CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 693 results for author: <span class="mathjax">Tang, H</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cs" aria-role="search"> Searching in archive <strong>cs</strong>. <a href="/search/?searchtype=author&query=Tang%2C+H">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Tang, H"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Tang%2C+H&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Tang, H"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Tang%2C+H&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Tang%2C+H&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Tang%2C+H&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Tang%2C+H&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Tang%2C+H&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Tang%2C+H&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">…</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.10708">arXiv:2411.10708</a> <span> [<a href="https://arxiv.org/pdf/2411.10708">pdf</a>, <a href="https://arxiv.org/format/2411.10708">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> AllRestorer: All-in-One Transformer for Image Restoration under Composite Degradations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Mao%2C+J">Jiawei Mao</a>, <a href="/search/cs?searchtype=author&query=Yang%2C+Y">Yu Yang</a>, <a href="/search/cs?searchtype=author&query=Yin%2C+X">Xuesong Yin</a>, <a href="/search/cs?searchtype=author&query=Shao%2C+L">Ling Shao</a>, <a href="/search/cs?searchtype=author&query=Tang%2C+H">Hao Tang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.10708v1-abstract-short" style="display: inline;"> Image restoration models often face the simultaneous interaction of multiple degradations in real-world scenarios. Existing approaches typically handle single or composite degradations based on scene descriptors derived from text or image embeddings. However, due to the varying proportions of different degradations within an image, these scene descriptors may not accurately differentiate between d… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10708v1-abstract-full').style.display = 'inline'; document.getElementById('2411.10708v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.10708v1-abstract-full" style="display: none;"> Image restoration models often face the simultaneous interaction of multiple degradations in real-world scenarios. Existing approaches typically handle single or composite degradations based on scene descriptors derived from text or image embeddings. However, due to the varying proportions of different degradations within an image, these scene descriptors may not accurately differentiate between degradations, leading to suboptimal restoration in practical applications. To address this issue, we propose a novel Transformer-based restoration framework, AllRestorer. In AllRestorer, we enable the model to adaptively consider all image impairments, thereby avoiding errors from scene descriptor misdirection. Specifically, we introduce an All-in-One Transformer Block (AiOTB), which adaptively removes all degradations present in a given image by modeling the relationships between all degradations and the image embedding in latent space. To accurately address different variations potentially present within the same type of degradation and minimize ambiguity, AiOTB utilizes a composite scene descriptor consisting of both image and text embeddings to define the degradation. Furthermore, AiOTB includes an adaptive weight for each degradation, allowing for precise control of the restoration intensity. By leveraging AiOTB, AllRestorer avoids misdirection caused by inaccurate scene descriptors, achieving a 5.00 dB increase in PSNR compared to the baseline on the CDD-11 dataset. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10708v1-abstract-full').style.display = 'none'; document.getElementById('2411.10708v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.09911">arXiv:2411.09911</a> <span> [<a href="https://arxiv.org/pdf/2411.09911">pdf</a>, <a href="https://arxiv.org/format/2411.09911">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> DiffFNO: Diffusion Fourier Neural Operator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Liu%2C+X">Xiaoyi Liu</a>, <a href="/search/cs?searchtype=author&query=Tang%2C+H">Hao Tang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.09911v1-abstract-short" style="display: inline;"> We introduce DiffFNO, a novel diffusion framework for arbitrary-scale super-resolution strengthened by a Weighted Fourier Neural Operator (WFNO). Mode Re-balancing in WFNO effectively captures critical frequency components, significantly improving the reconstruction of high-frequency image details that are crucial for super-resolution tasks. Gated Fusion Mechanism (GFM) adaptively complements WFNO… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09911v1-abstract-full').style.display = 'inline'; document.getElementById('2411.09911v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.09911v1-abstract-full" style="display: none;"> We introduce DiffFNO, a novel diffusion framework for arbitrary-scale super-resolution strengthened by a Weighted Fourier Neural Operator (WFNO). Mode Re-balancing in WFNO effectively captures critical frequency components, significantly improving the reconstruction of high-frequency image details that are crucial for super-resolution tasks. Gated Fusion Mechanism (GFM) adaptively complements WFNO's spectral features with spatial features from an Attention-based Neural Operator (AttnNO). This enhances the network's capability to capture both global structures and local details. Adaptive Time-Step (ATS) ODE solver, a deterministic sampling strategy, accelerates inference without sacrificing output quality by dynamically adjusting integration step sizes ATS. Extensive experiments demonstrate that DiffFNO achieves state-of-the-art (SOTA) results, outperforming existing methods across various scaling factors by a margin of 2 to 4 dB in PSNR, including those beyond the training distribution. It also achieves this at lower inference time. Our approach sets a new standard in super-resolution, delivering both superior accuracy and computational efficiency. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09911v1-abstract-full').style.display = 'none'; document.getElementById('2411.09911v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06481">arXiv:2411.06481</a> <span> [<a href="https://arxiv.org/pdf/2411.06481">pdf</a>, <a href="https://arxiv.org/format/2411.06481">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> KMM: Key Frame Mask Mamba for Extended Motion Generation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Zhang%2C+Z">Zeyu Zhang</a>, <a href="/search/cs?searchtype=author&query=Gao%2C+H">Hang Gao</a>, <a href="/search/cs?searchtype=author&query=Liu%2C+A">Akide Liu</a>, <a href="/search/cs?searchtype=author&query=Chen%2C+Q">Qi Chen</a>, <a href="/search/cs?searchtype=author&query=Chen%2C+F">Feng Chen</a>, <a href="/search/cs?searchtype=author&query=Wang%2C+Y">Yiran Wang</a>, <a href="/search/cs?searchtype=author&query=Li%2C+D">Danning Li</a>, <a href="/search/cs?searchtype=author&query=Tang%2C+H">Hao Tang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06481v1-abstract-short" style="display: inline;"> Human motion generation is a cut-edge area of research in generative computer vision, with promising applications in video creation, game development, and robotic manipulation. The recent Mamba architecture shows promising results in efficiently modeling long and complex sequences, yet two significant challenges remain: Firstly, directly applying Mamba to extended motion generation is ineffective,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06481v1-abstract-full').style.display = 'inline'; document.getElementById('2411.06481v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06481v1-abstract-full" style="display: none;"> Human motion generation is a cut-edge area of research in generative computer vision, with promising applications in video creation, game development, and robotic manipulation. The recent Mamba architecture shows promising results in efficiently modeling long and complex sequences, yet two significant challenges remain: Firstly, directly applying Mamba to extended motion generation is ineffective, as the limited capacity of the implicit memory leads to memory decay. Secondly, Mamba struggles with multimodal fusion compared to Transformers, and lack alignment with textual queries, often confusing directions (left or right) or omitting parts of longer text queries. To address these challenges, our paper presents three key contributions: Firstly, we introduce KMM, a novel architecture featuring Key frame Masking Modeling, designed to enhance Mamba's focus on key actions in motion segments. This approach addresses the memory decay problem and represents a pioneering method in customizing strategic frame-level masking in SSMs. Additionally, we designed a contrastive learning paradigm for addressing the multimodal fusion problem in Mamba and improving the motion-text alignment. Finally, we conducted extensive experiments on the go-to dataset, BABEL, achieving state-of-the-art performance with a reduction of more than 57% in FID and 70% parameters compared to previous state-of-the-art methods. See project website: https://steve-zeyu-zhang.github.io/KMM <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06481v1-abstract-full').style.display = 'none'; document.getElementById('2411.06481v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06363">arXiv:2411.06363</a> <span> [<a href="https://arxiv.org/pdf/2411.06363">pdf</a>, <a href="https://arxiv.org/format/2411.06363">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Layer-Wise Feature Metric of Semantic-Pixel Matching for Few-Shot Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Tang%2C+H">Hao Tang</a>, <a href="/search/cs?searchtype=author&query=Lu%2C+J">Junhao Lu</a>, <a href="/search/cs?searchtype=author&query=Huang%2C+G">Guoheng Huang</a>, <a href="/search/cs?searchtype=author&query=Li%2C+M">Ming Li</a>, <a href="/search/cs?searchtype=author&query=Chen%2C+X">Xuhang Chen</a>, <a href="/search/cs?searchtype=author&query=Zhong%2C+G">Guo Zhong</a>, <a href="/search/cs?searchtype=author&query=Tan%2C+Z">Zhengguang Tan</a>, <a href="/search/cs?searchtype=author&query=Li%2C+Z">Zinuo Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06363v1-abstract-short" style="display: inline;"> In Few-Shot Learning (FSL), traditional metric-based approaches often rely on global metrics to compute similarity. However, in natural scenes, the spatial arrangement of key instances is often inconsistent across images. This spatial misalignment can result in mismatched semantic pixels, leading to inaccurate similarity measurements. To address this issue, we propose a novel method called the Lay… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06363v1-abstract-full').style.display = 'inline'; document.getElementById('2411.06363v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06363v1-abstract-full" style="display: none;"> In Few-Shot Learning (FSL), traditional metric-based approaches often rely on global metrics to compute similarity. However, in natural scenes, the spatial arrangement of key instances is often inconsistent across images. This spatial misalignment can result in mismatched semantic pixels, leading to inaccurate similarity measurements. To address this issue, we propose a novel method called the Layer-Wise Features Metric of Semantic-Pixel Matching (LWFM-SPM) to make finer comparisons. Our method enhances model performance through two key modules: (1) the Layer-Wise Embedding (LWE) Module, which refines the cross-correlation of image pairs to generate well-focused feature maps for each layer; (2)the Semantic-Pixel Matching (SPM) Module, which aligns critical pixels based on semantic embeddings using an assignment algorithm. We conducted extensive experiments to evaluate our method on four widely used few-shot classification benchmarks: miniImageNet, tieredImageNet, CUB-200-2011, and CIFAR-FS. The results indicate that LWFM-SPM achieves competitive performance across these benchmarks. Our code will be publicly available on https://github.com/Halo2Tang/Code-for-LWFM-SPM. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06363v1-abstract-full').style.display = 'none'; document.getElementById('2411.06363v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.02327">arXiv:2411.02327</a> <span> [<a href="https://arxiv.org/pdf/2411.02327">pdf</a>, <a href="https://arxiv.org/format/2411.02327">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> PPLLaVA: Varied Video Sequence Understanding With Prompt Guidance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Liu%2C+R">Ruyang Liu</a>, <a href="/search/cs?searchtype=author&query=Tang%2C+H">Haoran Tang</a>, <a href="/search/cs?searchtype=author&query=Liu%2C+H">Haibo Liu</a>, <a href="/search/cs?searchtype=author&query=Ge%2C+Y">Yixiao Ge</a>, <a href="/search/cs?searchtype=author&query=Shan%2C+Y">Ying Shan</a>, <a href="/search/cs?searchtype=author&query=Li%2C+C">Chen Li</a>, <a href="/search/cs?searchtype=author&query=Yang%2C+J">Jiankun Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.02327v2-abstract-short" style="display: inline;"> The past year has witnessed the significant advancement of video-based large language models. However, the challenge of developing a unified model for both short and long video understanding remains unresolved. Most existing video LLMs cannot handle hour-long videos, while methods custom for long videos tend to be ineffective for shorter videos and images. In this paper, we identify the key issue… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02327v2-abstract-full').style.display = 'inline'; document.getElementById('2411.02327v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.02327v2-abstract-full" style="display: none;"> The past year has witnessed the significant advancement of video-based large language models. However, the challenge of developing a unified model for both short and long video understanding remains unresolved. Most existing video LLMs cannot handle hour-long videos, while methods custom for long videos tend to be ineffective for shorter videos and images. In this paper, we identify the key issue as the redundant content in videos. To address this, we propose a novel pooling strategy that simultaneously achieves token compression and instruction-aware visual feature aggregation. Our model is termed Prompt-guided Pooling LLaVA, or PPLLaVA for short. Specifically, PPLLaVA consists of three core components: the CLIP-based visual-prompt alignment that extracts visual information relevant to the user's instructions, the prompt-guided pooling that compresses the visual sequence to arbitrary scales using convolution-style pooling, and the clip context extension designed for lengthy prompt common in visual dialogue. Moreover, our codebase also integrates the most advanced video Direct Preference Optimization (DPO) and visual interleave training. Extensive experiments have validated the performance of our model. With superior throughput and only 1024 visual context, PPLLaVA achieves better results on image benchmarks as a video LLM, while achieving state-of-the-art performance across various video benchmarks, excelling in tasks ranging from caption generation to multiple-choice questions, and handling video lengths from seconds to hours. Codes have been available at https://github.com/farewellthree/PPLLaVA. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02327v2-abstract-full').style.display = 'none'; document.getElementById('2411.02327v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.02272">arXiv:2411.02272</a> <span> [<a href="https://arxiv.org/pdf/2411.02272">pdf</a>, <a href="https://arxiv.org/format/2411.02272">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> Combining Induction and Transduction for Abstract Reasoning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Li%2C+W">Wen-Ding Li</a>, <a href="/search/cs?searchtype=author&query=Hu%2C+K">Keya Hu</a>, <a href="/search/cs?searchtype=author&query=Larsen%2C+C">Carter Larsen</a>, <a href="/search/cs?searchtype=author&query=Wu%2C+Y">Yuqing Wu</a>, <a href="/search/cs?searchtype=author&query=Alford%2C+S">Simon Alford</a>, <a href="/search/cs?searchtype=author&query=Woo%2C+C">Caleb Woo</a>, <a href="/search/cs?searchtype=author&query=Dunn%2C+S+M">Spencer M. Dunn</a>, <a href="/search/cs?searchtype=author&query=Tang%2C+H">Hao Tang</a>, <a href="/search/cs?searchtype=author&query=Naim%2C+M">Michelangelo Naim</a>, <a href="/search/cs?searchtype=author&query=Nguyen%2C+D">Dat Nguyen</a>, <a href="/search/cs?searchtype=author&query=Zheng%2C+W">Wei-Long Zheng</a>, <a href="/search/cs?searchtype=author&query=Tavares%2C+Z">Zenna Tavares</a>, <a href="/search/cs?searchtype=author&query=Pu%2C+Y">Yewen Pu</a>, <a href="/search/cs?searchtype=author&query=Ellis%2C+K">Kevin Ellis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.02272v3-abstract-short" style="display: inline;"> When learning an input-output mapping from very few examples, is it better to first infer a latent function that explains the examples, or is it better to directly predict new test outputs, e.g. using a neural network? We study this question on ARC, a highly diverse dataset of abstract reasoning tasks. We train neural models for induction (inferring latent functions) and transduction (directly pre… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02272v3-abstract-full').style.display = 'inline'; document.getElementById('2411.02272v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.02272v3-abstract-full" style="display: none;"> When learning an input-output mapping from very few examples, is it better to first infer a latent function that explains the examples, or is it better to directly predict new test outputs, e.g. using a neural network? We study this question on ARC, a highly diverse dataset of abstract reasoning tasks. We train neural models for induction (inferring latent functions) and transduction (directly predicting the test output for a given test input). Our models are trained on synthetic data generated by prompting LLMs to produce Python code specifying a function to be inferred, plus a stochastic subroutine for generating inputs to that function. We find inductive and transductive models solve very different problems, despite training on the same problems, and despite sharing the same neural architecture. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02272v3-abstract-full').style.display = 'none'; document.getElementById('2411.02272v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.00850">arXiv:2411.00850</a> <span> [<a href="https://arxiv.org/pdf/2411.00850">pdf</a>, <a href="https://arxiv.org/format/2411.00850">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> GWQ: Gradient-Aware Weight Quantization for Large Language Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Shao%2C+Y">Yihua Shao</a>, <a href="/search/cs?searchtype=author&query=Liang%2C+S">Siyu Liang</a>, <a href="/search/cs?searchtype=author&query=Lin%2C+X">Xiaolin Lin</a>, <a href="/search/cs?searchtype=author&query=Ling%2C+Z">Zijian Ling</a>, <a href="/search/cs?searchtype=author&query=Zhu%2C+Z">Zixian Zhu</a>, <a href="/search/cs?searchtype=author&query=Yan%2C+M">Minxi Yan</a>, <a href="/search/cs?searchtype=author&query=Liu%2C+H">Haiyang Liu</a>, <a href="/search/cs?searchtype=author&query=Chen%2C+S">Siyu Chen</a>, <a href="/search/cs?searchtype=author&query=Yan%2C+Z">Ziyang Yan</a>, <a href="/search/cs?searchtype=author&query=Meng%2C+Y">Yilan Meng</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+C">Chenyu Zhang</a>, <a href="/search/cs?searchtype=author&query=Qin%2C+H">Haotong Qin</a>, <a href="/search/cs?searchtype=author&query=Magno%2C+M">Michele Magno</a>, <a href="/search/cs?searchtype=author&query=Yang%2C+Y">Yang Yang</a>, <a href="/search/cs?searchtype=author&query=Lei%2C+Z">Zhen Lei</a>, <a href="/search/cs?searchtype=author&query=Wang%2C+Y">Yan Wang</a>, <a href="/search/cs?searchtype=author&query=Guo%2C+J">Jingcai Guo</a>, <a href="/search/cs?searchtype=author&query=Shao%2C+L">Ling Shao</a>, <a href="/search/cs?searchtype=author&query=Tang%2C+H">Hao Tang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.00850v1-abstract-short" style="display: inline;"> Large language models (LLMs) show impressive performance in solving complex languagetasks. However, its large number of parameterspresent significant challenges for the deployment and application of the model on edge devices. Compressing large language models to low bits can enable them to run on resource-constrained devices, often leading to performance degradation. To address this problem, we pr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00850v1-abstract-full').style.display = 'inline'; document.getElementById('2411.00850v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.00850v1-abstract-full" style="display: none;"> Large language models (LLMs) show impressive performance in solving complex languagetasks. However, its large number of parameterspresent significant challenges for the deployment and application of the model on edge devices. Compressing large language models to low bits can enable them to run on resource-constrained devices, often leading to performance degradation. To address this problem, we propose gradient-aware weight quantization (GWQ), the first quantization approach for low-bit weight quantization that leverages gradients to localize outliers, requiring only a minimal amount of calibration data for outlier detection. GWQ retains the weights corresponding to the top 1% outliers preferentially at FP16 precision, while the remaining non-outlier weights are stored in a low-bit format. GWQ found experimentally that utilizing the sensitive weights in the gradient localization model is more scientific compared to utilizing the sensitive weights in the Hessian matrix localization model. Compared to current quantization methods, GWQ can be applied to multiple language models and achieves lower PPL on the WikiText2 and C4 dataset. In the zero-shot task, GWQ quantized models have higher accuracy compared to other quantization methods.GWQ is also suitable for multimodal model quantization, and the quantized Qwen-VL family model is more accurate than other methods. zero-shot target detection task dataset RefCOCO outperforms the current stat-of-the-arts method SPQR. GWQ achieves 1.2x inference speedup in comparison to the original model, and effectively reduces the inference memory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00850v1-abstract-full').style.display = 'none'; document.getElementById('2411.00850v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.23156">arXiv:2410.23156</a> <span> [<a href="https://arxiv.org/pdf/2410.23156">pdf</a>, <a href="https://arxiv.org/format/2410.23156">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> </div> </div> <p class="title is-5 mathjax"> VisualPredicator: Learning Abstract World Models with Neuro-Symbolic Predicates for Robot Planning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Liang%2C+Y">Yichao Liang</a>, <a href="/search/cs?searchtype=author&query=Kumar%2C+N">Nishanth Kumar</a>, <a href="/search/cs?searchtype=author&query=Tang%2C+H">Hao Tang</a>, <a href="/search/cs?searchtype=author&query=Weller%2C+A">Adrian Weller</a>, <a href="/search/cs?searchtype=author&query=Tenenbaum%2C+J+B">Joshua B. Tenenbaum</a>, <a href="/search/cs?searchtype=author&query=Silver%2C+T">Tom Silver</a>, <a href="/search/cs?searchtype=author&query=Henriques%2C+J+F">Jo茫o F. Henriques</a>, <a href="/search/cs?searchtype=author&query=Ellis%2C+K">Kevin Ellis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.23156v1-abstract-short" style="display: inline;"> Broadly intelligent agents should form task-specific abstractions that selectively expose the essential elements of a task, while abstracting away the complexity of the raw sensorimotor space. In this work, we present Neuro-Symbolic Predicates, a first-order abstraction language that combines the strengths of symbolic and neural knowledge representations. We outline an online algorithm for inventi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23156v1-abstract-full').style.display = 'inline'; document.getElementById('2410.23156v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.23156v1-abstract-full" style="display: none;"> Broadly intelligent agents should form task-specific abstractions that selectively expose the essential elements of a task, while abstracting away the complexity of the raw sensorimotor space. In this work, we present Neuro-Symbolic Predicates, a first-order abstraction language that combines the strengths of symbolic and neural knowledge representations. We outline an online algorithm for inventing such predicates and learning abstract world models. We compare our approach to hierarchical reinforcement learning, vision-language model planning, and symbolic predicate invention approaches, on both in- and out-of-distribution tasks across five simulated robotic domains. Results show that our approach offers better sample complexity, stronger out-of-distribution generalization, and improved interpretability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23156v1-abstract-full').style.display = 'none'; document.getElementById('2410.23156v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">In submission</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.21815">arXiv:2410.21815</a> <span> [<a href="https://arxiv.org/pdf/2410.21815">pdf</a>, <a href="https://arxiv.org/format/2410.21815">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> </div> </div> <p class="title is-5 mathjax"> Gnothi Seauton: Empowering Faithful Self-Interpretability in Black-Box Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Wang%2C+S">Shaobo Wang</a>, <a href="/search/cs?searchtype=author&query=Tang%2C+H">Hongxuan Tang</a>, <a href="/search/cs?searchtype=author&query=Wang%2C+M">Mingyang Wang</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+H">Hongrui Zhang</a>, <a href="/search/cs?searchtype=author&query=Liu%2C+X">Xuyang Liu</a>, <a href="/search/cs?searchtype=author&query=Li%2C+W">Weiya Li</a>, <a href="/search/cs?searchtype=author&query=Hu%2C+X">Xuming Hu</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+L">Linfeng Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.21815v1-abstract-short" style="display: inline;"> The debate between self-interpretable models and post-hoc explanations for black-box models is central to Explainable AI (XAI). Self-interpretable models, such as concept-based networks, offer insights by connecting decisions to human-understandable concepts but often struggle with performance and scalability. Conversely, post-hoc methods like Shapley values, while theoretically robust, are comput… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.21815v1-abstract-full').style.display = 'inline'; document.getElementById('2410.21815v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.21815v1-abstract-full" style="display: none;"> The debate between self-interpretable models and post-hoc explanations for black-box models is central to Explainable AI (XAI). Self-interpretable models, such as concept-based networks, offer insights by connecting decisions to human-understandable concepts but often struggle with performance and scalability. Conversely, post-hoc methods like Shapley values, while theoretically robust, are computationally expensive and resource-intensive. To bridge the gap between these two lines of research, we propose a novel method that combines their strengths, providing theoretically guaranteed self-interpretability for black-box models without compromising prediction accuracy. Specifically, we introduce a parameter-efficient pipeline, *AutoGnothi*, which integrates a small side network into the black-box model, allowing it to generate Shapley value explanations without changing the original network parameters. This side-tuning approach significantly reduces memory, training, and inference costs, outperforming traditional parameter-efficient methods, where full fine-tuning serves as the optimal baseline. *AutoGnothi* enables the black-box model to predict and explain its predictions with minimal overhead. Extensive experiments show that *AutoGnothi* offers accurate explanations for both vision and language tasks, delivering superior computational efficiency with comparable interpretability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.21815v1-abstract-full').style.display = 'none'; document.getElementById('2410.21815v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.16322">arXiv:2410.16322</a> <span> [<a href="https://arxiv.org/pdf/2410.16322">pdf</a>, <a href="https://arxiv.org/format/2410.16322">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Human-Computer Interaction">cs.HC</span> </div> </div> <p class="title is-5 mathjax"> SouLLMate: An Application Enhancing Diverse Mental Health Support with Adaptive LLMs, Prompt Engineering, and RAG Techniques </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Guo%2C+Q">Qiming Guo</a>, <a href="/search/cs?searchtype=author&query=Tang%2C+J">Jinwen Tang</a>, <a href="/search/cs?searchtype=author&query=Sun%2C+W">Wenbo Sun</a>, <a href="/search/cs?searchtype=author&query=Tang%2C+H">Haoteng Tang</a>, <a href="/search/cs?searchtype=author&query=Shang%2C+Y">Yi Shang</a>, <a href="/search/cs?searchtype=author&query=Wang%2C+W">Wenlu Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.16322v1-abstract-short" style="display: inline;"> Mental health issues significantly impact individuals' daily lives, yet many do not receive the help they need even with available online resources. This study aims to provide diverse, accessible, stigma-free, personalized, and real-time mental health support through cutting-edge AI technologies. It makes the following contributions: (1) Conducting an extensive survey of recent mental health suppo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16322v1-abstract-full').style.display = 'inline'; document.getElementById('2410.16322v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.16322v1-abstract-full" style="display: none;"> Mental health issues significantly impact individuals' daily lives, yet many do not receive the help they need even with available online resources. This study aims to provide diverse, accessible, stigma-free, personalized, and real-time mental health support through cutting-edge AI technologies. It makes the following contributions: (1) Conducting an extensive survey of recent mental health support methods to identify prevalent functionalities and unmet needs. (2) Introducing SouLLMate, an adaptive LLM-driven system that integrates LLM technologies, Chain, Retrieval-Augmented Generation (RAG), prompt engineering, and domain knowledge. This system offers advanced features such as Risk Detection and Proactive Guidance Dialogue, and utilizes RAG for personalized profile uploads and Conversational Information Extraction. (3) Developing novel evaluation approaches for preliminary assessments and risk detection via professionally annotated interview data and real-life suicide tendency data. (4) Proposing the Key Indicator Summarization (KIS), Proactive Questioning Strategy (PQS), and Stacked Multi-Model Reasoning (SMMR) methods to enhance model performance and usability through context-sensitive response adjustments, semantic coherence evaluations, and enhanced accuracy of long-context reasoning in language models. This study contributes to advancing mental health support technologies, potentially improving the accessibility and effectiveness of mental health care globally. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16322v1-abstract-full').style.display = 'none'; document.getElementById('2410.16322v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 19 figures, 8 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.15689">arXiv:2410.15689</a> <span> [<a href="https://arxiv.org/pdf/2410.15689">pdf</a>, <a href="https://arxiv.org/format/2410.15689">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Neural and Evolutionary Computing">cs.NE</span> </div> </div> <p class="title is-5 mathjax"> Enhancing SNN-based Spatio-Temporal Learning: A Benchmark Dataset and Cross-Modality Attention Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Zhou%2C+S">Shibo Zhou</a>, <a href="/search/cs?searchtype=author&query=Yang%2C+B">Bo Yang</a>, <a href="/search/cs?searchtype=author&query=Yuan%2C+M">Mengwen Yuan</a>, <a href="/search/cs?searchtype=author&query=Jiang%2C+R">Runhao Jiang</a>, <a href="/search/cs?searchtype=author&query=Yan%2C+R">Rui Yan</a>, <a href="/search/cs?searchtype=author&query=Pan%2C+G">Gang Pan</a>, <a href="/search/cs?searchtype=author&query=Tang%2C+H">Huajin Tang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.15689v1-abstract-short" style="display: inline;"> Spiking Neural Networks (SNNs), renowned for their low power consumption, brain-inspired architecture, and spatio-temporal representation capabilities, have garnered considerable attention in recent years. Similar to Artificial Neural Networks (ANNs), high-quality benchmark datasets are of great importance to the advances of SNNs. However, our analysis indicates that many prevalent neuromorphic da… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15689v1-abstract-full').style.display = 'inline'; document.getElementById('2410.15689v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.15689v1-abstract-full" style="display: none;"> Spiking Neural Networks (SNNs), renowned for their low power consumption, brain-inspired architecture, and spatio-temporal representation capabilities, have garnered considerable attention in recent years. Similar to Artificial Neural Networks (ANNs), high-quality benchmark datasets are of great importance to the advances of SNNs. However, our analysis indicates that many prevalent neuromorphic datasets lack strong temporal correlation, preventing SNNs from fully exploiting their spatio-temporal representation capabilities. Meanwhile, the integration of event and frame modalities offers more comprehensive visual spatio-temporal information. Yet, the SNN-based cross-modality fusion remains underexplored. In this work, we present a neuromorphic dataset called DVS-SLR that can better exploit the inherent spatio-temporal properties of SNNs. Compared to existing datasets, it offers advantages in terms of higher temporal correlation, larger scale, and more varied scenarios. In addition, our neuromorphic dataset contains corresponding frame data, which can be used for developing SNN-based fusion methods. By virtue of the dual-modal feature of the dataset, we propose a Cross-Modality Attention (CMA) based fusion method. The CMA model efficiently utilizes the unique advantages of each modality, allowing for SNNs to learn both temporal and spatial attention scores from the spatio-temporal features of event and frame modalities, subsequently allocating these scores across modalities to enhance their synergy. Experimental results demonstrate that our method not only improves recognition accuracy but also ensures robustness across diverse scenarios. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15689v1-abstract-full').style.display = 'none'; document.getElementById('2410.15689v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13757">arXiv:2410.13757</a> <span> [<a href="https://arxiv.org/pdf/2410.13757">pdf</a>, <a href="https://arxiv.org/format/2410.13757">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Multiagent Systems">cs.MA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Human-Computer Interaction">cs.HC</span> </div> </div> <p class="title is-5 mathjax"> MobA: A Two-Level Agent System for Efficient Mobile Task Automation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Zhu%2C+Z">Zichen Zhu</a>, <a href="/search/cs?searchtype=author&query=Tang%2C+H">Hao Tang</a>, <a href="/search/cs?searchtype=author&query=Li%2C+Y">Yansi Li</a>, <a href="/search/cs?searchtype=author&query=Lan%2C+K">Kunyao Lan</a>, <a href="/search/cs?searchtype=author&query=Jiang%2C+Y">Yixuan Jiang</a>, <a href="/search/cs?searchtype=author&query=Zhou%2C+H">Hao Zhou</a>, <a href="/search/cs?searchtype=author&query=Wang%2C+Y">Yixiao Wang</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+S">Situo Zhang</a>, <a href="/search/cs?searchtype=author&query=Sun%2C+L">Liangtai Sun</a>, <a href="/search/cs?searchtype=author&query=Chen%2C+L">Lu Chen</a>, <a href="/search/cs?searchtype=author&query=Yu%2C+K">Kai Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13757v1-abstract-short" style="display: inline;"> Current mobile assistants are limited by dependence on system APIs or struggle with complex user instructions and diverse interfaces due to restricted comprehension and decision-making abilities. To address these challenges, we propose MobA, a novel Mobile phone Agent powered by multimodal large language models that enhances comprehension and planning capabilities through a sophisticated two-level… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13757v1-abstract-full').style.display = 'inline'; document.getElementById('2410.13757v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13757v1-abstract-full" style="display: none;"> Current mobile assistants are limited by dependence on system APIs or struggle with complex user instructions and diverse interfaces due to restricted comprehension and decision-making abilities. To address these challenges, we propose MobA, a novel Mobile phone Agent powered by multimodal large language models that enhances comprehension and planning capabilities through a sophisticated two-level agent architecture. The high-level Global Agent (GA) is responsible for understanding user commands, tracking history memories, and planning tasks. The low-level Local Agent (LA) predicts detailed actions in the form of function calls, guided by sub-tasks and memory from the GA. Integrating a Reflection Module allows for efficient task completion and enables the system to handle previously unseen complex tasks. MobA demonstrates significant improvements in task execution efficiency and completion rate in real-life evaluations, underscoring the potential of MLLM-empowered mobile assistants. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13757v1-abstract-full').style.display = 'none'; document.getElementById('2410.13757v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 6 figures, and 5 tables. We will release our source code in a few days</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.11859">arXiv:2410.11859</a> <span> [<a href="https://arxiv.org/pdf/2410.11859">pdf</a>, <a href="https://arxiv.org/format/2410.11859">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Human-Computer Interaction">cs.HC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computers and Society">cs.CY</span> </div> </div> <p class="title is-5 mathjax"> SouLLMate: An Adaptive LLM-Driven System for Advanced Mental Health Support and Assessment, Based on a Systematic Application Survey </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Guo%2C+Q">Qiming Guo</a>, <a href="/search/cs?searchtype=author&query=Tang%2C+J">Jinwen Tang</a>, <a href="/search/cs?searchtype=author&query=Sun%2C+W">Wenbo Sun</a>, <a href="/search/cs?searchtype=author&query=Tang%2C+H">Haoteng Tang</a>, <a href="/search/cs?searchtype=author&query=Shang%2C+Y">Yi Shang</a>, <a href="/search/cs?searchtype=author&query=Wang%2C+W">Wenlu Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.11859v1-abstract-short" style="display: inline;"> Mental health issues significantly impact individuals' daily lives, yet many do not receive the help they need even with available online resources. This study aims to provide accessible, stigma-free, personalized, and real-time mental health support through cutting-edge AI technologies. It makes the following contributions: (1) Conducting an extensive survey of recent mental health support method… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11859v1-abstract-full').style.display = 'inline'; document.getElementById('2410.11859v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.11859v1-abstract-full" style="display: none;"> Mental health issues significantly impact individuals' daily lives, yet many do not receive the help they need even with available online resources. This study aims to provide accessible, stigma-free, personalized, and real-time mental health support through cutting-edge AI technologies. It makes the following contributions: (1) Conducting an extensive survey of recent mental health support methods to identify prevalent functionalities and unmet needs. (2) Introducing SouLLMate, an adaptive LLM-driven system that integrates LLM technologies, Chain, Retrieval-Augmented Generation (RAG), prompt engineering, and domain knowledge. This system offers advanced features such as Suicide Risk Detection and Proactive Guidance Dialogue, and utilizes RAG for personalized profile uploads and Conversational Information Extraction. (3) Developing novel evaluation approaches to assess preliminary assessments and suicide risk detection, utilizing annotated real-life interview data and professionally labeled datasets indicating suicide tendencies. (4) Proposing Key Indicator Summarization (KIS) and Proactive Questioning Strategy (PQS) methods to enhance model performance and usability through context-sensitive response adjustments and semantic coherence evaluations. This study contributes to advancing mental health support technologies, potentially improving the accessibility and effectiveness of mental health care globally. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11859v1-abstract-full').style.display = 'none'; document.getElementById('2410.11859v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.11617">arXiv:2410.11617</a> <span> [<a href="https://arxiv.org/pdf/2410.11617">pdf</a>, <a href="https://arxiv.org/format/2410.11617">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> M$^{2}$M: Learning controllable Multi of experts and multi-scale operators are the Partial Differential Equations need </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Liang%2C+A">Aoming Liang</a>, <a href="/search/cs?searchtype=author&query=Mu%2C+Z">Zhaoyang Mu</a>, <a href="/search/cs?searchtype=author&query=Lin%2C+P">Pengxiao Lin</a>, <a href="/search/cs?searchtype=author&query=Wang%2C+C">Cong Wang</a>, <a href="/search/cs?searchtype=author&query=Ge%2C+M">Mingming Ge</a>, <a href="/search/cs?searchtype=author&query=Shao%2C+L">Ling Shao</a>, <a href="/search/cs?searchtype=author&query=Fan%2C+D">Dixia Fan</a>, <a href="/search/cs?searchtype=author&query=Tang%2C+H">Hao Tang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.11617v1-abstract-short" style="display: inline;"> Learning the evolutionary dynamics of Partial Differential Equations (PDEs) is critical in understanding dynamic systems, yet current methods insufficiently learn their representations. This is largely due to the multi-scale nature of the solution, where certain regions exhibit rapid oscillations while others evolve more slowly. This paper introduces a framework of multi-scale and multi-expert (M… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11617v1-abstract-full').style.display = 'inline'; document.getElementById('2410.11617v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.11617v1-abstract-full" style="display: none;"> Learning the evolutionary dynamics of Partial Differential Equations (PDEs) is critical in understanding dynamic systems, yet current methods insufficiently learn their representations. This is largely due to the multi-scale nature of the solution, where certain regions exhibit rapid oscillations while others evolve more slowly. This paper introduces a framework of multi-scale and multi-expert (M$^2$M) neural operators designed to simulate and learn PDEs efficiently. We employ a divide-and-conquer strategy to train a multi-expert gated network for the dynamic router policy. Our method incorporates a controllable prior gating mechanism that determines the selection rights of experts, enhancing the model's efficiency. To optimize the learning process, we have implemented a PI (Proportional, Integral) control strategy to adjust the allocation rules precisely. This universal controllable approach allows the model to achieve greater accuracy. We test our approach on benchmark 2D Navier-Stokes equations and provide a custom multi-scale dataset. M$^2$M can achieve higher simulation accuracy and offer improved interpretability compared to baseline methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11617v1-abstract-full').style.display = 'none'; document.getElementById('2410.11617v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 16 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.10819">arXiv:2410.10819</a> <span> [<a href="https://arxiv.org/pdf/2410.10819">pdf</a>, <a href="https://arxiv.org/format/2410.10819">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> DuoAttention: Efficient Long-Context LLM Inference with Retrieval and Streaming Heads </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Xiao%2C+G">Guangxuan Xiao</a>, <a href="/search/cs?searchtype=author&query=Tang%2C+J">Jiaming Tang</a>, <a href="/search/cs?searchtype=author&query=Zuo%2C+J">Jingwei Zuo</a>, <a href="/search/cs?searchtype=author&query=Guo%2C+J">Junxian Guo</a>, <a href="/search/cs?searchtype=author&query=Yang%2C+S">Shang Yang</a>, <a href="/search/cs?searchtype=author&query=Tang%2C+H">Haotian Tang</a>, <a href="/search/cs?searchtype=author&query=Fu%2C+Y">Yao Fu</a>, <a href="/search/cs?searchtype=author&query=Han%2C+S">Song Han</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.10819v1-abstract-short" style="display: inline;"> Deploying long-context large language models (LLMs) is essential but poses significant computational and memory challenges. Caching all Key and Value (KV) states across all attention heads consumes substantial memory. Existing KV cache pruning methods either damage the long-context capabilities of LLMs or offer only limited efficiency improvements. In this paper, we identify that only a fraction o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10819v1-abstract-full').style.display = 'inline'; document.getElementById('2410.10819v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.10819v1-abstract-full" style="display: none;"> Deploying long-context large language models (LLMs) is essential but poses significant computational and memory challenges. Caching all Key and Value (KV) states across all attention heads consumes substantial memory. Existing KV cache pruning methods either damage the long-context capabilities of LLMs or offer only limited efficiency improvements. In this paper, we identify that only a fraction of attention heads, a.k.a, Retrieval Heads, are critical for processing long contexts and require full attention across all tokens. In contrast, all other heads, which primarily focus on recent tokens and attention sinks--referred to as Streaming Heads--do not require full attention. Based on this insight, we introduce DuoAttention, a framework that only applies a full KV cache to retrieval heads while using a light-weight, constant-length KV cache for streaming heads, which reduces both LLM's decoding and pre-filling memory and latency without compromising its long-context abilities. DuoAttention uses a lightweight, optimization-based algorithm with synthetic data to identify retrieval heads accurately. Our method significantly reduces long-context inference memory by up to 2.55x for MHA and 1.67x for GQA models while speeding up decoding by up to 2.18x and 1.50x and accelerating pre-filling by up to 1.73x and 1.63x for MHA and GQA models, respectively, with minimal accuracy loss compared to full attention. Notably, combined with quantization, DuoAttention enables Llama-3-8B decoding with 3.3 million context length on a single A100 GPU. Code is provided in https://github.com/mit-han-lab/duo-attention. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10819v1-abstract-full').style.display = 'none'; document.getElementById('2410.10819v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.10812">arXiv:2410.10812</a> <span> [<a href="https://arxiv.org/pdf/2410.10812">pdf</a>, <a href="https://arxiv.org/format/2410.10812">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> HART: Efficient Visual Generation with Hybrid Autoregressive Transformer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Tang%2C+H">Haotian Tang</a>, <a href="/search/cs?searchtype=author&query=Wu%2C+Y">Yecheng Wu</a>, <a href="/search/cs?searchtype=author&query=Yang%2C+S">Shang Yang</a>, <a href="/search/cs?searchtype=author&query=Xie%2C+E">Enze Xie</a>, <a href="/search/cs?searchtype=author&query=Chen%2C+J">Junsong Chen</a>, <a href="/search/cs?searchtype=author&query=Chen%2C+J">Junyu Chen</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+Z">Zhuoyang Zhang</a>, <a href="/search/cs?searchtype=author&query=Cai%2C+H">Han Cai</a>, <a href="/search/cs?searchtype=author&query=Lu%2C+Y">Yao Lu</a>, <a href="/search/cs?searchtype=author&query=Han%2C+S">Song Han</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.10812v1-abstract-short" style="display: inline;"> We introduce Hybrid Autoregressive Transformer (HART), an autoregressive (AR) visual generation model capable of directly generating 1024x1024 images, rivaling diffusion models in image generation quality. Existing AR models face limitations due to the poor image reconstruction quality of their discrete tokenizers and the prohibitive training costs associated with generating 1024px images. To addr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10812v1-abstract-full').style.display = 'inline'; document.getElementById('2410.10812v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.10812v1-abstract-full" style="display: none;"> We introduce Hybrid Autoregressive Transformer (HART), an autoregressive (AR) visual generation model capable of directly generating 1024x1024 images, rivaling diffusion models in image generation quality. Existing AR models face limitations due to the poor image reconstruction quality of their discrete tokenizers and the prohibitive training costs associated with generating 1024px images. To address these challenges, we present the hybrid tokenizer, which decomposes the continuous latents from the autoencoder into two components: discrete tokens representing the big picture and continuous tokens representing the residual components that cannot be represented by the discrete tokens. The discrete component is modeled by a scalable-resolution discrete AR model, while the continuous component is learned with a lightweight residual diffusion module with only 37M parameters. Compared with the discrete-only VAR tokenizer, our hybrid approach improves reconstruction FID from 2.11 to 0.30 on MJHQ-30K, leading to a 31% generation FID improvement from 7.85 to 5.38. HART also outperforms state-of-the-art diffusion models in both FID and CLIP score, with 4.5-7.7x higher throughput and 6.9-13.4x lower MACs. Our code is open sourced at https://github.com/mit-han-lab/hart. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10812v1-abstract-full').style.display = 'none'; document.getElementById('2410.10812v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Demo: https://hart.mit.edu. The first two authors contributed equally to this work</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.10774">arXiv:2410.10774</a> <span> [<a href="https://arxiv.org/pdf/2410.10774">pdf</a>, <a href="https://arxiv.org/format/2410.10774">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Cavia: Camera-controllable Multi-view Video Diffusion with View-Integrated Attention </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Xu%2C+D">Dejia Xu</a>, <a href="/search/cs?searchtype=author&query=Jiang%2C+Y">Yifan Jiang</a>, <a href="/search/cs?searchtype=author&query=Huang%2C+C">Chen Huang</a>, <a href="/search/cs?searchtype=author&query=Song%2C+L">Liangchen Song</a>, <a href="/search/cs?searchtype=author&query=Gernoth%2C+T">Thorsten Gernoth</a>, <a href="/search/cs?searchtype=author&query=Cao%2C+L">Liangliang Cao</a>, <a href="/search/cs?searchtype=author&query=Wang%2C+Z">Zhangyang Wang</a>, <a href="/search/cs?searchtype=author&query=Tang%2C+H">Hao Tang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.10774v1-abstract-short" style="display: inline;"> In recent years there have been remarkable breakthroughs in image-to-video generation. However, the 3D consistency and camera controllability of generated frames have remained unsolved. Recent studies have attempted to incorporate camera control into the generation process, but their results are often limited to simple trajectories or lack the ability to generate consistent videos from multiple di… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10774v1-abstract-full').style.display = 'inline'; document.getElementById('2410.10774v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.10774v1-abstract-full" style="display: none;"> In recent years there have been remarkable breakthroughs in image-to-video generation. However, the 3D consistency and camera controllability of generated frames have remained unsolved. Recent studies have attempted to incorporate camera control into the generation process, but their results are often limited to simple trajectories or lack the ability to generate consistent videos from multiple distinct camera paths for the same scene. To address these limitations, we introduce Cavia, a novel framework for camera-controllable, multi-view video generation, capable of converting an input image into multiple spatiotemporally consistent videos. Our framework extends the spatial and temporal attention modules into view-integrated attention modules, improving both viewpoint and temporal consistency. This flexible design allows for joint training with diverse curated data sources, including scene-level static videos, object-level synthetic multi-view dynamic videos, and real-world monocular dynamic videos. To our best knowledge, Cavia is the first of its kind that allows the user to precisely specify camera motion while obtaining object motion. Extensive experiments demonstrate that Cavia surpasses state-of-the-art methods in terms of geometric consistency and perceptual quality. Project Page: https://ir1d.github.io/Cavia/ <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10774v1-abstract-full').style.display = 'none'; document.getElementById('2410.10774v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Project Page: https://ir1d.github.io/Cavia/</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.10733">arXiv:2410.10733</a> <span> [<a href="https://arxiv.org/pdf/2410.10733">pdf</a>, <a href="https://arxiv.org/format/2410.10733">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Deep Compression Autoencoder for Efficient High-Resolution Diffusion Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Chen%2C+J">Junyu Chen</a>, <a href="/search/cs?searchtype=author&query=Cai%2C+H">Han Cai</a>, <a href="/search/cs?searchtype=author&query=Chen%2C+J">Junsong Chen</a>, <a href="/search/cs?searchtype=author&query=Xie%2C+E">Enze Xie</a>, <a href="/search/cs?searchtype=author&query=Yang%2C+S">Shang Yang</a>, <a href="/search/cs?searchtype=author&query=Tang%2C+H">Haotian Tang</a>, <a href="/search/cs?searchtype=author&query=Li%2C+M">Muyang Li</a>, <a href="/search/cs?searchtype=author&query=Lu%2C+Y">Yao Lu</a>, <a href="/search/cs?searchtype=author&query=Han%2C+S">Song Han</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.10733v2-abstract-short" style="display: inline;"> We present Deep Compression Autoencoder (DC-AE), a new family of autoencoder models for accelerating high-resolution diffusion models. Existing autoencoder models have demonstrated impressive results at a moderate spatial compression ratio (e.g., 8x), but fail to maintain satisfactory reconstruction accuracy for high spatial compression ratios (e.g., 64x). We address this challenge by introducing… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10733v2-abstract-full').style.display = 'inline'; document.getElementById('2410.10733v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.10733v2-abstract-full" style="display: none;"> We present Deep Compression Autoencoder (DC-AE), a new family of autoencoder models for accelerating high-resolution diffusion models. Existing autoencoder models have demonstrated impressive results at a moderate spatial compression ratio (e.g., 8x), but fail to maintain satisfactory reconstruction accuracy for high spatial compression ratios (e.g., 64x). We address this challenge by introducing two key techniques: (1) Residual Autoencoding, where we design our models to learn residuals based on the space-to-channel transformed features to alleviate the optimization difficulty of high spatial-compression autoencoders; (2) Decoupled High-Resolution Adaptation, an efficient decoupled three-phases training strategy for mitigating the generalization penalty of high spatial-compression autoencoders. With these designs, we improve the autoencoder's spatial compression ratio up to 128 while maintaining the reconstruction quality. Applying our DC-AE to latent diffusion models, we achieve significant speedup without accuracy drop. For example, on ImageNet 512x512, our DC-AE provides 19.1x inference speedup and 17.9x training speedup on H100 GPU for UViT-H while achieving a better FID, compared with the widely used SD-VAE-f8 autoencoder. Our code is available at https://github.com/mit-han-lab/efficientvit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10733v2-abstract-full').style.display = 'none'; document.getElementById('2410.10733v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Preprint. First two authors contributed equally to this work. Update: add diffusion model scaling results</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.10629">arXiv:2410.10629</a> <span> [<a href="https://arxiv.org/pdf/2410.10629">pdf</a>, <a href="https://arxiv.org/format/2410.10629">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> SANA: Efficient High-Resolution Image Synthesis with Linear Diffusion Transformers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Xie%2C+E">Enze Xie</a>, <a href="/search/cs?searchtype=author&query=Chen%2C+J">Junsong Chen</a>, <a href="/search/cs?searchtype=author&query=Chen%2C+J">Junyu Chen</a>, <a href="/search/cs?searchtype=author&query=Cai%2C+H">Han Cai</a>, <a href="/search/cs?searchtype=author&query=Tang%2C+H">Haotian Tang</a>, <a href="/search/cs?searchtype=author&query=Lin%2C+Y">Yujun Lin</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+Z">Zhekai Zhang</a>, <a href="/search/cs?searchtype=author&query=Li%2C+M">Muyang Li</a>, <a href="/search/cs?searchtype=author&query=Zhu%2C+L">Ligeng Zhu</a>, <a href="/search/cs?searchtype=author&query=Lu%2C+Y">Yao Lu</a>, <a href="/search/cs?searchtype=author&query=Han%2C+S">Song Han</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.10629v3-abstract-short" style="display: inline;"> We introduce Sana, a text-to-image framework that can efficiently generate images up to 4096$\times$4096 resolution. Sana can synthesize high-resolution, high-quality images with strong text-image alignment at a remarkably fast speed, deployable on laptop GPU. Core designs include: (1) Deep compression autoencoder: unlike traditional AEs, which compress images only 8$\times$, we trained an AE that… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10629v3-abstract-full').style.display = 'inline'; document.getElementById('2410.10629v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.10629v3-abstract-full" style="display: none;"> We introduce Sana, a text-to-image framework that can efficiently generate images up to 4096$\times$4096 resolution. Sana can synthesize high-resolution, high-quality images with strong text-image alignment at a remarkably fast speed, deployable on laptop GPU. Core designs include: (1) Deep compression autoencoder: unlike traditional AEs, which compress images only 8$\times$, we trained an AE that can compress images 32$\times$, effectively reducing the number of latent tokens. (2) Linear DiT: we replace all vanilla attention in DiT with linear attention, which is more efficient at high resolutions without sacrificing quality. (3) Decoder-only text encoder: we replaced T5 with modern decoder-only small LLM as the text encoder and designed complex human instruction with in-context learning to enhance the image-text alignment. (4) Efficient training and sampling: we propose Flow-DPM-Solver to reduce sampling steps, with efficient caption labeling and selection to accelerate convergence. As a result, Sana-0.6B is very competitive with modern giant diffusion model (e.g. Flux-12B), being 20 times smaller and 100+ times faster in measured throughput. Moreover, Sana-0.6B can be deployed on a 16GB laptop GPU, taking less than 1 second to generate a 1024$\times$1024 resolution image. Sana enables content creation at low cost. Code and model will be publicly released. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10629v3-abstract-full').style.display = 'none'; document.getElementById('2410.10629v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Technical Report</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.08048">arXiv:2410.08048</a> <span> [<a href="https://arxiv.org/pdf/2410.08048">pdf</a>, <a href="https://arxiv.org/format/2410.08048">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> VerifierQ: Enhancing LLM Test Time Compute with Q-Learning-based Verifiers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Qi%2C+J">Jianing Qi</a>, <a href="/search/cs?searchtype=author&query=Tang%2C+H">Hao Tang</a>, <a href="/search/cs?searchtype=author&query=Zhu%2C+Z">Zhigang Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.08048v1-abstract-short" style="display: inline;"> Recent advancements in test time compute, particularly through the use of verifier models, have significantly enhanced the reasoning capabilities of Large Language Models (LLMs). This generator-verifier approach closely resembles the actor-critic framework in reinforcement learning (RL). However, current verifier models in LLMs often rely on supervised fine-tuning without temporal difference learn… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.08048v1-abstract-full').style.display = 'inline'; document.getElementById('2410.08048v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.08048v1-abstract-full" style="display: none;"> Recent advancements in test time compute, particularly through the use of verifier models, have significantly enhanced the reasoning capabilities of Large Language Models (LLMs). This generator-verifier approach closely resembles the actor-critic framework in reinforcement learning (RL). However, current verifier models in LLMs often rely on supervised fine-tuning without temporal difference learning such as Q-learning. This paper introduces VerifierQ, a novel approach that integrates Offline Q-learning into LLM verifier models. We address three key challenges in applying Q-learning to LLMs: (1) handling utterance-level Markov Decision Processes (MDPs), (2) managing large action spaces, and (3) mitigating overestimation bias. VerifierQ introduces a modified Bellman update for bounded Q-values, incorporates Implicit Q-learning (IQL) for efficient action space management, and integrates a novel Conservative Q-learning (CQL) formulation for balanced Q-value estimation. Our method enables parallel Q-value computation and improving training efficiency. While recent work has explored RL techniques like MCTS for generators, VerifierQ is among the first to investigate the verifier (critic) aspect in LLMs through Q-learning. This integration of RL principles into verifier models complements existing advancements in generator techniques, potentially enabling more robust and adaptive reasoning in LLMs. Experimental results on mathematical reasoning tasks demonstrate VerifierQ's superior performance compared to traditional supervised fine-tuning approaches, with improvements in efficiency, accuracy and robustness. By enhancing the synergy between generation and evaluation capabilities, VerifierQ contributes to the ongoing evolution of AI systems in addressing complex cognitive tasks across various domains. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.08048v1-abstract-full').style.display = 'none'; document.getElementById('2410.08048v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.07266">arXiv:2410.07266</a> <span> [<a href="https://arxiv.org/pdf/2410.07266">pdf</a>, <a href="https://arxiv.org/format/2410.07266">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Spiking GS: Towards High-Accuracy and Low-Cost Surface Reconstruction via Spiking Neuron-based Gaussian Splatting </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Zhang%2C+W">Weixing Zhang</a>, <a href="/search/cs?searchtype=author&query=Li%2C+Z">Zongrui Li</a>, <a href="/search/cs?searchtype=author&query=Ma%2C+D">De Ma</a>, <a href="/search/cs?searchtype=author&query=Tang%2C+H">Huajin Tang</a>, <a href="/search/cs?searchtype=author&query=Jiang%2C+X">Xudong Jiang</a>, <a href="/search/cs?searchtype=author&query=Zheng%2C+Q">Qian Zheng</a>, <a href="/search/cs?searchtype=author&query=Pan%2C+G">Gang Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.07266v3-abstract-short" style="display: inline;"> 3D Gaussian Splatting is capable of reconstructing 3D scenes in minutes. Despite recent advances in improving surface reconstruction accuracy, the reconstructed results still exhibit bias and suffer from inefficiency in storage and training. This paper provides a different observation on the cause of the inefficiency and the reconstruction bias, which is attributed to the integration of the low-op… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.07266v3-abstract-full').style.display = 'inline'; document.getElementById('2410.07266v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.07266v3-abstract-full" style="display: none;"> 3D Gaussian Splatting is capable of reconstructing 3D scenes in minutes. Despite recent advances in improving surface reconstruction accuracy, the reconstructed results still exhibit bias and suffer from inefficiency in storage and training. This paper provides a different observation on the cause of the inefficiency and the reconstruction bias, which is attributed to the integration of the low-opacity parts (LOPs) of the generated Gaussians. We show that LOPs consist of Gaussians with overall low-opacity (LOGs) and the low-opacity tails (LOTs) of Gaussians. We propose Spiking GS to reduce such two types of LOPs by integrating spiking neurons into the Gaussian Splatting pipeline. Specifically, we introduce global and local full-precision integrate-and-fire spiking neurons to the opacity and representation function of flattened 3D Gaussians, respectively. Furthermore, we enhance the density control strategy with spiking neurons' thresholds and a new criterion on the scale of Gaussians. Our method can represent more accurate reconstructed surfaces at a lower cost. The supplementary material and code are available at https://github.com/zju-bmi-lab/SpikingGS. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.07266v3-abstract-full').style.display = 'none'; document.getElementById('2410.07266v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.07142">arXiv:2410.07142</a> <span> [<a href="https://arxiv.org/pdf/2410.07142">pdf</a>, <a href="https://arxiv.org/format/2410.07142">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Engineering, Finance, and Science">cs.CE</span> </div> </div> <p class="title is-5 mathjax"> Graph Network Surrogate Model for Optimizing the Placement of Horizontal Injection Wells for CO2 Storage </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Tang%2C+H">Haoyu Tang</a>, <a href="/search/cs?searchtype=author&query=Durlofsky%2C+L+J">Louis J. Durlofsky</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.07142v1-abstract-short" style="display: inline;"> Optimizing the locations of multiple CO2 injection wells will be essential as we proceed from demonstration-scale to large-scale carbon storage operations. Well placement optimization is, however, a computationally intensive task because the flow responses associated with many potential configurations must be evaluated. There is thus a need for efficient surrogate models for this application. In t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.07142v1-abstract-full').style.display = 'inline'; document.getElementById('2410.07142v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.07142v1-abstract-full" style="display: none;"> Optimizing the locations of multiple CO2 injection wells will be essential as we proceed from demonstration-scale to large-scale carbon storage operations. Well placement optimization is, however, a computationally intensive task because the flow responses associated with many potential configurations must be evaluated. There is thus a need for efficient surrogate models for this application. In this work we develop and apply a graph network surrogate model (GNSM) to predict the global pressure and CO2 saturation fields in 3D geological models for arbitrary configurations of four horizontal wells. The GNSM uses an encoding-processing-decoding framework where the problem is represented in terms of computational graphs. Separate networks are applied for pressure and saturation predictions, and a multilayer perceptron is used to provide bottom-hole pressure (BHP) for each well at each time step. The GNSM is shown to achieve median relative errors of 4\% for pressure and 6\% for saturation over a test set involving very different plume shapes and dynamics. Speedup is about a factor of $120\times$ relative to high-fidelity simulation. The GNSM is applied for optimization using a differential evolution algorithm, where the goal is to minimize the CO2 footprint subject to constraints on the well configuration, plume location and well BHPs. Optimization results using the GNSM are shown to be comparable to those achieved using (much more expensive) high-fidelity simulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.07142v1-abstract-full').style.display = 'none'; document.getElementById('2410.07142v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.06851">arXiv:2410.06851</a> <span> [<a href="https://arxiv.org/pdf/2410.06851">pdf</a>, <a href="https://arxiv.org/format/2410.06851">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Understanding Model Ensemble in Transferable Adversarial Attack </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Yao%2C+W">Wei Yao</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+Z">Zeliang Zhang</a>, <a href="/search/cs?searchtype=author&query=Tang%2C+H">Huayi Tang</a>, <a href="/search/cs?searchtype=author&query=Liu%2C+Y">Yong Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.06851v1-abstract-short" style="display: inline;"> Model ensemble adversarial attack has become a powerful method for generating transferable adversarial examples that can target even unknown models, but its theoretical foundation remains underexplored. To address this gap, we provide early theoretical insights that serve as a roadmap for advancing model ensemble adversarial attack. We first define transferability error to measure the error in adv… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06851v1-abstract-full').style.display = 'inline'; document.getElementById('2410.06851v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.06851v1-abstract-full" style="display: none;"> Model ensemble adversarial attack has become a powerful method for generating transferable adversarial examples that can target even unknown models, but its theoretical foundation remains underexplored. To address this gap, we provide early theoretical insights that serve as a roadmap for advancing model ensemble adversarial attack. We first define transferability error to measure the error in adversarial transferability, alongside concepts of diversity and empirical model ensemble Rademacher complexity. We then decompose the transferability error into vulnerability, diversity, and a constant, which rigidly explains the origin of transferability error in model ensemble attack: the vulnerability of an adversarial example to ensemble components, and the diversity of ensemble components. Furthermore, we apply the latest mathematical tools in information theory to bound the transferability error using complexity and generalization terms, contributing to three practical guidelines for reducing transferability error: (1) incorporating more surrogate models, (2) increasing their diversity, and (3) reducing their complexity in cases of overfitting. Finally, extensive experiments with 54 models validate our theoretical framework, representing a significant step forward in understanding transferable model ensemble adversarial attacks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06851v1-abstract-full').style.display = 'none'; document.getElementById('2410.06851v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.06694">arXiv:2410.06694</a> <span> [<a href="https://arxiv.org/pdf/2410.06694">pdf</a>, <a href="https://arxiv.org/format/2410.06694">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> </div> </div> <p class="title is-5 mathjax"> OmniPose6D: Towards Short-Term Object Pose Tracking in Dynamic Scenes from Monocular RGB </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Lin%2C+Y">Yunzhi Lin</a>, <a href="/search/cs?searchtype=author&query=Zhao%2C+Y">Yipu Zhao</a>, <a href="/search/cs?searchtype=author&query=Chu%2C+F">Fu-Jen Chu</a>, <a href="/search/cs?searchtype=author&query=Chen%2C+X">Xingyu Chen</a>, <a href="/search/cs?searchtype=author&query=Wang%2C+W">Weiyao Wang</a>, <a href="/search/cs?searchtype=author&query=Tang%2C+H">Hao Tang</a>, <a href="/search/cs?searchtype=author&query=Vela%2C+P+A">Patricio A. Vela</a>, <a href="/search/cs?searchtype=author&query=Feiszli%2C+M">Matt Feiszli</a>, <a href="/search/cs?searchtype=author&query=Liang%2C+K">Kevin Liang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.06694v1-abstract-short" style="display: inline;"> To address the challenge of short-term object pose tracking in dynamic environments with monocular RGB input, we introduce a large-scale synthetic dataset OmniPose6D, crafted to mirror the diversity of real-world conditions. We additionally present a benchmarking framework for a comprehensive comparison of pose tracking algorithms. We propose a pipeline featuring an uncertainty-aware keypoint refi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06694v1-abstract-full').style.display = 'inline'; document.getElementById('2410.06694v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.06694v1-abstract-full" style="display: none;"> To address the challenge of short-term object pose tracking in dynamic environments with monocular RGB input, we introduce a large-scale synthetic dataset OmniPose6D, crafted to mirror the diversity of real-world conditions. We additionally present a benchmarking framework for a comprehensive comparison of pose tracking algorithms. We propose a pipeline featuring an uncertainty-aware keypoint refinement network, employing probabilistic modeling to refine pose estimation. Comparative evaluations demonstrate that our approach achieves performance superior to existing baselines on real datasets, underscoring the effectiveness of our synthetic dataset and refinement technique in enhancing tracking precision in dynamic contexts. Our contributions set a new precedent for the development and assessment of object pose tracking methodologies in complex scenes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06694v1-abstract-full').style.display = 'none'; document.getElementById('2410.06694v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.05707">arXiv:2410.05707</a> <span> [<a href="https://arxiv.org/pdf/2410.05707">pdf</a>, <a href="https://arxiv.org/format/2410.05707">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Network Topology Inference from Smooth Signals Under Partial Observability </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Peng%2C+C">Chuansen Peng</a>, <a href="/search/cs?searchtype=author&query=Tang%2C+H">Hanning Tang</a>, <a href="/search/cs?searchtype=author&query=Wang%2C+Z">Zhiguo Wang</a>, <a href="/search/cs?searchtype=author&query=Shen%2C+X">Xiaojing Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.05707v2-abstract-short" style="display: inline;"> Inferring network topology from smooth signals is a significant problem in data science and engineering. A common challenge in real-world scenarios is the availability of only partially observed nodes. While some studies have considered hidden nodes and proposed various optimization frameworks, existing methods often lack the practical efficiency needed for large-scale networks or fail to provide… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05707v2-abstract-full').style.display = 'inline'; document.getElementById('2410.05707v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.05707v2-abstract-full" style="display: none;"> Inferring network topology from smooth signals is a significant problem in data science and engineering. A common challenge in real-world scenarios is the availability of only partially observed nodes. While some studies have considered hidden nodes and proposed various optimization frameworks, existing methods often lack the practical efficiency needed for large-scale networks or fail to provide theoretical convergence guarantees. In this paper, we address the problem of inferring network topologies from smooth signals with partially observed nodes. We propose a first-order algorithmic framework that includes two variants: one based on column sparsity regularization and the other on a low-rank constraint. We establish theoretical convergence guarantees and demonstrate the linear convergence rate of our algorithms. Extensive experiments on both synthetic and real-world data show that our results align with theoretical predictions, exhibiting not only linear convergence but also superior speed compared to existing methods. To the best of our knowledge, this is the first work to propose a first-order algorithmic framework for inferring network structures from smooth signals under partial observability, offering both guaranteed linear convergence and practical effectiveness for large-scale networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05707v2-abstract-full').style.display = 'none'; document.getElementById('2410.05707v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.02396">arXiv:2410.02396</a> <span> [<a href="https://arxiv.org/pdf/2410.02396">pdf</a>, <a href="https://arxiv.org/format/2410.02396">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Parameter Competition Balancing for Model Merging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Du%2C+G">Guodong Du</a>, <a href="/search/cs?searchtype=author&query=Lee%2C+J">Junlin Lee</a>, <a href="/search/cs?searchtype=author&query=Li%2C+J">Jing Li</a>, <a href="/search/cs?searchtype=author&query=Jiang%2C+R">Runhua Jiang</a>, <a href="/search/cs?searchtype=author&query=Guo%2C+Y">Yifei Guo</a>, <a href="/search/cs?searchtype=author&query=Yu%2C+S">Shuyang Yu</a>, <a href="/search/cs?searchtype=author&query=Liu%2C+H">Hanting Liu</a>, <a href="/search/cs?searchtype=author&query=Goh%2C+S+K">Sim Kuan Goh</a>, <a href="/search/cs?searchtype=author&query=Tang%2C+H">Ho-Kin Tang</a>, <a href="/search/cs?searchtype=author&query=He%2C+D">Daojing He</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+M">Min Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.02396v1-abstract-short" style="display: inline;"> While fine-tuning pretrained models has become common practice, these models often underperform outside their specific domains. Recently developed model merging techniques enable the direct integration of multiple models, each fine-tuned for distinct tasks, into a single model. This strategy promotes multitasking capabilities without requiring retraining on the original datasets. However, existing… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02396v1-abstract-full').style.display = 'inline'; document.getElementById('2410.02396v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.02396v1-abstract-full" style="display: none;"> While fine-tuning pretrained models has become common practice, these models often underperform outside their specific domains. Recently developed model merging techniques enable the direct integration of multiple models, each fine-tuned for distinct tasks, into a single model. This strategy promotes multitasking capabilities without requiring retraining on the original datasets. However, existing methods fall short in addressing potential conflicts and complex correlations between tasks, especially in parameter-level adjustments, posing a challenge in effectively balancing parameter competition across various tasks. This paper introduces an innovative technique named PCB-Merging (Parameter Competition Balancing), a lightweight and training-free technique that adjusts the coefficients of each parameter for effective model merging. PCB-Merging employs intra-balancing to gauge parameter significance within individual tasks and inter-balancing to assess parameter similarities across different tasks. Parameters with low importance scores are dropped, and the remaining ones are rescaled to form the final merged model. We assessed our approach in diverse merging scenarios, including cross-task, cross-domain, and cross-training configurations, as well as out-of-domain generalization. The experimental results reveal that our approach achieves substantial performance enhancements across multiple modalities, domains, model sizes, number of tasks, fine-tuning forms, and large language models, outperforming existing model merging methods. The code is publicly available at: \url{https://github.com/duguodong7/pcb-merging}. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02396v1-abstract-full').style.display = 'none'; document.getElementById('2410.02396v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by NeurIPS2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.01395">arXiv:2410.01395</a> <span> [<a href="https://arxiv.org/pdf/2410.01395">pdf</a>, <a href="https://arxiv.org/format/2410.01395">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Toward Zero-Shot Learning for Visual Dehazing of Urological Surgical Robots </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Wu%2C+R">Renkai Wu</a>, <a href="/search/cs?searchtype=author&query=Wang%2C+X">Xianjin Wang</a>, <a href="/search/cs?searchtype=author&query=Liang%2C+P">Pengchen Liang</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+Z">Zhenyu Zhang</a>, <a href="/search/cs?searchtype=author&query=Chang%2C+Q">Qing Chang</a>, <a href="/search/cs?searchtype=author&query=Tang%2C+H">Hao Tang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.01395v1-abstract-short" style="display: inline;"> Robot-assisted surgery has profoundly influenced current forms of minimally invasive surgery. However, in transurethral suburethral urological surgical robots, they need to work in a liquid environment. This causes vaporization of the liquid when shearing and heating is performed, resulting in bubble atomization that affects the visual perception of the robot. This can lead to the need for uninter… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01395v1-abstract-full').style.display = 'inline'; document.getElementById('2410.01395v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.01395v1-abstract-full" style="display: none;"> Robot-assisted surgery has profoundly influenced current forms of minimally invasive surgery. However, in transurethral suburethral urological surgical robots, they need to work in a liquid environment. This causes vaporization of the liquid when shearing and heating is performed, resulting in bubble atomization that affects the visual perception of the robot. This can lead to the need for uninterrupted pauses in the surgical procedure, which makes the surgery take longer. To address the atomization characteristics of liquids under urological surgical robotic vision, we propose an unsupervised zero-shot dehaze method (RSF-Dehaze) for urological surgical robotic vision. Specifically, the proposed Region Similarity Filling Module (RSFM) of RSF-Dehaze significantly improves the recovery of blurred region tissues. In addition, we organize and propose a dehaze dataset for robotic vision in urological surgery (USRobot-Dehaze dataset). In particular, this dataset contains the three most common urological surgical robot operation scenarios. To the best of our knowledge, we are the first to organize and propose a publicly available dehaze dataset for urological surgical robot vision. The proposed RSF-Dehaze proves the effectiveness of our method in three urological surgical robot operation scenarios with extensive comparative experiments with 20 most classical and advanced dehazing and image recovery algorithms. The proposed source code and dataset are available at https://github.com/wurenkai/RSF-Dehaze . <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01395v1-abstract-full').style.display = 'none'; document.getElementById('2410.01395v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.19741">arXiv:2409.19741</a> <span> [<a href="https://arxiv.org/pdf/2409.19741">pdf</a>, <a href="https://arxiv.org/format/2409.19741">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Tailored Federated Learning: Leveraging Direction Regulation & Knowledge Distillation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Tang%2C+H">Huidong Tang</a>, <a href="/search/cs?searchtype=author&query=Li%2C+C">Chen Li</a>, <a href="/search/cs?searchtype=author&query=Yu%2C+H">Huachong Yu</a>, <a href="/search/cs?searchtype=author&query=Kamei%2C+S">Sayaka Kamei</a>, <a href="/search/cs?searchtype=author&query=Morimoto%2C+Y">Yasuhiko Morimoto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.19741v1-abstract-short" style="display: inline;"> Federated learning (FL) has emerged as a transformative training paradigm, particularly invaluable in privacy-sensitive domains like healthcare. However, client heterogeneity in data, computing power, and tasks poses a significant challenge. To address such a challenge, we propose an FL optimization algorithm that integrates model delta regularization, personalized models, federated knowledge dist… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19741v1-abstract-full').style.display = 'inline'; document.getElementById('2409.19741v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.19741v1-abstract-full" style="display: none;"> Federated learning (FL) has emerged as a transformative training paradigm, particularly invaluable in privacy-sensitive domains like healthcare. However, client heterogeneity in data, computing power, and tasks poses a significant challenge. To address such a challenge, we propose an FL optimization algorithm that integrates model delta regularization, personalized models, federated knowledge distillation, and mix-pooling. Model delta regularization optimizes model updates centrally on the server, efficiently updating clients with minimal communication costs. Personalized models and federated knowledge distillation strategies are employed to tackle task heterogeneity effectively. Additionally, mix-pooling is introduced to accommodate variations in the sensitivity of readout operations. Experimental results demonstrate the remarkable accuracy and rapid convergence achieved by model delta regularization. Additionally, the federated knowledge distillation algorithm notably improves FL performance, especially in scenarios with diverse data. Moreover, mix-pooling readout operations provide tangible benefits for clients, showing the effectiveness of our proposed methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19741v1-abstract-full').style.display = 'none'; document.getElementById('2409.19741v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.19740">arXiv:2409.19740</a> <span> [<a href="https://arxiv.org/pdf/2409.19740">pdf</a>, <a href="https://arxiv.org/format/2409.19740">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> </div> </div> <p class="title is-5 mathjax"> When Molecular GAN Meets Byte-Pair Encoding </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Tang%2C+H">Huidong Tang</a>, <a href="/search/cs?searchtype=author&query=Li%2C+C">Chen Li</a>, <a href="/search/cs?searchtype=author&query=Morimoto%2C+Y">Yasuhiko Morimoto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.19740v1-abstract-short" style="display: inline;"> Deep generative models, such as generative adversarial networks (GANs), are pivotal in discovering novel drug-like candidates via de novo molecular generation. However, traditional character-wise tokenizers often struggle with identifying novel and complex sub-structures in molecular data. In contrast, alternative tokenization methods have demonstrated superior performance. This study introduces a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19740v1-abstract-full').style.display = 'inline'; document.getElementById('2409.19740v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.19740v1-abstract-full" style="display: none;"> Deep generative models, such as generative adversarial networks (GANs), are pivotal in discovering novel drug-like candidates via de novo molecular generation. However, traditional character-wise tokenizers often struggle with identifying novel and complex sub-structures in molecular data. In contrast, alternative tokenization methods have demonstrated superior performance. This study introduces a molecular GAN that integrates a byte level byte-pair encoding tokenizer and employs reinforcement learning to enhance de novo molecular generation. Specifically, the generator functions as an actor, producing SMILES strings, while the discriminator acts as a critic, evaluating their quality. Our molecular GAN also integrates innovative reward mechanisms aimed at improving computational efficiency. Experimental results assessing validity, uniqueness, novelty, and diversity, complemented by detailed visualization analysis, robustly demonstrate the effectiveness of our GAN. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19740v1-abstract-full').style.display = 'none'; document.getElementById('2409.19740v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.19583">arXiv:2409.19583</a> <span> [<a href="https://arxiv.org/pdf/2409.19583">pdf</a>, <a href="https://arxiv.org/format/2409.19583">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> </div> </div> <p class="title is-5 mathjax"> Brain Tumor Classification on MRI in Light of Molecular Markers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Liu%2C+J">Jun Liu</a>, <a href="/search/cs?searchtype=author&query=Yuan%2C+G">Geng Yuan</a>, <a href="/search/cs?searchtype=author&query=Zeng%2C+W">Weihao Zeng</a>, <a href="/search/cs?searchtype=author&query=Tang%2C+H">Hao Tang</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+W">Wenbin Zhang</a>, <a href="/search/cs?searchtype=author&query=Lin%2C+X">Xue Lin</a>, <a href="/search/cs?searchtype=author&query=Xu%2C+X">XiaoLin Xu</a>, <a href="/search/cs?searchtype=author&query=Huang%2C+D">Dong Huang</a>, <a href="/search/cs?searchtype=author&query=Wang%2C+Y">Yanzhi Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.19583v1-abstract-short" style="display: inline;"> In research findings, co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas. The ability to predict 1p19q status is critical for treatment planning and patient follow-up. This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection. Although public networks such as RestNet and AlexNet can effectively diagnose brain canc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19583v1-abstract-full').style.display = 'inline'; document.getElementById('2409.19583v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.19583v1-abstract-full" style="display: none;"> In research findings, co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas. The ability to predict 1p19q status is critical for treatment planning and patient follow-up. This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection. Although public networks such as RestNet and AlexNet can effectively diagnose brain cancers using transfer learning, the model includes quite a few weights that have nothing to do with medical images. As a result, the diagnostic results are unreliable by the transfer learning model. To deal with the problem of trustworthiness, we create the model from the ground up, rather than depending on a pre-trained model. To enable flexibility, we combined convolution stacking with a dropout and full connect operation, it improved performance by reducing overfitting. During model training, we also supplement the given dataset and inject Gaussian noise. We use three--fold cross-validation to train the best selection model. Comparing InceptionV3, VGG16, and MobileNetV2 fine-tuned with pre-trained models, our model produces better results. On an validation set of 125 codeletion vs. 31 not codeletion images, the proposed network achieves 96.37\% percent F1-score, 97.46\% percent precision, and 96.34\% percent recall when classifying 1p/19q codeletion and not codeletion images. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19583v1-abstract-full').style.display = 'none'; document.getElementById('2409.19583v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">ICAI'22 - The 24th International Conference on Artificial Intelligence, The 2022 World Congress in Computer Science, Computer Engineering, & Applied Computing (CSCE'22), Las Vegas, USA. The paper acceptance rate 17% for regular papers. The publication of the CSCE 2022 conference proceedings has been delayed due to the pandemic</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Springer Nature - Book Series: Transactions on Computational Science & Computational Intelligence, 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.17487">arXiv:2409.17487</a> <span> [<a href="https://arxiv.org/pdf/2409.17487">pdf</a>, <a href="https://arxiv.org/format/2409.17487">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Learning Quantized Adaptive Conditions for Diffusion Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Liang%2C+Y">Yuchen Liang</a>, <a href="/search/cs?searchtype=author&query=Tian%2C+Y">Yuchuan Tian</a>, <a href="/search/cs?searchtype=author&query=Yu%2C+L">Lei Yu</a>, <a href="/search/cs?searchtype=author&query=Tang%2C+H">Huao Tang</a>, <a href="/search/cs?searchtype=author&query=Hu%2C+J">Jie Hu</a>, <a href="/search/cs?searchtype=author&query=Fang%2C+X">Xiangzhong Fang</a>, <a href="/search/cs?searchtype=author&query=Chen%2C+H">Hanting Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.17487v1-abstract-short" style="display: inline;"> The curvature of ODE trajectories in diffusion models hinders their ability to generate high-quality images in a few number of function evaluations (NFE). In this paper, we propose a novel and effective approach to reduce trajectory curvature by utilizing adaptive conditions. By employing a extremely light-weight quantized encoder, our method incurs only an additional 1% of training parameters, el… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17487v1-abstract-full').style.display = 'inline'; document.getElementById('2409.17487v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.17487v1-abstract-full" style="display: none;"> The curvature of ODE trajectories in diffusion models hinders their ability to generate high-quality images in a few number of function evaluations (NFE). In this paper, we propose a novel and effective approach to reduce trajectory curvature by utilizing adaptive conditions. By employing a extremely light-weight quantized encoder, our method incurs only an additional 1% of training parameters, eliminates the need for extra regularization terms, yet achieves significantly better sample quality. Our approach accelerates ODE sampling while preserving the downstream task image editing capabilities of SDE techniques. Extensive experiments verify that our method can generate high quality results under extremely limited sampling costs. With only 6 NFE, we achieve 5.14 FID on CIFAR-10, 6.91 FID on FFHQ 64x64 and 3.10 FID on AFHQv2. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17487v1-abstract-full').style.display = 'none'; document.getElementById('2409.17487v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.15180">arXiv:2409.15180</a> <span> [<a href="https://arxiv.org/pdf/2409.15180">pdf</a>, <a href="https://arxiv.org/format/2409.15180">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> </div> </div> <p class="title is-5 mathjax"> A Comprehensive Survey with Critical Analysis for Deepfake Speech Detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Pham%2C+L">Lam Pham</a>, <a href="/search/cs?searchtype=author&query=Lam%2C+P">Phat Lam</a>, <a href="/search/cs?searchtype=author&query=Nguyen%2C+T">Tin Nguyen</a>, <a href="/search/cs?searchtype=author&query=Tang%2C+H">Hieu Tang</a>, <a href="/search/cs?searchtype=author&query=Tran%2C+D">Dat Tran</a>, <a href="/search/cs?searchtype=author&query=Schindler%2C+A">Alexander Schindler</a>, <a href="/search/cs?searchtype=author&query=Zakaryan%2C+T">Taron Zakaryan</a>, <a href="/search/cs?searchtype=author&query=Polonsky%2C+A">Alexander Polonsky</a>, <a href="/search/cs?searchtype=author&query=Vu%2C+C">Canh Vu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.15180v2-abstract-short" style="display: inline;"> Thanks to advancements in deep learning, speech generation systems now power a variety of real-world applications, such as text-to-speech for individuals with speech disorders, voice chatbots in call centers, cross-linguistic speech translation, etc. While these systems can autonomously generate human-like speech and replicate specific voices, they also pose risks when misused for malicious purpos… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.15180v2-abstract-full').style.display = 'inline'; document.getElementById('2409.15180v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.15180v2-abstract-full" style="display: none;"> Thanks to advancements in deep learning, speech generation systems now power a variety of real-world applications, such as text-to-speech for individuals with speech disorders, voice chatbots in call centers, cross-linguistic speech translation, etc. While these systems can autonomously generate human-like speech and replicate specific voices, they also pose risks when misused for malicious purposes. This motivates the research community to develop models for detecting synthesized speech (e.g., fake speech) generated by deep-learning-based models, referred to as the Deepfake Speech Detection task. As the Deepfake Speech Detection task has emerged in recent years, there are not many survey papers proposed for this task. Additionally, existing surveys for the Deepfake Speech Detection task tend to summarize techniques used to construct a Deepfake Speech Detection system rather than providing a thorough analysis. This gap motivated us to conduct a comprehensive survey, providing a critical analysis of the challenges and developments in Deepfake Speech Detection. Our survey is innovatively structured, offering an in-depth analysis of current challenge competitions, public datasets, and the deep-learning techniques that provide enhanced solutions to address existing challenges in the field. From our analysis, we propose hypotheses on leveraging and combining specific deep learning techniques to improve the effectiveness of Deepfake Speech Detection systems. Beyond conducting a survey, we perform extensive experiments to validate these hypotheses and propose a highly competitive model for the task of Deepfake Speech Detection. Given the analysis and the experimental results, we finally indicate potential and promising research directions for the Deepfake Speech Detection task. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.15180v2-abstract-full').style.display = 'none'; document.getElementById('2409.15180v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Journal preprint</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.09646">arXiv:2409.09646</a> <span> [<a href="https://arxiv.org/pdf/2409.09646">pdf</a>, <a href="https://arxiv.org/format/2409.09646">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> A Simple HMM with Self-Supervised Representations for Phone Segmentation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Yang%2C+G">Gene-Ping Yang</a>, <a href="/search/cs?searchtype=author&query=Tang%2C+H">Hao Tang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.09646v2-abstract-short" style="display: inline;"> Despite the recent advance in self-supervised representations, unsupervised phonetic segmentation remains challenging. Most approaches focus on improving phonetic representations with self-supervised learning, with the hope that the improvement can transfer to phonetic segmentation. In this paper, contrary to recent approaches, we show that peak detection on Mel spectrograms is a strong baseline,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09646v2-abstract-full').style.display = 'inline'; document.getElementById('2409.09646v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.09646v2-abstract-full" style="display: none;"> Despite the recent advance in self-supervised representations, unsupervised phonetic segmentation remains challenging. Most approaches focus on improving phonetic representations with self-supervised learning, with the hope that the improvement can transfer to phonetic segmentation. In this paper, contrary to recent approaches, we show that peak detection on Mel spectrograms is a strong baseline, better than many self-supervised approaches. Based on this finding, we propose a simple hidden Markov model that uses self-supervised representations and features at the boundaries for phone segmentation. Our results demonstrate consistent improvements over previous approaches, with a generalized formulation allowing versatile design adaptations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09646v2-abstract-full').style.display = 'none'; document.getElementById('2409.09646v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to SLT 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.06816">arXiv:2409.06816</a> <span> [<a href="https://arxiv.org/pdf/2409.06816">pdf</a>, <a href="https://arxiv.org/format/2409.06816">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> </div> <p class="title is-5 mathjax"> LLM-Enhanced Software Patch Localization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Yu%2C+J">Jinhong Yu</a>, <a href="/search/cs?searchtype=author&query=Chen%2C+Y">Yi Chen</a>, <a href="/search/cs?searchtype=author&query=Tang%2C+D">Di Tang</a>, <a href="/search/cs?searchtype=author&query=Liu%2C+X">Xiaozhong Liu</a>, <a href="/search/cs?searchtype=author&query=Wang%2C+X">XiaoFeng Wang</a>, <a href="/search/cs?searchtype=author&query=Wu%2C+C">Chen Wu</a>, <a href="/search/cs?searchtype=author&query=Tang%2C+H">Haixu Tang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.06816v2-abstract-short" style="display: inline;"> Open source software (OSS) is integral to modern product development, and any vulnerability within it potentially compromises numerous products. While developers strive to apply security patches, pinpointing these patches among extensive OSS updates remains a challenge. Security patch localization (SPL) recommendation methods are leading approaches to address this. However, existing SPL models oft… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06816v2-abstract-full').style.display = 'inline'; document.getElementById('2409.06816v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.06816v2-abstract-full" style="display: none;"> Open source software (OSS) is integral to modern product development, and any vulnerability within it potentially compromises numerous products. While developers strive to apply security patches, pinpointing these patches among extensive OSS updates remains a challenge. Security patch localization (SPL) recommendation methods are leading approaches to address this. However, existing SPL models often falter when a commit lacks a clear association with its corresponding CVE, and do not consider a scenario that a vulnerability has multiple patches proposed over time before it has been fully resolved. To address these challenges, we introduce LLM-SPL, a recommendation-based SPL approach that leverages the capabilities of the Large Language Model (LLM) to locate the security patch commit for a given CVE. More specifically, we propose a joint learning framework, in which the outputs of LLM serves as additional features to aid our recommendation model in prioritizing security patches. Our evaluation on a dataset of 1,915 CVEs associated with 2,461 patches demonstrates that LLM-SPL excels in ranking patch commits, surpassing the state-of-the-art method in terms of Recall, while significantly reducing manual effort. Notably, for vulnerabilities requiring multiple patches, LLM-SPL significantly improves Recall by 22.83\%, NDCG by 19.41\%, and reduces manual effort by over 25\% when checking up to the top 10 rankings. The dataset and source code are available at \url{https://anonymous.4open.science/r/LLM-SPL-91F8}. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06816v2-abstract-full').style.display = 'none'; document.getElementById('2409.06816v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.06109">arXiv:2409.06109</a> <span> [<a href="https://arxiv.org/pdf/2409.06109">pdf</a>, <a href="https://arxiv.org/format/2409.06109">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> Estimating the Completeness of Discrete Speech Units </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Yeh%2C+S">Sung-Lin Yeh</a>, <a href="/search/cs?searchtype=author&query=Tang%2C+H">Hao Tang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.06109v2-abstract-short" style="display: inline;"> Representing speech with discrete units has been widely used in speech codec and speech generation. However, there are several unverified claims about self-supervised discrete units, such as disentangling phonetic and speaker information with k-means, or assuming information loss after k-means. In this work, we take an information-theoretic perspective to answer how much information is present (in… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06109v2-abstract-full').style.display = 'inline'; document.getElementById('2409.06109v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.06109v2-abstract-full" style="display: none;"> Representing speech with discrete units has been widely used in speech codec and speech generation. However, there are several unverified claims about self-supervised discrete units, such as disentangling phonetic and speaker information with k-means, or assuming information loss after k-means. In this work, we take an information-theoretic perspective to answer how much information is present (information completeness) and how much information is accessible (information accessibility), before and after residual vector quantization. We show a lower bound for information completeness and estimate completeness on discretized HuBERT representations after residual vector quantization. We find that speaker information is sufficiently present in HuBERT discrete units, and that phonetic information is sufficiently present in the residual, showing that vector quantization does not achieve disentanglement. Our results offer a comprehensive assessment on the choice of discrete units, and suggest that a lot more information in the residual should be mined rather than discarded. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06109v2-abstract-full').style.display = 'none'; document.getElementById('2409.06109v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">SLT2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.05910">arXiv:2409.05910</a> <span> [<a href="https://arxiv.org/pdf/2409.05910">pdf</a>, <a href="https://arxiv.org/format/2409.05910">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> </div> </div> <p class="title is-5 mathjax"> Property Neurons in Self-Supervised Speech Transformers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Lin%2C+T">Tzu-Quan Lin</a>, <a href="/search/cs?searchtype=author&query=Lin%2C+G">Guan-Ting Lin</a>, <a href="/search/cs?searchtype=author&query=Lee%2C+H">Hung-yi Lee</a>, <a href="/search/cs?searchtype=author&query=Tang%2C+H">Hao Tang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.05910v2-abstract-short" style="display: inline;"> There have been many studies on analyzing self-supervised speech Transformers, in particular, with layer-wise analysis. It is, however, desirable to have an approach that can pinpoint exactly a subset of neurons that is responsible for a particular property of speech, being amenable to model pruning and model editing. In this work, we identify a set of property neurons in the feedforward layers of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.05910v2-abstract-full').style.display = 'inline'; document.getElementById('2409.05910v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.05910v2-abstract-full" style="display: none;"> There have been many studies on analyzing self-supervised speech Transformers, in particular, with layer-wise analysis. It is, however, desirable to have an approach that can pinpoint exactly a subset of neurons that is responsible for a particular property of speech, being amenable to model pruning and model editing. In this work, we identify a set of property neurons in the feedforward layers of Transformers to study how speech-related properties, such as phones, gender, and pitch, are stored. When removing neurons of a particular property (a simple form of model editing), the respective downstream performance significantly degrades, showing the importance of the property neurons. We apply this approach to pruning the feedforward layers in Transformers, where most of the model parameters are. We show that protecting property neurons during pruning is significantly more effective than norm-based pruning. The code for identifying property neurons is available at https://github.com/nervjack2/PropertyNeurons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.05910v2-abstract-full').style.display = 'none'; document.getElementById('2409.05910v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by SLT 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.04792">arXiv:2409.04792</a> <span> [<a href="https://arxiv.org/pdf/2409.04792">pdf</a>, <a href="https://arxiv.org/format/2409.04792">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Improving Deep Reinforcement Learning by Reducing the Chain Effect of Value and Policy Churn </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Tang%2C+H">Hongyao Tang</a>, <a href="/search/cs?searchtype=author&query=Berseth%2C+G">Glen Berseth</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.04792v1-abstract-short" style="display: inline;"> Deep neural networks provide Reinforcement Learning (RL) powerful function approximators to address large-scale decision-making problems. However, these approximators introduce challenges due to the non-stationary nature of RL training. One source of the challenges in RL is that output predictions can churn, leading to uncontrolled changes after each batch update for states not included in the bat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04792v1-abstract-full').style.display = 'inline'; document.getElementById('2409.04792v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.04792v1-abstract-full" style="display: none;"> Deep neural networks provide Reinforcement Learning (RL) powerful function approximators to address large-scale decision-making problems. However, these approximators introduce challenges due to the non-stationary nature of RL training. One source of the challenges in RL is that output predictions can churn, leading to uncontrolled changes after each batch update for states not included in the batch. Although such a churn phenomenon exists in each step of network training, how churn occurs and impacts RL remains under-explored. In this work, we start by characterizing churn in a view of Generalized Policy Iteration with function approximation, and we discover a chain effect of churn that leads to a cycle where the churns in value estimation and policy improvement compound and bias the learning dynamics throughout the iteration. Further, we concretize the study and focus on the learning issues caused by the chain effect in different settings, including greedy action deviation in value-based methods, trust region violation in proximal policy optimization, and dual bias of policy value in actor-critic methods. We then propose a method to reduce the chain effect across different settings, called Churn Approximated ReductIoN (CHAIN), which can be easily plugged into most existing DRL algorithms. Our experiments demonstrate the effectiveness of our method in both reducing churn and improving learning performance across online and offline, value-based and policy-based RL settings, as well as a scaling setting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04792v1-abstract-full').style.display = 'none'; document.getElementById('2409.04792v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.04429">arXiv:2409.04429</a> <span> [<a href="https://arxiv.org/pdf/2409.04429">pdf</a>, <a href="https://arxiv.org/format/2409.04429">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> VILA-U: a Unified Foundation Model Integrating Visual Understanding and Generation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Wu%2C+Y">Yecheng Wu</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+Z">Zhuoyang Zhang</a>, <a href="/search/cs?searchtype=author&query=Chen%2C+J">Junyu Chen</a>, <a href="/search/cs?searchtype=author&query=Tang%2C+H">Haotian Tang</a>, <a href="/search/cs?searchtype=author&query=Li%2C+D">Dacheng Li</a>, <a href="/search/cs?searchtype=author&query=Fang%2C+Y">Yunhao Fang</a>, <a href="/search/cs?searchtype=author&query=Zhu%2C+L">Ligeng Zhu</a>, <a href="/search/cs?searchtype=author&query=Xie%2C+E">Enze Xie</a>, <a href="/search/cs?searchtype=author&query=Yin%2C+H">Hongxu Yin</a>, <a href="/search/cs?searchtype=author&query=Yi%2C+L">Li Yi</a>, <a href="/search/cs?searchtype=author&query=Han%2C+S">Song Han</a>, <a href="/search/cs?searchtype=author&query=Lu%2C+Y">Yao Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.04429v2-abstract-short" style="display: inline;"> VILA-U is a Unified foundation model that integrates Video, Image, Language understanding and generation. Traditional visual language models (VLMs) use separate modules for understanding and generating visual content, which can lead to misalignment and increased complexity. In contrast, VILA-U employs a single autoregressive next-token prediction framework for both tasks, eliminating the need for… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04429v2-abstract-full').style.display = 'inline'; document.getElementById('2409.04429v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.04429v2-abstract-full" style="display: none;"> VILA-U is a Unified foundation model that integrates Video, Image, Language understanding and generation. Traditional visual language models (VLMs) use separate modules for understanding and generating visual content, which can lead to misalignment and increased complexity. In contrast, VILA-U employs a single autoregressive next-token prediction framework for both tasks, eliminating the need for additional components like diffusion models. This approach not only simplifies the model but also achieves near state-of-the-art performance in visual language understanding and generation. The success of VILA-U is attributed to two main factors: the unified vision tower that aligns discrete visual tokens with textual inputs during pretraining, which enhances visual perception, and autoregressive image generation can achieve similar quality as diffusion models with high-quality dataset. This allows VILA-U to perform comparably to more complex models using a fully token-based autoregressive framework. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04429v2-abstract-full').style.display = 'none'; document.getElementById('2409.04429v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Code: https://github.com/mit-han-lab/vila-u. The first two authors contributed equally to this work</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.02111">arXiv:2409.02111</a> <span> [<a href="https://arxiv.org/pdf/2409.02111">pdf</a>, <a href="https://arxiv.org/format/2409.02111">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Toward Large-scale Spiking Neural Networks: A Comprehensive Survey and Future Directions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Hu%2C+Y">Yangfan Hu</a>, <a href="/search/cs?searchtype=author&query=Zheng%2C+Q">Qian Zheng</a>, <a href="/search/cs?searchtype=author&query=Li%2C+G">Guoqi Li</a>, <a href="/search/cs?searchtype=author&query=Tang%2C+H">Huajin Tang</a>, <a href="/search/cs?searchtype=author&query=Pan%2C+G">Gang Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.02111v1-abstract-short" style="display: inline;"> Deep learning has revolutionized artificial intelligence (AI), achieving remarkable progress in fields such as computer vision, speech recognition, and natural language processing. Moreover, the recent success of large language models (LLMs) has fueled a surge in research on large-scale neural networks. However, the escalating demand for computing resources and energy consumption has prompted the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02111v1-abstract-full').style.display = 'inline'; document.getElementById('2409.02111v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.02111v1-abstract-full" style="display: none;"> Deep learning has revolutionized artificial intelligence (AI), achieving remarkable progress in fields such as computer vision, speech recognition, and natural language processing. Moreover, the recent success of large language models (LLMs) has fueled a surge in research on large-scale neural networks. However, the escalating demand for computing resources and energy consumption has prompted the search for energy-efficient alternatives. Inspired by the human brain, spiking neural networks (SNNs) promise energy-efficient computation with event-driven spikes. To provide future directions toward building energy-efficient large SNN models, we present a survey of existing methods for developing deep spiking neural networks, with a focus on emerging Spiking Transformers. Our main contributions are as follows: (1) an overview of learning methods for deep spiking neural networks, categorized by ANN-to-SNN conversion and direct training with surrogate gradients; (2) an overview of network architectures for deep spiking neural networks, categorized by deep convolutional neural networks (DCNNs) and Transformer architecture; and (3) a comprehensive comparison of state-of-the-art deep SNNs with a focus on emerging Spiking Transformers. We then further discuss and outline future directions toward large-scale SNNs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02111v1-abstract-full').style.display = 'none'; document.getElementById('2409.02111v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.12629">arXiv:2408.12629</a> <span> [<a href="https://arxiv.org/pdf/2408.12629">pdf</a>, <a href="https://arxiv.org/format/2408.12629">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Data-Free Class Incremental Gesture Recognition via Synthetic Feature Sampling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Lu%2C+Z">Zhenyu Lu</a>, <a href="/search/cs?searchtype=author&query=Tang%2C+H">Hao Tang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.12629v1-abstract-short" style="display: inline;"> Data-Free Class Incremental Learning (DFCIL) aims to enable models to continuously learn new classes while retraining knowledge of old classes, even when the training data for old classes is unavailable. Although explored primarily with image datasets by researchers, this study focuses on investigating DFCIL for skeleton-based gesture classification due to its significant real-world implications,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12629v1-abstract-full').style.display = 'inline'; document.getElementById('2408.12629v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.12629v1-abstract-full" style="display: none;"> Data-Free Class Incremental Learning (DFCIL) aims to enable models to continuously learn new classes while retraining knowledge of old classes, even when the training data for old classes is unavailable. Although explored primarily with image datasets by researchers, this study focuses on investigating DFCIL for skeleton-based gesture classification due to its significant real-world implications, particularly considering the growing prevalence of VR/AR headsets where gestures serve as the primary means of control and interaction. In this work, we made an intriguing observation: skeleton models trained with base classes(even very limited) demonstrate strong generalization capabilities to unseen classes without requiring additional training. Building on this insight, we developed Synthetic Feature Replay (SFR) that can sample synthetic features from class prototypes to replay for old classes and augment for new classes (under a few-shot setting). Our proposed method showcases significant advancements over the state-of-the-art, achieving up to 15% enhancements in mean accuracy across all steps and largely mitigating the accuracy imbalance between base classes and new classes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12629v1-abstract-full').style.display = 'none'; document.getElementById('2408.12629v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.10575">arXiv:2408.10575</a> <span> [<a href="https://arxiv.org/pdf/2408.10575">pdf</a>, <a href="https://arxiv.org/format/2408.10575">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> MUSE: Mamba is Efficient Multi-scale Learner for Text-video Retrieval </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Tang%2C+H">Haoran Tang</a>, <a href="/search/cs?searchtype=author&query=Cao%2C+M">Meng Cao</a>, <a href="/search/cs?searchtype=author&query=Huang%2C+J">Jinfa Huang</a>, <a href="/search/cs?searchtype=author&query=Liu%2C+R">Ruyang Liu</a>, <a href="/search/cs?searchtype=author&query=Jin%2C+P">Peng Jin</a>, <a href="/search/cs?searchtype=author&query=Li%2C+G">Ge Li</a>, <a href="/search/cs?searchtype=author&query=Liang%2C+X">Xiaodan Liang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.10575v1-abstract-short" style="display: inline;"> Text-Video Retrieval (TVR) aims to align and associate relevant video content with corresponding natural language queries. Most existing TVR methods are based on large-scale pre-trained vision-language models (e.g., CLIP). However, due to the inherent plain structure of CLIP, few TVR methods explore the multi-scale representations which offer richer contextual information for a more thorough under… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.10575v1-abstract-full').style.display = 'inline'; document.getElementById('2408.10575v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.10575v1-abstract-full" style="display: none;"> Text-Video Retrieval (TVR) aims to align and associate relevant video content with corresponding natural language queries. Most existing TVR methods are based on large-scale pre-trained vision-language models (e.g., CLIP). However, due to the inherent plain structure of CLIP, few TVR methods explore the multi-scale representations which offer richer contextual information for a more thorough understanding. To this end, we propose MUSE, a multi-scale mamba with linear computational complexity for efficient cross-resolution modeling. Specifically, the multi-scale representations are generated by applying a feature pyramid on the last single-scale feature map. Then, we employ the Mamba structure as an efficient multi-scale learner to jointly learn scale-wise representations. Furthermore, we conduct comprehensive studies to investigate different model structures and designs. Extensive results on three popular benchmarks have validated the superiority of MUSE. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.10575v1-abstract-full').style.display = 'none'; document.getElementById('2408.10575v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.10188">arXiv:2408.10188</a> <span> [<a href="https://arxiv.org/pdf/2408.10188">pdf</a>, <a href="https://arxiv.org/format/2408.10188">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> LongVILA: Scaling Long-Context Visual Language Models for Long Videos </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Xue%2C+F">Fuzhao Xue</a>, <a href="/search/cs?searchtype=author&query=Chen%2C+Y">Yukang Chen</a>, <a href="/search/cs?searchtype=author&query=Li%2C+D">Dacheng Li</a>, <a href="/search/cs?searchtype=author&query=Hu%2C+Q">Qinghao Hu</a>, <a href="/search/cs?searchtype=author&query=Zhu%2C+L">Ligeng Zhu</a>, <a href="/search/cs?searchtype=author&query=Li%2C+X">Xiuyu Li</a>, <a href="/search/cs?searchtype=author&query=Fang%2C+Y">Yunhao Fang</a>, <a href="/search/cs?searchtype=author&query=Tang%2C+H">Haotian Tang</a>, <a href="/search/cs?searchtype=author&query=Yang%2C+S">Shang Yang</a>, <a href="/search/cs?searchtype=author&query=Liu%2C+Z">Zhijian Liu</a>, <a href="/search/cs?searchtype=author&query=He%2C+E">Ethan He</a>, <a href="/search/cs?searchtype=author&query=Yin%2C+H">Hongxu Yin</a>, <a href="/search/cs?searchtype=author&query=Molchanov%2C+P">Pavlo Molchanov</a>, <a href="/search/cs?searchtype=author&query=Kautz%2C+J">Jan Kautz</a>, <a href="/search/cs?searchtype=author&query=Fan%2C+L">Linxi Fan</a>, <a href="/search/cs?searchtype=author&query=Zhu%2C+Y">Yuke Zhu</a>, <a href="/search/cs?searchtype=author&query=Lu%2C+Y">Yao Lu</a>, <a href="/search/cs?searchtype=author&query=Han%2C+S">Song Han</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.10188v5-abstract-short" style="display: inline;"> Long-context capability is critical for multi-modal foundation models, especially for long video understanding. We introduce LongVILA, a full-stack solution for long-context visual-language models by co-designing the algorithm and system. For model training, we upgrade existing VLMs to support long video understanding by incorporating two additional stages, i.e., long context extension and long vi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.10188v5-abstract-full').style.display = 'inline'; document.getElementById('2408.10188v5-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.10188v5-abstract-full" style="display: none;"> Long-context capability is critical for multi-modal foundation models, especially for long video understanding. We introduce LongVILA, a full-stack solution for long-context visual-language models by co-designing the algorithm and system. For model training, we upgrade existing VLMs to support long video understanding by incorporating two additional stages, i.e., long context extension and long video supervised fine-tuning. However, training on long video is computationally and memory intensive. We introduce the long-context Multi-Modal Sequence Parallelism (MM-SP) system that efficiently parallelizes long video training and inference, enabling 2M context length training on 256 GPUs without any gradient checkpointing. LongVILA efficiently extends the number of video frames of VILA from 8 to 2048, improving the long video captioning score from 2.00 to 3.26 (out of 5), achieving 99.8% accuracy in 6,000-frame (more than 1 million tokens) video needle-in-a-haystack. LongVILA-7B demonstrates strong accuracy on the VideoMME benchmark, i.e., 61.8% with subtitle. Besides, MM-SP is 2.1x - 5.7x faster than ring style sequence parallelism and 1.1x - 1.4x faster than Megatron with a hybrid context and tensor parallelism. Moreover, it seamlessly integrates with Hugging Face Transformers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.10188v5-abstract-full').style.display = 'none'; document.getElementById('2408.10188v5-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Code and models are available at https://github.com/NVlabs/VILA/blob/main/LongVILA.md</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.09126">arXiv:2408.09126</a> <span> [<a href="https://arxiv.org/pdf/2408.09126">pdf</a>, <a href="https://arxiv.org/format/2408.09126">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Barbie: Text to Barbie-Style 3D Avatars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Sun%2C+X">Xiaokun Sun</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+Z">Zhenyu Zhang</a>, <a href="/search/cs?searchtype=author&query=Tai%2C+Y">Ying Tai</a>, <a href="/search/cs?searchtype=author&query=Wang%2C+Q">Qian Wang</a>, <a href="/search/cs?searchtype=author&query=Tang%2C+H">Hao Tang</a>, <a href="/search/cs?searchtype=author&query=Yi%2C+Z">Zili Yi</a>, <a href="/search/cs?searchtype=author&query=Yang%2C+J">Jian Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.09126v4-abstract-short" style="display: inline;"> Recent advances in text-guided 3D avatar generation have made substantial progress by distilling knowledge from diffusion models. Despite the plausible generated appearance, existing methods cannot achieve fine-grained disentanglement or high-fidelity modeling between inner body and outfit. In this paper, we propose Barbie, a novel framework for generating 3D avatars that can be dressed in diverse… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09126v4-abstract-full').style.display = 'inline'; document.getElementById('2408.09126v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.09126v4-abstract-full" style="display: none;"> Recent advances in text-guided 3D avatar generation have made substantial progress by distilling knowledge from diffusion models. Despite the plausible generated appearance, existing methods cannot achieve fine-grained disentanglement or high-fidelity modeling between inner body and outfit. In this paper, we propose Barbie, a novel framework for generating 3D avatars that can be dressed in diverse and high-quality Barbie-like garments and accessories. Instead of relying on a holistic model, Barbie achieves fine-grained disentanglement on avatars by semantic-aligned separated models for human body and outfits. These disentangled 3D representations are then optimized by different expert models to guarantee the domain-specific fidelity. To balance geometry diversity and reasonableness, we propose a series of losses for template-preserving and human-prior evolving. The final avatar is enhanced by unified texture refinement for superior texture consistency. Extensive experiments demonstrate that Barbie outperforms existing methods in both dressed human and outfit generation, supporting flexible apparel combination and animation. The code will be released for research purposes. Our project page is: https://xiaokunsun.github.io/Barbie.github.io/. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09126v4-abstract-full').style.display = 'none'; document.getElementById('2408.09126v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures, Project page: https://xiaokunsun.github.io/Barbie.github.io/</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.09042">arXiv:2408.09042</a> <span> [<a href="https://arxiv.org/pdf/2408.09042">pdf</a>, <a href="https://arxiv.org/format/2408.09042">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> ADen: Adaptive Density Representations for Sparse-view Camera Pose Estimation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Tang%2C+H">Hao Tang</a>, <a href="/search/cs?searchtype=author&query=Wang%2C+W">Weiyao Wang</a>, <a href="/search/cs?searchtype=author&query=Gleize%2C+P">Pierre Gleize</a>, <a href="/search/cs?searchtype=author&query=Feiszli%2C+M">Matt Feiszli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.09042v1-abstract-short" style="display: inline;"> Recovering camera poses from a set of images is a foundational task in 3D computer vision, which powers key applications such as 3D scene/object reconstructions. Classic methods often depend on feature correspondence, such as keypoints, which require the input images to have large overlap and small viewpoint changes. Such requirements present considerable challenges in scenarios with sparse views.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09042v1-abstract-full').style.display = 'inline'; document.getElementById('2408.09042v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.09042v1-abstract-full" style="display: none;"> Recovering camera poses from a set of images is a foundational task in 3D computer vision, which powers key applications such as 3D scene/object reconstructions. Classic methods often depend on feature correspondence, such as keypoints, which require the input images to have large overlap and small viewpoint changes. Such requirements present considerable challenges in scenarios with sparse views. Recent data-driven approaches aim to directly output camera poses, either through regressing the 6DoF camera poses or formulating rotation as a probability distribution. However, each approach has its limitations. On one hand, directly regressing the camera poses can be ill-posed, since it assumes a single mode, which is not true under symmetry and leads to sub-optimal solutions. On the other hand, probabilistic approaches are capable of modeling the symmetry ambiguity, yet they sample the entire space of rotation uniformly by brute-force. This leads to an inevitable trade-off between high sample density, which improves model precision, and sample efficiency that determines the runtime. In this paper, we propose ADen to unify the two frameworks by employing a generator and a discriminator: the generator is trained to output multiple hypotheses of 6DoF camera pose to represent a distribution and handle multi-mode ambiguity, and the discriminator is trained to identify the hypothesis that best explains the data. This allows ADen to combine the best of both worlds, achieving substantially higher precision as well as lower runtime than previous methods in empirical evaluations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09042v1-abstract-full').style.display = 'none'; document.getElementById('2408.09042v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">ECCV 2024, Oral</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.08528">arXiv:2408.08528</a> <span> [<a href="https://arxiv.org/pdf/2408.08528">pdf</a>, <a href="https://arxiv.org/format/2408.08528">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> </div> </div> <p class="title is-5 mathjax"> Study of MRI-compatible Notched Plastic Ultrasonic Stator with FEM Simulation and Holography Validation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Zhao%2C+Z">Zhanyue Zhao</a>, <a href="/search/cs?searchtype=author&query=Tang%2C+H">Haimi Tang</a>, <a href="/search/cs?searchtype=author&query=Carvalho%2C+P">Paulo Carvalho</a>, <a href="/search/cs?searchtype=author&query=Furlong%2C+C">Cosme Furlong</a>, <a href="/search/cs?searchtype=author&query=Fischer%2C+G+S">Gregory S. Fischer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.08528v1-abstract-short" style="display: inline;"> Intra-operative image guidance using magnetic resonance imaging (MRI) can significantly enhance the precision of surgical procedures, such as deep brain tumor ablation. However, the powerful magnetic fields and limited space within an MRI scanner require the use of robotic devices to aid surgeons. Piezoelectric motors are commonly utilized to drive these robots, with piezoelectric ultrasonic motor… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08528v1-abstract-full').style.display = 'inline'; document.getElementById('2408.08528v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.08528v1-abstract-full" style="display: none;"> Intra-operative image guidance using magnetic resonance imaging (MRI) can significantly enhance the precision of surgical procedures, such as deep brain tumor ablation. However, the powerful magnetic fields and limited space within an MRI scanner require the use of robotic devices to aid surgeons. Piezoelectric motors are commonly utilized to drive these robots, with piezoelectric ultrasonic motors being particularly notable. These motors consist of a piezoelectric ring stator that is bonded to a rotor through frictional coupling. When the stator is excited at specific frequencies, it generates distinctive mode shapes with surface waves that exhibit both in-plane and out-of-plane displacement, leading to the rotation of the rotor. In this study, we continue our previous work and refine the motor design and performance, we combine finite element modeling (FEM) with stroboscopic and time-averaged digital holography to validate a further plastic-based ultrasonic motor with better rotary performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08528v1-abstract-full').style.display = 'none'; document.getElementById('2408.08528v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 9 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.07894">arXiv:2408.07894</a> <span> [<a href="https://arxiv.org/pdf/2408.07894">pdf</a>, <a href="https://arxiv.org/format/2408.07894">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> System States Forecasting of Microservices with Dynamic Spatio-Temporal Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Xu%2C+Y">Yifei Xu</a>, <a href="/search/cs?searchtype=author&query=Ge%2C+J">Jingguo Ge</a>, <a href="/search/cs?searchtype=author&query=Tang%2C+H">Haina Tang</a>, <a href="/search/cs?searchtype=author&query=Ding%2C+S">Shuai Ding</a>, <a href="/search/cs?searchtype=author&query=Li%2C+T">Tong Li</a>, <a href="/search/cs?searchtype=author&query=Li%2C+H">Hui Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.07894v1-abstract-short" style="display: inline;"> In the AIOps (Artificial Intelligence for IT Operations) era, accurately forecasting system states is crucial. In microservices systems, this task encounters the challenge of dynamic and complex spatio-temporal relationships among microservice instances, primarily due to dynamic deployments, diverse call paths, and cascading effects among instances. Current time-series forecasting methods, which f… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07894v1-abstract-full').style.display = 'inline'; document.getElementById('2408.07894v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.07894v1-abstract-full" style="display: none;"> In the AIOps (Artificial Intelligence for IT Operations) era, accurately forecasting system states is crucial. In microservices systems, this task encounters the challenge of dynamic and complex spatio-temporal relationships among microservice instances, primarily due to dynamic deployments, diverse call paths, and cascading effects among instances. Current time-series forecasting methods, which focus mainly on intrinsic patterns, are insufficient in environments where spatial relationships are critical. Similarly, spatio-temporal graph approaches often neglect the nature of temporal trend, concentrating mostly on message passing between nodes. Moreover, current research in microservices domain frequently underestimates the importance of network metrics and topological structures in capturing the evolving dynamics of systems. This paper introduces STMformer, a model tailored for forecasting system states in microservices environments, capable of handling multi-node and multivariate time series. Our method leverages dynamic network connection data and topological information to assist in modeling the intricate spatio-temporal relationships within the system. Additionally, we integrate the PatchCrossAttention module to compute the impact of cascading effects globally. We have developed a dataset based on a microservices system and conducted comprehensive experiments with STMformer against leading methods. In both short-term and long-term forecasting tasks, our model consistently achieved a 8.6% reduction in MAE(Mean Absolute Error) and a 2.2% reduction in MSE (Mean Squared Error). The source code is available at https://github.com/xuyifeiiie/STMformer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07894v1-abstract-full').style.display = 'none'; document.getElementById('2408.07894v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.07476">arXiv:2408.07476</a> <span> [<a href="https://arxiv.org/pdf/2408.07476">pdf</a>, <a href="https://arxiv.org/format/2408.07476">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> One Step Diffusion-based Super-Resolution with Time-Aware Distillation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=He%2C+X">Xiao He</a>, <a href="/search/cs?searchtype=author&query=Tang%2C+H">Huaao Tang</a>, <a href="/search/cs?searchtype=author&query=Tu%2C+Z">Zhijun Tu</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+J">Junchao Zhang</a>, <a href="/search/cs?searchtype=author&query=Cheng%2C+K">Kun Cheng</a>, <a href="/search/cs?searchtype=author&query=Chen%2C+H">Hanting Chen</a>, <a href="/search/cs?searchtype=author&query=Guo%2C+Y">Yong Guo</a>, <a href="/search/cs?searchtype=author&query=Zhu%2C+M">Mingrui Zhu</a>, <a href="/search/cs?searchtype=author&query=Wang%2C+N">Nannan Wang</a>, <a href="/search/cs?searchtype=author&query=Gao%2C+X">Xinbo Gao</a>, <a href="/search/cs?searchtype=author&query=Hu%2C+J">Jie Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.07476v1-abstract-short" style="display: inline;"> Diffusion-based image super-resolution (SR) methods have shown promise in reconstructing high-resolution images with fine details from low-resolution counterparts. However, these approaches typically require tens or even hundreds of iterative samplings, resulting in significant latency. Recently, techniques have been devised to enhance the sampling efficiency of diffusion-based SR models via knowl… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07476v1-abstract-full').style.display = 'inline'; document.getElementById('2408.07476v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.07476v1-abstract-full" style="display: none;"> Diffusion-based image super-resolution (SR) methods have shown promise in reconstructing high-resolution images with fine details from low-resolution counterparts. However, these approaches typically require tens or even hundreds of iterative samplings, resulting in significant latency. Recently, techniques have been devised to enhance the sampling efficiency of diffusion-based SR models via knowledge distillation. Nonetheless, when aligning the knowledge of student and teacher models, these solutions either solely rely on pixel-level loss constraints or neglect the fact that diffusion models prioritize varying levels of information at different time steps. To accomplish effective and efficient image super-resolution, we propose a time-aware diffusion distillation method, named TAD-SR. Specifically, we introduce a novel score distillation strategy to align the data distribution between the outputs of the student and teacher models after minor noise perturbation. This distillation strategy enables the student network to concentrate more on the high-frequency details. Furthermore, to mitigate performance limitations stemming from distillation, we integrate a latent adversarial loss and devise a time-aware discriminator that leverages diffusion priors to effectively distinguish between real images and generated images. Extensive experiments conducted on synthetic and real-world datasets demonstrate that the proposed method achieves comparable or even superior performance compared to both previous state-of-the-art (SOTA) methods and the teacher model in just one sampling step. Codes are available at https://github.com/LearningHx/TAD-SR. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07476v1-abstract-full').style.display = 'none'; document.getElementById('2408.07476v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.05719">arXiv:2408.05719</a> <span> [<a href="https://arxiv.org/pdf/2408.05719">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> MR-ULINS: A Tightly-Coupled UWB-LiDAR-Inertial Estimator with Multi-Epoch Outlier Rejection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Zhang%2C+T">Tisheng Zhang</a>, <a href="/search/cs?searchtype=author&query=Yuan%2C+M">Man Yuan</a>, <a href="/search/cs?searchtype=author&query=Wei%2C+L">Linfu Wei</a>, <a href="/search/cs?searchtype=author&query=Wang%2C+Y">Yan Wang</a>, <a href="/search/cs?searchtype=author&query=Tang%2C+H">Hailiang Tang</a>, <a href="/search/cs?searchtype=author&query=Niu%2C+X">Xiaoji Niu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.05719v1-abstract-short" style="display: inline;"> The LiDAR-inertial odometry (LIO) and the ultra-wideband (UWB) have been integrated together to achieve driftless positioning in global navigation satellite system (GNSS)-denied environments. However, the UWB may be affected by systematic range errors (such as the clock drift and the antenna phase center offset) and non-line-of-sight (NLOS) signals, resulting in reduced robustness. In this study,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05719v1-abstract-full').style.display = 'inline'; document.getElementById('2408.05719v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.05719v1-abstract-full" style="display: none;"> The LiDAR-inertial odometry (LIO) and the ultra-wideband (UWB) have been integrated together to achieve driftless positioning in global navigation satellite system (GNSS)-denied environments. However, the UWB may be affected by systematic range errors (such as the clock drift and the antenna phase center offset) and non-line-of-sight (NLOS) signals, resulting in reduced robustness. In this study, we propose a UWB-LiDAR-inertial estimator (MR-ULINS) that tightly integrates the UWB range, LiDAR frame-to-frame, and IMU measurements within the multi-state constraint Kalman filter (MSCKF) framework. The systematic range errors are precisely modeled to be estimated and compensated online. Besides, we propose a multi-epoch outlier rejection algorithm for UWB NLOS by utilizing the relative accuracy of the LIO. Specifically, the relative trajectory of the LIO is employed to verify the consistency of all range measurements within the sliding window. Extensive experiment results demonstrate that MR-ULINS achieves a positioning accuracy of around 0.1 m in complex indoor environments with severe NLOS interference. Ablation experiments show that the online estimation and multi-epoch outlier rejection can effectively improve the positioning accuracy. Besides, MR-ULINS maintains high accuracy and robustness in LiDAR-degenerated scenes and UWB-challenging conditions with spare base stations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05719v1-abstract-full').style.display = 'none'; document.getElementById('2408.05719v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.05564">arXiv:2408.05564</a> <span> [<a href="https://arxiv.org/pdf/2408.05564">pdf</a>, <a href="https://arxiv.org/format/2408.05564">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neural and Evolutionary Computing">cs.NE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Engineering, Finance, and Science">cs.CE</span> </div> </div> <p class="title is-5 mathjax"> Meta-heuristic Optimizer Inspired by the Philosophy of Yi Jing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Yang%2C+Y">Yisheng Yang</a>, <a href="/search/cs?searchtype=author&query=Goh%2C+S+K">Sim Kuan Goh</a>, <a href="/search/cs?searchtype=author&query=Cai%2C+Q">Qing Cai</a>, <a href="/search/cs?searchtype=author&query=Wong%2C+S+Y">Shen Yuong Wong</a>, <a href="/search/cs?searchtype=author&query=Tang%2C+H">Ho-Kin Tang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.05564v1-abstract-short" style="display: inline;"> Drawing inspiration from the philosophy of Yi Jing, the Yin-Yang pair optimization (YYPO) algorithm has been shown to achieve competitive performance in single objective optimizations, in addition to the advantage of low time complexity when compared to other population-based meta-heuristics. Building upon a reversal concept in Yi Jing, we propose the novel Yi optimization (YI) algorithm. Specific… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05564v1-abstract-full').style.display = 'inline'; document.getElementById('2408.05564v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.05564v1-abstract-full" style="display: none;"> Drawing inspiration from the philosophy of Yi Jing, the Yin-Yang pair optimization (YYPO) algorithm has been shown to achieve competitive performance in single objective optimizations, in addition to the advantage of low time complexity when compared to other population-based meta-heuristics. Building upon a reversal concept in Yi Jing, we propose the novel Yi optimization (YI) algorithm. Specifically, we enhance the Yin-Yang pair in YYPO with a proposed Yi-point, in which we use Cauchy flight to update the solution, by implementing both the harmony and reversal concept of Yi Jing. The proposed Yi-point balances both the effort of exploration and exploitation in the optimization process. To examine YI, we use the IEEE CEC 2017 benchmarks and compare YI against the dynamical YYPO, CV1.0 optimizer, and four classical optimizers, i.e., the differential evolution, the genetic algorithm, the particle swarm optimization, and the simulated annealing. According to the experimental results, YI shows highly competitive performance while keeping the low time complexity. The results of this work have implications for enhancing a meta-heuristic optimizer using the philosophy of Yi Jing. While this work implements only certain aspects of Yi Jing, we envisage enhanced performance by incorporating other aspects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05564v1-abstract-full').style.display = 'none'; document.getElementById('2408.05564v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This work has been submitted to the IEEE for possible publication. arXiv admin note: substantial text overlap with arXiv:2104.08564</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.05563">arXiv:2408.05563</a> <span> [<a href="https://arxiv.org/pdf/2408.05563">pdf</a>, <a href="https://arxiv.org/format/2408.05563">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neural and Evolutionary Computing">cs.NE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Impacts of Darwinian Evolution on Pre-trained Deep Neural Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Du%2C+G">Guodong Du</a>, <a href="/search/cs?searchtype=author&query=Jiang%2C+R">Runhua Jiang</a>, <a href="/search/cs?searchtype=author&query=Yang%2C+S">Senqiao Yang</a>, <a href="/search/cs?searchtype=author&query=Li%2C+H">Haoyang Li</a>, <a href="/search/cs?searchtype=author&query=Chen%2C+W">Wei Chen</a>, <a href="/search/cs?searchtype=author&query=Li%2C+K">Keren Li</a>, <a href="/search/cs?searchtype=author&query=Goh%2C+S+K">Sim Kuan Goh</a>, <a href="/search/cs?searchtype=author&query=Tang%2C+H">Ho-Kin Tang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.05563v1-abstract-short" style="display: inline;"> Darwinian evolution of the biological brain is documented through multiple lines of evidence, although the modes of evolutionary changes remain unclear. Drawing inspiration from the evolved neural systems (e.g., visual cortex), deep learning models have demonstrated superior performance in visual tasks, among others. While the success of training deep neural networks has been relying on back-propa… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05563v1-abstract-full').style.display = 'inline'; document.getElementById('2408.05563v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.05563v1-abstract-full" style="display: none;"> Darwinian evolution of the biological brain is documented through multiple lines of evidence, although the modes of evolutionary changes remain unclear. Drawing inspiration from the evolved neural systems (e.g., visual cortex), deep learning models have demonstrated superior performance in visual tasks, among others. While the success of training deep neural networks has been relying on back-propagation (BP) and its variants to learn representations from data, BP does not incorporate the evolutionary processes that govern biological neural systems. This work proposes a neural network optimization framework based on evolutionary theory. Specifically, BP-trained deep neural networks for visual recognition tasks obtained from the ending epochs are considered the primordial ancestors (initial population). Subsequently, the population evolved with differential evolution. Extensive experiments are carried out to examine the relationships between Darwinian evolution and neural network optimization, including the correspondence between datasets, environment, models, and living species. The empirical results show that the proposed framework has positive impacts on the network, with reduced over-fitting and an order of magnitude lower time complexity compared to BP. Moreover, the experiments show that the proposed framework performs well on deep neural networks and big datasets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05563v1-abstract-full').style.display = 'none'; document.getElementById('2408.05563v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This work has been submitted to the IEEE for possible publication</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Tang%2C+H&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Tang%2C+H&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Tang%2C+H&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Tang%2C+H&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Tang%2C+H&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Tang%2C+H&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">…</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>