CINXE.COM

Search results for: control optimization

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: control optimization</title> <meta name="description" content="Search results for: control optimization"> <meta name="keywords" content="control optimization"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="control optimization" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="control optimization"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 13514</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: control optimization</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13514</span> Ant Lion Optimization in a Fuzzy System for Benchmark Control Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leticia%20Cervantes">Leticia Cervantes</a>, <a href="https://publications.waset.org/abstracts/search?q=Edith%20Garcia"> Edith Garcia</a>, <a href="https://publications.waset.org/abstracts/search?q=Oscar%20Castillo"> Oscar Castillo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At today, there are several control problems where the main objective is to obtain the best control in the study to decrease the error in the application. Many techniques can use to control these problems such as Neural Networks, PID control, Fuzzy Logic, Optimization techniques and many more. In this case, fuzzy logic with fuzzy system and an optimization technique are used to control the case of study. In this case, Ant Lion Optimization is used to optimize a fuzzy system to control the velocity of a simple treadmill. The main objective is to achieve the control of the velocity in the control problem using the ALO optimization. First, a simple fuzzy system was used to control the velocity of the treadmill it has two inputs (error and error change) and one output (desired speed), then results were obtained but to decrease the error the ALO optimization was developed to optimize the fuzzy system of the treadmill. Having the optimization, the simulation was performed, and results can prove that using the ALO optimization the control of the velocity was better than a conventional fuzzy system. This paper describes some basic concepts to help to understand the idea in this work, the methodology of the investigation (control problem, fuzzy system design, optimization), the results are presented and the optimization is used for the fuzzy system. A comparison between the simple fuzzy system and the optimized fuzzy systems are presented where it can be proving the optimization improved the control with good results the major findings of the study is that ALO optimization is a good alternative to improve the control because it helped to decrease the error in control applications even using any control technique to optimized, As a final statement is important to mentioned that the selected methodology was good because the control of the treadmill was improve using the optimization technique. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ant%20lion%20optimization" title="ant lion optimization">ant lion optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20problem" title=" control problem"> control problem</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20control" title=" fuzzy control"> fuzzy control</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20system" title=" fuzzy system"> fuzzy system</a> </p> <a href="https://publications.waset.org/abstracts/88510/ant-lion-optimization-in-a-fuzzy-system-for-benchmark-control-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88510.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13513</span> Optimal Hybrid Linear and Nonlinear Control for a Quadcopter Drone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xinhuang%20Wu">Xinhuang Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yousef%20Sardahi"> Yousef Sardahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A hybrid and optimal multi-loop control structure combining linear and nonlinear control algorithms are introduced in this paper to regulate the position of a quadcopter unmanned aerial vehicle (UAV) driven by four brushless DC motors. To this end, a nonlinear mathematical model of the UAV is derived and then linearized around one of its operating points. Using the nonlinear version of the model, a sliding mode control is used to derive the control laws of the motor thrust forces required to drive the UAV to a certain position. The linear model is used to design two controllers, XG-controller and YG-controller, responsible for calculating the required roll and pitch to maneuver the vehicle to the desired X and Y position. Three attitude controllers are designed to calculate the desired angular rates of rotors, assuming that the Euler angles are minimal. After that, a many-objective optimization problem involving 20 design parameters and ten objective functions is formulated and solved by HypE (Hypervolume estimation algorithm), one of the widely used many-objective optimization algorithms approaches. Both stability and performance constraints are imposed on the optimization problem. The optimization results in terms of Pareto sets and fronts are obtained and show that some of the design objectives are competing. That is, when one objective goes down, the other goes up. Also, Numerical simulations conducted on the nonlinear UAV model show that the proposed optimization method is quite effective. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimal%20control" title="optimal control">optimal control</a>, <a href="https://publications.waset.org/abstracts/search?q=many-objective%20optimization" title=" many-objective optimization"> many-objective optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20mode%20control" title=" sliding mode control"> sliding mode control</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20control" title=" linear control"> linear control</a>, <a href="https://publications.waset.org/abstracts/search?q=cascade%20controllers" title=" cascade controllers"> cascade controllers</a>, <a href="https://publications.waset.org/abstracts/search?q=UAV" title=" UAV"> UAV</a>, <a href="https://publications.waset.org/abstracts/search?q=drones" title=" drones"> drones</a> </p> <a href="https://publications.waset.org/abstracts/164515/optimal-hybrid-linear-and-nonlinear-control-for-a-quadcopter-drone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164515.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13512</span> Topology and Shape Optimization of Macpherson Control Arm under Fatigue Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abolfazl%20Hosseinpour">Abolfazl Hosseinpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Javad%20Marzbanrad"> Javad Marzbanrad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, the topology and shape optimization of a Macpherson control arm has been accomplished to achieve lighter weight. Present automotive market demands low cost and light weight component to meet the need of fuel efficient and cost effective vehicle. This in turn gives the rise to more effective use of materials for automotive parts which can reduce the mass of vehicle. Since automotive components are under dynamic loads which cause fatigue damage, considering fatigue criteria seems to be essential in designing automotive components. At first, in order to create severe loading condition for control arm, some rough roads are generated through power spectral density. Then, the most critical loading conditions are obtained through multibody dynamics analysis of a full vehicle model. Then, the topology optimization is performed based on fatigue life criterion using HyperMesh software, which resulted to 50 percent mass reduction. In the next step a CAD model is created using CATIA software and shape optimization is performed to achieve accurate dimensions with less mass. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=topology%20optimization" title="topology optimization">topology optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20optimization" title=" shape optimization"> shape optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue%20life" title=" fatigue life"> fatigue life</a>, <a href="https://publications.waset.org/abstracts/search?q=MacPherson%20control%20arm" title=" MacPherson control arm"> MacPherson control arm</a> </p> <a href="https://publications.waset.org/abstracts/70778/topology-and-shape-optimization-of-macpherson-control-arm-under-fatigue-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70778.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13511</span> Optimized Passive Heating for Multifamily Dwellings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Bostick">Joseph Bostick</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A method of decreasing the heating load of HVAC systems in a single-dwelling model of a multifamily building, by controlling movable insulation through the optimization of flux, time, surface incident solar radiation, and temperature thresholds. Simulations are completed using a co-simulation between EnergyPlus and MATLAB as an optimization tool to find optimal control thresholds. Optimization of the control thresholds leads to a significant decrease in total heating energy expenditure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20plus" title="energy plus">energy plus</a>, <a href="https://publications.waset.org/abstracts/search?q=MATLAB" title=" MATLAB"> MATLAB</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a> </p> <a href="https://publications.waset.org/abstracts/142684/optimized-passive-heating-for-multifamily-dwellings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142684.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13510</span> Improved Whale Algorithm Based on Information Entropy and Its Application in Truss Structure Optimization Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Serges%20Mendomo%20%20Meye">Serges Mendomo Meye</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Guowei"> Li Guowei</a>, <a href="https://publications.waset.org/abstracts/search?q=Shen%20Zhenzhong"> Shen Zhenzhong</a>, <a href="https://publications.waset.org/abstracts/search?q=Gan%20Lei"> Gan Lei</a>, <a href="https://publications.waset.org/abstracts/search?q=Xu%20Liqun"> Xu Liqun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Given the limitations of the original whale optimization algorithm (WAO) in local optimum and low convergence accuracy in truss structure optimization problems, based on the fundamental whale algorithm, an improved whale optimization algorithm (SWAO) based on information entropy is proposed. The information entropy itself is an uncertain measure. It is used to control the range of whale searches in path selection. It can overcome the shortcomings of the basic whale optimization algorithm (WAO) and can improve the global convergence speed of the algorithm. Taking truss structure as the optimization research object, the mathematical model of truss structure optimization is established; the cross-sectional area of truss is taken as the design variable; the objective function is the weight of truss structure; and an improved whale optimization algorithm (SWAO) is used for optimization design, which provides a new idea and means for its application in large and complex engineering structure optimization design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=information%20entropy" title="information entropy">information entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20optimization" title=" structural optimization"> structural optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=truss%20structure" title=" truss structure"> truss structure</a>, <a href="https://publications.waset.org/abstracts/search?q=whale%20algorithm" title=" whale algorithm"> whale algorithm</a> </p> <a href="https://publications.waset.org/abstracts/139986/improved-whale-algorithm-based-on-information-entropy-and-its-application-in-truss-structure-optimization-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139986.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13509</span> Optimization of E-motor Control Parameters for Electrically Propelled Vehicles by Integral Squared Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Cicek">Ibrahim Cicek</a>, <a href="https://publications.waset.org/abstracts/search?q=Melike%20Nikbay"> Melike Nikbay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrically propelled vehicles, either road or aerial vehicles are studied on contemporarily for their robust maneuvers and cost-efficient transport operations. The main power generating systems of such vehicles electrified by selecting proper components and assembled as e-powertrain. Generally, e-powertrain components selected considering the target performance requirements. Since the main component of propulsion is the drive unit, e-motor control system is subjected to achieve the performance targets. In this paper, the optimization of e-motor control parameters studied by Integral Squared Method (ISE). The overall aim is to minimize power consumption of such vehicles depending on mission profile and maintaining smooth maneuvers for passenger comfort. The sought-after values of control parameters are computed using the Optimal Control Theory. The system is modeled as a closed-loop linear control system with calibratable parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimization" title="optimization">optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=e-powertrain" title=" e-powertrain"> e-powertrain</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20control" title=" optimal control"> optimal control</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicles" title=" electric vehicles"> electric vehicles</a> </p> <a href="https://publications.waset.org/abstracts/126708/optimization-of-e-motor-control-parameters-for-electrically-propelled-vehicles-by-integral-squared-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126708.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13508</span> Ant Colony Optimization Control for Multilevel STATCOM</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20T%C3%A9djini">H. Tédjini</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Meslem"> Y. Meslem</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Guesbaoui"> B. Guesbaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Safa"> A. Safa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flexible AC Transmission Systems (FACTS) are potentially becoming more flexible and more economical local controllers in the power system; and because of the high MVA ratings, it would be expensive to provide independent, equal, regulated DC voltage sources to power the multilevel converters which are presently proposed for STATCOMs. DC voltage sources can be derived from the DC link capacitances which are charged by the rectified ac power. In this paper a new stronger control combined of nonlinear control based Lyapunov’s theorem and Ant Colony Algorithm (ACA) to maintain stability of multilevel STATCOM and the utility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Static%20Compensator%20%28STATCOM%29" title="Static Compensator (STATCOM)">Static Compensator (STATCOM)</a>, <a href="https://publications.waset.org/abstracts/search?q=ant%20colony%20optimization%20%28ACO%29" title=" ant colony optimization (ACO)"> ant colony optimization (ACO)</a>, <a href="https://publications.waset.org/abstracts/search?q=lyapunov%20control%20theory" title=" lyapunov control theory"> lyapunov control theory</a>, <a href="https://publications.waset.org/abstracts/search?q=Decoupled%20power%20control" title=" Decoupled power control"> Decoupled power control</a>, <a href="https://publications.waset.org/abstracts/search?q=neutral%20point%20clamped%20%28NPC%29" title=" neutral point clamped (NPC)"> neutral point clamped (NPC)</a> </p> <a href="https://publications.waset.org/abstracts/19254/ant-colony-optimization-control-for-multilevel-statcom" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19254.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">556</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13507</span> Conservativeness of Probabilistic Constrained Optimal Control Method for Unknown Probability Distribution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tomoaki%20Hashimoto">Tomoaki Hashimoto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent decades, probabilistic constrained optimal control problems have attracted much attention in many research field. Although probabilistic constraints are generally intractable in an optimization problem, several tractable methods haven been proposed to handle probabilistic constraints. In most methods, probabilistic constraints are reduced to deterministic constraints that are tractable in an optimization problem. However, there is a gap between the transformed deterministic constraints in case of known and unknown probability distribution. This paper examines the conservativeness of probabilistic constrained optimization method with the unknown probability distribution. The objective of this paper is to provide a quantitative assessment of the conservatism for tractable constraints in probabilistic constrained optimization with the unknown probability distribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimal%20control" title="optimal control">optimal control</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20systems" title=" stochastic systems"> stochastic systems</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20time%20systems" title=" discrete time systems"> discrete time systems</a>, <a href="https://publications.waset.org/abstracts/search?q=probabilistic%20constraints" title=" probabilistic constraints"> probabilistic constraints</a> </p> <a href="https://publications.waset.org/abstracts/35585/conservativeness-of-probabilistic-constrained-optimal-control-method-for-unknown-probability-distribution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35585.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">581</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13506</span> Solutions to Probabilistic Constrained Optimal Control Problems Using Concentration Inequalities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tomoaki%20Hashimoto">Tomoaki Hashimoto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, optimal control problems subject to probabilistic constraints have attracted much attention in many research field. Although probabilistic constraints are generally intractable in optimization problems, several methods haven been proposed to deal with probabilistic constraints. In most methods, probabilistic constraints are transformed to deterministic constraints that are tractable in optimization problems. This paper examines a method for transforming probabilistic constraints into deterministic constraints for a class of probabilistic constrained optimal control problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimal%20control" title="optimal control">optimal control</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20systems" title=" stochastic systems"> stochastic systems</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete-time%20systems" title=" discrete-time systems"> discrete-time systems</a>, <a href="https://publications.waset.org/abstracts/search?q=probabilistic%20constraints" title=" probabilistic constraints"> probabilistic constraints</a> </p> <a href="https://publications.waset.org/abstracts/57973/solutions-to-probabilistic-constrained-optimal-control-problems-using-concentration-inequalities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57973.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13505</span> Direct Torque Control of Induction Motor Employing Teaching Learning Based Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anam%20Gopi">Anam Gopi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The undesired torque and flux ripple may occur in conventional direct torque control (DTC) induction motor drive. DTC can improve the system performance at low speeds by continuously tuning the regulator by adjusting the Kp, Ki values. In this Teaching Learning Based Optimization (TLBO) is proposed to adjust the parameters (Kp, Ki) of the speed controller in order to minimize torque ripple, flux ripple, and stator current distortion. The TLBO based PI controller has resulted is maintaining a constant speed of the motor irrespective of the load torque fluctuations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=teaching%20learning%20based%20optimization" title="teaching learning based optimization">teaching learning based optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20torque%20control" title=" direct torque control"> direct torque control</a>, <a href="https://publications.waset.org/abstracts/search?q=PI%20controller" title=" PI controller"> PI controller</a> </p> <a href="https://publications.waset.org/abstracts/31465/direct-torque-control-of-induction-motor-employing-teaching-learning-based-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31465.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">585</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13504</span> Model-Based Control for Piezoelectric-Actuated Systems Using Inverse Prandtl-Ishlinskii Model and Particle Swarm Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jin-Wei%20Liang">Jin-Wei Liang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hung-Yi%20Chen"> Hung-Yi Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Lung%20Lin"> Lung Lin </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper feedforward controller is designed to eliminate nonlinear hysteresis behaviors of a piezoelectric stack actuator (PSA) driven system. The control design is based on inverse Prandtl-Ishlinskii (P-I) hysteresis model identified using particle swarm optimization (PSO) technique. Based on the identified P-I model, both the inverse P-I hysteresis model and feedforward controller can be determined. Experimental results obtained using the inverse P-I feedforward control are compared with their counterparts using hysteresis estimates obtained from the identified Bouc-Wen model. Effectiveness of the proposed feedforward control scheme is demonstrated. To improve control performance feedback compensation using traditional PID scheme is adopted to integrate with the feedforward controller. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=the%20Bouc-Wen%20hysteresis%20model" title="the Bouc-Wen hysteresis model">the Bouc-Wen hysteresis model</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20swarm%20optimization" title=" particle swarm optimization"> particle swarm optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=Prandtl-Ishlinskii%20model" title=" Prandtl-Ishlinskii model"> Prandtl-Ishlinskii model</a>, <a href="https://publications.waset.org/abstracts/search?q=automation%20engineering" title=" automation engineering"> automation engineering</a> </p> <a href="https://publications.waset.org/abstracts/4325/model-based-control-for-piezoelectric-actuated-systems-using-inverse-prandtl-ishlinskii-model-and-particle-swarm-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4325.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">514</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13503</span> Optimization of Coefficients of Fractional Order Proportional-Integrator-Derivative Controller on Permanent Magnet Synchronous Motors Using Particle Swarm Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Motalebi%20Saraji">Ali Motalebi Saraji</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Zarei%20Lamuki"> Reza Zarei Lamuki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Speed control and behavior improvement of permanent magnet synchronous motors (PMSM) that have reliable performance, low loss, and high power density, especially in industrial drives, are of great importance for researchers. Because of its importance in this paper, coefficients optimization of proportional-integrator-derivative fractional order controller is presented using Particle Swarm Optimization (PSO) algorithm in order to improve the behavior of PMSM in its speed control loop. This improvement is simulated in MATLAB software for the proposed optimized proportional-integrator-derivative fractional order controller with a Genetic algorithm and compared with a full order controller with a classic optimization method. Simulation results show the performance improvement of the proposed controller with respect to two other controllers in terms of rising time, overshoot, and settling time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=speed%20control%20loop%20of%20permanent%20magnet%20synchronous%20motor" title="speed control loop of permanent magnet synchronous motor">speed control loop of permanent magnet synchronous motor</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%20and%20full%20order%20proportional-integrator-derivative%20controller" title=" fractional and full order proportional-integrator-derivative controller"> fractional and full order proportional-integrator-derivative controller</a>, <a href="https://publications.waset.org/abstracts/search?q=coefficients%20optimization" title=" coefficients optimization"> coefficients optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20swarm%20optimization" title=" particle swarm optimization"> particle swarm optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=improvement%20of%20behavior" title=" improvement of behavior"> improvement of behavior</a> </p> <a href="https://publications.waset.org/abstracts/129038/optimization-of-coefficients-of-fractional-order-proportional-integrator-derivative-controller-on-permanent-magnet-synchronous-motors-using-particle-swarm-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129038.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13502</span> Advancements in Mathematical Modeling and Optimization for Control, Signal Processing, and Energy Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zahid%20Ullah">Zahid Ullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Atlas%20Khan"> Atlas Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This abstract focuses on the advancements in mathematical modeling and optimization techniques that play a crucial role in enhancing the efficiency, reliability, and performance of these systems. In this era of rapidly evolving technology, mathematical modeling and optimization offer powerful tools to tackle the complex challenges faced by control, signal processing, and energy systems. This abstract presents the latest research and developments in mathematical methodologies, encompassing areas such as control theory, system identification, signal processing algorithms, and energy optimization. The abstract highlights the interdisciplinary nature of mathematical modeling and optimization, showcasing their applications in a wide range of domains, including power systems, communication networks, industrial automation, and renewable energy. It explores key mathematical techniques, such as linear and nonlinear programming, convex optimization, stochastic modeling, and numerical algorithms, that enable the design, analysis, and optimization of complex control and signal processing systems. Furthermore, the abstract emphasizes the importance of addressing real-world challenges in control, signal processing, and energy systems through innovative mathematical approaches. It discusses the integration of mathematical models with data-driven approaches, machine learning, and artificial intelligence to enhance system performance, adaptability, and decision-making capabilities. The abstract also underscores the significance of bridging the gap between theoretical advancements and practical applications. It recognizes the need for practical implementation of mathematical models and optimization algorithms in real-world systems, considering factors such as scalability, computational efficiency, and robustness. In summary, this abstract showcases the advancements in mathematical modeling and optimization techniques for control, signal processing, and energy systems. It highlights the interdisciplinary nature of these techniques, their applications across various domains, and their potential to address real-world challenges. The abstract emphasizes the importance of practical implementation and integration with emerging technologies to drive innovation and improve the performance of control, signal processing, and energy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modeling" title="mathematical modeling">mathematical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20systems" title=" control systems"> control systems</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20processing" title=" signal processing"> signal processing</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20systems" title=" energy systems"> energy systems</a>, <a href="https://publications.waset.org/abstracts/search?q=interdisciplinary%20applications" title=" interdisciplinary applications"> interdisciplinary applications</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20identification" title=" system identification"> system identification</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20algorithms" title=" numerical algorithms"> numerical algorithms</a> </p> <a href="https://publications.waset.org/abstracts/167509/advancements-in-mathematical-modeling-and-optimization-for-control-signal-processing-and-energy-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167509.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13501</span> Robotic Arm Control with Neural Networks Using Genetic Algorithm Optimization Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arbnor%20Pajaziti">Arbnor Pajaziti</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Cana"> Hasan Cana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the structural genetic algorithm is used to optimize the neural network to control the joint movements of robotic arm. The robotic arm has also been modeled in 3D and simulated in real-time in MATLAB. It is found that Neural Networks provide a simple and effective way to control the robot tasks. Computer simulation examples are given to illustrate the significance of this method. By combining Genetic Algorithm optimization method and Neural Networks for the given robotic arm with 5 D.O.F. the obtained the results shown that the base joint movements overshooting time without controller was about 0.5 seconds, while with Neural Network controller (optimized with Genetic Algorithm) was about 0.2 seconds, and the population size of 150 gave best results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=robotic%20arm" title="robotic arm">robotic arm</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/7408/robotic-arm-control-with-neural-networks-using-genetic-algorithm-optimization-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7408.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">523</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13500</span> Analysis of Diabetes Patients Using Pearson, Cost Optimization, Control Chart Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Devatha%20Kalyan%20Kumar">Devatha Kalyan Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Poovarasan"> R. Poovarasan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we have taken certain important factors and health parameters of diabetes patients especially among children by birth (pediatric congenital) where using the above three metrics methods we are going to assess the importance of each attributes in the dataset and thereby determining the most highly responsible and co-related attribute causing diabetics among young patients. We use cost optimization, control chart and Spearmen methodologies for the real-time application of finding the data efficiency in this diabetes dataset. The Spearmen methodology is the correlation methodologies used in software development process to identify the complexity between the various modules of the software. Identifying the complexity is important because if the complexity is higher, then there is a higher chance of occurrence of the risk in the software. With the use of control; chart mean, variance and standard deviation of data are calculated. With the use of Cost optimization model, we find to optimize the variables. Hence we choose the Spearmen, control chart and cost optimization methods to assess the data efficiency in diabetes datasets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=correlation" title="correlation">correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=congenital%20diabetics" title=" congenital diabetics"> congenital diabetics</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20relationship" title=" linear relationship"> linear relationship</a>, <a href="https://publications.waset.org/abstracts/search?q=monotonic%20function" title=" monotonic function"> monotonic function</a>, <a href="https://publications.waset.org/abstracts/search?q=ranking%20samples" title=" ranking samples"> ranking samples</a>, <a href="https://publications.waset.org/abstracts/search?q=pediatric" title=" pediatric"> pediatric</a> </p> <a href="https://publications.waset.org/abstracts/72132/analysis-of-diabetes-patients-using-pearson-cost-optimization-control-chart-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13499</span> Overview of Different Approaches Used in Optimal Operation Control of Hybrid Renewable Energy Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Kusakana">K. Kusakana </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A hybrid energy system is a combination of renewable energy sources with back up, as well as a storage system used to respond to given load energy requirements. Given that the electrical output of each renewable source is fluctuating with changes in weather conditions, and since the load demand also varies with time; one of the main attributes of hybrid systems is to be able to respond to the load demand at any time by optimally controlling each energy source, storage and back-up system. The induced optimization problem is to compute the optimal operation control of the system with the aim of minimizing operation costs while efficiently and reliably responding to the load energy requirement. Current optimization research and development on hybrid systems are mainly focusing on the sizing aspect. Thus, the aim of this paper is to report on the state-of-the-art of optimal operation control of hybrid renewable energy systems. This paper also discusses different challenges encountered, as well as future developments that can help in improving the optimal operation control of hybrid renewable energy systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=renewable%20energies" title="renewable energies">renewable energies</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20systems" title=" hybrid systems"> hybrid systems</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=operation%20control" title=" operation control"> operation control</a> </p> <a href="https://publications.waset.org/abstracts/48787/overview-of-different-approaches-used-in-optimal-operation-control-of-hybrid-renewable-energy-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48787.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13498</span> A Biomimetic Approach for the Multi-Objective Optimization of Kinetic Façade Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Do-Jin%20Jang">Do-Jin Jang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung-Ah%20Kim"> Sung-Ah Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A kinetic fa&ccedil;ade responds to user requirements and environmental conditions. &nbsp;In designing a kinetic fa&ccedil;ade, kinetic patterns play a key role in determining its performance. This paper proposes a biomimetic method for the multi-objective optimization for kinetic fa&ccedil;ade design. The autonomous decentralized control system is combined with flocking algorithm. The flocking agents are autonomously reacting to sensor values and bring about kinetic patterns changing over time. A series of experiments were conducted to verify the potential and limitations of the flocking based decentralized control. As a result, it could show the highest performance balancing multiple objectives such as solar radiation and openness among the comparison group. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomimicry" title="biomimicry">biomimicry</a>, <a href="https://publications.waset.org/abstracts/search?q=flocking%20algorithm" title=" flocking algorithm"> flocking algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20decentralized%20control" title=" autonomous decentralized control"> autonomous decentralized control</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-objective%20optimization" title=" multi-objective optimization"> multi-objective optimization</a> </p> <a href="https://publications.waset.org/abstracts/71381/a-biomimetic-approach-for-the-multi-objective-optimization-of-kinetic-facade-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">517</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13497</span> A Robust Optimization for Multi-Period Lost-Sales Inventory Control Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shunichi%20Ohmori">Shunichi Ohmori</a>, <a href="https://publications.waset.org/abstracts/search?q=Sirawadee%20Arunyanart"> Sirawadee Arunyanart</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazuho%20Yoshimoto"> Kazuho Yoshimoto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We consider a periodic review inventory control problem of minimizing production cost, inventory cost, and lost-sales under demand uncertainty, in which product demands are not specified exactly and it is only known to belong to a given uncertainty set, yet the constraints must hold for possible values of the data from the uncertainty set. We propose a robust optimization formulation for obtaining lowest cost possible and guaranteeing the feasibility with respect to range of order quantity and inventory level under demand uncertainty. Our formulation is based on the adaptive robust counterpart, which suppose order quantity is affine function of past demands. We derive certainty equivalent problem via second-order cone programming, which gives 'not too pessimistic' worst-case. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=robust%20optimization" title="robust optimization">robust optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=inventory%20control" title=" inventory control"> inventory control</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20managment" title=" supply chain managment"> supply chain managment</a>, <a href="https://publications.waset.org/abstracts/search?q=second-order%20programming" title=" second-order programming"> second-order programming</a> </p> <a href="https://publications.waset.org/abstracts/42923/a-robust-optimization-for-multi-period-lost-sales-inventory-control-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13496</span> Enhancing the Dynamic Performance of Grid-Tied Inverters Using Manta Ray Foraging Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20E.%20Keshta">H. E. Keshta</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Ali"> A. A. Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Three phase grid-tied inverters are widely employed in micro-grids (MGs) as interphase between DC and AC systems. These inverters are usually controlled through standard decoupled d–q vector control strategy based on proportional integral (PI) controllers. Recently, advanced meta-heuristic optimization techniques have been used instead of deterministic methods to obtain optimum PI controller parameters. This paper provides a comparative study between the performance of the global Porcellio Scaber algorithm (GPSA) based PI controller and Manta Ray foraging optimization (MRFO) based PI controller. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=micro-grids" title="micro-grids">micro-grids</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization%20techniques" title=" optimization techniques"> optimization techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=grid-tied%20inverter%20control" title=" grid-tied inverter control"> grid-tied inverter control</a>, <a href="https://publications.waset.org/abstracts/search?q=PI%20controller" title=" PI controller"> PI controller</a> </p> <a href="https://publications.waset.org/abstracts/142353/enhancing-the-dynamic-performance-of-grid-tied-inverters-using-manta-ray-foraging-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142353.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13495</span> Optimal Tuning of a Fuzzy Immune PID Parameters to Control a Delayed System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Gherbi">S. Gherbi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Bouchareb"> F. Bouchareb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the novel intelligent bio-inspired control strategies, it presents a novel approach based on an optimal fuzzy immune PID parameters tuning, it is a combination of a PID controller, inspired by the human immune mechanism with fuzzy logic. Such controller offers more possibilities to deal with the delayed systems control difficulties due to the delay term. Indeed, we use an optimization approach to tune the four parameters of the controller in addition to the fuzzy function; the obtained controller is implemented in a modified Smith predictor structure, which is well known that it is the most efficient to the control of delayed systems. The application of the presented approach to control a three tank delay system shows good performances and proves the efficiency of the method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=delayed%20systems" title="delayed systems">delayed systems</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20immune%20PID" title=" fuzzy immune PID"> fuzzy immune PID</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=Smith%20predictor" title=" Smith predictor"> Smith predictor</a> </p> <a href="https://publications.waset.org/abstracts/10235/optimal-tuning-of-a-fuzzy-immune-pid-parameters-to-control-a-delayed-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10235.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13494</span> Speed Control of DC Motor Using Optimization Techniques Based PID Controller </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Santosh%20Kumar%20Suman">Santosh Kumar Suman</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinod%20Kumar%20Giri"> Vinod Kumar Giri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of this paper is to outline a speed controller of a DC motor by choice of a PID parameters utilizing genetic algorithms (GAs), the DC motor is extensively utilized as a part of numerous applications such as steel plants, electric trains, cranes and a great deal more. DC motor could be represented by a nonlinear model when nonlinearities such as attractive dissemination are considered. To provide effective control, nonlinearities and uncertainties in the model must be taken into account in the control design. The DC motor is considered as third order system. Objective of this paper three type of tuning techniques for PID parameter. In this paper, an independently energized DC motor utilizing MATLAB displaying, has been outlined whose velocity might be examined utilizing the Proportional, Integral, Derivative (KP, KI , KD) addition of the PID controller. Since, established controllers PID are neglecting to control the drive when weight parameters be likewise changed. The principle point of this paper is to dissect the execution of optimization techniques viz. The Genetic Algorithm (GA) for improve PID controllers parameters for velocity control of DC motor and list their points of interest over the traditional tuning strategies. The outcomes got from GA calculations were contrasted and that got from traditional technique. It was found that the optimization techniques beat customary tuning practices of ordinary PID controllers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DC%20motor" title="DC motor">DC motor</a>, <a href="https://publications.waset.org/abstracts/search?q=PID%20controller" title=" PID controller"> PID controller</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization%20techniques" title=" optimization techniques"> optimization techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm%20%28GA%29" title=" genetic algorithm (GA)"> genetic algorithm (GA)</a>, <a href="https://publications.waset.org/abstracts/search?q=objective%20function" title=" objective function"> objective function</a>, <a href="https://publications.waset.org/abstracts/search?q=IAE" title=" IAE"> IAE</a> </p> <a href="https://publications.waset.org/abstracts/48103/speed-control-of-dc-motor-using-optimization-techniques-based-pid-controller" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48103.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13493</span> Curve Fitting by Cubic Bezier Curves Using Migrating Birds Optimization Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mitat%20Uysal">Mitat Uysal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new met heuristic optimization algorithm called as Migrating Birds Optimization is used for curve fitting by rational cubic Bezier Curves. This requires solving a complicated multivariate optimization problem. In this study, the solution of this optimization problem is achieved by Migrating Birds Optimization algorithm that is a powerful met heuristic nature-inspired algorithm well appropriate for optimization. The results of this study show that the proposed method performs very well and being able to fit the data points to cubic Bezier Curves with a high degree of accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algorithms" title="algorithms">algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=Bezier%20curves" title=" Bezier curves"> Bezier curves</a>, <a href="https://publications.waset.org/abstracts/search?q=heuristic%20optimization" title=" heuristic optimization"> heuristic optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=migrating%20birds%20optimization" title=" migrating birds optimization"> migrating birds optimization</a> </p> <a href="https://publications.waset.org/abstracts/78026/curve-fitting-by-cubic-bezier-curves-using-migrating-birds-optimization-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78026.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13492</span> Comparative Study of Deep Reinforcement Learning Algorithm Against Evolutionary Algorithms for Finding the Optimal Values in a Simulated Environment Space</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akshay%20Paranjape">Akshay Paranjape</a>, <a href="https://publications.waset.org/abstracts/search?q=Nils%20Plettenberg"> Nils Plettenberg</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Schmitt"> Robert Schmitt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traditional optimization methods like evolutionary algorithms are widely used in production processes to find an optimal or near-optimal solution of control parameters based on the simulated environment space of a process. These algorithms are computationally intensive and therefore do not provide the opportunity for real-time optimization. This paper utilizes the Deep Reinforcement Learning (DRL) framework to find an optimal or near-optimal solution for control parameters. A model based on maximum a posteriori policy optimization (Hybrid-MPO) that can handle both numerical and categorical parameters is used as a benchmark for comparison. A comparative study shows that DRL can find optimal solutions of similar quality as compared to evolutionary algorithms while requiring significantly less time making them preferable for real-time optimization. The results are confirmed in a large-scale validation study on datasets from production and other fields. A trained XGBoost model is used as a surrogate for process simulation. Finally, multiple ways to improve the model are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reinforcement%20learning" title="reinforcement learning">reinforcement learning</a>, <a href="https://publications.waset.org/abstracts/search?q=evolutionary%20algorithms" title=" evolutionary algorithms"> evolutionary algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20process%20optimization" title=" production process optimization"> production process optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=real-time%20optimization" title=" real-time optimization"> real-time optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid-MPO" title=" hybrid-MPO"> hybrid-MPO</a> </p> <a href="https://publications.waset.org/abstracts/159906/comparative-study-of-deep-reinforcement-learning-algorithm-against-evolutionary-algorithms-for-finding-the-optimal-values-in-a-simulated-environment-space" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159906.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13491</span> Optimization Based Obstacle Avoidance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Dariani">R. Dariani</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Schmidt"> S. Schmidt</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Kasper"> R. Kasper</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Based on a non-linear single track model which describes the dynamics of vehicle, an optimal path planning strategy is developed. Real time optimization is used to generate reference control values to allow leading the vehicle alongside a calculated lane which is optimal for different objectives such as energy consumption, run time, safety or comfort characteristics. Strict mathematic formulation of the autonomous driving allows taking decision on undefined situation such as lane change or obstacle avoidance. Based on position of the vehicle, lane situation and obstacle position, the optimization problem is reformulated in real-time to avoid the obstacle and any car crash. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autonomous%20driving" title="autonomous driving">autonomous driving</a>, <a href="https://publications.waset.org/abstracts/search?q=obstacle%20avoidance" title=" obstacle avoidance"> obstacle avoidance</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20control" title=" optimal control"> optimal control</a>, <a href="https://publications.waset.org/abstracts/search?q=path%20planning" title=" path planning"> path planning</a> </p> <a href="https://publications.waset.org/abstracts/13122/optimization-based-obstacle-avoidance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13122.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13490</span> A Review on Control of a Grid Connected Permanent Magnet Synchronous Generator Based Variable Speed Wind Turbine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eman%20M.%20Eissa">Eman M. Eissa</a>, <a href="https://publications.waset.org/abstracts/search?q=Hany%20M.%20Hasanin"> Hany M. Hasanin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Abd-Elhamid"> Mahmoud Abd-Elhamid</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Muyeen"> S. M. Muyeen</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Fernando"> T. Fernando</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20H.%20C.%20Iu"> H. H. C. Iu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Among all available wind energy conversion systems (WECS), the direct driven permanent magnet synchronous generator integrated with power electronic interfaces is becoming popular due to its capability of extracting optimal energy capture, reduced mechanical stresses, no need to external excitation current, meaning less losses, and more compact size. Simple structure, low maintenance cost; and its decoupling control performance is much less sensitive to the parameter variations of the generator. This paper attempts to present a review of the control and optimization strategies of WECS based on permanent magnet synchronous generator (PMSG) and overview the most recent research trends in this field. The main aims of this review include; the generalized overall WECS starting from turbines, generators, and control strategies including converters, maximum power point tracking (MPPT), ending with DC-link control. The optimization methods of the controller parameters necessary to guarantee the operation of the system efficiently and safely, especially when connected to the power grid are also presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=control%20and%20optimization%20techniques" title="control and optimization techniques">control and optimization techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20synchronous%20generator" title=" permanent magnet synchronous generator"> permanent magnet synchronous generator</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20speed%20wind%20turbines" title=" variable speed wind turbines"> variable speed wind turbines</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20energy%20conversion%20system" title=" wind energy conversion system"> wind energy conversion system</a> </p> <a href="https://publications.waset.org/abstracts/74248/a-review-on-control-of-a-grid-connected-permanent-magnet-synchronous-generator-based-variable-speed-wind-turbine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74248.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">224</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13489</span> Robot Movement Using the Trust Region Policy Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Romisaa%20Ali">Romisaa Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Policy Gradient approach is one of the deep reinforcement learning families that combines deep neural networks (DNN) with reinforcement learning RL to discover the optimum of the control problem through experience gained from the interaction between the robot and its surroundings. In contrast to earlier policy gradient algorithms, which were unable to handle these two types of error because of over-or under-estimation introduced by the deep neural network model, this article will discuss the state-of-the-art SOTA policy gradient technique, trust region policy optimization (TRPO), by applying this method in various environments compared to another policy gradient method, the Proximal Policy Optimization (PPO), to explain their robust optimization, using this SOTA to gather experience data during various training phases after observing the impact of hyper-parameters on neural network performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20neural%20networks" title="deep neural networks">deep neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20reinforcement%20learning" title=" deep reinforcement learning"> deep reinforcement learning</a>, <a href="https://publications.waset.org/abstracts/search?q=proximal%20policy%20optimization" title=" proximal policy optimization"> proximal policy optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=state-of-the-art" title=" state-of-the-art"> state-of-the-art</a>, <a href="https://publications.waset.org/abstracts/search?q=trust%20region%20policy%20optimization" title=" trust region policy optimization"> trust region policy optimization</a> </p> <a href="https://publications.waset.org/abstracts/158075/robot-movement-using-the-trust-region-policy-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158075.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13488</span> Optimal Tuning of RST Controller Using PSO Optimization for Synchronous Generator Based Wind Turbine under Three-Phase Voltage Dips</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Tahir">K. Tahir</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Belfedal"> C. Belfedal</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Allaoui"> T. Allaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Gerard"> C. Gerard</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Doumi"> M. Doumi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we presented an optimized RST controller using Particle Swarm Optimization (PSO) meta-heuristic technique of the active and reactive power regulation of a grid connected wind turbine based on a wound field synchronous generator. This regulation is achieved below the synchronous speed, by means of a maximum power point tracking algorithm. The control of our system is tested under typical wind variations and parameters variation, fault grid condition by simulation. Some results are presented and discussed to prove simplicity and efficiency of the WRSG control for WECS. On the other hand, according to simulation results, variable speed driven WRSG is not significantly impacted in fault conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20energy" title="wind energy">wind energy</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20swarm%20optimization" title=" particle swarm optimization"> particle swarm optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=wound%20rotor%20synchronous%20generator" title=" wound rotor synchronous generator"> wound rotor synchronous generator</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20control" title=" power control"> power control</a>, <a href="https://publications.waset.org/abstracts/search?q=RST%20controller" title=" RST controller"> RST controller</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20power%20point%20tracking" title=" maximum power point tracking"> maximum power point tracking</a> </p> <a href="https://publications.waset.org/abstracts/12646/optimal-tuning-of-rst-controller-using-pso-optimization-for-synchronous-generator-based-wind-turbine-under-three-phase-voltage-dips" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13487</span> A Mean–Variance–Skewness Portfolio Optimization Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kostas%20Metaxiotis">Kostas Metaxiotis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Portfolio optimization is one of the most important topics in finance. This paper proposes a mean&ndash;variance&ndash;skewness (MVS) portfolio optimization model. Traditionally, the portfolio optimization problem is solved by using the mean&ndash;variance (MV) framework. In this study, we formulate the proposed model as a three-objective optimization problem, where the portfolio&#39;s expected return and skewness are maximized whereas the portfolio risk is minimized. For solving the proposed three-objective portfolio optimization model we apply an adapted version of the non-dominated sorting genetic algorithm (NSGAII). Finally, we use a real dataset from FTSE-100 for validating the proposed model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=evolutionary%20algorithms" title="evolutionary algorithms">evolutionary algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=portfolio%20optimization" title=" portfolio optimization"> portfolio optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=skewness" title=" skewness"> skewness</a>, <a href="https://publications.waset.org/abstracts/search?q=stock%20selection" title=" stock selection"> stock selection</a> </p> <a href="https://publications.waset.org/abstracts/102472/a-mean-variance-skewness-portfolio-optimization-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102472.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13486</span> Traffic Signal Control Using Citizens’ Knowledge through the Wisdom of the Crowd</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aleksandar%20Jovanovic">Aleksandar Jovanovic</a>, <a href="https://publications.waset.org/abstracts/search?q=Katarina%20Kukic"> Katarina Kukic</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Uzelac"> Ana Uzelac</a>, <a href="https://publications.waset.org/abstracts/search?q=Dusan%20Teodorovic"> Dusan Teodorovic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wisdom of the Crowd (WoC) is a decentralized method that uses the collective intelligence of humans. Individual guesses may be far from the target, but when considered as a group, they converge on optimal solutions for a given problem. We will utilize WoC to address the challenge of controlling traffic lights within intersections from the streets of Kragujevac, Serbia. The problem at hand falls within the category of NP-hard problems. We will employ an algorithm that leverages the swarm intelligence of bees: Bee Colony Optimization (BCO). Data regarding traffic signal timing at a single intersection will be gathered from citizens through a survey. Results obtained in that manner will be compared to the BCO results for different traffic scenarios. We will use Vissim traffic simulation software as a tool to compare the performance of bees’ and humans’ collective intelligence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wisdom%20of%20the%20crowd" title="wisdom of the crowd">wisdom of the crowd</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20signal%20control" title=" traffic signal control"> traffic signal control</a>, <a href="https://publications.waset.org/abstracts/search?q=combinatorial%20optimization" title=" combinatorial optimization"> combinatorial optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=bee%20colony%20optimization" title=" bee colony optimization"> bee colony optimization</a> </p> <a href="https://publications.waset.org/abstracts/174794/traffic-signal-control-using-citizens-knowledge-through-the-wisdom-of-the-crowd" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174794.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13485</span> Optimal Driving Strategies for a Hybrid Street Type Motorcycle: Modelling and Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jhon%20Vargas">Jhon Vargas</a>, <a href="https://publications.waset.org/abstracts/search?q=Gilberto%20Osorio-Gomez"> Gilberto Osorio-Gomez</a>, <a href="https://publications.waset.org/abstracts/search?q=Tatiana%20Manrique"> Tatiana Manrique</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents an optimal driving strategy proposal for a 125 c.c. street-type hybrid electric motorcycle with a parallel configuration. The results presented in this article are complementary regarding the control proposal of a hybrid motorcycle. In order to carry out such developments, a representative dynamic model of the motorcycle is used, in which also are described different optimization functionalities for predetermined driving modes. The purpose is to implement an off-line optimal driving strategy which distributes energy to both engines by minimizing an objective torque requirement function. An optimal dynamic contribution is found from the optimization routine, and the optimal percentage contribution for vehicle cruise speed is implemented in the proposed online PID controller. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20model" title="dynamic model">dynamic model</a>, <a href="https://publications.waset.org/abstracts/search?q=driving%20strategies" title=" driving strategies"> driving strategies</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20hybrid%20motorcycle" title=" parallel hybrid motorcycle"> parallel hybrid motorcycle</a>, <a href="https://publications.waset.org/abstracts/search?q=PID%20controller" title=" PID controller"> PID controller</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/133692/optimal-driving-strategies-for-a-hybrid-street-type-motorcycle-modelling-and-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133692.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=control%20optimization&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=control%20optimization&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=control%20optimization&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=control%20optimization&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=control%20optimization&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=control%20optimization&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=control%20optimization&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=control%20optimization&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=control%20optimization&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=control%20optimization&amp;page=450">450</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=control%20optimization&amp;page=451">451</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=control%20optimization&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10