the contrastive self-supervised learning method Deep InforMax (DIM) to our approach to bridge this gap by enhancing the dependence between the text, the image, and their fusion. Specifically, our method narrows the modality gap between the text modality and the image modality by maximizing mutual information between their not exactly semantically identical representation. Moreover, we seek an effective common subspace for the semantically same fusion feature and desired image&#39;s feature by utilizing Deep InforMax between the low-level layer of the image encoder and the high-level layer of the fusion network. Extensive experiments on three large-scale benchmark datasets show that we have bridged the modality gap between different modalities and achieve state-of-the-art retrieval performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.06032v1-abstract-full').style.display = 'none'; document.getElementById('2103.06032v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages,7 figures, Submitted to Neuralcomputing</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.08366">arXiv:2101.08366</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.08366">pdf</a>, <a href="https://arxiv.org/format/2101.08366">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Engineering, Finance, and Science">cs.CE</span> </div> </div> <p class="title is-5 mathjax"> Quadratic Residual Networks: A New Class of Neural Networks for Solving Forward and Inverse Problems in Physics Involving PDEs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Bu%2C+J">Jie Bu</a>, <a href="/search/cs?searchtype=author&amp;query=Karpatne%2C+A">Anuj Karpatne</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.08366v2-abstract-short" style="display: inline;"> We propose quadratic residual networks (QRes) as a new type of parameter-efficient neural network architecture, by adding a quadratic residual term to the weighted sum of inputs before applying activation functions. With sufficiently high functional capacity (or expressive power), we show that it is especially powerful for solving forward and inverse physics problems involving partial differential&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.08366v2-abstract-full').style.display = 'inline'; document.getElementById('2101.08366v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.08366v2-abstract-full" style="display: none;"> We propose quadratic residual networks (QRes) as a new type of parameter-efficient neural network architecture, by adding a quadratic residual term to the weighted sum of inputs before applying activation functions. With sufficiently high functional capacity (or expressive power), we show that it is especially powerful for solving forward and inverse physics problems involving partial differential equations (PDEs). Using tools from algebraic geometry, we theoretically demonstrate that, in contrast to plain neural networks, QRes shows better parameter efficiency in terms of network width and depth thanks to higher non-linearity in every neuron. Finally, we empirically show that QRes shows faster convergence speed in terms of number of training epochs especially in learning complex patterns. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.08366v2-abstract-full').style.display = 'none'; document.getElementById('2101.08366v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by SIAM International Conference on Data Mining (SDM21)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.11860">arXiv:2011.11860</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.11860">pdf</a>, <a href="https://arxiv.org/format/2011.11860">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Cyclic Label Propagation for Graph Semi-supervised Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Li%2C+Z">Zhao Li</a>, <a href="/search/cs?searchtype=author&amp;query=Liu%2C+Y">Yixin Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+Z">Zhen Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Pan%2C+S">Shirui Pan</a>, <a href="/search/cs?searchtype=author&amp;query=Gao%2C+J">Jianliang Gao</a>, <a href="/search/cs?searchtype=author&amp;query=Bu%2C+J">Jiajun Bu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.11860v1-abstract-short" style="display: inline;"> Graph neural networks (GNNs) have emerged as effective approaches for graph analysis, especially in the scenario of semi-supervised learning. Despite its success, GNN often suffers from over-smoothing and over-fitting problems, which affects its performance on node classification tasks. We analyze that an alternative method, the label propagation algorithm (LPA), avoids the aforementioned problems&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.11860v1-abstract-full').style.display = 'inline'; document.getElementById('2011.11860v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.11860v1-abstract-full" style="display: none;"> Graph neural networks (GNNs) have emerged as effective approaches for graph analysis, especially in the scenario of semi-supervised learning. Despite its success, GNN often suffers from over-smoothing and over-fitting problems, which affects its performance on node classification tasks. We analyze that an alternative method, the label propagation algorithm (LPA), avoids the aforementioned problems thus it is a promising choice for graph semi-supervised learning. Nevertheless, the intrinsic limitations of LPA on feature exploitation and relation modeling make propagating labels become less effective. To overcome these limitations, we introduce a novel framework for graph semi-supervised learning termed as Cyclic Label Propagation (CycProp for abbreviation), which integrates GNNs into the process of label propagation in a cyclic and mutually reinforcing manner to exploit the advantages of both GNNs and LPA. In particular, our proposed CycProp updates the node embeddings learned by GNN module with the augmented information by label propagation, while fine-tunes the weighted graph of label propagation with the help of node embedding in turn. After the model converges, reliably predicted labels and informative node embeddings are obtained with the LPA and GNN modules respectively. Extensive experiments on various real-world datasets are conducted, and the experimental results empirically demonstrate that the proposed CycProp model can achieve relatively significant gains over the state-of-the-art methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.11860v1-abstract-full').style.display = 'none'; document.getElementById('2011.11860v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 4 figures</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Bu%2C+J&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Bu%2C+J&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Bu%2C+J&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10