CINXE.COM
Search results for: damage assessment
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: damage assessment</title> <meta name="description" content="Search results for: damage assessment"> <meta name="keywords" content="damage assessment"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="damage assessment" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="damage assessment"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 7892</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: damage assessment</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7892</span> Damage Assessment Based on Full-Polarimetric Decompositions in the 2017 Colombia Landslide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyeongju%20Jeon">Hyeongju Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Yonghyun%20Kim"> Yonghyun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongil%20Kim"> Yongil Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Synthetic Aperture Radar (SAR) is an effective tool for damage assessment induced by disasters due to its all-weather and night/day acquisition capability. In this paper, the 2017 Colombia landslide was observed using full-polarimetric ALOS/PALSAR-2 data. Polarimetric decompositions, including the Freeman-Durden decomposition and the Cloude decomposition, are utilized to analyze the scattering mechanisms changes before and after-landslide. These analyses are used to detect the damaged areas induced by the landslide. Experimental results validate the efficiency of the full polarimetric SAR data since the damaged areas can be well discriminated. Thus, we can conclude the proposed method using full polarimetric data has great potential for damage assessment of landslides. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Synthetic%20Aperture%20Radar%20%28SAR%29" title="Synthetic Aperture Radar (SAR)">Synthetic Aperture Radar (SAR)</a>, <a href="https://publications.waset.org/abstracts/search?q=polarimetric%20decomposition" title=" polarimetric decomposition"> polarimetric decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=damage%20assessment" title=" damage assessment"> damage assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=landslide" title=" landslide"> landslide</a> </p> <a href="https://publications.waset.org/abstracts/77442/damage-assessment-based-on-full-polarimetric-decompositions-in-the-2017-colombia-landslide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77442.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7891</span> Overview and Post Damage Analysis of Nepal Earthquake 2015</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vipin%20Kumar%20Singhal">Vipin Kumar Singhal</a>, <a href="https://publications.waset.org/abstracts/search?q=Rohit%20Kumar%20Mittal"> Rohit Kumar Mittal</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavitra%20Ranjan%20Maiti"> Pavitra Ranjan Maiti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Damage analysis is one of the preliminary activities to be done after an earthquake so as to enhance the seismic building design technologies and prevent similar type of failure in future during earthquakes. This research article investigates the damage pattern and most probable reason of failure by observing photographs of seven major buildings collapsed/damaged which were evenly spread over the region during Mw7.8, Nepal earthquake 2015 followed by more than 400 aftershocks of Mw4 with one aftershock reaching a magnitude of Mw7.3. Over 250,000 buildings got damaged, and more than 9000 people got injured in this earthquake. Photographs of these buildings were collected after the earthquake and the cause of failure was estimated along with the severity of damage and comment on the reparability of structure has been made. Based on observations, it was concluded that the damage in reinforced concrete buildings was less compared to masonry structures. The number of buildings damaged was high near Kathmandu region due to high building density in that region. This type of damage analysis can be used as a cost effective and quick method for damage assessment during earthquakes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nepal%20earthquake" title="Nepal earthquake">Nepal earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=damage%20analysis" title=" damage analysis"> damage analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=damage%20assessment" title=" damage assessment"> damage assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=damage%20scales" title=" damage scales"> damage scales</a> </p> <a href="https://publications.waset.org/abstracts/54094/overview-and-post-damage-analysis-of-nepal-earthquake-2015" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54094.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7890</span> Effects of Ground Motion Characteristics on Damage of RC Buildings: A Detailed Investiagation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Elassaly">Mohamed Elassaly</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The damage status of RC buildings is greatly influenced by the characteristics of the imposed ground motion. Peak Ground Acceleration and frequency contents are considered the main two factors that affect ground motion characteristics; hence, affecting the seismic response of RC structures and consequently their damage state. A detailed investigation on the combined effects of these two factors on damage assessment of RC buildings, is carried out. Twenty one earthquake records are analyzed and arranged into three groups, according to their frequency contents. These records are used in an investigation to define the expected damage state that would be attained by RC buildings, if subjected to varying ground motion characteristics. The damage assessment is conducted through examining drift ratios and damage indices of the overall structure and the significant structural components of RC building. Base and story shear of RC building model, are also investigated, for cases when the model is subjected to the chosen twenty one earthquake records. Nonlinear dynamic analyses are performed on a 2-dimensional model of a 12-story R.C. building. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damage" title="damage">damage</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20content" title=" frequency content"> frequency content</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20motion" title=" ground motion"> ground motion</a>, <a href="https://publications.waset.org/abstracts/search?q=PGA" title=" PGA"> PGA</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20building" title=" RC building"> RC building</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic" title=" seismic"> seismic</a> </p> <a href="https://publications.waset.org/abstracts/18914/effects-of-ground-motion-characteristics-on-damage-of-rc-buildings-a-detailed-investiagation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18914.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7889</span> Aftershock Collapse Capacity Assessment of Mid-Rise Steel Moment Frames Subjected to As-Recorded Mainshock-Aftershock</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammadmehdi%20Torfehnejada">Mohammadmehdi Torfehnejada</a>, <a href="https://publications.waset.org/abstracts/search?q=Serhan%20Senso"> Serhan Senso</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aftershock collapse capacity of Special Steel Moment Frames (SSMFs) is evaluated under aftershock earthquakes by considering building heights 8 and 12 stories. The assessment evaluates the residual collapse capacity under aftershock excitation when various levels of damage have been induced by the mainshock. For this purpose, incremental dynamic analysis (IDA) under aftershock follows the mainshock imposing the intended damage level. The study results indicate that aftershock collapse capacity of this structure may decrease remarkably when the structure is subjected to large mainshock damage. The capacity reduction under aftershock is finally related to the mainshock damage level through regression equations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aftershock%20collapse%20capacity" title="aftershock collapse capacity">aftershock collapse capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=special%20steel%20moment%20frames" title=" special steel moment frames"> special steel moment frames</a>, <a href="https://publications.waset.org/abstracts/search?q=mainshock-aftershock%20sequences" title=" mainshock-aftershock sequences"> mainshock-aftershock sequences</a>, <a href="https://publications.waset.org/abstracts/search?q=incremental%20dynamic%20analysis" title=" incremental dynamic analysis"> incremental dynamic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=mainshock%20damage" title=" mainshock damage"> mainshock damage</a> </p> <a href="https://publications.waset.org/abstracts/144073/aftershock-collapse-capacity-assessment-of-mid-rise-steel-moment-frames-subjected-to-as-recorded-mainshock-aftershock" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144073.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7888</span> A Study of Structural Damage Detection for Spacecraft In-Orbit Based on Acoustic Sensor Array</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lei%20Qi">Lei Qi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rongxin%20Yan"> Rongxin Yan</a>, <a href="https://publications.waset.org/abstracts/search?q=Lichen%20Sun"> Lichen Sun </a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the increasing of human space activities, the number of space debris has increased dramatically, and the possibility that spacecrafts on orbit are impacted by space debris is growing. A method is of the vital significance to real-time detect and assess spacecraft damage, determine of gas leak accurately, guarantee the life safety of the astronaut effectively. In this paper, acoustic sensor array is used to detect the acoustic signal which emits from the damage of the spacecraft on orbit. Then, we apply the time difference of arrival and beam forming algorithm to locate the damage and leakage. Finally, the extent of the spacecraft damage is evaluated according to the nonlinear ultrasonic method. The result shows that this method can detect the debris impact and the structural damage, locate the damage position, and identify the damage degree effectively. This method can meet the needs of structural damage detection for the spacecraft in-orbit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20sensor%20array" title="acoustic sensor array">acoustic sensor array</a>, <a href="https://publications.waset.org/abstracts/search?q=spacecraft" title=" spacecraft"> spacecraft</a>, <a href="https://publications.waset.org/abstracts/search?q=damage%20assessment" title=" damage assessment"> damage assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=leakage%20location" title=" leakage location"> leakage location</a> </p> <a href="https://publications.waset.org/abstracts/68599/a-study-of-structural-damage-detection-for-spacecraft-in-orbit-based-on-acoustic-sensor-array" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68599.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7887</span> A Simple Approach to Reliability Assessment of Structures via Anomaly Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rims%20Janeliukstis">Rims Janeliukstis</a>, <a href="https://publications.waset.org/abstracts/search?q=Deniss%20Mironovs"> Deniss Mironovs</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrejs%20Kovalovs"> Andrejs Kovalovs</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Operational Modal Analysis (OMA) is widely applied as a method for Structural Health Monitoring for structural damage identification and assessment by tracking the changes of the identified modal parameters over time. Unfortunately, modal parameters also depend on such external factors as temperature and loads. Any structural condition assessment using modal parameters should be done taking into consideration those external factors, otherwise there is a high chance of false positives. A method of structural reliability assessment based on anomaly detection technique called Machalanobis Squared Distance (MSD) is proposed. It requires a set of reference conditions to learn healthy state of a structure, which all future parameters are compared to. In this study, structural modal parameters (natural frequency and mode shape), as well as ambient temperature and loads acting on the structure are used as features. Numerical tests were performed on a finite element model of a carbon fibre reinforced polymer composite beam with delamination damage at various locations and of various severities. The advantages of the demonstrated approach include relatively few computational steps, ability to distinguish between healthy and damaged conditions and discriminate between different damage severities. It is anticipated to be promising in reliability assessment of massively produced structural parts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=operational%20modal%20analysis" title="operational modal analysis">operational modal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability%20assessment" title=" reliability assessment"> reliability assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=anomaly%20detection" title=" anomaly detection"> anomaly detection</a>, <a href="https://publications.waset.org/abstracts/search?q=damage" title=" damage"> damage</a>, <a href="https://publications.waset.org/abstracts/search?q=mahalanobis%20squared%20distance" title=" mahalanobis squared distance"> mahalanobis squared distance</a> </p> <a href="https://publications.waset.org/abstracts/148382/a-simple-approach-to-reliability-assessment-of-structures-via-anomaly-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148382.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7886</span> Classification of Impact Damages with Respect of Damage Tolerance Design Approach and Airworthiness Requirements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Mrna">T. Mrna</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Doubrava"> R. Doubrava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes airworthiness requirements with respect damage tolerance. Damage tolerance determines the amount and magnitude of damage on parts of the airplane. Airworthiness requirements determine the amount of damage that can still be in flight capable of the condition. Component damage can be defined as barely visible impact damage, visible impact damage or clear visible impact damage. Damage is also distributed it according to the velocity. It is divided into low or high velocity impact damage. The severity of damage to the part of airplane divides the airworthiness requirements into several categories according to severity. Airworthiness requirements are determined by type airplane. All types of airplane do not have the same conditions for airworthiness requirements. This knowledge is important for designing and operating an airplane. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airworthiness%20requirements" title="airworthiness requirements">airworthiness requirements</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=damage%20tolerance" title=" damage tolerance"> damage tolerance</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20and%20high%20velocity%20impact" title=" low and high velocity impact"> low and high velocity impact</a> </p> <a href="https://publications.waset.org/abstracts/82178/classification-of-impact-damages-with-respect-of-damage-tolerance-design-approach-and-airworthiness-requirements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82178.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">569</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7885</span> Comparison of the Existing Damage Indices in Steel Moment-Resisting Frame Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Kazemi">Hamid Kazemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abbasali%20Sadeghi"> Abbasali Sadeghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Assessment of seismic behavior of frame structures is just done for evaluating life and financial damages or lost. The new structural seismic behavior assessment methods have been proposed, so it is necessary to define a formulation as a damage index, which the damage amount has been quantified and qualified. In this paper, four new steel moment-resisting frames with intermediate ductility and different height (2, 5, 8, and 12-story) with regular geometry and simple rectangular plan were supposed and designed. The three existing groups’ damage indices were studied, each group consisting of local index (Drift, Maximum Roof Displacement, Banon Failure, Kinematic, Banon Normalized Cumulative Rotation, Cumulative Plastic Rotation and Ductility), global index (Roufaiel and Meyer, Papadopoulos, Sozen, Rosenblueth, Ductility and Base Shear), and story (Banon Failure and Inter-story Rotation). The necessary parameters for these damage indices have been calculated under the effect of far-fault ground motion records by Non-linear Dynamic Time History Analysis. Finally, prioritization of damage indices is defined based on more conservative values in terms of more damageability rate. The results show that the selected damage index has an important effect on estimation of the damage state. Also, failure, drift, and Rosenblueth damage indices are more conservative indices respectively for local, story and global damage indices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damage%20index" title="damage index">damage index</a>, <a href="https://publications.waset.org/abstracts/search?q=far-fault%20ground%20motion%20records" title=" far-fault ground motion records"> far-fault ground motion records</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linear%20time%20history%20analysis" title=" non-linear time history analysis"> non-linear time history analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=SeismoStruct%20software" title=" SeismoStruct software"> SeismoStruct software</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20moment-resisting%20frame" title=" steel moment-resisting frame"> steel moment-resisting frame</a> </p> <a href="https://publications.waset.org/abstracts/93473/comparison-of-the-existing-damage-indices-in-steel-moment-resisting-frame-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93473.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7884</span> Damage Assessment and Repair for Older Brick Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tim%20D.%20Sass">Tim D. Sass</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The experience of engineers and architects practicing today is typically limited to current building code requirements and modern construction methods and materials. However, many cities have a mix of new and old buildings with many buildings constructed over one hundred years ago when building codes and construction methods were much different. When a brick building sustains damage, a structural engineer is often hired to determine the cause of damage as well as determine the necessary repairs. Forensic studies of dozens of brick buildings shows an appreciation of historical building methods and materials is needed to correctly identify the cause of damage and design an appropriate repair. Damage on an older, brick building can be mistakenly attributed to storms or seismic events when the real source of the damage is deficient original construction. Assessing and remediating damaged brickwork on older brick buildings requires an understanding of the original construction, an understanding of older repair methods, and, an understanding of current building code requirements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brick" title="brick">brick</a>, <a href="https://publications.waset.org/abstracts/search?q=damage" title=" damage"> damage</a>, <a href="https://publications.waset.org/abstracts/search?q=deterioration" title=" deterioration"> deterioration</a>, <a href="https://publications.waset.org/abstracts/search?q=facade" title=" facade"> facade</a> </p> <a href="https://publications.waset.org/abstracts/78577/damage-assessment-and-repair-for-older-brick-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78577.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7883</span> Damage Assessment of Current Facades in Turkey throughout the Seismic Actions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B%C3%BC%C5%9Fra%20Elibol">Büşra Elibol</a>, <a href="https://publications.waset.org/abstracts/search?q=%C4%B0smail%20Sait%20Soyer"> İsmail Sait Soyer</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Farrokh%20Ghatte"> Hamid Farrokh Ghatte</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The continuity of the structural and non-structural elements within the envelope of the buildings is one of the fundamental factors in buildings during seismic actions. This investigation aims to make a comparison between Van and İzmir earthquakes in terms of damage assessment of the various facades. A strong earthquake (magnitude 7.2) struck the city of Van in the east of Turkey on 23 October 2011, and similarly, another strong earthquake struck the city of İzmir (magnitude 6.9) in Turkey on 30 October 2020. This paper presents the damage assessment of the current facade systems from multi-story buildings in Van and İzmir, Turkey. This investigation covers the buildings greater than three stories in height, excluding most unreinforced masonry facades. Regarding a building that can have more than one facade system, any of the facade systems are considered individually. Observation of different kinds of damages in the facade is discussed and represented in terms of its performance level throughout the seismic actions. Furthermore, presenting the standard design guidelines (i.e., Turkish seismic design code) is required not only for designers but also for installers of facade systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damage" title="damage">damage</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake" title=" earthquake"> earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=facade" title=" facade"> facade</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20element" title=" structural element"> structural element</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20action" title=" seismic action"> seismic action</a> </p> <a href="https://publications.waset.org/abstracts/151071/damage-assessment-of-current-facades-in-turkey-throughout-the-seismic-actions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7882</span> Proposal of a Damage Inspection Tool After Earthquakes: Case of Algerian Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akkouche%20Karim">Akkouche Karim</a>, <a href="https://publications.waset.org/abstracts/search?q=Nekmouche%20Aghiles"> Nekmouche Aghiles</a>, <a href="https://publications.waset.org/abstracts/search?q=Bouzid%20Leyla"> Bouzid Leyla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study focuses on the development of a multifunctional Expert System (ES) called post-seismic damage inspection tool (PSDIT), a powerful tool which allows the evaluation, the processing and the archiving of the collected data stock after earthquakes. PSDIT can be operated by two user types; an ordinary user (engineer, expert or architect) for the damage visual inspection and an administrative user for updating the knowledge and / or for adding or removing the ordinary user. The knowledge acquisition is driven by a hierarchical knowledge model, the Information from investigation reports and those acquired through feedback from expert / engineer questionnaires are part. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buildings" title="buildings">buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake" title=" earthquake"> earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20damage" title=" seismic damage"> seismic damage</a>, <a href="https://publications.waset.org/abstracts/search?q=damage%20assessment" title=" damage assessment"> damage assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=expert%20system" title=" expert system"> expert system</a> </p> <a href="https://publications.waset.org/abstracts/165520/proposal-of-a-damage-inspection-tool-after-earthquakes-case-of-algerian-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165520.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7881</span> Assessment Using Copulas of Simultaneous Damage to Multiple Buildings Due to Tsunamis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yo%20Fukutani">Yo Fukutani</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuji%20Moriguchi"> Shuji Moriguchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Takuma%20Kotani"> Takuma Kotani</a>, <a href="https://publications.waset.org/abstracts/search?q=Terada%20Kenjiro"> Terada Kenjiro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> If risk management of the assets owned by companies, risk assessment of real estate portfolio, and risk identification of the entire region are to be implemented, it is necessary to consider simultaneous damage to multiple buildings. In this research, the Sagami Trough earthquake tsunami that could have a significant effect on the Japanese capital region is focused on, and a method is proposed for simultaneous damage assessment using copulas that can take into consideration the correlation of tsunami depths and building damage between two sites. First, the tsunami inundation depths at two sites were simulated by using a nonlinear long-wave equation. The tsunamis were simulated by varying the slip amount (five cases) and the depths (five cases) for each of 10 sources of the Sagami Trough. For each source, the frequency distributions of the tsunami inundation depth were evaluated by using the response surface method. Then, Monte-Carlo simulation was conducted, and frequency distributions of tsunami inundation depth were evaluated at the target sites for all sources of the Sagami Trough. These are marginal distributions. Kendall’s tau for the tsunami inundation simulation at two sites was 0.83. Based on this value, the Gaussian copula, t-copula, Clayton copula, and Gumbel copula (n = 10,000) were generated. Then, the simultaneous distributions of the damage rate were evaluated using the marginal distributions and the copulas. For the correlation of the tsunami inundation depth at the two sites, the expected value hardly changed compared with the case of no correlation, but the damage rate of the ninety-ninth percentile value was approximately 2%, and the maximum value was approximately 6% when using the Gumbel copula. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copulas" title="copulas">copulas</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte-Carlo%20simulation" title=" Monte-Carlo simulation"> Monte-Carlo simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=probabilistic%20risk%20assessment" title=" probabilistic risk assessment"> probabilistic risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=tsunamis" title=" tsunamis"> tsunamis</a> </p> <a href="https://publications.waset.org/abstracts/103724/assessment-using-copulas-of-simultaneous-damage-to-multiple-buildings-due-to-tsunamis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103724.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7880</span> A Review of Current Knowledge on Assessment of Precast Structures Using Fragility Curves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Akpinar">E. Akpinar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Erol"> A. Erol</a>, <a href="https://publications.waset.org/abstracts/search?q=M.F.%20Cakir"> M.F. Cakir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Precast reinforced concrete (RC) structures are excellent alternatives for construction world all over the globe, thanks to their rapid erection phase, ease mounting process, better quality and reasonable prices. Such structures are rather popular for industrial buildings. For the sake of economic importance of such industrial buildings as well as significance of safety, like every other type of structures, performance assessment and structural risk analysis are important. Fragility curves are powerful tools for damage projection and assessment for any sort of building as well as precast structures. In this study, a comparative review of current knowledge on fragility analysis of industrial precast RC structures were presented and findings in previous studies were compiled. Effects of different structural variables, parameters and building geometries as well as soil conditions on fragility analysis of precast structures are reviewed. It was aimed to briefly present the information in the literature about the procedure of damage probability prediction including fragility curves for such industrial facilities. It is found that determination of the aforementioned structural parameters as well as selecting analysis procedure are critically important for damage prediction of industrial precast RC structures using fragility curves. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damage%20prediction" title="damage prediction">damage prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=fragility%20curve" title=" fragility curve"> fragility curve</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20buildings" title=" industrial buildings"> industrial buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=precast%20reinforced%20concrete%20structures" title=" precast reinforced concrete structures"> precast reinforced concrete structures</a> </p> <a href="https://publications.waset.org/abstracts/100004/a-review-of-current-knowledge-on-assessment-of-precast-structures-using-fragility-curves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100004.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7879</span> Evaluation of Earthquake Induced Cost for Mid-Rise Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gulsah%20Olgun">Gulsah Olgun</a>, <a href="https://publications.waset.org/abstracts/search?q=Ozgur%20Bozdag"> Ozgur Bozdag</a>, <a href="https://publications.waset.org/abstracts/search?q=Yildirim%20Ertutar"> Yildirim Ertutar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper mainly focuses on performance assessment of buildings by associating the damage level with the damage cost. For this purpose a methodology is explained and applied to the representative mid-rise concrete building residing in Izmir. In order to consider uncertainties in occurrence of earthquakes, the structural analyses are conducted for all possible earthquakes in the region through the hazard curve. By means of the analyses, probability of the structural response being in different limit states are obtained and used to calculate expected damage cost. The expected damage cost comprises diverse cost components related to earthquake such as cost of casualties, replacement or repair cost of building etc. In this study, inter-story drift is used as an effective response variable to associate expected damage cost with different damage levels. The structural analysis methods performed to obtain inter story drifts are response spectrum method as a linear one, accurate push-over and time history methods to demonstrate the nonlinear effects on loss estimation. Comparison of the results indicates that each method provides similar values of expected damage cost. To sum up, this paper explains an approach which enables to minimize the expected damage cost of buildings and relate performance level to damage cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=expected%20damage%20cost" title="expected damage cost">expected damage cost</a>, <a href="https://publications.waset.org/abstracts/search?q=limit%20states" title=" limit states"> limit states</a>, <a href="https://publications.waset.org/abstracts/search?q=loss%20estimation" title=" loss estimation"> loss estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20based%20design" title=" performance based design"> performance based design</a> </p> <a href="https://publications.waset.org/abstracts/57369/evaluation-of-earthquake-induced-cost-for-mid-rise-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57369.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7878</span> Prediction of Seismic Damage Using Scalar Intensity Measures Based on Integration of Spectral Values</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Konstantinos%20G.%20Kostinakis">Konstantinos G. Kostinakis</a>, <a href="https://publications.waset.org/abstracts/search?q=Asimina%20M.%20Athanatopoulou"> Asimina M. Athanatopoulou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A key issue in seismic risk analysis within the context of Performance-Based Earthquake Engineering is the evaluation of the expected seismic damage of structures under a specific earthquake ground motion. The assessment of the seismic performance strongly depends on the choice of the seismic Intensity Measure (IM), which quantifies the characteristics of a ground motion that are important to the nonlinear structural response. Several conventional IMs of ground motion have been used to estimate their damage potential to structures. Yet, none of them has been proved to be able to predict adequately the seismic damage. Therefore, alternative, scalar intensity measures, which take into account not only ground motion characteristics but also structural information have been proposed. Some of these IMs are based on integration of spectral values over a range of periods, in an attempt to account for the information that the shape of the acceleration, velocity or displacement spectrum provides. The adequacy of a number of these IMs in predicting the structural damage of 3D R/C buildings is investigated in the present paper. The investigated IMs, some of which are structure specific and some are nonstructure-specific, are defined via integration of spectral values. To achieve this purpose three symmetric in plan R/C buildings are studied. The buildings are subjected to 59 bidirectional earthquake ground motions. The two horizontal accelerograms of each ground motion are applied along the structural axes. The response is determined by nonlinear time history analysis. The structural damage is expressed in terms of the maximum interstory drift as well as the overall structural damage index. The values of the aforementioned seismic damage measures are correlated with seven scalar ground motion IMs. The comparative assessment of the results revealed that the structure-specific IMs present higher correlation with the seismic damage of the three buildings. However, the adequacy of the IMs for estimation of the structural damage depends on the response parameter adopted. Furthermore, it was confirmed that the widely used spectral acceleration at the fundamental period of the structure is a good indicator of the expected earthquake damage level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damage%20measures" title="damage measures">damage measures</a>, <a href="https://publications.waset.org/abstracts/search?q=bidirectional%20excitation" title=" bidirectional excitation"> bidirectional excitation</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20based%20IMs" title=" spectral based IMs"> spectral based IMs</a>, <a href="https://publications.waset.org/abstracts/search?q=R%2FC%20buildings" title=" R/C buildings "> R/C buildings </a> </p> <a href="https://publications.waset.org/abstracts/13608/prediction-of-seismic-damage-using-scalar-intensity-measures-based-on-integration-of-spectral-values" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13608.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7877</span> Experimental Study Damage in a Composite Structure by Vibration Analysis- Glass / Polyester</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Abdeldjebar">R. Abdeldjebar</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Labbaci"> B. Labbaci</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Missoum"> L. Missoum</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Moudden"> B. Moudden</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Djermane"> M. Djermane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The basic components of a composite material made him very sensitive to damage, which requires techniques for detecting damage reliable and efficient. This work focuses on the detection of damage by vibration analysis, whose main objective is to exploit the dynamic response of a structure to detect understand the damage. The experimental results are compared with those predicted by numerical models to confirm the effectiveness of the approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=experimental" title="experimental">experimental</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20analysis" title=" vibration analysis"> vibration analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=damage" title=" damage"> damage</a> </p> <a href="https://publications.waset.org/abstracts/21019/experimental-study-damage-in-a-composite-structure-by-vibration-analysis-glass-polyester" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21019.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">674</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7876</span> An Integrated Label Propagation Network for Structural Condition Assessment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qingsong%20Xiong">Qingsong Xiong</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng%20Yuan"> Cheng Yuan</a>, <a href="https://publications.waset.org/abstracts/search?q=Qingzhao%20Kong"> Qingzhao Kong</a>, <a href="https://publications.waset.org/abstracts/search?q=Haibei%20Xiong"> Haibei Xiong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Deep-learning-driven approaches based on vibration responses have attracted larger attention in rapid structural condition assessment while obtaining sufficient measured training data with corresponding labels is relevantly costly and even inaccessible in practical engineering. This study proposes an integrated label propagation network for structural condition assessment, which is able to diffuse the labels from continuously-generating measurements by intact structure to those of missing labels of damage scenarios. The integrated network is embedded with damage-sensitive features extraction by deep autoencoder and pseudo-labels propagation by optimized fuzzy clustering, the architecture and mechanism which are elaborated. With a sophisticated network design and specified strategies for improving performance, the present network achieves to extends the superiority of self-supervised representation learning, unsupervised fuzzy clustering and supervised classification algorithms into an integration aiming at assessing damage conditions. Both numerical simulations and full-scale laboratory shaking table tests of a two-story building structure were conducted to validate its capability of detecting post-earthquake damage. The identifying accuracy of a present network was 0.95 in numerical validations and an average 0.86 in laboratory case studies, respectively. It should be noted that the whole training procedure of all involved models in the network stringently doesn’t rely upon any labeled data of damage scenarios but only several samples of intact structure, which indicates a significant superiority in model adaptability and feasible applicability in practice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autoencoder" title="autoencoder">autoencoder</a>, <a href="https://publications.waset.org/abstracts/search?q=condition%20assessment" title=" condition assessment"> condition assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20clustering" title=" fuzzy clustering"> fuzzy clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=label%20propagation" title=" label propagation"> label propagation</a> </p> <a href="https://publications.waset.org/abstracts/151366/an-integrated-label-propagation-network-for-structural-condition-assessment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151366.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7875</span> [Keynote Speech]: Bridge Damage Detection Using Frequency Response Function</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Noor%20Al-Qayyim">Ahmed Noor Al-Qayyim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During the past decades, the bridge structures are considered very important portions of transportation networks, due to the fast urban sprawling. With the failure of bridges that under operating conditions lead to focus on updating the default bridge inspection methodology. The structures health monitoring (SHM) using the vibration response appeared as a promising method to evaluate the condition of structures. The rapid development in the sensors technology and the condition assessment techniques based on the vibration-based damage detection made the SHM an efficient and economical ways to assess the bridges. SHM is set to assess state and expects probable failures of designated bridges. In this paper, a presentation for Frequency Response function method that uses the captured vibration test information of structures to evaluate the structure condition. Furthermore, the main steps of the assessment of bridge using the vibration information are presented. The Frequency Response function method is applied to the experimental data of a full-scale bridge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridge%20assessment" title="bridge assessment">bridge assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20monitoring" title=" health monitoring"> health monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=damage%20detection" title=" damage detection"> damage detection</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20response%20function%20%28FRF%29" title=" frequency response function (FRF)"> frequency response function (FRF)</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20processing" title=" signal processing"> signal processing</a>, <a href="https://publications.waset.org/abstracts/search?q=structure%20identification" title=" structure identification"> structure identification</a> </p> <a href="https://publications.waset.org/abstracts/64870/keynote-speech-bridge-damage-detection-using-frequency-response-function" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64870.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7874</span> Damage Strain Analysis of Parallel Fiber Eutectic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jian%20Zheng">Jian Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinhua%20Ni"> Xinhua Ni</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiequan%20Liu"> Xiequan Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> According to isotropy of parallel fiber eutectic, the no- damage strain field in parallel fiber eutectic is obtained from the flexibility tensor of parallel fiber eutectic. Considering the damage behavior of parallel fiber eutectic, damage variables are introduced to determine the strain field of parallel fiber eutectic. The damage strains in the matrix, interphase, and fiber of parallel fiber eutectic are quantitatively analyzed. Results show that damage strains are not only associated with the fiber volume fraction of parallel fiber eutectic, but also with the damage degree. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damage%20strain" title="damage strain">damage strain</a>, <a href="https://publications.waset.org/abstracts/search?q=initial%20strain" title=" initial strain"> initial strain</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20volume%20fraction" title=" fiber volume fraction"> fiber volume fraction</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20fiber%20eutectic" title=" parallel fiber eutectic"> parallel fiber eutectic</a> </p> <a href="https://publications.waset.org/abstracts/60032/damage-strain-analysis-of-parallel-fiber-eutectic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60032.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">577</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7873</span> Damage Detection in Beams Using Wavelet Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Goutham%20Kumar%20Dogiparti">Goutham Kumar Dogiparti</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20R.%20Seshu"> D. R. Seshu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, wavelet analysis was used for locating damage in simply supported and cantilever beams. Study was carried out varying different levels and locations of damage. In numerical method, ANSYS software was used for modal analysis of damaged and undamaged beams. The mode shapes obtained from numerical analysis is processed using MATLAB wavelet toolbox to locate damage. Effect of several parameters such as (damage level, location) on the natural frequencies and mode shapes were also studied. The results indicated the potential of wavelets in identifying the damage location. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damage" title="damage">damage</a>, <a href="https://publications.waset.org/abstracts/search?q=detection" title=" detection"> detection</a>, <a href="https://publications.waset.org/abstracts/search?q=beams" title=" beams"> beams</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelets" title=" wavelets"> wavelets</a> </p> <a href="https://publications.waset.org/abstracts/42920/damage-detection-in-beams-using-wavelet-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42920.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7872</span> A Damage Level Assessment Model for Extra High Voltage Transmission Towers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huan-Chieh%20Chiu">Huan-Chieh Chiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hung-Shuo%20Wu"> Hung-Shuo Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Hao%20Wang"> Chien-Hao Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Cheng%20Yang"> Yu-Cheng Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ching-Ya%20Tseng"> Ching-Ya Tseng</a>, <a href="https://publications.waset.org/abstracts/search?q=Joe-Air%20Jiang"> Joe-Air Jiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Power failure resulting from tower collapse due to violent seismic events might bring enormous and inestimable losses. The Chi-Chi earthquake, for example, strongly struck Taiwan and caused huge damage to the power system on September 21, 1999. Nearly 10% of extra high voltage (EHV) transmission towers were damaged in the earthquake. Therefore, seismic hazards of EHV transmission towers should be monitored and evaluated. The ultimate goal of this study is to establish a damage level assessment model for EHV transmission towers. The data of earthquakes provided by Taiwan Central Weather Bureau serve as a reference and then lay the foundation for earthquake simulations and analyses afterward. Some parameters related to the damage level of each point of an EHV tower are simulated and analyzed by the data from monitoring stations once an earthquake occurs. Through the Fourier transform, the seismic wave is then analyzed and transformed into different wave frequencies, and the data would be shown through a response spectrum. With this method, the seismic frequency which damages EHV towers the most is clearly identified. An estimation model is built to determine the damage level caused by a future seismic event. Finally, instead of relying on visual observation done by inspectors, the proposed model can provide a power company with the damage information of a transmission tower. Using the model, manpower required by visual observation can be reduced, and the accuracy of the damage level estimation can be substantially improved. Such a model is greatly useful for health and construction monitoring because of the advantages of long-term evaluation of structural characteristics and long-term damage detection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damage%20level%20monitoring" title="damage level monitoring">damage level monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=drift%20ratio" title=" drift ratio"> drift ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=fragility%20curve" title=" fragility curve"> fragility curve</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20grid" title=" smart grid"> smart grid</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission%20tower" title=" transmission tower"> transmission tower</a> </p> <a href="https://publications.waset.org/abstracts/63746/a-damage-level-assessment-model-for-extra-high-voltage-transmission-towers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7871</span> Study on Seismic Assessment of Earthquake-Damaged Reinforced Concrete Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fu-Pei%20Hsiao">Fu-Pei Hsiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Fung-Chung%20Tu"> Fung-Chung Tu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Kuo%20Chiu"> Chien-Kuo Chiu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, to develop a method for detailed assesses of post-earthquake seismic performance for RC buildings in Taiwan, experimental data for several column specimens with various failure modes (flexural failure, flexural-shear failure, and shear failure) are used to derive reduction factors of seismic capacity for specified damage states. According to the damage states of RC columns and their corresponding seismic reduction factors suggested by experimental data, this work applies the detailed seismic performance assessment method to identify the seismic capacity of earthquake-damaged RC buildings. Additionally, a post-earthquake emergent assessment procedure is proposed that can provide the data needed for decision about earthquake-damaged buildings in a region with high seismic hazard. Finally, three actual earthquake-damaged school buildings in Taiwan are used as a case study to demonstrate application of the proposed assessment method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismic%20assessment" title="seismic assessment">seismic assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20reduction%20factor" title=" seismic reduction factor"> seismic reduction factor</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20seismic%20ratio" title=" residual seismic ratio"> residual seismic ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=post-earthquake" title=" post-earthquake"> post-earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete" title=" reinforced concrete"> reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=building" title=" building"> building</a> </p> <a href="https://publications.waset.org/abstracts/43183/study-on-seismic-assessment-of-earthquake-damaged-reinforced-concrete-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7870</span> Restoring Trees Damaged by Cyclone Hudhud at Visakhapatnam, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohan%20Kotamrazu">Mohan Kotamrazu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cyclone Hudhud which battered the city of Visakhapatnam on 12<sup>th</sup> October, 2014, damaged many buildings, public amenities and infrastructure facilities along the Visakha- Bheemili coastal corridor. More than half the green cover of the city was wiped out. Majority of the trees along the coastal corridor suffered from complete or partial damage. In order to understand the different ways that trees incurred damage during the cyclone, a damage assessment study was carried out by the author. The areas covered by this study included two university campuses, several parks and residential colonies which bore the brunt of the cyclone. Post disaster attempts have been made to restore many of the trees that have suffered from partial or complete damage from the effects of extreme winds. This paper examines the various ways that trees incurred damage from the cyclone Hudhud and presents some examples of the restoration efforts carried out by educational institutions, public parks and religious institutions of the city of Visakhapatnam in the aftermath of the devastating cyclone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=defoliaton" title="defoliaton">defoliaton</a>, <a href="https://publications.waset.org/abstracts/search?q=salt%20spray%20damage" title=" salt spray damage"> salt spray damage</a>, <a href="https://publications.waset.org/abstracts/search?q=uprooting%20and%20wind%20throw" title=" uprooting and wind throw"> uprooting and wind throw</a>, <a href="https://publications.waset.org/abstracts/search?q=restoration" title=" restoration"> restoration</a> </p> <a href="https://publications.waset.org/abstracts/45363/restoring-trees-damaged-by-cyclone-hudhud-at-visakhapatnam-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45363.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">530</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7869</span> Non-Destructive Static Damage Detection of Structures Using Genetic Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Abbas%20Fatemi">Amir Abbas Fatemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Tabrizian"> Zahra Tabrizian</a>, <a href="https://publications.waset.org/abstracts/search?q=Kabir%20Sadeghi"> Kabir Sadeghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To find the location and severity of damage that occurs in a structure, characteristics changes in dynamic and static can be used. The non-destructive techniques are more common, economic, and reliable to detect the global or local damages in structures. This paper presents a non-destructive method in structural damage detection and assessment using GA and static data. Thus, a set of static forces is applied to some of degrees of freedom and the static responses (displacements) are measured at another set of DOFs. An analytical model of the truss structure is developed based on the available specification and the properties derived from static data. The damages in structure produce changes to its stiffness so this method used to determine damage based on change in the structural stiffness parameter. Changes in the static response which structural damage caused choose to produce some simultaneous equations. Genetic Algorithms are powerful tools for solving large optimization problems. Optimization is considered to minimize objective function involve difference between the static load vector of damaged and healthy structure. Several scenarios defined for damage detection (single scenario and multiple scenarios). The static damage identification methods have many advantages, but some difficulties still exist. So it is important to achieve the best damage identification and if the best result is obtained it means that the method is Reliable. This strategy is applied to a plane truss. This method is used for a plane truss. Numerical results demonstrate the ability of this method in detecting damage in given structures. Also figures show damage detections in multiple damage scenarios have really efficient answer. Even existence of noise in the measurements doesn’t reduce the accuracy of damage detections method in these structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damage%20detection" title="damage detection">damage detection</a>, <a href="https://publications.waset.org/abstracts/search?q=%EF%AC%81nite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20data" title=" static data"> static data</a>, <a href="https://publications.waset.org/abstracts/search?q=non-destructive" title=" non-destructive"> non-destructive</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a> </p> <a href="https://publications.waset.org/abstracts/41125/non-destructive-static-damage-detection-of-structures-using-genetic-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41125.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7868</span> Risk Assessment of Heavy Rainfall and Development of Damage Prediction Function for Gyeonggi-Do Province</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jongsung%20Kim">Jongsung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Daegun%20Han"> Daegun Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Myungjin%20Lee"> Myungjin Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Soojun%20Kim"> Soojun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hung%20Soo%20Kim"> Hung Soo Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, the frequency and magnitude of natural disasters are gradually increasing due to climate change. Especially in Korea, large-scale damage caused by heavy rainfall frequently occurs due to rapid urbanization. Therefore, this study proposed a Heavy rain Damage Risk Index (HDRI) using PSR (Pressure – State - Response) structure for heavy rain risk assessment. We constructed pressure index, state index, and response index for the risk assessment of each local government in Gyeonggi-do province, and the evaluation indices were determined by principal component analysis. The indices were standardized using the Z-score method then HDRIs were obtained for 31 local governments in the province. The HDRI is categorized into three classes, say, the safest class is 1st class. As the results, the local governments of the 1st class were 15, 2nd class 7, and 3rd class 9. From the study, we were able to identify the risk class due to the heavy rainfall for each local government. It will be useful to develop the heavy rainfall prediction function by risk class, and this was performed in this issue. Also, this risk class could be used for the decision making for efficient disaster management. Acknowledgements: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2017R1A2B3005695). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20disaster" title="natural disaster">natural disaster</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20rain%20risk%20assessment" title=" heavy rain risk assessment"> heavy rain risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=HDRI" title=" HDRI"> HDRI</a>, <a href="https://publications.waset.org/abstracts/search?q=PSR" title=" PSR"> PSR</a> </p> <a href="https://publications.waset.org/abstracts/76209/risk-assessment-of-heavy-rainfall-and-development-of-damage-prediction-function-for-gyeonggi-do-province" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76209.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7867</span> Investigation of Damage in Glass Subjected to Static Indentation Using Continuum Damage Mechanics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Ismail">J. Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Za%C3%AFri"> F. Zaïri</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Na%C3%AFt-Abdelaziz"> M. Naït-Abdelaziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Azari"> Z. Azari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, a combined approach of continuum damage mechanics (CDM) and fracture mechanics is applied to model a glass plate behavior under static indentation. A spherical indenter is used and a CDM based constitutive model with an anisotropic damage tensor was selected and implemented into a finite element code to study the damage of glass. Various regions with critical damage values were predicted in good agreement with the experimental observations in the literature. In these regions, the directions of crack propagation, including both cracks initiating on the surface as well as in the bulk, were predicted using the strain energy density factor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20modeling" title="finite element modeling">finite element modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=continuum%20damage%20mechanics" title=" continuum damage mechanics"> continuum damage mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=indentation" title=" indentation"> indentation</a>, <a href="https://publications.waset.org/abstracts/search?q=cracks" title=" cracks"> cracks</a> </p> <a href="https://publications.waset.org/abstracts/13462/investigation-of-damage-in-glass-subjected-to-static-indentation-using-continuum-damage-mechanics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13462.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7866</span> Numerical Investigation for Ductile Fracture of an Aluminium Alloy 6061 T-6: Assessment of Critical J-Integral</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Bensaada">R. Bensaada</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Almansba"> M. Almansba</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ould%20Ouali"> M. Ould Ouali</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Ferhoum"> R. Ferhoum</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20E.%20Hannachi"> N. E. Hannachi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this work is to simulate the ductile fracture of SEN specimens in aluminium alloy. The assessment of fracture toughness is performed with the calculation of Jc (the critical value of J-Integral) through the resistance curves. The study is done using finite element code calculation ABAQUSTM including an elastic plastic with damage model of material’s behaviour. The procedure involves specimens of four different thicknesses and four ligament sizes for every thickness. The material of study is an aluminium alloy 6061-T6 for which the necessary parameters to complete the study are given. We found the same results for the same specimen’s thickness and for different ligament sizes when the fracture criterion is evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=j-integral" title="j-integral">j-integral</a>, <a href="https://publications.waset.org/abstracts/search?q=critical-j" title=" critical-j"> critical-j</a>, <a href="https://publications.waset.org/abstracts/search?q=damage" title=" damage"> damage</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20toughness" title=" fracture toughness"> fracture toughness</a> </p> <a href="https://publications.waset.org/abstracts/26204/numerical-investigation-for-ductile-fracture-of-an-aluminium-alloy-6061-t-6-assessment-of-critical-j-integral" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26204.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7865</span> Seismic Fragility Assessment of Strongback Steel Braced Frames Subjected to Near-Field Earthquakes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammadreza%20Salek%20Faramarzi">Mohammadreza Salek Faramarzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Touraj%20Taghikhany"> Touraj Taghikhany</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, seismic fragility assessment of a recently developed hybrid structural system, known as the strongback system (SBS) is investigated. In this system, to mitigate the occurrence of the soft-story mechanism and improve the distribution of story drifts over the height of the structure, an elastic vertical truss is formed. The strengthened members of the braced span are designed to remain substantially elastic during levels of excitation where soft-story mechanisms are likely to occur and impose a nearly uniform story drift distribution. Due to the distinctive characteristics of near-field ground motions, it seems to be necessary to study the effect of these records on seismic performance of the SBS. To this end, a set of 56 near-field ground motion records suggested by FEMA P695 methodology is used. For fragility assessment, nonlinear dynamic analyses are carried out in OpenSEES based on the recommended procedure in HAZUS technical manual. Four damage states including slight, moderate, extensive, and complete damage (collapse) are considered. To evaluate each damage state, inter-story drift ratio and floor acceleration are implemented as engineering demand parameters. Further, to extend the evaluation of the collapse state of the system, a different collapse criterion suggested in FEMA P695 is applied. It is concluded that SBS can significantly increase the collapse capacity and consequently decrease the collapse risk of the structure during its life time. Comparing the observing mean annual frequency (MAF) of exceedance of each damage state against the allowable values presented in performance-based design methods, it is found that using the elastic vertical truss, improves the structural response effectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IDA" title="IDA">IDA</a>, <a href="https://publications.waset.org/abstracts/search?q=near-fault" title=" near-fault"> near-fault</a>, <a href="https://publications.waset.org/abstracts/search?q=probabilistic%20performance%20assessment" title=" probabilistic performance assessment"> probabilistic performance assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20fragility" title=" seismic fragility"> seismic fragility</a>, <a href="https://publications.waset.org/abstracts/search?q=strongback%20system" title=" strongback system"> strongback system</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty" title=" uncertainty"> uncertainty</a> </p> <a href="https://publications.waset.org/abstracts/129719/seismic-fragility-assessment-of-strongback-steel-braced-frames-subjected-to-near-field-earthquakes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129719.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7864</span> Proposal for an Inspection Tool for Damaged Structures after Disasters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karim%20Akkouche">Karim Akkouche</a>, <a href="https://publications.waset.org/abstracts/search?q=Amine%20Nekmouche"> Amine Nekmouche</a>, <a href="https://publications.waset.org/abstracts/search?q=Leyla%20Bouzid"> Leyla Bouzid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study focuses on the development of a multifunctional Expert System (ES) called post-seismic damage inspection tool (PSDIT), a powerful tool which allows the evaluation, the processing, and the archiving of the collected data stock after earthquakes. PSDIT can be operated by two user types; an ordinary user (ingineer, expert, or architect) for the damage visual inspection and an administrative user for updating the knowledge and / or for adding or removing the ordinary user. The knowledge acquisition is driven by a hierarchical knowledge model, the Information from investigation reports and those acquired through feedback from expert / engineer questionnaires are part. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=.disaster" title=".disaster">.disaster</a>, <a href="https://publications.waset.org/abstracts/search?q=damaged%20structures" title=" damaged structures"> damaged structures</a>, <a href="https://publications.waset.org/abstracts/search?q=damage%20assessment" title=" damage assessment"> damage assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=expert%20system" title=" expert system"> expert system</a> </p> <a href="https://publications.waset.org/abstracts/164875/proposal-for-an-inspection-tool-for-damaged-structures-after-disasters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164875.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7863</span> Probabilistic Damage Tolerance Methodology for Solid Fan Blades and Discs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andrej%20Golowin">Andrej Golowin</a>, <a href="https://publications.waset.org/abstracts/search?q=Viktor%20Denk"> Viktor Denk</a>, <a href="https://publications.waset.org/abstracts/search?q=Axel%20Riepe"> Axel Riepe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solid fan blades and discs in aero engines are subjected to high combined low and high cycle fatigue loads especially around the contact areas between blade and disc. Therefore, special coatings (e.g. dry film lubricant) and surface treatments (e.g. shot peening or laser shock peening) are applied to increase the strength with respect to combined cyclic fatigue and fretting fatigue, but also to improve damage tolerance capability. The traditional deterministic damage tolerance assessment based on fracture mechanics analysis, which treats service damage as an initial crack, often gives overly conservative results especially in the presence of vibratory stresses. A probabilistic damage tolerance methodology using crack initiation data has been developed for fan discs exposed to relatively high vibratory stresses in cross- and tail-wind conditions at certain resonance speeds for limited time periods. This Monte-Carlo based method uses a damage databank from similar designs, measured vibration levels at typical aircraft operations and wind conditions and experimental crack initiation data derived from testing of artificially damaged specimens with representative surface treatment under combined fatigue conditions. The proposed methodology leads to a more realistic prediction of the minimum damage tolerance life for the most critical locations applicable to modern fan disc designs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combined%20fatigue" title="combined fatigue">combined fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=damage%20tolerance" title=" damage tolerance"> damage tolerance</a>, <a href="https://publications.waset.org/abstracts/search?q=engine" title=" engine"> engine</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20treatment" title=" surface treatment"> surface treatment</a> </p> <a href="https://publications.waset.org/abstracts/42578/probabilistic-damage-tolerance-methodology-for-solid-fan-blades-and-discs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42578.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">498</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=damage%20assessment&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=damage%20assessment&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=damage%20assessment&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=damage%20assessment&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=damage%20assessment&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=damage%20assessment&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=damage%20assessment&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=damage%20assessment&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=damage%20assessment&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=damage%20assessment&page=263">263</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=damage%20assessment&page=264">264</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=damage%20assessment&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>