CINXE.COM

Search results for: temporal data

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: temporal data</title> <meta name="description" content="Search results for: temporal data"> <meta name="keywords" content="temporal data"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="temporal data" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="temporal data"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 25704</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: temporal data</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25704</span> Perceptual Organization within Temporal Displacement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michele%20Sinico">Michele Sinico</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The psychological present has an actual extension. When a sequence of instantaneous stimuli falls in this short interval of time, observers perceive a compresence of events in succession and the temporal order depends on the qualitative relationships between the perceptual properties of the events. Two experiments were carried out to study the influence of perceptual grouping, with and without temporal displacement, on the duration of auditory sequences. The psychophysical method of adjustment was adopted. The first experiment investigated the effect of temporal displacement of a white noise on sequence duration. The second experiment investigated the effect of temporal displacement, along the pitch dimension, on temporal shortening of sequence. The results suggest that the temporal order of sounds, in the case of temporal displacement, is organized along the pitch dimension. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=time%20perception" title="time perception">time perception</a>, <a href="https://publications.waset.org/abstracts/search?q=perceptual%20present" title=" perceptual present"> perceptual present</a>, <a href="https://publications.waset.org/abstracts/search?q=temporal%20displacement" title=" temporal displacement"> temporal displacement</a>, <a href="https://publications.waset.org/abstracts/search?q=Gestalt%20laws%20of%20perceptual%20organization" title=" Gestalt laws of perceptual organization"> Gestalt laws of perceptual organization</a> </p> <a href="https://publications.waset.org/abstracts/76211/perceptual-organization-within-temporal-displacement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76211.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25703</span> Improving Temporal Correlations in Empirical Orthogonal Function Expansions for Data Interpolating Empirical Orthogonal Function Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ping%20Bo">Ping Bo</a>, <a href="https://publications.waset.org/abstracts/search?q=Meng%20Yunshan"> Meng Yunshan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Satellite-derived sea surface temperature (SST) is a key parameter for many operational and scientific applications. However, the disadvantage of SST data is a high percentage of missing data which is mainly caused by cloud coverage. Data Interpolating Empirical Orthogonal Function (DINEOF) algorithm is an EOF-based technique for reconstructing the missing data and has been widely used in oceanographic field. The reconstruction of SST images within a long time series using DINEOF can cause large discontinuities and one solution for this problem is to filter the temporal covariance matrix to reduce the spurious variability. Based on the previous researches, an algorithm is presented in this paper to improve the temporal correlations in EOF expansion. Similar with the previous researches, a filter, such as Laplacian filter, is implemented on the temporal covariance matrix, but the temporal relationship between two consecutive images which is used in the filter is considered in the presented algorithm, for example, two images in the same season are more likely correlated than those in the different seasons, hence the latter one is less weighted in the filter. The presented approach is tested for the monthly nighttime 4-km Advanced Very High Resolution Radiometer (AVHRR) Pathfinder SST for the long-term period spanning from 1989 to 2006. The results obtained from the presented algorithm are compared to those from the original DINEOF algorithm without filtering and from the DINEOF algorithm with filtering but without taking temporal relationship into account. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20interpolating%20empirical%20orthogonal%20function" title="data interpolating empirical orthogonal function">data interpolating empirical orthogonal function</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20reconstruction" title=" image reconstruction"> image reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=sea%20surface%20temperature" title=" sea surface temperature"> sea surface temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=temporal%20filter" title=" temporal filter"> temporal filter</a> </p> <a href="https://publications.waset.org/abstracts/64675/improving-temporal-correlations-in-empirical-orthogonal-function-expansions-for-data-interpolating-empirical-orthogonal-function-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64675.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25702</span> Spatio-Temporal Data Mining with Association Rules for Lake Van</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tolga%20Aydin">Tolga Aydin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Fatih%20Alaeddino%C4%9Flu"> M. Fatih Alaeddinoğlu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> People, throughout the history, have made estimates and inferences about the future by using their past experiences. Developing information technologies and the improvements in the database management systems make it possible to extract useful information from knowledge in hand for the strategic decisions. Therefore, different methods have been developed. Data mining by association rules learning is one of such methods. Apriori algorithm, one of the well-known association rules learning algorithms, is not commonly used in spatio-temporal data sets. However, it is possible to embed time and space features into the data sets and make Apriori algorithm a suitable data mining technique for learning spatio-temporal association rules. Lake Van, the largest lake of Turkey, is a closed basin. This feature causes the volume of the lake to increase or decrease as a result of change in water amount it holds. In this study, evaporation, humidity, lake altitude, amount of rainfall and temperature parameters recorded in Lake Van region throughout the years are used by the Apriori algorithm and a spatio-temporal data mining application is developed to identify overflows and newly-formed soil regions (underflows) occurring in the coastal parts of Lake Van. Identifying possible reasons of overflows and underflows may be used to alert the experts to take precautions and make the necessary investments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=apriori%20algorithm" title="apriori algorithm">apriori algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=association%20rules" title=" association rules"> association rules</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=spatio-temporal%20data" title=" spatio-temporal data"> spatio-temporal data</a> </p> <a href="https://publications.waset.org/abstracts/31190/spatio-temporal-data-mining-with-association-rules-for-lake-van" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31190.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25701</span> Ontology-Based Approach for Temporal Semantic Modeling of Social Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sou%C3%A2ad%20Boudebza">Souâad Boudebza</a>, <a href="https://publications.waset.org/abstracts/search?q=Omar%20Nouali"> Omar Nouali</a>, <a href="https://publications.waset.org/abstracts/search?q=Fai%C3%A7al%20Azouaou"> Faiçal Azouaou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Social networks have recently gained a growing interest on the web. Traditional formalisms for representing social networks are static and suffer from the lack of semantics. In this paper, we will show how semantic web technologies can be used to model social data. The SemTemp ontology aligns and extends existing ontologies such as FOAF, SIOC, SKOS and OWL-Time to provide a temporal and semantically rich description of social data. We also present a modeling scenario to illustrate how our ontology can be used to model social networks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ontology" title="ontology">ontology</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20web" title=" semantic web"> semantic web</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20network" title=" social network"> social network</a>, <a href="https://publications.waset.org/abstracts/search?q=temporal%20modeling" title=" temporal modeling"> temporal modeling</a> </p> <a href="https://publications.waset.org/abstracts/42125/ontology-based-approach-for-temporal-semantic-modeling-of-social-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42125.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25700</span> Spatio-Temporal Analysis and Mapping of Malaria in Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krisada%20Lekdee">Krisada Lekdee</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunee%20Sammatat"> Sunee Sammatat</a>, <a href="https://publications.waset.org/abstracts/search?q=Nittaya%20Boonsit"> Nittaya Boonsit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a GLMM with spatial and temporal effects for malaria data in Thailand. A Bayesian method is used for parameter estimation via Gibbs sampling MCMC. A conditional autoregressive (CAR) model is assumed to present the spatial effects. The temporal correlation is presented through the covariance matrix of the random effects. The malaria quarterly data have been extracted from the Bureau of Epidemiology, Ministry of Public Health of Thailand. The factors considered are rainfall and temperature. The result shows that rainfall and temperature are positively related to the malaria morbidity rate. The posterior means of the estimated morbidity rates are used to construct the malaria maps. The top 5 highest morbidity rates (per 100,000 population) are in Trat (Q3, 111.70), Chiang Mai (Q3, 104.70), Narathiwat (Q4, 97.69), Chiang Mai (Q2, 88.51), and Chanthaburi (Q3, 86.82). According to the DIC criterion, the proposed model has a better performance than the GLMM with spatial effects but without temporal terms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20method" title="Bayesian method">Bayesian method</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20linear%20mixed%20model%20%28GLMM%29" title=" generalized linear mixed model (GLMM)"> generalized linear mixed model (GLMM)</a>, <a href="https://publications.waset.org/abstracts/search?q=malaria" title=" malaria"> malaria</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20effects" title=" spatial effects"> spatial effects</a>, <a href="https://publications.waset.org/abstracts/search?q=temporal%20correlation" title=" temporal correlation"> temporal correlation</a> </p> <a href="https://publications.waset.org/abstracts/10300/spatio-temporal-analysis-and-mapping-of-malaria-in-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10300.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25699</span> Multi-scale Spatial and Unified Temporal Feature-fusion Network for Multivariate Time Series Anomaly Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hang%20Yang">Hang Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jichao%20Li"> Jichao Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Kewei%20Yang"> Kewei Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Tianyang%20Lei"> Tianyang Lei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multivariate time series anomaly detection is a significant research topic in the field of data mining, encompassing a wide range of applications across various industrial sectors such as traffic roads, financial logistics, and corporate production. The inherent spatial dependencies and temporal characteristics present in multivariate time series introduce challenges to the anomaly detection task. Previous studies have typically been based on the assumption that all variables belong to the same spatial hierarchy, neglecting the multi-level spatial relationships. To address this challenge, this paper proposes a multi-scale spatial and unified temporal feature fusion network, denoted as MSUT-Net, for multivariate time series anomaly detection. The proposed model employs a multi-level modeling approach, incorporating both temporal and spatial modules. The spatial module is designed to capture the spatial characteristics of multivariate time series data, utilizing an adaptive graph structure learning model to identify the multi-level spatial relationships between data variables and their attributes. The temporal module consists of a unified temporal processing module, which is tasked with capturing the temporal features of multivariate time series. This module is capable of simultaneously identifying temporal dependencies among different variables. Extensive testing on multiple publicly available datasets confirms that MSUT-Net achieves superior performance on the majority of datasets. Our method is able to model and accurately detect systems data with multi-level spatial relationships from a spatial-temporal perspective, providing a novel perspective for anomaly detection analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title="data mining">data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20system" title=" industrial system"> industrial system</a>, <a href="https://publications.waset.org/abstracts/search?q=multivariate%20time%20series" title=" multivariate time series"> multivariate time series</a>, <a href="https://publications.waset.org/abstracts/search?q=anomaly%20detection" title=" anomaly detection"> anomaly detection</a> </p> <a href="https://publications.waset.org/abstracts/193205/multi-scale-spatial-and-unified-temporal-feature-fusion-network-for-multivariate-time-series-anomaly-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193205.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">15</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25698</span> Analysis of Spatial and Temporal Data Using Remote Sensing Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kapil%20Pandey">Kapil Pandey</a>, <a href="https://publications.waset.org/abstracts/search?q=Vishnu%20Goyal"> Vishnu Goyal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spatial and temporal data analysis is very well known in the field of satellite image processing. When spatial data are correlated with time, series analysis it gives the significant results in change detection studies. In this paper the GIS and Remote sensing techniques has been used to find the change detection using time series satellite imagery of Uttarakhand state during the years of 1990-2010. Natural vegetation, urban area, forest cover etc. were chosen as main landuse classes to study. Landuse/ landcover classes within several years were prepared using satellite images. Maximum likelihood supervised classification technique was adopted in this work and finally landuse change index has been generated and graphical models were used to present the changes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GIS" title="GIS">GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=landuse%2Flandcover" title=" landuse/landcover"> landuse/landcover</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20and%20temporal%20data" title=" spatial and temporal data"> spatial and temporal data</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a> </p> <a href="https://publications.waset.org/abstracts/40918/analysis-of-spatial-and-temporal-data-using-remote-sensing-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40918.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25697</span> Spatial Patterns and Temporal Evolution of Octopus Abundance in the Mauritanian Zone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dedah%20Ahmed%20Babou">Dedah Ahmed Babou</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicolas%20Bez"> Nicolas Bez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Min-Max autocorrelation factor (MAF) approach makes it possible to express in a space formed by spatially independent factors, spatiotemporal observations. These factors are ordered in decreasing order of spatial autocorrelation. The starting observations are thus expressed in the space formed by these factors according to temporal coordinates. Each vector of temporal coefficients expresses the temporal evolution of the weight of the corresponding factor. Applying this approach has enabled us to achieve the following results: (i) Define a spatially orthogonal space in which the projections of the raw data are determined; (ii) Define a limit threshold for the factors with the strongest structures in order to analyze the weight, and the temporal evolution of these different structures (iii) Study the correlation between the temporal evolution of the persistent spatial structures and that of the observed average abundance (iv) Propose prototypes of campaigns reflecting a high vs. low abundance (v) Propose a classification of campaigns that highlights seasonal and/or temporal similarities. These results were obtained by analyzing the octopus yield during the scientific campaigns of the oceanographic vessel Al Awam during the period 1989-2017 in the Mauritanian exclusive economic zone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spatiotemporal" title="spatiotemporal ">spatiotemporal </a>, <a href="https://publications.waset.org/abstracts/search?q=autocorrelation" title=" autocorrelation"> autocorrelation</a>, <a href="https://publications.waset.org/abstracts/search?q=kriging" title=" kriging"> kriging</a>, <a href="https://publications.waset.org/abstracts/search?q=variogram" title=" variogram"> variogram</a>, <a href="https://publications.waset.org/abstracts/search?q=Octopus%20vulgaris" title=" Octopus vulgaris"> Octopus vulgaris</a> </p> <a href="https://publications.waset.org/abstracts/134284/spatial-patterns-and-temporal-evolution-of-octopus-abundance-in-the-mauritanian-zone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134284.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25696</span> Bayesian Inference for High Dimensional Dynamic Spatio-Temporal Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sofia%20M.%20Karadimitriou">Sofia M. Karadimitriou</a>, <a href="https://publications.waset.org/abstracts/search?q=Kostas%20Triantafyllopoulos"> Kostas Triantafyllopoulos</a>, <a href="https://publications.waset.org/abstracts/search?q=Timothy%20Heaton"> Timothy Heaton</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reduced dimension Dynamic Spatio-Temporal Models (DSTMs) jointly describe the spatial and temporal evolution of a function observed subject to noise. A basic state space model is adopted for the discrete temporal variation, while a continuous autoregressive structure describes the continuous spatial evolution. Application of such a DSTM relies upon the pre-selection of a suitable reduced set of basic functions and this can present a challenge in practice. In this talk, we propose an online estimation method for high dimensional spatio-temporal data based upon DSTM and we attempt to resolve this issue by allowing the basis to adapt to the observed data. Specifically, we present a wavelet decomposition in order to obtain a parsimonious approximation of the spatial continuous process. This parsimony can be achieved by placing a Laplace prior distribution on the wavelet coefficients. The aim of using the Laplace prior, is to filter wavelet coefficients with low contribution, and thus achieve the dimension reduction with significant computation savings. We then propose a Hierarchical Bayesian State Space model, for the estimation of which we offer an appropriate particle filter algorithm. The proposed methodology is illustrated using real environmental data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multidimensional%20Laplace%20prior" title="multidimensional Laplace prior">multidimensional Laplace prior</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20filtering" title=" particle filtering"> particle filtering</a>, <a href="https://publications.waset.org/abstracts/search?q=spatio-temporal%20modelling" title=" spatio-temporal modelling"> spatio-temporal modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelets" title=" wavelets"> wavelets</a> </p> <a href="https://publications.waset.org/abstracts/43799/bayesian-inference-for-high-dimensional-dynamic-spatio-temporal-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43799.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25695</span> Assessing Functional Structure in European Marine Ecosystems Using a Vector-Autoregressive Spatio-Temporal Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Katyana%20A.%20Vert-Pre">Katyana A. Vert-Pre</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20T.%20Thorson"> James T. Thorson</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Trancart"> Thomas Trancart</a>, <a href="https://publications.waset.org/abstracts/search?q=Eric%20Feunteun"> Eric Feunteun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In marine ecosystems, spatial and temporal species structure is an important component of ecosystems’ response to anthropological and environmental factors. Although spatial distribution patterns and fish temporal series of abundance have been studied in the past, little research has been allocated to the joint dynamic spatio-temporal functional patterns in marine ecosystems and their use in multispecies management and conservation. Each species represents a function to the ecosystem, and the distribution of these species might not be random. A heterogeneous functional distribution will lead to a more resilient ecosystem to external factors. Applying a Vector-Autoregressive Spatio-Temporal (VAST) model for count data, we estimate the spatio-temporal distribution, shift in time, and abundance of 140 species of the Eastern English Chanel, Bay of Biscay and Mediterranean Sea. From the model outputs, we determined spatio-temporal clusters, calculating p-values for hierarchical clustering via multiscale bootstrap resampling. Then, we designed a functional map given the defined cluster. We found that the species distribution within the ecosystem was not random. Indeed, species evolved in space and time in clusters. Moreover, these clusters remained similar over time deriving from the fact that species of a same cluster often shifted in sync, keeping the overall structure of the ecosystem similar overtime. Knowing the co-existing species within these clusters could help with predicting data-poor species distribution and abundance. Further analysis is being performed to assess the ecological functions represented in each cluster. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cluster%20distribution%20shift" title="cluster distribution shift">cluster distribution shift</a>, <a href="https://publications.waset.org/abstracts/search?q=European%20marine%20ecosystems" title=" European marine ecosystems"> European marine ecosystems</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20distribution" title=" functional distribution"> functional distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=spatio-temporal%20model" title=" spatio-temporal model"> spatio-temporal model</a> </p> <a href="https://publications.waset.org/abstracts/87029/assessing-functional-structure-in-european-marine-ecosystems-using-a-vector-autoregressive-spatio-temporal-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87029.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25694</span> Temporal Case-Based Reasoning System for Automatic Parking Complex</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexander%20P.%20Eremeev">Alexander P. Eremeev</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivan%20E.%20Kurilenko"> Ivan E. Kurilenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavel%20R.%20Varshavskiy"> Pavel R. Varshavskiy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the problem of the application of temporal reasoning and case-based reasoning in intelligent decision support systems is considered. The method of case-based reasoning with temporal dependences for the solution of problems of real-time diagnostics and forecasting in intelligent decision support systems is described. This paper demonstrates how the temporal case-based reasoning system can be used in intelligent decision support systems of the car access control. This work was supported by RFBR. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analogous%20reasoning" title="analogous reasoning">analogous reasoning</a>, <a href="https://publications.waset.org/abstracts/search?q=case-based%20reasoning" title=" case-based reasoning"> case-based reasoning</a>, <a href="https://publications.waset.org/abstracts/search?q=intelligent%20decision%20support%20systems" title=" intelligent decision support systems"> intelligent decision support systems</a>, <a href="https://publications.waset.org/abstracts/search?q=temporal%20reasoning" title=" temporal reasoning"> temporal reasoning</a> </p> <a href="https://publications.waset.org/abstracts/21478/temporal-case-based-reasoning-system-for-automatic-parking-complex" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21478.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">529</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25693</span> A Hybrid Image Fusion Model for Generating High Spatial-Temporal-Spectral Resolution Data Using OLI-MODIS-Hyperion Satellite Imagery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yongquan%20Zhao">Yongquan Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Bo%20Huang"> Bo Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spatial, Temporal, and Spectral Resolution (STSR) are three key characteristics of Earth observation satellite sensors; however, any single satellite sensor cannot provide Earth observations with high STSR simultaneously because of the hardware technology limitations of satellite sensors. On the other hand, a conflicting circumstance is that the demand for high STSR has been growing with the remote sensing application development. Although image fusion technology provides a feasible means to overcome the limitations of the current Earth observation data, the current fusion technologies cannot enhance all STSR simultaneously and provide high enough resolution improvement level. This study proposes a Hybrid Spatial-Temporal-Spectral image Fusion Model (HSTSFM) to generate synthetic satellite data with high STSR simultaneously, which blends the high spatial resolution from the panchromatic image of Landsat-8 Operational Land Imager (OLI), the high temporal resolution from the multi-spectral image of Moderate Resolution Imaging Spectroradiometer (MODIS), and the high spectral resolution from the hyper-spectral image of Hyperion to produce high STSR images. The proposed HSTSFM contains three fusion modules: (1) spatial-spectral image fusion; (2) spatial-temporal image fusion; (3) temporal-spectral image fusion. A set of test data with both phenological and land cover type changes in Beijing suburb area, China is adopted to demonstrate the performance of the proposed method. The experimental results indicate that HSTSFM can produce fused image that has good spatial and spectral fidelity to the reference image, which means it has the potential to generate synthetic data to support the studies that require high STSR satellite imagery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20spatial-temporal-spectral%20fusion" title="hybrid spatial-temporal-spectral fusion">hybrid spatial-temporal-spectral fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20resolution%20synthetic%20imagery" title=" high resolution synthetic imagery"> high resolution synthetic imagery</a>, <a href="https://publications.waset.org/abstracts/search?q=least%20square%20regression" title=" least square regression"> least square regression</a>, <a href="https://publications.waset.org/abstracts/search?q=sparse%20representation" title=" sparse representation"> sparse representation</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20transformation" title=" spectral transformation"> spectral transformation</a> </p> <a href="https://publications.waset.org/abstracts/74667/a-hybrid-image-fusion-model-for-generating-high-spatial-temporal-spectral-resolution-data-using-oli-modis-hyperion-satellite-imagery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74667.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25692</span> A Recognition Method for Spatio-Temporal Background in Korean Historical Novels </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seo-Hee%20Kim">Seo-Hee Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Kee-Won%20Kim"> Kee-Won Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Seung-Hoon%20Kim"> Seung-Hoon Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The most important elements of a novel are the characters, events and background. The background represents the time, place and situation that character appears, and conveys event and atmosphere more realistically. If readers have the proper knowledge about background of novels, it may be helpful for understanding the atmosphere of a novel and choosing a novel that readers want to read. In this paper, we are targeting Korean historical novels because spatio-temporal background especially performs an important role in historical novels among the genre of Korean novels. To the best of our knowledge, we could not find previous study that was aimed at Korean novels. In this paper, we build a Korean historical national dictionary. Our dictionary has historical places and temple names of kings over many generations as well as currently existing spatial words or temporal words in Korean history. We also present a method for recognizing spatio-temporal background based on patterns of phrasal words in Korean sentences. Our rules utilize postposition for spatial background recognition and temple names for temporal background recognition. The knowledge of the recognized background can help readers to understand the flow of events and atmosphere, and can use to visualize the elements of novels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title="data mining">data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=Korean%20historical%20novels" title=" Korean historical novels"> Korean historical novels</a>, <a href="https://publications.waset.org/abstracts/search?q=Korean%20linguistic%20feature" title=" Korean linguistic feature"> Korean linguistic feature</a>, <a href="https://publications.waset.org/abstracts/search?q=spatio-temporal%20background" title=" spatio-temporal background"> spatio-temporal background</a> </p> <a href="https://publications.waset.org/abstracts/47144/a-recognition-method-for-spatio-temporal-background-in-korean-historical-novels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47144.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25691</span> Application of Regularized Spatio-Temporal Models to the Analysis of Remote Sensing Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salihah%20Alghamdi">Salihah Alghamdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Surajit%20Ray"> Surajit Ray</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Space-time data can be observed over irregularly shaped manifolds, which might have complex boundaries or interior gaps. Most of the existing methods do not consider the shape of the data, and as a result, it is difficult to model irregularly shaped data accommodating the complex domain. We used a method that can deal with space-time data that are distributed over non-planner shaped regions. The method is based on partial differential equations and finite element analysis. The model can be estimated using a penalized least squares approach with a regularization term that controls the over-fitting. The model is regularized using two roughness penalties, which consider the spatial and temporal regularities separately. The integrated square of the second derivative of the basis function is used as temporal penalty. While the spatial penalty consists of the integrated square of Laplace operator, which is integrated exclusively over the domain of interest that is determined using finite element technique. In this paper, we applied a spatio-temporal regression model with partial differential equations regularization (ST-PDE) approach to analyze a remote sensing data measuring the greenness of vegetation, measure by an index called enhanced vegetation index (EVI). The EVI data consist of measurements that take values between -1 and 1 reflecting the level of greenness of some region over a period of time. We applied (ST-PDE) approach to irregular shaped region of the EVI data. The approach efficiently accommodates the irregular shaped regions taking into account the complex boundaries rather than smoothing across the boundaries. Furthermore, the approach succeeds in capturing the temporal variation in the data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=irregularly%20shaped%20domain" title="irregularly shaped domain">irregularly shaped domain</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20differential%20equations" title=" partial differential equations"> partial differential equations</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20boundray" title=" complex boundray"> complex boundray</a> </p> <a href="https://publications.waset.org/abstracts/92276/application-of-regularized-spatio-temporal-models-to-the-analysis-of-remote-sensing-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92276.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25690</span> Leveraging the Power of Dual Spatial-Temporal Data Scheme for Traffic Prediction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yang%20Zhou">Yang Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Heli%20Sun"> Heli Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianbin%20Huang"> Jianbin Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jizhong%20Zhao"> Jizhong Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaojie%20Qiao"> Shaojie Qiao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traffic prediction is a fundamental problem in urban environment, facilitating the smart management of various businesses, such as taxi dispatching, bike relocation, and stampede alert. Most earlier methods rely on identifying the intrinsic spatial-temporal correlation to forecast. However, the complex nature of this problem entails a more sophisticated solution that can simultaneously capture the mutual influence of both adjacent and far-flung areas, with the information of time-dimension also incorporated seamlessly. To tackle this difficulty, we propose a new multi-phase architecture, DSTDS (Dual Spatial-Temporal Data Scheme for traffic prediction), that aims to reveal the underlying relationship that determines future traffic trend. First, a graph-based neural network with an attention mechanism is devised to obtain the static features of the road network. Then, a multi-granularity recurrent neural network is built in conjunction with the knowledge from a grid-based model. Subsequently, the preceding output is fed into a spatial-temporal super-resolution module. With this 3-phase structure, we carry out extensive experiments on several real-world datasets to demonstrate the effectiveness of our approach, which surpasses several state-of-the-art methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=traffic%20prediction" title="traffic prediction">traffic prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial-temporal" title=" spatial-temporal"> spatial-temporal</a>, <a href="https://publications.waset.org/abstracts/search?q=recurrent%20neural%20network" title=" recurrent neural network"> recurrent neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=dual%20data%20scheme" title=" dual data scheme"> dual data scheme</a> </p> <a href="https://publications.waset.org/abstracts/150299/leveraging-the-power-of-dual-spatial-temporal-data-scheme-for-traffic-prediction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150299.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25689</span> Using Emerging Hot Spot Analysis to Analyze Overall Effectiveness of Policing Policy and Strategy in Chicago</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tyler%20Gill">Tyler Gill</a>, <a href="https://publications.waset.org/abstracts/search?q=Sophia%20Daniels"> Sophia Daniels</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper examines how accessing the spatial-temporal constrains of data will help inform policymakers and law enforcement officials. The authors utilize Chicago crime data from 2006-2016 to demonstrate how the Emerging Hot Spot Tool is an ideal hot spot clustering approach to analyze crime data. Traditional approaches include density maps or creating a spatial weights matrix to include the spatial-temporal constrains. This new approach utilizes a space-time implementation of the Getis-Ord Gi* statistic to visualize the data more quickly to make better decisions. The research will help complement socio-cultural research to find key patterns to help frame future policies and evaluate the implementation of prior strategies. Through this analysis, homicide trends and patterns are found more effectively and recommendations for use by non-traditional users of GIS are offered for real life implementation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crime%20mapping" title="crime mapping">crime mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=emerging%20hot%20spot%20analysis" title=" emerging hot spot analysis"> emerging hot spot analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Getis-Ord%20Gi%2A" title=" Getis-Ord Gi*"> Getis-Ord Gi*</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial-temporal%20analysis" title=" spatial-temporal analysis"> spatial-temporal analysis</a> </p> <a href="https://publications.waset.org/abstracts/71653/using-emerging-hot-spot-analysis-to-analyze-overall-effectiveness-of-policing-policy-and-strategy-in-chicago" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71653.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25688</span> Temporal Characteristics of Human Perception to Significant Variation of Block Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kuo-Cheng%20Liu">Kuo-Cheng Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the latest research efforts, the structures of the image in the spatial domain have been successfully analyzed and proved to deduce the visual masking for accurately estimating the visibility thresholds of the image. If the structural properties of the video sequence in the temporal domain are taken into account to estimate the temporal masking, the improvement and enhancement of the as-sessing spatio-temporal visibility thresholds are reasonably expected. In this paper, the temporal characteristics of human perception to the change in block structures on the time axis are analyzed. The temporal characteristics of human perception are represented in terms of the significant variation in block structures for the analysis of human visual system (HVS). Herein, the block structure in each frame is computed by combined the pattern masking and the contrast masking simultaneously. The contrast masking always overestimates the visibility thresholds of edge regions and underestimates that of texture regions, while the pattern masking is weak on a uniform background and is strong on the complex background with spatial patterns. Under considering the significant variation of block structures between successive frames, we extend the block structures of images in the spatial domain to that of video sequences in the temporal domain to analyze the relation between the inter-frame variation of structures and the temporal masking. Meanwhile, the subjective viewing test and the fair rating process are designed to evaluate the consistency of the temporal characteristics with the HVS under a specified viewing condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=temporal%20characteristic" title="temporal characteristic">temporal characteristic</a>, <a href="https://publications.waset.org/abstracts/search?q=block%20structure" title=" block structure"> block structure</a>, <a href="https://publications.waset.org/abstracts/search?q=pattern%20masking" title=" pattern masking"> pattern masking</a>, <a href="https://publications.waset.org/abstracts/search?q=contrast%20masking" title=" contrast masking"> contrast masking</a> </p> <a href="https://publications.waset.org/abstracts/35248/temporal-characteristics-of-human-perception-to-significant-variation-of-block-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35248.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25687</span> Human Posture Estimation Based on Multiple Viewpoints</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiahe%20Liu">Jiahe Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=HongyangYu"> HongyangYu</a>, <a href="https://publications.waset.org/abstracts/search?q=Feng%20Qian"> Feng Qian</a>, <a href="https://publications.waset.org/abstracts/search?q=Miao%20Luo"> Miao Luo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed to address the problem of improving the confidence of key points by fusing multi-view information, thereby estimating human posture more accurately. We first obtained multi-view image information and then used the MvP algorithm to fuse this multi-view information together to obtain a set of high-confidence human key points. We used these as the input for the Spatio-Temporal Graph Convolution (ST-GCN). ST-GCN is a deep learning model used for processing spatio-temporal data, which can effectively capture spatio-temporal relationships in video sequences. By using the MvP algorithm to fuse multi-view information and inputting it into the spatio-temporal graph convolution model, this study provides an effective method to improve the accuracy of human posture estimation and provides strong support for further research and application in related fields. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-view" title="multi-view">multi-view</a>, <a href="https://publications.waset.org/abstracts/search?q=pose%20estimation" title=" pose estimation"> pose estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=ST-GCN" title=" ST-GCN"> ST-GCN</a>, <a href="https://publications.waset.org/abstracts/search?q=joint%20fusion" title=" joint fusion"> joint fusion</a> </p> <a href="https://publications.waset.org/abstracts/173781/human-posture-estimation-based-on-multiple-viewpoints" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173781.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25686</span> Hydrochemical Contamination Profiling and Spatial-Temporal Mapping with the Support of Multivariate and Cluster Statistical Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sofia%20Barbosa">Sofia Barbosa</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariana%20Pinto"> Mariana Pinto</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Ant%C3%B3nio%20Almeida"> José António Almeida</a>, <a href="https://publications.waset.org/abstracts/search?q=Edgar%20Carvalho"> Edgar Carvalho</a>, <a href="https://publications.waset.org/abstracts/search?q=Catarina%20Diamantino"> Catarina Diamantino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this work was to test a methodology able to generate spatial-temporal maps that can synthesize simultaneously the trends of distinct hydrochemical indicators in an old radium-uranium tailings dam deposit. Multidimensionality reduction derived from principal component analysis and subsequent data aggregation derived from clustering analysis allow to identify distinct hydrochemical behavioural profiles and to generate synthetic evolutionary hydrochemical maps. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Contamination%20plume%20migration" title="Contamination plume migration">Contamination plume migration</a>, <a href="https://publications.waset.org/abstracts/search?q=K-means%20of%20PCA%20scores" title=" K-means of PCA scores"> K-means of PCA scores</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20and%20mine%20water%20monitoring" title=" groundwater and mine water monitoring"> groundwater and mine water monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial-temporal%20hydrochemical%20trends" title=" spatial-temporal hydrochemical trends"> spatial-temporal hydrochemical trends</a> </p> <a href="https://publications.waset.org/abstracts/139590/hydrochemical-contamination-profiling-and-spatial-temporal-mapping-with-the-support-of-multivariate-and-cluster-statistical-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139590.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25685</span> Machine Learning Approach for Lateralization of Temporal Lobe Epilepsy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samira-Sadat%20JamaliDinan">Samira-Sadat JamaliDinan</a>, <a href="https://publications.waset.org/abstracts/search?q=Haidar%20Almohri"> Haidar Almohri</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad-Reza%20Nazem-Zadeh"> Mohammad-Reza Nazem-Zadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lateralization of temporal lobe epilepsy (TLE) is very important for positive surgical outcomes. We propose a machine learning framework to ultimately identify the epileptogenic hemisphere for temporal lobe epilepsy (TLE) cases using magnetoencephalography (MEG) coherence source imaging (CSI) and diffusion tensor imaging (DTI). Unlike most studies that use classification algorithms, we propose an effective clustering approach to distinguish between normal and TLE cases. We apply the famous Minkowski weighted K-Means (MWK-Means) technique as the clustering framework. To overcome the problem of poor initialization of K-Means, we use particle swarm optimization (PSO) to effectively select the initial centroids of clusters prior to applying MWK-Means. We demonstrate that compared to K-means and MWK-means independently, this approach is able to improve the result of a benchmark data set. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=temporal%20lobe%20epilepsy" title="temporal lobe epilepsy">temporal lobe epilepsy</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=clustering" title=" clustering"> clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetoencephalography" title=" magnetoencephalography"> magnetoencephalography</a> </p> <a href="https://publications.waset.org/abstracts/115667/machine-learning-approach-for-lateralization-of-temporal-lobe-epilepsy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115667.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25684</span> Urban Growth Analysis Using Multi-Temporal Satellite Images, Non-stationary Decomposition Methods and Stochastic Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Ben%20Abbes">Ali Ben Abbes</a>, <a href="https://publications.waset.org/abstracts/search?q=ImedRiadh%20Farah"> ImedRiadh Farah</a>, <a href="https://publications.waset.org/abstracts/search?q=Vincent%20Barra"> Vincent Barra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Remotely sensed data are a significant source for monitoring and updating databases for land use/cover. Nowadays, changes detection of urban area has been a subject of intensive researches. Timely and accurate data on spatio-temporal changes of urban areas are therefore required. The data extracted from multi-temporal satellite images are usually non-stationary. In fact, the changes evolve in time and space. This paper is an attempt to propose a methodology for changes detection in urban area by combining a non-stationary decomposition method and stochastic modeling. We consider as input of our methodology a sequence of satellite images <em>I<sub>1</sub>, I<sub>2</sub>, &hellip; I<sub>n</sub></em> at different periods (<em>t </em>= 1<em>, </em>2<em>, ..., n</em>). Firstly, a preprocessing of multi-temporal satellite images is applied. (e.g. radiometric, atmospheric and geometric). The systematic study of global urban expansion in our methodology can be approached in two ways: The first considers the urban area as one same object as opposed to non-urban areas (e.g. vegetation, bare soil and water). The objective is to extract the urban mask. The second one aims to obtain a more knowledge of urban area, distinguishing different types of tissue within the urban area. In order to validate our approach, we used a database of Tres Cantos-Madrid in Spain, which is derived from Landsat for a period (from January 2004 to July 2013) by collecting two frames per year at a spatial resolution of 25 meters. The obtained results show the effectiveness of our method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-temporal%20satellite%20image" title="multi-temporal satellite image">multi-temporal satellite image</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20growth" title=" urban growth"> urban growth</a>, <a href="https://publications.waset.org/abstracts/search?q=non-stationary" title=" non-stationary"> non-stationary</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20model" title=" stochastic model"> stochastic model</a> </p> <a href="https://publications.waset.org/abstracts/53255/urban-growth-analysis-using-multi-temporal-satellite-images-non-stationary-decomposition-methods-and-stochastic-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53255.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25683</span> Spatial Point Process Analysis of Dengue Fever in Tainan, Taiwan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ya-Mei%20Chang">Ya-Mei Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research is intended to apply spatio-temporal point process methods to the dengue fever data in Tainan. The spatio-temporal intensity function of the dataset is assumed to be separable. The kernel estimation is a widely used approach to estimate intensity functions. The intensity function is very helpful to study the relation of the spatio-temporal point process and some covariates. The covariate effects might be nonlinear. An nonparametric smoothing estimator is used to detect the nonlinearity of the covariate effects. A fitted parametric model could describe the influence of the covariates to the dengue fever. The correlation between the data points is detected by the K-function. The result of this research could provide useful information to help the government or the stakeholders making decisions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dengue%20fever" title="dengue fever">dengue fever</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20point%20process" title=" spatial point process"> spatial point process</a>, <a href="https://publications.waset.org/abstracts/search?q=kernel%20estimation" title=" kernel estimation"> kernel estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=covariate%20effect" title=" covariate effect"> covariate effect</a> </p> <a href="https://publications.waset.org/abstracts/66856/spatial-point-process-analysis-of-dengue-fever-in-tainan-taiwan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25682</span> Analysis of Temporal Factors Influencing Minimum Dwell Time Distributions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Pedersen">T. Pedersen</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Lindfeldt"> A. Lindfeldt </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The minimum dwell time is an important part of railway timetable planning. Due to its stochastic behaviour, the minimum dwell time should be considered to create resilient timetables. While there has been significant focus on how to determine and estimate dwell times, to our knowledge, little research has been carried out regarding temporal and running direction variations of these. In this paper, we examine how the minimum dwell time varies depending on temporal factors such as the time of day, day of the week and time of the year. We also examine how it is affected by running direction and station type. The minimum dwell time is estimated by means of track occupation data. A method is proposed to ensure that only minimum dwell times and not planned dwell times are acquired from the track occupation data. The results show that on an aggregated level, the average minimum dwell times in both running directions at a station are similar. However, when temporal factors are considered, there are significant variations. The minimum dwell time varies throughout the day with peak hours having the longest dwell times. It is also found that the minimum dwell times are influenced by weekday, and in particular, weekends are found to have lower minimum dwell times than most other days. The findings show that there is a potential to significantly improve timetable planning by taking minimum dwell time variations into account. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=minimum%20dwell%20time" title="minimum dwell time">minimum dwell time</a>, <a href="https://publications.waset.org/abstracts/search?q=operations%20quality" title=" operations quality"> operations quality</a>, <a href="https://publications.waset.org/abstracts/search?q=timetable%20planning" title=" timetable planning"> timetable planning</a>, <a href="https://publications.waset.org/abstracts/search?q=track%20occupation%20data" title=" track occupation data"> track occupation data</a> </p> <a href="https://publications.waset.org/abstracts/84540/analysis-of-temporal-factors-influencing-minimum-dwell-time-distributions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25681</span> An Approach to Practical Determination of Fair Premium Rates in Crop Hail Insurance Using Short-Term Insurance Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Necati%20I%C3%A7er">Necati Içer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Crop-hail insurance plays a vital role in managing risks and reducing the financial consequences of hail damage on crop production. Predicting insurance premium rates with short-term data is a major difficulty in numerous nations because of the unique characteristics of hailstorms. This study aims to suggest a feasible approach for establishing equitable premium rates in crop-hail insurance for nations with short-term insurance data. The primary goal of the rate-making process is to determine premium rates for high and zero loss costs of villages and enhance their credibility. To do this, a technique was created using the author's practical knowledge of crop-hail insurance. With this approach, the rate-making method was developed using a range of temporal and spatial factor combinations with both hypothetical and real data, including extreme cases. This article aims to show how to incorporate the temporal and spatial elements into determining fair premium rates using short-term insurance data. The article ends with a suggestion on the ultimate premium rates for insurance contracts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crop-hail%20insurance" title="crop-hail insurance">crop-hail insurance</a>, <a href="https://publications.waset.org/abstracts/search?q=premium%20rate" title=" premium rate"> premium rate</a>, <a href="https://publications.waset.org/abstracts/search?q=short-term%20insurance%20data" title=" short-term insurance data"> short-term insurance data</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20and%20temporal%20parameters" title=" spatial and temporal parameters"> spatial and temporal parameters</a> </p> <a href="https://publications.waset.org/abstracts/181441/an-approach-to-practical-determination-of-fair-premium-rates-in-crop-hail-insurance-using-short-term-insurance-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181441.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">55</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25680</span> Topic Prominence and Temporal Encoding in Mandarin Chinese</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tzu-I%20Chiang">Tzu-I Chiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A central question for finite-nonfinite distinction in Mandarin Chinese is how does Mandarin encode temporal information without the grammatical contrast between past and present tense. Moreover, how do L2 learners of Mandarin whose native language is English and whose L1 system has tense morphology, acquire the temporal encoding system in L2 Mandarin? The current study reports preliminary findings on the relationship between topic prominence and the temporal encoding in L1 and L2 Chinese. Oral narratives data from 30 natives and learners of Mandarin Chinese were collected via a film-retell task. In terms of coding, predicates collected from the narratives were transcribed and then coded based on four major verb types: n-degree Statives (quality-STA), point-scale Statives (status-STA), n-atom EVENT (ACT), and point EVENT (resultative-ACT). How native speakers and non-native speakers started retelling the story was calculated. Results of the study show that native speakers of Chinese tend to express Topic Time (TT) syntactically at the topic position; whereas L2 learners of Chinese across levels rely mainly on the default time encoded in the event types. Moreover, as the proficiency level of the learner increases, learners’ appropriate use of the event predicates increased, which supports the argument that L2 development of temporal encoding is affected by lexical aspect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=topic%20prominence" title="topic prominence">topic prominence</a>, <a href="https://publications.waset.org/abstracts/search?q=temporal%20encoding" title=" temporal encoding"> temporal encoding</a>, <a href="https://publications.waset.org/abstracts/search?q=lexical%20aspect" title=" lexical aspect"> lexical aspect</a>, <a href="https://publications.waset.org/abstracts/search?q=L2%20acquisition" title=" L2 acquisition "> L2 acquisition </a> </p> <a href="https://publications.waset.org/abstracts/81311/topic-prominence-and-temporal-encoding-in-mandarin-chinese" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81311.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25679</span> Wireless Sensor Network to Help Low Incomes Farmers to Face Drought Impacts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fantazi%20Walid">Fantazi Walid</a>, <a href="https://publications.waset.org/abstracts/search?q=Ezzedine%20Tahar"> Ezzedine Tahar</a>, <a href="https://publications.waset.org/abstracts/search?q=Bargaoui%20Zoubeida"> Bargaoui Zoubeida</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research presents the main ideas to implement an intelligent system composed by communicating wireless sensors measuring environmental data linked to drought indicators (such as air temperature, soil moisture , etc...). On the other hand, the setting up of a spatio temporal database communicating with a Web mapping application for a monitoring in real time in activity 24:00 /day, 7 days/week is proposed to allow the screening of the drought parameters time evolution and their extraction. Thus this system helps detecting surfaces touched by the phenomenon of drought. Spatio-temporal conceptual models seek to answer the users who need to manage soil water content for irrigating or fertilizing or other activities pursuing crop yield augmentation. Effectively, spatio-temporal conceptual models enable users to obtain a diagram of readable and easy data to apprehend. Based on socio-economic information, it helps identifying people impacted by the phenomena with the corresponding severity especially that this information is accessible by farmers and stakeholders themselves. The study will be applied in Siliana watershed Northern Tunisia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=WSN" title="WSN">WSN</a>, <a href="https://publications.waset.org/abstracts/search?q=database%20spatio-temporal" title=" database spatio-temporal"> database spatio-temporal</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=web%20mapping" title=" web mapping"> web mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=indicator%20of%20drought" title=" indicator of drought"> indicator of drought</a> </p> <a href="https://publications.waset.org/abstracts/33567/wireless-sensor-network-to-help-low-incomes-farmers-to-face-drought-impacts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33567.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">494</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25678</span> A Temporal QoS Ontology For ERTMS/ETCS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marc%20Sango">Marc Sango</a>, <a href="https://publications.waset.org/abstracts/search?q=Olimpia%20Hoinaru"> Olimpia Hoinaru</a>, <a href="https://publications.waset.org/abstracts/search?q=Christophe%20Gransart"> Christophe Gransart</a>, <a href="https://publications.waset.org/abstracts/search?q=Laurence%20Duchien"> Laurence Duchien</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ontologies offer a means for representing and sharing information in many domains, particularly in complex domains. For example, it can be used for representing and sharing information of System Requirement Specification (SRS) of complex systems like the SRS of ERTMS/ETCS written in natural language. Since this system is a real-time and critical system, generic ontologies, such as OWL and generic ERTMS ontologies provide minimal support for modeling temporal information omnipresent in these SRS documents. To support the modeling of temporal information, one of the challenges is to enable representation of dynamic features evolving in time within a generic ontology with a minimal redesign of it. The separation of temporal information from other information can help to predict system runtime operation and to properly design and implement them. In addition, it is helpful to provide a reasoning and querying techniques to reason and query temporal information represented in the ontology in order to detect potential temporal inconsistencies. Indeed, a user operation, such as adding a new constraint on existing planning constraints can cause temporal inconsistencies, which can lead to system failures. To address this challenge, we propose a lightweight 3-layer temporal Quality of Service (QoS) ontology for representing, reasoning and querying over temporal and non-temporal information in a complex domain ontology. Representing QoS entities in separated layers can clarify the distinction between the non QoS entities and the QoS entities in an ontology. The upper generic layer of the proposed ontology provides an intuitive knowledge of domain components, specially ERTMS/ETCS components. The separation of the intermediate QoS layer from the lower QoS layer allows us to focus on specific QoS Characteristics, such as temporal or integrity characteristics. In this paper, we focus on temporal information that can be used to predict system runtime operation. To evaluate our approach, an example of the proposed domain ontology for handover operation, as well as a reasoning rule over temporal relations in this domain-specific ontology, are given. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=system%20requirement%20specification" title="system requirement specification">system requirement specification</a>, <a href="https://publications.waset.org/abstracts/search?q=ERTMS%2FETCS" title=" ERTMS/ETCS"> ERTMS/ETCS</a>, <a href="https://publications.waset.org/abstracts/search?q=temporal%20ontologies" title=" temporal ontologies"> temporal ontologies</a>, <a href="https://publications.waset.org/abstracts/search?q=domain%20ontologies" title=" domain ontologies"> domain ontologies</a> </p> <a href="https://publications.waset.org/abstracts/20625/a-temporal-qos-ontology-for-ertmsetcs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20625.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25677</span> Temporally Coherent 3D Animation Reconstruction from RGB-D Video Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salam%20Khalifa">Salam Khalifa</a>, <a href="https://publications.waset.org/abstracts/search?q=Naveed%20Ahmed"> Naveed Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present a new method to reconstruct a temporally coherent 3D animation from single or multi-view RGB-D video data using unbiased feature point sampling. Given RGB-D video data, in form of a 3D point cloud sequence, our method first extracts feature points using both color and depth information. In the subsequent steps, these feature points are used to match two 3D point clouds in consecutive frames independent of their resolution. Our new motion vectors based dynamic alignment method then fully reconstruct a spatio-temporally coherent 3D animation. We perform extensive quantitative validation using novel error functions to analyze the results. We show that despite the limiting factors of temporal and spatial noise associated to RGB-D data, it is possible to extract temporal coherence to faithfully reconstruct a temporally coherent 3D animation from RGB-D video data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20video" title="3D video">3D video</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20animation" title=" 3D animation"> 3D animation</a>, <a href="https://publications.waset.org/abstracts/search?q=RGB-D%20video" title=" RGB-D video"> RGB-D video</a>, <a href="https://publications.waset.org/abstracts/search?q=temporally%20coherent%203D%20animation" title=" temporally coherent 3D animation"> temporally coherent 3D animation</a> </p> <a href="https://publications.waset.org/abstracts/12034/temporally-coherent-3d-animation-reconstruction-from-rgb-d-video-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25676</span> Surveillance Video Summarization Based on Histogram Differencing and Sum Conditional Variance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nada%20Jasim%20Habeeb">Nada Jasim Habeeb</a>, <a href="https://publications.waset.org/abstracts/search?q=Rana%20Saad%20Mohammed"> Rana Saad Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Muntaha%20Khudair%20Abbass"> Muntaha Khudair Abbass </a> </p> <p class="card-text"><strong>Abstract:</strong></p> For more efficient and fast video summarization, this paper presents a surveillance video summarization method. The presented method works to improve video summarization technique. This method depends on temporal differencing to extract most important data from large video stream. This method uses histogram differencing and Sum Conditional Variance which is robust against to illumination variations in order to extract motion objects. The experimental results showed that the presented method gives better output compared with temporal differencing based summarization techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=temporal%20differencing" title="temporal differencing">temporal differencing</a>, <a href="https://publications.waset.org/abstracts/search?q=video%20summarization" title=" video summarization"> video summarization</a>, <a href="https://publications.waset.org/abstracts/search?q=histogram%20differencing" title=" histogram differencing"> histogram differencing</a>, <a href="https://publications.waset.org/abstracts/search?q=sum%20conditional%20variance" title=" sum conditional variance"> sum conditional variance</a> </p> <a href="https://publications.waset.org/abstracts/54404/surveillance-video-summarization-based-on-histogram-differencing-and-sum-conditional-variance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54404.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25675</span> Dynamic Background Updating for Lightweight Moving Object Detection </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kelemewerk%20Destalem">Kelemewerk Destalem</a>, <a href="https://publications.waset.org/abstracts/search?q=Joongjae%20Cho"> Joongjae Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaeseong%20Lee"> Jaeseong Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Ju%20H.%20Park"> Ju H. Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Joonhyuk%20Yoo"> Joonhyuk Yoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background subtraction and temporal difference are often used for moving object detection in video. Both approaches are computationally simple and easy to be deployed in real-time image processing. However, while the background subtraction is highly sensitive to dynamic background and illumination changes, the temporal difference approach is poor at extracting relevant pixels of the moving object and at detecting the stopped or slowly moving objects in the scene. In this paper, we propose a moving object detection scheme based on adaptive background subtraction and temporal difference exploiting dynamic background updates. The proposed technique consists of a histogram equalization, a linear combination of background and temporal difference, followed by the novel frame-based and pixel-based background updating techniques. Finally, morphological operations are applied to the output images. Experimental results show that the proposed algorithm can solve the drawbacks of both background subtraction and temporal difference methods and can provide better performance than that of each method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=background%20subtraction" title="background subtraction">background subtraction</a>, <a href="https://publications.waset.org/abstracts/search?q=background%20updating" title=" background updating"> background updating</a>, <a href="https://publications.waset.org/abstracts/search?q=real%20time" title=" real time"> real time</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20weight%20algorithm" title=" light weight algorithm"> light weight algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=temporal%20difference" title=" temporal difference"> temporal difference</a> </p> <a href="https://publications.waset.org/abstracts/31063/dynamic-background-updating-for-lightweight-moving-object-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31063.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=temporal%20data&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=temporal%20data&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=temporal%20data&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=temporal%20data&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=temporal%20data&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=temporal%20data&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=temporal%20data&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=temporal%20data&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=temporal%20data&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=temporal%20data&amp;page=856">856</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=temporal%20data&amp;page=857">857</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=temporal%20data&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10