CINXE.COM

João Carlos Ribeiro Cruz - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>João Carlos Ribeiro Cruz - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="9xORDDb/S62I60y41TyvZfRrgAo7Z/jlTxuCdnahCtxledO2nE1X9LBXMInJ3/xZf24vK92EiDKUiW8cbrQnPw==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-1c712297ae3ac71207193b1bae0ecf1aae125886850f62c9c0139dd867630797.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="joão carlos ribeiro cruz" /> <meta name="description" content="João Carlos Ribeiro Cruz: 16 Followers, 27 Following, 43 Research papers. Research interests: EDP não linear, Equações Diferenciais Parciais, and Equação…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '49879c2402910372f4abc62630a427bbe033d190'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15276,"monthly_visitors":"112 million","monthly_visitor_count":112794806,"monthly_visitor_count_in_millions":112,"user_count":277177849,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1732464048000); window.Aedu.timeDifference = new Date().getTime() - 1732464048000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-296162c7af6fd81dcdd76f1a94f1fad04fb5f647401337d136fe8b68742170b1.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-8d53a22151f33ab413d88fa1c02f979c3f8706d470fc1bced09852c72a9f3454.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-f8fe82512740391f81c9e8cc48220144024b425b359b08194e316f4de070b9e8.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://independent.academia.edu/Jo%C3%A3oCarlosRibeiroCruz" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-9601d1cc3d68aa07c0a9901d03d3611aec04cc07d2a2039718ebef4ad4d148ca.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":12143756,"first_name":"João Carlos Ribeiro","middle_initials":null,"last_name":"Cruz","page_name":"JoãoCarlosRibeiroCruz","domain_name":"independent","created_at":"2014-05-18T04:50:08.703-07:00","display_name":"João Carlos Ribeiro Cruz","url":"https://independent.academia.edu/Jo%C3%A3oCarlosRibeiroCruz","photo":"/images/s65_no_pic.png","has_photo":false,"is_analytics_public":false,"interests":[{"id":337022,"name":"EDP não linear","url":"https://www.academia.edu/Documents/in/EDP_nao_linear"},{"id":361665,"name":"Equações Diferenciais Parciais","url":"https://www.academia.edu/Documents/in/Equa%C3%A7%C3%B5es_Diferenciais_Parciais"},{"id":361668,"name":"Equação Diferencial Parcial Não Linear","url":"https://www.academia.edu/Documents/in/Equacao_Diferencial_Parcial_Nao_Linear"},{"id":337016,"name":"transformada de Legendre","url":"https://www.academia.edu/Documents/in/transformada_de_Legendre"},{"id":361660,"name":"Diferencial Pfaffiana","url":"https://www.academia.edu/Documents/in/Diferencial_Pfaffiana"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://independent.academia.edu/Jo%C3%A3oCarlosRibeiroCruz&quot;,&quot;location&quot;:&quot;/Jo%C3%A3oCarlosRibeiroCruz&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;independent.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/Jo%C3%A3oCarlosRibeiroCruz&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-999ddf77-afce-42ba-9e85-f74ff9a26b03"></div> <div id="ProfileCheckPaperUpdate-react-component-999ddf77-afce-42ba-9e85-f74ff9a26b03"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">João Carlos Ribeiro Cruz</h1><div class="affiliations-container fake-truncate js-profile-affiliations"></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="João Carlos Ribeiro" data-follow-user-id="12143756" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="12143756"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">16</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">27</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">3</p></div></a><a href="/Jo%C3%A3oCarlosRibeiroCruz/mentions"><div class="stat-container"><p class="label">Mentions</p><p class="data">1</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="12143756" href="https://www.academia.edu/Documents/in/EDP_nao_linear"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://independent.academia.edu/Jo%C3%A3oCarlosRibeiroCruz&quot;,&quot;location&quot;:&quot;/Jo%C3%A3oCarlosRibeiroCruz&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;independent.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/Jo%C3%A3oCarlosRibeiroCruz&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;EDP não linear&quot;]}" data-trace="false" data-dom-id="Pill-react-component-129aeaa9-248b-4b3b-9671-9086e6b40269"></div> <div id="Pill-react-component-129aeaa9-248b-4b3b-9671-9086e6b40269"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="12143756" href="https://www.academia.edu/Documents/in/Equa%C3%A7%C3%B5es_Diferenciais_Parciais"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Equações Diferenciais Parciais&quot;]}" data-trace="false" data-dom-id="Pill-react-component-18289002-291d-4e09-bcb1-5e73101cf5d2"></div> <div id="Pill-react-component-18289002-291d-4e09-bcb1-5e73101cf5d2"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="12143756" href="https://www.academia.edu/Documents/in/Equacao_Diferencial_Parcial_Nao_Linear"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Equação Diferencial Parcial Não Linear&quot;]}" data-trace="false" data-dom-id="Pill-react-component-5a3e8532-01f1-4f88-8977-e2772b4446b1"></div> <div id="Pill-react-component-5a3e8532-01f1-4f88-8977-e2772b4446b1"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="12143756" href="https://www.academia.edu/Documents/in/transformada_de_Legendre"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;transformada de Legendre&quot;]}" data-trace="false" data-dom-id="Pill-react-component-51bf0b81-6d2a-4626-a78a-00eb2225fb10"></div> <div id="Pill-react-component-51bf0b81-6d2a-4626-a78a-00eb2225fb10"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="12143756" href="https://www.academia.edu/Documents/in/Diferencial_Pfaffiana"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Diferencial Pfaffiana&quot;]}" data-trace="false" data-dom-id="Pill-react-component-c781c2cd-7e29-41c6-a62e-c1aa7562fd79"></div> <div id="Pill-react-component-c781c2cd-7e29-41c6-a62e-c1aa7562fd79"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by João Carlos Ribeiro Cruz</h3></div><div class="js-work-strip profile--work_container" data-work-id="121149517"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/121149517/Simula%C3%A7%C3%A3o_de_reflex%C3%B5es_prim%C3%A1rias_e_m%C3%BAltiplas_usando_aproxima%C3%A7%C3%A3o_paraxial_de_tempos_de_tr%C3%A2nsito_CRS_de_4a_ordem"><img alt="Research paper thumbnail of Simulação de reflexões primárias e múltiplas usando aproximação paraxial de tempos de trânsito CRS de 4ª ordem" class="work-thumbnail" src="https://attachments.academia-assets.com/116107284/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/121149517/Simula%C3%A7%C3%A3o_de_reflex%C3%B5es_prim%C3%A1rias_e_m%C3%BAltiplas_usando_aproxima%C3%A7%C3%A3o_paraxial_de_tempos_de_tr%C3%A2nsito_CRS_de_4a_ordem">Simulação de reflexões primárias e múltiplas usando aproximação paraxial de tempos de trânsito CRS de 4ª ordem</a></div><div class="wp-workCard_item"><span>Proceedings of the 5 Simpósio Brasileiro de Geofísica</span><span>, 2012</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4b6a43eb37b8bec5422ef32148aab0bf" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:116107284,&quot;asset_id&quot;:121149517,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/116107284/download_file?st=MTczMjQ2NDA0Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121149517"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121149517"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121149517; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121149517]").text(description); $(".js-view-count[data-work-id=121149517]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121149517; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121149517']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 121149517, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4b6a43eb37b8bec5422ef32148aab0bf" } } $('.js-work-strip[data-work-id=121149517]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121149517,"title":"Simulação de reflexões primárias e múltiplas usando aproximação paraxial de tempos de trânsito CRS de 4ª ordem","translated_title":"","metadata":{"publisher":"Sociedade Brasileira de Geofísica","grobid_abstract":"Simulação de reflexões primárias e múltiplas usando aproximação paraxial de tempos de trânsito CRS de 4ª ordem.","publication_date":{"day":null,"month":null,"year":2012,"errors":{}},"publication_name":"Proceedings of the 5 Simpósio Brasileiro de Geofísica","grobid_abstract_attachment_id":116107284},"translated_abstract":null,"internal_url":"https://www.academia.edu/121149517/Simula%C3%A7%C3%A3o_de_reflex%C3%B5es_prim%C3%A1rias_e_m%C3%BAltiplas_usando_aproxima%C3%A7%C3%A3o_paraxial_de_tempos_de_tr%C3%A2nsito_CRS_de_4a_ordem","translated_internal_url":"","created_at":"2024-06-17T12:49:06.380-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":12143756,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":116107284,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116107284/thumbnails/1.jpg","file_name":"5simbgf2012.pdf","download_url":"https://www.academia.edu/attachments/116107284/download_file?st=MTczMjQ2NDA0Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Simulacao_de_reflexoes_primarias_e_multi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116107284/5simbgf2012-libre.pdf?1718658243=\u0026response-content-disposition=attachment%3B+filename%3DSimulacao_de_reflexoes_primarias_e_multi.pdf\u0026Expires=1732467647\u0026Signature=HmrhHopVPionVLTrl2Cudz3~yJN6pE4s-ZWYkwJyzeFq8HdZmBA5nboBj4O~liiQP2RPJj6WtM4XH8vxFgVmmSyN5jPtq8LJrpYkFBF3Z1BytXFRTdwW6d6XNL14VKMtW0mdLCu9yGocK74Dn8wBEtxb1MTxxBpOPDA6MSWEre6VjOATJMipdj1n513K6yTl~UcHrJtICDx7acrQKPTE56oQqq~cMIFPpxqh9da4vP3qjLiGwrsMBlJnq~aXurciZ4AJyRQAWbKhWBFa1kFoGcDRmye9FNgeyauCCCcDlyU8TtorrzWOLn8mBeevQW3h7ikkJe7jD28dDZ2tJmnR8g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Simulação_de_reflexões_primárias_e_múltiplas_usando_aproximação_paraxial_de_tempos_de_trânsito_CRS_de_4a_ordem","translated_slug":"","page_count":6,"language":"pt","content_type":"Work","owner":{"id":12143756,"first_name":"João Carlos Ribeiro","middle_initials":null,"last_name":"Cruz","page_name":"JoãoCarlosRibeiroCruz","domain_name":"independent","created_at":"2014-05-18T04:50:08.703-07:00","display_name":"João Carlos Ribeiro Cruz","url":"https://independent.academia.edu/Jo%C3%A3oCarlosRibeiroCruz"},"attachments":[{"id":116107284,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116107284/thumbnails/1.jpg","file_name":"5simbgf2012.pdf","download_url":"https://www.academia.edu/attachments/116107284/download_file?st=MTczMjQ2NDA0Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Simulacao_de_reflexoes_primarias_e_multi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116107284/5simbgf2012-libre.pdf?1718658243=\u0026response-content-disposition=attachment%3B+filename%3DSimulacao_de_reflexoes_primarias_e_multi.pdf\u0026Expires=1732467647\u0026Signature=HmrhHopVPionVLTrl2Cudz3~yJN6pE4s-ZWYkwJyzeFq8HdZmBA5nboBj4O~liiQP2RPJj6WtM4XH8vxFgVmmSyN5jPtq8LJrpYkFBF3Z1BytXFRTdwW6d6XNL14VKMtW0mdLCu9yGocK74Dn8wBEtxb1MTxxBpOPDA6MSWEre6VjOATJMipdj1n513K6yTl~UcHrJtICDx7acrQKPTE56oQqq~cMIFPpxqh9da4vP3qjLiGwrsMBlJnq~aXurciZ4AJyRQAWbKhWBFa1kFoGcDRmye9FNgeyauCCCcDlyU8TtorrzWOLn8mBeevQW3h7ikkJe7jD28dDZ2tJmnR8g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="119036122"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/119036122/Modified_Kirchhoff_prestack_depth_migration_using_the_Gaussian_beam_operator_as_Green_function_Theoretical_and_numerical_results"><img alt="Research paper thumbnail of Modified Kirchhoff prestack depth migration using the Gaussian beam operator as Green function – Theoretical and numerical results" class="work-thumbnail" src="https://attachments.academia-assets.com/114513431/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/119036122/Modified_Kirchhoff_prestack_depth_migration_using_the_Gaussian_beam_operator_as_Green_function_Theoretical_and_numerical_results">Modified Kirchhoff prestack depth migration using the Gaussian beam operator as Green function – Theoretical and numerical results</a></div><div class="wp-workCard_item"><span>9th International Congress of the Brazilian Geophysical Society &amp;amp; EXPOGEF, Salvador, Bahia, Brazil, 11-14 September 2005</span><span>, 2005</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ce3ec9f319a155f80326793d8e9447e3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:114513431,&quot;asset_id&quot;:119036122,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/114513431/download_file?st=MTczMjQ2NDA0Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="119036122"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="119036122"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 119036122; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=119036122]").text(description); $(".js-view-count[data-work-id=119036122]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 119036122; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='119036122']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 119036122, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ce3ec9f319a155f80326793d8e9447e3" } } $('.js-work-strip[data-work-id=119036122]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":119036122,"title":"Modified Kirchhoff prestack depth migration using the Gaussian beam operator as Green function – Theoretical and numerical results","translated_title":"","metadata":{"publisher":"Brazilian Geophysical Society","publication_date":{"day":null,"month":null,"year":2005,"errors":{}},"publication_name":"9th International Congress of the Brazilian Geophysical Society \u0026amp; EXPOGEF, Salvador, Bahia, Brazil, 11-14 September 2005"},"translated_abstract":null,"internal_url":"https://www.academia.edu/119036122/Modified_Kirchhoff_prestack_depth_migration_using_the_Gaussian_beam_operator_as_Green_function_Theoretical_and_numerical_results","translated_internal_url":"","created_at":"2024-05-13T17:13:02.407-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":12143756,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":114513431,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/114513431/thumbnails/1.jpg","file_name":"wit2004-ferreira.pdf","download_url":"https://www.academia.edu/attachments/114513431/download_file?st=MTczMjQ2NDA0Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Modified_Kirchhoff_prestack_depth_migrat.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/114513431/wit2004-ferreira-libre.pdf?1715652463=\u0026response-content-disposition=attachment%3B+filename%3DModified_Kirchhoff_prestack_depth_migrat.pdf\u0026Expires=1732467647\u0026Signature=WBTYIi5-Po91VLJ4CxOPKZxqtwCh6sSFkkqCk82gnQKCkIQeqdz0JetLjxuAWFnLwwH3cyok1sL8iEdp5zfIXZa7tkNNwJn8n2b-dTUc1vE1-5aaojTQ-W8R6CKrTkzR9ZOk525-qKUjdrg3OsPYGzHZkaAn2FLx0z5vA6zmR~ectzFfL3eeInMywNqPT9VQhk2u99dsTxjstVqXmSkUZs-3zg8gWly0KKRU1TioZdB54AbSDfl7djPSKVKSvDNPYSRK~KgzlJJ2WqI2fg2Og-QDffwxKUcMfRpZ6R7F38gjOG7K2vcWGyd7sjfu~WoC0qlgetOP4RCT09Lf6qHHqQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Modified_Kirchhoff_prestack_depth_migration_using_the_Gaussian_beam_operator_as_Green_function_Theoretical_and_numerical_results","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":12143756,"first_name":"João Carlos Ribeiro","middle_initials":null,"last_name":"Cruz","page_name":"JoãoCarlosRibeiroCruz","domain_name":"independent","created_at":"2014-05-18T04:50:08.703-07:00","display_name":"João Carlos Ribeiro Cruz","url":"https://independent.academia.edu/Jo%C3%A3oCarlosRibeiroCruz"},"attachments":[{"id":114513431,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/114513431/thumbnails/1.jpg","file_name":"wit2004-ferreira.pdf","download_url":"https://www.academia.edu/attachments/114513431/download_file?st=MTczMjQ2NDA0Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Modified_Kirchhoff_prestack_depth_migrat.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/114513431/wit2004-ferreira-libre.pdf?1715652463=\u0026response-content-disposition=attachment%3B+filename%3DModified_Kirchhoff_prestack_depth_migrat.pdf\u0026Expires=1732467647\u0026Signature=WBTYIi5-Po91VLJ4CxOPKZxqtwCh6sSFkkqCk82gnQKCkIQeqdz0JetLjxuAWFnLwwH3cyok1sL8iEdp5zfIXZa7tkNNwJn8n2b-dTUc1vE1-5aaojTQ-W8R6CKrTkzR9ZOk525-qKUjdrg3OsPYGzHZkaAn2FLx0z5vA6zmR~ectzFfL3eeInMywNqPT9VQhk2u99dsTxjstVqXmSkUZs-3zg8gWly0KKRU1TioZdB54AbSDfl7djPSKVKSvDNPYSRK~KgzlJJ2WqI2fg2Og-QDffwxKUcMfRpZ6R7F38gjOG7K2vcWGyd7sjfu~WoC0qlgetOP4RCT09Lf6qHHqQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":165106,"name":"Diffraction","url":"https://www.academia.edu/Documents/in/Diffraction"},{"id":342314,"name":"Gaussian","url":"https://www.academia.edu/Documents/in/Gaussian"},{"id":688446,"name":"Gaussian Process","url":"https://www.academia.edu/Documents/in/Gaussian_Process"},{"id":1554800,"name":"Amplitude","url":"https://www.academia.edu/Documents/in/Amplitude"}],"urls":[{"id":41925904,"url":"https://library.seg.org/doi/pdf/10.1190/sbgf2005-321"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117938418"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117938418/Macro_model_independent_migration_to_zero_offset_CRS_MZO_"><img alt="Research paper thumbnail of Macro-model independent migration to zero offset (CRS-MZO)" class="work-thumbnail" src="https://attachments.academia-assets.com/113678456/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117938418/Macro_model_independent_migration_to_zero_offset_CRS_MZO_">Macro-model independent migration to zero offset (CRS-MZO)</a></div><div class="wp-workCard_item"><span>71st EAGE Conference and Exhibition - Workshops and Fieldtrips</span><span>, 2009</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d4ea9f6fbe24a6b7aa884bf704205f82" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:113678456,&quot;asset_id&quot;:117938418,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/113678456/download_file?st=MTczMjQ2NDA0Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117938418"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117938418"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117938418; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117938418]").text(description); $(".js-view-count[data-work-id=117938418]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117938418; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117938418']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117938418, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d4ea9f6fbe24a6b7aa884bf704205f82" } } $('.js-work-strip[data-work-id=117938418]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117938418,"title":"Macro-model independent migration to zero offset (CRS-MZO)","translated_title":"","metadata":{"publisher":"European Association of Geoscientists \u0026 Engineers","publication_date":{"day":null,"month":null,"year":2009,"errors":{}},"publication_name":"71st EAGE Conference and Exhibition - Workshops and Fieldtrips"},"translated_abstract":null,"internal_url":"https://www.academia.edu/117938418/Macro_model_independent_migration_to_zero_offset_CRS_MZO_","translated_internal_url":"","created_at":"2024-04-23T06:34:12.521-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":12143756,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113678456,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113678456/thumbnails/1.jpg","file_name":"wit2008-garabito.pdf","download_url":"https://www.academia.edu/attachments/113678456/download_file?st=MTczMjQ2NDA0Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Macro_model_independent_migration_to_zer.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113678456/wit2008-garabito-libre.pdf?1713882069=\u0026response-content-disposition=attachment%3B+filename%3DMacro_model_independent_migration_to_zer.pdf\u0026Expires=1732467647\u0026Signature=NouAl-njnJ33vUH~lIvKFqWNe4RS2ydAQSLeU38HQjebP40e3QcMf4jpllMtSZqQNxMWE-q2-kE29SqMftv7lgh0TjfVZPRhSq6isJopHq~LobXQQn8-UK8yPLSDhZVyysYVOmoyXgj~QYQokXVCEBibR48CfZL8n45ZkJAq6r5NnJBqDDKJK9Eg4FiUaUHoxatbqDAft0gVWtympyapE3kOjdFBazflJQXBJ3idF9nIdHznVMnu0UIjJ4NAyRbH0OiOi-5MaEVMOMvMVRzMhHVUst5O2wUpVG8dcrRaVot~1ZcL1uSeBSQQ4c17RSdRG3yLyPYZpC7mFF1OoBPmEA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Macro_model_independent_migration_to_zero_offset_CRS_MZO_","translated_slug":"","page_count":13,"language":"en","content_type":"Work","owner":{"id":12143756,"first_name":"João Carlos Ribeiro","middle_initials":null,"last_name":"Cruz","page_name":"JoãoCarlosRibeiroCruz","domain_name":"independent","created_at":"2014-05-18T04:50:08.703-07:00","display_name":"João Carlos Ribeiro Cruz","url":"https://independent.academia.edu/Jo%C3%A3oCarlosRibeiroCruz"},"attachments":[{"id":113678456,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113678456/thumbnails/1.jpg","file_name":"wit2008-garabito.pdf","download_url":"https://www.academia.edu/attachments/113678456/download_file?st=MTczMjQ2NDA0Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Macro_model_independent_migration_to_zer.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113678456/wit2008-garabito-libre.pdf?1713882069=\u0026response-content-disposition=attachment%3B+filename%3DMacro_model_independent_migration_to_zer.pdf\u0026Expires=1732467647\u0026Signature=NouAl-njnJ33vUH~lIvKFqWNe4RS2ydAQSLeU38HQjebP40e3QcMf4jpllMtSZqQNxMWE-q2-kE29SqMftv7lgh0TjfVZPRhSq6isJopHq~LobXQQn8-UK8yPLSDhZVyysYVOmoyXgj~QYQokXVCEBibR48CfZL8n45ZkJAq6r5NnJBqDDKJK9Eg4FiUaUHoxatbqDAft0gVWtympyapE3kOjdFBazflJQXBJ3idF9nIdHznVMnu0UIjJ4NAyRbH0OiOi-5MaEVMOMvMVRzMhHVUst5O2wUpVG8dcrRaVot~1ZcL1uSeBSQQ4c17RSdRG3yLyPYZpC7mFF1OoBPmEA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":124552,"name":"Macro","url":"https://www.academia.edu/Documents/in/Macro"},{"id":1229076,"name":"Seismic Migration","url":"https://www.academia.edu/Documents/in/Seismic_Migration"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="72778738"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/72778738/The_common_reflecting_element_CRE_method_revisited"><img alt="Research paper thumbnail of The common reflecting element (CRE) method revisited" class="work-thumbnail" src="https://attachments.academia-assets.com/81570583/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/72778738/The_common_reflecting_element_CRE_method_revisited">The common reflecting element (CRE) method revisited</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The common reflecting element (CRE) method is an interesting alternative to the familiar methods ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The common reflecting element (CRE) method is an interesting alternative to the familiar methods of com-mon midpoint (CMP) stack or migration to zero offset (MZO). Like these two methods, the CRE method aims at constructing a stacked zero-offset section from a set of constant-offset sections. However, it requires no more knowledge about the generally laterally inhomogeneous subsurface model than the near-surface values of the ve-locity field. In addition to being a tool to construct a stacked zero-offset section, the CRE method simultane-ously obtains information about the laterally inhomoge-neous macrovelocity model. An important feature of the CRE method is that it does not suffer from pulse stretch. Moreover, it gives an alternative solution for conflicting dip problems. In the 1-D case, CRE is closely related to the optical stack. For the price of having to search for two data-derived parameters instead of one, the CRE method provides important advantages over the con-ventional ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a4c84e89d1239a706d0018943ff899f5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:81570583,&quot;asset_id&quot;:72778738,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/81570583/download_file?st=MTczMjQ2NDA0Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="72778738"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="72778738"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 72778738; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=72778738]").text(description); $(".js-view-count[data-work-id=72778738]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 72778738; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='72778738']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 72778738, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a4c84e89d1239a706d0018943ff899f5" } } $('.js-work-strip[data-work-id=72778738]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":72778738,"title":"The common reflecting element (CRE) method revisited","translated_title":"","metadata":{"abstract":"The common reflecting element (CRE) method is an interesting alternative to the familiar methods of com-mon midpoint (CMP) stack or migration to zero offset (MZO). Like these two methods, the CRE method aims at constructing a stacked zero-offset section from a set of constant-offset sections. However, it requires no more knowledge about the generally laterally inhomogeneous subsurface model than the near-surface values of the ve-locity field. In addition to being a tool to construct a stacked zero-offset section, the CRE method simultane-ously obtains information about the laterally inhomoge-neous macrovelocity model. An important feature of the CRE method is that it does not suffer from pulse stretch. Moreover, it gives an alternative solution for conflicting dip problems. In the 1-D case, CRE is closely related to the optical stack. For the price of having to search for two data-derived parameters instead of one, the CRE method provides important advantages over the con-ventional ...","publication_date":{"day":null,"month":null,"year":2000,"errors":{}}},"translated_abstract":"The common reflecting element (CRE) method is an interesting alternative to the familiar methods of com-mon midpoint (CMP) stack or migration to zero offset (MZO). Like these two methods, the CRE method aims at constructing a stacked zero-offset section from a set of constant-offset sections. However, it requires no more knowledge about the generally laterally inhomogeneous subsurface model than the near-surface values of the ve-locity field. In addition to being a tool to construct a stacked zero-offset section, the CRE method simultane-ously obtains information about the laterally inhomoge-neous macrovelocity model. An important feature of the CRE method is that it does not suffer from pulse stretch. Moreover, it gives an alternative solution for conflicting dip problems. In the 1-D case, CRE is closely related to the optical stack. For the price of having to search for two data-derived parameters instead of one, the CRE method provides important advantages over the con-ventional ...","internal_url":"https://www.academia.edu/72778738/The_common_reflecting_element_CRE_method_revisited","translated_internal_url":"","created_at":"2022-03-02T03:48:58.031-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":12143756,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":81570583,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81570583/thumbnails/1.jpg","file_name":"WOS000087656200026.pdf","download_url":"https://www.academia.edu/attachments/81570583/download_file?st=MTczMjQ2NDA0Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_common_reflecting_element_CRE_method.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81570583/WOS000087656200026-libre.pdf?1646230970=\u0026response-content-disposition=attachment%3B+filename%3DThe_common_reflecting_element_CRE_method.pdf\u0026Expires=1732467647\u0026Signature=OU1zeYEz9OBYdhHn4sJpgsGyRTftThHJuLAk-ZclgOcIJhPiY~gKSgIgCX~w1fe7kM4beZfnoCQS8woaJvp3boGNE3wPBoeOQYZGcpY-YUNqDnJIBXF7hCyXgYd5kWu9~LNVEw2w5SPwQeGSNFvKzgt3R0ZLbRKsNEK2wubPYyE1irl0P8HFkucp4JTTeP2MxqMa1v1-lPN1ySrAubglz6IGqPDnS8llOAdLkfPogtEnfYtgr9ksZ3WyoW7dN~NH0T5r4dNiVA6Ezq68F43c6mofGNNzBlD1PajruN3BExU0hHi0LX0Dey4-w6njyInmcnbu9qmo7iQ1L3~H~vONMw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_common_reflecting_element_CRE_method_revisited","translated_slug":"","page_count":15,"language":"en","content_type":"Work","owner":{"id":12143756,"first_name":"João Carlos Ribeiro","middle_initials":null,"last_name":"Cruz","page_name":"JoãoCarlosRibeiroCruz","domain_name":"independent","created_at":"2014-05-18T04:50:08.703-07:00","display_name":"João Carlos Ribeiro Cruz","url":"https://independent.academia.edu/Jo%C3%A3oCarlosRibeiroCruz"},"attachments":[{"id":81570583,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81570583/thumbnails/1.jpg","file_name":"WOS000087656200026.pdf","download_url":"https://www.academia.edu/attachments/81570583/download_file?st=MTczMjQ2NDA0Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_common_reflecting_element_CRE_method.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81570583/WOS000087656200026-libre.pdf?1646230970=\u0026response-content-disposition=attachment%3B+filename%3DThe_common_reflecting_element_CRE_method.pdf\u0026Expires=1732467647\u0026Signature=OU1zeYEz9OBYdhHn4sJpgsGyRTftThHJuLAk-ZclgOcIJhPiY~gKSgIgCX~w1fe7kM4beZfnoCQS8woaJvp3boGNE3wPBoeOQYZGcpY-YUNqDnJIBXF7hCyXgYd5kWu9~LNVEw2w5SPwQeGSNFvKzgt3R0ZLbRKsNEK2wubPYyE1irl0P8HFkucp4JTTeP2MxqMa1v1-lPN1ySrAubglz6IGqPDnS8llOAdLkfPogtEnfYtgr9ksZ3WyoW7dN~NH0T5r4dNiVA6Ezq68F43c6mofGNNzBlD1PajruN3BExU0hHi0LX0Dey4-w6njyInmcnbu9qmo7iQ1L3~H~vONMw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":409,"name":"Geophysics","url":"https://www.academia.edu/Documents/in/Geophysics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"}],"urls":[{"id":18144924,"url":"http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.951.373\u0026rep=rep1\u0026type=pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="67116166"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/67116166/Identifying_Multiple_Reflections_with_the_Nip_and_Normal_Hypothetical_Wavefronts"><img alt="Research paper thumbnail of Identifying Multiple Reflections with the Nip and Normal Hypothetical Wavefronts" class="work-thumbnail" src="https://attachments.academia-assets.com/78054965/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/67116166/Identifying_Multiple_Reflections_with_the_Nip_and_Normal_Hypothetical_Wavefronts">Identifying Multiple Reflections with the Nip and Normal Hypothetical Wavefronts</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The multiple reflections include in the seismograms important informations about the reflectors i...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The multiple reflections include in the seismograms important informations about the reflectors in subsurface and can become completely invisible. In marine data acquisition the water layer behaves as a wave trap, where the waves are repeatedly reflected at the sea surface and sea bottom without significant amplitude loss. In order to identify and locate target reflectors, these multiples must be eliminated or, at least, attenuated. In this work, interbed symmetric multiple reflections were identified in synthetic dataset. We compare the parameters of hypothetical wavefronts Normal-Incidence-Point (NIP) and Normal (N) obtained by forward modeling and Kirchhoff migration. This comparison was extended to consider the Normal-Moveout (NMO) velocity. These comparisons led us to identify and differentiate between multiple and primary reflections. INTRODUCTION Seismograms include multiple reflections that can be so strong that the desired primary reflections become completely invisible. In...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="41febacf3e5ae83b13eadae784b3cb02" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:78054965,&quot;asset_id&quot;:67116166,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/78054965/download_file?st=MTczMjQ2NDA0Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="67116166"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="67116166"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 67116166; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=67116166]").text(description); $(".js-view-count[data-work-id=67116166]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 67116166; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='67116166']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 67116166, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "41febacf3e5ae83b13eadae784b3cb02" } } $('.js-work-strip[data-work-id=67116166]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":67116166,"title":"Identifying Multiple Reflections with the Nip and Normal Hypothetical Wavefronts","translated_title":"","metadata":{"abstract":"The multiple reflections include in the seismograms important informations about the reflectors in subsurface and can become completely invisible. In marine data acquisition the water layer behaves as a wave trap, where the waves are repeatedly reflected at the sea surface and sea bottom without significant amplitude loss. In order to identify and locate target reflectors, these multiples must be eliminated or, at least, attenuated. In this work, interbed symmetric multiple reflections were identified in synthetic dataset. We compare the parameters of hypothetical wavefronts Normal-Incidence-Point (NIP) and Normal (N) obtained by forward modeling and Kirchhoff migration. This comparison was extended to consider the Normal-Moveout (NMO) velocity. These comparisons led us to identify and differentiate between multiple and primary reflections. INTRODUCTION Seismograms include multiple reflections that can be so strong that the desired primary reflections become completely invisible. In...","publication_date":{"day":null,"month":null,"year":2019,"errors":{}}},"translated_abstract":"The multiple reflections include in the seismograms important informations about the reflectors in subsurface and can become completely invisible. In marine data acquisition the water layer behaves as a wave trap, where the waves are repeatedly reflected at the sea surface and sea bottom without significant amplitude loss. In order to identify and locate target reflectors, these multiples must be eliminated or, at least, attenuated. In this work, interbed symmetric multiple reflections were identified in synthetic dataset. We compare the parameters of hypothetical wavefronts Normal-Incidence-Point (NIP) and Normal (N) obtained by forward modeling and Kirchhoff migration. This comparison was extended to consider the Normal-Moveout (NMO) velocity. These comparisons led us to identify and differentiate between multiple and primary reflections. INTRODUCTION Seismograms include multiple reflections that can be so strong that the desired primary reflections become completely invisible. In...","internal_url":"https://www.academia.edu/67116166/Identifying_Multiple_Reflections_with_the_Nip_and_Normal_Hypothetical_Wavefronts","translated_internal_url":"","created_at":"2022-01-04T11:22:13.381-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":12143756,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":78054965,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78054965/thumbnails/1.jpg","file_name":"wit2005-cruz.pdf","download_url":"https://www.academia.edu/attachments/78054965/download_file?st=MTczMjQ2NDA0Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Identifying_Multiple_Reflections_with_th.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78054965/wit2005-cruz-libre.pdf?1641324264=\u0026response-content-disposition=attachment%3B+filename%3DIdentifying_Multiple_Reflections_with_th.pdf\u0026Expires=1732467647\u0026Signature=OfgC6VBXhvJikLJMcA682yertZi5j75EwDNLTyFPcE8hAD-Q6YFtYIDMWyAPSJ5Tb6ZLIx5I5khhPQCnLBm2AJIOXX9f9bHv8K390RhxdcF8CJ8lTCx42jHultiOLP3YRpbUCduPGKvWrtuGXABRx0bFb2wS6uSENvKq~Zb7IkzHQzgn~PZPUJFUx1fi-r9rP6gAtNiH4q8o6vZtf4~NUF2jd1F7PoXU9fqG23sh6Or6BpQhXjjcxOto1RCinDIi2EROzpDzQKlZxGwijxAxQSI-RCm2U17~DIaVw07OUbQarNg5UhEF1J8Z9ASrWpASdDgVFC~BgDke86sTvNQEMQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Identifying_Multiple_Reflections_with_the_Nip_and_Normal_Hypothetical_Wavefronts","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":12143756,"first_name":"João Carlos Ribeiro","middle_initials":null,"last_name":"Cruz","page_name":"JoãoCarlosRibeiroCruz","domain_name":"independent","created_at":"2014-05-18T04:50:08.703-07:00","display_name":"João Carlos Ribeiro Cruz","url":"https://independent.academia.edu/Jo%C3%A3oCarlosRibeiroCruz"},"attachments":[{"id":78054965,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78054965/thumbnails/1.jpg","file_name":"wit2005-cruz.pdf","download_url":"https://www.academia.edu/attachments/78054965/download_file?st=MTczMjQ2NDA0Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Identifying_Multiple_Reflections_with_th.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78054965/wit2005-cruz-libre.pdf?1641324264=\u0026response-content-disposition=attachment%3B+filename%3DIdentifying_Multiple_Reflections_with_th.pdf\u0026Expires=1732467647\u0026Signature=OfgC6VBXhvJikLJMcA682yertZi5j75EwDNLTyFPcE8hAD-Q6YFtYIDMWyAPSJ5Tb6ZLIx5I5khhPQCnLBm2AJIOXX9f9bHv8K390RhxdcF8CJ8lTCx42jHultiOLP3YRpbUCduPGKvWrtuGXABRx0bFb2wS6uSENvKq~Zb7IkzHQzgn~PZPUJFUx1fi-r9rP6gAtNiH4q8o6vZtf4~NUF2jd1F7PoXU9fqG23sh6Or6BpQhXjjcxOto1RCinDIi2EROzpDzQKlZxGwijxAxQSI-RCm2U17~DIaVw07OUbQarNg5UhEF1J8Z9ASrWpASdDgVFC~BgDke86sTvNQEMQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":16071182,"url":"https://www.wit.uni-hamburg.de/import/documents/reports/2005/wit2005-cruz.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="67116165"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/67116165/Fourth_Order_CRS_Stack_Synthetic_Examples"><img alt="Research paper thumbnail of Fourth Order CRS Stack : Synthetic Examples" class="work-thumbnail" src="https://attachments.academia-assets.com/78054961/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/67116165/Fourth_Order_CRS_Stack_Synthetic_Examples">Fourth Order CRS Stack : Synthetic Examples</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The simulation of a zero-offset (ZO) seismic section from multi-coverage seismic data is a standa...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The simulation of a zero-offset (ZO) seismic section from multi-coverage seismic data is a standard imaging method widely used in seismic processing that allows to reduces the amount of data and increases the signal-to-noise ratio. The CRS stacking method simulates ZO sections and does not dependent on a macro-velocity model. It is based on a second-order traveltime approximation parametrized with three kinematic wavefield attributes. In this work, we tested the Taylor expansion of the second-order CRS conventional operator, so-called the fourth-order CRS stacking operator, to simulate ZO seismic sections. This formula depends on the same three parameters as the secondorder CRS operator. Synthetic examples have shown a good performance of the proposed expression compared to the CRS conventional operator. INTRODUCTION The seismic stacking is performed along traveltime moveout expressions (curves or surfaces) that depend on one or more parameters. As result of the stacking process, on...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a1a3b109bd2d93d7b8ade62e3d38e584" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:78054961,&quot;asset_id&quot;:67116165,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/78054961/download_file?st=MTczMjQ2NDA0Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="67116165"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="67116165"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 67116165; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=67116165]").text(description); $(".js-view-count[data-work-id=67116165]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 67116165; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='67116165']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 67116165, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a1a3b109bd2d93d7b8ade62e3d38e584" } } $('.js-work-strip[data-work-id=67116165]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":67116165,"title":"Fourth Order CRS Stack : Synthetic Examples","translated_title":"","metadata":{"abstract":"The simulation of a zero-offset (ZO) seismic section from multi-coverage seismic data is a standard imaging method widely used in seismic processing that allows to reduces the amount of data and increases the signal-to-noise ratio. The CRS stacking method simulates ZO sections and does not dependent on a macro-velocity model. It is based on a second-order traveltime approximation parametrized with three kinematic wavefield attributes. In this work, we tested the Taylor expansion of the second-order CRS conventional operator, so-called the fourth-order CRS stacking operator, to simulate ZO seismic sections. This formula depends on the same three parameters as the secondorder CRS operator. Synthetic examples have shown a good performance of the proposed expression compared to the CRS conventional operator. INTRODUCTION The seismic stacking is performed along traveltime moveout expressions (curves or surfaces) that depend on one or more parameters. As result of the stacking process, on...","publication_date":{"day":null,"month":null,"year":2019,"errors":{}}},"translated_abstract":"The simulation of a zero-offset (ZO) seismic section from multi-coverage seismic data is a standard imaging method widely used in seismic processing that allows to reduces the amount of data and increases the signal-to-noise ratio. The CRS stacking method simulates ZO sections and does not dependent on a macro-velocity model. It is based on a second-order traveltime approximation parametrized with three kinematic wavefield attributes. In this work, we tested the Taylor expansion of the second-order CRS conventional operator, so-called the fourth-order CRS stacking operator, to simulate ZO seismic sections. This formula depends on the same three parameters as the secondorder CRS operator. Synthetic examples have shown a good performance of the proposed expression compared to the CRS conventional operator. INTRODUCTION The seismic stacking is performed along traveltime moveout expressions (curves or surfaces) that depend on one or more parameters. As result of the stacking process, on...","internal_url":"https://www.academia.edu/67116165/Fourth_Order_CRS_Stack_Synthetic_Examples","translated_internal_url":"","created_at":"2022-01-04T11:22:13.232-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":12143756,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":78054961,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78054961/thumbnails/1.jpg","file_name":"wit2008-chiraoliva.pdf","download_url":"https://www.academia.edu/attachments/78054961/download_file?st=MTczMjQ2NDA0Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Fourth_Order_CRS_Stack_Synthetic_Example.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78054961/wit2008-chiraoliva-libre.pdf?1641324265=\u0026response-content-disposition=attachment%3B+filename%3DFourth_Order_CRS_Stack_Synthetic_Example.pdf\u0026Expires=1732467647\u0026Signature=TLUS-BUEDo-2oZq3Hx7bVPbGLIZ4qmEsO-~TXBvAsZ8BEl2dh8obltAGispm0xo9TQYL~sTO8KYM0ieFdNDR4Ec78a3t9EvKwcvrhGjNt8jT8Mn-blUWT~ptC2hgrALOWYLsH6VsUNR4wIiteW7eTBSGtO3XeIBGUR0DJjRLjc2hiNMxFYL56ZD9r9aEVKu8MdeiXmdvGxDLz6Vce3cEBYdRFStfLRleP3fk~~MkpKfL7E0CA0sK-tgD~2yErQG4DpZILK7kVHB6~XArbL2Ax9h8PgsSBIHVZUkYOdS3lZIFg6xVJLuPihZEu9B6L9JygjRkz2ESUIHY8y-lnAIUrw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Fourth_Order_CRS_Stack_Synthetic_Examples","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":12143756,"first_name":"João Carlos Ribeiro","middle_initials":null,"last_name":"Cruz","page_name":"JoãoCarlosRibeiroCruz","domain_name":"independent","created_at":"2014-05-18T04:50:08.703-07:00","display_name":"João Carlos Ribeiro Cruz","url":"https://independent.academia.edu/Jo%C3%A3oCarlosRibeiroCruz"},"attachments":[{"id":78054961,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78054961/thumbnails/1.jpg","file_name":"wit2008-chiraoliva.pdf","download_url":"https://www.academia.edu/attachments/78054961/download_file?st=MTczMjQ2NDA0Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Fourth_Order_CRS_Stack_Synthetic_Example.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78054961/wit2008-chiraoliva-libre.pdf?1641324265=\u0026response-content-disposition=attachment%3B+filename%3DFourth_Order_CRS_Stack_Synthetic_Example.pdf\u0026Expires=1732467647\u0026Signature=TLUS-BUEDo-2oZq3Hx7bVPbGLIZ4qmEsO-~TXBvAsZ8BEl2dh8obltAGispm0xo9TQYL~sTO8KYM0ieFdNDR4Ec78a3t9EvKwcvrhGjNt8jT8Mn-blUWT~ptC2hgrALOWYLsH6VsUNR4wIiteW7eTBSGtO3XeIBGUR0DJjRLjc2hiNMxFYL56ZD9r9aEVKu8MdeiXmdvGxDLz6Vce3cEBYdRFStfLRleP3fk~~MkpKfL7E0CA0sK-tgD~2yErQG4DpZILK7kVHB6~XArbL2Ax9h8PgsSBIHVZUkYOdS3lZIFg6xVJLuPihZEu9B6L9JygjRkz2ESUIHY8y-lnAIUrw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":78054964,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78054964/thumbnails/1.jpg","file_name":"wit2008-chiraoliva.pdf","download_url":"https://www.academia.edu/attachments/78054964/download_file","bulk_download_file_name":"Fourth_Order_CRS_Stack_Synthetic_Example.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78054964/wit2008-chiraoliva-libre.pdf?1641324265=\u0026response-content-disposition=attachment%3B+filename%3DFourth_Order_CRS_Stack_Synthetic_Example.pdf\u0026Expires=1732467647\u0026Signature=EoYRxt1~lNUNC-Bvp7M29v~t6Uwzr0Yg0XAdTV-LkwbqQOf2q6AJ2Q5bEYBbOCrEKf8GStsjRXvkgxLUEM3ycT3TzYvTx1Lv9T8cnw1SiD~o5zasYloLNJQAcj8g1euF3Ci0M7yFZOMG6AgseUaPj~iaVEeeKP-UeSauHG3ev4dNTT6QoPfpdTGnDOx7V9Kv4rq5lAIgGiV4~~pIHjGL~0ofngdQK7lm1gIiyTxp669z0hpH2Y7hAcwagAJTb5PkNxiEBmutgj9r-7B2t06dJhm4HBuMBYHNTxQP788MvDBistGpXFUYXlAEExWRQwVZCZk6Mgtx1Xd8g3RgPua4kw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":16071181,"url":"https://www.wit.uni-hamburg.de/import/documents/reports/2008/wit2008-chiraoliva.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="67116164"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/67116164/Numerical_Analysis_of_Two_and_One_Half_Dimensional_2_5_D_True_Amplitude_Diffraction_Stack_Migration"><img alt="Research paper thumbnail of Numerical Analysis of Two and One – Half Dimensional ( 2 . 5 – D ) True – Amplitude Diffraction Stack Migration" class="work-thumbnail" src="https://attachments.academia-assets.com/78054966/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/67116164/Numerical_Analysis_of_Two_and_One_Half_Dimensional_2_5_D_True_Amplitude_Diffraction_Stack_Migration">Numerical Analysis of Two and One – Half Dimensional ( 2 . 5 – D ) True – Amplitude Diffraction Stack Migration</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">By considering arbitrary source-receiver configurations the compressional primary reflections can...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">By considering arbitrary source-receiver configurations the compressional primary reflections can be imaged into time or depth-migrated reflections so that the migrated wavefield amplitudes are a measured of angle-dependent reflection coeffients. In order to do this various migration algorithms were proposed in the recent past years based on Born or Kirchhoff approach. Both of them treats of a weighted diffraction stack integral operator that is applied to the input seismic data. As result we have a migrated seismic section where at each reflector point there is the source wavelet with the amplitude proportinal to the reflection coefficient at that point. Based on Kirchhoff approach, in this paper we derive the weight function and the diffraction stack integral operator for the two and one half (2.5-D) seimic model and apply it to a set of synthetic seismic data in noise enviroment. The result shows the accuracy and stability of the 2.5-D migration method as a tool for obtaining imp...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3aec31bb360124f431611b3b25483932" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:78054966,&quot;asset_id&quot;:67116164,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/78054966/download_file?st=MTczMjQ2NDA0Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="67116164"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="67116164"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 67116164; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=67116164]").text(description); $(".js-view-count[data-work-id=67116164]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 67116164; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='67116164']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 67116164, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3aec31bb360124f431611b3b25483932" } } $('.js-work-strip[data-work-id=67116164]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":67116164,"title":"Numerical Analysis of Two and One – Half Dimensional ( 2 . 5 – D ) True – Amplitude Diffraction Stack Migration","translated_title":"","metadata":{"abstract":"By considering arbitrary source-receiver configurations the compressional primary reflections can be imaged into time or depth-migrated reflections so that the migrated wavefield amplitudes are a measured of angle-dependent reflection coeffients. In order to do this various migration algorithms were proposed in the recent past years based on Born or Kirchhoff approach. Both of them treats of a weighted diffraction stack integral operator that is applied to the input seismic data. As result we have a migrated seismic section where at each reflector point there is the source wavelet with the amplitude proportinal to the reflection coefficient at that point. Based on Kirchhoff approach, in this paper we derive the weight function and the diffraction stack integral operator for the two and one half (2.5-D) seimic model and apply it to a set of synthetic seismic data in noise enviroment. The result shows the accuracy and stability of the 2.5-D migration method as a tool for obtaining imp...","publication_date":{"day":null,"month":null,"year":2019,"errors":{}}},"translated_abstract":"By considering arbitrary source-receiver configurations the compressional primary reflections can be imaged into time or depth-migrated reflections so that the migrated wavefield amplitudes are a measured of angle-dependent reflection coeffients. In order to do this various migration algorithms were proposed in the recent past years based on Born or Kirchhoff approach. Both of them treats of a weighted diffraction stack integral operator that is applied to the input seismic data. As result we have a migrated seismic section where at each reflector point there is the source wavelet with the amplitude proportinal to the reflection coefficient at that point. Based on Kirchhoff approach, in this paper we derive the weight function and the diffraction stack integral operator for the two and one half (2.5-D) seimic model and apply it to a set of synthetic seismic data in noise enviroment. The result shows the accuracy and stability of the 2.5-D migration method as a tool for obtaining imp...","internal_url":"https://www.academia.edu/67116164/Numerical_Analysis_of_Two_and_One_Half_Dimensional_2_5_D_True_Amplitude_Diffraction_Stack_Migration","translated_internal_url":"","created_at":"2022-01-04T11:22:13.086-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":12143756,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":78054966,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78054966/thumbnails/1.jpg","file_name":"wit1998-cruz.pdf","download_url":"https://www.academia.edu/attachments/78054966/download_file?st=MTczMjQ2NDA0Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Numerical_Analysis_of_Two_and_One_Half_D.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78054966/wit1998-cruz-libre.pdf?1641324267=\u0026response-content-disposition=attachment%3B+filename%3DNumerical_Analysis_of_Two_and_One_Half_D.pdf\u0026Expires=1732467647\u0026Signature=OMprkNHmHPAMqGQWg-G-zqpVDTTQUnsYD79TuJ4yGCpB8b4Y2PgiU~u2~lwJwlBt2Kvmjc1-NyahrHTUNdyx2xJoV4K~BH0KrlBezAf2hZeHxI2bqiwxCbOrhkhAROFi-TNlmJYBqxcpiqdKh-qP4q5d840kBPXUN3paWCxJnVkFKbqBH0untBZBlxHwGcFWk7ClUyUgl0t2QNtxz5C5PPDWCzpLr7BwBqJIY9Em0tpU9LLxshF32jCvelhqDwIDQ3~xuQDL~N-EYEzDqj1dm05~JKd3gI11WB9iXtAqsaz-2~QlE00SYe2FkovRRxz2pfjAapeMZTgjT9DZK2hgmQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Numerical_Analysis_of_Two_and_One_Half_Dimensional_2_5_D_True_Amplitude_Diffraction_Stack_Migration","translated_slug":"","page_count":14,"language":"en","content_type":"Work","owner":{"id":12143756,"first_name":"João Carlos Ribeiro","middle_initials":null,"last_name":"Cruz","page_name":"JoãoCarlosRibeiroCruz","domain_name":"independent","created_at":"2014-05-18T04:50:08.703-07:00","display_name":"João Carlos Ribeiro Cruz","url":"https://independent.academia.edu/Jo%C3%A3oCarlosRibeiroCruz"},"attachments":[{"id":78054966,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78054966/thumbnails/1.jpg","file_name":"wit1998-cruz.pdf","download_url":"https://www.academia.edu/attachments/78054966/download_file?st=MTczMjQ2NDA0Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Numerical_Analysis_of_Two_and_One_Half_D.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78054966/wit1998-cruz-libre.pdf?1641324267=\u0026response-content-disposition=attachment%3B+filename%3DNumerical_Analysis_of_Two_and_One_Half_D.pdf\u0026Expires=1732467647\u0026Signature=OMprkNHmHPAMqGQWg-G-zqpVDTTQUnsYD79TuJ4yGCpB8b4Y2PgiU~u2~lwJwlBt2Kvmjc1-NyahrHTUNdyx2xJoV4K~BH0KrlBezAf2hZeHxI2bqiwxCbOrhkhAROFi-TNlmJYBqxcpiqdKh-qP4q5d840kBPXUN3paWCxJnVkFKbqBH0untBZBlxHwGcFWk7ClUyUgl0t2QNtxz5C5PPDWCzpLr7BwBqJIY9Em0tpU9LLxshF32jCvelhqDwIDQ3~xuQDL~N-EYEzDqj1dm05~JKd3gI11WB9iXtAqsaz-2~QlE00SYe2FkovRRxz2pfjAapeMZTgjT9DZK2hgmQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":78054962,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78054962/thumbnails/1.jpg","file_name":"wit1998-cruz.pdf","download_url":"https://www.academia.edu/attachments/78054962/download_file","bulk_download_file_name":"Numerical_Analysis_of_Two_and_One_Half_D.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78054962/wit1998-cruz-libre.pdf?1641324267=\u0026response-content-disposition=attachment%3B+filename%3DNumerical_Analysis_of_Two_and_One_Half_D.pdf\u0026Expires=1732467647\u0026Signature=XUwiWYC08dqlRuchRRyiscVNvRdkON9aWJBKLdaRNQCUhJZMEempSfaprpOjrueCAyk0e9kzT74y-QFbU2kCtyP7hNKCw5iw0WfgW57pHiXU7v35hQ3YZVPAwDrlwMUQWUxsTeIGlfD8HKP8fD~jTmdx0sndHrBQLdwyHCkioOuFl6V5~1m~2PNcNr7lxrEcbdEmHys0D-xKh1kaWXYIvk4hpf5qz53g~L7qS6f1pHajH1599dgV502zXzRd~dciG2Nr5p1mXdxpOPaEPEnFWzZGCWoWf~dSGr4iEsUWjVXw6KRD5u5BWpgRb2Z35ga1RXbKiDVj18BO5~se-tWSZg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":16071180,"url":"https://www.wit.uni-hamburg.de/import/documents/reports/1998/wit1998-cruz.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="67116163"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/67116163/KGB_PSDM_Migration_in_Constant_Gradient_Velocity_Media_and_Sensitivity_Analysis_to_Velocity_Errors_A_Comparison_with_Kirchhoff"><img alt="Research paper thumbnail of KGB-PSDM Migration in Constant Gradient Velocity Media and Sensitivity Analysis to Velocity Errors . A Comparison with Kirchhoff" class="work-thumbnail" src="https://attachments.academia-assets.com/78054958/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/67116163/KGB_PSDM_Migration_in_Constant_Gradient_Velocity_Media_and_Sensitivity_Analysis_to_Velocity_Errors_A_Comparison_with_Kirchhoff">KGB-PSDM Migration in Constant Gradient Velocity Media and Sensitivity Analysis to Velocity Errors . A Comparison with Kirchhoff</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this work we extend the KGB-PSDM algorithm to the special case of a constant gradient velocity...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this work we extend the KGB-PSDM algorithm to the special case of a constant gradient velocity media. Following the same lines as for the homogeneous media, se have teste our operator in some synthetic important geological models and we have observed an increase in the resolution of the seismic images, as well as a great reduction of migration artifacts and noise. INTRODUCTION Kirchhoff-type migration has been used as workhorse by the oil industry since the pioneering work of Hagedoorn (1954), whose “maximum convexity surfaces” were later related to the acoustic wave equation and have since then become familiar in the geophysics literature as Kirchhoff migration (Schneider, 1978; Hertweck et al., 2003). However, in the last two decades Kirhhoff migration has evolved from a single imaging operator to an operator that embraces, among others, the structure of an inversion operator. This allowed the development of several others techniques (Tygel et al., 1993; Tygel et al., 1998), su...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="243536a155b34ec8cf9bd5827f430eda" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:78054958,&quot;asset_id&quot;:67116163,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/78054958/download_file?st=MTczMjQ2NDA0Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="67116163"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="67116163"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 67116163; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=67116163]").text(description); $(".js-view-count[data-work-id=67116163]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 67116163; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='67116163']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 67116163, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "243536a155b34ec8cf9bd5827f430eda" } } $('.js-work-strip[data-work-id=67116163]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":67116163,"title":"KGB-PSDM Migration in Constant Gradient Velocity Media and Sensitivity Analysis to Velocity Errors . A Comparison with Kirchhoff","translated_title":"","metadata":{"abstract":"In this work we extend the KGB-PSDM algorithm to the special case of a constant gradient velocity media. Following the same lines as for the homogeneous media, se have teste our operator in some synthetic important geological models and we have observed an increase in the resolution of the seismic images, as well as a great reduction of migration artifacts and noise. INTRODUCTION Kirchhoff-type migration has been used as workhorse by the oil industry since the pioneering work of Hagedoorn (1954), whose “maximum convexity surfaces” were later related to the acoustic wave equation and have since then become familiar in the geophysics literature as Kirchhoff migration (Schneider, 1978; Hertweck et al., 2003). However, in the last two decades Kirhhoff migration has evolved from a single imaging operator to an operator that embraces, among others, the structure of an inversion operator. This allowed the development of several others techniques (Tygel et al., 1993; Tygel et al., 1998), su...","publication_date":{"day":null,"month":null,"year":2019,"errors":{}}},"translated_abstract":"In this work we extend the KGB-PSDM algorithm to the special case of a constant gradient velocity media. Following the same lines as for the homogeneous media, se have teste our operator in some synthetic important geological models and we have observed an increase in the resolution of the seismic images, as well as a great reduction of migration artifacts and noise. INTRODUCTION Kirchhoff-type migration has been used as workhorse by the oil industry since the pioneering work of Hagedoorn (1954), whose “maximum convexity surfaces” were later related to the acoustic wave equation and have since then become familiar in the geophysics literature as Kirchhoff migration (Schneider, 1978; Hertweck et al., 2003). However, in the last two decades Kirhhoff migration has evolved from a single imaging operator to an operator that embraces, among others, the structure of an inversion operator. This allowed the development of several others techniques (Tygel et al., 1993; Tygel et al., 1998), su...","internal_url":"https://www.academia.edu/67116163/KGB_PSDM_Migration_in_Constant_Gradient_Velocity_Media_and_Sensitivity_Analysis_to_Velocity_Errors_A_Comparison_with_Kirchhoff","translated_internal_url":"","created_at":"2022-01-04T11:22:12.940-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":12143756,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":78054958,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78054958/thumbnails/1.jpg","file_name":"wit2005-ferreira.pdf","download_url":"https://www.academia.edu/attachments/78054958/download_file?st=MTczMjQ2NDA0Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"KGB_PSDM_Migration_in_Constant_Gradient.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78054958/wit2005-ferreira-libre.pdf?1641324265=\u0026response-content-disposition=attachment%3B+filename%3DKGB_PSDM_Migration_in_Constant_Gradient.pdf\u0026Expires=1732467647\u0026Signature=e2zeKXEILJ~TWcadbVa6oHxctoneecrhu-WXEEQlNtNRf9c2bZEppxt17zBuCQg0c-c1d-4zeGlU1dy34grYNmzpNoRoasfE1nPsFsBuwp2r232PYrvmGhnfC9wqmFeK4S9bxF~~BpRgLC0GMc012Rc7vqABVwWsIDMg-EpWtIj7Wg10FA8woAAiNmomlKnTwNvncdWzpksULILhACbQYfH9R6lBdzHsyAzFK~uBwgSA1z~aYwa~RIFQKsZJ6bzXHX4lXf~iHIkH6UQmzz6Ku~XYCde5Arnf3LUA07Inq3zMV-uiTMrbNjCDh9cCoaiOwlU74dM7ijr0ymGNTJ38Bg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"KGB_PSDM_Migration_in_Constant_Gradient_Velocity_Media_and_Sensitivity_Analysis_to_Velocity_Errors_A_Comparison_with_Kirchhoff","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":12143756,"first_name":"João Carlos Ribeiro","middle_initials":null,"last_name":"Cruz","page_name":"JoãoCarlosRibeiroCruz","domain_name":"independent","created_at":"2014-05-18T04:50:08.703-07:00","display_name":"João Carlos Ribeiro Cruz","url":"https://independent.academia.edu/Jo%C3%A3oCarlosRibeiroCruz"},"attachments":[{"id":78054958,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78054958/thumbnails/1.jpg","file_name":"wit2005-ferreira.pdf","download_url":"https://www.academia.edu/attachments/78054958/download_file?st=MTczMjQ2NDA0Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"KGB_PSDM_Migration_in_Constant_Gradient.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78054958/wit2005-ferreira-libre.pdf?1641324265=\u0026response-content-disposition=attachment%3B+filename%3DKGB_PSDM_Migration_in_Constant_Gradient.pdf\u0026Expires=1732467647\u0026Signature=e2zeKXEILJ~TWcadbVa6oHxctoneecrhu-WXEEQlNtNRf9c2bZEppxt17zBuCQg0c-c1d-4zeGlU1dy34grYNmzpNoRoasfE1nPsFsBuwp2r232PYrvmGhnfC9wqmFeK4S9bxF~~BpRgLC0GMc012Rc7vqABVwWsIDMg-EpWtIj7Wg10FA8woAAiNmomlKnTwNvncdWzpksULILhACbQYfH9R6lBdzHsyAzFK~uBwgSA1z~aYwa~RIFQKsZJ6bzXHX4lXf~iHIkH6UQmzz6Ku~XYCde5Arnf3LUA07Inq3zMV-uiTMrbNjCDh9cCoaiOwlU74dM7ijr0ymGNTJ38Bg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":78054959,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78054959/thumbnails/1.jpg","file_name":"wit2005-ferreira.pdf","download_url":"https://www.academia.edu/attachments/78054959/download_file","bulk_download_file_name":"KGB_PSDM_Migration_in_Constant_Gradient.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78054959/wit2005-ferreira-libre.pdf?1641324264=\u0026response-content-disposition=attachment%3B+filename%3DKGB_PSDM_Migration_in_Constant_Gradient.pdf\u0026Expires=1732467647\u0026Signature=cu8pyH0pHtnOKYr-QapG4ZR1nKYNdgC7mZdccfzfWp4fLR8UAHxVHPUqP5iarI~41U3jj300lv7fhRmKH4g9hV9z99n3ztyuHpXZ-IeY28QvClFhS~6X3OQ~l-Is5n0PP4WbRMD4etEm5TmFBPW~h8dSyQ9dNoq7ODxnt1dCo5gNrwDoW0iFDY-Tpwjg5KZjrM5095pVAh12SpZyyClvDHpiIsNLrJX35embYtVX7V-wQQjFs0SujThrNvqMuPDBgQNQGNtLYikwieoc0gHrEiSS8~uU9P8dyGur8zVKPSuqEVCI0BnChr~0vcs2ZHMlOmDrrgAjd4BsXr7DY39EBQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":16071179,"url":"https://www.wit.uni-hamburg.de/import/documents/reports/2005/wit2005-ferreira.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="67116162"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/67116162/48_2_D_Common_Reflection_Surface_CRS_stack_based_on_simulated_annealing_and_quasi_Newton_Application_to_Marmousi_data_set"><img alt="Research paper thumbnail of 48 2-D Common-Reflection-Surface ( CRS ) stack based on simulated annealing and quasi-Newton : Application to Marmousi data set" class="work-thumbnail" src="https://attachments.academia-assets.com/78054967/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/67116162/48_2_D_Common_Reflection_Surface_CRS_stack_based_on_simulated_annealing_and_quasi_Newton_Application_to_Marmousi_data_set">48 2-D Common-Reflection-Surface ( CRS ) stack based on simulated annealing and quasi-Newton : Application to Marmousi data set</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The recently introduced Common-Reflection-Surface (CRS) method is a natural generalization of the...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The recently introduced Common-Reflection-Surface (CRS) method is a natural generalization of the well-established Normal Moveout (NMO) method, designed to simulate a zero-offset (ZO) section by a stacking procedure applied to multicoverage data. As opposed to NMO, the stacking procedure in the CRS is not restricted to common-midpoint (CMP) gathers, but uses much more general supergathers of non-symmetrical sources and receivers. Moreover, no selection of interpreted events is required. For the 2D situation considered in this paper, the CRS stacking curve is the general hyperbolic traveltime moveout, that depends on three kinematic wavefield attributes. The crucial step of the CRS method is the estimation of the wavefield attributes at each point of the simulated ZO section to be constructed. This is carried out by means of optimization procedures using as objective function the coherence (semblance) of the seismic traces along the stacking curve. Although a few strategies are alrea...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="987d833c2330939d41101867c557d29d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:78054967,&quot;asset_id&quot;:67116162,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/78054967/download_file?st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="67116162"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="67116162"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 67116162; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=67116162]").text(description); $(".js-view-count[data-work-id=67116162]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 67116162; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='67116162']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 67116162, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "987d833c2330939d41101867c557d29d" } } $('.js-work-strip[data-work-id=67116162]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":67116162,"title":"48 2-D Common-Reflection-Surface ( CRS ) stack based on simulated annealing and quasi-Newton : Application to Marmousi data set","translated_title":"","metadata":{"abstract":"The recently introduced Common-Reflection-Surface (CRS) method is a natural generalization of the well-established Normal Moveout (NMO) method, designed to simulate a zero-offset (ZO) section by a stacking procedure applied to multicoverage data. As opposed to NMO, the stacking procedure in the CRS is not restricted to common-midpoint (CMP) gathers, but uses much more general supergathers of non-symmetrical sources and receivers. Moreover, no selection of interpreted events is required. For the 2D situation considered in this paper, the CRS stacking curve is the general hyperbolic traveltime moveout, that depends on three kinematic wavefield attributes. The crucial step of the CRS method is the estimation of the wavefield attributes at each point of the simulated ZO section to be constructed. This is carried out by means of optimization procedures using as objective function the coherence (semblance) of the seismic traces along the stacking curve. Although a few strategies are alrea...","publication_date":{"day":null,"month":null,"year":2019,"errors":{}}},"translated_abstract":"The recently introduced Common-Reflection-Surface (CRS) method is a natural generalization of the well-established Normal Moveout (NMO) method, designed to simulate a zero-offset (ZO) section by a stacking procedure applied to multicoverage data. As opposed to NMO, the stacking procedure in the CRS is not restricted to common-midpoint (CMP) gathers, but uses much more general supergathers of non-symmetrical sources and receivers. Moreover, no selection of interpreted events is required. For the 2D situation considered in this paper, the CRS stacking curve is the general hyperbolic traveltime moveout, that depends on three kinematic wavefield attributes. The crucial step of the CRS method is the estimation of the wavefield attributes at each point of the simulated ZO section to be constructed. This is carried out by means of optimization procedures using as objective function the coherence (semblance) of the seismic traces along the stacking curve. Although a few strategies are alrea...","internal_url":"https://www.academia.edu/67116162/48_2_D_Common_Reflection_Surface_CRS_stack_based_on_simulated_annealing_and_quasi_Newton_Application_to_Marmousi_data_set","translated_internal_url":"","created_at":"2022-01-04T11:22:12.796-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":12143756,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":78054967,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78054967/thumbnails/1.jpg","file_name":"wit2003-garabito-2.pdf","download_url":"https://www.academia.edu/attachments/78054967/download_file?st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"48_2_D_Common_Reflection_Surface_CRS_sta.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78054967/wit2003-garabito-2-libre.pdf?1641324294=\u0026response-content-disposition=attachment%3B+filename%3D48_2_D_Common_Reflection_Surface_CRS_sta.pdf\u0026Expires=1732467647\u0026Signature=G4daFuKFhUP4GP6xjzehvShC5ARtGbgy-wWQcCOgMb4lgNI1USRT4gFLCZ1jFRGmmNAYgoHxASlI4AixRYvd1GRYc-Nho6QY5ePeqH5lSQm5HMdU~-dIp7XaYDTR0LuBaEZReL1-qwWAtoobFfxHSPTavpxiT2deyPy528tEy3Yiz9sAUEQBth7FQKxH4Vgf9F2vDhLoHKwrn20QLH8LrIRa411qZR4dBbKSmW0AHobaS3Uk1U5dwcxGEHYdNUg-eYYV4138-IjFy7-Kir~yBGiyoTLlihl6SL0CCXoOZg9a5VfsvtVJ~iVqoT4SDhtuc-PXpduUcseIKF9JnZ6ong__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"48_2_D_Common_Reflection_Surface_CRS_stack_based_on_simulated_annealing_and_quasi_Newton_Application_to_Marmousi_data_set","translated_slug":"","page_count":14,"language":"en","content_type":"Work","owner":{"id":12143756,"first_name":"João Carlos Ribeiro","middle_initials":null,"last_name":"Cruz","page_name":"JoãoCarlosRibeiroCruz","domain_name":"independent","created_at":"2014-05-18T04:50:08.703-07:00","display_name":"João Carlos Ribeiro Cruz","url":"https://independent.academia.edu/Jo%C3%A3oCarlosRibeiroCruz"},"attachments":[{"id":78054967,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78054967/thumbnails/1.jpg","file_name":"wit2003-garabito-2.pdf","download_url":"https://www.academia.edu/attachments/78054967/download_file?st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"48_2_D_Common_Reflection_Surface_CRS_sta.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78054967/wit2003-garabito-2-libre.pdf?1641324294=\u0026response-content-disposition=attachment%3B+filename%3D48_2_D_Common_Reflection_Surface_CRS_sta.pdf\u0026Expires=1732467648\u0026Signature=dFLkVrRlN7H45ThMNPeQ41pftArS5tzUP3cgPUI5vqPeB0c9QDyX6MWz0DtyvOxPlYqVoVZEbYVsa4QXQS8mv79CeE21kM6ksI6IxHMwIDiDKtaZ5NEvOuXetV3ikXs~4Ugddq~QZs5xnbuu7Maf6VVR5KaSWQ8c~Yi5RVGlx~l87G0chepeVkdJexMsVrkjrsF0p1bEiP23dA~xlw9HGLOaecGeEqOkdP9-xNItNTUHzdwxoEPYeiuRDsM0mGmpYIvsvdfp6Kk6QsCblZXFRwgFR6J9ZKvKCMbjZI3mlb9Lv5P59PuYBBgTOW~4pkl2G~4S9lYZuwUnF9p0miJZDg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":16071178,"url":"https://www.wit.uni-hamburg.de/import/documents/reports/2003/wit2003-garabito-2.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="67116161"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/67116161/An%C3%A1lise_da_anomalia_de_Bright_Spot_no_Mar_do_Norte_atrav%C3%A9s_da_integra%C3%A7%C3%A3o_de_dados_geof%C3%ADsicos_e_geol%C3%B3gicos"><img alt="Research paper thumbnail of Análise da anomalia de Bright Spot no Mar do Norte através da integração de dados geofísicos e geológicos" class="work-thumbnail" src="https://attachments.academia-assets.com/78055066/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/67116161/An%C3%A1lise_da_anomalia_de_Bright_Spot_no_Mar_do_Norte_atrav%C3%A9s_da_integra%C3%A7%C3%A3o_de_dados_geof%C3%ADsicos_e_geol%C3%B3gicos">Análise da anomalia de Bright Spot no Mar do Norte através da integração de dados geofísicos e geológicos</a></div><div class="wp-workCard_item"><span>Proceedings of the VIII Simpósio Brasileiro e Geofísica</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8944cea56a004c50f18284c4f41fa496" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:78055066,&quot;asset_id&quot;:67116161,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/78055066/download_file?st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="67116161"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="67116161"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 67116161; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=67116161]").text(description); $(".js-view-count[data-work-id=67116161]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 67116161; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='67116161']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 67116161, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8944cea56a004c50f18284c4f41fa496" } } $('.js-work-strip[data-work-id=67116161]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":67116161,"title":"Análise da anomalia de Bright Spot no Mar do Norte através da integração de dados geofísicos e geológicos","translated_title":"","metadata":{"publisher":"Brazilian Geophysical Society","publication_name":"Proceedings of the VIII Simpósio Brasileiro e Geofísica"},"translated_abstract":null,"internal_url":"https://www.academia.edu/67116161/An%C3%A1lise_da_anomalia_de_Bright_Spot_no_Mar_do_Norte_atrav%C3%A9s_da_integra%C3%A7%C3%A3o_de_dados_geof%C3%ADsicos_e_geol%C3%B3gicos","translated_internal_url":"","created_at":"2022-01-04T11:22:12.691-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":12143756,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":78055066,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78055066/thumbnails/1.jpg","file_name":"8simbgf2018.pdf","download_url":"https://www.academia.edu/attachments/78055066/download_file?st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Analise_da_anomalia_de_Bright_Spot_no_Ma.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78055066/8simbgf2018-libre.pdf?1641324260=\u0026response-content-disposition=attachment%3B+filename%3DAnalise_da_anomalia_de_Bright_Spot_no_Ma.pdf\u0026Expires=1732467648\u0026Signature=OTp6YBYw-p9lRAa3SK1W53IMIE~7yI6mwIPkPRjHkckz~kR5xPHIPgQiTJJpKLJMLagyanJCvrV9sY4o~5a8n663n5ElpRZADz1C3wrLG3zdVRfX5Q~6jjTbr~tXUlHxJLOiZu98~ZIHtVhmVmBc6imrHeZiDPTNXlTyf2esxb4gyIWvp1PqgcZyQ8OqJKyvlStipodSUCKiwJRPAI15lkqydpQA43lS3CL9xZL-9mxvhw2Hkmgy2wcDyCZHMoMVU-juGKaHDuT9Yd-HE7AhaJuMaFSFBnmqnZ4L8KodeWXJ7zyWSQfCPVZg0DWok1W~o9y4gmItVhOPMGNBZbz86Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Análise_da_anomalia_de_Bright_Spot_no_Mar_do_Norte_através_da_integração_de_dados_geofísicos_e_geológicos","translated_slug":"","page_count":6,"language":"pt","content_type":"Work","owner":{"id":12143756,"first_name":"João Carlos Ribeiro","middle_initials":null,"last_name":"Cruz","page_name":"JoãoCarlosRibeiroCruz","domain_name":"independent","created_at":"2014-05-18T04:50:08.703-07:00","display_name":"João Carlos Ribeiro Cruz","url":"https://independent.academia.edu/Jo%C3%A3oCarlosRibeiroCruz"},"attachments":[{"id":78055066,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78055066/thumbnails/1.jpg","file_name":"8simbgf2018.pdf","download_url":"https://www.academia.edu/attachments/78055066/download_file?st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Analise_da_anomalia_de_Bright_Spot_no_Ma.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78055066/8simbgf2018-libre.pdf?1641324260=\u0026response-content-disposition=attachment%3B+filename%3DAnalise_da_anomalia_de_Bright_Spot_no_Ma.pdf\u0026Expires=1732467648\u0026Signature=OTp6YBYw-p9lRAa3SK1W53IMIE~7yI6mwIPkPRjHkckz~kR5xPHIPgQiTJJpKLJMLagyanJCvrV9sY4o~5a8n663n5ElpRZADz1C3wrLG3zdVRfX5Q~6jjTbr~tXUlHxJLOiZu98~ZIHtVhmVmBc6imrHeZiDPTNXlTyf2esxb4gyIWvp1PqgcZyQ8OqJKyvlStipodSUCKiwJRPAI15lkqydpQA43lS3CL9xZL-9mxvhw2Hkmgy2wcDyCZHMoMVU-juGKaHDuT9Yd-HE7AhaJuMaFSFBnmqnZ4L8KodeWXJ7zyWSQfCPVZg0DWok1W~o9y4gmItVhOPMGNBZbz86Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="67116160"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/67116160/Imageamento_homeom%C3%B3rfico_de_refletores_s%C3%ADsmicos"><img alt="Research paper thumbnail of Imageamento homeomórfico de refletores sísmicos" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/67116160/Imageamento_homeom%C3%B3rfico_de_refletores_s%C3%ADsmicos">Imageamento homeomórfico de refletores sísmicos</a></div><div class="wp-workCard_item"><span>Revista Brasileira de Geofísica</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="67116160"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="67116160"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 67116160; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=67116160]").text(description); $(".js-view-count[data-work-id=67116160]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 67116160; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='67116160']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 67116160, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=67116160]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":67116160,"title":"Imageamento homeomórfico de refletores sísmicos","translated_title":"","metadata":{"publication_name":"Revista Brasileira de Geofísica"},"translated_abstract":null,"internal_url":"https://www.academia.edu/67116160/Imageamento_homeom%C3%B3rfico_de_refletores_s%C3%ADsmicos","translated_internal_url":"","created_at":"2022-01-04T11:22:12.575-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":12143756,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Imageamento_homeomórfico_de_refletores_sísmicos","translated_slug":"","page_count":null,"language":"es","content_type":"Work","owner":{"id":12143756,"first_name":"João Carlos Ribeiro","middle_initials":null,"last_name":"Cruz","page_name":"JoãoCarlosRibeiroCruz","domain_name":"independent","created_at":"2014-05-18T04:50:08.703-07:00","display_name":"João Carlos Ribeiro Cruz","url":"https://independent.academia.edu/Jo%C3%A3oCarlosRibeiroCruz"},"attachments":[],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="67116159"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/67116159/Comparing_Kirchhoff_Prestack_Depth_Migration_Using_Paraxial_Traveltime_Approximation_and_Eikonal_Equation"><img alt="Research paper thumbnail of Comparing Kirchhoff Prestack Depth Migration Using Paraxial Traveltime Approximation and Eikonal Equation" class="work-thumbnail" src="https://attachments.academia-assets.com/78055065/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/67116159/Comparing_Kirchhoff_Prestack_Depth_Migration_Using_Paraxial_Traveltime_Approximation_and_Eikonal_Equation">Comparing Kirchhoff Prestack Depth Migration Using Paraxial Traveltime Approximation and Eikonal Equation</a></div><div class="wp-workCard_item"><span>13th International Congress of the Brazilian Geophysical Society &amp;amp; EXPOGEF, Rio de Janeiro, Brazil, 26–29 August 2013</span><span>, 2013</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="bfbe934d5e64a1bf4cc0bc88e97357ee" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:78055065,&quot;asset_id&quot;:67116159,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/78055065/download_file?st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="67116159"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="67116159"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 67116159; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=67116159]").text(description); $(".js-view-count[data-work-id=67116159]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 67116159; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='67116159']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 67116159, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "bfbe934d5e64a1bf4cc0bc88e97357ee" } } $('.js-work-strip[data-work-id=67116159]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":67116159,"title":"Comparing Kirchhoff Prestack Depth Migration Using Paraxial Traveltime Approximation and Eikonal Equation","translated_title":"","metadata":{"publisher":"Society of Exploration Geophysicists and Brazilian Geophysical Society","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"13th International Congress of the Brazilian Geophysical Society \u0026amp; EXPOGEF, Rio de Janeiro, Brazil, 26–29 August 2013"},"translated_abstract":null,"internal_url":"https://www.academia.edu/67116159/Comparing_Kirchhoff_Prestack_Depth_Migration_Using_Paraxial_Traveltime_Approximation_and_Eikonal_Equation","translated_internal_url":"","created_at":"2022-01-04T11:22:12.439-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":12143756,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":78055065,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78055065/thumbnails/1.jpg","file_name":"Comparing_20Kirchhoff_20Prestack_20Depth_20Migration_20Using_20Paraxial_20Traveltime_20Approximation_20and_20Eikonal_20Equation.pdf","download_url":"https://www.academia.edu/attachments/78055065/download_file?st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Comparing_Kirchhoff_Prestack_Depth_Migra.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78055065/Comparing_20Kirchhoff_20Prestack_20Depth_20Migration_20Using_20Paraxial_20Traveltime_20Approximation_20and_20Eikonal_20Equation-libre.pdf?1641324259=\u0026response-content-disposition=attachment%3B+filename%3DComparing_Kirchhoff_Prestack_Depth_Migra.pdf\u0026Expires=1732467648\u0026Signature=gcArVsDYn~nIZZqKsgEjrQ9EAVaTl7zgJJxoe8T7o4HYtWA5Fx2etjaJs-O-B2MHmNpCHQKc0DCPtwI~hdU5mNeh0aR8wqaxjAhD5kkThHlF4tOMd2W1QY0m7s9exnGZSKoAi2IZtRSMMxC-zKQ~~leyhL94mOSPUn1zAqJI2LhUb2V4l3UYPvwYwGzs8JexqoRBt8mljArZIf~ESL7ogwFldh~xcxJrfprn5NtBjO2KD1J2yy-rGc2h7Tj4SOx5aVVwiJqR1avyA5Rp~hI5hMurw4Pxy1mTLh06MtkLXGw8eqDSPRSb9KMGMZ81xuemWOqggdDyshoo93grWo6dxw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Comparing_Kirchhoff_Prestack_Depth_Migration_Using_Paraxial_Traveltime_Approximation_and_Eikonal_Equation","translated_slug":"","page_count":3,"language":"en","content_type":"Work","owner":{"id":12143756,"first_name":"João Carlos Ribeiro","middle_initials":null,"last_name":"Cruz","page_name":"JoãoCarlosRibeiroCruz","domain_name":"independent","created_at":"2014-05-18T04:50:08.703-07:00","display_name":"João Carlos Ribeiro Cruz","url":"https://independent.academia.edu/Jo%C3%A3oCarlosRibeiroCruz"},"attachments":[{"id":78055065,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78055065/thumbnails/1.jpg","file_name":"Comparing_20Kirchhoff_20Prestack_20Depth_20Migration_20Using_20Paraxial_20Traveltime_20Approximation_20and_20Eikonal_20Equation.pdf","download_url":"https://www.academia.edu/attachments/78055065/download_file?st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Comparing_Kirchhoff_Prestack_Depth_Migra.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78055065/Comparing_20Kirchhoff_20Prestack_20Depth_20Migration_20Using_20Paraxial_20Traveltime_20Approximation_20and_20Eikonal_20Equation-libre.pdf?1641324259=\u0026response-content-disposition=attachment%3B+filename%3DComparing_Kirchhoff_Prestack_Depth_Migra.pdf\u0026Expires=1732467648\u0026Signature=gcArVsDYn~nIZZqKsgEjrQ9EAVaTl7zgJJxoe8T7o4HYtWA5Fx2etjaJs-O-B2MHmNpCHQKc0DCPtwI~hdU5mNeh0aR8wqaxjAhD5kkThHlF4tOMd2W1QY0m7s9exnGZSKoAi2IZtRSMMxC-zKQ~~leyhL94mOSPUn1zAqJI2LhUb2V4l3UYPvwYwGzs8JexqoRBt8mljArZIf~ESL7ogwFldh~xcxJrfprn5NtBjO2KD1J2yy-rGc2h7Tj4SOx5aVVwiJqR1avyA5Rp~hI5hMurw4Pxy1mTLh06MtkLXGw8eqDSPRSb9KMGMZ81xuemWOqggdDyshoo93grWo6dxw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="67116158"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/67116158/Seismic_Modeling_by_Gaussian_Beams_Limited_by_Projected_Fresnel_Zone"><img alt="Research paper thumbnail of Seismic Modeling by Gaussian Beams Limited by Projected Fresnel Zone" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/67116158/Seismic_Modeling_by_Gaussian_Beams_Limited_by_Projected_Fresnel_Zone">Seismic Modeling by Gaussian Beams Limited by Projected Fresnel Zone</a></div><div class="wp-workCard_item"><span>74th EAGE Conference and Exhibition incorporating EUROPEC 2012</span><span>, 2012</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The Gaussian Beam (GB) is an asymptotic solution of the elastodynamic equation in the paraxial vi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The Gaussian Beam (GB) is an asymptotic solution of the elastodynamic equation in the paraxial vicinity of a central ray, which approaches better the wave field than the standard zero-order ray theory. The GB regularity in the description of the wave field, as well as its high accuracy in some singular regions of the propagation medium, provide us with a strong alternative to solve seismic modeling and imaging problems. In this paper, we use the concept of the projected Fresnel zone to limit the superposition integral of Gaussian beams, in order to obtain a more stable Gaussian beam propagation. This result is used to calculate synthetic seismograms with more effectiveness.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="67116158"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="67116158"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 67116158; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=67116158]").text(description); $(".js-view-count[data-work-id=67116158]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 67116158; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='67116158']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 67116158, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=67116158]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":67116158,"title":"Seismic Modeling by Gaussian Beams Limited by Projected Fresnel Zone","translated_title":"","metadata":{"abstract":"The Gaussian Beam (GB) is an asymptotic solution of the elastodynamic equation in the paraxial vicinity of a central ray, which approaches better the wave field than the standard zero-order ray theory. The GB regularity in the description of the wave field, as well as its high accuracy in some singular regions of the propagation medium, provide us with a strong alternative to solve seismic modeling and imaging problems. In this paper, we use the concept of the projected Fresnel zone to limit the superposition integral of Gaussian beams, in order to obtain a more stable Gaussian beam propagation. This result is used to calculate synthetic seismograms with more effectiveness.","publication_date":{"day":null,"month":null,"year":2012,"errors":{}},"publication_name":"74th EAGE Conference and Exhibition incorporating EUROPEC 2012"},"translated_abstract":"The Gaussian Beam (GB) is an asymptotic solution of the elastodynamic equation in the paraxial vicinity of a central ray, which approaches better the wave field than the standard zero-order ray theory. The GB regularity in the description of the wave field, as well as its high accuracy in some singular regions of the propagation medium, provide us with a strong alternative to solve seismic modeling and imaging problems. In this paper, we use the concept of the projected Fresnel zone to limit the superposition integral of Gaussian beams, in order to obtain a more stable Gaussian beam propagation. This result is used to calculate synthetic seismograms with more effectiveness.","internal_url":"https://www.academia.edu/67116158/Seismic_Modeling_by_Gaussian_Beams_Limited_by_Projected_Fresnel_Zone","translated_internal_url":"","created_at":"2022-01-04T11:22:12.329-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":12143756,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Seismic_Modeling_by_Gaussian_Beams_Limited_by_Projected_Fresnel_Zone","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":12143756,"first_name":"João Carlos Ribeiro","middle_initials":null,"last_name":"Cruz","page_name":"JoãoCarlosRibeiroCruz","domain_name":"independent","created_at":"2014-05-18T04:50:08.703-07:00","display_name":"João Carlos Ribeiro Cruz","url":"https://independent.academia.edu/Jo%C3%A3oCarlosRibeiroCruz"},"attachments":[],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="67116157"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/67116157/Interval_Velocities_Inversion_Using_NIP_Wave_Attributes"><img alt="Research paper thumbnail of Interval Velocities Inversion Using NIP Wave Attributes" class="work-thumbnail" src="https://attachments.academia-assets.com/78054957/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/67116157/Interval_Velocities_Inversion_Using_NIP_Wave_Attributes">Interval Velocities Inversion Using NIP Wave Attributes</a></div><div class="wp-workCard_item"><span>60th EAGE Conference and Exhibition</span><span>, 1998</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6fc4bdd881a45f5d416b9c9191ab6092" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:78054957,&quot;asset_id&quot;:67116157,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/78054957/download_file?st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="67116157"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="67116157"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 67116157; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=67116157]").text(description); $(".js-view-count[data-work-id=67116157]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 67116157; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='67116157']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 67116157, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6fc4bdd881a45f5d416b9c9191ab6092" } } $('.js-work-strip[data-work-id=67116157]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":67116157,"title":"Interval Velocities Inversion Using NIP Wave Attributes","translated_title":"","metadata":{"publisher":"European Association of Geoscientists \u0026 Engineers","publication_date":{"day":null,"month":null,"year":1998,"errors":{}},"publication_name":"60th EAGE Conference and Exhibition"},"translated_abstract":null,"internal_url":"https://www.academia.edu/67116157/Interval_Velocities_Inversion_Using_NIP_Wave_Attributes","translated_internal_url":"","created_at":"2022-01-04T11:22:12.163-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":12143756,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":78054957,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78054957/thumbnails/1.jpg","file_name":"download.pdf","download_url":"https://www.academia.edu/attachments/78054957/download_file?st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Interval_Velocities_Inversion_Using_NIP.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78054957/download-libre.pdf?1641324264=\u0026response-content-disposition=attachment%3B+filename%3DInterval_Velocities_Inversion_Using_NIP.pdf\u0026Expires=1732467648\u0026Signature=N2pl5YOauyKGqN8fuZrdb-117erQEKQhk3OW~OciMBG78zH3RiYFY5EqImk6U5pNeiiYOGZy8JOxRN0QIpnv87OJjEBxuMtLh7Fsob3fwGE62ZC7-6wmjddux8s983FoMbivg-LeoUkb7lvaCeylAo9xigTXRLlT-8GS98L55CtdpUewVarsQqXT0oJtGvOZViTQSpoGTcWiXf5moGE1WPteur17XapLlPp-nY4zMr4f1T4l0Q4Cj86SN1LDc8zn7qnIXTcz2xYRrmJ41fW5v7Uv9oaXGyJRJVuC-~GLWILCaQ-w1wvabj37uK4sMq~0MWVB3wKwLfWw0GH3jRh77Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Interval_Velocities_Inversion_Using_NIP_Wave_Attributes","translated_slug":"","page_count":2,"language":"en","content_type":"Work","owner":{"id":12143756,"first_name":"João Carlos Ribeiro","middle_initials":null,"last_name":"Cruz","page_name":"JoãoCarlosRibeiroCruz","domain_name":"independent","created_at":"2014-05-18T04:50:08.703-07:00","display_name":"João Carlos Ribeiro Cruz","url":"https://independent.academia.edu/Jo%C3%A3oCarlosRibeiroCruz"},"attachments":[{"id":78054957,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78054957/thumbnails/1.jpg","file_name":"download.pdf","download_url":"https://www.academia.edu/attachments/78054957/download_file?st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Interval_Velocities_Inversion_Using_NIP.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78054957/download-libre.pdf?1641324264=\u0026response-content-disposition=attachment%3B+filename%3DInterval_Velocities_Inversion_Using_NIP.pdf\u0026Expires=1732467648\u0026Signature=N2pl5YOauyKGqN8fuZrdb-117erQEKQhk3OW~OciMBG78zH3RiYFY5EqImk6U5pNeiiYOGZy8JOxRN0QIpnv87OJjEBxuMtLh7Fsob3fwGE62ZC7-6wmjddux8s983FoMbivg-LeoUkb7lvaCeylAo9xigTXRLlT-8GS98L55CtdpUewVarsQqXT0oJtGvOZViTQSpoGTcWiXf5moGE1WPteur17XapLlPp-nY4zMr4f1T4l0Q4Cj86SN1LDc8zn7qnIXTcz2xYRrmJ41fW5v7Uv9oaXGyJRJVuC-~GLWILCaQ-w1wvabj37uK4sMq~0MWVB3wKwLfWw0GH3jRh77Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":78054956,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78054956/thumbnails/1.jpg","file_name":"download.pdf","download_url":"https://www.academia.edu/attachments/78054956/download_file","bulk_download_file_name":"Interval_Velocities_Inversion_Using_NIP.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78054956/download-libre.pdf?1641324264=\u0026response-content-disposition=attachment%3B+filename%3DInterval_Velocities_Inversion_Using_NIP.pdf\u0026Expires=1732467648\u0026Signature=gSFg9XZEl6JessWsWEbSTwKn1Fnj-yFR~ScdDXn62yRxRIDMO3mEOH8LmXsBoIqwUWQsH5Nnbr1LfsOi0TadZBp6Y~wysQQnOb5KmTpsBNxcNZMNMAzHRBXx7ckvc0ssQ-j2zI0MBAuH8DKZBqnihEdEuEq7r20cTmnwtDkQagh3ndgQhbRFRaYikOpskRlYaA1f4Gh6CmajP~GfRuiI68Y3lmJc7BT~enqfwODEMTRMihSbv6B3Tag5oRZ0yzDSj5UEeert9jFLD~ZwJP5Nej~4FGd10aInLi5PuByyFCAEooGnG4QXglhVJdxjEGq8BlKyySOSPmtVVoKxvha~ig__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"}],"urls":[{"id":16071177,"url":"http://www.earthdoc.org/publication/download/?publication=17107"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="67116156"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/67116156/BOTOSEIS_A_new_Seismic_Unix_based_interactive_platform_for_seismic_data_processing"><img alt="Research paper thumbnail of BOTOSEIS: A new Seismic Unix based interactive platform for seismic data processing" class="work-thumbnail" src="https://attachments.academia-assets.com/78055096/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/67116156/BOTOSEIS_A_new_Seismic_Unix_based_interactive_platform_for_seismic_data_processing">BOTOSEIS: A new Seismic Unix based interactive platform for seismic data processing</a></div><div class="wp-workCard_item"><span>11th International Congress of the Brazilian Geophysical Society &amp;amp; EXPOGEF 2009, Salvador, Bahia, Brazil, 24-28 August 2009</span><span>, 2009</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="430078a65b690eed72cbb24bb9f85c31" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:78055096,&quot;asset_id&quot;:67116156,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/78055096/download_file?st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="67116156"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="67116156"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 67116156; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=67116156]").text(description); $(".js-view-count[data-work-id=67116156]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 67116156; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='67116156']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 67116156, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "430078a65b690eed72cbb24bb9f85c31" } } $('.js-work-strip[data-work-id=67116156]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":67116156,"title":"BOTOSEIS: A new Seismic Unix based interactive platform for seismic data processing","translated_title":"","metadata":{"publisher":"Society of Exploration Geophysicists and Brazilian Geophysical Society","publication_date":{"day":null,"month":null,"year":2009,"errors":{}},"publication_name":"11th International Congress of the Brazilian Geophysical Society \u0026amp; EXPOGEF 2009, Salvador, Bahia, Brazil, 24-28 August 2009"},"translated_abstract":null,"internal_url":"https://www.academia.edu/67116156/BOTOSEIS_A_new_Seismic_Unix_based_interactive_platform_for_seismic_data_processing","translated_internal_url":"","created_at":"2022-01-04T11:22:12.059-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":12143756,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":78055096,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78055096/thumbnails/1.jpg","file_name":"wit2008-lima.pdf","download_url":"https://www.academia.edu/attachments/78055096/download_file?st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"BOTOSEIS_A_new_Seismic_Unix_based_intera.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78055096/wit2008-lima-libre.pdf?1641324257=\u0026response-content-disposition=attachment%3B+filename%3DBOTOSEIS_A_new_Seismic_Unix_based_intera.pdf\u0026Expires=1732467648\u0026Signature=F4-XI3pwcq0n42ILPORys6MOABCzn~2tAMd-brf0sCKtrH-cl9pB-6gd4wZsp4VntdiJSvWIEMrU4a5XWrg~gRPfbf54rUIb1QNxJ3dB2QS79aw1nQQ8vneJWzEX6CR2yRyT3pF3aBdrfJ2XpuUFQmgHFdNcyP~UECXI~ahds4iqJ-SpysDl6EqD3ZmOQYc-KNJ-ikcIOBM-sSLaEvHymjX-fVugQaQLKNmWsP8Zlh-D2mPcgBHVVI7qBMTPQ3Dd6lgKTCP~4EUZcGP9naDCdOf9xnDmjH~TiAbXWfM3-6Ovhex-puC-mdvjeYdRdGtWpAHso4a4SOEjMMUZvlAMmQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"BOTOSEIS_A_new_Seismic_Unix_based_interactive_platform_for_seismic_data_processing","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":12143756,"first_name":"João Carlos Ribeiro","middle_initials":null,"last_name":"Cruz","page_name":"JoãoCarlosRibeiroCruz","domain_name":"independent","created_at":"2014-05-18T04:50:08.703-07:00","display_name":"João Carlos Ribeiro Cruz","url":"https://independent.academia.edu/Jo%C3%A3oCarlosRibeiroCruz"},"attachments":[{"id":78055096,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78055096/thumbnails/1.jpg","file_name":"wit2008-lima.pdf","download_url":"https://www.academia.edu/attachments/78055096/download_file?st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"BOTOSEIS_A_new_Seismic_Unix_based_intera.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78055096/wit2008-lima-libre.pdf?1641324257=\u0026response-content-disposition=attachment%3B+filename%3DBOTOSEIS_A_new_Seismic_Unix_based_intera.pdf\u0026Expires=1732467648\u0026Signature=F4-XI3pwcq0n42ILPORys6MOABCzn~2tAMd-brf0sCKtrH-cl9pB-6gd4wZsp4VntdiJSvWIEMrU4a5XWrg~gRPfbf54rUIb1QNxJ3dB2QS79aw1nQQ8vneJWzEX6CR2yRyT3pF3aBdrfJ2XpuUFQmgHFdNcyP~UECXI~ahds4iqJ-SpysDl6EqD3ZmOQYc-KNJ-ikcIOBM-sSLaEvHymjX-fVugQaQLKNmWsP8Zlh-D2mPcgBHVVI7qBMTPQ3Dd6lgKTCP~4EUZcGP9naDCdOf9xnDmjH~TiAbXWfM3-6Ovhex-puC-mdvjeYdRdGtWpAHso4a4SOEjMMUZvlAMmQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":403,"name":"Gemology","url":"https://www.academia.edu/Documents/in/Gemology"},{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":408,"name":"Geomorphology","url":"https://www.academia.edu/Documents/in/Geomorphology"},{"id":410,"name":"Glaciology","url":"https://www.academia.edu/Documents/in/Glaciology"},{"id":411,"name":"Hydrogeology","url":"https://www.academia.edu/Documents/in/Hydrogeology"},{"id":414,"name":"Mineralogy","url":"https://www.academia.edu/Documents/in/Mineralogy"},{"id":417,"name":"Paleontology","url":"https://www.academia.edu/Documents/in/Paleontology"},{"id":421,"name":"Soil Science","url":"https://www.academia.edu/Documents/in/Soil_Science"},{"id":1034,"name":"Stratigraphy","url":"https://www.academia.edu/Documents/in/Stratigraphy"},{"id":2403,"name":"Environmental Geology","url":"https://www.academia.edu/Documents/in/Environmental_Geology"},{"id":2404,"name":"Petrology","url":"https://www.academia.edu/Documents/in/Petrology"},{"id":2406,"name":"Economic Geology","url":"https://www.academia.edu/Documents/in/Economic_Geology"},{"id":3869,"name":"Geobiology","url":"https://www.academia.edu/Documents/in/Geobiology"},{"id":15989,"name":"Igneous petrology","url":"https://www.academia.edu/Documents/in/Igneous_petrology"},{"id":20564,"name":"Engineering Geology","url":"https://www.academia.edu/Documents/in/Engineering_Geology"},{"id":64108,"name":"Paleogeography","url":"https://www.academia.edu/Documents/in/Paleogeography"},{"id":191873,"name":"Magmatism","url":"https://www.academia.edu/Documents/in/Magmatism"},{"id":505937,"name":"Regional Geology","url":"https://www.academia.edu/Documents/in/Regional_Geology"},{"id":581258,"name":"Hazards","url":"https://www.academia.edu/Documents/in/Hazards"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="67116155"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/67116155/Reflection_Coefficient_Determination_Using_Eigenwavefront_Attributes"><img alt="Research paper thumbnail of Reflection Coefficient Determination Using Eigenwavefront Attributes" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/67116155/Reflection_Coefficient_Determination_Using_Eigenwavefront_Attributes">Reflection Coefficient Determination Using Eigenwavefront Attributes</a></div><div class="wp-workCard_item"><span>60th EAGE Conference and Exhibition</span><span>, 1998</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper the reflection coefficient map is obtained applying a geometrical spreading correct...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper the reflection coefficient map is obtained applying a geometrical spreading correction factor to the principal component of the primary reflection wavefields, corresponding to seismic traces into zero-offset configuration data.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="67116155"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="67116155"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 67116155; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=67116155]").text(description); $(".js-view-count[data-work-id=67116155]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 67116155; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='67116155']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 67116155, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=67116155]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":67116155,"title":"Reflection Coefficient Determination Using Eigenwavefront Attributes","translated_title":"","metadata":{"abstract":"In this paper the reflection coefficient map is obtained applying a geometrical spreading correction factor to the principal component of the primary reflection wavefields, corresponding to seismic traces into zero-offset configuration data.","publication_date":{"day":null,"month":null,"year":1998,"errors":{}},"publication_name":"60th EAGE Conference and Exhibition"},"translated_abstract":"In this paper the reflection coefficient map is obtained applying a geometrical spreading correction factor to the principal component of the primary reflection wavefields, corresponding to seismic traces into zero-offset configuration data.","internal_url":"https://www.academia.edu/67116155/Reflection_Coefficient_Determination_Using_Eigenwavefront_Attributes","translated_internal_url":"","created_at":"2022-01-04T11:22:11.956-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":12143756,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Reflection_Coefficient_Determination_Using_Eigenwavefront_Attributes","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":12143756,"first_name":"João Carlos Ribeiro","middle_initials":null,"last_name":"Cruz","page_name":"JoãoCarlosRibeiroCruz","domain_name":"independent","created_at":"2014-05-18T04:50:08.703-07:00","display_name":"João Carlos Ribeiro Cruz","url":"https://independent.academia.edu/Jo%C3%A3oCarlosRibeiroCruz"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="67116154"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/67116154/Depth_mapping_of_stacked_amplitudes_along_an_attribute_based_ZO_stacking_operator"><img alt="Research paper thumbnail of Depth mapping of stacked amplitudes along an attribute based ZO stacking operator" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/67116154/Depth_mapping_of_stacked_amplitudes_along_an_attribute_based_ZO_stacking_operator">Depth mapping of stacked amplitudes along an attribute based ZO stacking operator</a></div><div class="wp-workCard_item"><span>Seg Technical Program Expanded Abstracts</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The Common-Reflection-Surface (CRS) stack method produces zerooffset (ZO) sections with high sign...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The Common-Reflection-Surface (CRS) stack method produces zerooffset (ZO) sections with high signal-to-noise ratio and three useful kinematic wavefield attributes from multi-coverage seismic data. With the knowledge of the near surface velocity only, the CRS stack is based on the determination of these attributes by means of automatic search processes based on coherency analysis. These kinematic CRS wavefield attributes can be used for several seismic applications. In this work we propose a procedure for mapping the stacked amplitudes along the CRS operator in the ZO section to depth domain. Then, for the ZO plane, the kinematic attributes are used to calculate the stacking operator and to determine the projected first Fresnel zone to be used to restrict the size of the CRS stacking operator. Similar to preor post-stack depth migrations, this mapping procedure also requires the a priori unknown velocity model. This mapping procedure is illustrated by means of applying it to a synthetic data of a simple model example.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="67116154"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="67116154"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 67116154; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=67116154]").text(description); $(".js-view-count[data-work-id=67116154]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 67116154; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='67116154']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 67116154, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=67116154]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":67116154,"title":"Depth mapping of stacked amplitudes along an attribute based ZO stacking operator","translated_title":"","metadata":{"abstract":"The Common-Reflection-Surface (CRS) stack method produces zerooffset (ZO) sections with high signal-to-noise ratio and three useful kinematic wavefield attributes from multi-coverage seismic data. With the knowledge of the near surface velocity only, the CRS stack is based on the determination of these attributes by means of automatic search processes based on coherency analysis. These kinematic CRS wavefield attributes can be used for several seismic applications. In this work we propose a procedure for mapping the stacked amplitudes along the CRS operator in the ZO section to depth domain. Then, for the ZO plane, the kinematic attributes are used to calculate the stacking operator and to determine the projected first Fresnel zone to be used to restrict the size of the CRS stacking operator. Similar to preor post-stack depth migrations, this mapping procedure also requires the a priori unknown velocity model. This mapping procedure is illustrated by means of applying it to a synthetic data of a simple model example.","publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"Seg Technical Program Expanded Abstracts"},"translated_abstract":"The Common-Reflection-Surface (CRS) stack method produces zerooffset (ZO) sections with high signal-to-noise ratio and three useful kinematic wavefield attributes from multi-coverage seismic data. With the knowledge of the near surface velocity only, the CRS stack is based on the determination of these attributes by means of automatic search processes based on coherency analysis. These kinematic CRS wavefield attributes can be used for several seismic applications. In this work we propose a procedure for mapping the stacked amplitudes along the CRS operator in the ZO section to depth domain. Then, for the ZO plane, the kinematic attributes are used to calculate the stacking operator and to determine the projected first Fresnel zone to be used to restrict the size of the CRS stacking operator. Similar to preor post-stack depth migrations, this mapping procedure also requires the a priori unknown velocity model. This mapping procedure is illustrated by means of applying it to a synthetic data of a simple model example.","internal_url":"https://www.academia.edu/67116154/Depth_mapping_of_stacked_amplitudes_along_an_attribute_based_ZO_stacking_operator","translated_internal_url":"","created_at":"2022-01-04T11:22:11.798-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":12143756,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Depth_mapping_of_stacked_amplitudes_along_an_attribute_based_ZO_stacking_operator","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":12143756,"first_name":"João Carlos Ribeiro","middle_initials":null,"last_name":"Cruz","page_name":"JoãoCarlosRibeiroCruz","domain_name":"independent","created_at":"2014-05-18T04:50:08.703-07:00","display_name":"João Carlos Ribeiro Cruz","url":"https://independent.academia.edu/Jo%C3%A3oCarlosRibeiroCruz"},"attachments":[],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":543415,"name":"Depth Map","url":"https://www.academia.edu/Documents/in/Depth_Map"}],"urls":[{"id":16071176,"url":"http://link.aip.org/link/SEGEAB/v25/i1/p2629/s1\u0026Agg=doi"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="67116153"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/67116153/Numerical_analysis_of_2_5_D_true_amplitude_diffraction_stack_migration"><img alt="Research paper thumbnail of Numerical analysis of 2.5-D true-amplitude diffraction stack migration" class="work-thumbnail" src="https://attachments.academia-assets.com/78055060/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/67116153/Numerical_analysis_of_2_5_D_true_amplitude_diffraction_stack_migration">Numerical analysis of 2.5-D true-amplitude diffraction stack migration</a></div><div class="wp-workCard_item"><span>Journal of Applied Geophysics</span><span>, 2000</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6cb90040b7955df68660821b41f36958" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:78055060,&quot;asset_id&quot;:67116153,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/78055060/download_file?st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="67116153"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="67116153"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 67116153; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=67116153]").text(description); $(".js-view-count[data-work-id=67116153]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 67116153; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='67116153']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 67116153, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6cb90040b7955df68660821b41f36958" } } $('.js-work-strip[data-work-id=67116153]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":67116153,"title":"Numerical analysis of 2.5-D true-amplitude diffraction stack migration","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2000,"errors":{}},"publication_name":"Journal of Applied Geophysics"},"translated_abstract":null,"internal_url":"https://www.academia.edu/67116153/Numerical_analysis_of_2_5_D_true_amplitude_diffraction_stack_migration","translated_internal_url":"","created_at":"2022-01-04T11:22:11.145-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":12143756,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":78055060,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78055060/thumbnails/1.jpg","file_name":"1255.pdf","download_url":"https://www.academia.edu/attachments/78055060/download_file?st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Numerical_analysis_of_2_5_D_true_amplitu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78055060/1255-libre.pdf?1641324261=\u0026response-content-disposition=attachment%3B+filename%3DNumerical_analysis_of_2_5_D_true_amplitu.pdf\u0026Expires=1732467648\u0026Signature=cw5MMzinnSlq2Zg02Rxs564kZaqqaVShOlZRaKGAn85dcI855dCQ8fn0IgQwixnoEkcAlolRgAPg6yqvlfMzy6hOK-5yFH6elmpE82crXTkHlY2k~UUEoRociJ9kh2fJi9Bf0lDzIMPAe3S26ChpxOKy0hDvnE8oz4WZPYwaKHK9IqnK0XHdfe9J9cQaavBlh9MQtR04Cnq4sF4o6qKZ7WRzmO2knBR0c0ljjW6ps~dVbLg98ilDNmIB1idgZVL4rbNV7TcMrPKRAgWt0arZHb2v3nYviEmmIjChSf6jPq6bn6MPenjgvVU1weiiyYw2uvheTgZDeGXewWFHT-PIhg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Numerical_analysis_of_2_5_D_true_amplitude_diffraction_stack_migration","translated_slug":"","page_count":14,"language":"en","content_type":"Work","owner":{"id":12143756,"first_name":"João Carlos Ribeiro","middle_initials":null,"last_name":"Cruz","page_name":"JoãoCarlosRibeiroCruz","domain_name":"independent","created_at":"2014-05-18T04:50:08.703-07:00","display_name":"João Carlos Ribeiro Cruz","url":"https://independent.academia.edu/Jo%C3%A3oCarlosRibeiroCruz"},"attachments":[{"id":78055060,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78055060/thumbnails/1.jpg","file_name":"1255.pdf","download_url":"https://www.academia.edu/attachments/78055060/download_file?st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Numerical_analysis_of_2_5_D_true_amplitu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78055060/1255-libre.pdf?1641324261=\u0026response-content-disposition=attachment%3B+filename%3DNumerical_analysis_of_2_5_D_true_amplitu.pdf\u0026Expires=1732467648\u0026Signature=cw5MMzinnSlq2Zg02Rxs564kZaqqaVShOlZRaKGAn85dcI855dCQ8fn0IgQwixnoEkcAlolRgAPg6yqvlfMzy6hOK-5yFH6elmpE82crXTkHlY2k~UUEoRociJ9kh2fJi9Bf0lDzIMPAe3S26ChpxOKy0hDvnE8oz4WZPYwaKHK9IqnK0XHdfe9J9cQaavBlh9MQtR04Cnq4sF4o6qKZ7WRzmO2knBR0c0ljjW6ps~dVbLg98ilDNmIB1idgZVL4rbNV7TcMrPKRAgWt0arZHb2v3nYviEmmIjChSf6jPq6bn6MPenjgvVU1weiiyYw2uvheTgZDeGXewWFHT-PIhg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":409,"name":"Geophysics","url":"https://www.academia.edu/Documents/in/Geophysics"},{"id":4850,"name":"Migration","url":"https://www.academia.edu/Documents/in/Migration"},{"id":6201,"name":"Imaging","url":"https://www.academia.edu/Documents/in/Imaging"},{"id":12022,"name":"Numerical Analysis","url":"https://www.academia.edu/Documents/in/Numerical_Analysis"},{"id":61623,"name":"Applied Geophysics","url":"https://www.academia.edu/Documents/in/Applied_Geophysics"},{"id":162010,"name":"Geomatic Engineering","url":"https://www.academia.edu/Documents/in/Geomatic_Engineering"},{"id":229394,"name":"Inverse Method","url":"https://www.academia.edu/Documents/in/Inverse_Method"},{"id":292710,"name":"Inversion","url":"https://www.academia.edu/Documents/in/Inversion"},{"id":724801,"name":"Ray","url":"https://www.academia.edu/Documents/in/Ray"},{"id":1553474,"name":"Reflection Coefficient","url":"https://www.academia.edu/Documents/in/Reflection_Coefficient"},{"id":2028944,"name":"Integral Operator","url":"https://www.academia.edu/Documents/in/Integral_Operator"},{"id":2513364,"name":"Radius of Curvature","url":"https://www.academia.edu/Documents/in/Radius_of_Curvature"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="67115799"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/67115799/Invers%C3%A3o_de_dados_de_s%C3%ADsmica_de_refra%C3%A7%C3%A3o_profunda_a_partir_da_curva_tempo_dist%C3%A2ncia"><img alt="Research paper thumbnail of Inversão de dados de sísmica de refração profunda a partir da curva tempo-distância" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/67115799/Invers%C3%A3o_de_dados_de_s%C3%ADsmica_de_refra%C3%A7%C3%A3o_profunda_a_partir_da_curva_tempo_dist%C3%A2ncia">Inversão de dados de sísmica de refração profunda a partir da curva tempo-distância</a></div><div class="wp-workCard_item"><span>Revista Brasileira de Geofísica</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">O trabalho em pauta tem como objetivo o modelamento da crosta, atraves da inversao de dados de re...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">O trabalho em pauta tem como objetivo o modelamento da crosta, atraves da inversao de dados de refracao sismica profunda, segundo camadas planas horizontais lateralmente homogeneas, sobre um semi-espaco. O modelo direto e dado pela expressao analitica da curva tempo-distância como uma funcao que depende da distância fonte estacao e do vetor de parâmetros velocidades e espessuras de cada camada, calculado segundo as trajetorias do raio sismico, regidas pela Lei de Snell. O calculo dos tempos de chegada por este procedimento exige a utilizacao de um modelo cujas velocidades sejam crescente com a profundidade, de modo que a ocorrencia da camada de baixa velocidade (CBV) e contornada pela reparametrizacao do modelo, levando-se em conta o fato de que o topo da CBV funciona apenas como um refletor do raio sismico, e nao como refrator. A metodologia de inversao utilizada tem em vista nao so a determinacao das solucoes possiveis, mas tambem a realizacao de uma analise sobre as causas responsaveis pela ambiguidade do problema. A regiao de pesquisa das provaveis solucoes e vinculada segundo limites superiores e inferiores para cada parâmetro procurado e pelo estabelecimento de limites superiores para os valores de distâncias criticas, calculadas a partir do vetor de parâmetros. O processo de inversao e feito utilizando-se uma tecnica de otimizacao do ajuste de curvas atraves da busca direta no espaco dos parâmetros, denominado COMPLEX. Esta tecnica apresenta a vantagem de poder ser utiliada com qualquer funcao objeto e ser bastante pratica na obtencao de multiplas solucoes do problema. Devido a curva tempo-distância corresponder ao caso de uma multi-funcao, o algoritmo foi adaptado de modo a minimizar simultaneamente varias funcoes objeto, com vinculos nos parâmetros. A inversao e feita de modo a se obter um conjunto de solucoes representativas do universo existente. Por sua vez, a analise da ambiguidade e realizada pela analise fatorial modo-Q, atraves da qual e possivel se caracterizar as propriedades comuns existentes no elenco das solucoes analisadas. Os testes com dados sinteticos e reais foram feitos tendo como aproximacao inicial ao processo de inversao, os valores de velocidades e espessuras calculados diretamente da interpretacao visual do sismograma. Para a realizacao dos primeiros, utilizou-se sismogramas calculados pelo metodo da refletividade, segundo diferentes modelos. Por sua vez, os testes com dados reais foram realizados utilizando-se dados extraidos de um dos sismogramas coletados pelo projeto Lithospheric Seismic Profile in Britain (LISPB), na regiao norte da Gra-Bretanha. Em todos os testes foi verificado que a geometria do modelo possui um maior peso na ambiguidade do problema, enquanto os parâmetros fisicos apresentam apenas suaves variacoes, no conjunto das solucoes obtidas. ABSTRACT Inversion of deep seismic refraction data through time-distance curve ¾ The aim of this thesis is to obtain crustal model through the inversion of deep seismic refraction data considering lateraly homogeneous horizontal plain layers over a half-space. The direct model is given by analytic expression for the travel-time curve, as a function that depends on the source-station distance and on the array of parameters, formed by velocity and thickness of each layer. The expression is obtained from the trajectory of the seismic ray by Snell&amp;#39;s Law. The calculation of the arrival time for seismic refraction by this method takes into account a model with velocities increasing with depth. The occurrence of low velocity layers (LVL) are solved as a model reparametrization, taking into account the fact that top boundary of the low velocity layer is only a reflector, and not a refractor of seismic waves. The inversion method is used to solve for the possible solutions, and also to perform an analysis about the ambiguity of the problem. The search region of probable solutions is constrained by high and lower limits of each parameter considered, and by high limits of each critical distance, calculated using the array of parameters. The inversion process used is an optimization technique for curve fitting corresponding to a direct search in the parameter space, called COMPLEX. This technique presents the advantage of using any objective function, and as being practical in obtaining different solutions for the problem. As the travel-time curve is a multi-function, the algorithm was adapted to minimize several objective functions simultaneously, with constraints. The inversion process is formulated to obtain a representative group of solutions of the problem. Afterwards, the analysis of ambiguity is made by Q-mode factor analysis, through which is possible to find the common properties of the group of solutions. Tests with synthetic and real data were made having as initial approximation to the inversion process the velocity and thickness values calculated by the straightforward visual interpretation of the seismograms. For the…</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="67115799"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="67115799"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 67115799; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=67115799]").text(description); $(".js-view-count[data-work-id=67115799]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 67115799; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='67115799']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 67115799, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=67115799]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":67115799,"title":"Inversão de dados de sísmica de refração profunda a partir da curva tempo-distância","translated_title":"","metadata":{"abstract":"O trabalho em pauta tem como objetivo o modelamento da crosta, atraves da inversao de dados de refracao sismica profunda, segundo camadas planas horizontais lateralmente homogeneas, sobre um semi-espaco. O modelo direto e dado pela expressao analitica da curva tempo-distância como uma funcao que depende da distância fonte estacao e do vetor de parâmetros velocidades e espessuras de cada camada, calculado segundo as trajetorias do raio sismico, regidas pela Lei de Snell. O calculo dos tempos de chegada por este procedimento exige a utilizacao de um modelo cujas velocidades sejam crescente com a profundidade, de modo que a ocorrencia da camada de baixa velocidade (CBV) e contornada pela reparametrizacao do modelo, levando-se em conta o fato de que o topo da CBV funciona apenas como um refletor do raio sismico, e nao como refrator. A metodologia de inversao utilizada tem em vista nao so a determinacao das solucoes possiveis, mas tambem a realizacao de uma analise sobre as causas responsaveis pela ambiguidade do problema. A regiao de pesquisa das provaveis solucoes e vinculada segundo limites superiores e inferiores para cada parâmetro procurado e pelo estabelecimento de limites superiores para os valores de distâncias criticas, calculadas a partir do vetor de parâmetros. O processo de inversao e feito utilizando-se uma tecnica de otimizacao do ajuste de curvas atraves da busca direta no espaco dos parâmetros, denominado COMPLEX. Esta tecnica apresenta a vantagem de poder ser utiliada com qualquer funcao objeto e ser bastante pratica na obtencao de multiplas solucoes do problema. Devido a curva tempo-distância corresponder ao caso de uma multi-funcao, o algoritmo foi adaptado de modo a minimizar simultaneamente varias funcoes objeto, com vinculos nos parâmetros. A inversao e feita de modo a se obter um conjunto de solucoes representativas do universo existente. Por sua vez, a analise da ambiguidade e realizada pela analise fatorial modo-Q, atraves da qual e possivel se caracterizar as propriedades comuns existentes no elenco das solucoes analisadas. Os testes com dados sinteticos e reais foram feitos tendo como aproximacao inicial ao processo de inversao, os valores de velocidades e espessuras calculados diretamente da interpretacao visual do sismograma. Para a realizacao dos primeiros, utilizou-se sismogramas calculados pelo metodo da refletividade, segundo diferentes modelos. Por sua vez, os testes com dados reais foram realizados utilizando-se dados extraidos de um dos sismogramas coletados pelo projeto Lithospheric Seismic Profile in Britain (LISPB), na regiao norte da Gra-Bretanha. Em todos os testes foi verificado que a geometria do modelo possui um maior peso na ambiguidade do problema, enquanto os parâmetros fisicos apresentam apenas suaves variacoes, no conjunto das solucoes obtidas. ABSTRACT Inversion of deep seismic refraction data through time-distance curve ¾ The aim of this thesis is to obtain crustal model through the inversion of deep seismic refraction data considering lateraly homogeneous horizontal plain layers over a half-space. The direct model is given by analytic expression for the travel-time curve, as a function that depends on the source-station distance and on the array of parameters, formed by velocity and thickness of each layer. The expression is obtained from the trajectory of the seismic ray by Snell\u0026#39;s Law. The calculation of the arrival time for seismic refraction by this method takes into account a model with velocities increasing with depth. The occurrence of low velocity layers (LVL) are solved as a model reparametrization, taking into account the fact that top boundary of the low velocity layer is only a reflector, and not a refractor of seismic waves. The inversion method is used to solve for the possible solutions, and also to perform an analysis about the ambiguity of the problem. The search region of probable solutions is constrained by high and lower limits of each parameter considered, and by high limits of each critical distance, calculated using the array of parameters. The inversion process used is an optimization technique for curve fitting corresponding to a direct search in the parameter space, called COMPLEX. This technique presents the advantage of using any objective function, and as being practical in obtaining different solutions for the problem. As the travel-time curve is a multi-function, the algorithm was adapted to minimize several objective functions simultaneously, with constraints. The inversion process is formulated to obtain a representative group of solutions of the problem. Afterwards, the analysis of ambiguity is made by Q-mode factor analysis, through which is possible to find the common properties of the group of solutions. Tests with synthetic and real data were made having as initial approximation to the inversion process the velocity and thickness values calculated by the straightforward visual interpretation of the seismograms. For the…","publication_name":"Revista Brasileira de Geofísica"},"translated_abstract":"O trabalho em pauta tem como objetivo o modelamento da crosta, atraves da inversao de dados de refracao sismica profunda, segundo camadas planas horizontais lateralmente homogeneas, sobre um semi-espaco. O modelo direto e dado pela expressao analitica da curva tempo-distância como uma funcao que depende da distância fonte estacao e do vetor de parâmetros velocidades e espessuras de cada camada, calculado segundo as trajetorias do raio sismico, regidas pela Lei de Snell. O calculo dos tempos de chegada por este procedimento exige a utilizacao de um modelo cujas velocidades sejam crescente com a profundidade, de modo que a ocorrencia da camada de baixa velocidade (CBV) e contornada pela reparametrizacao do modelo, levando-se em conta o fato de que o topo da CBV funciona apenas como um refletor do raio sismico, e nao como refrator. A metodologia de inversao utilizada tem em vista nao so a determinacao das solucoes possiveis, mas tambem a realizacao de uma analise sobre as causas responsaveis pela ambiguidade do problema. A regiao de pesquisa das provaveis solucoes e vinculada segundo limites superiores e inferiores para cada parâmetro procurado e pelo estabelecimento de limites superiores para os valores de distâncias criticas, calculadas a partir do vetor de parâmetros. O processo de inversao e feito utilizando-se uma tecnica de otimizacao do ajuste de curvas atraves da busca direta no espaco dos parâmetros, denominado COMPLEX. Esta tecnica apresenta a vantagem de poder ser utiliada com qualquer funcao objeto e ser bastante pratica na obtencao de multiplas solucoes do problema. Devido a curva tempo-distância corresponder ao caso de uma multi-funcao, o algoritmo foi adaptado de modo a minimizar simultaneamente varias funcoes objeto, com vinculos nos parâmetros. A inversao e feita de modo a se obter um conjunto de solucoes representativas do universo existente. Por sua vez, a analise da ambiguidade e realizada pela analise fatorial modo-Q, atraves da qual e possivel se caracterizar as propriedades comuns existentes no elenco das solucoes analisadas. Os testes com dados sinteticos e reais foram feitos tendo como aproximacao inicial ao processo de inversao, os valores de velocidades e espessuras calculados diretamente da interpretacao visual do sismograma. Para a realizacao dos primeiros, utilizou-se sismogramas calculados pelo metodo da refletividade, segundo diferentes modelos. Por sua vez, os testes com dados reais foram realizados utilizando-se dados extraidos de um dos sismogramas coletados pelo projeto Lithospheric Seismic Profile in Britain (LISPB), na regiao norte da Gra-Bretanha. Em todos os testes foi verificado que a geometria do modelo possui um maior peso na ambiguidade do problema, enquanto os parâmetros fisicos apresentam apenas suaves variacoes, no conjunto das solucoes obtidas. ABSTRACT Inversion of deep seismic refraction data through time-distance curve ¾ The aim of this thesis is to obtain crustal model through the inversion of deep seismic refraction data considering lateraly homogeneous horizontal plain layers over a half-space. The direct model is given by analytic expression for the travel-time curve, as a function that depends on the source-station distance and on the array of parameters, formed by velocity and thickness of each layer. The expression is obtained from the trajectory of the seismic ray by Snell\u0026#39;s Law. The calculation of the arrival time for seismic refraction by this method takes into account a model with velocities increasing with depth. The occurrence of low velocity layers (LVL) are solved as a model reparametrization, taking into account the fact that top boundary of the low velocity layer is only a reflector, and not a refractor of seismic waves. The inversion method is used to solve for the possible solutions, and also to perform an analysis about the ambiguity of the problem. The search region of probable solutions is constrained by high and lower limits of each parameter considered, and by high limits of each critical distance, calculated using the array of parameters. The inversion process used is an optimization technique for curve fitting corresponding to a direct search in the parameter space, called COMPLEX. This technique presents the advantage of using any objective function, and as being practical in obtaining different solutions for the problem. As the travel-time curve is a multi-function, the algorithm was adapted to minimize several objective functions simultaneously, with constraints. The inversion process is formulated to obtain a representative group of solutions of the problem. Afterwards, the analysis of ambiguity is made by Q-mode factor analysis, through which is possible to find the common properties of the group of solutions. Tests with synthetic and real data were made having as initial approximation to the inversion process the velocity and thickness values calculated by the straightforward visual interpretation of the seismograms. For the…","internal_url":"https://www.academia.edu/67115799/Invers%C3%A3o_de_dados_de_s%C3%ADsmica_de_refra%C3%A7%C3%A3o_profunda_a_partir_da_curva_tempo_dist%C3%A2ncia","translated_internal_url":"","created_at":"2022-01-04T11:20:58.851-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":12143756,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Inversão_de_dados_de_sísmica_de_refração_profunda_a_partir_da_curva_tempo_distância","translated_slug":"","page_count":null,"language":"pt","content_type":"Work","owner":{"id":12143756,"first_name":"João Carlos Ribeiro","middle_initials":null,"last_name":"Cruz","page_name":"JoãoCarlosRibeiroCruz","domain_name":"independent","created_at":"2014-05-18T04:50:08.703-07:00","display_name":"João Carlos Ribeiro Cruz","url":"https://independent.academia.edu/Jo%C3%A3oCarlosRibeiroCruz"},"attachments":[],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="50020308"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/50020308/Sensibility_Analysis_Of_The_Multifocusing_Traveltime_Approximation"><img alt="Research paper thumbnail of Sensibility Analysis Of The Multifocusing Traveltime Approximation" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/50020308/Sensibility_Analysis_Of_The_Multifocusing_Traveltime_Approximation">Sensibility Analysis Of The Multifocusing Traveltime Approximation</a></div><div class="wp-workCard_item"><span>6th International Congress of the Brazilian Geophysical Society</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="50020308"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="50020308"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 50020308; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=50020308]").text(description); $(".js-view-count[data-work-id=50020308]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 50020308; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='50020308']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 50020308, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=50020308]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":50020308,"title":"Sensibility Analysis Of The Multifocusing Traveltime Approximation","translated_title":"","metadata":{"publisher":"European Association of Geoscientists \u0026 Engineers","publication_name":"6th International Congress of the Brazilian Geophysical Society"},"translated_abstract":null,"internal_url":"https://www.academia.edu/50020308/Sensibility_Analysis_Of_The_Multifocusing_Traveltime_Approximation","translated_internal_url":"","created_at":"2021-07-17T09:37:19.937-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":12143756,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Sensibility_Analysis_Of_The_Multifocusing_Traveltime_Approximation","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":12143756,"first_name":"João Carlos Ribeiro","middle_initials":null,"last_name":"Cruz","page_name":"JoãoCarlosRibeiroCruz","domain_name":"independent","created_at":"2014-05-18T04:50:08.703-07:00","display_name":"João Carlos Ribeiro Cruz","url":"https://independent.academia.edu/Jo%C3%A3oCarlosRibeiroCruz"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="8844102" id="papers"><div class="js-work-strip profile--work_container" data-work-id="121149517"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/121149517/Simula%C3%A7%C3%A3o_de_reflex%C3%B5es_prim%C3%A1rias_e_m%C3%BAltiplas_usando_aproxima%C3%A7%C3%A3o_paraxial_de_tempos_de_tr%C3%A2nsito_CRS_de_4a_ordem"><img alt="Research paper thumbnail of Simulação de reflexões primárias e múltiplas usando aproximação paraxial de tempos de trânsito CRS de 4ª ordem" class="work-thumbnail" src="https://attachments.academia-assets.com/116107284/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/121149517/Simula%C3%A7%C3%A3o_de_reflex%C3%B5es_prim%C3%A1rias_e_m%C3%BAltiplas_usando_aproxima%C3%A7%C3%A3o_paraxial_de_tempos_de_tr%C3%A2nsito_CRS_de_4a_ordem">Simulação de reflexões primárias e múltiplas usando aproximação paraxial de tempos de trânsito CRS de 4ª ordem</a></div><div class="wp-workCard_item"><span>Proceedings of the 5 Simpósio Brasileiro de Geofísica</span><span>, 2012</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4b6a43eb37b8bec5422ef32148aab0bf" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:116107284,&quot;asset_id&quot;:121149517,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/116107284/download_file?st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&st=MTczMjQ2NDA0Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121149517"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121149517"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121149517; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121149517]").text(description); $(".js-view-count[data-work-id=121149517]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121149517; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121149517']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 121149517, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4b6a43eb37b8bec5422ef32148aab0bf" } } $('.js-work-strip[data-work-id=121149517]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121149517,"title":"Simulação de reflexões primárias e múltiplas usando aproximação paraxial de tempos de trânsito CRS de 4ª ordem","translated_title":"","metadata":{"publisher":"Sociedade Brasileira de Geofísica","grobid_abstract":"Simulação de reflexões primárias e múltiplas usando aproximação paraxial de tempos de trânsito CRS de 4ª ordem.","publication_date":{"day":null,"month":null,"year":2012,"errors":{}},"publication_name":"Proceedings of the 5 Simpósio Brasileiro de Geofísica","grobid_abstract_attachment_id":116107284},"translated_abstract":null,"internal_url":"https://www.academia.edu/121149517/Simula%C3%A7%C3%A3o_de_reflex%C3%B5es_prim%C3%A1rias_e_m%C3%BAltiplas_usando_aproxima%C3%A7%C3%A3o_paraxial_de_tempos_de_tr%C3%A2nsito_CRS_de_4a_ordem","translated_internal_url":"","created_at":"2024-06-17T12:49:06.380-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":12143756,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":116107284,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116107284/thumbnails/1.jpg","file_name":"5simbgf2012.pdf","download_url":"https://www.academia.edu/attachments/116107284/download_file?st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&st=MTczMjQ2NDA0Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Simulacao_de_reflexoes_primarias_e_multi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116107284/5simbgf2012-libre.pdf?1718658243=\u0026response-content-disposition=attachment%3B+filename%3DSimulacao_de_reflexoes_primarias_e_multi.pdf\u0026Expires=1732467647\u0026Signature=HmrhHopVPionVLTrl2Cudz3~yJN6pE4s-ZWYkwJyzeFq8HdZmBA5nboBj4O~liiQP2RPJj6WtM4XH8vxFgVmmSyN5jPtq8LJrpYkFBF3Z1BytXFRTdwW6d6XNL14VKMtW0mdLCu9yGocK74Dn8wBEtxb1MTxxBpOPDA6MSWEre6VjOATJMipdj1n513K6yTl~UcHrJtICDx7acrQKPTE56oQqq~cMIFPpxqh9da4vP3qjLiGwrsMBlJnq~aXurciZ4AJyRQAWbKhWBFa1kFoGcDRmye9FNgeyauCCCcDlyU8TtorrzWOLn8mBeevQW3h7ikkJe7jD28dDZ2tJmnR8g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Simulação_de_reflexões_primárias_e_múltiplas_usando_aproximação_paraxial_de_tempos_de_trânsito_CRS_de_4a_ordem","translated_slug":"","page_count":6,"language":"pt","content_type":"Work","owner":{"id":12143756,"first_name":"João Carlos Ribeiro","middle_initials":null,"last_name":"Cruz","page_name":"JoãoCarlosRibeiroCruz","domain_name":"independent","created_at":"2014-05-18T04:50:08.703-07:00","display_name":"João Carlos Ribeiro Cruz","url":"https://independent.academia.edu/Jo%C3%A3oCarlosRibeiroCruz"},"attachments":[{"id":116107284,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116107284/thumbnails/1.jpg","file_name":"5simbgf2012.pdf","download_url":"https://www.academia.edu/attachments/116107284/download_file?st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&st=MTczMjQ2NDA0Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Simulacao_de_reflexoes_primarias_e_multi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116107284/5simbgf2012-libre.pdf?1718658243=\u0026response-content-disposition=attachment%3B+filename%3DSimulacao_de_reflexoes_primarias_e_multi.pdf\u0026Expires=1732467647\u0026Signature=HmrhHopVPionVLTrl2Cudz3~yJN6pE4s-ZWYkwJyzeFq8HdZmBA5nboBj4O~liiQP2RPJj6WtM4XH8vxFgVmmSyN5jPtq8LJrpYkFBF3Z1BytXFRTdwW6d6XNL14VKMtW0mdLCu9yGocK74Dn8wBEtxb1MTxxBpOPDA6MSWEre6VjOATJMipdj1n513K6yTl~UcHrJtICDx7acrQKPTE56oQqq~cMIFPpxqh9da4vP3qjLiGwrsMBlJnq~aXurciZ4AJyRQAWbKhWBFa1kFoGcDRmye9FNgeyauCCCcDlyU8TtorrzWOLn8mBeevQW3h7ikkJe7jD28dDZ2tJmnR8g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="119036122"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/119036122/Modified_Kirchhoff_prestack_depth_migration_using_the_Gaussian_beam_operator_as_Green_function_Theoretical_and_numerical_results"><img alt="Research paper thumbnail of Modified Kirchhoff prestack depth migration using the Gaussian beam operator as Green function – Theoretical and numerical results" class="work-thumbnail" src="https://attachments.academia-assets.com/114513431/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/119036122/Modified_Kirchhoff_prestack_depth_migration_using_the_Gaussian_beam_operator_as_Green_function_Theoretical_and_numerical_results">Modified Kirchhoff prestack depth migration using the Gaussian beam operator as Green function – Theoretical and numerical results</a></div><div class="wp-workCard_item"><span>9th International Congress of the Brazilian Geophysical Society &amp;amp; EXPOGEF, Salvador, Bahia, Brazil, 11-14 September 2005</span><span>, 2005</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ce3ec9f319a155f80326793d8e9447e3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:114513431,&quot;asset_id&quot;:119036122,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/114513431/download_file?st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&st=MTczMjQ2NDA0Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="119036122"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="119036122"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 119036122; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=119036122]").text(description); $(".js-view-count[data-work-id=119036122]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 119036122; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='119036122']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 119036122, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ce3ec9f319a155f80326793d8e9447e3" } } $('.js-work-strip[data-work-id=119036122]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":119036122,"title":"Modified Kirchhoff prestack depth migration using the Gaussian beam operator as Green function – Theoretical and numerical results","translated_title":"","metadata":{"publisher":"Brazilian Geophysical Society","publication_date":{"day":null,"month":null,"year":2005,"errors":{}},"publication_name":"9th International Congress of the Brazilian Geophysical Society \u0026amp; EXPOGEF, Salvador, Bahia, Brazil, 11-14 September 2005"},"translated_abstract":null,"internal_url":"https://www.academia.edu/119036122/Modified_Kirchhoff_prestack_depth_migration_using_the_Gaussian_beam_operator_as_Green_function_Theoretical_and_numerical_results","translated_internal_url":"","created_at":"2024-05-13T17:13:02.407-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":12143756,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":114513431,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/114513431/thumbnails/1.jpg","file_name":"wit2004-ferreira.pdf","download_url":"https://www.academia.edu/attachments/114513431/download_file?st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&st=MTczMjQ2NDA0Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Modified_Kirchhoff_prestack_depth_migrat.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/114513431/wit2004-ferreira-libre.pdf?1715652463=\u0026response-content-disposition=attachment%3B+filename%3DModified_Kirchhoff_prestack_depth_migrat.pdf\u0026Expires=1732467647\u0026Signature=WBTYIi5-Po91VLJ4CxOPKZxqtwCh6sSFkkqCk82gnQKCkIQeqdz0JetLjxuAWFnLwwH3cyok1sL8iEdp5zfIXZa7tkNNwJn8n2b-dTUc1vE1-5aaojTQ-W8R6CKrTkzR9ZOk525-qKUjdrg3OsPYGzHZkaAn2FLx0z5vA6zmR~ectzFfL3eeInMywNqPT9VQhk2u99dsTxjstVqXmSkUZs-3zg8gWly0KKRU1TioZdB54AbSDfl7djPSKVKSvDNPYSRK~KgzlJJ2WqI2fg2Og-QDffwxKUcMfRpZ6R7F38gjOG7K2vcWGyd7sjfu~WoC0qlgetOP4RCT09Lf6qHHqQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Modified_Kirchhoff_prestack_depth_migration_using_the_Gaussian_beam_operator_as_Green_function_Theoretical_and_numerical_results","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":12143756,"first_name":"João Carlos Ribeiro","middle_initials":null,"last_name":"Cruz","page_name":"JoãoCarlosRibeiroCruz","domain_name":"independent","created_at":"2014-05-18T04:50:08.703-07:00","display_name":"João Carlos Ribeiro Cruz","url":"https://independent.academia.edu/Jo%C3%A3oCarlosRibeiroCruz"},"attachments":[{"id":114513431,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/114513431/thumbnails/1.jpg","file_name":"wit2004-ferreira.pdf","download_url":"https://www.academia.edu/attachments/114513431/download_file?st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&st=MTczMjQ2NDA0Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Modified_Kirchhoff_prestack_depth_migrat.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/114513431/wit2004-ferreira-libre.pdf?1715652463=\u0026response-content-disposition=attachment%3B+filename%3DModified_Kirchhoff_prestack_depth_migrat.pdf\u0026Expires=1732467647\u0026Signature=WBTYIi5-Po91VLJ4CxOPKZxqtwCh6sSFkkqCk82gnQKCkIQeqdz0JetLjxuAWFnLwwH3cyok1sL8iEdp5zfIXZa7tkNNwJn8n2b-dTUc1vE1-5aaojTQ-W8R6CKrTkzR9ZOk525-qKUjdrg3OsPYGzHZkaAn2FLx0z5vA6zmR~ectzFfL3eeInMywNqPT9VQhk2u99dsTxjstVqXmSkUZs-3zg8gWly0KKRU1TioZdB54AbSDfl7djPSKVKSvDNPYSRK~KgzlJJ2WqI2fg2Og-QDffwxKUcMfRpZ6R7F38gjOG7K2vcWGyd7sjfu~WoC0qlgetOP4RCT09Lf6qHHqQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":165106,"name":"Diffraction","url":"https://www.academia.edu/Documents/in/Diffraction"},{"id":342314,"name":"Gaussian","url":"https://www.academia.edu/Documents/in/Gaussian"},{"id":688446,"name":"Gaussian Process","url":"https://www.academia.edu/Documents/in/Gaussian_Process"},{"id":1554800,"name":"Amplitude","url":"https://www.academia.edu/Documents/in/Amplitude"}],"urls":[{"id":41925904,"url":"https://library.seg.org/doi/pdf/10.1190/sbgf2005-321"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117938418"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117938418/Macro_model_independent_migration_to_zero_offset_CRS_MZO_"><img alt="Research paper thumbnail of Macro-model independent migration to zero offset (CRS-MZO)" class="work-thumbnail" src="https://attachments.academia-assets.com/113678456/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117938418/Macro_model_independent_migration_to_zero_offset_CRS_MZO_">Macro-model independent migration to zero offset (CRS-MZO)</a></div><div class="wp-workCard_item"><span>71st EAGE Conference and Exhibition - Workshops and Fieldtrips</span><span>, 2009</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d4ea9f6fbe24a6b7aa884bf704205f82" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:113678456,&quot;asset_id&quot;:117938418,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/113678456/download_file?st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&st=MTczMjQ2NDA0Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117938418"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117938418"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117938418; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117938418]").text(description); $(".js-view-count[data-work-id=117938418]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117938418; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117938418']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117938418, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d4ea9f6fbe24a6b7aa884bf704205f82" } } $('.js-work-strip[data-work-id=117938418]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117938418,"title":"Macro-model independent migration to zero offset (CRS-MZO)","translated_title":"","metadata":{"publisher":"European Association of Geoscientists \u0026 Engineers","publication_date":{"day":null,"month":null,"year":2009,"errors":{}},"publication_name":"71st EAGE Conference and Exhibition - Workshops and Fieldtrips"},"translated_abstract":null,"internal_url":"https://www.academia.edu/117938418/Macro_model_independent_migration_to_zero_offset_CRS_MZO_","translated_internal_url":"","created_at":"2024-04-23T06:34:12.521-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":12143756,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113678456,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113678456/thumbnails/1.jpg","file_name":"wit2008-garabito.pdf","download_url":"https://www.academia.edu/attachments/113678456/download_file?st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&st=MTczMjQ2NDA0Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Macro_model_independent_migration_to_zer.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113678456/wit2008-garabito-libre.pdf?1713882069=\u0026response-content-disposition=attachment%3B+filename%3DMacro_model_independent_migration_to_zer.pdf\u0026Expires=1732467647\u0026Signature=NouAl-njnJ33vUH~lIvKFqWNe4RS2ydAQSLeU38HQjebP40e3QcMf4jpllMtSZqQNxMWE-q2-kE29SqMftv7lgh0TjfVZPRhSq6isJopHq~LobXQQn8-UK8yPLSDhZVyysYVOmoyXgj~QYQokXVCEBibR48CfZL8n45ZkJAq6r5NnJBqDDKJK9Eg4FiUaUHoxatbqDAft0gVWtympyapE3kOjdFBazflJQXBJ3idF9nIdHznVMnu0UIjJ4NAyRbH0OiOi-5MaEVMOMvMVRzMhHVUst5O2wUpVG8dcrRaVot~1ZcL1uSeBSQQ4c17RSdRG3yLyPYZpC7mFF1OoBPmEA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Macro_model_independent_migration_to_zero_offset_CRS_MZO_","translated_slug":"","page_count":13,"language":"en","content_type":"Work","owner":{"id":12143756,"first_name":"João Carlos Ribeiro","middle_initials":null,"last_name":"Cruz","page_name":"JoãoCarlosRibeiroCruz","domain_name":"independent","created_at":"2014-05-18T04:50:08.703-07:00","display_name":"João Carlos Ribeiro Cruz","url":"https://independent.academia.edu/Jo%C3%A3oCarlosRibeiroCruz"},"attachments":[{"id":113678456,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113678456/thumbnails/1.jpg","file_name":"wit2008-garabito.pdf","download_url":"https://www.academia.edu/attachments/113678456/download_file?st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&st=MTczMjQ2NDA0Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Macro_model_independent_migration_to_zer.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113678456/wit2008-garabito-libre.pdf?1713882069=\u0026response-content-disposition=attachment%3B+filename%3DMacro_model_independent_migration_to_zer.pdf\u0026Expires=1732467647\u0026Signature=NouAl-njnJ33vUH~lIvKFqWNe4RS2ydAQSLeU38HQjebP40e3QcMf4jpllMtSZqQNxMWE-q2-kE29SqMftv7lgh0TjfVZPRhSq6isJopHq~LobXQQn8-UK8yPLSDhZVyysYVOmoyXgj~QYQokXVCEBibR48CfZL8n45ZkJAq6r5NnJBqDDKJK9Eg4FiUaUHoxatbqDAft0gVWtympyapE3kOjdFBazflJQXBJ3idF9nIdHznVMnu0UIjJ4NAyRbH0OiOi-5MaEVMOMvMVRzMhHVUst5O2wUpVG8dcrRaVot~1ZcL1uSeBSQQ4c17RSdRG3yLyPYZpC7mFF1OoBPmEA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":124552,"name":"Macro","url":"https://www.academia.edu/Documents/in/Macro"},{"id":1229076,"name":"Seismic Migration","url":"https://www.academia.edu/Documents/in/Seismic_Migration"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="72778738"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/72778738/The_common_reflecting_element_CRE_method_revisited"><img alt="Research paper thumbnail of The common reflecting element (CRE) method revisited" class="work-thumbnail" src="https://attachments.academia-assets.com/81570583/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/72778738/The_common_reflecting_element_CRE_method_revisited">The common reflecting element (CRE) method revisited</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The common reflecting element (CRE) method is an interesting alternative to the familiar methods ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The common reflecting element (CRE) method is an interesting alternative to the familiar methods of com-mon midpoint (CMP) stack or migration to zero offset (MZO). Like these two methods, the CRE method aims at constructing a stacked zero-offset section from a set of constant-offset sections. However, it requires no more knowledge about the generally laterally inhomogeneous subsurface model than the near-surface values of the ve-locity field. In addition to being a tool to construct a stacked zero-offset section, the CRE method simultane-ously obtains information about the laterally inhomoge-neous macrovelocity model. An important feature of the CRE method is that it does not suffer from pulse stretch. Moreover, it gives an alternative solution for conflicting dip problems. In the 1-D case, CRE is closely related to the optical stack. For the price of having to search for two data-derived parameters instead of one, the CRE method provides important advantages over the con-ventional ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a4c84e89d1239a706d0018943ff899f5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:81570583,&quot;asset_id&quot;:72778738,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/81570583/download_file?st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&st=MTczMjQ2NDA0Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="72778738"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="72778738"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 72778738; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=72778738]").text(description); $(".js-view-count[data-work-id=72778738]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 72778738; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='72778738']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 72778738, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a4c84e89d1239a706d0018943ff899f5" } } $('.js-work-strip[data-work-id=72778738]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":72778738,"title":"The common reflecting element (CRE) method revisited","translated_title":"","metadata":{"abstract":"The common reflecting element (CRE) method is an interesting alternative to the familiar methods of com-mon midpoint (CMP) stack or migration to zero offset (MZO). Like these two methods, the CRE method aims at constructing a stacked zero-offset section from a set of constant-offset sections. However, it requires no more knowledge about the generally laterally inhomogeneous subsurface model than the near-surface values of the ve-locity field. In addition to being a tool to construct a stacked zero-offset section, the CRE method simultane-ously obtains information about the laterally inhomoge-neous macrovelocity model. An important feature of the CRE method is that it does not suffer from pulse stretch. Moreover, it gives an alternative solution for conflicting dip problems. In the 1-D case, CRE is closely related to the optical stack. For the price of having to search for two data-derived parameters instead of one, the CRE method provides important advantages over the con-ventional ...","publication_date":{"day":null,"month":null,"year":2000,"errors":{}}},"translated_abstract":"The common reflecting element (CRE) method is an interesting alternative to the familiar methods of com-mon midpoint (CMP) stack or migration to zero offset (MZO). Like these two methods, the CRE method aims at constructing a stacked zero-offset section from a set of constant-offset sections. However, it requires no more knowledge about the generally laterally inhomogeneous subsurface model than the near-surface values of the ve-locity field. In addition to being a tool to construct a stacked zero-offset section, the CRE method simultane-ously obtains information about the laterally inhomoge-neous macrovelocity model. An important feature of the CRE method is that it does not suffer from pulse stretch. Moreover, it gives an alternative solution for conflicting dip problems. In the 1-D case, CRE is closely related to the optical stack. For the price of having to search for two data-derived parameters instead of one, the CRE method provides important advantages over the con-ventional ...","internal_url":"https://www.academia.edu/72778738/The_common_reflecting_element_CRE_method_revisited","translated_internal_url":"","created_at":"2022-03-02T03:48:58.031-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":12143756,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":81570583,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81570583/thumbnails/1.jpg","file_name":"WOS000087656200026.pdf","download_url":"https://www.academia.edu/attachments/81570583/download_file?st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&st=MTczMjQ2NDA0Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_common_reflecting_element_CRE_method.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81570583/WOS000087656200026-libre.pdf?1646230970=\u0026response-content-disposition=attachment%3B+filename%3DThe_common_reflecting_element_CRE_method.pdf\u0026Expires=1732467647\u0026Signature=OU1zeYEz9OBYdhHn4sJpgsGyRTftThHJuLAk-ZclgOcIJhPiY~gKSgIgCX~w1fe7kM4beZfnoCQS8woaJvp3boGNE3wPBoeOQYZGcpY-YUNqDnJIBXF7hCyXgYd5kWu9~LNVEw2w5SPwQeGSNFvKzgt3R0ZLbRKsNEK2wubPYyE1irl0P8HFkucp4JTTeP2MxqMa1v1-lPN1ySrAubglz6IGqPDnS8llOAdLkfPogtEnfYtgr9ksZ3WyoW7dN~NH0T5r4dNiVA6Ezq68F43c6mofGNNzBlD1PajruN3BExU0hHi0LX0Dey4-w6njyInmcnbu9qmo7iQ1L3~H~vONMw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_common_reflecting_element_CRE_method_revisited","translated_slug":"","page_count":15,"language":"en","content_type":"Work","owner":{"id":12143756,"first_name":"João Carlos Ribeiro","middle_initials":null,"last_name":"Cruz","page_name":"JoãoCarlosRibeiroCruz","domain_name":"independent","created_at":"2014-05-18T04:50:08.703-07:00","display_name":"João Carlos Ribeiro Cruz","url":"https://independent.academia.edu/Jo%C3%A3oCarlosRibeiroCruz"},"attachments":[{"id":81570583,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81570583/thumbnails/1.jpg","file_name":"WOS000087656200026.pdf","download_url":"https://www.academia.edu/attachments/81570583/download_file?st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&st=MTczMjQ2NDA0Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_common_reflecting_element_CRE_method.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81570583/WOS000087656200026-libre.pdf?1646230970=\u0026response-content-disposition=attachment%3B+filename%3DThe_common_reflecting_element_CRE_method.pdf\u0026Expires=1732467647\u0026Signature=OU1zeYEz9OBYdhHn4sJpgsGyRTftThHJuLAk-ZclgOcIJhPiY~gKSgIgCX~w1fe7kM4beZfnoCQS8woaJvp3boGNE3wPBoeOQYZGcpY-YUNqDnJIBXF7hCyXgYd5kWu9~LNVEw2w5SPwQeGSNFvKzgt3R0ZLbRKsNEK2wubPYyE1irl0P8HFkucp4JTTeP2MxqMa1v1-lPN1ySrAubglz6IGqPDnS8llOAdLkfPogtEnfYtgr9ksZ3WyoW7dN~NH0T5r4dNiVA6Ezq68F43c6mofGNNzBlD1PajruN3BExU0hHi0LX0Dey4-w6njyInmcnbu9qmo7iQ1L3~H~vONMw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":409,"name":"Geophysics","url":"https://www.academia.edu/Documents/in/Geophysics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"}],"urls":[{"id":18144924,"url":"http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.951.373\u0026rep=rep1\u0026type=pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="67116166"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/67116166/Identifying_Multiple_Reflections_with_the_Nip_and_Normal_Hypothetical_Wavefronts"><img alt="Research paper thumbnail of Identifying Multiple Reflections with the Nip and Normal Hypothetical Wavefronts" class="work-thumbnail" src="https://attachments.academia-assets.com/78054965/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/67116166/Identifying_Multiple_Reflections_with_the_Nip_and_Normal_Hypothetical_Wavefronts">Identifying Multiple Reflections with the Nip and Normal Hypothetical Wavefronts</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The multiple reflections include in the seismograms important informations about the reflectors i...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The multiple reflections include in the seismograms important informations about the reflectors in subsurface and can become completely invisible. In marine data acquisition the water layer behaves as a wave trap, where the waves are repeatedly reflected at the sea surface and sea bottom without significant amplitude loss. In order to identify and locate target reflectors, these multiples must be eliminated or, at least, attenuated. In this work, interbed symmetric multiple reflections were identified in synthetic dataset. We compare the parameters of hypothetical wavefronts Normal-Incidence-Point (NIP) and Normal (N) obtained by forward modeling and Kirchhoff migration. This comparison was extended to consider the Normal-Moveout (NMO) velocity. These comparisons led us to identify and differentiate between multiple and primary reflections. INTRODUCTION Seismograms include multiple reflections that can be so strong that the desired primary reflections become completely invisible. In...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="41febacf3e5ae83b13eadae784b3cb02" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:78054965,&quot;asset_id&quot;:67116166,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/78054965/download_file?st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&st=MTczMjQ2NDA0Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="67116166"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="67116166"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 67116166; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=67116166]").text(description); $(".js-view-count[data-work-id=67116166]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 67116166; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='67116166']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 67116166, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "41febacf3e5ae83b13eadae784b3cb02" } } $('.js-work-strip[data-work-id=67116166]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":67116166,"title":"Identifying Multiple Reflections with the Nip and Normal Hypothetical Wavefronts","translated_title":"","metadata":{"abstract":"The multiple reflections include in the seismograms important informations about the reflectors in subsurface and can become completely invisible. In marine data acquisition the water layer behaves as a wave trap, where the waves are repeatedly reflected at the sea surface and sea bottom without significant amplitude loss. In order to identify and locate target reflectors, these multiples must be eliminated or, at least, attenuated. In this work, interbed symmetric multiple reflections were identified in synthetic dataset. We compare the parameters of hypothetical wavefronts Normal-Incidence-Point (NIP) and Normal (N) obtained by forward modeling and Kirchhoff migration. This comparison was extended to consider the Normal-Moveout (NMO) velocity. These comparisons led us to identify and differentiate between multiple and primary reflections. INTRODUCTION Seismograms include multiple reflections that can be so strong that the desired primary reflections become completely invisible. In...","publication_date":{"day":null,"month":null,"year":2019,"errors":{}}},"translated_abstract":"The multiple reflections include in the seismograms important informations about the reflectors in subsurface and can become completely invisible. In marine data acquisition the water layer behaves as a wave trap, where the waves are repeatedly reflected at the sea surface and sea bottom without significant amplitude loss. In order to identify and locate target reflectors, these multiples must be eliminated or, at least, attenuated. In this work, interbed symmetric multiple reflections were identified in synthetic dataset. We compare the parameters of hypothetical wavefronts Normal-Incidence-Point (NIP) and Normal (N) obtained by forward modeling and Kirchhoff migration. This comparison was extended to consider the Normal-Moveout (NMO) velocity. These comparisons led us to identify and differentiate between multiple and primary reflections. INTRODUCTION Seismograms include multiple reflections that can be so strong that the desired primary reflections become completely invisible. In...","internal_url":"https://www.academia.edu/67116166/Identifying_Multiple_Reflections_with_the_Nip_and_Normal_Hypothetical_Wavefronts","translated_internal_url":"","created_at":"2022-01-04T11:22:13.381-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":12143756,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":78054965,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78054965/thumbnails/1.jpg","file_name":"wit2005-cruz.pdf","download_url":"https://www.academia.edu/attachments/78054965/download_file?st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&st=MTczMjQ2NDA0Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Identifying_Multiple_Reflections_with_th.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78054965/wit2005-cruz-libre.pdf?1641324264=\u0026response-content-disposition=attachment%3B+filename%3DIdentifying_Multiple_Reflections_with_th.pdf\u0026Expires=1732467647\u0026Signature=OfgC6VBXhvJikLJMcA682yertZi5j75EwDNLTyFPcE8hAD-Q6YFtYIDMWyAPSJ5Tb6ZLIx5I5khhPQCnLBm2AJIOXX9f9bHv8K390RhxdcF8CJ8lTCx42jHultiOLP3YRpbUCduPGKvWrtuGXABRx0bFb2wS6uSENvKq~Zb7IkzHQzgn~PZPUJFUx1fi-r9rP6gAtNiH4q8o6vZtf4~NUF2jd1F7PoXU9fqG23sh6Or6BpQhXjjcxOto1RCinDIi2EROzpDzQKlZxGwijxAxQSI-RCm2U17~DIaVw07OUbQarNg5UhEF1J8Z9ASrWpASdDgVFC~BgDke86sTvNQEMQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Identifying_Multiple_Reflections_with_the_Nip_and_Normal_Hypothetical_Wavefronts","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":12143756,"first_name":"João Carlos Ribeiro","middle_initials":null,"last_name":"Cruz","page_name":"JoãoCarlosRibeiroCruz","domain_name":"independent","created_at":"2014-05-18T04:50:08.703-07:00","display_name":"João Carlos Ribeiro Cruz","url":"https://independent.academia.edu/Jo%C3%A3oCarlosRibeiroCruz"},"attachments":[{"id":78054965,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78054965/thumbnails/1.jpg","file_name":"wit2005-cruz.pdf","download_url":"https://www.academia.edu/attachments/78054965/download_file?st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&st=MTczMjQ2NDA0Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Identifying_Multiple_Reflections_with_th.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78054965/wit2005-cruz-libre.pdf?1641324264=\u0026response-content-disposition=attachment%3B+filename%3DIdentifying_Multiple_Reflections_with_th.pdf\u0026Expires=1732467647\u0026Signature=OfgC6VBXhvJikLJMcA682yertZi5j75EwDNLTyFPcE8hAD-Q6YFtYIDMWyAPSJ5Tb6ZLIx5I5khhPQCnLBm2AJIOXX9f9bHv8K390RhxdcF8CJ8lTCx42jHultiOLP3YRpbUCduPGKvWrtuGXABRx0bFb2wS6uSENvKq~Zb7IkzHQzgn~PZPUJFUx1fi-r9rP6gAtNiH4q8o6vZtf4~NUF2jd1F7PoXU9fqG23sh6Or6BpQhXjjcxOto1RCinDIi2EROzpDzQKlZxGwijxAxQSI-RCm2U17~DIaVw07OUbQarNg5UhEF1J8Z9ASrWpASdDgVFC~BgDke86sTvNQEMQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":16071182,"url":"https://www.wit.uni-hamburg.de/import/documents/reports/2005/wit2005-cruz.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="67116165"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/67116165/Fourth_Order_CRS_Stack_Synthetic_Examples"><img alt="Research paper thumbnail of Fourth Order CRS Stack : Synthetic Examples" class="work-thumbnail" src="https://attachments.academia-assets.com/78054961/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/67116165/Fourth_Order_CRS_Stack_Synthetic_Examples">Fourth Order CRS Stack : Synthetic Examples</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The simulation of a zero-offset (ZO) seismic section from multi-coverage seismic data is a standa...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The simulation of a zero-offset (ZO) seismic section from multi-coverage seismic data is a standard imaging method widely used in seismic processing that allows to reduces the amount of data and increases the signal-to-noise ratio. The CRS stacking method simulates ZO sections and does not dependent on a macro-velocity model. It is based on a second-order traveltime approximation parametrized with three kinematic wavefield attributes. In this work, we tested the Taylor expansion of the second-order CRS conventional operator, so-called the fourth-order CRS stacking operator, to simulate ZO seismic sections. This formula depends on the same three parameters as the secondorder CRS operator. Synthetic examples have shown a good performance of the proposed expression compared to the CRS conventional operator. INTRODUCTION The seismic stacking is performed along traveltime moveout expressions (curves or surfaces) that depend on one or more parameters. As result of the stacking process, on...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a1a3b109bd2d93d7b8ade62e3d38e584" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:78054961,&quot;asset_id&quot;:67116165,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/78054961/download_file?st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&st=MTczMjQ2NDA0Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="67116165"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="67116165"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 67116165; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=67116165]").text(description); $(".js-view-count[data-work-id=67116165]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 67116165; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='67116165']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 67116165, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a1a3b109bd2d93d7b8ade62e3d38e584" } } $('.js-work-strip[data-work-id=67116165]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":67116165,"title":"Fourth Order CRS Stack : Synthetic Examples","translated_title":"","metadata":{"abstract":"The simulation of a zero-offset (ZO) seismic section from multi-coverage seismic data is a standard imaging method widely used in seismic processing that allows to reduces the amount of data and increases the signal-to-noise ratio. The CRS stacking method simulates ZO sections and does not dependent on a macro-velocity model. It is based on a second-order traveltime approximation parametrized with three kinematic wavefield attributes. In this work, we tested the Taylor expansion of the second-order CRS conventional operator, so-called the fourth-order CRS stacking operator, to simulate ZO seismic sections. This formula depends on the same three parameters as the secondorder CRS operator. Synthetic examples have shown a good performance of the proposed expression compared to the CRS conventional operator. INTRODUCTION The seismic stacking is performed along traveltime moveout expressions (curves or surfaces) that depend on one or more parameters. As result of the stacking process, on...","publication_date":{"day":null,"month":null,"year":2019,"errors":{}}},"translated_abstract":"The simulation of a zero-offset (ZO) seismic section from multi-coverage seismic data is a standard imaging method widely used in seismic processing that allows to reduces the amount of data and increases the signal-to-noise ratio. The CRS stacking method simulates ZO sections and does not dependent on a macro-velocity model. It is based on a second-order traveltime approximation parametrized with three kinematic wavefield attributes. In this work, we tested the Taylor expansion of the second-order CRS conventional operator, so-called the fourth-order CRS stacking operator, to simulate ZO seismic sections. This formula depends on the same three parameters as the secondorder CRS operator. Synthetic examples have shown a good performance of the proposed expression compared to the CRS conventional operator. INTRODUCTION The seismic stacking is performed along traveltime moveout expressions (curves or surfaces) that depend on one or more parameters. As result of the stacking process, on...","internal_url":"https://www.academia.edu/67116165/Fourth_Order_CRS_Stack_Synthetic_Examples","translated_internal_url":"","created_at":"2022-01-04T11:22:13.232-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":12143756,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":78054961,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78054961/thumbnails/1.jpg","file_name":"wit2008-chiraoliva.pdf","download_url":"https://www.academia.edu/attachments/78054961/download_file?st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&st=MTczMjQ2NDA0Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Fourth_Order_CRS_Stack_Synthetic_Example.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78054961/wit2008-chiraoliva-libre.pdf?1641324265=\u0026response-content-disposition=attachment%3B+filename%3DFourth_Order_CRS_Stack_Synthetic_Example.pdf\u0026Expires=1732467647\u0026Signature=TLUS-BUEDo-2oZq3Hx7bVPbGLIZ4qmEsO-~TXBvAsZ8BEl2dh8obltAGispm0xo9TQYL~sTO8KYM0ieFdNDR4Ec78a3t9EvKwcvrhGjNt8jT8Mn-blUWT~ptC2hgrALOWYLsH6VsUNR4wIiteW7eTBSGtO3XeIBGUR0DJjRLjc2hiNMxFYL56ZD9r9aEVKu8MdeiXmdvGxDLz6Vce3cEBYdRFStfLRleP3fk~~MkpKfL7E0CA0sK-tgD~2yErQG4DpZILK7kVHB6~XArbL2Ax9h8PgsSBIHVZUkYOdS3lZIFg6xVJLuPihZEu9B6L9JygjRkz2ESUIHY8y-lnAIUrw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Fourth_Order_CRS_Stack_Synthetic_Examples","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":12143756,"first_name":"João Carlos Ribeiro","middle_initials":null,"last_name":"Cruz","page_name":"JoãoCarlosRibeiroCruz","domain_name":"independent","created_at":"2014-05-18T04:50:08.703-07:00","display_name":"João Carlos Ribeiro Cruz","url":"https://independent.academia.edu/Jo%C3%A3oCarlosRibeiroCruz"},"attachments":[{"id":78054961,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78054961/thumbnails/1.jpg","file_name":"wit2008-chiraoliva.pdf","download_url":"https://www.academia.edu/attachments/78054961/download_file?st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&st=MTczMjQ2NDA0Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Fourth_Order_CRS_Stack_Synthetic_Example.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78054961/wit2008-chiraoliva-libre.pdf?1641324265=\u0026response-content-disposition=attachment%3B+filename%3DFourth_Order_CRS_Stack_Synthetic_Example.pdf\u0026Expires=1732467647\u0026Signature=TLUS-BUEDo-2oZq3Hx7bVPbGLIZ4qmEsO-~TXBvAsZ8BEl2dh8obltAGispm0xo9TQYL~sTO8KYM0ieFdNDR4Ec78a3t9EvKwcvrhGjNt8jT8Mn-blUWT~ptC2hgrALOWYLsH6VsUNR4wIiteW7eTBSGtO3XeIBGUR0DJjRLjc2hiNMxFYL56ZD9r9aEVKu8MdeiXmdvGxDLz6Vce3cEBYdRFStfLRleP3fk~~MkpKfL7E0CA0sK-tgD~2yErQG4DpZILK7kVHB6~XArbL2Ax9h8PgsSBIHVZUkYOdS3lZIFg6xVJLuPihZEu9B6L9JygjRkz2ESUIHY8y-lnAIUrw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":78054964,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78054964/thumbnails/1.jpg","file_name":"wit2008-chiraoliva.pdf","download_url":"https://www.academia.edu/attachments/78054964/download_file","bulk_download_file_name":"Fourth_Order_CRS_Stack_Synthetic_Example.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78054964/wit2008-chiraoliva-libre.pdf?1641324265=\u0026response-content-disposition=attachment%3B+filename%3DFourth_Order_CRS_Stack_Synthetic_Example.pdf\u0026Expires=1732467647\u0026Signature=EoYRxt1~lNUNC-Bvp7M29v~t6Uwzr0Yg0XAdTV-LkwbqQOf2q6AJ2Q5bEYBbOCrEKf8GStsjRXvkgxLUEM3ycT3TzYvTx1Lv9T8cnw1SiD~o5zasYloLNJQAcj8g1euF3Ci0M7yFZOMG6AgseUaPj~iaVEeeKP-UeSauHG3ev4dNTT6QoPfpdTGnDOx7V9Kv4rq5lAIgGiV4~~pIHjGL~0ofngdQK7lm1gIiyTxp669z0hpH2Y7hAcwagAJTb5PkNxiEBmutgj9r-7B2t06dJhm4HBuMBYHNTxQP788MvDBistGpXFUYXlAEExWRQwVZCZk6Mgtx1Xd8g3RgPua4kw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":16071181,"url":"https://www.wit.uni-hamburg.de/import/documents/reports/2008/wit2008-chiraoliva.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="67116164"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/67116164/Numerical_Analysis_of_Two_and_One_Half_Dimensional_2_5_D_True_Amplitude_Diffraction_Stack_Migration"><img alt="Research paper thumbnail of Numerical Analysis of Two and One – Half Dimensional ( 2 . 5 – D ) True – Amplitude Diffraction Stack Migration" class="work-thumbnail" src="https://attachments.academia-assets.com/78054966/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/67116164/Numerical_Analysis_of_Two_and_One_Half_Dimensional_2_5_D_True_Amplitude_Diffraction_Stack_Migration">Numerical Analysis of Two and One – Half Dimensional ( 2 . 5 – D ) True – Amplitude Diffraction Stack Migration</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">By considering arbitrary source-receiver configurations the compressional primary reflections can...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">By considering arbitrary source-receiver configurations the compressional primary reflections can be imaged into time or depth-migrated reflections so that the migrated wavefield amplitudes are a measured of angle-dependent reflection coeffients. In order to do this various migration algorithms were proposed in the recent past years based on Born or Kirchhoff approach. Both of them treats of a weighted diffraction stack integral operator that is applied to the input seismic data. As result we have a migrated seismic section where at each reflector point there is the source wavelet with the amplitude proportinal to the reflection coefficient at that point. Based on Kirchhoff approach, in this paper we derive the weight function and the diffraction stack integral operator for the two and one half (2.5-D) seimic model and apply it to a set of synthetic seismic data in noise enviroment. The result shows the accuracy and stability of the 2.5-D migration method as a tool for obtaining imp...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3aec31bb360124f431611b3b25483932" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:78054966,&quot;asset_id&quot;:67116164,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/78054966/download_file?st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&st=MTczMjQ2NDA0Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="67116164"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="67116164"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 67116164; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=67116164]").text(description); $(".js-view-count[data-work-id=67116164]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 67116164; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='67116164']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 67116164, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3aec31bb360124f431611b3b25483932" } } $('.js-work-strip[data-work-id=67116164]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":67116164,"title":"Numerical Analysis of Two and One – Half Dimensional ( 2 . 5 – D ) True – Amplitude Diffraction Stack Migration","translated_title":"","metadata":{"abstract":"By considering arbitrary source-receiver configurations the compressional primary reflections can be imaged into time or depth-migrated reflections so that the migrated wavefield amplitudes are a measured of angle-dependent reflection coeffients. In order to do this various migration algorithms were proposed in the recent past years based on Born or Kirchhoff approach. Both of them treats of a weighted diffraction stack integral operator that is applied to the input seismic data. As result we have a migrated seismic section where at each reflector point there is the source wavelet with the amplitude proportinal to the reflection coefficient at that point. Based on Kirchhoff approach, in this paper we derive the weight function and the diffraction stack integral operator for the two and one half (2.5-D) seimic model and apply it to a set of synthetic seismic data in noise enviroment. The result shows the accuracy and stability of the 2.5-D migration method as a tool for obtaining imp...","publication_date":{"day":null,"month":null,"year":2019,"errors":{}}},"translated_abstract":"By considering arbitrary source-receiver configurations the compressional primary reflections can be imaged into time or depth-migrated reflections so that the migrated wavefield amplitudes are a measured of angle-dependent reflection coeffients. In order to do this various migration algorithms were proposed in the recent past years based on Born or Kirchhoff approach. Both of them treats of a weighted diffraction stack integral operator that is applied to the input seismic data. As result we have a migrated seismic section where at each reflector point there is the source wavelet with the amplitude proportinal to the reflection coefficient at that point. Based on Kirchhoff approach, in this paper we derive the weight function and the diffraction stack integral operator for the two and one half (2.5-D) seimic model and apply it to a set of synthetic seismic data in noise enviroment. The result shows the accuracy and stability of the 2.5-D migration method as a tool for obtaining imp...","internal_url":"https://www.academia.edu/67116164/Numerical_Analysis_of_Two_and_One_Half_Dimensional_2_5_D_True_Amplitude_Diffraction_Stack_Migration","translated_internal_url":"","created_at":"2022-01-04T11:22:13.086-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":12143756,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":78054966,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78054966/thumbnails/1.jpg","file_name":"wit1998-cruz.pdf","download_url":"https://www.academia.edu/attachments/78054966/download_file?st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&st=MTczMjQ2NDA0Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Numerical_Analysis_of_Two_and_One_Half_D.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78054966/wit1998-cruz-libre.pdf?1641324267=\u0026response-content-disposition=attachment%3B+filename%3DNumerical_Analysis_of_Two_and_One_Half_D.pdf\u0026Expires=1732467647\u0026Signature=OMprkNHmHPAMqGQWg-G-zqpVDTTQUnsYD79TuJ4yGCpB8b4Y2PgiU~u2~lwJwlBt2Kvmjc1-NyahrHTUNdyx2xJoV4K~BH0KrlBezAf2hZeHxI2bqiwxCbOrhkhAROFi-TNlmJYBqxcpiqdKh-qP4q5d840kBPXUN3paWCxJnVkFKbqBH0untBZBlxHwGcFWk7ClUyUgl0t2QNtxz5C5PPDWCzpLr7BwBqJIY9Em0tpU9LLxshF32jCvelhqDwIDQ3~xuQDL~N-EYEzDqj1dm05~JKd3gI11WB9iXtAqsaz-2~QlE00SYe2FkovRRxz2pfjAapeMZTgjT9DZK2hgmQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Numerical_Analysis_of_Two_and_One_Half_Dimensional_2_5_D_True_Amplitude_Diffraction_Stack_Migration","translated_slug":"","page_count":14,"language":"en","content_type":"Work","owner":{"id":12143756,"first_name":"João Carlos Ribeiro","middle_initials":null,"last_name":"Cruz","page_name":"JoãoCarlosRibeiroCruz","domain_name":"independent","created_at":"2014-05-18T04:50:08.703-07:00","display_name":"João Carlos Ribeiro Cruz","url":"https://independent.academia.edu/Jo%C3%A3oCarlosRibeiroCruz"},"attachments":[{"id":78054966,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78054966/thumbnails/1.jpg","file_name":"wit1998-cruz.pdf","download_url":"https://www.academia.edu/attachments/78054966/download_file?st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&st=MTczMjQ2NDA0Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Numerical_Analysis_of_Two_and_One_Half_D.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78054966/wit1998-cruz-libre.pdf?1641324267=\u0026response-content-disposition=attachment%3B+filename%3DNumerical_Analysis_of_Two_and_One_Half_D.pdf\u0026Expires=1732467647\u0026Signature=OMprkNHmHPAMqGQWg-G-zqpVDTTQUnsYD79TuJ4yGCpB8b4Y2PgiU~u2~lwJwlBt2Kvmjc1-NyahrHTUNdyx2xJoV4K~BH0KrlBezAf2hZeHxI2bqiwxCbOrhkhAROFi-TNlmJYBqxcpiqdKh-qP4q5d840kBPXUN3paWCxJnVkFKbqBH0untBZBlxHwGcFWk7ClUyUgl0t2QNtxz5C5PPDWCzpLr7BwBqJIY9Em0tpU9LLxshF32jCvelhqDwIDQ3~xuQDL~N-EYEzDqj1dm05~JKd3gI11WB9iXtAqsaz-2~QlE00SYe2FkovRRxz2pfjAapeMZTgjT9DZK2hgmQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":78054962,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78054962/thumbnails/1.jpg","file_name":"wit1998-cruz.pdf","download_url":"https://www.academia.edu/attachments/78054962/download_file","bulk_download_file_name":"Numerical_Analysis_of_Two_and_One_Half_D.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78054962/wit1998-cruz-libre.pdf?1641324267=\u0026response-content-disposition=attachment%3B+filename%3DNumerical_Analysis_of_Two_and_One_Half_D.pdf\u0026Expires=1732467647\u0026Signature=XUwiWYC08dqlRuchRRyiscVNvRdkON9aWJBKLdaRNQCUhJZMEempSfaprpOjrueCAyk0e9kzT74y-QFbU2kCtyP7hNKCw5iw0WfgW57pHiXU7v35hQ3YZVPAwDrlwMUQWUxsTeIGlfD8HKP8fD~jTmdx0sndHrBQLdwyHCkioOuFl6V5~1m~2PNcNr7lxrEcbdEmHys0D-xKh1kaWXYIvk4hpf5qz53g~L7qS6f1pHajH1599dgV502zXzRd~dciG2Nr5p1mXdxpOPaEPEnFWzZGCWoWf~dSGr4iEsUWjVXw6KRD5u5BWpgRb2Z35ga1RXbKiDVj18BO5~se-tWSZg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":16071180,"url":"https://www.wit.uni-hamburg.de/import/documents/reports/1998/wit1998-cruz.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="67116163"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/67116163/KGB_PSDM_Migration_in_Constant_Gradient_Velocity_Media_and_Sensitivity_Analysis_to_Velocity_Errors_A_Comparison_with_Kirchhoff"><img alt="Research paper thumbnail of KGB-PSDM Migration in Constant Gradient Velocity Media and Sensitivity Analysis to Velocity Errors . A Comparison with Kirchhoff" class="work-thumbnail" src="https://attachments.academia-assets.com/78054958/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/67116163/KGB_PSDM_Migration_in_Constant_Gradient_Velocity_Media_and_Sensitivity_Analysis_to_Velocity_Errors_A_Comparison_with_Kirchhoff">KGB-PSDM Migration in Constant Gradient Velocity Media and Sensitivity Analysis to Velocity Errors . A Comparison with Kirchhoff</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this work we extend the KGB-PSDM algorithm to the special case of a constant gradient velocity...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this work we extend the KGB-PSDM algorithm to the special case of a constant gradient velocity media. Following the same lines as for the homogeneous media, se have teste our operator in some synthetic important geological models and we have observed an increase in the resolution of the seismic images, as well as a great reduction of migration artifacts and noise. INTRODUCTION Kirchhoff-type migration has been used as workhorse by the oil industry since the pioneering work of Hagedoorn (1954), whose “maximum convexity surfaces” were later related to the acoustic wave equation and have since then become familiar in the geophysics literature as Kirchhoff migration (Schneider, 1978; Hertweck et al., 2003). However, in the last two decades Kirhhoff migration has evolved from a single imaging operator to an operator that embraces, among others, the structure of an inversion operator. This allowed the development of several others techniques (Tygel et al., 1993; Tygel et al., 1998), su...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="243536a155b34ec8cf9bd5827f430eda" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:78054958,&quot;asset_id&quot;:67116163,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/78054958/download_file?st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&st=MTczMjQ2NDA0Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="67116163"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="67116163"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 67116163; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=67116163]").text(description); $(".js-view-count[data-work-id=67116163]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 67116163; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='67116163']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 67116163, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "243536a155b34ec8cf9bd5827f430eda" } } $('.js-work-strip[data-work-id=67116163]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":67116163,"title":"KGB-PSDM Migration in Constant Gradient Velocity Media and Sensitivity Analysis to Velocity Errors . A Comparison with Kirchhoff","translated_title":"","metadata":{"abstract":"In this work we extend the KGB-PSDM algorithm to the special case of a constant gradient velocity media. Following the same lines as for the homogeneous media, se have teste our operator in some synthetic important geological models and we have observed an increase in the resolution of the seismic images, as well as a great reduction of migration artifacts and noise. INTRODUCTION Kirchhoff-type migration has been used as workhorse by the oil industry since the pioneering work of Hagedoorn (1954), whose “maximum convexity surfaces” were later related to the acoustic wave equation and have since then become familiar in the geophysics literature as Kirchhoff migration (Schneider, 1978; Hertweck et al., 2003). However, in the last two decades Kirhhoff migration has evolved from a single imaging operator to an operator that embraces, among others, the structure of an inversion operator. This allowed the development of several others techniques (Tygel et al., 1993; Tygel et al., 1998), su...","publication_date":{"day":null,"month":null,"year":2019,"errors":{}}},"translated_abstract":"In this work we extend the KGB-PSDM algorithm to the special case of a constant gradient velocity media. Following the same lines as for the homogeneous media, se have teste our operator in some synthetic important geological models and we have observed an increase in the resolution of the seismic images, as well as a great reduction of migration artifacts and noise. INTRODUCTION Kirchhoff-type migration has been used as workhorse by the oil industry since the pioneering work of Hagedoorn (1954), whose “maximum convexity surfaces” were later related to the acoustic wave equation and have since then become familiar in the geophysics literature as Kirchhoff migration (Schneider, 1978; Hertweck et al., 2003). However, in the last two decades Kirhhoff migration has evolved from a single imaging operator to an operator that embraces, among others, the structure of an inversion operator. This allowed the development of several others techniques (Tygel et al., 1993; Tygel et al., 1998), su...","internal_url":"https://www.academia.edu/67116163/KGB_PSDM_Migration_in_Constant_Gradient_Velocity_Media_and_Sensitivity_Analysis_to_Velocity_Errors_A_Comparison_with_Kirchhoff","translated_internal_url":"","created_at":"2022-01-04T11:22:12.940-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":12143756,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":78054958,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78054958/thumbnails/1.jpg","file_name":"wit2005-ferreira.pdf","download_url":"https://www.academia.edu/attachments/78054958/download_file?st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&st=MTczMjQ2NDA0Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"KGB_PSDM_Migration_in_Constant_Gradient.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78054958/wit2005-ferreira-libre.pdf?1641324265=\u0026response-content-disposition=attachment%3B+filename%3DKGB_PSDM_Migration_in_Constant_Gradient.pdf\u0026Expires=1732467647\u0026Signature=e2zeKXEILJ~TWcadbVa6oHxctoneecrhu-WXEEQlNtNRf9c2bZEppxt17zBuCQg0c-c1d-4zeGlU1dy34grYNmzpNoRoasfE1nPsFsBuwp2r232PYrvmGhnfC9wqmFeK4S9bxF~~BpRgLC0GMc012Rc7vqABVwWsIDMg-EpWtIj7Wg10FA8woAAiNmomlKnTwNvncdWzpksULILhACbQYfH9R6lBdzHsyAzFK~uBwgSA1z~aYwa~RIFQKsZJ6bzXHX4lXf~iHIkH6UQmzz6Ku~XYCde5Arnf3LUA07Inq3zMV-uiTMrbNjCDh9cCoaiOwlU74dM7ijr0ymGNTJ38Bg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"KGB_PSDM_Migration_in_Constant_Gradient_Velocity_Media_and_Sensitivity_Analysis_to_Velocity_Errors_A_Comparison_with_Kirchhoff","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":12143756,"first_name":"João Carlos Ribeiro","middle_initials":null,"last_name":"Cruz","page_name":"JoãoCarlosRibeiroCruz","domain_name":"independent","created_at":"2014-05-18T04:50:08.703-07:00","display_name":"João Carlos Ribeiro Cruz","url":"https://independent.academia.edu/Jo%C3%A3oCarlosRibeiroCruz"},"attachments":[{"id":78054958,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78054958/thumbnails/1.jpg","file_name":"wit2005-ferreira.pdf","download_url":"https://www.academia.edu/attachments/78054958/download_file?st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&st=MTczMjQ2NDA0Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"KGB_PSDM_Migration_in_Constant_Gradient.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78054958/wit2005-ferreira-libre.pdf?1641324265=\u0026response-content-disposition=attachment%3B+filename%3DKGB_PSDM_Migration_in_Constant_Gradient.pdf\u0026Expires=1732467647\u0026Signature=e2zeKXEILJ~TWcadbVa6oHxctoneecrhu-WXEEQlNtNRf9c2bZEppxt17zBuCQg0c-c1d-4zeGlU1dy34grYNmzpNoRoasfE1nPsFsBuwp2r232PYrvmGhnfC9wqmFeK4S9bxF~~BpRgLC0GMc012Rc7vqABVwWsIDMg-EpWtIj7Wg10FA8woAAiNmomlKnTwNvncdWzpksULILhACbQYfH9R6lBdzHsyAzFK~uBwgSA1z~aYwa~RIFQKsZJ6bzXHX4lXf~iHIkH6UQmzz6Ku~XYCde5Arnf3LUA07Inq3zMV-uiTMrbNjCDh9cCoaiOwlU74dM7ijr0ymGNTJ38Bg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":78054959,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78054959/thumbnails/1.jpg","file_name":"wit2005-ferreira.pdf","download_url":"https://www.academia.edu/attachments/78054959/download_file","bulk_download_file_name":"KGB_PSDM_Migration_in_Constant_Gradient.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78054959/wit2005-ferreira-libre.pdf?1641324264=\u0026response-content-disposition=attachment%3B+filename%3DKGB_PSDM_Migration_in_Constant_Gradient.pdf\u0026Expires=1732467647\u0026Signature=cu8pyH0pHtnOKYr-QapG4ZR1nKYNdgC7mZdccfzfWp4fLR8UAHxVHPUqP5iarI~41U3jj300lv7fhRmKH4g9hV9z99n3ztyuHpXZ-IeY28QvClFhS~6X3OQ~l-Is5n0PP4WbRMD4etEm5TmFBPW~h8dSyQ9dNoq7ODxnt1dCo5gNrwDoW0iFDY-Tpwjg5KZjrM5095pVAh12SpZyyClvDHpiIsNLrJX35embYtVX7V-wQQjFs0SujThrNvqMuPDBgQNQGNtLYikwieoc0gHrEiSS8~uU9P8dyGur8zVKPSuqEVCI0BnChr~0vcs2ZHMlOmDrrgAjd4BsXr7DY39EBQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":16071179,"url":"https://www.wit.uni-hamburg.de/import/documents/reports/2005/wit2005-ferreira.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="67116162"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/67116162/48_2_D_Common_Reflection_Surface_CRS_stack_based_on_simulated_annealing_and_quasi_Newton_Application_to_Marmousi_data_set"><img alt="Research paper thumbnail of 48 2-D Common-Reflection-Surface ( CRS ) stack based on simulated annealing and quasi-Newton : Application to Marmousi data set" class="work-thumbnail" src="https://attachments.academia-assets.com/78054967/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/67116162/48_2_D_Common_Reflection_Surface_CRS_stack_based_on_simulated_annealing_and_quasi_Newton_Application_to_Marmousi_data_set">48 2-D Common-Reflection-Surface ( CRS ) stack based on simulated annealing and quasi-Newton : Application to Marmousi data set</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The recently introduced Common-Reflection-Surface (CRS) method is a natural generalization of the...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The recently introduced Common-Reflection-Surface (CRS) method is a natural generalization of the well-established Normal Moveout (NMO) method, designed to simulate a zero-offset (ZO) section by a stacking procedure applied to multicoverage data. As opposed to NMO, the stacking procedure in the CRS is not restricted to common-midpoint (CMP) gathers, but uses much more general supergathers of non-symmetrical sources and receivers. Moreover, no selection of interpreted events is required. For the 2D situation considered in this paper, the CRS stacking curve is the general hyperbolic traveltime moveout, that depends on three kinematic wavefield attributes. The crucial step of the CRS method is the estimation of the wavefield attributes at each point of the simulated ZO section to be constructed. This is carried out by means of optimization procedures using as objective function the coherence (semblance) of the seismic traces along the stacking curve. Although a few strategies are alrea...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="987d833c2330939d41101867c557d29d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:78054967,&quot;asset_id&quot;:67116162,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/78054967/download_file?st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="67116162"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="67116162"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 67116162; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=67116162]").text(description); $(".js-view-count[data-work-id=67116162]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 67116162; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='67116162']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 67116162, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "987d833c2330939d41101867c557d29d" } } $('.js-work-strip[data-work-id=67116162]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":67116162,"title":"48 2-D Common-Reflection-Surface ( CRS ) stack based on simulated annealing and quasi-Newton : Application to Marmousi data set","translated_title":"","metadata":{"abstract":"The recently introduced Common-Reflection-Surface (CRS) method is a natural generalization of the well-established Normal Moveout (NMO) method, designed to simulate a zero-offset (ZO) section by a stacking procedure applied to multicoverage data. As opposed to NMO, the stacking procedure in the CRS is not restricted to common-midpoint (CMP) gathers, but uses much more general supergathers of non-symmetrical sources and receivers. Moreover, no selection of interpreted events is required. For the 2D situation considered in this paper, the CRS stacking curve is the general hyperbolic traveltime moveout, that depends on three kinematic wavefield attributes. The crucial step of the CRS method is the estimation of the wavefield attributes at each point of the simulated ZO section to be constructed. This is carried out by means of optimization procedures using as objective function the coherence (semblance) of the seismic traces along the stacking curve. Although a few strategies are alrea...","publication_date":{"day":null,"month":null,"year":2019,"errors":{}}},"translated_abstract":"The recently introduced Common-Reflection-Surface (CRS) method is a natural generalization of the well-established Normal Moveout (NMO) method, designed to simulate a zero-offset (ZO) section by a stacking procedure applied to multicoverage data. As opposed to NMO, the stacking procedure in the CRS is not restricted to common-midpoint (CMP) gathers, but uses much more general supergathers of non-symmetrical sources and receivers. Moreover, no selection of interpreted events is required. For the 2D situation considered in this paper, the CRS stacking curve is the general hyperbolic traveltime moveout, that depends on three kinematic wavefield attributes. The crucial step of the CRS method is the estimation of the wavefield attributes at each point of the simulated ZO section to be constructed. This is carried out by means of optimization procedures using as objective function the coherence (semblance) of the seismic traces along the stacking curve. Although a few strategies are alrea...","internal_url":"https://www.academia.edu/67116162/48_2_D_Common_Reflection_Surface_CRS_stack_based_on_simulated_annealing_and_quasi_Newton_Application_to_Marmousi_data_set","translated_internal_url":"","created_at":"2022-01-04T11:22:12.796-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":12143756,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":78054967,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78054967/thumbnails/1.jpg","file_name":"wit2003-garabito-2.pdf","download_url":"https://www.academia.edu/attachments/78054967/download_file?st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"48_2_D_Common_Reflection_Surface_CRS_sta.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78054967/wit2003-garabito-2-libre.pdf?1641324294=\u0026response-content-disposition=attachment%3B+filename%3D48_2_D_Common_Reflection_Surface_CRS_sta.pdf\u0026Expires=1732467647\u0026Signature=G4daFuKFhUP4GP6xjzehvShC5ARtGbgy-wWQcCOgMb4lgNI1USRT4gFLCZ1jFRGmmNAYgoHxASlI4AixRYvd1GRYc-Nho6QY5ePeqH5lSQm5HMdU~-dIp7XaYDTR0LuBaEZReL1-qwWAtoobFfxHSPTavpxiT2deyPy528tEy3Yiz9sAUEQBth7FQKxH4Vgf9F2vDhLoHKwrn20QLH8LrIRa411qZR4dBbKSmW0AHobaS3Uk1U5dwcxGEHYdNUg-eYYV4138-IjFy7-Kir~yBGiyoTLlihl6SL0CCXoOZg9a5VfsvtVJ~iVqoT4SDhtuc-PXpduUcseIKF9JnZ6ong__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"48_2_D_Common_Reflection_Surface_CRS_stack_based_on_simulated_annealing_and_quasi_Newton_Application_to_Marmousi_data_set","translated_slug":"","page_count":14,"language":"en","content_type":"Work","owner":{"id":12143756,"first_name":"João Carlos Ribeiro","middle_initials":null,"last_name":"Cruz","page_name":"JoãoCarlosRibeiroCruz","domain_name":"independent","created_at":"2014-05-18T04:50:08.703-07:00","display_name":"João Carlos Ribeiro Cruz","url":"https://independent.academia.edu/Jo%C3%A3oCarlosRibeiroCruz"},"attachments":[{"id":78054967,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78054967/thumbnails/1.jpg","file_name":"wit2003-garabito-2.pdf","download_url":"https://www.academia.edu/attachments/78054967/download_file?st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"48_2_D_Common_Reflection_Surface_CRS_sta.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78054967/wit2003-garabito-2-libre.pdf?1641324294=\u0026response-content-disposition=attachment%3B+filename%3D48_2_D_Common_Reflection_Surface_CRS_sta.pdf\u0026Expires=1732467648\u0026Signature=dFLkVrRlN7H45ThMNPeQ41pftArS5tzUP3cgPUI5vqPeB0c9QDyX6MWz0DtyvOxPlYqVoVZEbYVsa4QXQS8mv79CeE21kM6ksI6IxHMwIDiDKtaZ5NEvOuXetV3ikXs~4Ugddq~QZs5xnbuu7Maf6VVR5KaSWQ8c~Yi5RVGlx~l87G0chepeVkdJexMsVrkjrsF0p1bEiP23dA~xlw9HGLOaecGeEqOkdP9-xNItNTUHzdwxoEPYeiuRDsM0mGmpYIvsvdfp6Kk6QsCblZXFRwgFR6J9ZKvKCMbjZI3mlb9Lv5P59PuYBBgTOW~4pkl2G~4S9lYZuwUnF9p0miJZDg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":16071178,"url":"https://www.wit.uni-hamburg.de/import/documents/reports/2003/wit2003-garabito-2.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="67116161"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/67116161/An%C3%A1lise_da_anomalia_de_Bright_Spot_no_Mar_do_Norte_atrav%C3%A9s_da_integra%C3%A7%C3%A3o_de_dados_geof%C3%ADsicos_e_geol%C3%B3gicos"><img alt="Research paper thumbnail of Análise da anomalia de Bright Spot no Mar do Norte através da integração de dados geofísicos e geológicos" class="work-thumbnail" src="https://attachments.academia-assets.com/78055066/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/67116161/An%C3%A1lise_da_anomalia_de_Bright_Spot_no_Mar_do_Norte_atrav%C3%A9s_da_integra%C3%A7%C3%A3o_de_dados_geof%C3%ADsicos_e_geol%C3%B3gicos">Análise da anomalia de Bright Spot no Mar do Norte através da integração de dados geofísicos e geológicos</a></div><div class="wp-workCard_item"><span>Proceedings of the VIII Simpósio Brasileiro e Geofísica</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8944cea56a004c50f18284c4f41fa496" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:78055066,&quot;asset_id&quot;:67116161,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/78055066/download_file?st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="67116161"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="67116161"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 67116161; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=67116161]").text(description); $(".js-view-count[data-work-id=67116161]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 67116161; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='67116161']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 67116161, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8944cea56a004c50f18284c4f41fa496" } } $('.js-work-strip[data-work-id=67116161]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":67116161,"title":"Análise da anomalia de Bright Spot no Mar do Norte através da integração de dados geofísicos e geológicos","translated_title":"","metadata":{"publisher":"Brazilian Geophysical Society","publication_name":"Proceedings of the VIII Simpósio Brasileiro e Geofísica"},"translated_abstract":null,"internal_url":"https://www.academia.edu/67116161/An%C3%A1lise_da_anomalia_de_Bright_Spot_no_Mar_do_Norte_atrav%C3%A9s_da_integra%C3%A7%C3%A3o_de_dados_geof%C3%ADsicos_e_geol%C3%B3gicos","translated_internal_url":"","created_at":"2022-01-04T11:22:12.691-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":12143756,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":78055066,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78055066/thumbnails/1.jpg","file_name":"8simbgf2018.pdf","download_url":"https://www.academia.edu/attachments/78055066/download_file?st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Analise_da_anomalia_de_Bright_Spot_no_Ma.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78055066/8simbgf2018-libre.pdf?1641324260=\u0026response-content-disposition=attachment%3B+filename%3DAnalise_da_anomalia_de_Bright_Spot_no_Ma.pdf\u0026Expires=1732467648\u0026Signature=OTp6YBYw-p9lRAa3SK1W53IMIE~7yI6mwIPkPRjHkckz~kR5xPHIPgQiTJJpKLJMLagyanJCvrV9sY4o~5a8n663n5ElpRZADz1C3wrLG3zdVRfX5Q~6jjTbr~tXUlHxJLOiZu98~ZIHtVhmVmBc6imrHeZiDPTNXlTyf2esxb4gyIWvp1PqgcZyQ8OqJKyvlStipodSUCKiwJRPAI15lkqydpQA43lS3CL9xZL-9mxvhw2Hkmgy2wcDyCZHMoMVU-juGKaHDuT9Yd-HE7AhaJuMaFSFBnmqnZ4L8KodeWXJ7zyWSQfCPVZg0DWok1W~o9y4gmItVhOPMGNBZbz86Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Análise_da_anomalia_de_Bright_Spot_no_Mar_do_Norte_através_da_integração_de_dados_geofísicos_e_geológicos","translated_slug":"","page_count":6,"language":"pt","content_type":"Work","owner":{"id":12143756,"first_name":"João Carlos Ribeiro","middle_initials":null,"last_name":"Cruz","page_name":"JoãoCarlosRibeiroCruz","domain_name":"independent","created_at":"2014-05-18T04:50:08.703-07:00","display_name":"João Carlos Ribeiro Cruz","url":"https://independent.academia.edu/Jo%C3%A3oCarlosRibeiroCruz"},"attachments":[{"id":78055066,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78055066/thumbnails/1.jpg","file_name":"8simbgf2018.pdf","download_url":"https://www.academia.edu/attachments/78055066/download_file?st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Analise_da_anomalia_de_Bright_Spot_no_Ma.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78055066/8simbgf2018-libre.pdf?1641324260=\u0026response-content-disposition=attachment%3B+filename%3DAnalise_da_anomalia_de_Bright_Spot_no_Ma.pdf\u0026Expires=1732467648\u0026Signature=OTp6YBYw-p9lRAa3SK1W53IMIE~7yI6mwIPkPRjHkckz~kR5xPHIPgQiTJJpKLJMLagyanJCvrV9sY4o~5a8n663n5ElpRZADz1C3wrLG3zdVRfX5Q~6jjTbr~tXUlHxJLOiZu98~ZIHtVhmVmBc6imrHeZiDPTNXlTyf2esxb4gyIWvp1PqgcZyQ8OqJKyvlStipodSUCKiwJRPAI15lkqydpQA43lS3CL9xZL-9mxvhw2Hkmgy2wcDyCZHMoMVU-juGKaHDuT9Yd-HE7AhaJuMaFSFBnmqnZ4L8KodeWXJ7zyWSQfCPVZg0DWok1W~o9y4gmItVhOPMGNBZbz86Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="67116160"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/67116160/Imageamento_homeom%C3%B3rfico_de_refletores_s%C3%ADsmicos"><img alt="Research paper thumbnail of Imageamento homeomórfico de refletores sísmicos" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/67116160/Imageamento_homeom%C3%B3rfico_de_refletores_s%C3%ADsmicos">Imageamento homeomórfico de refletores sísmicos</a></div><div class="wp-workCard_item"><span>Revista Brasileira de Geofísica</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="67116160"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="67116160"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 67116160; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=67116160]").text(description); $(".js-view-count[data-work-id=67116160]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 67116160; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='67116160']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 67116160, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=67116160]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":67116160,"title":"Imageamento homeomórfico de refletores sísmicos","translated_title":"","metadata":{"publication_name":"Revista Brasileira de Geofísica"},"translated_abstract":null,"internal_url":"https://www.academia.edu/67116160/Imageamento_homeom%C3%B3rfico_de_refletores_s%C3%ADsmicos","translated_internal_url":"","created_at":"2022-01-04T11:22:12.575-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":12143756,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Imageamento_homeomórfico_de_refletores_sísmicos","translated_slug":"","page_count":null,"language":"es","content_type":"Work","owner":{"id":12143756,"first_name":"João Carlos Ribeiro","middle_initials":null,"last_name":"Cruz","page_name":"JoãoCarlosRibeiroCruz","domain_name":"independent","created_at":"2014-05-18T04:50:08.703-07:00","display_name":"João Carlos Ribeiro Cruz","url":"https://independent.academia.edu/Jo%C3%A3oCarlosRibeiroCruz"},"attachments":[],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="67116159"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/67116159/Comparing_Kirchhoff_Prestack_Depth_Migration_Using_Paraxial_Traveltime_Approximation_and_Eikonal_Equation"><img alt="Research paper thumbnail of Comparing Kirchhoff Prestack Depth Migration Using Paraxial Traveltime Approximation and Eikonal Equation" class="work-thumbnail" src="https://attachments.academia-assets.com/78055065/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/67116159/Comparing_Kirchhoff_Prestack_Depth_Migration_Using_Paraxial_Traveltime_Approximation_and_Eikonal_Equation">Comparing Kirchhoff Prestack Depth Migration Using Paraxial Traveltime Approximation and Eikonal Equation</a></div><div class="wp-workCard_item"><span>13th International Congress of the Brazilian Geophysical Society &amp;amp; EXPOGEF, Rio de Janeiro, Brazil, 26–29 August 2013</span><span>, 2013</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="bfbe934d5e64a1bf4cc0bc88e97357ee" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:78055065,&quot;asset_id&quot;:67116159,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/78055065/download_file?st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="67116159"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="67116159"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 67116159; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=67116159]").text(description); $(".js-view-count[data-work-id=67116159]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 67116159; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='67116159']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 67116159, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "bfbe934d5e64a1bf4cc0bc88e97357ee" } } $('.js-work-strip[data-work-id=67116159]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":67116159,"title":"Comparing Kirchhoff Prestack Depth Migration Using Paraxial Traveltime Approximation and Eikonal Equation","translated_title":"","metadata":{"publisher":"Society of Exploration Geophysicists and Brazilian Geophysical Society","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"13th International Congress of the Brazilian Geophysical Society \u0026amp; EXPOGEF, Rio de Janeiro, Brazil, 26–29 August 2013"},"translated_abstract":null,"internal_url":"https://www.academia.edu/67116159/Comparing_Kirchhoff_Prestack_Depth_Migration_Using_Paraxial_Traveltime_Approximation_and_Eikonal_Equation","translated_internal_url":"","created_at":"2022-01-04T11:22:12.439-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":12143756,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":78055065,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78055065/thumbnails/1.jpg","file_name":"Comparing_20Kirchhoff_20Prestack_20Depth_20Migration_20Using_20Paraxial_20Traveltime_20Approximation_20and_20Eikonal_20Equation.pdf","download_url":"https://www.academia.edu/attachments/78055065/download_file?st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Comparing_Kirchhoff_Prestack_Depth_Migra.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78055065/Comparing_20Kirchhoff_20Prestack_20Depth_20Migration_20Using_20Paraxial_20Traveltime_20Approximation_20and_20Eikonal_20Equation-libre.pdf?1641324259=\u0026response-content-disposition=attachment%3B+filename%3DComparing_Kirchhoff_Prestack_Depth_Migra.pdf\u0026Expires=1732467648\u0026Signature=gcArVsDYn~nIZZqKsgEjrQ9EAVaTl7zgJJxoe8T7o4HYtWA5Fx2etjaJs-O-B2MHmNpCHQKc0DCPtwI~hdU5mNeh0aR8wqaxjAhD5kkThHlF4tOMd2W1QY0m7s9exnGZSKoAi2IZtRSMMxC-zKQ~~leyhL94mOSPUn1zAqJI2LhUb2V4l3UYPvwYwGzs8JexqoRBt8mljArZIf~ESL7ogwFldh~xcxJrfprn5NtBjO2KD1J2yy-rGc2h7Tj4SOx5aVVwiJqR1avyA5Rp~hI5hMurw4Pxy1mTLh06MtkLXGw8eqDSPRSb9KMGMZ81xuemWOqggdDyshoo93grWo6dxw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Comparing_Kirchhoff_Prestack_Depth_Migration_Using_Paraxial_Traveltime_Approximation_and_Eikonal_Equation","translated_slug":"","page_count":3,"language":"en","content_type":"Work","owner":{"id":12143756,"first_name":"João Carlos Ribeiro","middle_initials":null,"last_name":"Cruz","page_name":"JoãoCarlosRibeiroCruz","domain_name":"independent","created_at":"2014-05-18T04:50:08.703-07:00","display_name":"João Carlos Ribeiro Cruz","url":"https://independent.academia.edu/Jo%C3%A3oCarlosRibeiroCruz"},"attachments":[{"id":78055065,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78055065/thumbnails/1.jpg","file_name":"Comparing_20Kirchhoff_20Prestack_20Depth_20Migration_20Using_20Paraxial_20Traveltime_20Approximation_20and_20Eikonal_20Equation.pdf","download_url":"https://www.academia.edu/attachments/78055065/download_file?st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Comparing_Kirchhoff_Prestack_Depth_Migra.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78055065/Comparing_20Kirchhoff_20Prestack_20Depth_20Migration_20Using_20Paraxial_20Traveltime_20Approximation_20and_20Eikonal_20Equation-libre.pdf?1641324259=\u0026response-content-disposition=attachment%3B+filename%3DComparing_Kirchhoff_Prestack_Depth_Migra.pdf\u0026Expires=1732467648\u0026Signature=gcArVsDYn~nIZZqKsgEjrQ9EAVaTl7zgJJxoe8T7o4HYtWA5Fx2etjaJs-O-B2MHmNpCHQKc0DCPtwI~hdU5mNeh0aR8wqaxjAhD5kkThHlF4tOMd2W1QY0m7s9exnGZSKoAi2IZtRSMMxC-zKQ~~leyhL94mOSPUn1zAqJI2LhUb2V4l3UYPvwYwGzs8JexqoRBt8mljArZIf~ESL7ogwFldh~xcxJrfprn5NtBjO2KD1J2yy-rGc2h7Tj4SOx5aVVwiJqR1avyA5Rp~hI5hMurw4Pxy1mTLh06MtkLXGw8eqDSPRSb9KMGMZ81xuemWOqggdDyshoo93grWo6dxw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="67116158"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/67116158/Seismic_Modeling_by_Gaussian_Beams_Limited_by_Projected_Fresnel_Zone"><img alt="Research paper thumbnail of Seismic Modeling by Gaussian Beams Limited by Projected Fresnel Zone" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/67116158/Seismic_Modeling_by_Gaussian_Beams_Limited_by_Projected_Fresnel_Zone">Seismic Modeling by Gaussian Beams Limited by Projected Fresnel Zone</a></div><div class="wp-workCard_item"><span>74th EAGE Conference and Exhibition incorporating EUROPEC 2012</span><span>, 2012</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The Gaussian Beam (GB) is an asymptotic solution of the elastodynamic equation in the paraxial vi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The Gaussian Beam (GB) is an asymptotic solution of the elastodynamic equation in the paraxial vicinity of a central ray, which approaches better the wave field than the standard zero-order ray theory. The GB regularity in the description of the wave field, as well as its high accuracy in some singular regions of the propagation medium, provide us with a strong alternative to solve seismic modeling and imaging problems. In this paper, we use the concept of the projected Fresnel zone to limit the superposition integral of Gaussian beams, in order to obtain a more stable Gaussian beam propagation. This result is used to calculate synthetic seismograms with more effectiveness.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="67116158"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="67116158"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 67116158; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=67116158]").text(description); $(".js-view-count[data-work-id=67116158]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 67116158; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='67116158']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 67116158, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=67116158]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":67116158,"title":"Seismic Modeling by Gaussian Beams Limited by Projected Fresnel Zone","translated_title":"","metadata":{"abstract":"The Gaussian Beam (GB) is an asymptotic solution of the elastodynamic equation in the paraxial vicinity of a central ray, which approaches better the wave field than the standard zero-order ray theory. The GB regularity in the description of the wave field, as well as its high accuracy in some singular regions of the propagation medium, provide us with a strong alternative to solve seismic modeling and imaging problems. In this paper, we use the concept of the projected Fresnel zone to limit the superposition integral of Gaussian beams, in order to obtain a more stable Gaussian beam propagation. This result is used to calculate synthetic seismograms with more effectiveness.","publication_date":{"day":null,"month":null,"year":2012,"errors":{}},"publication_name":"74th EAGE Conference and Exhibition incorporating EUROPEC 2012"},"translated_abstract":"The Gaussian Beam (GB) is an asymptotic solution of the elastodynamic equation in the paraxial vicinity of a central ray, which approaches better the wave field than the standard zero-order ray theory. The GB regularity in the description of the wave field, as well as its high accuracy in some singular regions of the propagation medium, provide us with a strong alternative to solve seismic modeling and imaging problems. In this paper, we use the concept of the projected Fresnel zone to limit the superposition integral of Gaussian beams, in order to obtain a more stable Gaussian beam propagation. This result is used to calculate synthetic seismograms with more effectiveness.","internal_url":"https://www.academia.edu/67116158/Seismic_Modeling_by_Gaussian_Beams_Limited_by_Projected_Fresnel_Zone","translated_internal_url":"","created_at":"2022-01-04T11:22:12.329-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":12143756,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Seismic_Modeling_by_Gaussian_Beams_Limited_by_Projected_Fresnel_Zone","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":12143756,"first_name":"João Carlos Ribeiro","middle_initials":null,"last_name":"Cruz","page_name":"JoãoCarlosRibeiroCruz","domain_name":"independent","created_at":"2014-05-18T04:50:08.703-07:00","display_name":"João Carlos Ribeiro Cruz","url":"https://independent.academia.edu/Jo%C3%A3oCarlosRibeiroCruz"},"attachments":[],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="67116157"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/67116157/Interval_Velocities_Inversion_Using_NIP_Wave_Attributes"><img alt="Research paper thumbnail of Interval Velocities Inversion Using NIP Wave Attributes" class="work-thumbnail" src="https://attachments.academia-assets.com/78054957/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/67116157/Interval_Velocities_Inversion_Using_NIP_Wave_Attributes">Interval Velocities Inversion Using NIP Wave Attributes</a></div><div class="wp-workCard_item"><span>60th EAGE Conference and Exhibition</span><span>, 1998</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6fc4bdd881a45f5d416b9c9191ab6092" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:78054957,&quot;asset_id&quot;:67116157,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/78054957/download_file?st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="67116157"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="67116157"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 67116157; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=67116157]").text(description); $(".js-view-count[data-work-id=67116157]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 67116157; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='67116157']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 67116157, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6fc4bdd881a45f5d416b9c9191ab6092" } } $('.js-work-strip[data-work-id=67116157]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":67116157,"title":"Interval Velocities Inversion Using NIP Wave Attributes","translated_title":"","metadata":{"publisher":"European Association of Geoscientists \u0026 Engineers","publication_date":{"day":null,"month":null,"year":1998,"errors":{}},"publication_name":"60th EAGE Conference and Exhibition"},"translated_abstract":null,"internal_url":"https://www.academia.edu/67116157/Interval_Velocities_Inversion_Using_NIP_Wave_Attributes","translated_internal_url":"","created_at":"2022-01-04T11:22:12.163-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":12143756,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":78054957,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78054957/thumbnails/1.jpg","file_name":"download.pdf","download_url":"https://www.academia.edu/attachments/78054957/download_file?st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Interval_Velocities_Inversion_Using_NIP.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78054957/download-libre.pdf?1641324264=\u0026response-content-disposition=attachment%3B+filename%3DInterval_Velocities_Inversion_Using_NIP.pdf\u0026Expires=1732467648\u0026Signature=N2pl5YOauyKGqN8fuZrdb-117erQEKQhk3OW~OciMBG78zH3RiYFY5EqImk6U5pNeiiYOGZy8JOxRN0QIpnv87OJjEBxuMtLh7Fsob3fwGE62ZC7-6wmjddux8s983FoMbivg-LeoUkb7lvaCeylAo9xigTXRLlT-8GS98L55CtdpUewVarsQqXT0oJtGvOZViTQSpoGTcWiXf5moGE1WPteur17XapLlPp-nY4zMr4f1T4l0Q4Cj86SN1LDc8zn7qnIXTcz2xYRrmJ41fW5v7Uv9oaXGyJRJVuC-~GLWILCaQ-w1wvabj37uK4sMq~0MWVB3wKwLfWw0GH3jRh77Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Interval_Velocities_Inversion_Using_NIP_Wave_Attributes","translated_slug":"","page_count":2,"language":"en","content_type":"Work","owner":{"id":12143756,"first_name":"João Carlos Ribeiro","middle_initials":null,"last_name":"Cruz","page_name":"JoãoCarlosRibeiroCruz","domain_name":"independent","created_at":"2014-05-18T04:50:08.703-07:00","display_name":"João Carlos Ribeiro Cruz","url":"https://independent.academia.edu/Jo%C3%A3oCarlosRibeiroCruz"},"attachments":[{"id":78054957,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78054957/thumbnails/1.jpg","file_name":"download.pdf","download_url":"https://www.academia.edu/attachments/78054957/download_file?st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Interval_Velocities_Inversion_Using_NIP.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78054957/download-libre.pdf?1641324264=\u0026response-content-disposition=attachment%3B+filename%3DInterval_Velocities_Inversion_Using_NIP.pdf\u0026Expires=1732467648\u0026Signature=N2pl5YOauyKGqN8fuZrdb-117erQEKQhk3OW~OciMBG78zH3RiYFY5EqImk6U5pNeiiYOGZy8JOxRN0QIpnv87OJjEBxuMtLh7Fsob3fwGE62ZC7-6wmjddux8s983FoMbivg-LeoUkb7lvaCeylAo9xigTXRLlT-8GS98L55CtdpUewVarsQqXT0oJtGvOZViTQSpoGTcWiXf5moGE1WPteur17XapLlPp-nY4zMr4f1T4l0Q4Cj86SN1LDc8zn7qnIXTcz2xYRrmJ41fW5v7Uv9oaXGyJRJVuC-~GLWILCaQ-w1wvabj37uK4sMq~0MWVB3wKwLfWw0GH3jRh77Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":78054956,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78054956/thumbnails/1.jpg","file_name":"download.pdf","download_url":"https://www.academia.edu/attachments/78054956/download_file","bulk_download_file_name":"Interval_Velocities_Inversion_Using_NIP.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78054956/download-libre.pdf?1641324264=\u0026response-content-disposition=attachment%3B+filename%3DInterval_Velocities_Inversion_Using_NIP.pdf\u0026Expires=1732467648\u0026Signature=gSFg9XZEl6JessWsWEbSTwKn1Fnj-yFR~ScdDXn62yRxRIDMO3mEOH8LmXsBoIqwUWQsH5Nnbr1LfsOi0TadZBp6Y~wysQQnOb5KmTpsBNxcNZMNMAzHRBXx7ckvc0ssQ-j2zI0MBAuH8DKZBqnihEdEuEq7r20cTmnwtDkQagh3ndgQhbRFRaYikOpskRlYaA1f4Gh6CmajP~GfRuiI68Y3lmJc7BT~enqfwODEMTRMihSbv6B3Tag5oRZ0yzDSj5UEeert9jFLD~ZwJP5Nej~4FGd10aInLi5PuByyFCAEooGnG4QXglhVJdxjEGq8BlKyySOSPmtVVoKxvha~ig__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"}],"urls":[{"id":16071177,"url":"http://www.earthdoc.org/publication/download/?publication=17107"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="67116156"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/67116156/BOTOSEIS_A_new_Seismic_Unix_based_interactive_platform_for_seismic_data_processing"><img alt="Research paper thumbnail of BOTOSEIS: A new Seismic Unix based interactive platform for seismic data processing" class="work-thumbnail" src="https://attachments.academia-assets.com/78055096/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/67116156/BOTOSEIS_A_new_Seismic_Unix_based_interactive_platform_for_seismic_data_processing">BOTOSEIS: A new Seismic Unix based interactive platform for seismic data processing</a></div><div class="wp-workCard_item"><span>11th International Congress of the Brazilian Geophysical Society &amp;amp; EXPOGEF 2009, Salvador, Bahia, Brazil, 24-28 August 2009</span><span>, 2009</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="430078a65b690eed72cbb24bb9f85c31" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:78055096,&quot;asset_id&quot;:67116156,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/78055096/download_file?st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="67116156"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="67116156"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 67116156; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=67116156]").text(description); $(".js-view-count[data-work-id=67116156]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 67116156; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='67116156']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 67116156, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "430078a65b690eed72cbb24bb9f85c31" } } $('.js-work-strip[data-work-id=67116156]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":67116156,"title":"BOTOSEIS: A new Seismic Unix based interactive platform for seismic data processing","translated_title":"","metadata":{"publisher":"Society of Exploration Geophysicists and Brazilian Geophysical Society","publication_date":{"day":null,"month":null,"year":2009,"errors":{}},"publication_name":"11th International Congress of the Brazilian Geophysical Society \u0026amp; EXPOGEF 2009, Salvador, Bahia, Brazil, 24-28 August 2009"},"translated_abstract":null,"internal_url":"https://www.academia.edu/67116156/BOTOSEIS_A_new_Seismic_Unix_based_interactive_platform_for_seismic_data_processing","translated_internal_url":"","created_at":"2022-01-04T11:22:12.059-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":12143756,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":78055096,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78055096/thumbnails/1.jpg","file_name":"wit2008-lima.pdf","download_url":"https://www.academia.edu/attachments/78055096/download_file?st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"BOTOSEIS_A_new_Seismic_Unix_based_intera.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78055096/wit2008-lima-libre.pdf?1641324257=\u0026response-content-disposition=attachment%3B+filename%3DBOTOSEIS_A_new_Seismic_Unix_based_intera.pdf\u0026Expires=1732467648\u0026Signature=F4-XI3pwcq0n42ILPORys6MOABCzn~2tAMd-brf0sCKtrH-cl9pB-6gd4wZsp4VntdiJSvWIEMrU4a5XWrg~gRPfbf54rUIb1QNxJ3dB2QS79aw1nQQ8vneJWzEX6CR2yRyT3pF3aBdrfJ2XpuUFQmgHFdNcyP~UECXI~ahds4iqJ-SpysDl6EqD3ZmOQYc-KNJ-ikcIOBM-sSLaEvHymjX-fVugQaQLKNmWsP8Zlh-D2mPcgBHVVI7qBMTPQ3Dd6lgKTCP~4EUZcGP9naDCdOf9xnDmjH~TiAbXWfM3-6Ovhex-puC-mdvjeYdRdGtWpAHso4a4SOEjMMUZvlAMmQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"BOTOSEIS_A_new_Seismic_Unix_based_interactive_platform_for_seismic_data_processing","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":12143756,"first_name":"João Carlos Ribeiro","middle_initials":null,"last_name":"Cruz","page_name":"JoãoCarlosRibeiroCruz","domain_name":"independent","created_at":"2014-05-18T04:50:08.703-07:00","display_name":"João Carlos Ribeiro Cruz","url":"https://independent.academia.edu/Jo%C3%A3oCarlosRibeiroCruz"},"attachments":[{"id":78055096,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78055096/thumbnails/1.jpg","file_name":"wit2008-lima.pdf","download_url":"https://www.academia.edu/attachments/78055096/download_file?st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"BOTOSEIS_A_new_Seismic_Unix_based_intera.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78055096/wit2008-lima-libre.pdf?1641324257=\u0026response-content-disposition=attachment%3B+filename%3DBOTOSEIS_A_new_Seismic_Unix_based_intera.pdf\u0026Expires=1732467648\u0026Signature=F4-XI3pwcq0n42ILPORys6MOABCzn~2tAMd-brf0sCKtrH-cl9pB-6gd4wZsp4VntdiJSvWIEMrU4a5XWrg~gRPfbf54rUIb1QNxJ3dB2QS79aw1nQQ8vneJWzEX6CR2yRyT3pF3aBdrfJ2XpuUFQmgHFdNcyP~UECXI~ahds4iqJ-SpysDl6EqD3ZmOQYc-KNJ-ikcIOBM-sSLaEvHymjX-fVugQaQLKNmWsP8Zlh-D2mPcgBHVVI7qBMTPQ3Dd6lgKTCP~4EUZcGP9naDCdOf9xnDmjH~TiAbXWfM3-6Ovhex-puC-mdvjeYdRdGtWpAHso4a4SOEjMMUZvlAMmQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":403,"name":"Gemology","url":"https://www.academia.edu/Documents/in/Gemology"},{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":408,"name":"Geomorphology","url":"https://www.academia.edu/Documents/in/Geomorphology"},{"id":410,"name":"Glaciology","url":"https://www.academia.edu/Documents/in/Glaciology"},{"id":411,"name":"Hydrogeology","url":"https://www.academia.edu/Documents/in/Hydrogeology"},{"id":414,"name":"Mineralogy","url":"https://www.academia.edu/Documents/in/Mineralogy"},{"id":417,"name":"Paleontology","url":"https://www.academia.edu/Documents/in/Paleontology"},{"id":421,"name":"Soil Science","url":"https://www.academia.edu/Documents/in/Soil_Science"},{"id":1034,"name":"Stratigraphy","url":"https://www.academia.edu/Documents/in/Stratigraphy"},{"id":2403,"name":"Environmental Geology","url":"https://www.academia.edu/Documents/in/Environmental_Geology"},{"id":2404,"name":"Petrology","url":"https://www.academia.edu/Documents/in/Petrology"},{"id":2406,"name":"Economic Geology","url":"https://www.academia.edu/Documents/in/Economic_Geology"},{"id":3869,"name":"Geobiology","url":"https://www.academia.edu/Documents/in/Geobiology"},{"id":15989,"name":"Igneous petrology","url":"https://www.academia.edu/Documents/in/Igneous_petrology"},{"id":20564,"name":"Engineering Geology","url":"https://www.academia.edu/Documents/in/Engineering_Geology"},{"id":64108,"name":"Paleogeography","url":"https://www.academia.edu/Documents/in/Paleogeography"},{"id":191873,"name":"Magmatism","url":"https://www.academia.edu/Documents/in/Magmatism"},{"id":505937,"name":"Regional Geology","url":"https://www.academia.edu/Documents/in/Regional_Geology"},{"id":581258,"name":"Hazards","url":"https://www.academia.edu/Documents/in/Hazards"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="67116155"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/67116155/Reflection_Coefficient_Determination_Using_Eigenwavefront_Attributes"><img alt="Research paper thumbnail of Reflection Coefficient Determination Using Eigenwavefront Attributes" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/67116155/Reflection_Coefficient_Determination_Using_Eigenwavefront_Attributes">Reflection Coefficient Determination Using Eigenwavefront Attributes</a></div><div class="wp-workCard_item"><span>60th EAGE Conference and Exhibition</span><span>, 1998</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper the reflection coefficient map is obtained applying a geometrical spreading correct...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper the reflection coefficient map is obtained applying a geometrical spreading correction factor to the principal component of the primary reflection wavefields, corresponding to seismic traces into zero-offset configuration data.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="67116155"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="67116155"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 67116155; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=67116155]").text(description); $(".js-view-count[data-work-id=67116155]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 67116155; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='67116155']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 67116155, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=67116155]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":67116155,"title":"Reflection Coefficient Determination Using Eigenwavefront Attributes","translated_title":"","metadata":{"abstract":"In this paper the reflection coefficient map is obtained applying a geometrical spreading correction factor to the principal component of the primary reflection wavefields, corresponding to seismic traces into zero-offset configuration data.","publication_date":{"day":null,"month":null,"year":1998,"errors":{}},"publication_name":"60th EAGE Conference and Exhibition"},"translated_abstract":"In this paper the reflection coefficient map is obtained applying a geometrical spreading correction factor to the principal component of the primary reflection wavefields, corresponding to seismic traces into zero-offset configuration data.","internal_url":"https://www.academia.edu/67116155/Reflection_Coefficient_Determination_Using_Eigenwavefront_Attributes","translated_internal_url":"","created_at":"2022-01-04T11:22:11.956-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":12143756,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Reflection_Coefficient_Determination_Using_Eigenwavefront_Attributes","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":12143756,"first_name":"João Carlos Ribeiro","middle_initials":null,"last_name":"Cruz","page_name":"JoãoCarlosRibeiroCruz","domain_name":"independent","created_at":"2014-05-18T04:50:08.703-07:00","display_name":"João Carlos Ribeiro Cruz","url":"https://independent.academia.edu/Jo%C3%A3oCarlosRibeiroCruz"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="67116154"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/67116154/Depth_mapping_of_stacked_amplitudes_along_an_attribute_based_ZO_stacking_operator"><img alt="Research paper thumbnail of Depth mapping of stacked amplitudes along an attribute based ZO stacking operator" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/67116154/Depth_mapping_of_stacked_amplitudes_along_an_attribute_based_ZO_stacking_operator">Depth mapping of stacked amplitudes along an attribute based ZO stacking operator</a></div><div class="wp-workCard_item"><span>Seg Technical Program Expanded Abstracts</span><span>, 2006</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The Common-Reflection-Surface (CRS) stack method produces zerooffset (ZO) sections with high sign...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The Common-Reflection-Surface (CRS) stack method produces zerooffset (ZO) sections with high signal-to-noise ratio and three useful kinematic wavefield attributes from multi-coverage seismic data. With the knowledge of the near surface velocity only, the CRS stack is based on the determination of these attributes by means of automatic search processes based on coherency analysis. These kinematic CRS wavefield attributes can be used for several seismic applications. In this work we propose a procedure for mapping the stacked amplitudes along the CRS operator in the ZO section to depth domain. Then, for the ZO plane, the kinematic attributes are used to calculate the stacking operator and to determine the projected first Fresnel zone to be used to restrict the size of the CRS stacking operator. Similar to preor post-stack depth migrations, this mapping procedure also requires the a priori unknown velocity model. This mapping procedure is illustrated by means of applying it to a synthetic data of a simple model example.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="67116154"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="67116154"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 67116154; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=67116154]").text(description); $(".js-view-count[data-work-id=67116154]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 67116154; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='67116154']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 67116154, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=67116154]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":67116154,"title":"Depth mapping of stacked amplitudes along an attribute based ZO stacking operator","translated_title":"","metadata":{"abstract":"The Common-Reflection-Surface (CRS) stack method produces zerooffset (ZO) sections with high signal-to-noise ratio and three useful kinematic wavefield attributes from multi-coverage seismic data. With the knowledge of the near surface velocity only, the CRS stack is based on the determination of these attributes by means of automatic search processes based on coherency analysis. These kinematic CRS wavefield attributes can be used for several seismic applications. In this work we propose a procedure for mapping the stacked amplitudes along the CRS operator in the ZO section to depth domain. Then, for the ZO plane, the kinematic attributes are used to calculate the stacking operator and to determine the projected first Fresnel zone to be used to restrict the size of the CRS stacking operator. Similar to preor post-stack depth migrations, this mapping procedure also requires the a priori unknown velocity model. This mapping procedure is illustrated by means of applying it to a synthetic data of a simple model example.","publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"Seg Technical Program Expanded Abstracts"},"translated_abstract":"The Common-Reflection-Surface (CRS) stack method produces zerooffset (ZO) sections with high signal-to-noise ratio and three useful kinematic wavefield attributes from multi-coverage seismic data. With the knowledge of the near surface velocity only, the CRS stack is based on the determination of these attributes by means of automatic search processes based on coherency analysis. These kinematic CRS wavefield attributes can be used for several seismic applications. In this work we propose a procedure for mapping the stacked amplitudes along the CRS operator in the ZO section to depth domain. Then, for the ZO plane, the kinematic attributes are used to calculate the stacking operator and to determine the projected first Fresnel zone to be used to restrict the size of the CRS stacking operator. Similar to preor post-stack depth migrations, this mapping procedure also requires the a priori unknown velocity model. This mapping procedure is illustrated by means of applying it to a synthetic data of a simple model example.","internal_url":"https://www.academia.edu/67116154/Depth_mapping_of_stacked_amplitudes_along_an_attribute_based_ZO_stacking_operator","translated_internal_url":"","created_at":"2022-01-04T11:22:11.798-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":12143756,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Depth_mapping_of_stacked_amplitudes_along_an_attribute_based_ZO_stacking_operator","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":12143756,"first_name":"João Carlos Ribeiro","middle_initials":null,"last_name":"Cruz","page_name":"JoãoCarlosRibeiroCruz","domain_name":"independent","created_at":"2014-05-18T04:50:08.703-07:00","display_name":"João Carlos Ribeiro Cruz","url":"https://independent.academia.edu/Jo%C3%A3oCarlosRibeiroCruz"},"attachments":[],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":543415,"name":"Depth Map","url":"https://www.academia.edu/Documents/in/Depth_Map"}],"urls":[{"id":16071176,"url":"http://link.aip.org/link/SEGEAB/v25/i1/p2629/s1\u0026Agg=doi"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="67116153"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/67116153/Numerical_analysis_of_2_5_D_true_amplitude_diffraction_stack_migration"><img alt="Research paper thumbnail of Numerical analysis of 2.5-D true-amplitude diffraction stack migration" class="work-thumbnail" src="https://attachments.academia-assets.com/78055060/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/67116153/Numerical_analysis_of_2_5_D_true_amplitude_diffraction_stack_migration">Numerical analysis of 2.5-D true-amplitude diffraction stack migration</a></div><div class="wp-workCard_item"><span>Journal of Applied Geophysics</span><span>, 2000</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6cb90040b7955df68660821b41f36958" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:78055060,&quot;asset_id&quot;:67116153,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/78055060/download_file?st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="67116153"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="67116153"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 67116153; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=67116153]").text(description); $(".js-view-count[data-work-id=67116153]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 67116153; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='67116153']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 67116153, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6cb90040b7955df68660821b41f36958" } } $('.js-work-strip[data-work-id=67116153]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":67116153,"title":"Numerical analysis of 2.5-D true-amplitude diffraction stack migration","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2000,"errors":{}},"publication_name":"Journal of Applied Geophysics"},"translated_abstract":null,"internal_url":"https://www.academia.edu/67116153/Numerical_analysis_of_2_5_D_true_amplitude_diffraction_stack_migration","translated_internal_url":"","created_at":"2022-01-04T11:22:11.145-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":12143756,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":78055060,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78055060/thumbnails/1.jpg","file_name":"1255.pdf","download_url":"https://www.academia.edu/attachments/78055060/download_file?st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Numerical_analysis_of_2_5_D_true_amplitu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78055060/1255-libre.pdf?1641324261=\u0026response-content-disposition=attachment%3B+filename%3DNumerical_analysis_of_2_5_D_true_amplitu.pdf\u0026Expires=1732467648\u0026Signature=cw5MMzinnSlq2Zg02Rxs564kZaqqaVShOlZRaKGAn85dcI855dCQ8fn0IgQwixnoEkcAlolRgAPg6yqvlfMzy6hOK-5yFH6elmpE82crXTkHlY2k~UUEoRociJ9kh2fJi9Bf0lDzIMPAe3S26ChpxOKy0hDvnE8oz4WZPYwaKHK9IqnK0XHdfe9J9cQaavBlh9MQtR04Cnq4sF4o6qKZ7WRzmO2knBR0c0ljjW6ps~dVbLg98ilDNmIB1idgZVL4rbNV7TcMrPKRAgWt0arZHb2v3nYviEmmIjChSf6jPq6bn6MPenjgvVU1weiiyYw2uvheTgZDeGXewWFHT-PIhg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Numerical_analysis_of_2_5_D_true_amplitude_diffraction_stack_migration","translated_slug":"","page_count":14,"language":"en","content_type":"Work","owner":{"id":12143756,"first_name":"João Carlos Ribeiro","middle_initials":null,"last_name":"Cruz","page_name":"JoãoCarlosRibeiroCruz","domain_name":"independent","created_at":"2014-05-18T04:50:08.703-07:00","display_name":"João Carlos Ribeiro Cruz","url":"https://independent.academia.edu/Jo%C3%A3oCarlosRibeiroCruz"},"attachments":[{"id":78055060,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/78055060/thumbnails/1.jpg","file_name":"1255.pdf","download_url":"https://www.academia.edu/attachments/78055060/download_file?st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&st=MTczMjQ2NDA0OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Numerical_analysis_of_2_5_D_true_amplitu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/78055060/1255-libre.pdf?1641324261=\u0026response-content-disposition=attachment%3B+filename%3DNumerical_analysis_of_2_5_D_true_amplitu.pdf\u0026Expires=1732467648\u0026Signature=cw5MMzinnSlq2Zg02Rxs564kZaqqaVShOlZRaKGAn85dcI855dCQ8fn0IgQwixnoEkcAlolRgAPg6yqvlfMzy6hOK-5yFH6elmpE82crXTkHlY2k~UUEoRociJ9kh2fJi9Bf0lDzIMPAe3S26ChpxOKy0hDvnE8oz4WZPYwaKHK9IqnK0XHdfe9J9cQaavBlh9MQtR04Cnq4sF4o6qKZ7WRzmO2knBR0c0ljjW6ps~dVbLg98ilDNmIB1idgZVL4rbNV7TcMrPKRAgWt0arZHb2v3nYviEmmIjChSf6jPq6bn6MPenjgvVU1weiiyYw2uvheTgZDeGXewWFHT-PIhg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":409,"name":"Geophysics","url":"https://www.academia.edu/Documents/in/Geophysics"},{"id":4850,"name":"Migration","url":"https://www.academia.edu/Documents/in/Migration"},{"id":6201,"name":"Imaging","url":"https://www.academia.edu/Documents/in/Imaging"},{"id":12022,"name":"Numerical Analysis","url":"https://www.academia.edu/Documents/in/Numerical_Analysis"},{"id":61623,"name":"Applied Geophysics","url":"https://www.academia.edu/Documents/in/Applied_Geophysics"},{"id":162010,"name":"Geomatic Engineering","url":"https://www.academia.edu/Documents/in/Geomatic_Engineering"},{"id":229394,"name":"Inverse Method","url":"https://www.academia.edu/Documents/in/Inverse_Method"},{"id":292710,"name":"Inversion","url":"https://www.academia.edu/Documents/in/Inversion"},{"id":724801,"name":"Ray","url":"https://www.academia.edu/Documents/in/Ray"},{"id":1553474,"name":"Reflection Coefficient","url":"https://www.academia.edu/Documents/in/Reflection_Coefficient"},{"id":2028944,"name":"Integral Operator","url":"https://www.academia.edu/Documents/in/Integral_Operator"},{"id":2513364,"name":"Radius of Curvature","url":"https://www.academia.edu/Documents/in/Radius_of_Curvature"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="67115799"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/67115799/Invers%C3%A3o_de_dados_de_s%C3%ADsmica_de_refra%C3%A7%C3%A3o_profunda_a_partir_da_curva_tempo_dist%C3%A2ncia"><img alt="Research paper thumbnail of Inversão de dados de sísmica de refração profunda a partir da curva tempo-distância" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/67115799/Invers%C3%A3o_de_dados_de_s%C3%ADsmica_de_refra%C3%A7%C3%A3o_profunda_a_partir_da_curva_tempo_dist%C3%A2ncia">Inversão de dados de sísmica de refração profunda a partir da curva tempo-distância</a></div><div class="wp-workCard_item"><span>Revista Brasileira de Geofísica</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">O trabalho em pauta tem como objetivo o modelamento da crosta, atraves da inversao de dados de re...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">O trabalho em pauta tem como objetivo o modelamento da crosta, atraves da inversao de dados de refracao sismica profunda, segundo camadas planas horizontais lateralmente homogeneas, sobre um semi-espaco. O modelo direto e dado pela expressao analitica da curva tempo-distância como uma funcao que depende da distância fonte estacao e do vetor de parâmetros velocidades e espessuras de cada camada, calculado segundo as trajetorias do raio sismico, regidas pela Lei de Snell. O calculo dos tempos de chegada por este procedimento exige a utilizacao de um modelo cujas velocidades sejam crescente com a profundidade, de modo que a ocorrencia da camada de baixa velocidade (CBV) e contornada pela reparametrizacao do modelo, levando-se em conta o fato de que o topo da CBV funciona apenas como um refletor do raio sismico, e nao como refrator. A metodologia de inversao utilizada tem em vista nao so a determinacao das solucoes possiveis, mas tambem a realizacao de uma analise sobre as causas responsaveis pela ambiguidade do problema. A regiao de pesquisa das provaveis solucoes e vinculada segundo limites superiores e inferiores para cada parâmetro procurado e pelo estabelecimento de limites superiores para os valores de distâncias criticas, calculadas a partir do vetor de parâmetros. O processo de inversao e feito utilizando-se uma tecnica de otimizacao do ajuste de curvas atraves da busca direta no espaco dos parâmetros, denominado COMPLEX. Esta tecnica apresenta a vantagem de poder ser utiliada com qualquer funcao objeto e ser bastante pratica na obtencao de multiplas solucoes do problema. Devido a curva tempo-distância corresponder ao caso de uma multi-funcao, o algoritmo foi adaptado de modo a minimizar simultaneamente varias funcoes objeto, com vinculos nos parâmetros. A inversao e feita de modo a se obter um conjunto de solucoes representativas do universo existente. Por sua vez, a analise da ambiguidade e realizada pela analise fatorial modo-Q, atraves da qual e possivel se caracterizar as propriedades comuns existentes no elenco das solucoes analisadas. Os testes com dados sinteticos e reais foram feitos tendo como aproximacao inicial ao processo de inversao, os valores de velocidades e espessuras calculados diretamente da interpretacao visual do sismograma. Para a realizacao dos primeiros, utilizou-se sismogramas calculados pelo metodo da refletividade, segundo diferentes modelos. Por sua vez, os testes com dados reais foram realizados utilizando-se dados extraidos de um dos sismogramas coletados pelo projeto Lithospheric Seismic Profile in Britain (LISPB), na regiao norte da Gra-Bretanha. Em todos os testes foi verificado que a geometria do modelo possui um maior peso na ambiguidade do problema, enquanto os parâmetros fisicos apresentam apenas suaves variacoes, no conjunto das solucoes obtidas. ABSTRACT Inversion of deep seismic refraction data through time-distance curve ¾ The aim of this thesis is to obtain crustal model through the inversion of deep seismic refraction data considering lateraly homogeneous horizontal plain layers over a half-space. The direct model is given by analytic expression for the travel-time curve, as a function that depends on the source-station distance and on the array of parameters, formed by velocity and thickness of each layer. The expression is obtained from the trajectory of the seismic ray by Snell&amp;#39;s Law. The calculation of the arrival time for seismic refraction by this method takes into account a model with velocities increasing with depth. The occurrence of low velocity layers (LVL) are solved as a model reparametrization, taking into account the fact that top boundary of the low velocity layer is only a reflector, and not a refractor of seismic waves. The inversion method is used to solve for the possible solutions, and also to perform an analysis about the ambiguity of the problem. The search region of probable solutions is constrained by high and lower limits of each parameter considered, and by high limits of each critical distance, calculated using the array of parameters. The inversion process used is an optimization technique for curve fitting corresponding to a direct search in the parameter space, called COMPLEX. This technique presents the advantage of using any objective function, and as being practical in obtaining different solutions for the problem. As the travel-time curve is a multi-function, the algorithm was adapted to minimize several objective functions simultaneously, with constraints. The inversion process is formulated to obtain a representative group of solutions of the problem. Afterwards, the analysis of ambiguity is made by Q-mode factor analysis, through which is possible to find the common properties of the group of solutions. Tests with synthetic and real data were made having as initial approximation to the inversion process the velocity and thickness values calculated by the straightforward visual interpretation of the seismograms. For the…</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="67115799"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="67115799"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 67115799; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=67115799]").text(description); $(".js-view-count[data-work-id=67115799]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 67115799; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='67115799']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 67115799, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=67115799]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":67115799,"title":"Inversão de dados de sísmica de refração profunda a partir da curva tempo-distância","translated_title":"","metadata":{"abstract":"O trabalho em pauta tem como objetivo o modelamento da crosta, atraves da inversao de dados de refracao sismica profunda, segundo camadas planas horizontais lateralmente homogeneas, sobre um semi-espaco. O modelo direto e dado pela expressao analitica da curva tempo-distância como uma funcao que depende da distância fonte estacao e do vetor de parâmetros velocidades e espessuras de cada camada, calculado segundo as trajetorias do raio sismico, regidas pela Lei de Snell. O calculo dos tempos de chegada por este procedimento exige a utilizacao de um modelo cujas velocidades sejam crescente com a profundidade, de modo que a ocorrencia da camada de baixa velocidade (CBV) e contornada pela reparametrizacao do modelo, levando-se em conta o fato de que o topo da CBV funciona apenas como um refletor do raio sismico, e nao como refrator. A metodologia de inversao utilizada tem em vista nao so a determinacao das solucoes possiveis, mas tambem a realizacao de uma analise sobre as causas responsaveis pela ambiguidade do problema. A regiao de pesquisa das provaveis solucoes e vinculada segundo limites superiores e inferiores para cada parâmetro procurado e pelo estabelecimento de limites superiores para os valores de distâncias criticas, calculadas a partir do vetor de parâmetros. O processo de inversao e feito utilizando-se uma tecnica de otimizacao do ajuste de curvas atraves da busca direta no espaco dos parâmetros, denominado COMPLEX. Esta tecnica apresenta a vantagem de poder ser utiliada com qualquer funcao objeto e ser bastante pratica na obtencao de multiplas solucoes do problema. Devido a curva tempo-distância corresponder ao caso de uma multi-funcao, o algoritmo foi adaptado de modo a minimizar simultaneamente varias funcoes objeto, com vinculos nos parâmetros. A inversao e feita de modo a se obter um conjunto de solucoes representativas do universo existente. Por sua vez, a analise da ambiguidade e realizada pela analise fatorial modo-Q, atraves da qual e possivel se caracterizar as propriedades comuns existentes no elenco das solucoes analisadas. Os testes com dados sinteticos e reais foram feitos tendo como aproximacao inicial ao processo de inversao, os valores de velocidades e espessuras calculados diretamente da interpretacao visual do sismograma. Para a realizacao dos primeiros, utilizou-se sismogramas calculados pelo metodo da refletividade, segundo diferentes modelos. Por sua vez, os testes com dados reais foram realizados utilizando-se dados extraidos de um dos sismogramas coletados pelo projeto Lithospheric Seismic Profile in Britain (LISPB), na regiao norte da Gra-Bretanha. Em todos os testes foi verificado que a geometria do modelo possui um maior peso na ambiguidade do problema, enquanto os parâmetros fisicos apresentam apenas suaves variacoes, no conjunto das solucoes obtidas. ABSTRACT Inversion of deep seismic refraction data through time-distance curve ¾ The aim of this thesis is to obtain crustal model through the inversion of deep seismic refraction data considering lateraly homogeneous horizontal plain layers over a half-space. The direct model is given by analytic expression for the travel-time curve, as a function that depends on the source-station distance and on the array of parameters, formed by velocity and thickness of each layer. The expression is obtained from the trajectory of the seismic ray by Snell\u0026#39;s Law. The calculation of the arrival time for seismic refraction by this method takes into account a model with velocities increasing with depth. The occurrence of low velocity layers (LVL) are solved as a model reparametrization, taking into account the fact that top boundary of the low velocity layer is only a reflector, and not a refractor of seismic waves. The inversion method is used to solve for the possible solutions, and also to perform an analysis about the ambiguity of the problem. The search region of probable solutions is constrained by high and lower limits of each parameter considered, and by high limits of each critical distance, calculated using the array of parameters. The inversion process used is an optimization technique for curve fitting corresponding to a direct search in the parameter space, called COMPLEX. This technique presents the advantage of using any objective function, and as being practical in obtaining different solutions for the problem. As the travel-time curve is a multi-function, the algorithm was adapted to minimize several objective functions simultaneously, with constraints. The inversion process is formulated to obtain a representative group of solutions of the problem. Afterwards, the analysis of ambiguity is made by Q-mode factor analysis, through which is possible to find the common properties of the group of solutions. Tests with synthetic and real data were made having as initial approximation to the inversion process the velocity and thickness values calculated by the straightforward visual interpretation of the seismograms. For the…","publication_name":"Revista Brasileira de Geofísica"},"translated_abstract":"O trabalho em pauta tem como objetivo o modelamento da crosta, atraves da inversao de dados de refracao sismica profunda, segundo camadas planas horizontais lateralmente homogeneas, sobre um semi-espaco. O modelo direto e dado pela expressao analitica da curva tempo-distância como uma funcao que depende da distância fonte estacao e do vetor de parâmetros velocidades e espessuras de cada camada, calculado segundo as trajetorias do raio sismico, regidas pela Lei de Snell. O calculo dos tempos de chegada por este procedimento exige a utilizacao de um modelo cujas velocidades sejam crescente com a profundidade, de modo que a ocorrencia da camada de baixa velocidade (CBV) e contornada pela reparametrizacao do modelo, levando-se em conta o fato de que o topo da CBV funciona apenas como um refletor do raio sismico, e nao como refrator. A metodologia de inversao utilizada tem em vista nao so a determinacao das solucoes possiveis, mas tambem a realizacao de uma analise sobre as causas responsaveis pela ambiguidade do problema. A regiao de pesquisa das provaveis solucoes e vinculada segundo limites superiores e inferiores para cada parâmetro procurado e pelo estabelecimento de limites superiores para os valores de distâncias criticas, calculadas a partir do vetor de parâmetros. O processo de inversao e feito utilizando-se uma tecnica de otimizacao do ajuste de curvas atraves da busca direta no espaco dos parâmetros, denominado COMPLEX. Esta tecnica apresenta a vantagem de poder ser utiliada com qualquer funcao objeto e ser bastante pratica na obtencao de multiplas solucoes do problema. Devido a curva tempo-distância corresponder ao caso de uma multi-funcao, o algoritmo foi adaptado de modo a minimizar simultaneamente varias funcoes objeto, com vinculos nos parâmetros. A inversao e feita de modo a se obter um conjunto de solucoes representativas do universo existente. Por sua vez, a analise da ambiguidade e realizada pela analise fatorial modo-Q, atraves da qual e possivel se caracterizar as propriedades comuns existentes no elenco das solucoes analisadas. Os testes com dados sinteticos e reais foram feitos tendo como aproximacao inicial ao processo de inversao, os valores de velocidades e espessuras calculados diretamente da interpretacao visual do sismograma. Para a realizacao dos primeiros, utilizou-se sismogramas calculados pelo metodo da refletividade, segundo diferentes modelos. Por sua vez, os testes com dados reais foram realizados utilizando-se dados extraidos de um dos sismogramas coletados pelo projeto Lithospheric Seismic Profile in Britain (LISPB), na regiao norte da Gra-Bretanha. Em todos os testes foi verificado que a geometria do modelo possui um maior peso na ambiguidade do problema, enquanto os parâmetros fisicos apresentam apenas suaves variacoes, no conjunto das solucoes obtidas. ABSTRACT Inversion of deep seismic refraction data through time-distance curve ¾ The aim of this thesis is to obtain crustal model through the inversion of deep seismic refraction data considering lateraly homogeneous horizontal plain layers over a half-space. The direct model is given by analytic expression for the travel-time curve, as a function that depends on the source-station distance and on the array of parameters, formed by velocity and thickness of each layer. The expression is obtained from the trajectory of the seismic ray by Snell\u0026#39;s Law. The calculation of the arrival time for seismic refraction by this method takes into account a model with velocities increasing with depth. The occurrence of low velocity layers (LVL) are solved as a model reparametrization, taking into account the fact that top boundary of the low velocity layer is only a reflector, and not a refractor of seismic waves. The inversion method is used to solve for the possible solutions, and also to perform an analysis about the ambiguity of the problem. The search region of probable solutions is constrained by high and lower limits of each parameter considered, and by high limits of each critical distance, calculated using the array of parameters. The inversion process used is an optimization technique for curve fitting corresponding to a direct search in the parameter space, called COMPLEX. This technique presents the advantage of using any objective function, and as being practical in obtaining different solutions for the problem. As the travel-time curve is a multi-function, the algorithm was adapted to minimize several objective functions simultaneously, with constraints. The inversion process is formulated to obtain a representative group of solutions of the problem. Afterwards, the analysis of ambiguity is made by Q-mode factor analysis, through which is possible to find the common properties of the group of solutions. Tests with synthetic and real data were made having as initial approximation to the inversion process the velocity and thickness values calculated by the straightforward visual interpretation of the seismograms. For the…","internal_url":"https://www.academia.edu/67115799/Invers%C3%A3o_de_dados_de_s%C3%ADsmica_de_refra%C3%A7%C3%A3o_profunda_a_partir_da_curva_tempo_dist%C3%A2ncia","translated_internal_url":"","created_at":"2022-01-04T11:20:58.851-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":12143756,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Inversão_de_dados_de_sísmica_de_refração_profunda_a_partir_da_curva_tempo_distância","translated_slug":"","page_count":null,"language":"pt","content_type":"Work","owner":{"id":12143756,"first_name":"João Carlos Ribeiro","middle_initials":null,"last_name":"Cruz","page_name":"JoãoCarlosRibeiroCruz","domain_name":"independent","created_at":"2014-05-18T04:50:08.703-07:00","display_name":"João Carlos Ribeiro Cruz","url":"https://independent.academia.edu/Jo%C3%A3oCarlosRibeiroCruz"},"attachments":[],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="50020308"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/50020308/Sensibility_Analysis_Of_The_Multifocusing_Traveltime_Approximation"><img alt="Research paper thumbnail of Sensibility Analysis Of The Multifocusing Traveltime Approximation" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/50020308/Sensibility_Analysis_Of_The_Multifocusing_Traveltime_Approximation">Sensibility Analysis Of The Multifocusing Traveltime Approximation</a></div><div class="wp-workCard_item"><span>6th International Congress of the Brazilian Geophysical Society</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="50020308"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="50020308"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 50020308; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=50020308]").text(description); $(".js-view-count[data-work-id=50020308]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 50020308; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='50020308']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 50020308, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=50020308]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":50020308,"title":"Sensibility Analysis Of The Multifocusing Traveltime Approximation","translated_title":"","metadata":{"publisher":"European Association of Geoscientists \u0026 Engineers","publication_name":"6th International Congress of the Brazilian Geophysical Society"},"translated_abstract":null,"internal_url":"https://www.academia.edu/50020308/Sensibility_Analysis_Of_The_Multifocusing_Traveltime_Approximation","translated_internal_url":"","created_at":"2021-07-17T09:37:19.937-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":12143756,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Sensibility_Analysis_Of_The_Multifocusing_Traveltime_Approximation","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":12143756,"first_name":"João Carlos Ribeiro","middle_initials":null,"last_name":"Cruz","page_name":"JoãoCarlosRibeiroCruz","domain_name":"independent","created_at":"2014-05-18T04:50:08.703-07:00","display_name":"João Carlos Ribeiro Cruz","url":"https://independent.academia.edu/Jo%C3%A3oCarlosRibeiroCruz"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "bcddd7b8de0b89bdccf36fe76f214369f804c5746ec67abbeb4d8c2d5fcef4ac", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="/9fOOO8060Vx4yX2X7F9o9rDUKAnlIMjBk4X4GdrNshtvYyCRYb3HElfWcdDUi6fUcb/gcF38/Td3PqKf34bKw==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://independent.academia.edu/Jo%C3%A3oCarlosRibeiroCruz" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="l5XyEmfhCOgYRfjP9bRnv2E/4gi8Gb4p4q709FcMbyoF/7CozVMUsSD5hP7pVzSD6jpNKVr6zv45PBmeTxlCyQ==" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10