CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 68 results for author: <span class="mathjax">Barnes, C</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Barnes%2C+C">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Barnes, C"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Barnes%2C+C&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Barnes, C"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Barnes%2C+C&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Barnes%2C+C&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Barnes%2C+C&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.09704">arXiv:2502.09704</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.09704">pdf</a>, <a href="https://arxiv.org/format/2502.09704">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Iterative quantum optimisation with a warm-started quantum state </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yuan%2C+H">Haomu Yuan</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+S">Songqinghao Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C+H+W">Crispin H. W. Barnes</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.09704v1-abstract-short" style="display: inline;"> We provide a method to prepare a warm-started quantum state from measurements with an iterative framework to enhance the quantum approximate optimisation algorithm (QAOA). The numerical simulations show the method can effectively address the &#34;stuck issue&#34; of the standard QAOA using a single-string warm-started initial state described in [Cain et al., 2023]. When applied to the $3$-regular MaxCut p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.09704v1-abstract-full').style.display = 'inline'; document.getElementById('2502.09704v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.09704v1-abstract-full" style="display: none;"> We provide a method to prepare a warm-started quantum state from measurements with an iterative framework to enhance the quantum approximate optimisation algorithm (QAOA). The numerical simulations show the method can effectively address the &#34;stuck issue&#34; of the standard QAOA using a single-string warm-started initial state described in [Cain et al., 2023]. When applied to the $3$-regular MaxCut problem, our approach achieves an improved approximation ratio, with a lower bound that iteratively converges toward the best classical algorithms for $p=1$ standard QAOA. Additionally, in the context of the discrete global minimal variance portfolio (DGMVP) model, simulations reveal a more favourable scaling of identifying the global minimal compared to the QAOA standalone, the single-string warm-started QAOA and a classical constrained sampling approach. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.09704v1-abstract-full').style.display = 'none'; document.getElementById('2502.09704v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">feedback welcome, 13 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.09807">arXiv:2212.09807</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.09807">pdf</a>, <a href="https://arxiv.org/format/2212.09807">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Highly-parallelized simulation of a pixelated LArTPC on a GPU </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&amp;query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&amp;query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+Z">Z. Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+J">J. Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Aimard%2C+B">B. Aimard</a>, <a href="/search/physics?searchtype=author&amp;query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&amp;query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=Alt%2C+C">C. Alt</a>, <a href="/search/physics?searchtype=author&amp;query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&amp;query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&amp;query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a> , et al. (1282 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.09807v3-abstract-short" style="display: inline;"> The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we pr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.09807v3-abstract-full').style.display = 'inline'; document.getElementById('2212.09807v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.09807v3-abstract-full" style="display: none;"> The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on $10^3$ pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.09807v3-abstract-full').style.display = 'none'; document.getElementById('2212.09807v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 15 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-22-926-LBNF </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.01166">arXiv:2211.01166</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.01166">pdf</a>, <a href="https://arxiv.org/format/2211.01166">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&amp;query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&amp;query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+Z">Z. Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+J">J. Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Aimard%2C+B">B. Aimard</a>, <a href="/search/physics?searchtype=author&amp;query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&amp;query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=Alt%2C+C">C. Alt</a>, <a href="/search/physics?searchtype=author&amp;query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&amp;query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&amp;query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a> , et al. (1235 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.01166v4-abstract-short" style="display: inline;"> Measurements of electrons from $谓_e$ interactions are crucial for the Deep Underground Neutrino Experiment (DUNE) neutrino oscillation program, as well as searches for physics beyond the standard model, supernova neutrino detection, and solar neutrino measurements. This article describes the selection and reconstruction of low-energy (Michel) electrons in the ProtoDUNE-SP detector. ProtoDUNE-SP is&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.01166v4-abstract-full').style.display = 'inline'; document.getElementById('2211.01166v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.01166v4-abstract-full" style="display: none;"> Measurements of electrons from $谓_e$ interactions are crucial for the Deep Underground Neutrino Experiment (DUNE) neutrino oscillation program, as well as searches for physics beyond the standard model, supernova neutrino detection, and solar neutrino measurements. This article describes the selection and reconstruction of low-energy (Michel) electrons in the ProtoDUNE-SP detector. ProtoDUNE-SP is one of the prototypes for the DUNE far detector, built and operated at CERN as a charged particle test beam experiment. A sample of low-energy electrons produced by the decay of cosmic muons is selected with a purity of 95%. This sample is used to calibrate the low-energy electron energy scale with two techniques. An electron energy calibration based on a cosmic ray muon sample uses calibration constants derived from measured and simulated cosmic ray muon events. Another calibration technique makes use of the theoretically well-understood Michel electron energy spectrum to convert reconstructed charge to electron energy. In addition, the effects of detector response to low-energy electron energy scale and its resolution including readout electronics threshold effects are quantified. Finally, the relation between the theoretical and reconstructed low-energy electron energy spectrum is derived and the energy resolution is characterized. The low-energy electron selection presented here accounts for about 75% of the total electron deposited energy. After the addition of lost energy using a Monte Carlo simulation, the energy resolution improves from about 40% to 25% at 50~MeV. These results are used to validate the expected capabilities of the DUNE far detector to reconstruct low-energy electrons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.01166v4-abstract-full').style.display = 'none'; document.getElementById('2211.01166v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-22-784, CERN-EP-DRAFT-MISC-2022-008 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 107, 092012 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.14521">arXiv:2206.14521</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.14521">pdf</a>, <a href="https://arxiv.org/format/2206.14521">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-023-11733-2">10.1140/epjc/s10052-023-11733-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&amp;query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&amp;query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+Z">Z. Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+J">J. Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Aimard%2C+B">B. Aimard</a>, <a href="/search/physics?searchtype=author&amp;query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&amp;query=Ali-Mohammadzadeh%2C+B">B. Ali-Mohammadzadeh</a>, <a href="/search/physics?searchtype=author&amp;query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=AlRashed%2C+M">M. AlRashed</a>, <a href="/search/physics?searchtype=author&amp;query=Alt%2C+C">C. Alt</a>, <a href="/search/physics?searchtype=author&amp;query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&amp;query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&amp;query=Amedo%2C+P">P. Amedo</a> , et al. (1203 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.14521v2-abstract-short" style="display: inline;"> The Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a char&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.14521v2-abstract-full').style.display = 'inline'; document.getElementById('2206.14521v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.14521v2-abstract-full" style="display: none;"> The Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/$c$ charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1$\pm0.6$% and 84.1$\pm0.6$%, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.14521v2-abstract-full').style.display = 'none'; document.getElementById('2206.14521v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">39 pages, 20 figures. Accepted version. Published version available in Eur. Phys. J. C 83, 618 (2023) https://doi.org/10.1140/epjc/s10052-023-11733-2</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-22-488-AD-ESH-LBNF-ND-SCD, CERN-EP-DRAFT-MISC-2022-007 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 83, 618 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.17053">arXiv:2203.17053</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.17053">pdf</a>, <a href="https://arxiv.org/format/2203.17053">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-022-10791-2">10.1140/epjc/s10052-022-10791-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&amp;query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+Z">Z. Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+J">J. Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Aimard%2C+B">B. Aimard</a>, <a href="/search/physics?searchtype=author&amp;query=Ali-Mohammadzadeh%2C+B">B. Ali-Mohammadzadeh</a>, <a href="/search/physics?searchtype=author&amp;query=Alion%2C+T">T. Alion</a>, <a href="/search/physics?searchtype=author&amp;query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=AlRashed%2C+M">M. AlRashed</a>, <a href="/search/physics?searchtype=author&amp;query=Alt%2C+C">C. Alt</a>, <a href="/search/physics?searchtype=author&amp;query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&amp;query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&amp;query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a> , et al. (1204 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.17053v2-abstract-short" style="display: inline;"> Liquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). In order to perform high precision measurements of neutrinos in the det&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.17053v2-abstract-full').style.display = 'inline'; document.getElementById('2203.17053v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.17053v2-abstract-full" style="display: none;"> Liquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). In order to perform high precision measurements of neutrinos in the detector, final state particles need to be effectively identified, and their energy accurately reconstructed. This article proposes an algorithm based on a convolutional neural network to perform the classification of energy deposits and reconstructed particles as track-like or arising from electromagnetic cascades. Results from testing the algorithm on data from ProtoDUNE-SP, a prototype of the DUNE far detector, are presented. The network identifies track- and shower-like particles, as well as Michel electrons, with high efficiency. The performance of the algorithm is consistent between data and simulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.17053v2-abstract-full').style.display = 'none'; document.getElementById('2203.17053v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 15 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-22-240-AD-ESH-LBNF-ND-SCD, CERN-EP-2022-077 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur.Phys.J.C 82 (2022) 10, 903 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.16134">arXiv:2203.16134</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.16134">pdf</a>, <a href="https://arxiv.org/format/2203.16134">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Scintillation light detection in the 6-m drift-length ProtoDUNE Dual Phase liquid argon TPC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&amp;query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+Z">Z. Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+J">J. Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Aimard%2C+B">B. Aimard</a>, <a href="/search/physics?searchtype=author&amp;query=Ali-Mohammadzadeh%2C+B">B. Ali-Mohammadzadeh</a>, <a href="/search/physics?searchtype=author&amp;query=Alion%2C+T">T. Alion</a>, <a href="/search/physics?searchtype=author&amp;query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=AlRashed%2C+M">M. AlRashed</a>, <a href="/search/physics?searchtype=author&amp;query=Alt%2C+C">C. Alt</a>, <a href="/search/physics?searchtype=author&amp;query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&amp;query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&amp;query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a> , et al. (1202 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.16134v4-abstract-short" style="display: inline;"> DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6x6x6m3 liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019-2020 as a prototype of the DUNE Far Detector. Charged particles propagating through the LArTPC produce ionization and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.16134v4-abstract-full').style.display = 'inline'; document.getElementById('2203.16134v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.16134v4-abstract-full" style="display: none;"> DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6x6x6m3 liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019-2020 as a prototype of the DUNE Far Detector. Charged particles propagating through the LArTPC produce ionization and scintillation light. The scintillation light signal in these detectors can provide the trigger for non-beam events. In addition, it adds precise timing capabilities and improves the calorimetry measurements. In ProtoDUNE-DP, scintillation and electroluminescence light produced by cosmic muons in the LArTPC is collected by photomultiplier tubes placed up to 7 m away from the ionizing track. In this paper, the ProtoDUNE-DP photon detection system performance is evaluated with a particular focus on the different wavelength shifters, such as PEN and TPB, and the use of Xe-doped LAr, considering its future use in giant LArTPCs. The scintillation light production and propagation processes are analyzed and a comparison of simulation to data is performed, improving understanding of the liquid argon properties <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.16134v4-abstract-full').style.display = 'none'; document.getElementById('2203.16134v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 29 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-EP-DRAFT-MISC-2022-003; FERMILAB-PUB-22-242-LBNF </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.10147">arXiv:2203.10147</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.10147">pdf</a>, <a href="https://arxiv.org/format/2203.10147">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/17/11/P11022">10.1088/1748-0221/17/11/P11022 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of Radon Mitigation in MicroBooNE by a Liquid Argon Filtration System </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Arellano%2C+L">L. Arellano</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Barrow%2C+J">J. Barrow</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Bathe-Peters%2C+L">L. Bathe-Peters</a>, <a href="/search/physics?searchtype=author&amp;query=Rodrigues%2C+O+B">O. Benevides Rodrigues</a>, <a href="/search/physics?searchtype=author&amp;query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bhattacharya%2C+M">M. Bhattacharya</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Book%2C+J+Y">J. Y. Book</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Terrazas%2C+I+C">I. Caro Terrazas</a> , et al. (168 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.10147v2-abstract-short" style="display: inline;"> The MicroBooNE liquid argon time projection chamber (LArTPC) maintains a high level of liquid argon purity through the use of a filtration system that removes electronegative contaminants in continuously-circulated liquid, recondensed boil off, and externally supplied argon gas. We use the MicroBooNE LArTPC to reconstruct MeV-scale radiological decays. Using this technique we measure the liquid ar&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.10147v2-abstract-full').style.display = 'inline'; document.getElementById('2203.10147v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.10147v2-abstract-full" style="display: none;"> The MicroBooNE liquid argon time projection chamber (LArTPC) maintains a high level of liquid argon purity through the use of a filtration system that removes electronegative contaminants in continuously-circulated liquid, recondensed boil off, and externally supplied argon gas. We use the MicroBooNE LArTPC to reconstruct MeV-scale radiological decays. Using this technique we measure the liquid argon filtration system&#39;s efficacy at removing radon. This is studied by placing a 500 kBq $^{222}$Rn source upstream of the filters and searching for a time-dependent increase in the number of radiological decays in the LArTPC. In the context of two models for radon mitigation via a liquid argon filtration system, a slowing mechanism and a trapping mechanism, MicroBooNE data supports a radon reduction factor of greater than 99.999% or 97%, respectively. Furthermore, a radiological survey of the filters found that the copper-based filter material was the primary medium that removed the $^{222}$Rn. This is the first observation of radon mitigation in liquid argon with a large-scale copper-based filter and could offer a radon mitigation solution for future large LArTPCs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.10147v2-abstract-full').style.display = 'none'; document.getElementById('2203.10147v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 7 figures, accepted by the Journal of Instrumentation</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-22-203-ND </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 17 P11022 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.03556">arXiv:2111.03556</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.03556">pdf</a>, <a href="https://arxiv.org/format/2111.03556">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-022-10270-8">10.1140/epjc/s10052-022-10270-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Novel Approach for Evaluating Detector-Related Uncertainties in a LArTPC Using MicroBooNE Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Arellano%2C+L">L. Arellano</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Bathe-Peters%2C+L">L. Bathe-Peters</a>, <a href="/search/physics?searchtype=author&amp;query=Rodrigues%2C+O+B">O. Benevides Rodrigues</a>, <a href="/search/physics?searchtype=author&amp;query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Book%2C+J+Y">J. Y. Book</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">F. Cavanna</a> , et al. (161 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.03556v2-abstract-short" style="display: inline;"> Primary challenges for current and future precision neutrino experiments using liquid argon time projection chambers (LArTPCs) include understanding detector effects and quantifying the associated systematic uncertainties. This paper presents a novel technique for assessing and propagating LArTPC detector-related systematic uncertainties. The technique makes modifications to simulation waveforms b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.03556v2-abstract-full').style.display = 'inline'; document.getElementById('2111.03556v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.03556v2-abstract-full" style="display: none;"> Primary challenges for current and future precision neutrino experiments using liquid argon time projection chambers (LArTPCs) include understanding detector effects and quantifying the associated systematic uncertainties. This paper presents a novel technique for assessing and propagating LArTPC detector-related systematic uncertainties. The technique makes modifications to simulation waveforms based on a parameterization of observed differences in ionization signals from the TPC between data and simulation, while remaining insensitive to the details of the detector model. The modifications are then used to quantify the systematic differences in low- and high-level reconstructed quantities. This approach could be applied to future LArTPC detectors, such as those used in SBN and DUNE. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.03556v2-abstract-full').style.display = 'none'; document.getElementById('2111.03556v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 12 figures, version accepted by EPJ C</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-21-501-ND-SCD </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 82, 454 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.13961">arXiv:2110.13961</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.13961">pdf</a>, <a href="https://arxiv.org/format/2110.13961">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/17/01/P01037">10.1088/1748-0221/17/01/P01037 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Wire-Cell 3D Pattern Recognition Techniques for Neutrino Event Reconstruction in Large LArTPCs: Algorithm Description and Quantitative Evaluation with MicroBooNE Simulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Arellano%2C+L">L. Arellano</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Bathe-Peters%2C+L">L. Bathe-Peters</a>, <a href="/search/physics?searchtype=author&amp;query=Rodrigues%2C+O+B">O. Benevides Rodrigues</a>, <a href="/search/physics?searchtype=author&amp;query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Book%2C+J+Y">J. Y. Book</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a> , et al. (163 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.13961v3-abstract-short" style="display: inline;"> Wire-Cell is a 3D event reconstruction package for liquid argon time projection chambers. Through geometry, time, and drifted charge from multiple readout wire planes, 3D space points with associated charge are reconstructed prior to the pattern recognition stage. Pattern recognition techniques, including track trajectory and $dQ/dx$ (ionization charge per unit length) fitting, 3D neutrino vertex&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.13961v3-abstract-full').style.display = 'inline'; document.getElementById('2110.13961v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.13961v3-abstract-full" style="display: none;"> Wire-Cell is a 3D event reconstruction package for liquid argon time projection chambers. Through geometry, time, and drifted charge from multiple readout wire planes, 3D space points with associated charge are reconstructed prior to the pattern recognition stage. Pattern recognition techniques, including track trajectory and $dQ/dx$ (ionization charge per unit length) fitting, 3D neutrino vertex fitting, track and shower separation, particle-level clustering, and particle identification are then applied on these 3D space points as well as the original 2D projection measurements. A deep neural network is developed to enhance the reconstruction of the neutrino interaction vertex. Compared to traditional algorithms, the deep neural network boosts the vertex efficiency by a relative 30\% for charged-current $谓_e$ interactions. This pattern recognition achieves 80-90\% reconstruction efficiencies for primary leptons, after a 65.8\% (72.9\%) vertex efficiency for charged-current $谓_e$ ($谓_渭$) interactions. Based on the resulting reconstructed particles and their kinematics, we also achieve 15-20\% energy reconstruction resolutions for charged-current neutrino interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.13961v3-abstract-full').style.display = 'none'; document.getElementById('2110.13961v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-21-509-ND </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.06832">arXiv:2109.06832</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.06832">pdf</a>, <a href="https://arxiv.org/format/2109.06832">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.L051102">10.1103/PhysRevD.105.L051102 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First Measurement of Inclusive Electron-Neutrino and Antineutrino Charged Current Differential Cross Sections in Charged Lepton Energy on Argon in MicroBooNE </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Arellano%2C+L">L. Arellano</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Bathe-Peters%2C+L">L. Bathe-Peters</a>, <a href="/search/physics?searchtype=author&amp;query=Rodrigues%2C+O+B">O. Benevides Rodrigues</a>, <a href="/search/physics?searchtype=author&amp;query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Book%2C+J+Y">J. Y. Book</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a> , et al. (163 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.06832v2-abstract-short" style="display: inline;"> We present the first measurement of the single-differential $谓_e + \bar谓_e$ charged-current inclusive cross sections on argon in electron or positron energy and in electron or positron scattering cosine over the full angular range. Data were collected using the MicroBooNE liquid argon time projection chamber located off-axis from the Fermilab Neutrinos at the Main Injector beam over an exposure of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.06832v2-abstract-full').style.display = 'inline'; document.getElementById('2109.06832v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.06832v2-abstract-full" style="display: none;"> We present the first measurement of the single-differential $谓_e + \bar谓_e$ charged-current inclusive cross sections on argon in electron or positron energy and in electron or positron scattering cosine over the full angular range. Data were collected using the MicroBooNE liquid argon time projection chamber located off-axis from the Fermilab Neutrinos at the Main Injector beam over an exposure of $2.0\times10^{20}$ protons on target. The signal definition includes a 60 MeV threshold on the $谓_e$ or $\bar谓_e$ energy and a 120 MeV threshold on the electron or positron energy. The measured total and differential cross sections are found to be in agreement with the GENIE, NuWro, and GiBUU neutrino generators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.06832v2-abstract-full').style.display = 'none'; document.getElementById('2109.06832v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 Pages, 2 figures. Supplemental materials include cross section values, efficiencies, purity, flux, fractional uncertainties, additional smearing matrices, and unfolded covariance matrices</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-21-443-ND </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 105, L051102 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.02460">arXiv:2109.02460</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.02460">pdf</a>, <a href="https://arxiv.org/format/2109.02460">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP12(2021)153">10.1007/JHEP12(2021)153 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Calorimetric classification of track-like signatures in liquid argon TPCs using MicroBooNE data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Bathe-Peters%2C+L">L. Bathe-Peters</a>, <a href="/search/physics?searchtype=author&amp;query=Rodrigues%2C+O+B">O. Benevides Rodrigues</a>, <a href="/search/physics?searchtype=author&amp;query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">F. Cavanna</a>, <a href="/search/physics?searchtype=author&amp;query=Cerati%2C+G">G. Cerati</a> , et al. (157 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.02460v3-abstract-short" style="display: inline;"> The MicroBooNE liquid argon time projection chamber located at Fermilab is a neutrino experiment dedicated to the study of short-baseline oscillations, the measurements of neutrino cross sections in liquid argon, and to the research and development of this novel detector technology. Accurate and precise measurements of calorimetry are essential to the event reconstruction and are achieved by lever&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.02460v3-abstract-full').style.display = 'inline'; document.getElementById('2109.02460v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.02460v3-abstract-full" style="display: none;"> The MicroBooNE liquid argon time projection chamber located at Fermilab is a neutrino experiment dedicated to the study of short-baseline oscillations, the measurements of neutrino cross sections in liquid argon, and to the research and development of this novel detector technology. Accurate and precise measurements of calorimetry are essential to the event reconstruction and are achieved by leveraging the TPC to measure deposited energy per unit length along the particle trajectory, with mm resolution. We describe the non-uniform calorimetric reconstruction performance in the detector, showing dependence on the angle of the particle trajectory. Such non-uniform reconstruction directly affects the performance of the particle identification algorithms which infer particle type from calorimetric measurements. This work presents a new particle identification method which accounts for and effectively addresses such non-uniformity. The newly developed method shows improved performance compared to previous algorithms, illustrated by a 94% proton selection efficiency and a 10% muon mis-identification rate, with a fairly loose selection of tracks performed on beam data. The performance is further demonstrated by identifying exclusive final states in $谓_渭 CC$ interactions. While developed using MicroBooNE data and simulation, this method is easily applicable to future LArTPC experiments, such as SBND, ICARUS, and DUNE. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.02460v3-abstract-full').style.display = 'none'; document.getElementById('2109.02460v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 9 figures The updated version contains a clearer fig 1, some better quantification of physics reach in section 6.3, while several typos have been fixed</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-21-356-E </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of High Energy Physics volume 2021, Article number: 153 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.01304">arXiv:2109.01304</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.01304">pdf</a>, <a href="https://arxiv.org/format/2109.01304">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Low exposure long-baseline neutrino oscillation sensitivity of the DUNE experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&amp;query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+Z">Z. Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+J">J. Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Aimard%2C+B">B. Aimard</a>, <a href="/search/physics?searchtype=author&amp;query=Ali-Mohammadzadeh%2C+B">B. Ali-Mohammadzadeh</a>, <a href="/search/physics?searchtype=author&amp;query=Alion%2C+T">T. Alion</a>, <a href="/search/physics?searchtype=author&amp;query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=AlRashed%2C+M">M. AlRashed</a>, <a href="/search/physics?searchtype=author&amp;query=Alt%2C+C">C. Alt</a>, <a href="/search/physics?searchtype=author&amp;query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&amp;query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&amp;query=Andreotti%2C+M">M. Andreotti</a> , et al. (1132 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.01304v1-abstract-short" style="display: inline;"> The Deep Underground Neutrino Experiment (DUNE) will produce world-leading neutrino oscillation measurements over the lifetime of the experiment. In this work, we explore DUNE&#39;s sensitivity to observe charge-parity violation (CPV) in the neutrino sector, and to resolve the mass ordering, for exposures of up to 100 kiloton-megawatt-years (kt-MW-yr). The analysis includes detailed uncertainties on t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.01304v1-abstract-full').style.display = 'inline'; document.getElementById('2109.01304v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.01304v1-abstract-full" style="display: none;"> The Deep Underground Neutrino Experiment (DUNE) will produce world-leading neutrino oscillation measurements over the lifetime of the experiment. In this work, we explore DUNE&#39;s sensitivity to observe charge-parity violation (CPV) in the neutrino sector, and to resolve the mass ordering, for exposures of up to 100 kiloton-megawatt-years (kt-MW-yr). The analysis includes detailed uncertainties on the flux prediction, the neutrino interaction model, and detector effects. We demonstrate that DUNE will be able to unambiguously resolve the neutrino mass ordering at a 3$蟽$ (5$蟽$) level, with a 66 (100) kt-MW-yr far detector exposure, and has the ability to make strong statements at significantly shorter exposures depending on the true value of other oscillation parameters. We also show that DUNE has the potential to make a robust measurement of CPV at a 3$蟽$ level with a 100 kt-MW-yr exposure for the maximally CP-violating values $未_{\rm CP}} = \pm蟺/2$. Additionally, the dependence of DUNE&#39;s sensitivity on the exposure taken in neutrino-enhanced and antineutrino-enhanced running is discussed. An equal fraction of exposure taken in each beam mode is found to be close to optimal when considered over the entire space of interest. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.01304v1-abstract-full').style.display = 'none'; document.getElementById('2109.01304v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-21-391-ND </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.01902">arXiv:2108.01902</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.01902">pdf</a>, <a href="https://arxiv.org/format/2108.01902">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Design, construction and operation of the ProtoDUNE-SP Liquid Argon TPC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&amp;query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+Z">Z. Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+J">J. Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Ali-Mohammadzadeh%2C+B">B. Ali-Mohammadzadeh</a>, <a href="/search/physics?searchtype=author&amp;query=Alion%2C+T">T. Alion</a>, <a href="/search/physics?searchtype=author&amp;query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=Alt%2C+C">C. Alt</a>, <a href="/search/physics?searchtype=author&amp;query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&amp;query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&amp;query=Andreotti%2C+M">M. Andreotti</a>, <a href="/search/physics?searchtype=author&amp;query=Andrews%2C+M+P">M. P. Andrews</a> , et al. (1158 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.01902v3-abstract-short" style="display: inline;"> The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber (LArTPC) that was constructed and operated in the CERN North Area at the end of the H4 beamline. This detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment (DUNE), which will be constructed at the Sandford Underground Research Facility (SURF) in Lead, South Dakota, USA.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.01902v3-abstract-full').style.display = 'inline'; document.getElementById('2108.01902v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.01902v3-abstract-full" style="display: none;"> The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber (LArTPC) that was constructed and operated in the CERN North Area at the end of the H4 beamline. This detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment (DUNE), which will be constructed at the Sandford Underground Research Facility (SURF) in Lead, South Dakota, USA. The ProtoDUNE-SP detector incorporates full-size components as designed for DUNE and has an active volume of $7\times 6\times 7.2$~m$^3$. The H4 beam delivers incident particles with well-measured momenta and high-purity particle identification. ProtoDUNE-SP&#39;s successful operation between 2018 and 2020 demonstrates the effectiveness of the single-phase far detector design. This paper describes the design, construction, assembly and operation of the detector components. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.01902v3-abstract-full').style.display = 'none'; document.getElementById('2108.01902v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.06551">arXiv:2104.06551</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.06551">pdf</a>, <a href="https://arxiv.org/format/2104.06551">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/16/09/P09025">10.1088/1748-0221/16/09/P09025 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement of the Longitudinal Diffusion of Ionization Electrons in the MicroBooNE Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Bathe-Peters%2C+L">L. Bathe-Peters</a>, <a href="/search/physics?searchtype=author&amp;query=Rodrigues%2C+O+B">O. Benevides Rodrigues</a>, <a href="/search/physics?searchtype=author&amp;query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">F. Cavanna</a>, <a href="/search/physics?searchtype=author&amp;query=Cerati%2C+G">G. Cerati</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a> , et al. (157 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.06551v2-abstract-short" style="display: inline;"> Accurate knowledge of electron transport properties is vital to understanding the information provided by liquid argon time projection chambers (LArTPCs). Ionization electron drift-lifetime, local electric field distortions caused by positive ion accumulation, and electron diffusion can all significantly impact the measured signal waveforms. This paper presents a measurement of the effective longi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.06551v2-abstract-full').style.display = 'inline'; document.getElementById('2104.06551v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.06551v2-abstract-full" style="display: none;"> Accurate knowledge of electron transport properties is vital to understanding the information provided by liquid argon time projection chambers (LArTPCs). Ionization electron drift-lifetime, local electric field distortions caused by positive ion accumulation, and electron diffusion can all significantly impact the measured signal waveforms. This paper presents a measurement of the effective longitudinal electron diffusion coefficient, $D_L$, in MicroBooNE at the nominal electric field strength of 273.9 V/cm. Historically, this measurement has been made in LArTPC prototype detectors. This represents the first measurement in a large-scale (85 tonne active volume) LArTPC operating in a neutrino beam. This is the largest dataset ever used for this measurement. Using a sample of $\sim$70,000 through-going cosmic ray muon tracks tagged with MicroBooNE&#39;s cosmic ray tagger system, we measure $D_L = 3.74^{+0.28}_{-0.29}$ cm$^2$/s. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.06551v2-abstract-full').style.display = 'none'; document.getElementById('2104.06551v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Changes following feedback from journal referee. Some wording changes, clarifications. Merged several figures to save on space</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.05948">arXiv:2104.05948</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.05948">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.5.094404">10.1103/PhysRevMaterials.5.094404 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Table-like magnetocaloric effect and enhanced refrigerant capacity in EuO1-未 thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lampen%2C+P">P. Lampen</a>, <a href="/search/physics?searchtype=author&amp;query=Madhogaria%2C+R">R. Madhogaria</a>, <a href="/search/physics?searchtype=author&amp;query=Bingham%2C+N+S">N. S. Bingham</a>, <a href="/search/physics?searchtype=author&amp;query=Phan%2C+M+H">M. H. Phan</a>, <a href="/search/physics?searchtype=author&amp;query=Monteiro%2C+P+M+S">P. M. S. Monteiro</a>, <a href="/search/physics?searchtype=author&amp;query=Steinke%2C+N+-">N. -J. Steinke</a>, <a href="/search/physics?searchtype=author&amp;query=Ionescu%2C+A">A. Ionescu</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C+H+W">C. H. W. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Srikanth%2C+H">H. Srikanth</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.05948v1-abstract-short" style="display: inline;"> An approach to adjusting the conduction band population for tuning the magnetic and magnetocaloric response of EuO1-未 thin films through control of oxygen vacancies (未 = 0, 0.025, and 0.09) is presented. The films each showed a paramagnetic to ferromagnetic transition around 65 K, with an additional magnetic ordering transition at higher temperatures in the oxygen deficient samples. All transition&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.05948v1-abstract-full').style.display = 'inline'; document.getElementById('2104.05948v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.05948v1-abstract-full" style="display: none;"> An approach to adjusting the conduction band population for tuning the magnetic and magnetocaloric response of EuO1-未 thin films through control of oxygen vacancies (未 = 0, 0.025, and 0.09) is presented. The films each showed a paramagnetic to ferromagnetic transition around 65 K, with an additional magnetic ordering transition at higher temperatures in the oxygen deficient samples. All transitions are observed to be of second order. A maximum magnetic entropy change of 6.4 J/kg K over a field change of 2 T with a refrigerant capacity of 223 J/kg was found in the sample with 未 = 0, and in all cases the refrigerant capacities of the thin films under study were found to exceed that reported for bulk EuO. Adjusting the oxygen content was shown to produce table-like magnetocaloric effects, desirable for ideal Ericsson-cycle magnetic refrigeration. These films are thus excellent candidates for small-scale magnetic cooling technology in the liquid nitrogen temperature range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.05948v1-abstract-full').style.display = 'none'; document.getElementById('2104.05948v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 5, 094404 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.13910">arXiv:2103.13910</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.13910">pdf</a>, <a href="https://arxiv.org/format/2103.13910">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Deep Underground Neutrino Experiment (DUNE) Near Detector Conceptual Design Report </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+Z">Z. Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+J">J. Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Alion%2C+T">T. Alion</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=Alt%2C+C">C. Alt</a>, <a href="/search/physics?searchtype=author&amp;query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&amp;query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&amp;query=Andrews%2C+M+P">M. P. Andrews</a>, <a href="/search/physics?searchtype=author&amp;query=Andrianala%2C+F">F. Andrianala</a>, <a href="/search/physics?searchtype=author&amp;query=Andringa%2C+S">S. Andringa</a>, <a href="/search/physics?searchtype=author&amp;query=Anfimov%2C+N">N. Anfimov</a>, <a href="/search/physics?searchtype=author&amp;query=Ankowski%2C+A">A. Ankowski</a>, <a href="/search/physics?searchtype=author&amp;query=Antonova%2C+M">M. Antonova</a>, <a href="/search/physics?searchtype=author&amp;query=Antusch%2C+S">S. Antusch</a> , et al. (1041 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.13910v1-abstract-short" style="display: inline;"> This report describes the conceptual design of the DUNE near detector </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.13910v1-abstract-full" style="display: none;"> This report describes the conceptual design of the DUNE near detector <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.13910v1-abstract-full').style.display = 'none'; document.getElementById('2103.13910v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">314 pages, 185 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-21-067-E-LBNF-PPD-SCD-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.05076">arXiv:2101.05076</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.05076">pdf</a>, <a href="https://arxiv.org/format/2101.05076">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.15.064071">10.1103/PhysRevApplied.15.064071 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cosmic Ray Background Rejection with Wire-Cell LArTPC Event Reconstruction in the MicroBooNE Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Bathe-Peters%2C+L">L. Bathe-Peters</a>, <a href="/search/physics?searchtype=author&amp;query=Rodrigues%2C+O+B">O. Benevides Rodrigues</a>, <a href="/search/physics?searchtype=author&amp;query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">F. Cavanna</a> , et al. (164 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.05076v3-abstract-short" style="display: inline;"> For a large liquid argon time projection chamber (LArTPC) operating on or near the Earth&#39;s surface to detect neutrino interactions, the rejection of cosmogenic background is a critical and challenging task because of the large cosmic ray flux and the long drift time of the TPC. We introduce a superior cosmic background rejection procedure based on the Wire-Cell three-dimensional (3D) event reconst&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.05076v3-abstract-full').style.display = 'inline'; document.getElementById('2101.05076v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.05076v3-abstract-full" style="display: none;"> For a large liquid argon time projection chamber (LArTPC) operating on or near the Earth&#39;s surface to detect neutrino interactions, the rejection of cosmogenic background is a critical and challenging task because of the large cosmic ray flux and the long drift time of the TPC. We introduce a superior cosmic background rejection procedure based on the Wire-Cell three-dimensional (3D) event reconstruction for LArTPCs. From an initial 1:20,000 neutrino to cosmic-ray background ratio, we demonstrate these tools on data from the MicroBooNE experiment and create a high performance generic neutrino event selection with a cosmic contamination of 14.9\% (9.7\%) for a visible energy region greater than O(200)~MeV. The neutrino interaction selection efficiency is 80.4\% and 87.6\% for inclusive $谓_渭$ charged-current and $谓_e$ charged-current interactions, respectively. This significantly improved performance compared to existing reconstruction algorithms, marks a major milestone toward reaching the scientific goals of LArTPC neutrino oscillation experiments operating near the Earth&#39;s surface. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.05076v3-abstract-full').style.display = 'none'; document.getElementById('2101.05076v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 15, 064071 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.01836">arXiv:2101.01836</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.01836">pdf</a>, <a href="https://arxiv.org/format/2101.01836">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0043013">10.1063/5.0043013 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Billion-pixel X-ray camera (BiPC-X) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zhehui Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Anagnost%2C+K">Kaitlin Anagnost</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C+W">Cris W. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Dattelbaum%2C+D+M">D. M. Dattelbaum</a>, <a href="/search/physics?searchtype=author&amp;query=Fossum%2C+E+R">Eric R. Fossum</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+E">Eldred Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">Jifeng Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+J+J">J. J. Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Meijer%2C+W+Z">W. Z. Meijer</a>, <a href="/search/physics?searchtype=author&amp;query=Nie%2C+W">Wanyi Nie</a>, <a href="/search/physics?searchtype=author&amp;query=Sweeney%2C+C+M">C. M. Sweeney</a>, <a href="/search/physics?searchtype=author&amp;query=Therrien%2C+A+C">Audrey C. Therrien</a>, <a href="/search/physics?searchtype=author&amp;query=Tsai%2C+H">Hsinhan Tsai</a>, <a href="/search/physics?searchtype=author&amp;query=Que%2C+X">Xin Que</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.01836v1-abstract-short" style="display: inline;"> The continuing improvement in quantum efficiency (above 90% for single visible photons), reduction in noise (below 1 electron per pixel), and shrink in pixel pitch (less than 1 micron) motivate billion-pixel X-ray cameras (BiPC-X) based on commercial CMOS imaging sensors. We describe BiPC-X designs and prototype construction based on flexible tiling of commercial CMOS imaging sensors with millions&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.01836v1-abstract-full').style.display = 'inline'; document.getElementById('2101.01836v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.01836v1-abstract-full" style="display: none;"> The continuing improvement in quantum efficiency (above 90% for single visible photons), reduction in noise (below 1 electron per pixel), and shrink in pixel pitch (less than 1 micron) motivate billion-pixel X-ray cameras (BiPC-X) based on commercial CMOS imaging sensors. We describe BiPC-X designs and prototype construction based on flexible tiling of commercial CMOS imaging sensors with millions of pixels. Device models are given for direct detection of low energy X-rays ($&lt;$ 10 keV) and indirect detection of higher energies using scintillators. Modified Birks&#39;s law is proposed for light-yield nonproportionality in scintillators as a function of X-ray energy. Single X-ray sensitivity and spatial resolution have been validated experimentally using laboratory X-ray source and the Argonne Advanced Photon Source. Possible applications include wide field-of-view (FOV) or large X-ray aperture measurements in high-temperature plasmas, the state-of-the-art synchrotron, X-ray Free Electron Laser (XFEL), and pulsed power facilities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.01836v1-abstract-full').style.display = 'none'; document.getElementById('2101.01836v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LANL report number LA-UR-21-20086 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Rev Sci Instrum 92, 043708 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.14324">arXiv:2012.14324</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.14324">pdf</a>, <a href="https://arxiv.org/format/2012.14324">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/16/04/P04004">10.1088/1748-0221/16/04/P04004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement of the Atmospheric Muon Rate with the MicroBooNE Liquid Argon TPC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Bass%2C+M">M. Bass</a>, <a href="/search/physics?searchtype=author&amp;query=Bay%2C+F">F. Bay</a>, <a href="/search/physics?searchtype=author&amp;query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&amp;query=Carr%2C+R">R. Carr</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a> , et al. (165 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.14324v2-abstract-short" style="display: inline;"> MicroBooNE is a near-surface liquid argon (LAr) time projection chamber (TPC) located at Fermilab. We measure the characterisation of muons originating from cosmic interactions in the atmosphere using both the charge collection and light readout detectors. The data is compared with the CORSIKA cosmic-ray simulation. Good agreement is found between the observation, simulation and previous results.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.14324v2-abstract-full').style.display = 'inline'; document.getElementById('2012.14324v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.14324v2-abstract-full" style="display: none;"> MicroBooNE is a near-surface liquid argon (LAr) time projection chamber (TPC) located at Fermilab. We measure the characterisation of muons originating from cosmic interactions in the atmosphere using both the charge collection and light readout detectors. The data is compared with the CORSIKA cosmic-ray simulation. Good agreement is found between the observation, simulation and previous results. Furthermore, the angular resolution of the reconstructed muons inside the TPC is studied in simulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.14324v2-abstract-full').style.display = 'none'; document.getElementById('2012.14324v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 14 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-20-626-ND </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> MicroBooNE et al 2021 JINST 16 P04004 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.08513">arXiv:2012.08513</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.08513">pdf</a>, <a href="https://arxiv.org/format/2012.08513">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.052012">10.1103/PhysRevD.103.052012 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Semantic Segmentation with a Sparse Convolutional Neural Network for Event Reconstruction in MicroBooNE </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Bathe-Peters%2C+L">L. Bathe-Peters</a>, <a href="/search/physics?searchtype=author&amp;query=Rodrigues%2C+O+B">O. Benevides Rodrigues</a>, <a href="/search/physics?searchtype=author&amp;query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">F. Cavanna</a> , et al. (158 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.08513v2-abstract-short" style="display: inline;"> We present the performance of a semantic segmentation network, SparseSSNet, that provides pixel-level classification of MicroBooNE data. The MicroBooNE experiment employs a liquid argon time projection chamber for the study of neutrino properties and interactions. SparseSSNet is a submanifold sparse convolutional neural network, which provides the initial machine learning based algorithm utilized&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.08513v2-abstract-full').style.display = 'inline'; document.getElementById('2012.08513v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.08513v2-abstract-full" style="display: none;"> We present the performance of a semantic segmentation network, SparseSSNet, that provides pixel-level classification of MicroBooNE data. The MicroBooNE experiment employs a liquid argon time projection chamber for the study of neutrino properties and interactions. SparseSSNet is a submanifold sparse convolutional neural network, which provides the initial machine learning based algorithm utilized in one of MicroBooNE&#39;s $谓_e$-appearance oscillation analyses. The network is trained to categorize pixels into five classes, which are re-classified into two classes more relevant to the current analysis. The output of SparseSSNet is a key input in further analysis steps. This technique, used for the first time in liquid argon time projection chambers data and is an improvement compared to a previously used convolutional neural network, both in accuracy and computing resource utilization. The accuracy achieved on the test sample is $\geq 99\%$. For full neutrino interaction simulations, the time for processing one image is $\approx$ 0.5 sec, the memory usage is at 1 GB level, which allows utilization of most typical CPU worker machine. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.08513v2-abstract-full').style.display = 'none'; document.getElementById('2012.08513v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 052012 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.07928">arXiv:2012.07928</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.07928">pdf</a>, <a href="https://arxiv.org/format/2012.07928">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.15.064071">10.1103/PhysRevApplied.15.064071 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-performance Generic Neutrino Detection in a LArTPC near the Earth&#39;s Surface with the MicroBooNE Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Bathe-Peters%2C+L">L. Bathe-Peters</a>, <a href="/search/physics?searchtype=author&amp;query=Rodrigues%2C+O+B">O. Benevides Rodrigues</a>, <a href="/search/physics?searchtype=author&amp;query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">F. Cavanna</a> , et al. (164 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.07928v3-abstract-short" style="display: inline;"> Large Liquid Argon Time Projection Chambers (LArTPCs) are being increasingly adopted in neutrino oscillation experiments because of their superb imaging capabilities through the combination of both tracking and calorimetry in a fully active volume. Active LArTPC neutrino detectors at or near the Earth&#39;s surface, such as the MicroBooNE experiment, present a unique analysis challenge because of the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.07928v3-abstract-full').style.display = 'inline'; document.getElementById('2012.07928v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.07928v3-abstract-full" style="display: none;"> Large Liquid Argon Time Projection Chambers (LArTPCs) are being increasingly adopted in neutrino oscillation experiments because of their superb imaging capabilities through the combination of both tracking and calorimetry in a fully active volume. Active LArTPC neutrino detectors at or near the Earth&#39;s surface, such as the MicroBooNE experiment, present a unique analysis challenge because of the large flux of cosmic-ray muons and the slow drift of ionization electrons. We present a novel Wire-Cell-based high-performance generic neutrino-detection technique implemented in MicroBooNE. The cosmic-ray background is reduced by a factor of 1.4$\times10^{5}$ resulting in a 9.7\% cosmic contamination in the selected neutrino candidate events, for visible energies greater than 200~MeV, while the neutrino signal efficiency is retained at 88.4\% for $谓_渭$ charged-current interactions in the fiducial volume in the same energy region. This significantly improved performance compared to existing reconstruction algorithms, marks a major milestone toward reaching the scientific goals of LArTPC neutrino oscillation experiments operating near the Earth&#39;s surface. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.07928v3-abstract-full').style.display = 'none'; document.getElementById('2012.07928v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Expanded into a long paper and published in Phys. Rev. Applied 15, 064071 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.01375">arXiv:2011.01375</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.01375">pdf</a>, <a href="https://arxiv.org/format/2011.01375">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/16/06/P06043">10.1088/1748-0221/16/06/P06043 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Neutrino Event Selection in the MicroBooNE Liquid Argon Time Projection Chamber using Wire-Cell 3-D Imaging, Clustering, and Charge-Light Matching </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Bathe-Peters%2C+L">L. Bathe-Peters</a>, <a href="/search/physics?searchtype=author&amp;query=Rodrigues%2C+O+B">O. Benevides Rodrigues</a>, <a href="/search/physics?searchtype=author&amp;query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">F. Cavanna</a> , et al. (160 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.01375v4-abstract-short" style="display: inline;"> An accurate and efficient event reconstruction is required to realize the full scientific capability of liquid argon time projection chambers (LArTPCs). The current and future neutrino experiments that rely on massive LArTPCs create a need for new ideas and reconstruction approaches. Wire-Cell, proposed in recent years, is a novel tomographic event reconstruction method for LArTPCs. The Wire-Cell&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.01375v4-abstract-full').style.display = 'inline'; document.getElementById('2011.01375v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.01375v4-abstract-full" style="display: none;"> An accurate and efficient event reconstruction is required to realize the full scientific capability of liquid argon time projection chambers (LArTPCs). The current and future neutrino experiments that rely on massive LArTPCs create a need for new ideas and reconstruction approaches. Wire-Cell, proposed in recent years, is a novel tomographic event reconstruction method for LArTPCs. The Wire-Cell 3D imaging approach capitalizes on charge, sparsity, time, and geometry information to reconstruct a topology-agnostic 3D image of the ionization electrons prior to pattern recognition. A second novel method, the many-to-many charge-light matching, then pairs the TPC charge activity to the detected scintillation light signal, thus enabling a powerful rejection of cosmic-ray muons in the MicroBooNE detector. A robust processing of the scintillation light signal and an appropriate clustering of the reconstructed 3D image are fundamental to this technique. In this paper, we describe the principles and algorithms of these techniques and their successful application in the MicroBooNE experiment. A quantitative evaluation of the performance of these techniques is presented. Using these techniques, a 95% efficient pre-selection of neutrino charged-current events is achieved with a 30-fold reduction of non-beam-coincident cosmic-ray muons, and about 80\% of the selected neutrino charged-current events are reconstructed with at least 70% completeness and 80% purity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.01375v4-abstract-full').style.display = 'none'; document.getElementById('2011.01375v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-20-578-ND </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 16 P06043 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.02390">arXiv:2010.02390</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.02390">pdf</a>, <a href="https://arxiv.org/format/2010.02390">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.102.112013">10.1103/PhysRevD.102.112013 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement of Differential Cross Sections for $谓_渭$-Ar Charged-Current Interactions with Protons and no Pions in the Final State with the MicroBooNE Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Bathe-Peters%2C+L">L. Bathe-Peters</a>, <a href="/search/physics?searchtype=author&amp;query=Rodrigues%2C+O+B">O. Benevides Rodrigues</a>, <a href="/search/physics?searchtype=author&amp;query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">F. Cavanna</a> , et al. (160 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.02390v1-abstract-short" style="display: inline;"> We present an analysis of MicroBooNE data with a signature of one muon, no pions, and at least one proton above a momentum threshold of 300 MeV/c (CC0$蟺$Np). This is the first differential cross section measurement of this topology in neutrino-argon interactions. We achieve a significantly lower proton momentum threshold than previous carbon and scintillator-based experiments. Using data collected&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.02390v1-abstract-full').style.display = 'inline'; document.getElementById('2010.02390v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.02390v1-abstract-full" style="display: none;"> We present an analysis of MicroBooNE data with a signature of one muon, no pions, and at least one proton above a momentum threshold of 300 MeV/c (CC0$蟺$Np). This is the first differential cross section measurement of this topology in neutrino-argon interactions. We achieve a significantly lower proton momentum threshold than previous carbon and scintillator-based experiments. Using data collected from a total of approximately $1.6 \times 10^{20}$ protons-on-target, we measure the muon neutrino cross section for the CC0$蟺$Np interaction channel in argon at MicroBooNE in the Booster Neutrino Beam which has a mean energy of around 800 MeV. We present the results from a data sample with estimated efficiency of 29\% and purity of 76\% as differential cross sections in five reconstructed variables: the muon momentum and polar angle, the leading proton momentum and polar angle, and the muon-proton opening angle. We include smearing matrices that can be used to &#34;forward-fold&#34; theoretical predictions for comparison with these data. We compare the measured differential cross sections to a number of recent theory predictions demonstrating largely good agreement with this first-ever data set on argon. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.02390v1-abstract-full').style.display = 'none'; document.getElementById('2010.02390v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 43 figures, 1 table and supplemental material</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-20-505-AD-ND-SCD-TD </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 102, 112013 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.13761">arXiv:2008.13761</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.13761">pdf</a>, <a href="https://arxiv.org/format/2008.13761">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/16/02/P02008">10.1088/1748-0221/16/02/P02008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Continuous Readout Stream of the MicroBooNE Liquid Argon Time Projection Chamber for Detection of Supernova Burst Neutrinos </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Bathe-Peters%2C+L">L. Bathe-Peters</a>, <a href="/search/physics?searchtype=author&amp;query=Rodrigues%2C+O+B">O. Benevides Rodrigues</a>, <a href="/search/physics?searchtype=author&amp;query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">F. Cavanna</a> , et al. (163 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.13761v2-abstract-short" style="display: inline;"> The MicroBooNE continuous readout stream is a parallel readout of the MicroBooNE liquid argon time projection chamber (LArTPC) which enables detection of non-beam events such as those from a supernova neutrino burst. The low energies of the supernova neutrinos and the intense cosmic-ray background flux due to the near-surface detector location makes triggering on these events very challenging. Ins&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.13761v2-abstract-full').style.display = 'inline'; document.getElementById('2008.13761v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.13761v2-abstract-full" style="display: none;"> The MicroBooNE continuous readout stream is a parallel readout of the MicroBooNE liquid argon time projection chamber (LArTPC) which enables detection of non-beam events such as those from a supernova neutrino burst. The low energies of the supernova neutrinos and the intense cosmic-ray background flux due to the near-surface detector location makes triggering on these events very challenging. Instead, MicroBooNE relies on a delayed trigger generated by SNEWS (the Supernova Early Warning System) for detecting supernova neutrinos. The continuous readout of the LArTPC generates large data volumes, and requires the use of real-time compression algorithms (zero suppression and Huffman compression) implemented in an FPGA (field-programmable gate array) in the readout electronics. We present the results of the optimization of the data reduction algorithms, and their operational performance. To demonstrate the capability of the continuous stream to detect low-energy electrons, a sample of Michel electrons from stopping cosmic-ray muons is reconstructed and compared to a similar sample from the lossless triggered readout stream. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.13761v2-abstract-full').style.display = 'none'; document.getElementById('2008.13761v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 21 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-20-446-ND </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 16 P02008 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.09765">arXiv:2008.09765</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.09765">pdf</a>, <a href="https://arxiv.org/format/2008.09765">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/15/12/P12037">10.1088/1748-0221/15/12/P12037 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement of Space Charge Effects in the MicroBooNE LArTPC Using Cosmic Muons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Bathe-Peters%2C+L">L. Bathe-Peters</a>, <a href="/search/physics?searchtype=author&amp;query=Rodrigues%2C+O+B">O. Benevides Rodrigues</a>, <a href="/search/physics?searchtype=author&amp;query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">F. Cavanna</a> , et al. (162 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.09765v2-abstract-short" style="display: inline;"> Large liquid argon time projection chambers (LArTPCs), especially those operating near the surface, are susceptible to space charge effects. In the context of LArTPCs, the space charge effect is the build-up of slow-moving positive ions in the detector primarily due to ionization from cosmic rays, leading to a distortion of the electric field within the detector. This effect leads to a displacemen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.09765v2-abstract-full').style.display = 'inline'; document.getElementById('2008.09765v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.09765v2-abstract-full" style="display: none;"> Large liquid argon time projection chambers (LArTPCs), especially those operating near the surface, are susceptible to space charge effects. In the context of LArTPCs, the space charge effect is the build-up of slow-moving positive ions in the detector primarily due to ionization from cosmic rays, leading to a distortion of the electric field within the detector. This effect leads to a displacement in the reconstructed position of signal ionization electrons in LArTPC detectors (&#34;spatial distortions&#34;), as well as to variations in the amount of electron-ion recombination experienced by ionization throughout the volume of the TPC. We present techniques that can be used to measure and correct for space charge effects in large LArTPCs by making use of cosmic muons, including the use of track pairs to unambiguously pin down spatial distortions in three dimensions. The performance of these calibration techniques are studied using both Monte Carlo simulation and MicroBooNE data, utilizing a UV laser system as a means to estimate the systematic bias associated with the calibration methodology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.09765v2-abstract-full').style.display = 'none'; document.getElementById('2008.09765v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 pages, 25 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.06647">arXiv:2008.06647</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.06647">pdf</a>, <a href="https://arxiv.org/format/2008.06647">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-021-09166-w">10.1140/epjc/s10052-021-09166-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Supernova Neutrino Burst Detection with the Deep Underground Neutrino Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DUNE+collaboration"> DUNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+Z">Z. Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+J">J. Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Alion%2C+T">T. Alion</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=Alt%2C+C">C. Alt</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&amp;query=Andrews%2C+M+P">M. P. Andrews</a>, <a href="/search/physics?searchtype=author&amp;query=Andrianala%2C+F">F. Andrianala</a>, <a href="/search/physics?searchtype=author&amp;query=Andringa%2C+S">S. Andringa</a>, <a href="/search/physics?searchtype=author&amp;query=Ankowski%2C+A">A. Ankowski</a>, <a href="/search/physics?searchtype=author&amp;query=Antonova%2C+M">M. Antonova</a>, <a href="/search/physics?searchtype=author&amp;query=Antusch%2C+S">S. Antusch</a>, <a href="/search/physics?searchtype=author&amp;query=Aranda-Fernandez%2C+A">A. Aranda-Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Ariga%2C+A">A. Ariga</a>, <a href="/search/physics?searchtype=author&amp;query=Arnold%2C+L+O">L. O. Arnold</a>, <a href="/search/physics?searchtype=author&amp;query=Arroyave%2C+M+A">M. A. Arroyave</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a> , et al. (949 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.06647v3-abstract-short" style="display: inline;"> The Deep Underground Neutrino Experiment (DUNE), a 40-kton underground liquid argon time projection chamber experiment, will be sensitive to the electron-neutrino flavor component of the burst of neutrinos expected from the next Galactic core-collapse supernova. Such an observation will bring unique insight into the astrophysics of core collapse as well as into the properties of neutrinos. The gen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.06647v3-abstract-full').style.display = 'inline'; document.getElementById('2008.06647v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.06647v3-abstract-full" style="display: none;"> The Deep Underground Neutrino Experiment (DUNE), a 40-kton underground liquid argon time projection chamber experiment, will be sensitive to the electron-neutrino flavor component of the burst of neutrinos expected from the next Galactic core-collapse supernova. Such an observation will bring unique insight into the astrophysics of core collapse as well as into the properties of neutrinos. The general capabilities of DUNE for neutrino detection in the relevant few- to few-tens-of-MeV neutrino energy range will be described. As an example, DUNE&#39;s ability to constrain the $谓_e$ spectral parameters of the neutrino burst will be considered. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.06647v3-abstract-full').style.display = 'none'; document.getElementById('2008.06647v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 17 figures; paper based on DUNE Technical Design Report. arXiv admin note: substantial text overlap with arXiv:2002.03005</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-20-380-LBNF </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.06722">arXiv:2007.06722</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.06722">pdf</a>, <a href="https://arxiv.org/format/2007.06722">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/15/12/P12004">10.1088/1748-0221/15/12/P12004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adrien%2C+P">P. Adrien</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+Z">Z. Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+J">J. Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Alion%2C+T">T. Alion</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=Alt%2C+C">C. Alt</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&amp;query=Andrews%2C+M+P">M. P. Andrews</a>, <a href="/search/physics?searchtype=author&amp;query=Andrianala%2C+F">F. Andrianala</a>, <a href="/search/physics?searchtype=author&amp;query=Andringa%2C+S">S. Andringa</a>, <a href="/search/physics?searchtype=author&amp;query=Ankowski%2C+A">A. Ankowski</a>, <a href="/search/physics?searchtype=author&amp;query=Antonova%2C+M">M. Antonova</a>, <a href="/search/physics?searchtype=author&amp;query=Antusch%2C+S">S. Antusch</a>, <a href="/search/physics?searchtype=author&amp;query=Aranda-Fernandez%2C+A">A. Aranda-Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Ariga%2C+A">A. Ariga</a> , et al. (970 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.06722v4-abstract-short" style="display: inline;"> The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber with an active volume of $7.2\times 6.0\times 6.9$ m$^3$. It is installed at the CERN Neutrino Platform in a specially-constructed beam that delivers charged pions, kaons, protons, muons and electrons with momenta in the range 0.3 GeV$/c$ to 7 GeV/$c$. Beam line instrumentation provides accurate momentum measurements&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.06722v4-abstract-full').style.display = 'inline'; document.getElementById('2007.06722v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.06722v4-abstract-full" style="display: none;"> The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber with an active volume of $7.2\times 6.0\times 6.9$ m$^3$. It is installed at the CERN Neutrino Platform in a specially-constructed beam that delivers charged pions, kaons, protons, muons and electrons with momenta in the range 0.3 GeV$/c$ to 7 GeV/$c$. Beam line instrumentation provides accurate momentum measurements and particle identification. The ProtoDUNE-SP detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment, and it incorporates full-size components as designed for that module. This paper describes the beam line, the time projection chamber, the photon detectors, the cosmic-ray tagger, the signal processing and particle reconstruction. It presents the first results on ProtoDUNE-SP&#39;s performance, including noise and gain measurements, $dE/dx$ calibration for muons, protons, pions and electrons, drift electron lifetime measurements, and photon detector noise, signal sensitivity and time resolution measurements. The measured values meet or exceed the specifications for the DUNE far detector, in several cases by large margins. ProtoDUNE-SP&#39;s successful operation starting in 2018 and its production of large samples of high-quality data demonstrate the effectiveness of the single-phase far detector design. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.06722v4-abstract-full').style.display = 'none'; document.getElementById('2007.06722v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">93 pages, 70 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-20-059-AD-ESH-LBNF-ND-SCD, CERN-EP-2020-125 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 15 (2020) P12004 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.15052">arXiv:2006.15052</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.15052">pdf</a>, <a href="https://arxiv.org/format/2006.15052">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.102.092003">10.1103/PhysRevD.102.092003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Neutrino interaction classification with a convolutional neural network in the DUNE far detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+Z">Z. Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+J">J. Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Alion%2C+T">T. Alion</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=Alt%2C+C">C. Alt</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&amp;query=Andrews%2C+M+P">M. P. Andrews</a>, <a href="/search/physics?searchtype=author&amp;query=Andrianala%2C+F">F. Andrianala</a>, <a href="/search/physics?searchtype=author&amp;query=Andringa%2C+S">S. Andringa</a>, <a href="/search/physics?searchtype=author&amp;query=Ankowski%2C+A">A. Ankowski</a>, <a href="/search/physics?searchtype=author&amp;query=Antonova%2C+M">M. Antonova</a>, <a href="/search/physics?searchtype=author&amp;query=Antusch%2C+S">S. Antusch</a>, <a href="/search/physics?searchtype=author&amp;query=Aranda-Fernandez%2C+A">A. Aranda-Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Ariga%2C+A">A. Ariga</a>, <a href="/search/physics?searchtype=author&amp;query=Arnold%2C+L+O">L. O. Arnold</a>, <a href="/search/physics?searchtype=author&amp;query=Arroyave%2C+M+A">M. A. Arroyave</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a> , et al. (951 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.15052v2-abstract-short" style="display: inline;"> The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure $CP$-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.15052v2-abstract-full').style.display = 'inline'; document.getElementById('2006.15052v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.15052v2-abstract-full" style="display: none;"> The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure $CP$-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electron neutrino (antineutrino) selection efficiency peaks at 90% (94%) and exceeds 85% (90%) for reconstructed neutrino energies between 2-5 GeV. The muon neutrino (antineutrino) event selection is found to have a maximum efficiency of 96% (97%) and exceeds 90% (95%) efficiency for reconstructed neutrino energies above 2 GeV. When considering all electron neutrino and antineutrino interactions as signal, a selection purity of 90% is achieved. These event selections are critical to maximize the sensitivity of the experiment to $CP$-violating effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.15052v2-abstract-full').style.display = 'none'; document.getElementById('2006.15052v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">39 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 102, 092003 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.13103">arXiv:2004.13103</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.13103">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Permanent Magnet Penning Trap </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+D+C">Daniel C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Knapp%2C+D+R">Daniel R. Knapp</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.13103v1-abstract-short" style="display: inline;"> The Penning trap has been investigated as the basis of a small nuclear fusion reactor using a superconducting solenoid magnet. To extend this investigation, we designed, constructed, and evaluated a permanent magnet Penning trap. The device consists of a solenoid formed from an annular array of neodymium bar magnets between two iron pole pieces designed to give a uniform magnetic field in the cent&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.13103v1-abstract-full').style.display = 'inline'; document.getElementById('2004.13103v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.13103v1-abstract-full" style="display: none;"> The Penning trap has been investigated as the basis of a small nuclear fusion reactor using a superconducting solenoid magnet. To extend this investigation, we designed, constructed, and evaluated a permanent magnet Penning trap. The device consists of a solenoid formed from an annular array of neodymium bar magnets between two iron pole pieces designed to give a uniform magnetic field in the central volume of the device. Critical to achieving the uniform solenoidal field is an iron equatorial ring supported within the annular array of magnets. A nonmagnetic titanium Penning trap with hyperbolic surfaces designed to produce a spherical potential well was mounted inside the permanent magnet assembly. The trap was fitted with a nonmagnetic hairpin filament electron source and demonstrated to produce electron trapping at the theoretically predicted magnetic fields and trap potentials. Trap potentials achievable were limited by electrical breakdown within the trap operating in constant potential mode. Efforts were made to extend the trap potentials using pulsed anode voltages, but nuclear fusion in a Penning trap has not yet been demonstrated. The design and construction of the permanent magnet solenoid and nonmagnetic trap are presented here as potentially useful also in other studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.13103v1-abstract-full').style.display = 'none'; document.getElementById('2004.13103v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.09375">arXiv:2002.09375</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.09375">pdf</a>, <a href="https://arxiv.org/format/2002.09375">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/16/02/P02017">10.1088/1748-0221/16/02/P02017 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Vertex-Finding and Reconstruction of Contained Two-track Neutrino Events in the MicroBooNE Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Bathe-Peters%2C+L">L. Bathe-Peters</a>, <a href="/search/physics?searchtype=author&amp;query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">F. Cavanna</a>, <a href="/search/physics?searchtype=author&amp;query=Cerati%2C+G">G. Cerati</a> , et al. (164 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.09375v5-abstract-short" style="display: inline;"> We describe algorithms developed to isolate and accurately reconstruct two-track events that are contained within the MicroBooNE detector. This method is optimized to reconstruct two tracks of lengths longer than 5 cm. This code has applications to searches for neutrino oscillations and measurements of cross sections using quasi-elastic-like charged current events. The algorithms we discuss will b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.09375v5-abstract-full').style.display = 'inline'; document.getElementById('2002.09375v5-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.09375v5-abstract-full" style="display: none;"> We describe algorithms developed to isolate and accurately reconstruct two-track events that are contained within the MicroBooNE detector. This method is optimized to reconstruct two tracks of lengths longer than 5 cm. This code has applications to searches for neutrino oscillations and measurements of cross sections using quasi-elastic-like charged current events. The algorithms we discuss will be applicable to all detectors running in Fermilab&#39;s Short Baseline Neutrino program (SBN), and to any future liquid argon time projection chamber (LArTPC) experiment with beam energies ~1 GeV. The algorithms are publicly available on a GITHUB repository. This reconstruction offers a complementary and independent alternative to the Pandora reconstruction package currently in use in LArTPC experiments, and provides similar reconstruction performance for two-track events. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.09375v5-abstract-full').style.display = 'none'; document.getElementById('2002.09375v5-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 26 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-20-073-ND </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.08424">arXiv:2002.08424</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.08424">pdf</a>, <a href="https://arxiv.org/format/2002.08424">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/15/06/P06033">10.1088/1748-0221/15/06/P06033 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Construction of precision wire readout planes for the Short-Baseline Near Detector (SBND) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Babicz%2C+M">M. Babicz</a>, <a href="/search/physics?searchtype=author&amp;query=Backhouse%2C+C">C. Backhouse</a>, <a href="/search/physics?searchtype=author&amp;query=Badgett%2C+W">W. Badgett</a>, <a href="/search/physics?searchtype=author&amp;query=Bagby%2C+L+F">L. F. Bagby</a>, <a href="/search/physics?searchtype=author&amp;query=Barker%2C+D">D. Barker</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Basharina-Freshville%2C+A">A. Basharina-Freshville</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Baxter%2C+A">A. Baxter</a>, <a href="/search/physics?searchtype=author&amp;query=Bazetto%2C+M+C+Q">M. C. Q. Bazetto</a>, <a href="/search/physics?searchtype=author&amp;query=Beltramello%2C+O">O. Beltramello</a>, <a href="/search/physics?searchtype=author&amp;query=Betancourt%2C+M">M. Betancourt</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M+R+M">M. R. M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Bitadze%2C+A">A. Bitadze</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A+S+T">A. S. T. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Boissevain%2C+J">J. Boissevain</a>, <a href="/search/physics?searchtype=author&amp;query=Bonifazi%2C+C">C. Bonifazi</a>, <a href="/search/physics?searchtype=author&amp;query=Book%2C+J+Y">J. Y. Book</a>, <a href="/search/physics?searchtype=author&amp;query=Brailsford%2C+D">D. Brailsford</a> , et al. (170 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.08424v2-abstract-short" style="display: inline;"> The Short-Baseline Near Detector time projection chamber is unique in the design of its charge readout planes. These anode plane assemblies (APAs) have been fabricated and assembled to meet strict accuracy and precision requirements: wire spacing of 3 mm +/- 0.5 mm and wire tension of 7 N +/- 1 N across 3,964 wires per APA, and flatness within 0.5 mm over the 4 m +/- 2.5 m extent of each APA. This&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.08424v2-abstract-full').style.display = 'inline'; document.getElementById('2002.08424v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.08424v2-abstract-full" style="display: none;"> The Short-Baseline Near Detector time projection chamber is unique in the design of its charge readout planes. These anode plane assemblies (APAs) have been fabricated and assembled to meet strict accuracy and precision requirements: wire spacing of 3 mm +/- 0.5 mm and wire tension of 7 N +/- 1 N across 3,964 wires per APA, and flatness within 0.5 mm over the 4 m +/- 2.5 m extent of each APA. This paper describes the design, manufacture and assembly of these key detector components, with a focus on the quality assurance at each stage. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.08424v2-abstract-full').style.display = 'none'; document.getElementById('2002.08424v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">42 pages, 45 figures. Prepared for submission to JINST</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.03010">arXiv:2002.03010</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.03010">pdf</a>, <a href="https://arxiv.org/format/2002.03010">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume IV: Far Detector Single-phase Technology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">Mario A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+Z">Z. Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+J">J. Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Alion%2C+T">T. Alion</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=Alt%2C+C">C. Alt</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&amp;query=Andrews%2C+M+P">M. P. Andrews</a>, <a href="/search/physics?searchtype=author&amp;query=Andrianala%2C+F">F. Andrianala</a>, <a href="/search/physics?searchtype=author&amp;query=Andringa%2C+S">S. Andringa</a>, <a href="/search/physics?searchtype=author&amp;query=Ankowski%2C+A">A. Ankowski</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Antonova%2C+M">M. Antonova</a>, <a href="/search/physics?searchtype=author&amp;query=Antusch%2C+S">S. Antusch</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+A+A">A. Aranda Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Ariga%2C+A">A. Ariga</a>, <a href="/search/physics?searchtype=author&amp;query=Arnold%2C+L+O">L. O. Arnold</a>, <a href="/search/physics?searchtype=author&amp;query=Arroyave%2C+M+A">M. A. Arroyave</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a> , et al. (941 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.03010v3-abstract-short" style="display: inline;"> The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay -- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. DUNE is an international world-clas&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.03010v3-abstract-full').style.display = 'inline'; document.getElementById('2002.03010v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.03010v3-abstract-full" style="display: none;"> The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay -- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. DUNE is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. Central to achieving DUNE&#39;s physics program is a far detector that combines the many tens-of-kiloton fiducial mass necessary for rare event searches with sub-centimeter spatial resolution in its ability to image those events, allowing identification of the physics signatures among the numerous backgrounds. In the single-phase liquid argon time-projection chamber (LArTPC) technology, ionization charges drift horizontally in the liquid argon under the influence of an electric field towards a vertical anode, where they are read out with fine granularity. A photon detection system supplements the TPC, directly enhancing physics capabilities for all three DUNE physics drivers and opening up prospects for further physics explorations. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume IV presents an overview of the basic operating principles of a single-phase LArTPC, followed by a description of the DUNE implementation. Each of the subsystems is described in detail, connecting the high-level design requirements and decisions to the overriding physics goals of DUNE. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.03010v3-abstract-full').style.display = 'none'; document.getElementById('2002.03010v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Minor corrections made for JINST submission, 673 pages, 312 figures (corrected errors in author list)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-20-027-ND </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.03008">arXiv:2002.03008</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.03008">pdf</a>, <a href="https://arxiv.org/format/2002.03008">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume III: DUNE Far Detector Technical Coordination </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">Mario A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+Z">Z. Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+J">J. Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Alion%2C+T">T. Alion</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=Alt%2C+C">C. Alt</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&amp;query=Andrews%2C+M+P">M. P. Andrews</a>, <a href="/search/physics?searchtype=author&amp;query=Andrianala%2C+F">F. Andrianala</a>, <a href="/search/physics?searchtype=author&amp;query=Andringa%2C+S">S. Andringa</a>, <a href="/search/physics?searchtype=author&amp;query=Ankowski%2C+A">A. Ankowski</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Antonova%2C+M">M. Antonova</a>, <a href="/search/physics?searchtype=author&amp;query=Antusch%2C+S">S. Antusch</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+A+A">A. Aranda Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Ariga%2C+A">A. Ariga</a>, <a href="/search/physics?searchtype=author&amp;query=Arnold%2C+L+O">L. O. Arnold</a>, <a href="/search/physics?searchtype=author&amp;query=Arroyave%2C+M+A">M. A. Arroyave</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a> , et al. (941 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.03008v3-abstract-short" style="display: inline;"> The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay -- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Exper&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.03008v3-abstract-full').style.display = 'inline'; document.getElementById('2002.03008v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.03008v3-abstract-full" style="display: none;"> The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay -- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume III of this TDR describes how the activities required to design, construct, fabricate, install, and commission the DUNE far detector modules are organized and managed. This volume details the organizational structures that will carry out and/or oversee the planned far detector activities safely, successfully, on time, and on budget. It presents overviews of the facilities, supporting infrastructure, and detectors for context, and it outlines the project-related functions and methodologies used by the DUNE technical coordination organization, focusing on the areas of integration engineering, technical reviews, quality assurance and control, and safety oversight. Because of its more advanced stage of development, functional examples presented in this volume focus primarily on the single-phase (SP) detector module. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.03008v3-abstract-full').style.display = 'none'; document.getElementById('2002.03008v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Minor corrections made for JINST submission, 209 pages, 55 figures (updated typos in Table A.5; corrected errors in author list)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-20-026-ND </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.03005">arXiv:2002.03005</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.03005">pdf</a>, <a href="https://arxiv.org/format/2002.03005">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume II: DUNE Physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">Mario A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+Z">Z. Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+J">J. Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Alion%2C+T">T. Alion</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=Alt%2C+C">C. Alt</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&amp;query=Andrews%2C+M+P">M. P. Andrews</a>, <a href="/search/physics?searchtype=author&amp;query=Andrianala%2C+F">F. Andrianala</a>, <a href="/search/physics?searchtype=author&amp;query=Andringa%2C+S">S. Andringa</a>, <a href="/search/physics?searchtype=author&amp;query=Ankowski%2C+A">A. Ankowski</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Antonova%2C+M">M. Antonova</a>, <a href="/search/physics?searchtype=author&amp;query=Antusch%2C+S">S. Antusch</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+A+A">A. Aranda Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Ariga%2C+A">A. Ariga</a>, <a href="/search/physics?searchtype=author&amp;query=Arnold%2C+L+O">L. O. Arnold</a>, <a href="/search/physics?searchtype=author&amp;query=Arroyave%2C+M+A">M. A. Arroyave</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a> , et al. (941 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.03005v2-abstract-short" style="display: inline;"> The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay -- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. DUNE is an international world-clas&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.03005v2-abstract-full').style.display = 'inline'; document.getElementById('2002.03005v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.03005v2-abstract-full" style="display: none;"> The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay -- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. DUNE is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume II of this TDR, DUNE Physics, describes the array of identified scientific opportunities and key goals. Crucially, we also report our best current understanding of the capability of DUNE to realize these goals, along with the detailed arguments and investigations on which this understanding is based. This TDR volume documents the scientific basis underlying the conception and design of the LBNF/DUNE experimental configurations. As a result, the description of DUNE&#39;s experimental capabilities constitutes the bulk of the document. Key linkages between requirements for successful execution of the physics program and primary specifications of the experimental configurations are drawn and summarized. This document also serves a wider purpose as a statement on the scientific potential of DUNE as a central component within a global program of frontier theoretical and experimental particle physics research. Thus, the presentation also aims to serve as a resource for the particle physics community at large. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.03005v2-abstract-full').style.display = 'none'; document.getElementById('2002.03005v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">357 pages, 165 figures (updated typos in Table 6.1 and corrected errors in author list)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-20-025-ND </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.02967">arXiv:2002.02967</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.02967">pdf</a>, <a href="https://arxiv.org/format/2002.02967">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume I: Introduction to DUNE </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">Mario A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+Z">Z. Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+J">J. Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Alion%2C+T">T. Alion</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=Alt%2C+C">C. Alt</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&amp;query=Andrews%2C+M+P">M. P. Andrews</a>, <a href="/search/physics?searchtype=author&amp;query=Andrianala%2C+F">F. Andrianala</a>, <a href="/search/physics?searchtype=author&amp;query=Andringa%2C+S">S. Andringa</a>, <a href="/search/physics?searchtype=author&amp;query=Ankowski%2C+A">A. Ankowski</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Antonova%2C+M">M. Antonova</a>, <a href="/search/physics?searchtype=author&amp;query=Antusch%2C+S">S. Antusch</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+A+A">A. Aranda Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Ariga%2C+A">A. Ariga</a>, <a href="/search/physics?searchtype=author&amp;query=Arnold%2C+L+O">L. O. Arnold</a>, <a href="/search/physics?searchtype=author&amp;query=Arroyave%2C+M+A">M. A. Arroyave</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a> , et al. (941 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.02967v3-abstract-short" style="display: inline;"> The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay -- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Exper&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.02967v3-abstract-full').style.display = 'inline'; document.getElementById('2002.02967v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.02967v3-abstract-full" style="display: none;"> The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay -- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. This TDR is intended to justify the technical choices for the far detector that flow down from the high-level physics goals through requirements at all levels of the Project. Volume I contains an executive summary that introduces the DUNE science program, the far detector and the strategy for its modular designs, and the organization and management of the Project. The remainder of Volume I provides more detail on the science program that drives the choice of detector technologies and on the technologies themselves. It also introduces the designs for the DUNE near detector and the DUNE computing model, for which DUNE is planning design reports. Volume II of this TDR describes DUNE&#39;s physics program in detail. Volume III describes the technical coordination required for the far detector design, construction, installation, and integration, and its organizational structure. Volume IV describes the single-phase far detector technology. A planned Volume V will describe the dual-phase technology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.02967v3-abstract-full').style.display = 'none'; document.getElementById('2002.02967v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Minor corrections made for JINST submission; 244 pages, 114 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-20-024-ND </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.10545">arXiv:1911.10545</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.10545">pdf</a>, <a href="https://arxiv.org/format/1911.10545">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.101.052001">10.1103/PhysRevD.101.052001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for heavy neutral leptons decaying into muon-pion pairs in the MicroBooNE detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">F. Cavanna</a>, <a href="/search/physics?searchtype=author&amp;query=Cerati%2C+G">G. Cerati</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Church%2C+E">E. Church</a> , et al. (159 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.10545v2-abstract-short" style="display: inline;"> We present upper limits on the production of heavy neutral leptons (HNLs) decaying to $渭蟺$ pairs using data collected with the MicroBooNE liquid-argon time projection chamber (TPC) operating at Fermilab. This search is the first of its kind performed in a liquid-argon TPC. We use data collected in 2017 and 2018 corresponding to an exposure of $2.0 \times 10^{20}$ protons on target from the Fermila&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.10545v2-abstract-full').style.display = 'inline'; document.getElementById('1911.10545v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.10545v2-abstract-full" style="display: none;"> We present upper limits on the production of heavy neutral leptons (HNLs) decaying to $渭蟺$ pairs using data collected with the MicroBooNE liquid-argon time projection chamber (TPC) operating at Fermilab. This search is the first of its kind performed in a liquid-argon TPC. We use data collected in 2017 and 2018 corresponding to an exposure of $2.0 \times 10^{20}$ protons on target from the Fermilab Booster Neutrino Beam, which produces mainly muon neutrinos with an average energy of $\approx 800$ MeV. HNLs with higher mass are expected to have a longer time-of-flight to the liquid-argon TPC than Standard Model neutrinos. The data are therefore recorded with a dedicated trigger configured to detect HNL decays that occur after the neutrino spill reaches the detector. We set upper limits at the $90\%$ confidence level on the element $\lvert U_{\mu4}\rvert^2$ of the extended PMNS mixing matrix in the range $\lvert U_{\mu4}\rvert^2&lt;(6.6$-$0.9)\times 10^{-7}$ for Dirac HNLs and $\lvert U_{\mu4}\rvert^2&lt;(4.7$-$0.7)\times 10^{-7}$ for Majorana HNLs, assuming HNL masses between $260$ and $385$ MeV and $\lvert U_{e 4}\rvert^2 = \lvert U_{蟿4}\rvert^2 = 0$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.10545v2-abstract-full').style.display = 'none'; document.getElementById('1911.10545v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 9 figures. Final accepted version by Phys. Rev. D, minor textual changes</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-19-581-ND </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 101, 052001 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.10833">arXiv:1910.10833</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.10833">pdf</a>, <a href="https://arxiv.org/format/1910.10833">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Finite spatial-grid effects in energy-conserving particle-in-cell algorithms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+D+C">D. C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Chacon%2C+L">L. Chacon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.10833v1-abstract-short" style="display: inline;"> Finite-grid (or aliasing) instabilities are pervasive in particle-in-cell (PIC) plasma simulation algorithms, and force the modeler to resolve the smallest (Debye) length scale in the problem regardless of dynamical relevance. These instabilities originate in the aliasing of interpolation errors between mesh quantities and particles (which live in the space-time continuum). Recently, strictly ener&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.10833v1-abstract-full').style.display = 'inline'; document.getElementById('1910.10833v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.10833v1-abstract-full" style="display: none;"> Finite-grid (or aliasing) instabilities are pervasive in particle-in-cell (PIC) plasma simulation algorithms, and force the modeler to resolve the smallest (Debye) length scale in the problem regardless of dynamical relevance. These instabilities originate in the aliasing of interpolation errors between mesh quantities and particles (which live in the space-time continuum). Recently, strictly energy-conserving PIC (EC-PIC) algorithms have been developed that promise enhanced robustness against aliasing instabilities. In this study, we confirm by analysis that EC-PIC is stable against aliasing instabilities for stationary plasmas. For drifting plasmas, we demonstrate by analysis and numerical experiments that, while EC-PIC algorithms are not free from these instabilities in principle, they feature a benign stability threshold for finite-temperature plasmas that make them usable in practice for a large class of problems (featuring ambipolarity and realistic ion-electron mass ratios) without the need to resolve Debye lengths spatially. We also demonstrate that this threshold is absent for the popular momentum-conserving PIC algorithms, which are therefore unstable for both drifting and stationary plasmas. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.10833v1-abstract-full').style.display = 'none'; document.getElementById('1910.10833v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.02166">arXiv:1910.02166</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.02166">pdf</a>, <a href="https://arxiv.org/format/1910.02166">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/15/02/P02007">10.1088/1748-0221/15/02/P02007 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Reconstruction and Measurement of $\mathcal{O}$(100) MeV Energy Electromagnetic Activity from $蟺^0 \rightarrow 纬纬$ Decays in the MicroBooNE LArTPC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Bass%2C+M">M. Bass</a>, <a href="/search/physics?searchtype=author&amp;query=Bay%2C+F">F. Bay</a>, <a href="/search/physics?searchtype=author&amp;query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&amp;query=Carr%2C+R">R. Carr</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a> , et al. (164 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.02166v1-abstract-short" style="display: inline;"> We present results on the reconstruction of electromagnetic (EM) activity from photons produced in charged current $谓_渭$ interactions with final state $蟺^0$s. We employ a fully-automated reconstruction chain capable of identifying EM showers of $\mathcal{O}$(100) MeV energy, relying on a combination of traditional reconstruction techniques together with novel machine-learning approaches. These stu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.02166v1-abstract-full').style.display = 'inline'; document.getElementById('1910.02166v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.02166v1-abstract-full" style="display: none;"> We present results on the reconstruction of electromagnetic (EM) activity from photons produced in charged current $谓_渭$ interactions with final state $蟺^0$s. We employ a fully-automated reconstruction chain capable of identifying EM showers of $\mathcal{O}$(100) MeV energy, relying on a combination of traditional reconstruction techniques together with novel machine-learning approaches. These studies demonstrate good energy resolution, and good agreement between data and simulation, relying on the reconstructed invariant $蟺^0$ mass and other photon distributions for validation. The reconstruction techniques developed are applied to a selection of $谓_渭 + {\rm Ar} \rightarrow 渭+ 蟺^0 + X$ candidate events to demonstrate the potential for calorimetric separation of photons from electrons and reconstruction of $蟺^0$ kinematics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.02166v1-abstract-full').style.display = 'none'; document.getElementById('1910.02166v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.01430">arXiv:1910.01430</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.01430">pdf</a>, <a href="https://arxiv.org/format/1910.01430">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/15/07/P07010">10.1088/1748-0221/15/07/P07010 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Method to Determine the Electric Field of Liquid Argon Time Projection Chambers Using a UV Laser System and its Application in MicroBooNE </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Bass%2C+M">M. Bass</a>, <a href="/search/physics?searchtype=author&amp;query=Bay%2C+F">F. Bay</a>, <a href="/search/physics?searchtype=author&amp;query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&amp;query=Carr%2C+R">R. Carr</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a> , et al. (165 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.01430v2-abstract-short" style="display: inline;"> Liquid argon time projection chambers (LArTPCs) are now a standard detector technology for making accelerator neutrino measurements, due to their high material density, precise tracking, and calorimetric capabilities. An electric field (E-field) is required in such detectors to drift ionized electrons to the anode to be collected. The E-field of a TPC is often approximated to be uniform between th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.01430v2-abstract-full').style.display = 'inline'; document.getElementById('1910.01430v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.01430v2-abstract-full" style="display: none;"> Liquid argon time projection chambers (LArTPCs) are now a standard detector technology for making accelerator neutrino measurements, due to their high material density, precise tracking, and calorimetric capabilities. An electric field (E-field) is required in such detectors to drift ionized electrons to the anode to be collected. The E-field of a TPC is often approximated to be uniform between the anode and the cathode planes. However, significant distortions can appear from effects such as mechanical deformations, electrode failures, or the accumulation of space charge generated by cosmic rays. The latter is particularly relevant for detectors placed near the Earth&#39;s surface and with large drift distances and long drift time. To determine the E-field in situ, an ultraviolet (UV) laser system is installed in the MicroBooNE experiment at Fermi National Accelerator Laboratory. The purpose of this system is to provide precise measurements of the E-field, and to make it possible to correct for 3D spatial distortions due to E-field non-uniformities. Here we describe the methodology developed for deriving spatial distortions, the drift velocity and the E-field from UV-laser measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.01430v2-abstract-full').style.display = 'none'; document.getElementById('1910.01430v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.11736">arXiv:1907.11736</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.11736">pdf</a>, <a href="https://arxiv.org/format/1907.11736">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/15/03/P03022">10.1088/1748-0221/15/03/P03022 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Calibration of the charge and energy loss per unit length of the MicroBooNE liquid argon time projection chamber using muons and protons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&amp;query=Bass%2C+M">M. Bass</a>, <a href="/search/physics?searchtype=author&amp;query=Bay%2C+F">F. Bay</a>, <a href="/search/physics?searchtype=author&amp;query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&amp;query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&amp;query=Carr%2C+R">R. Carr</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a> , et al. (164 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.11736v2-abstract-short" style="display: inline;"> We describe a method used to calibrate the position- and time-dependent response of the MicroBooNE liquid argon time projection chamber anode wires to ionization particle energy loss. The method makes use of crossing cosmic-ray muons to partially correct anode wire signals for multiple effects as a function of time and position, including cross-connected TPC wires, space charge effects, electron a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.11736v2-abstract-full').style.display = 'inline'; document.getElementById('1907.11736v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.11736v2-abstract-full" style="display: none;"> We describe a method used to calibrate the position- and time-dependent response of the MicroBooNE liquid argon time projection chamber anode wires to ionization particle energy loss. The method makes use of crossing cosmic-ray muons to partially correct anode wire signals for multiple effects as a function of time and position, including cross-connected TPC wires, space charge effects, electron attachment to impurities, diffusion, and recombination. The overall energy scale is then determined using fully-contained beam-induced muons originating and stopping in the active region of the detector. Using this method, we obtain an absolute energy scale uncertainty of 2\% in data. We use stopping protons to further refine the relation between the measured charge and the energy loss for highly-ionizing particles. This data-driven detector calibration improves both the measurement of total deposited energy and particle identification based on energy loss per unit length as a function of residual range. As an example, the proton selection efficiency is increased by 2\% after detector calibration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.11736v2-abstract-full').style.display = 'none'; document.getElementById('1907.11736v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-19-357-ND </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 15, P03022 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.02862">arXiv:1901.02862</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.02862">pdf</a>, <a href="https://arxiv.org/format/1901.02862">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/14/04/P04004">10.1088/1748-0221/14/04/P04004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Design and construction of the MicroBooNE Cosmic Ray Tagger system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Auger%2C+M">M. Auger</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Bass%2C+M">M. Bass</a>, <a href="/search/physics?searchtype=author&amp;query=Bay%2C+F">F. Bay</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bhattacharya%2C+K">K. Bhattacharya</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&amp;query=Carr%2C+R">R. Carr</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">F. Cavanna</a> , et al. (149 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.02862v2-abstract-short" style="display: inline;"> The MicroBooNE detector utilizes a liquid argon time projection chamber (LArTPC) with an 85 t active mass to study neutrino interactions along the Booster Neutrino Beam (BNB) at Fermilab. With a deployment location near ground level, the detector records many cosmic muon tracks in each beam-related detector trigger that can be misidentified as signals of interest. To reduce these cosmogenic backgr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.02862v2-abstract-full').style.display = 'inline'; document.getElementById('1901.02862v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.02862v2-abstract-full" style="display: none;"> The MicroBooNE detector utilizes a liquid argon time projection chamber (LArTPC) with an 85 t active mass to study neutrino interactions along the Booster Neutrino Beam (BNB) at Fermilab. With a deployment location near ground level, the detector records many cosmic muon tracks in each beam-related detector trigger that can be misidentified as signals of interest. To reduce these cosmogenic backgrounds, we have designed and constructed a TPC-external Cosmic Ray Tagger (CRT). This sub-system was developed by the Laboratory for High Energy Physics (LHEP), Albert Einstein center for fundamental physics, University of Bern. The system utilizes plastic scintillation modules to provide precise time and position information for TPC-traversing particles. Successful matching of TPC tracks and CRT data will allow us to reduce cosmogenic background and better characterize the light collection system and LArTPC data using cosmic muons. In this paper we describe the design and installation of the MicroBooNE CRT system and provide an overview of a series of tests done to verify the proper operation of the system and its components during installation, commissioning, and physics data-taking. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.02862v2-abstract-full').style.display = 'none'; document.getElementById('1901.02862v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.05679">arXiv:1812.05679</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1812.05679">pdf</a>, <a href="https://arxiv.org/format/1812.05679">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Rejecting cosmic background for exclusive neutrino interaction studies with Liquid Argon TPCs; a case study with the MicroBooNE detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Auger%2C+M">M. Auger</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Bass%2C+M">M. Bass</a>, <a href="/search/physics?searchtype=author&amp;query=Bay%2C+F">F. Bay</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bhattacharya%2C+K">K. Bhattacharya</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&amp;query=Carr%2C+R">R. Carr</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">F. Cavanna</a> , et al. (150 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.05679v2-abstract-short" style="display: inline;"> Cosmic ray (CR) interactions can be a challenging source of background for neutrino oscillation and cross-section measurements in surface detectors. We present methods for CR rejection in measurements of charged-current quasielastic-like (CCQE-like) neutrino interactions, with a muon and a proton in the final state, measured using liquid argon time projection chambers (LArTPCs). Using a sample of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.05679v2-abstract-full').style.display = 'inline'; document.getElementById('1812.05679v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.05679v2-abstract-full" style="display: none;"> Cosmic ray (CR) interactions can be a challenging source of background for neutrino oscillation and cross-section measurements in surface detectors. We present methods for CR rejection in measurements of charged-current quasielastic-like (CCQE-like) neutrino interactions, with a muon and a proton in the final state, measured using liquid argon time projection chambers (LArTPCs). Using a sample of cosmic data collected with the MicroBooNE detector, mixed with simulated neutrino scattering events, a set of event selection criteria is developed that produces an event sample with minimal contribution from CR background. Depending on the selection criteria used a purity between 50% and 80% can be achieved with a signal selection efficiency between 50% and 25%, with higher purity coming at the expense of lower efficiency. While using a specific dataset from the MicroBooNE detector and selection criteria values optimized for CCQE-like events, the concepts presented here are generic and can be adapted for various studies of exclusive 谓渭 interactions in LArTPCs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.05679v2-abstract-full').style.display = 'none'; document.getElementById('1812.05679v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 10 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-18-677-E </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.02700">arXiv:1811.02700</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.02700">pdf</a>, <a href="https://arxiv.org/format/1811.02700">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.99.091102">10.1103/PhysRevD.99.091102 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First Measurement of $谓_渭$ Charged-Current $蟺^{0}$ Production on Argon with a LArTPC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Auger%2C+M">M. Auger</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Bass%2C+M">M. Bass</a>, <a href="/search/physics?searchtype=author&amp;query=Bay%2C+F">F. Bay</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bhattacharya%2C+K">K. Bhattacharya</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&amp;query=Carr%2C+R">R. Carr</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">F. Cavanna</a> , et al. (150 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.02700v1-abstract-short" style="display: inline;"> We report the first measurement of the flux-integrated cross section of $谓_渭$ charged-current single $蟺^{0}$ production on argon. This measurement is performed with the MicroBooNE detector, an 85 ton active mass liquid argon time projection chamber exposed to the Booster Neutrino Beam at Fermilab. This result on argon is compared to past measurements on lighter nuclei to investigate the scaling as&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.02700v1-abstract-full').style.display = 'inline'; document.getElementById('1811.02700v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.02700v1-abstract-full" style="display: none;"> We report the first measurement of the flux-integrated cross section of $谓_渭$ charged-current single $蟺^{0}$ production on argon. This measurement is performed with the MicroBooNE detector, an 85 ton active mass liquid argon time projection chamber exposed to the Booster Neutrino Beam at Fermilab. This result on argon is compared to past measurements on lighter nuclei to investigate the scaling assumptions used in models of the production and transport of pions in neutrino-nucleus scattering. The techniques used are an important demonstration of the successful reconstruction and analysis of neutrino interactions producing electromagnetic final states using a liquid argon time projection chamber operating at the earth&#39;s surface. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.02700v1-abstract-full').style.display = 'none'; document.getElementById('1811.02700v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 99, 091102 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.03890">arXiv:1809.03890</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1809.03890">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.ultramic.2018.11.007">10.1016/j.ultramic.2018.11.007 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Analysis of a capped carbon nanotube (CNT) with linear-scaling density-functional theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Edgcombe%2C+C+J">C. J. Edgcombe</a>, <a href="/search/physics?searchtype=author&amp;query=Masur%2C+S+M">S. M. Masur</a>, <a href="/search/physics?searchtype=author&amp;query=Linscott%2C+E+B">E. B. Linscott</a>, <a href="/search/physics?searchtype=author&amp;query=Whaley-Baldwin%2C+J+A+J">J. A. J. Whaley-Baldwin</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C+H+W">C. H. W. Barnes</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.03890v5-abstract-short" style="display: inline;"> The apex region of a capped (5,5) carbon nanotube (CNT) has been modelled with the DFT package ONETEP, using boundary conditions provided by a classical calculation with a conducting surface in place of the CNT. Results from the DFT solution include the Fermi level and the physical distribution and energies of individual Kohn-Sham orbitals for the CNT tip. Application of an external electric field&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.03890v5-abstract-full').style.display = 'inline'; document.getElementById('1809.03890v5-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.03890v5-abstract-full" style="display: none;"> The apex region of a capped (5,5) carbon nanotube (CNT) has been modelled with the DFT package ONETEP, using boundary conditions provided by a classical calculation with a conducting surface in place of the CNT. Results from the DFT solution include the Fermi level and the physical distribution and energies of individual Kohn-Sham orbitals for the CNT tip. Application of an external electric field changes the orbital number of the highest occupied molecular orbital (the HOMO) and consequently changes the distribution of the HOMO on the CNT. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.03890v5-abstract-full').style.display = 'none'; document.getElementById('1809.03890v5-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 9 figures Corresponding author: C. J. Edgcombe (cje1@cam.ac.uk). Version 2 of the paper contains Errata and mark-ups. Version 3 deletes errors. Version 5 adds orbitals and comparison of Exc and image potentials. Version 9-1 gives more theory and adds an author. The different behaviour of potentials found here by DFT and by the classical image is due to the use of the LD approximation</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.07269">arXiv:1808.07269</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.07269">pdf</a>, <a href="https://arxiv.org/format/1808.07269">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.99.092001">10.1103/PhysRevD.99.092001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Deep Neural Network for Pixel-Level Electromagnetic Particle Identification in the MicroBooNE Liquid Argon Time Projection Chamber </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&amp;query=Auger%2C+M">M. Auger</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Bass%2C+M">M. Bass</a>, <a href="/search/physics?searchtype=author&amp;query=Bay%2C+F">F. Bay</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bhattacharya%2C+K">K. Bhattacharya</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&amp;query=Carr%2C+R">R. Carr</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">F. Cavanna</a> , et al. (148 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.07269v1-abstract-short" style="display: inline;"> We have developed a convolutional neural network (CNN) that can make a pixel-level prediction of objects in image data recorded by a liquid argon time projection chamber (LArTPC) for the first time. We describe the network design, training techniques, and software tools developed to train this network. The goal of this work is to develop a complete deep neural network based data reconstruction cha&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.07269v1-abstract-full').style.display = 'inline'; document.getElementById('1808.07269v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.07269v1-abstract-full" style="display: none;"> We have developed a convolutional neural network (CNN) that can make a pixel-level prediction of objects in image data recorded by a liquid argon time projection chamber (LArTPC) for the first time. We describe the network design, training techniques, and software tools developed to train this network. The goal of this work is to develop a complete deep neural network based data reconstruction chain for the MicroBooNE detector. We show the first demonstration of a network&#39;s validity on real LArTPC data using MicroBooNE collection plane images. The demonstration is performed for stopping muon and a $谓_渭$ charged current neutral pion data samples. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.07269v1-abstract-full').style.display = 'none'; document.getElementById('1808.07269v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 99, 092001 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.10340">arXiv:1807.10340</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1807.10340">pdf</a>, <a href="https://arxiv.org/format/1807.10340">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> The DUNE Far Detector Interim Design Report, Volume 3: Dual-Phase Module </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adamson%2C+P">P. Adamson</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+Z">Z. Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Albright%2C+C+H">C. H. Albright</a>, <a href="/search/physics?searchtype=author&amp;query=Soplin%2C+L+A">L. Aliaga Soplin</a>, <a href="/search/physics?searchtype=author&amp;query=Alion%2C+T">T. Alion</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=Alt%2C+C">C. Alt</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+K">K. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&amp;query=Andrews%2C+M+P">M. P. Andrews</a>, <a href="/search/physics?searchtype=author&amp;query=Andrews%2C+R+A">R. A. Andrews</a>, <a href="/search/physics?searchtype=author&amp;query=Ankowski%2C+A">A. Ankowski</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Antonello%2C+M">M. Antonello</a>, <a href="/search/physics?searchtype=author&amp;query=Antonova%2C+M">M. Antonova</a> , et al. (1076 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.10340v1-abstract-short" style="display: inline;"> The DUNE IDR describes the proposed physics program and technical designs of the DUNE far detector modules in preparation for the full TDR to be published in 2019. It is intended as an intermediate milestone on the path to a full TDR, justifying the technical choices that flow down from the high-level physics goals through requirements at all levels of the Project. These design choices will enable&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.10340v1-abstract-full').style.display = 'inline'; document.getElementById('1807.10340v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.10340v1-abstract-full" style="display: none;"> The DUNE IDR describes the proposed physics program and technical designs of the DUNE far detector modules in preparation for the full TDR to be published in 2019. It is intended as an intermediate milestone on the path to a full TDR, justifying the technical choices that flow down from the high-level physics goals through requirements at all levels of the Project. These design choices will enable the DUNE experiment to make the ground-breaking discoveries that will help to answer fundamental physics questions. Volume 3 describes the dual-phase module&#39;s subsystems, the technical coordination required for its design, construction, installation, and integration, and its organizational structure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.10340v1-abstract-full').style.display = 'none'; document.getElementById('1807.10340v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">280 pages, 109 figures. arXiv admin note: text overlap with arXiv:1807.10327</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Fermilab-Design-2018-04 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.10334">arXiv:1807.10334</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1807.10334">pdf</a>, <a href="https://arxiv.org/format/1807.10334">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> The DUNE Far Detector Interim Design Report Volume 1: Physics, Technology and Strategies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adamson%2C+P">P. Adamson</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+Z">Z. Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Albright%2C+C+H">C. H. Albright</a>, <a href="/search/physics?searchtype=author&amp;query=Soplin%2C+L+A">L. Aliaga Soplin</a>, <a href="/search/physics?searchtype=author&amp;query=Alion%2C+T">T. Alion</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=Alt%2C+C">C. Alt</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+K">K. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&amp;query=Andrews%2C+M+P">M. P. Andrews</a>, <a href="/search/physics?searchtype=author&amp;query=Andrews%2C+R+A">R. A. Andrews</a>, <a href="/search/physics?searchtype=author&amp;query=Ankowski%2C+A">A. Ankowski</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Antonello%2C+M">M. Antonello</a>, <a href="/search/physics?searchtype=author&amp;query=Antonova%2C+M">M. Antonova</a> , et al. (1076 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.10334v1-abstract-short" style="display: inline;"> The DUNE IDR describes the proposed physics program and technical designs of the DUNE Far Detector modules in preparation for the full TDR to be published in 2019. It is intended as an intermediate milestone on the path to a full TDR, justifying the technical choices that flow down from the high-level physics goals through requirements at all levels of the Project. These design choices will enable&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.10334v1-abstract-full').style.display = 'inline'; document.getElementById('1807.10334v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.10334v1-abstract-full" style="display: none;"> The DUNE IDR describes the proposed physics program and technical designs of the DUNE Far Detector modules in preparation for the full TDR to be published in 2019. It is intended as an intermediate milestone on the path to a full TDR, justifying the technical choices that flow down from the high-level physics goals through requirements at all levels of the Project. These design choices will enable the DUNE experiment to make the ground-breaking discoveries that will help to answer fundamental physics questions. Volume 1 contains an executive summary that describes the general aims of this document. The remainder of this first volume provides a more detailed description of the DUNE physics program that drives the choice of detector technologies. It also includes concise outlines of two overarching systems that have not yet evolved to consortium structures: computing and calibration. Volumes 2 and 3 of this IDR describe, for the single-phase and dual-phase technologies, respectively, each detector module&#39;s subsystems, the technical coordination required for its design, construction, installation, and integration, and its organizational structure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.10334v1-abstract-full').style.display = 'none'; document.getElementById('1807.10334v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">83 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Fermilab-Design-2018-02 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.10327">arXiv:1807.10327</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1807.10327">pdf</a>, <a href="https://arxiv.org/format/1807.10327">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> The DUNE Far Detector Interim Design Report, Volume 2: Single-Phase Module </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&amp;query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Adamson%2C+P">P. Adamson</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+Z">Z. Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Albright%2C+C+H">C. H. Albright</a>, <a href="/search/physics?searchtype=author&amp;query=Soplin%2C+L+A">L. Aliaga Soplin</a>, <a href="/search/physics?searchtype=author&amp;query=Alion%2C+T">T. Alion</a>, <a href="/search/physics?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&amp;query=Alt%2C+C">C. Alt</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+K">K. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&amp;query=Andrews%2C+M+P">M. P. Andrews</a>, <a href="/search/physics?searchtype=author&amp;query=Andrews%2C+R+A">R. A. Andrews</a>, <a href="/search/physics?searchtype=author&amp;query=Ankowski%2C+A">A. Ankowski</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Antonello%2C+M">M. Antonello</a>, <a href="/search/physics?searchtype=author&amp;query=Antonova%2C+M">M. Antonova</a> , et al. (1076 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.10327v1-abstract-short" style="display: inline;"> The DUNE IDR describes the proposed physics program and technical designs of the DUNE far detector modules in preparation for the full TDR to be published in 2019. It is intended as an intermediate milestone on the path to a full TDR, justifying the technical choices that flow down from the high-level physics goals through requirements at all levels of the Project. These design choices will enable&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.10327v1-abstract-full').style.display = 'inline'; document.getElementById('1807.10327v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.10327v1-abstract-full" style="display: none;"> The DUNE IDR describes the proposed physics program and technical designs of the DUNE far detector modules in preparation for the full TDR to be published in 2019. It is intended as an intermediate milestone on the path to a full TDR, justifying the technical choices that flow down from the high-level physics goals through requirements at all levels of the Project. These design choices will enable the DUNE experiment to make the ground-breaking discoveries that will help to answer fundamental physics questions. Volume 2 describes the single-phase module&#39;s subsystems, the technical coordination required for its design, construction, installation, and integration, and its organizational structure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.10327v1-abstract-full').style.display = 'none'; document.getElementById('1807.10327v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">324 pages, 130 figures. arXiv admin note: text overlap with arXiv:1807.10340</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Fermilab-Design-2018-03 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.06156">arXiv:1807.06156</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1807.06156">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Machine Learning of Energetic Material Properties </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+B+C">Brian C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Elton%2C+D+C">Daniel C. Elton</a>, <a href="/search/physics?searchtype=author&amp;query=Boukouvalas%2C+Z">Zois Boukouvalas</a>, <a href="/search/physics?searchtype=author&amp;query=Taylor%2C+D+E">DeCarlos E. Taylor</a>, <a href="/search/physics?searchtype=author&amp;query=Mattson%2C+W+D">William D. Mattson</a>, <a href="/search/physics?searchtype=author&amp;query=Fuge%2C+M+D">Mark D. Fuge</a>, <a href="/search/physics?searchtype=author&amp;query=Chung%2C+P+W">Peter W. Chung</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.06156v1-abstract-short" style="display: inline;"> In this work, we discuss use of machine learning techniques for rapid prediction of detonation properties including explosive energy, detonation velocity, and detonation pressure. Further, analysis is applied to individual molecules in order to explore the contribution of bonding motifs to these properties. Feature descriptors evaluated include Morgan fingerprints, E-state vectors, a custom &#34;sum o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.06156v1-abstract-full').style.display = 'inline'; document.getElementById('1807.06156v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.06156v1-abstract-full" style="display: none;"> In this work, we discuss use of machine learning techniques for rapid prediction of detonation properties including explosive energy, detonation velocity, and detonation pressure. Further, analysis is applied to individual molecules in order to explore the contribution of bonding motifs to these properties. Feature descriptors evaluated include Morgan fingerprints, E-state vectors, a custom &#34;sum over bonds&#34; descriptor, and coulomb matrices. Algorithms discussed include kernel ridge regression, least absolute shrinkage and selection operator (&#34;LASSO&#34;) regression, Gaussian process regression, and the multi-layer perceptron (a neural network). Effects of regularization, kernel selection, network parameters, and dimensionality reduction are discussed. We determine that even when using a small training set, non-linear regression methods may create models within a useful error tolerance for screening of materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.06156v1-abstract-full').style.display = 'none'; document.getElementById('1807.06156v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Preprint for publication in the Proceedings of the 16th International Detonation Symposium</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.06887">arXiv:1805.06887</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1805.06887">pdf</a>, <a href="https://arxiv.org/format/1805.06887">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-019-6742-3">10.1140/epjc/s10052-019-6742-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Comparison of 谓渭-Ar multiplicity distributions observed by MicroBooNE to GENIE model predictions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&amp;query=Auger%2C+M">M. Auger</a>, <a href="/search/physics?searchtype=author&amp;query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&amp;query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Bass%2C+M">M. Bass</a>, <a href="/search/physics?searchtype=author&amp;query=Bay%2C+F">F. Bay</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bhattacharya%2C+K">K. Bhattacharya</a>, <a href="/search/physics?searchtype=author&amp;query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&amp;query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&amp;query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandez%2C+R+C">R. Castillo Fernandez</a>, <a href="/search/physics?searchtype=author&amp;query=Cavanna%2C+F">F. Cavanna</a>, <a href="/search/physics?searchtype=author&amp;query=Cerati%2C+G">G. Cerati</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H">H. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Church%2C+E">E. Church</a>, <a href="/search/physics?searchtype=author&amp;query=Cianci%2C+D">D. Cianci</a> , et al. (140 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.06887v3-abstract-short" style="display: inline;"> We measure a large set of observables in inclusive charged current muon neutrino scattering on argon with the MicroBooNE liquid argon time projection chamber operating at Fermilab. We evaluate three neutrino interaction models based on the widely used GENIE event generator using these observables. The measurement uses a data set consisting of neutrino interactions with a final state muon candidate&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.06887v3-abstract-full').style.display = 'inline'; document.getElementById('1805.06887v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.06887v3-abstract-full" style="display: none;"> We measure a large set of observables in inclusive charged current muon neutrino scattering on argon with the MicroBooNE liquid argon time projection chamber operating at Fermilab. We evaluate three neutrino interaction models based on the widely used GENIE event generator using these observables. The measurement uses a data set consisting of neutrino interactions with a final state muon candidate fully contained within the MicroBooNE detector. These data were collected in 2016 with the Fermilab Booster Neutrino Beam, which has an average neutrino energy of 800 MeV, using an exposure corresponding to 5E19 protons-on-target. The analysis employs fully automatic event selection and charged particle track reconstruction and uses a data-driven technique to separate neutrino interactions from cosmic ray background events. We find that GENIE models consistently describe the shapes of a large number of kinematic distributions for fixed observed multiplicity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.06887v3-abstract-full').style.display = 'none'; document.getElementById('1805.06887v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 39 figures, 10 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C (2019) 79:248 </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Barnes%2C+C&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Barnes%2C+C&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Barnes%2C+C&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10