CINXE.COM
Derivasjon – Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="nb" dir="ltr"> <head> <meta charset="UTF-8"> <title>Derivasjon – Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )nowikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t."," \t,"],"wgDigitTransformTable":["",""], "wgDefaultDateFormat":"dmy","wgMonthNames":["","januar","februar","mars","april","mai","juni","juli","august","september","oktober","november","desember"],"wgRequestId":"3a90a3cd-0755-44f1-b0b6-e58330ba75d9","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Derivasjon","wgTitle":"Derivasjon","wgCurRevisionId":23920936,"wgRevisionId":23920936,"wgArticleId":38111,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Sider med duplikatargumenter i malkall","CS1-vedlikehold: Ekstra tekst","CS1-vedlikehold: Flere navn: forfatterliste","Artikler med autoritetsdatalenker fra Wikidata","Sider som bruker et utdatert format for mattetagger","Differensialregning","Funksjoner"],"wgPageViewLanguage":"nb","wgPageContentLanguage":"nb","wgPageContentModel":"wikitext","wgRelevantPageName":"Derivasjon","wgRelevantArticleId":38111,"wgTempUserName":null,"wgIsProbablyEditable":true, "wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":true,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"nb","pageLanguageDir":"ltr","pageVariantFallbacks":"nb"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":40000,"wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q29175","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled": false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.gadget.InterProjectLinks":"ready","ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.UkensKonkurranse","ext.gadget.link-missing-label","ext.gadget.new-section","ext.gadget.superinterwiki","ext.urlShortener.toolbar", "ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","oojs-ui.styles.icons-media","oojs-ui-core.icons","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=nb&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=nb&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=nb&modules=ext.gadget.InterProjectLinks&only=styles&skin=vector-2022"> <link rel="stylesheet" href="/w/load.php?lang=nb&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="noindex,nofollow,max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Derivasjon – Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//no.m.wikipedia.org/wiki/Derivasjon"> <link rel="alternate" type="application/x-wiki" title="Rediger" href="/w/index.php?title=Derivasjon&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (nb)"> <link rel="EditURI" type="application/rsd+xml" href="//no.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://no.wikipedia.org/wiki/Derivasjon"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.no"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom-mating" href="/w/index.php?title=Spesial:Siste_endringer&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Derivasjon rootpage-Derivasjon skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Hopp til innhold</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Nettsted"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Hovedmeny" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Hovedmeny</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Hovedmeny</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">flytt til sidefeltet</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">skjul</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigasjon </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Forside" title="Gå til hovedsiden [z]" accesskey="z"><span>Forside</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Spesial:Tilfeldig" title="Vis en tilfeldig side [x]" accesskey="x"><span>Tilfeldig side</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/Hjelp:Portal" title="Stedet for å få hjelp"><span>Hjelp</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Spesial:Siste_endringer" title="Liste over siste endringer på wikien. [r]" accesskey="r"><span>Siste endringer</span></a></li> </ul> </div> </div> <div id="p-prosjekt" class="vector-menu mw-portlet mw-portlet-prosjekt" > <div class="vector-menu-heading"> Prosjekt </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-Prosjektportal" class="mw-list-item"><a href="/wiki/Wikipedia:Portal"><span>Prosjektportal</span></a></li><li id="n-bidra" class="mw-list-item"><a href="/wiki/Wikipedia:Bidra_til_Wikipedia"><span>Hvordan bidra?</span></a></li><li id="n-tinget" class="mw-list-item"><a href="/wiki/Wikipedia:Tinget"><span>Tinget</span></a></li><li id="n-torget" class="mw-list-item"><a href="/wiki/Wikipedia:Torget"><span>Torget</span></a></li><li id="n-konkurranser" class="mw-list-item"><a href="/wiki/Wikipedia:Konkurranser"><span>Konkurranser</span></a></li> </ul> </div> </div> <div id="p-Wikipedia" class="vector-menu mw-portlet mw-portlet-Wikipedia" > <div class="vector-menu-heading"> Wikipedia </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-kontakt" class="mw-list-item"><a href="/wiki/Wikipedia:Kontakt"><span>Kontakt Wikipedia</span></a></li><li id="n-wmno" class="mw-list-item"><a href="https://www.wikimedia.no" rel="nofollow" title="Medlemsorganisasjon for wikipedianere"><span>Wikimedia Norge</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Forside" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="" src="/static/images/mobile/copyright/wikipedia-tagline-no.svg" width="121" height="14" style="width: 7.5625em; height: 0.875em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Spesial:S%C3%B8k" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Søk i Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Søk</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Søk i Wikipedia" aria-label="Søk i Wikipedia" autocapitalize="sentences" title="Søk i Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Spesial:Søk"> </div> <button class="cdx-button cdx-search-input__end-button">Søk</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personlig"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Utseende"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Endre skriftstørrelse, bredde og farge på siden." > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Utseende" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Utseende</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_no.wikipedia.org&uselang=nb" class=""><span>Doner</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Spesial:Opprett_konto&returnto=Derivasjon&returntoquery=section%3D8%26veaction%3Dedit" title="Du oppfordres til å opprette en konto og logge inn, men det er ikke obligatorisk" class=""><span>Opprett konto</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Spesial:Logg_inn&returnto=Derivasjon&returntoquery=section%3D8%26veaction%3Dedit" title="Du oppfordres til å logge inn, men det er ikke obligatorisk [o]" accesskey="o" class=""><span>Logg inn</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out user-links-collapsible-item" title="Flere alternativer" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personlig" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personlig</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="Brukermeny" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_no.wikipedia.org&uselang=nb"><span>Doner</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Spesial:Opprett_konto&returnto=Derivasjon&returntoquery=section%3D8%26veaction%3Dedit" title="Du oppfordres til å opprette en konto og logge inn, men det er ikke obligatorisk"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Opprett konto</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Spesial:Logg_inn&returnto=Derivasjon&returntoquery=section%3D8%26veaction%3Dedit" title="Du oppfordres til å logge inn, men det er ikke obligatorisk [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Logg inn</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Nettsted"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Innhold" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Innhold</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">flytt til sidefeltet</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">skjul</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Til toppen)</div> </a> </li> <li id="toc-Derivasjon_av_en_reell_funksjon_av_én_variabel" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Derivasjon_av_en_reell_funksjon_av_én_variabel"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Derivasjon av en reell funksjon av én variabel</span> </div> </a> <button aria-controls="toc-Derivasjon_av_en_reell_funksjon_av_én_variabel-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Vis/skjul underseksjonen Derivasjon av en reell funksjon av én variabel</span> </button> <ul id="toc-Derivasjon_av_en_reell_funksjon_av_én_variabel-sublist" class="vector-toc-list"> <li id="toc-Stigningstallet_for_en_rett_linje" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Stigningstallet_for_en_rett_linje"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Stigningstallet for en rett linje</span> </div> </a> <ul id="toc-Stigningstallet_for_en_rett_linje-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Formell_definisjon_av_den_deriverte" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Formell_definisjon_av_den_deriverte"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>Formell definisjon av den deriverte</span> </div> </a> <ul id="toc-Formell_definisjon_av_den_deriverte-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Eksempler" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Eksempler"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.3</span> <span>Eksempler</span> </div> </a> <ul id="toc-Eksempler-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Høyere-ordens_deriverte" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Høyere-ordens_deriverte"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.4</span> <span>Høyere-ordens deriverte</span> </div> </a> <ul id="toc-Høyere-ordens_deriverte-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Geometrisk_tolkning" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Geometrisk_tolkning"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.5</span> <span>Geometrisk tolkning</span> </div> </a> <ul id="toc-Geometrisk_tolkning-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Aritmetisk_tolkning" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Aritmetisk_tolkning"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.6</span> <span>Aritmetisk tolkning</span> </div> </a> <ul id="toc-Aritmetisk_tolkning-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Antideriverte" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Antideriverte"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.7</span> <span>Antideriverte</span> </div> </a> <ul id="toc-Antideriverte-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Notasjon_for_deriverte" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Notasjon_for_deriverte"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Notasjon for deriverte</span> </div> </a> <button aria-controls="toc-Notasjon_for_deriverte-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Vis/skjul underseksjonen Notasjon for deriverte</span> </button> <ul id="toc-Notasjon_for_deriverte-sublist" class="vector-toc-list"> <li id="toc-Leibniz'_notasion" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Leibniz'_notasion"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Leibniz' notasion</span> </div> </a> <ul id="toc-Leibniz'_notasion-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Lagranges_notasjon" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Lagranges_notasjon"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Lagranges notasjon</span> </div> </a> <ul id="toc-Lagranges_notasjon-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Newtons_notasjon" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Newtons_notasjon"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>Newtons notasjon</span> </div> </a> <ul id="toc-Newtons_notasjon-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Eulers_notasjon" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Eulers_notasjon"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4</span> <span>Eulers notasjon</span> </div> </a> <ul id="toc-Eulers_notasjon-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Utregning_av_den_deriverte" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Utregning_av_den_deriverte"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Utregning av den deriverte</span> </div> </a> <button aria-controls="toc-Utregning_av_den_deriverte-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Vis/skjul underseksjonen Utregning av den deriverte</span> </button> <ul id="toc-Utregning_av_den_deriverte-sublist" class="vector-toc-list"> <li id="toc-Derivasjon_av_elementære_funksjoner" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Derivasjon_av_elementære_funksjoner"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Derivasjon av elementære funksjoner</span> </div> </a> <ul id="toc-Derivasjon_av_elementære_funksjoner-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Derivasjonsregler" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Derivasjonsregler"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Derivasjonsregler</span> </div> </a> <ul id="toc-Derivasjonsregler-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Implisitt_derivasjon" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Implisitt_derivasjon"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Implisitt derivasjon</span> </div> </a> <ul id="toc-Implisitt_derivasjon-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Eksempel" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Eksempel"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4</span> <span>Eksempel</span> </div> </a> <ul id="toc-Eksempel-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Egenskaper_til_deriverbare_funksjoner" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Egenskaper_til_deriverbare_funksjoner"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Egenskaper til deriverbare funksjoner</span> </div> </a> <button aria-controls="toc-Egenskaper_til_deriverbare_funksjoner-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Vis/skjul underseksjonen Egenskaper til deriverbare funksjoner</span> </button> <ul id="toc-Egenskaper_til_deriverbare_funksjoner-sublist" class="vector-toc-list"> <li id="toc-Derivasjon_og_kontinuitet" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Derivasjon_og_kontinuitet"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Derivasjon og kontinuitet</span> </div> </a> <ul id="toc-Derivasjon_og_kontinuitet-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Middelverdisetningen" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Middelverdisetningen"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Middelverdisetningen</span> </div> </a> <ul id="toc-Middelverdisetningen-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Monotonisitet" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Monotonisitet"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Monotonisitet</span> </div> </a> <ul id="toc-Monotonisitet-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Ekstremalverdier_og_vendepunkt" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Ekstremalverdier_og_vendepunkt"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4</span> <span>Ekstremalverdier og vendepunkt</span> </div> </a> <ul id="toc-Ekstremalverdier_og_vendepunkt-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Krumning_og_vendepunkt" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Krumning_og_vendepunkt"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.5</span> <span>Krumning og vendepunkt</span> </div> </a> <ul id="toc-Krumning_og_vendepunkt-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Taylorrekker" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Taylorrekker"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.6</span> <span>Taylorrekker</span> </div> </a> <ul id="toc-Taylorrekker-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Analysens_fundamentalteorem" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Analysens_fundamentalteorem"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.7</span> <span>Analysens fundamentalteorem</span> </div> </a> <ul id="toc-Analysens_fundamentalteorem-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Derivasjon_av_en_kompleks_funksjon_av_én_variabel" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Derivasjon_av_en_kompleks_funksjon_av_én_variabel"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Derivasjon av en kompleks funksjon av én variabel</span> </div> </a> <button aria-controls="toc-Derivasjon_av_en_kompleks_funksjon_av_én_variabel-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Vis/skjul underseksjonen Derivasjon av en kompleks funksjon av én variabel</span> </button> <ul id="toc-Derivasjon_av_en_kompleks_funksjon_av_én_variabel-sublist" class="vector-toc-list"> <li id="toc-Formell_definisjon" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Formell_definisjon"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Formell definisjon</span> </div> </a> <ul id="toc-Formell_definisjon-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Cauchy-Riemann-ligningene" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Cauchy-Riemann-ligningene"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Cauchy-Riemann-ligningene</span> </div> </a> <ul id="toc-Cauchy-Riemann-ligningene-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Eksempler_2" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Eksempler_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>Eksempler</span> </div> </a> <ul id="toc-Eksempler_2-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Generalisering_til_andre_typer_funksjoner" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Generalisering_til_andre_typer_funksjoner"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Generalisering til andre typer funksjoner</span> </div> </a> <button aria-controls="toc-Generalisering_til_andre_typer_funksjoner-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Vis/skjul underseksjonen Generalisering til andre typer funksjoner</span> </button> <ul id="toc-Generalisering_til_andre_typer_funksjoner-sublist" class="vector-toc-list"> <li id="toc-Retningsderivasjon_for_skalarfelt" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Retningsderivasjon_for_skalarfelt"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Retningsderivasjon for skalarfelt</span> </div> </a> <ul id="toc-Retningsderivasjon_for_skalarfelt-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Partiell_derivasjon" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Partiell_derivasjon"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Partiell derivasjon</span> </div> </a> <ul id="toc-Partiell_derivasjon-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Derivasjon_for_vektorfelt" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Derivasjon_for_vektorfelt"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.3</span> <span>Derivasjon for vektorfelt</span> </div> </a> <ul id="toc-Derivasjon_for_vektorfelt-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Total_derivasjon" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Total_derivasjon"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.4</span> <span>Total derivasjon</span> </div> </a> <ul id="toc-Total_derivasjon-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Anvendelser" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Anvendelser"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Anvendelser</span> </div> </a> <button aria-controls="toc-Anvendelser-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Vis/skjul underseksjonen Anvendelser</span> </button> <ul id="toc-Anvendelser-sublist" class="vector-toc-list"> <li id="toc-Beskrivelse_av_endringer" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Beskrivelse_av_endringer"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1</span> <span>Beskrivelse av endringer</span> </div> </a> <ul id="toc-Beskrivelse_av_endringer-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Differensialligninger" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Differensialligninger"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2</span> <span>Differensialligninger</span> </div> </a> <ul id="toc-Differensialligninger-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Et_eksempel_fra_økonomi" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Et_eksempel_fra_økonomi"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.3</span> <span>Et eksempel fra økonomi</span> </div> </a> <ul id="toc-Et_eksempel_fra_økonomi-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Historie" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Historie"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Historie</span> </div> </a> <ul id="toc-Historie-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Se_også" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Se_også"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Se også</span> </div> </a> <ul id="toc-Se_også-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Referanser" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Referanser"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Referanser</span> </div> </a> <ul id="toc-Referanser-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Litteratur" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Litteratur"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>Litteratur</span> </div> </a> <ul id="toc-Litteratur-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Eksterne_lenker" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Eksterne_lenker"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>Eksterne lenker</span> </div> </a> <ul id="toc-Eksterne_lenker-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Innhold" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Vis/skjul innholdsfortegnelsen" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Vis/skjul innholdsfortegnelsen</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Derivasjon</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Gå til en artikkel på et annet språk. Tilgjengelig på 91 språk" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-91" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">91 språk</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Derivasjon" title="Derivasjon – norsk nynorsk" lang="nn" hreflang="nn" data-title="Derivasjon" data-language-autonym="Norsk nynorsk" data-language-local-name="norsk nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Derivata" title="Derivata – svensk" lang="sv" hreflang="sv" data-title="Derivata" data-language-autonym="Svenska" data-language-local-name="svensk" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Aflei%C3%B0a_(st%C3%A6r%C3%B0fr%C3%A6%C3%B0i)" title="Afleiða (stærðfræði) – islandsk" lang="is" hreflang="is" data-title="Afleiða (stærðfræði)" data-language-autonym="Íslenska" data-language-local-name="islandsk" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Afgeleide" title="Afgeleide – afrikaans" lang="af" hreflang="af" data-title="Afgeleide" data-language-autonym="Afrikaans" data-language-local-name="afrikaans" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-am mw-list-item"><a href="https://am.wikipedia.org/wiki/%E1%8B%8D%E1%8B%B5%E1%8B%B5%E1%88%AD" title="ውድድር – amharisk" lang="am" hreflang="am" data-title="ውድድር" data-language-autonym="አማርኛ" data-language-local-name="amharisk" class="interlanguage-link-target"><span>አማርኛ</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%85%D8%B4%D8%AA%D9%82_(%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A7%D8%AA)" title="مشتق (رياضيات) – arabisk" lang="ar" hreflang="ar" data-title="مشتق (رياضيات)" data-language-autonym="العربية" data-language-local-name="arabisk" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-an mw-list-item"><a href="https://an.wikipedia.org/wiki/Derivada" title="Derivada – aragonsk" lang="an" hreflang="an" data-title="Derivada" data-language-autonym="Aragonés" data-language-local-name="aragonsk" class="interlanguage-link-target"><span>Aragonés</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Derivada" title="Derivada – asturisk" lang="ast" hreflang="ast" data-title="Derivada" data-language-autonym="Asturianu" data-language-local-name="asturisk" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/T%C3%B6r%C9%99m%C9%99" title="Törəmə – aserbajdsjansk" lang="az" hreflang="az" data-title="Törəmə" data-language-autonym="Azərbaycanca" data-language-local-name="aserbajdsjansk" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-azb mw-list-item"><a href="https://azb.wikipedia.org/wiki/%D8%AA%D8%A4%D8%B1%D9%87%E2%80%8C%D9%85%D9%87" title="تؤرهمه – søraserbajdsjansk" lang="azb" hreflang="azb" data-title="تؤرهمه" data-language-autonym="تۆرکجه" data-language-local-name="søraserbajdsjansk" class="interlanguage-link-target"><span>تۆرکجه</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%85%E0%A6%A8%E0%A7%8D%E0%A6%A4%E0%A6%B0%E0%A6%9C" title="অন্তরজ – bengali" lang="bn" hreflang="bn" data-title="অন্তরজ" data-language-autonym="বাংলা" data-language-local-name="bengali" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-ba mw-list-item"><a href="https://ba.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F%D0%BD%D1%8B%D2%A3_%D1%81%D1%8B%D2%93%D0%B0%D1%80%D1%8B%D0%BB%D0%BC%D0%B0%D2%BB%D1%8B" title="Функцияның сығарылмаһы – basjkirsk" lang="ba" hreflang="ba" data-title="Функцияның сығарылмаһы" data-language-autonym="Башҡортса" data-language-local-name="basjkirsk" class="interlanguage-link-target"><span>Башҡортса</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%92%D1%8B%D1%82%D0%B2%D0%BE%D1%80%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D1%8B%D1%96" title="Вытворная функцыі – belarusisk" lang="be" hreflang="be" data-title="Вытворная функцыі" data-language-autonym="Беларуская" data-language-local-name="belarusisk" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://be-tarask.wikipedia.org/wiki/%D0%92%D1%8B%D1%82%D0%B2%D0%BE%D1%80%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D1%8B%D1%96" title="Вытворная функцыі – belarusisk (klassisk ortografi)" lang="be-tarask" hreflang="be-tarask" data-title="Вытворная функцыі" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="belarusisk (klassisk ortografi)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li><li class="interlanguage-link interwiki-bh mw-list-item"><a href="https://bh.wikipedia.org/wiki/%E0%A4%85%E0%A4%B5%E0%A4%95%E0%A4%B2%E0%A4%A8" title="अवकलन – bihari" lang="bh" hreflang="bh" data-title="अवकलन" data-language-autonym="भोजपुरी" data-language-local-name="bihari" class="interlanguage-link-target"><span>भोजपुरी</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%9F%D1%80%D0%BE%D0%B8%D0%B7%D0%B2%D0%BE%D0%B4%D0%BD%D0%B0" title="Производна – bulgarsk" lang="bg" hreflang="bg" data-title="Производна" data-language-autonym="Български" data-language-local-name="bulgarsk" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Izvod" title="Izvod – bosnisk" lang="bs" hreflang="bs" data-title="Izvod" data-language-autonym="Bosanski" data-language-local-name="bosnisk" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca badge-Q17437796 badge-featuredarticle mw-list-item" title="utmerket artikkel-merke"><a href="https://ca.wikipedia.org/wiki/Derivada" title="Derivada – katalansk" lang="ca" hreflang="ca" data-title="Derivada" data-language-autonym="Català" data-language-local-name="katalansk" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%BD_%D1%82%C4%83%D1%85%C4%83%D0%BC%C4%95" title="Функцин тăхăмĕ – tsjuvasjisk" lang="cv" hreflang="cv" data-title="Функцин тăхăмĕ" data-language-autonym="Чӑвашла" data-language-local-name="tsjuvasjisk" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Derivace" title="Derivace – tsjekkisk" lang="cs" hreflang="cs" data-title="Derivace" data-language-autonym="Čeština" data-language-local-name="tsjekkisk" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Deilliant" title="Deilliant – walisisk" lang="cy" hreflang="cy" data-title="Deilliant" data-language-autonym="Cymraeg" data-language-local-name="walisisk" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-de badge-Q70894304 mw-list-item" title=""><a href="https://de.wikipedia.org/wiki/Ableitung_(Mathematik)" title="Ableitung (Mathematik) – tysk" lang="de" hreflang="de" data-title="Ableitung (Mathematik)" data-language-autonym="Deutsch" data-language-local-name="tysk" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Tuletis_(matemaatika)" title="Tuletis (matemaatika) – estisk" lang="et" hreflang="et" data-title="Tuletis (matemaatika)" data-language-autonym="Eesti" data-language-local-name="estisk" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%A0%CE%B1%CF%81%CE%AC%CE%B3%CF%89%CE%B3%CE%BF%CF%82" title="Παράγωγος – gresk" lang="el" hreflang="el" data-title="Παράγωγος" data-language-autonym="Ελληνικά" data-language-local-name="gresk" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-en badge-Q17437798 badge-goodarticle mw-list-item" title="anbefalt artikkel-merke"><a href="https://en.wikipedia.org/wiki/Derivative" title="Derivative – engelsk" lang="en" hreflang="en" data-title="Derivative" data-language-autonym="English" data-language-local-name="engelsk" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Derivada" title="Derivada – spansk" lang="es" hreflang="es" data-title="Derivada" data-language-autonym="Español" data-language-local-name="spansk" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Deriva%C4%B5o_(matematiko)" title="Derivaĵo (matematiko) – esperanto" lang="eo" hreflang="eo" data-title="Derivaĵo (matematiko)" data-language-autonym="Esperanto" data-language-local-name="esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Deribatu" title="Deribatu – baskisk" lang="eu" hreflang="eu" data-title="Deribatu" data-language-autonym="Euskara" data-language-local-name="baskisk" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%85%D8%B4%D8%AA%D9%82" title="مشتق – persisk" lang="fa" hreflang="fa" data-title="مشتق" data-language-autonym="فارسی" data-language-local-name="persisk" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/D%C3%A9riv%C3%A9e" title="Dérivée – fransk" lang="fr" hreflang="fr" data-title="Dérivée" data-language-autonym="Français" data-language-local-name="fransk" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-fur mw-list-item"><a href="https://fur.wikipedia.org/wiki/Derivade" title="Derivade – friuliansk" lang="fur" hreflang="fur" data-title="Derivade" data-language-autonym="Furlan" data-language-local-name="friuliansk" class="interlanguage-link-target"><span>Furlan</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/D%C3%ADorthach" title="Díorthach – irsk" lang="ga" hreflang="ga" data-title="Díorthach" data-language-autonym="Gaeilge" data-language-local-name="irsk" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Derivada" title="Derivada – galisisk" lang="gl" hreflang="gl" data-title="Derivada" data-language-autonym="Galego" data-language-local-name="galisisk" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%AF%B8%EB%B6%84" title="미분 – koreansk" lang="ko" hreflang="ko" data-title="미분" data-language-autonym="한국어" data-language-local-name="koreansk" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D4%B1%D5%AE%D5%A1%D5%B6%D6%81%D5%B5%D5%A1%D5%AC" title="Ածանցյալ – armensk" lang="hy" hreflang="hy" data-title="Ածանցյալ" data-language-autonym="Հայերեն" data-language-local-name="armensk" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%85%E0%A4%B5%E0%A4%95%E0%A4%B2%E0%A4%9C" title="अवकलज – hindi" lang="hi" hreflang="hi" data-title="अवकलज" data-language-autonym="हिन्दी" data-language-local-name="hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Derivacija" title="Derivacija – kroatisk" lang="hr" hreflang="hr" data-title="Derivacija" data-language-autonym="Hrvatski" data-language-local-name="kroatisk" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-io mw-list-item"><a href="https://io.wikipedia.org/wiki/Derivajo" title="Derivajo – ido" lang="io" hreflang="io" data-title="Derivajo" data-language-autonym="Ido" data-language-local-name="ido" class="interlanguage-link-target"><span>Ido</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Turunan" title="Turunan – indonesisk" lang="id" hreflang="id" data-title="Turunan" data-language-autonym="Bahasa Indonesia" data-language-local-name="indonesisk" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Derivata" title="Derivata – italiensk" lang="it" hreflang="it" data-title="Derivata" data-language-autonym="Italiano" data-language-local-name="italiensk" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%A0%D7%92%D7%96%D7%A8%D7%AA" title="נגזרת – hebraisk" lang="he" hreflang="he" data-title="נגזרת" data-language-autonym="עברית" data-language-local-name="hebraisk" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%AC%E1%83%90%E1%83%A0%E1%83%9B%E1%83%9D%E1%83%94%E1%83%91%E1%83%A3%E1%83%9A%E1%83%98" title="წარმოებული – georgisk" lang="ka" hreflang="ka" data-title="წარმოებული" data-language-autonym="ქართული" data-language-local-name="georgisk" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-lo mw-list-item"><a href="https://lo.wikipedia.org/wiki/%E0%BA%9C%E0%BA%BB%E0%BA%99%E0%BA%95%E0%BA%B3%E0%BA%A5%E0%BA%B2" title="ຜົນຕຳລາ – laotisk" lang="lo" hreflang="lo" data-title="ຜົນຕຳລາ" data-language-autonym="ລາວ" data-language-local-name="laotisk" class="interlanguage-link-target"><span>ລາວ</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Derivativum" title="Derivativum – latin" lang="la" hreflang="la" data-title="Derivativum" data-language-autonym="Latina" data-language-local-name="latin" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Atvasin%C4%81jums" title="Atvasinājums – latvisk" lang="lv" hreflang="lv" data-title="Atvasinājums" data-language-autonym="Latviešu" data-language-local-name="latvisk" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/I%C5%A1vestin%C4%97" title="Išvestinė – litauisk" lang="lt" hreflang="lt" data-title="Išvestinė" data-language-autonym="Lietuvių" data-language-local-name="litauisk" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-lmo badge-Q17437796 badge-featuredarticle mw-list-item" title="utmerket artikkel-merke"><a href="https://lmo.wikipedia.org/wiki/Derivada" title="Derivada – lombardisk" lang="lmo" hreflang="lmo" data-title="Derivada" data-language-autonym="Lombard" data-language-local-name="lombardisk" class="interlanguage-link-target"><span>Lombard</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Deriv%C3%A1lt" title="Derivált – ungarsk" lang="hu" hreflang="hu" data-title="Derivált" data-language-autonym="Magyar" data-language-local-name="ungarsk" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%98%D0%B7%D0%B2%D0%BE%D0%B4" title="Извод – makedonsk" lang="mk" hreflang="mk" data-title="Извод" data-language-autonym="Македонски" data-language-local-name="makedonsk" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%85%E0%B4%B5%E0%B4%95%E0%B4%B2%E0%B4%9C%E0%B4%82" title="അവകലജം – malayalam" lang="ml" hreflang="ml" data-title="അവകലജം" data-language-autonym="മലയാളം" data-language-local-name="malayalam" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-mt mw-list-item"><a href="https://mt.wikipedia.org/wiki/Derivata" title="Derivata – maltesisk" lang="mt" hreflang="mt" data-title="Derivata" data-language-autonym="Malti" data-language-local-name="maltesisk" class="interlanguage-link-target"><span>Malti</span></a></li><li class="interlanguage-link interwiki-mr mw-list-item"><a href="https://mr.wikipedia.org/wiki/%E0%A4%85%E0%A4%B5%E0%A4%95%E0%A4%B2%E0%A4%A8" title="अवकलन – marathi" lang="mr" hreflang="mr" data-title="अवकलन" data-language-autonym="मराठी" data-language-local-name="marathi" class="interlanguage-link-target"><span>मराठी</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Terbitan" title="Terbitan – malayisk" lang="ms" hreflang="ms" data-title="Terbitan" data-language-autonym="Bahasa Melayu" data-language-local-name="malayisk" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-my mw-list-item"><a href="https://my.wikipedia.org/wiki/%E1%80%A1%E1%80%9C%E1%80%AD%E1%80%AF%E1%80%80%E1%80%BA%E1%80%95%E1%80%BC%E1%80%B1%E1%80%AC%E1%80%84%E1%80%BA%E1%80%B8%E1%80%94%E1%80%BE%E1%80%AF%E1%80%94%E1%80%BA%E1%80%B8_%E1%80%90%E1%80%BD%E1%80%80%E1%80%BA%E1%80%91%E1%80%AF%E1%80%90%E1%80%BA%E1%80%81%E1%80%BC%E1%80%84%E1%80%BA%E1%80%B8" title="အလိုက်ပြောင်းနှုန်း တွက်ထုတ်ခြင်း – burmesisk" lang="my" hreflang="my" data-title="အလိုက်ပြောင်းနှုန်း တွက်ထုတ်ခြင်း" data-language-autonym="မြန်မာဘာသာ" data-language-local-name="burmesisk" class="interlanguage-link-target"><span>မြန်မာဘာသာ</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Afgeleide" title="Afgeleide – nederlandsk" lang="nl" hreflang="nl" data-title="Afgeleide" data-language-autonym="Nederlands" data-language-local-name="nederlandsk" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E5%BE%AE%E5%88%86" title="微分 – japansk" lang="ja" hreflang="ja" data-title="微分" data-language-autonym="日本語" data-language-local-name="japansk" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-oc mw-list-item"><a href="https://oc.wikipedia.org/wiki/Derivada" title="Derivada – oksitansk" lang="oc" hreflang="oc" data-title="Derivada" data-language-autonym="Occitan" data-language-local-name="oksitansk" class="interlanguage-link-target"><span>Occitan</span></a></li><li class="interlanguage-link interwiki-om mw-list-item"><a href="https://om.wikipedia.org/wiki/Babbaafamaa" title="Babbaafamaa – oromo" lang="om" hreflang="om" data-title="Babbaafamaa" data-language-autonym="Oromoo" data-language-local-name="oromo" class="interlanguage-link-target"><span>Oromoo</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Differensial" title="Differensial – usbekisk" lang="uz" hreflang="uz" data-title="Differensial" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="usbekisk" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-pnb mw-list-item"><a href="https://pnb.wikipedia.org/wiki/%D9%85%D8%B4%D8%AA%D9%82" title="مشتق – vestpunjabi" lang="pnb" hreflang="pnb" data-title="مشتق" data-language-autonym="پنجابی" data-language-local-name="vestpunjabi" class="interlanguage-link-target"><span>پنجابی</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Pochodna_funkcji" title="Pochodna funkcji – polsk" lang="pl" hreflang="pl" data-title="Pochodna funkcji" data-language-autonym="Polski" data-language-local-name="polsk" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Derivada" title="Derivada – portugisisk" lang="pt" hreflang="pt" data-title="Derivada" data-language-autonym="Português" data-language-local-name="portugisisk" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-kaa mw-list-item"><a href="https://kaa.wikipedia.org/wiki/Differencial" title="Differencial – karakalpakisk" lang="kaa" hreflang="kaa" data-title="Differencial" data-language-autonym="Qaraqalpaqsha" data-language-local-name="karakalpakisk" class="interlanguage-link-target"><span>Qaraqalpaqsha</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Derivat%C4%83" title="Derivată – rumensk" lang="ro" hreflang="ro" data-title="Derivată" data-language-autonym="Română" data-language-local-name="rumensk" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9F%D1%80%D0%BE%D0%B8%D0%B7%D0%B2%D0%BE%D0%B4%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%B8" title="Производная функции – russisk" lang="ru" hreflang="ru" data-title="Производная функции" data-language-autonym="Русский" data-language-local-name="russisk" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sco mw-list-item"><a href="https://sco.wikipedia.org/wiki/Derivative" title="Derivative – skotsk" lang="sco" hreflang="sco" data-title="Derivative" data-language-autonym="Scots" data-language-local-name="skotsk" class="interlanguage-link-target"><span>Scots</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Derivati" title="Derivati – albansk" lang="sq" hreflang="sq" data-title="Derivati" data-language-autonym="Shqip" data-language-local-name="albansk" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-scn mw-list-item"><a href="https://scn.wikipedia.org/wiki/Dirivata_(matim%C3%A0tica)" title="Dirivata (matimàtica) – siciliansk" lang="scn" hreflang="scn" data-title="Dirivata (matimàtica)" data-language-autonym="Sicilianu" data-language-local-name="siciliansk" class="interlanguage-link-target"><span>Sicilianu</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Derivative_(mathematics)" title="Derivative (mathematics) – enkel engelsk" lang="en-simple" hreflang="en-simple" data-title="Derivative (mathematics)" data-language-autonym="Simple English" data-language-local-name="enkel engelsk" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Deriv%C3%A1cia_(funkcia)" title="Derivácia (funkcia) – slovakisk" lang="sk" hreflang="sk" data-title="Derivácia (funkcia)" data-language-autonym="Slovenčina" data-language-local-name="slovakisk" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Odvod" title="Odvod – slovensk" lang="sl" hreflang="sl" data-title="Odvod" data-language-autonym="Slovenščina" data-language-local-name="slovensk" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-szl mw-list-item"><a href="https://szl.wikipedia.org/wiki/Pochodno" title="Pochodno – schlesisk" lang="szl" hreflang="szl" data-title="Pochodno" data-language-autonym="Ślůnski" data-language-local-name="schlesisk" class="interlanguage-link-target"><span>Ślůnski</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%DA%AF%D8%B1%D8%AA%DB%95" title="گرتە – sentralkurdisk" lang="ckb" hreflang="ckb" data-title="گرتە" data-language-autonym="کوردی" data-language-local-name="sentralkurdisk" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%98%D0%B7%D0%B2%D0%BE%D0%B4" title="Извод – serbisk" lang="sr" hreflang="sr" data-title="Извод" data-language-autonym="Српски / srpski" data-language-local-name="serbisk" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Izvod" title="Izvod – serbokroatisk" lang="sh" hreflang="sh" data-title="Izvod" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="serbokroatisk" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Derivaatta" title="Derivaatta – finsk" lang="fi" hreflang="fi" data-title="Derivaatta" data-language-autonym="Suomi" data-language-local-name="finsk" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Deribatibo" title="Deribatibo – tagalog" lang="tl" hreflang="tl" data-title="Deribatibo" data-language-autonym="Tagalog" data-language-local-name="tagalog" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%B5%E0%AE%95%E0%AF%88%E0%AE%AF%E0%AE%BF%E0%AE%9F%E0%AE%B2%E0%AF%8D" title="வகையிடல் – tamil" lang="ta" hreflang="ta" data-title="வகையிடல்" data-language-autonym="தமிழ்" data-language-local-name="tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-tt mw-list-item"><a href="https://tt.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F_%D1%87%D1%8B%D0%B3%D0%B0%D1%80%D1%8B%D0%BB%D0%BC%D0%B0%D1%81%D1%8B" title="Функция чыгарылмасы – tatarisk" lang="tt" hreflang="tt" data-title="Функция чыгарылмасы" data-language-autonym="Татарча / tatarça" data-language-local-name="tatarisk" class="interlanguage-link-target"><span>Татарча / tatarça</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%AD%E0%B8%99%E0%B8%B8%E0%B8%9E%E0%B8%B1%E0%B8%99%E0%B8%98%E0%B9%8C" title="อนุพันธ์ – thai" lang="th" hreflang="th" data-title="อนุพันธ์" data-language-autonym="ไทย" data-language-local-name="thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/T%C3%BCrev" title="Türev – tyrkisk" lang="tr" hreflang="tr" data-title="Türev" data-language-autonym="Türkçe" data-language-local-name="tyrkisk" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9F%D0%BE%D1%85%D1%96%D0%B4%D0%BD%D0%B0" title="Похідна – ukrainsk" lang="uk" hreflang="uk" data-title="Похідна" data-language-autonym="Українська" data-language-local-name="ukrainsk" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D9%85%D8%B4%D8%AA%D9%82" title="مشتق – urdu" lang="ur" hreflang="ur" data-title="مشتق" data-language-autonym="اردو" data-language-local-name="urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-vec mw-list-item"><a href="https://vec.wikipedia.org/wiki/Derivada" title="Derivada – venetiansk" lang="vec" hreflang="vec" data-title="Derivada" data-language-autonym="Vèneto" data-language-local-name="venetiansk" class="interlanguage-link-target"><span>Vèneto</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/%C4%90%E1%BA%A1o_h%C3%A0m" title="Đạo hàm – vietnamesisk" lang="vi" hreflang="vi" data-title="Đạo hàm" data-language-autonym="Tiếng Việt" data-language-local-name="vietnamesisk" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-wa mw-list-item"><a href="https://wa.wikipedia.org/wiki/Deriv%C3%AAye" title="Derivêye – vallonsk" lang="wa" hreflang="wa" data-title="Derivêye" data-language-autonym="Walon" data-language-local-name="vallonsk" class="interlanguage-link-target"><span>Walon</span></a></li><li class="interlanguage-link interwiki-zh-classical mw-list-item"><a href="https://zh-classical.wikipedia.org/wiki/%E5%B0%8E%E6%95%B8" title="導數 – klassisk kinesisk" lang="lzh" hreflang="lzh" data-title="導數" data-language-autonym="文言" data-language-local-name="klassisk kinesisk" class="interlanguage-link-target"><span>文言</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E5%B0%8E%E6%95%B8" title="導數 – wu" lang="wuu" hreflang="wuu" data-title="導數" data-language-autonym="吴语" data-language-local-name="wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-yi mw-list-item"><a href="https://yi.wikipedia.org/wiki/%D7%93%D7%A2%D7%A8%D7%99%D7%95%D7%95%D7%90%D7%98%D7%99%D7%95%D7%95" title="דעריוואטיוו – jiddisk" lang="yi" hreflang="yi" data-title="דעריוואטיוו" data-language-autonym="ייִדיש" data-language-local-name="jiddisk" class="interlanguage-link-target"><span>ייִדיש</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E5%B0%8E%E6%95%B8" title="導數 – kantonesisk" lang="yue" hreflang="yue" data-title="導數" data-language-autonym="粵語" data-language-local-name="kantonesisk" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh badge-Q17437798 badge-goodarticle mw-list-item" title="anbefalt artikkel-merke"><a href="https://zh.wikipedia.org/wiki/%E5%AF%BC%E6%95%B0" title="导数 – kinesisk" lang="zh" hreflang="zh" data-title="导数" data-language-autonym="中文" data-language-local-name="kinesisk" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q29175#sitelinks-wikipedia" title="Rediger lenker til artikkelen på andre språk" class="wbc-editpage">Rediger lenker</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Navnerom"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Derivasjon" title="Vis innholdssiden [c]" accesskey="c"><span>Artikkel</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Diskusjon:Derivasjon" rel="discussion" title="Diskusjon om innholdssiden [t]" accesskey="t"><span>Diskusjon</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Bytt språkvariant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">norsk bokmål</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Visninger"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Derivasjon"><span>Les</span></a></li><li id="ca-ve-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Derivasjon&veaction=edit" title="Rediger siden [v]" accesskey="v"><span>Rediger</span></a></li><li id="ca-edit" class="collapsible vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Derivasjon&action=edit" title="Rediger kildekoden for denne siden [e]" accesskey="e"><span>Rediger kilde</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Derivasjon&action=history" title="Tidligere sideversjoner av denne siden [h]" accesskey="h"><span>Vis historikk</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Sideverktøy"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Verktøy" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Verktøy</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Verktøy</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">flytt til sidefeltet</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">skjul</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="Flere alternativer" > <div class="vector-menu-heading"> Handlinger </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Derivasjon"><span>Les</span></a></li><li id="ca-more-ve-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Derivasjon&veaction=edit" title="Rediger siden [v]" accesskey="v"><span>Rediger</span></a></li><li id="ca-more-edit" class="collapsible vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Derivasjon&action=edit" title="Rediger kildekoden for denne siden [e]" accesskey="e"><span>Rediger kilde</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Derivasjon&action=history"><span>Vis historikk</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> Generelt </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Spesial:Lenker_hit/Derivasjon" title="Liste over alle wikisider som lenker hit [j]" accesskey="j"><span>Lenker hit</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Spesial:Relaterte_endringer/Derivasjon" rel="nofollow" title="Siste endringer i sider som blir lenket fra denne siden [k]" accesskey="k"><span>Relaterte endringer</span></a></li><li id="t-upload" class="mw-list-item"><a href="//commons.wikimedia.org/wiki/Special:UploadWizard?uselang=no" title="Last opp filer [u]" accesskey="u"><span>Last opp fil</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Spesial:Spesialsider" title="Liste over alle spesialsider [q]" accesskey="q"><span>Spesialsider</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Derivasjon&oldid=23920936" title="Permanent lenke til denne versjonen av siden"><span>Permanent lenke</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Derivasjon&action=info" title="Mer informasjon om denne siden"><span>Sideinformasjon</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Spesial:Siteringshjelp&page=Derivasjon&id=23920936&wpFormIdentifier=titleform" title="Informasjon om hvordan denne siden kan siteres"><span>Siter denne siden</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Spesial:UrlShortener&url=https%3A%2F%2Fno.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DDerivasjon%26section%3D8%26veaction%3Dedit"><span>Hent forkortet URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Spesial:QrCode&url=https%3A%2F%2Fno.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DDerivasjon%26section%3D8%26veaction%3Dedit"><span>Last ned QR-kode</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Skriv ut / eksporter </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Spesial:DownloadAsPdf&page=Derivasjon&action=show-download-screen"><span>Last ned som PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Derivasjon&printable=yes" title="Utskriftsvennlig versjon av denne siden [p]" accesskey="p"><span>Utskriftsvennlig versjon</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> På andre prosjekter </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q29175" title="Lenke til koblet dataregisterelement [g]" accesskey="g"><span>Wikidata-element</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Sideverktøy"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Utseende"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Utseende</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">flytt til sidefeltet</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">skjul</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">Fra Wikipedia, den frie encyklopedi</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="nb" dir="ltr"><table align="right" class="infobox" style="width: 200px; margin: 0 0 1em 1em"> <tbody><tr style="background:#ccccff" align="center"> <td style="border-bottom: 2px solid #303060"><b>Områder i <a href="/wiki/Matematisk_analyse" title="Matematisk analyse">analyse</a></b> </td></tr> <tr style="background:#ccccff" align="center"> <td><a href="/wiki/Differensialligning" title="Differensialligning"><b>Differensialligninger</b></a> </td></tr> <tr style="background:#ccccff" align="center"> <td><a href="/wiki/Funksjonalanalyse" title="Funksjonalanalyse"><b>Funksjonalanalyse</b></a> </td></tr> <tr style="background:#ccccff" align="center"> <td><a href="/w/index.php?title=Funksjon_av_flere_variable&action=edit&redlink=1" class="new" title="Funksjon av flere variable (ikke skrevet ennå)"><b>Funksjoner av flere variable</b></a> </td></tr> <tr style="background:#ccccff" align="center"> <td><a href="/wiki/Matematisk_analyse" title="Matematisk analyse"><b>Matematisk analyse</b></a> </td></tr> <tr> <td align="center"> <p><a href="/wiki/Kontinuerlig_funksjon" title="Kontinuerlig funksjon">Kontinuitet</a> <br /> <a href="/wiki/Grenseverdi" title="Grenseverdi">Grenseverdier</a> <br /> <a href="/wiki/F%C3%B8lge_(matematikk)" title="Følge (matematikk)">Følger</a> <br /> <a href="/wiki/Rekke_(matematikk)" title="Rekke (matematikk)"> Rekker</a> <br /> <a class="mw-selflink selflink">Derivasjon</a> <br /> <a href="/wiki/Integrasjon" title="Integrasjon">Integrasjon</a> </p> </td></tr> <tr style="background:#ccccff" align="center"> <td><a href="/w/index.php?title=Komplekse_funksjoner&action=edit&redlink=1" class="new" title="Komplekse funksjoner (ikke skrevet ennå)"><b>Komplekse funksjoner</b></a> </td></tr> </tbody></table> <p><b>Derivasjon</b> er en operasjon i <a href="/wiki/Matematikk" title="Matematikk">matematikk</a> der en bestemmer den <i>deriverte</i> av en <a href="/wiki/Funksjon_(matematikk)" title="Funksjon (matematikk)">funksjon</a>. For en funksjon av én <a href="/wiki/Reelt_tall" title="Reelt tall">reell</a> variabel <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span> er den deriverte definert ved </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\!\,'(x)=\lim _{h\to 0}{\frac {f(x+h)-f(x)}{h}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mspace width="negativethinmathspace" /> <msup> <mspace width="thinmathspace" /> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mi>h</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\!\,'(x)=\lim _{h\to 0}{\frac {f(x+h)-f(x)}{h}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54aaa4a0449297261633f7b1060a11b42f29dc09" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:28.691ex; height:5.843ex;" alt="{\displaystyle f\!\,'(x)=\lim _{h\to 0}{\frac {f(x+h)-f(x)}{h}}}"></span>,</dd></dl> <p>dersom grenseverdien eksisterer. Den deriverte er et mål for endringen i funksjonsverdier <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span> når den frie variabelen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> endres. Geometrisk er den deriverte et uttrykk for <a href="/wiki/Stigningstall" title="Stigningstall">stigningstallet</a> til <a href="/wiki/Tangent_(matematikk)" title="Tangent (matematikk)">tangenten</a> til funksjonen. </p><p>For funksjoner av flere variable kan en definere ulike typer deriverte, som <a href="/wiki/Retningsderivert" title="Retningsderivert">retningsderivert</a>, <a href="/wiki/Partiell_derivasjon" title="Partiell derivasjon">partiellderivert</a> og <a href="/w/index.php?title=Totalderivert&action=edit&redlink=1" class="new" title="Totalderivert (ikke skrevet ennå)">totalderivert</a>. </p><p>Studiet av derivasjon og <a href="/wiki/Differensial_(matematikk)" title="Differensial (matematikk)">differensialer</a> kalles <i>differensialregning</i>. <a href="/wiki/Analysens_fundamentalteorem" title="Analysens fundamentalteorem">Analysens fundamentalteorem</a> sier at derivasjon og <a href="/wiki/Integrasjon" title="Integrasjon">integrasjon</a> er inverse operasjoner, og en bruker derfor ofte betegnelsen <i>differensial- og integralregning</i>. Dette fagfeltet er svært viktig både for <a href="/wiki/Matematisk_analyse" title="Matematisk analyse">matematisk analyse</a> og for <a href="/wiki/Anvendt_matematikk" title="Anvendt matematikk">anvendt matematikk</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Derivasjon_av_en_reell_funksjon_av_én_variabel"><span id="Derivasjon_av_en_reell_funksjon_av_.C3.A9n_variabel"></span>Derivasjon av en reell funksjon av én variabel</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Derivasjon&veaction=edit&section=1" title="Rediger avsnitt: Derivasjon av en reell funksjon av én variabel" class="mw-editsection-visualeditor"><span>rediger</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Derivasjon&action=edit&section=1" title="Rediger kildekoden til seksjonen Derivasjon av en reell funksjon av én variabel"><span>rediger kilde</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>En reell funksjon av én variabel er en funksjon <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:\mathbb {R} \rightarrow \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">→<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:\mathbb {R} \rightarrow \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85e6e186aabef9e51814bbce62e625dc67e825f2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.186ex; height:2.509ex;" alt="{\displaystyle f:\mathbb {R} \rightarrow \mathbb {R} }"></span>. Et enkelt eksempel er funksjonen som beskriver en rett linje. For en rett linje er stigningstallet lik den deriverte til funksjonen som beskriver linjen. </p> <div class="mw-heading mw-heading3"><h3 id="Stigningstallet_for_en_rett_linje">Stigningstallet for en rett linje</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Derivasjon&veaction=edit&section=2" title="Rediger avsnitt: Stigningstallet for en rett linje" class="mw-editsection-visualeditor"><span>rediger</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Derivasjon&action=edit&section=2" title="Rediger kildekoden til seksjonen Stigningstallet for en rett linje"><span>rediger kilde</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/Fil:Wiki_slope_in_2d.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c1/Wiki_slope_in_2d.svg/250px-Wiki_slope_in_2d.svg.png" decoding="async" width="250" height="270" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c1/Wiki_slope_in_2d.svg/375px-Wiki_slope_in_2d.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c1/Wiki_slope_in_2d.svg/500px-Wiki_slope_in_2d.svg.png 2x" data-file-width="281" data-file-height="303" /></a><figcaption>Stigningstalet til en rett linje: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a={\frac {\Delta y}{\Delta x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>y</mi> </mrow> <mrow> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a={\frac {\Delta y}{\Delta x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/827ad631fe1712d462e0335144449b9272114439" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:8.43ex; height:5.676ex;" alt="{\displaystyle a={\frac {\Delta y}{\Delta x}}}"></span></figcaption></figure> <p>En rett linje kan beskrives med funksjonen </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=ax+b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=ax+b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75c655df4be41082c4bba924beab2c1dc27d019c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.913ex; height:2.843ex;" alt="{\displaystyle f(x)=ax+b}"></span>.</dd></dl> <p>Hvis koeffisienten <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> er lik null, så er funksjonen <a href="/wiki/Line%C3%A6r" class="mw-redirect" title="Lineær">lineær</a>. Koeffisienten <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> er stigningstallet som styrer vinkelen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>θ<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5ab2664b422d53eb0c7df3b87e1360d75ad9af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:2.176ex;" alt="{\displaystyle \theta }"></span> som linjen danner med <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>-aksen: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tan \theta =a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tan</mi> <mo>⁡<!-- --></mo> <mi>θ<!-- θ --></mi> <mo>=</mo> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tan \theta =a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/053a7adb6606aac54147d9346cb7910c68722270" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.165ex; height:2.176ex;" alt="{\displaystyle \tan \theta =a}"></span>.</dd></dl> <p>Gitt to punkt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x_{1},y_{1})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x_{1},y_{1})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7fc74086e56542bd28b46a84faaee3cebdd4a899" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.421ex; height:2.843ex;" alt="{\displaystyle (x_{1},y_{1})}"></span> og <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x_{2},y_{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x_{2},y_{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d52d44e16a796acee486af49af05f678566d181a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.421ex; height:2.843ex;" alt="{\displaystyle (x_{2},y_{2})}"></span>, så finner en stigningstallet ved </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a={\frac {\Delta y}{\Delta x}}={\frac {y_{2}-y_{1}}{x_{2}-x_{1}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>y</mi> </mrow> <mrow> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a={\frac {\Delta y}{\Delta x}}={\frac {y_{2}-y_{1}}{x_{2}-x_{1}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d1cebe56008aedd7f1a6f412a6ba4eb3cdc07ba3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:19.973ex; height:5.843ex;" alt="{\displaystyle a={\frac {\Delta y}{\Delta x}}={\frac {y_{2}-y_{1}}{x_{2}-x_{1}}}}"></span></dd></dl> <p>Symbolet <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32769037c408874e1890f77554c65f39c523ebe2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.936ex; height:2.176ex;" alt="{\displaystyle \Delta }"></span> brukes for å beskrive en endring i en størrelse, og <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f3890eb866b6258d7a304fc34c70ee3fb3a81a70" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.266ex; height:2.176ex;" alt="{\displaystyle \Delta x}"></span> og <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7caae142d915be8ef4d8c423bf91d1f6ea10e8e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.091ex; height:2.509ex;" alt="{\displaystyle \Delta y}"></span> er samsvarende endringer: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta y=f(x+\Delta x)-f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta y=f(x+\Delta x)-f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce43d41f207f5cdc2737e774b438b6cee1aa7401" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.971ex; height:2.843ex;" alt="{\displaystyle \Delta y=f(x+\Delta x)-f(x)}"></span></dd></dl> <p>Funksjonen som beskriver en rett linje, har derivert <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'(x)=a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'(x)=a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3e35599e94254ce410446b06c52eb90e301fee9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.472ex; height:3.009ex;" alt="{\displaystyle f'(x)=a}"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Formell_definisjon_av_den_deriverte">Formell definisjon av den deriverte</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Derivasjon&veaction=edit&section=3" title="Rediger avsnitt: Formell definisjon av den deriverte" class="mw-editsection-visualeditor"><span>rediger</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Derivasjon&action=edit&section=3" title="Rediger kildekoden til seksjonen Formell definisjon av den deriverte"><span>rediger kilde</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>En funksjon <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:U\to \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mi>U</mi> <mo stretchy="false">→<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:U\to \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05f481901ff501baa824d1eab35eba6d9410ba57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.29ex; height:2.509ex;" alt="{\displaystyle f:U\to \mathbb {R} }"></span> som avbilder et <a href="/wiki/Intervall_(matematikk)" title="Intervall (matematikk)">åpent intervall</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.783ex; height:2.176ex;" alt="{\displaystyle U}"></span> av reell tall, er deriverbar i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}\in U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>∈<!-- ∈ --></mo> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}\in U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2dee8010e46dd5891756fb4b02b43bc661f7c666" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.007ex; height:2.509ex;" alt="{\displaystyle x_{0}\in U}"></span> hvis den følgende <a href="/wiki/Grenseverdi" title="Grenseverdi">grenseverdien</a> eksisterer: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{x\to x_{0}}{\frac {f(x)-f(x_{0})}{x-x_{0}}}=\lim _{h\to 0}{\frac {f(x_{0}+h)-f(x_{0})}{h}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo stretchy="false">→<!-- → --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>x</mi> <mo>−<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mi>h</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{x\to x_{0}}{\frac {f(x)-f(x_{0})}{x-x_{0}}}=\lim _{h\to 0}{\frac {f(x_{0}+h)-f(x_{0})}{h}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/00e7dfaa1c8e58bd297a9bd5b6221aba89f02026" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:44.005ex; height:6.009ex;" alt="{\displaystyle \lim _{x\to x_{0}}{\frac {f(x)-f(x_{0})}{x-x_{0}}}=\lim _{h\to 0}{\frac {f(x_{0}+h)-f(x_{0})}{h}}}"></span>   (med <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h=\Delta x=x-x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo>=</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> <mo>=</mo> <mi>x</mi> <mo>−<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h=\Delta x=x-x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eb60d8d9aec4febc4ab09a6187178401df6df980" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:17.355ex; height:2.509ex;" alt="{\displaystyle h=\Delta x=x-x_{0}}"></span>)</dd></dl> <p>Grenseverdien kalles den <i>deriverte</i> til <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> med hensyn på <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86f21d0e31751534cd6584264ecf864a6aa792cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{0}}"></span>. Dersom grenseverdien <i>ikke</i> eksisterer, så er funksjonen ikke deriverbar i punktet. Hvis funksjonen er deriverbar i et hvert punkt i intervallet, sies funksjonen å være deriverbar i intervallet. Den deriverte definerer da en ny funksjon i intervallet, ofte skrevet som <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d0cd7d7c75340e779d82658e19d1720ce84ab127" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.144ex; height:3.009ex;" alt="{\displaystyle f'(x)}"></span> eller <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {df}{dx}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>f</mi> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {df}{dx}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5d4eb531911adb8362a989a2c6b9e10bd46c099" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:3.382ex; height:5.509ex;" alt="{\displaystyle {\frac {df}{dx}}}"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'(x)={\frac {df}{dx}}=\lim _{h\to 0}{\frac {f(x+h)-f(x)}{h}}\qquad x\in U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>f</mi> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mi>h</mi> </mfrac> </mrow> <mspace width="2em" /> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'(x)={\frac {df}{dx}}=\lim _{h\to 0}{\frac {f(x+h)-f(x)}{h}}\qquad x\in U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/734372498d04b6e11364983789b6c730b916e587" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:45.811ex; height:5.843ex;" alt="{\displaystyle f'(x)={\frac {df}{dx}}=\lim _{h\to 0}{\frac {f(x+h)-f(x)}{h}}\qquad x\in U}"></span>.</dd></dl> <p>Ordet «differensierbar» brukes synonymnt med «deriverbar». </p><p>Det eksisterer mange ulike skriveformer for funksjonen som er resultat av derivasjonen, drøftet i det følgende avsnittet <a href="#Notasjon">Notasjon</a>. </p><p>En funksjon kan være deriverbar i hele <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span>, men kan også ha punkter der den ikke er deriverbar. Det eksisterer funksjoner som ikke er deriverbare i noe punkt, for eksempel funksjonen som beskriver <a href="/w/index.php?title=Koch-kurven&action=edit&redlink=1" class="new" title="Koch-kurven (ikke skrevet ennå)">Koch-kurven</a>, navngitt etter <a href="/wiki/Helge_von_Koch" title="Helge von Koch">Helge von Koch</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Eksempler">Eksempler</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Derivasjon&veaction=edit&section=4" title="Rediger avsnitt: Eksempler" class="mw-editsection-visualeditor"><span>rediger</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Derivasjon&action=edit&section=4" title="Rediger kildekoden til seksjonen Eksempler"><span>rediger kilde</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Den deriverte til funksjonen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=x^{2}-3x+2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>3</mn> <mi>x</mi> <mo>+</mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=x^{2}-3x+2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db758a029cf34d6e46f783bcea87ce17cf0ac96d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.235ex; height:3.176ex;" alt="{\displaystyle f(x)=x^{2}-3x+2}"></span> i punktet <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04e899fc6eba0b387b91f070adc7bc4fe5a706cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.812ex; height:2.009ex;" alt="{\displaystyle x=x_{0}}"></span> kan finnes ved å forenkle differensekvotienten </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\frac {f(x_{0}+h)-f(x_{0})}{h}}&={\frac {{\bigl (}(x_{0}+h)^{2}-3(x_{0}+h)+2{\bigr )}-(x_{0}^{2}-3x_{0}+2)}{h}}\\&={\frac {x_{0}^{2}+2x_{0}h+h^{2}-3x_{0}-3h+2-x_{0}^{2}+3x_{0}-2}{h}}\\&={\frac {2x_{0}h+h^{2}-3h}{h}}\\&=2x_{0}+h-3.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mi>h</mi> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mi>h</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>3</mn> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>−<!-- − --></mo> <mn>3</mn> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> <mi>h</mi> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <mn>2</mn> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mi>h</mi> <mo>+</mo> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>3</mn> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>−<!-- − --></mo> <mn>3</mn> <mi>h</mi> <mo>+</mo> <mn>2</mn> <mo>−<!-- − --></mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <mn>3</mn> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>−<!-- − --></mo> <mn>2</mn> </mrow> <mi>h</mi> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mi>h</mi> <mo>+</mo> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>3</mn> <mi>h</mi> </mrow> <mi>h</mi> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mn>2</mn> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mi>h</mi> <mo>−<!-- − --></mo> <mn>3.</mn> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\frac {f(x_{0}+h)-f(x_{0})}{h}}&={\frac {{\bigl (}(x_{0}+h)^{2}-3(x_{0}+h)+2{\bigr )}-(x_{0}^{2}-3x_{0}+2)}{h}}\\&={\frac {x_{0}^{2}+2x_{0}h+h^{2}-3x_{0}-3h+2-x_{0}^{2}+3x_{0}-2}{h}}\\&={\frac {2x_{0}h+h^{2}-3h}{h}}\\&=2x_{0}+h-3.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9bbed1697bbaedae3344a77bcabab2a9ec4a300b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -10.171ex; width:70.174ex; height:21.509ex;" alt="{\displaystyle {\begin{aligned}{\frac {f(x_{0}+h)-f(x_{0})}{h}}&={\frac {{\bigl (}(x_{0}+h)^{2}-3(x_{0}+h)+2{\bigr )}-(x_{0}^{2}-3x_{0}+2)}{h}}\\&={\frac {x_{0}^{2}+2x_{0}h+h^{2}-3x_{0}-3h+2-x_{0}^{2}+3x_{0}-2}{h}}\\&={\frac {2x_{0}h+h^{2}-3h}{h}}\\&=2x_{0}+h-3.\end{aligned}}}"></span></dd></dl> <p>Den deriverte finnes ved å ta grenseverdien når <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h\to 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h\to 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3f15c1e6800f6e3fca9fec99720fc67a13780215" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.116ex; height:2.176ex;" alt="{\displaystyle h\to 0}"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'(x_{0})=\lim _{h\to 0}(2x_{0}+h-3)=2x_{0}-3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mo stretchy="false">(</mo> <mn>2</mn> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mi>h</mi> <mo>−<!-- − --></mo> <mn>3</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>2</mn> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>−<!-- − --></mo> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'(x_{0})=\lim _{h\to 0}(2x_{0}+h-3)=2x_{0}-3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c03f6d0dce6a373047c1177bd988303d0bf13318" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:36.894ex; height:4.176ex;" alt="{\displaystyle f'(x_{0})=\lim _{h\to 0}(2x_{0}+h-3)=2x_{0}-3}"></span>.</dd></dl> <p>Vanligvis finnes den deriverte av en funksjon ved hjelp av regneregler for derivasjon og ikke ved bruk av definisjonen, slik som er gjort her. Regnereglene må imidlertid bevises ved hjelp av definisjonen for den deriverte. </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Fil:Absolute_value.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/6b/Absolute_value.svg/250px-Absolute_value.svg.png" decoding="async" width="250" height="167" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/6b/Absolute_value.svg/375px-Absolute_value.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/6b/Absolute_value.svg/500px-Absolute_value.svg.png 2x" data-file-width="600" data-file-height="400" /></a><figcaption>Absoluttverdi-funksjonen er ikke deriverbar for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/953917eaf52f2e1baad54c8c9e3d6f9bb3710cdc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.591ex; height:2.176ex;" alt="{\displaystyle x=0}"></span>.</figcaption></figure> <p>Et eksempel på en funksjon som ikke er deriverbar overalt, er gitt ved <a href="/wiki/Absoluttverdi" title="Absoluttverdi">absoluttverdi-funksjonen</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=|x|=\left\{{\begin{array}{rl}x,&{\text{hvis }}x\geq 0\\-x,&{\text{hvis }}x<0.\end{array}}\right.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow> <mo>{</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>x</mi> <mo>,</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>hvis </mtext> </mrow> <mi>x</mi> <mo>≥<!-- ≥ --></mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mi>x</mi> <mo>,</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>hvis </mtext> </mrow> <mi>x</mi> <mo><</mo> <mn>0.</mn> </mtd> </mtr> </mtable> </mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=|x|=\left\{{\begin{array}{rl}x,&{\text{hvis }}x\geq 0\\-x,&{\text{hvis }}x<0.\end{array}}\right.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bde1934c8c7e7c1fa27772b115e9a1cf230f1aa3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:32.741ex; height:6.176ex;" alt="{\displaystyle f(x)=|x|=\left\{{\begin{array}{rl}x,&{\text{hvis }}x\geq 0\\-x,&{\text{hvis }}x<0.\end{array}}\right.}"></span></dd></dl> <p>For <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in (-\infty ,0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in (-\infty ,0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0779f91efa3ece72169c1795c07724901953568" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.308ex; height:2.843ex;" alt="{\displaystyle x\in (-\infty ,0)}"></span> er den deriverte lik -1, mens i intervallet <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (0,\infty )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (0,\infty )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da17102e4ed0886686094ee531df040d2e86352a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.329ex; height:2.843ex;" alt="{\displaystyle (0,\infty )}"></span> er den deriverte lik 1. For <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/953917eaf52f2e1baad54c8c9e3d6f9bb3710cdc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.591ex; height:2.176ex;" alt="{\displaystyle x=0}"></span> eksisterer de to ensidige grenseverdiene, men da disse ikke er like, så er funksjonen ikke deriverbar for dette argumentet: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{alignedat}{2}\lim _{x\nearrow 0}{\frac {f(x)-f(0)}{x-0}}\ &=\ \lim _{x\nearrow 0}{\frac {-x-0}{x-0}}\ &&=\ -1\\[5pt]\lim _{x\searrow 0}{\frac {f(x)-f(0)}{x-0}}\ &=\ \lim _{x\searrow 0}{\frac {x-0}{x-0}}\ &&=\ 1\end{alignedat}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left" rowspacing="0.8em 0.3em" columnspacing="0em 0em 0em 0em" displaystyle="true"> <mtr> <mtd> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo stretchy="false">↗<!-- ↗ --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>x</mi> <mo>−<!-- − --></mo> <mn>0</mn> </mrow> </mfrac> </mrow> <mtext> </mtext> </mtd> <mtd> <mi></mi> <mo>=</mo> <mtext> </mtext> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo stretchy="false">↗<!-- ↗ --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>−<!-- − --></mo> <mi>x</mi> <mo>−<!-- − --></mo> <mn>0</mn> </mrow> <mrow> <mi>x</mi> <mo>−<!-- − --></mo> <mn>0</mn> </mrow> </mfrac> </mrow> <mtext> </mtext> </mtd> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mtext> </mtext> <mo>−<!-- − --></mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo stretchy="false">↘<!-- ↘ --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>x</mi> <mo>−<!-- − --></mo> <mn>0</mn> </mrow> </mfrac> </mrow> <mtext> </mtext> </mtd> <mtd> <mi></mi> <mo>=</mo> <mtext> </mtext> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo stretchy="false">↘<!-- ↘ --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>x</mi> <mo>−<!-- − --></mo> <mn>0</mn> </mrow> <mrow> <mi>x</mi> <mo>−<!-- − --></mo> <mn>0</mn> </mrow> </mfrac> </mrow> <mtext> </mtext> </mtd> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mtext> </mtext> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{alignedat}{2}\lim _{x\nearrow 0}{\frac {f(x)-f(0)}{x-0}}\ &=\ \lim _{x\nearrow 0}{\frac {-x-0}{x-0}}\ &&=\ -1\\[5pt]\lim _{x\searrow 0}{\frac {f(x)-f(0)}{x-0}}\ &=\ \lim _{x\searrow 0}{\frac {x-0}{x-0}}\ &&=\ 1\end{alignedat}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9affd8dea2b0b3eb8972f48f00e9623c39175df7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:41.567ex; height:13.843ex;" alt="{\displaystyle {\begin{alignedat}{2}\lim _{x\nearrow 0}{\frac {f(x)-f(0)}{x-0}}\ &=\ \lim _{x\nearrow 0}{\frac {-x-0}{x-0}}\ &&=\ -1\\[5pt]\lim _{x\searrow 0}{\frac {f(x)-f(0)}{x-0}}\ &=\ \lim _{x\searrow 0}{\frac {x-0}{x-0}}\ &&=\ 1\end{alignedat}}}"></span>.</dd></dl> <p>Et slik punkt hvor den deriverte eksisterer på begge sider, men hvor de ensidige grenseverdiene er ulike, kalles et <i>knekkpunkt</i> for grafen til funksjonen. </p> <div class="mw-heading mw-heading3"><h3 id="Høyere-ordens_deriverte"><span id="H.C3.B8yere-ordens_deriverte"></span>Høyere-ordens deriverte</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Derivasjon&veaction=edit&section=5" title="Rediger avsnitt: Høyere-ordens deriverte" class="mw-editsection-visualeditor"><span>rediger</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Derivasjon&action=edit&section=5" title="Rediger kildekoden til seksjonen Høyere-ordens deriverte"><span>rediger kilde</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Hvis den deriverte til funksjonen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> er deriverbar, kan man definere den andrederiverte eller dobbeltderiverte til <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> som den deriverte til den førstederiverte. Denne nye funksjonen kan skrives som <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f''(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>″</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f''(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0e2e84959f7e6426747625eee3248602ef8b2e60" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.597ex; height:3.009ex;" alt="{\displaystyle f''(x)}"></span>. Tilsvarende kan man definere den tredje deriverte <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'''(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>‴</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'''(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ef204d549b2ee79a663661637d6cfc1c0d4caa2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.049ex; height:3.009ex;" alt="{\displaystyle f'''(x)}"></span>, og så videre. </p><p>Den <i>n</i>-te deriverte kalles også den deriverte av orden <i>n</i>. </p><p>Ved å bruke samme eksempel som tidligere, finner en </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{alignedat}{2}f(x)&=x^{2}-3x+2\\f'(x)&=2x-3\\f''(x)&=2\\f'''(x)&=0\end{alignedat}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left" rowspacing="3pt" columnspacing="0em 0em 0em 0em" displaystyle="true"> <mtr> <mtd> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>3</mn> <mi>x</mi> <mo>+</mo> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>2</mn> <mi>x</mi> <mo>−<!-- − --></mo> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <msup> <mi>f</mi> <mo>″</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <msup> <mi>f</mi> <mo>‴</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>0</mn> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{alignedat}{2}f(x)&=x^{2}-3x+2\\f'(x)&=2x-3\\f''(x)&=2\\f'''(x)&=0\end{alignedat}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ffbaf91316f068afe06001dabb07ff8ac15ddb0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:21.618ex; height:12.509ex;" alt="{\displaystyle {\begin{alignedat}{2}f(x)&=x^{2}-3x+2\\f'(x)&=2x-3\\f''(x)&=2\\f'''(x)&=0\end{alignedat}}}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Geometrisk_tolkning">Geometrisk tolkning</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Derivasjon&veaction=edit&section=6" title="Rediger avsnitt: Geometrisk tolkning" class="mw-editsection-visualeditor"><span>rediger</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Derivasjon&action=edit&section=6" title="Rediger kildekoden til seksjonen Geometrisk tolkning"><span>rediger kilde</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Fil:Derivasjon_sekant_tangent.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e6/Derivasjon_sekant_tangent.png/250px-Derivasjon_sekant_tangent.png" decoding="async" width="250" height="155" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e6/Derivasjon_sekant_tangent.png/375px-Derivasjon_sekant_tangent.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e6/Derivasjon_sekant_tangent.png/500px-Derivasjon_sekant_tangent.png 2x" data-file-width="877" data-file-height="543" /></a><figcaption>Sekant og tangent til en funksjonsgraf</figcaption></figure> <p>Verdien av den deriverte i et punkt generaliserer stigningskoeffisienten for en rett linje. For en vilkårlig deriverbar funksjon vil verdien av den deriverte være lik stigningskoeffisienten til <a href="/wiki/Tangent" class="mw-disambig" title="Tangent">tangenten</a> til funksjonsgrafen i punktet. </p><p>For å definere tangenten starter en med en <a href="/wiki/Sekant" title="Sekant">sekant</a> gjennom to punkt på funksjonsgrafen, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x_{0},f(x_{0}))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x_{0},f(x_{0}))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/18f45486a7fce99328e062ba5719273f914100d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.699ex; height:2.843ex;" alt="{\displaystyle (x_{0},f(x_{0}))}"></span> og <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x_{0}+h,f(x_{0}+h))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mi>h</mi> <mo>,</mo> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x_{0}+h,f(x_{0}+h))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a6e91a7c70a6ff1baa5b59244e91aaff15e7686" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.058ex; height:2.843ex;" alt="{\displaystyle (x_{0}+h,f(x_{0}+h))}"></span>. Ved å la <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b26be3e694314bc90c3215047e4a2010c6ee184a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.339ex; height:2.176ex;" alt="{\displaystyle h}"></span> gå mot null, som i grenseverdien som definerer den deriverte, vil sekanten nærme seg tangenten som grense. </p><p>Ligningen for tangenten i punktet <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x_{0},f(x_{0}))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x_{0},f(x_{0}))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/18f45486a7fce99328e062ba5719273f914100d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.699ex; height:2.843ex;" alt="{\displaystyle (x_{0},f(x_{0}))}"></span> er </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y-f(x_{0})=f'(x_{0})(x-x_{0})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y-f(x_{0})=f'(x_{0})(x-x_{0})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6ac4202d0714fcd7809eaf6b359f7661ef332624" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.128ex; height:3.009ex;" alt="{\displaystyle y-f(x_{0})=f'(x_{0})(x-x_{0})}"></span></dd></dl> <p>Den andrederiverte er et mål for <a href="/wiki/Krumning" title="Krumning">krumningen</a> til grafen i et punkt. En rett linje har ingen krumning, og funksjonen har en andrederivert lik null. </p><p>Generelt har grafen til en vilkårlig funksjon en krumning <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>κ<!-- κ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \kappa }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54ddec2e922c5caea4e47d04feef86e782dc8e6d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.339ex; height:1.676ex;" alt="{\displaystyle \kappa }"></span> gitt ved det følgende uttrykket:<sup id="cite_ref-RTL1_1-0" class="reference"><a href="#cite_note-RTL1-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa ={f'' \over (1+f'^{2})^{3/2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>κ<!-- κ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>f</mi> <mo>″</mo> </msup> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <msup> <mi>f</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \kappa ={f'' \over (1+f'^{2})^{3/2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/50eefb434394fd0cba6f2204b57a926271e83985" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:16.611ex; height:6.509ex;" alt="{\displaystyle \kappa ={f'' \over (1+f'^{2})^{3/2}}}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Aritmetisk_tolkning">Aritmetisk tolkning</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Derivasjon&veaction=edit&section=7" title="Rediger avsnitt: Aritmetisk tolkning" class="mw-editsection-visualeditor"><span>rediger</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Derivasjon&action=edit&section=7" title="Rediger kildekoden til seksjonen Aritmetisk tolkning"><span>rediger kilde</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Den deriverte til en funksjon <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> i punktet <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86f21d0e31751534cd6584264ecf864a6aa792cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{0}}"></span> beskriver den lokale oppførselen til funksjonen i en omegnen om <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86f21d0e31751534cd6584264ecf864a6aa792cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{0}}"></span>. Fra definisjonen av den deriverte følger det at </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x_{0}+h)=f(x_{0})+f'(x_{0})h+r(x,h)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mi>h</mi> <mo>+</mo> <mi>r</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>h</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x_{0}+h)=f(x_{0})+f'(x_{0})h+r(x,h)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/413489918df83150c537dd303b66bb2e9459fa0b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:38ex; height:3.009ex;" alt="{\displaystyle f(x_{0}+h)=f(x_{0})+f'(x_{0})h+r(x,h)}"></span></dd></dl> <p>Leddet <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r(x_{0},h)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mi>h</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r(x_{0},h)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dda87342eff78b4ecb157bc27af852afe5423aac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.615ex; height:2.843ex;" alt="{\displaystyle r(x_{0},h)}"></span> er en funksjon av både <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86f21d0e31751534cd6584264ecf864a6aa792cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{0}}"></span> og <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b26be3e694314bc90c3215047e4a2010c6ee184a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.339ex; height:2.176ex;" alt="{\displaystyle h}"></span>, og leddet må gå mot null når <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b26be3e694314bc90c3215047e4a2010c6ee184a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.339ex; height:2.176ex;" alt="{\displaystyle h}"></span> går mot null. For en liten verdi av <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b26be3e694314bc90c3215047e4a2010c6ee184a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.339ex; height:2.176ex;" alt="{\displaystyle h}"></span> kan en derfor bruke tilnærmingen </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x_{0}+h)\approx f(x_{0})+f'(x_{0})h}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo>≈<!-- ≈ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x_{0}+h)\approx f(x_{0})+f'(x_{0})h}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33613dff42c6224004868e6cfc91a5b26a7c0bb9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.599ex; height:3.009ex;" alt="{\displaystyle f(x_{0}+h)\approx f(x_{0})+f'(x_{0})h}"></span></dd></dl> <p>Den deriverte er et mål på den lineære andelen av endringen i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span>, når <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> endres med et vilkårlig lite tall. En slik vilkårlig liten endring kalles en <a href="/w/index.php?title=Infinitesimal_endring&action=edit&redlink=1" class="new" title="Infinitesimal endring (ikke skrevet ennå)">infinitesimal endring</a>. Når tilnærmingen brukes for en endelig verdi av <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b26be3e694314bc90c3215047e4a2010c6ee184a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.339ex; height:2.176ex;" alt="{\displaystyle h}"></span>, omtales tilnærmingen som en <i>linearisering</i> av funksjonen. </p> <div class="mw-heading mw-heading3"><h3 id="Antideriverte">Antideriverte</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Derivasjon&veaction=edit&section=8" title="Rediger avsnitt: Antideriverte" class="mw-editsection-visualeditor"><span>rediger</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Derivasjon&action=edit&section=8" title="Rediger kildekoden til seksjonen Antideriverte"><span>rediger kilde</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Antiderivasjon er prosessen for å finne en antideriverte funksjon, også kalt en <a href="/wiki/Primitiv_funksjon" title="Primitiv funksjon">primitiv funksjon</a>. En funksjon <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/71a82805d469cdfa7856c11d6ee756acd1dc7174" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.88ex; height:2.843ex;" alt="{\displaystyle F(x)}"></span> er en primitiv funksjon til <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span> dersom funksjonen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> er dens deriverte, det vil si dersom <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F'(x)=f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>F</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F'(x)=f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5457591f5410f4bfe3b9c9fa2e50ae665fa2822c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.154ex; height:3.009ex;" alt="{\displaystyle F'(x)=f(x)}"></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Notasjon_for_deriverte">Notasjon for deriverte</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Derivasjon&veaction=edit&section=9" title="Rediger avsnitt: Notasjon for deriverte" class="mw-editsection-visualeditor"><span>rediger</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Derivasjon&action=edit&section=9" title="Rediger kildekoden til seksjonen Notasjon for deriverte"><span>rediger kilde</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Det eksisterer flere forskjellige skriveformer for deriverte, brukt både gjennom historisk tid og i dag. </p> <div class="mw-heading mw-heading3"><h3 id="Leibniz'_notasion"><span id="Leibniz.27_notasion"></span>Leibniz' notasion</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Derivasjon&veaction=edit&section=10" title="Rediger avsnitt: Leibniz' notasion" class="mw-editsection-visualeditor"><span>rediger</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Derivasjon&action=edit&section=10" title="Rediger kildekoden til seksjonen Leibniz' notasion"><span>rediger kilde</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Symbolene <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/845c817e348381a13f3fad5184169ce0e021c685" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.546ex; height:2.176ex;" alt="{\displaystyle dx}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle dy}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle dy}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5c5eda9ec854eb0076d43c147eb8956637a1003f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.371ex; height:2.509ex;" alt="{\displaystyle dy}"></span> og <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {dy}{dx}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>y</mi> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {dy}{dx}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ceb16b58a91d26cf1e442d0682dfa7a2c0ab72c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:3.382ex; height:5.509ex;" alt="{\displaystyle {\frac {dy}{dx}}}"></span> ble introdusert av <a href="/wiki/Gottfried_Leibniz" title="Gottfried Leibniz">Gottfried Leibniz</a> i 1675.<sup id="cite_ref-CAJ204_2-0" class="reference"><a href="#cite_note-CAJ204-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> Denne skrivemåten er fremdeles vanlig brukt når en ønsker å understreke funksjonssammenhengen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y=f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2311a6a75c54b0ea085a381ba472c31d59321514" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.672ex; height:2.843ex;" alt="{\displaystyle y=f(x)}"></span>. Den første-ordens deriverte skrives som en infinitesimal brøk </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {dy}{dx}},\quad {\frac {df}{dx}},{\text{ eller }}{\frac {d}{dx}}f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>y</mi> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>,</mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>f</mi> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext> eller </mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {dy}{dx}},\quad {\frac {df}{dx}},{\text{ eller }}{\frac {d}{dx}}f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f2dabe280f9c25f9642ce125690bcbac99cec78d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:21.245ex; height:5.509ex;" alt="{\displaystyle {\frac {dy}{dx}},\quad {\frac {df}{dx}},{\text{ eller }}{\frac {d}{dx}}f}"></span>.</dd></dl> <p>Høyere-ordens deriverte av orden <i>n</i> uttrykkes på formen </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d^{n}y}{dx^{n}}},\quad {\frac {d^{n}f}{dx^{n}}}{\text{ eller }}{\frac {d^{n}}{dx^{n}}}f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mi>y</mi> </mrow> <mrow> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>,</mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mi>f</mi> </mrow> <mrow> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext> eller </mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d^{n}y}{dx^{n}}},\quad {\frac {d^{n}f}{dx^{n}}}{\text{ eller }}{\frac {d^{n}}{dx^{n}}}f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/178b606f9f84114c6280266ef065d8bc5b538ef5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:23.867ex; height:5.509ex;" alt="{\displaystyle {\frac {d^{n}y}{dx^{n}}},\quad {\frac {d^{n}f}{dx^{n}}}{\text{ eller }}{\frac {d^{n}}{dx^{n}}}f}"></span></dd></dl> <p>Den deriverte for et gitt argument <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04e899fc6eba0b387b91f070adc7bc4fe5a706cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.812ex; height:2.009ex;" alt="{\displaystyle x=x_{0}}"></span> kan med denne notasjonen skrives som </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left.{\frac {dy}{dx}}\right|_{x=x_{0}}={\frac {dy}{dx}}(x_{0}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>y</mi> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>y</mi> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left.{\frac {dy}{dx}}\right|_{x=x_{0}}={\frac {dy}{dx}}(x_{0}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/297ca0a9b107630992d1282b4b83a3a6bc2b3d23" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:19.572ex; height:6.343ex;" alt="{\displaystyle \left.{\frac {dy}{dx}}\right|_{x=x_{0}}={\frac {dy}{dx}}(x_{0}).}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Lagranges_notasjon">Lagranges notasjon</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Derivasjon&veaction=edit&section=11" title="Rediger avsnitt: Lagranges notasjon" class="mw-editsection-visualeditor"><span>rediger</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Derivasjon&action=edit&section=11" title="Rediger kildekoden til seksjonen Lagranges notasjon"><span>rediger kilde</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>En svært vanlig form for symbol for den deriverte stammer fra <a href="/wiki/Joseph_Louis_Lagrange" class="mw-redirect" title="Joseph Louis Lagrange">Joseph Louis Lagrange</a> og bruker et <a href="/wiki/Primtegn" title="Primtegn">primtegn</a> sammen med symbolet for funksjonen. Notasjonen ble første gang brukt i verket <i>Theorie des fonctions analytiques</i> i 1797.<sup id="cite_ref-CAJ207_3-0" class="reference"><a href="#cite_note-CAJ207-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> Den deriverte av funksjonen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> symboliseres med<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/258eaada38956fb69b8cb1a2eef46bcb97d3126b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.005ex; height:2.843ex;" alt="{\displaystyle f'}"></span>. Høyere-ordens deriverte kan skrives ved å gjenta primtegnet, slik at den andre-deriverte er <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f''}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>″</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f''}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fbbdf186092f4353b7630fa8dda903e493cbbdc8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.458ex; height:2.843ex;" alt="{\displaystyle f''}"></span>. For deriverte av orden høyere enn tre, kan en sette ordenstallet med opphøyd skrift, enten med <a href="/wiki/Romertall" title="Romertall">romertall</a> eller med vanlige tallsymbol: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{\mathrm {iv} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">v</mi> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{\mathrm {iv} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5ef2ac125885befa2679c1899245012f0b3fb7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.878ex; height:3.009ex;" alt="{\displaystyle f^{\mathrm {iv} }}"></span>   eller   <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{(4)}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>4</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{(4)}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/13450bbbea80806a41ce5e18478ab3b9106d3afb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.301ex; height:3.176ex;" alt="{\displaystyle f^{(4)}.}"></span></dd></dl> <p>Lagranges notasjon er mer praktisk enn Leibniz' når en vil understreke at den deriverte er en selvstendig funksjon. </p> <div class="mw-heading mw-heading3"><h3 id="Newtons_notasjon">Newtons notasjon</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Derivasjon&veaction=edit&section=12" title="Rediger avsnitt: Newtons notasjon" class="mw-editsection-visualeditor"><span>rediger</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Derivasjon&action=edit&section=12" title="Rediger kildekoden til seksjonen Newtons notasjon"><span>rediger kilde</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Newtons notasjon for å symbolisere tidsderiverte går tilbake til 1665.<sup id="cite_ref-CAJ197_4-0" class="reference"><a href="#cite_note-CAJ197-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> Bruk av denne notasjonen finnes vanlig både i fysikk og matematikk. For en funksjon der argumentet representerer tid, kan en prikk over funksjonen symbolisere derivasjon. Hvis <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=f(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y=f(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dcb3a22359174d9da835b238b25e2f89ce1cd2ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.181ex; height:2.843ex;" alt="{\displaystyle y=f(t)}"></span>, så representerer de følgende funksjonene den førstederiverte og den andrederiverte: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\dot {y}}\qquad \qquad {\ddot {y}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>y</mi> <mo>˙<!-- ˙ --></mo> </mover> </mrow> </mrow> <mspace width="2em" /> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>y</mi> <mo>¨<!-- ¨ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\dot {y}}\qquad \qquad {\ddot {y}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0cc8e1f47f697502fdde2f4043e1687be70e2e93" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.895ex; height:2.509ex;" alt="{\displaystyle {\dot {y}}\qquad \qquad {\ddot {y}}}"></span>.</dd></dl> <p>Prikk-notasjonen er også brukt i <a href="/wiki/Differensialgeometri" title="Differensialgeometri">differensialgeometri</a> for den deriverte med hensyn på <a href="/wiki/Buelengde" title="Buelengde">buelengden</a>.<sup id="cite_ref-STRUIK_5-0" class="reference"><a href="#cite_note-STRUIK-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Eulers_notasjon">Eulers notasjon</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Derivasjon&veaction=edit&section=13" title="Rediger avsnitt: Eulers notasjon" class="mw-editsection-visualeditor"><span>rediger</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Derivasjon&action=edit&section=13" title="Rediger kildekoden til seksjonen Eulers notasjon"><span>rediger kilde</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a> forsvarte i 1755 notasjonen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle df}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle df}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53181e2067a93b6bbf150042723cb059d9d2d26f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.494ex; height:2.509ex;" alt="{\displaystyle df}"></span> for den deriverte funksjonen, men dette skapte en del forvirring jevnført med Leibniz' skrivemåte.<sup id="cite_ref-CAJ213_6-0" class="reference"><a href="#cite_note-CAJ213-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> I 1800 foreslo <a href="/w/index.php?title=Louis_Fran%C3%A7ois_Antoine_Arbogast&action=edit&redlink=1" class="new" title="Louis François Antoine Arbogast (ikke skrevet ennå)">Louis François Antoine Arbogast</a> i steden å bruke en stor bokstav <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"></span> for en <a href="/w/index.php?title=Differensialoperator&action=edit&redlink=1" class="new" title="Differensialoperator (ikke skrevet ennå)">differensialoperator</a> som operert på funksjonen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> gir den første-deriverte <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Df}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Df}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/683279b8feba655b049a1c55f4bd9026218fcdb5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.203ex; height:2.509ex;" alt="{\displaystyle Df}"></span>.<sup id="cite_ref-CAJ208_7-0" class="reference"><a href="#cite_note-CAJ208-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> Den <i>n</i>-te deriverte skrives <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D^{n}f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D^{n}f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e99b5ed4fe7fb8a37d4ceea918c0820722772063" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.421ex; height:2.676ex;" alt="{\displaystyle D^{n}f}"></span>. For å presisere hva som er den uavhengige variabelen, så kan denne skrives med nedfelt skrift: Hvis funksjonen er <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y=f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2311a6a75c54b0ea085a381ba472c31d59321514" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.672ex; height:2.843ex;" alt="{\displaystyle y=f(x)}"></span>, så skrives da den deriverte som </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{x}y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{x}y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a571d853d54276c0078edcad8488ec67a7dc9a37" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.252ex; height:2.509ex;" alt="{\displaystyle D_{x}y}"></span>   eller   <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{x}f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{x}f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/08d1a7fa2af57bbed4eedf671c65c0eddcd95e85" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.514ex; height:2.843ex;" alt="{\displaystyle D_{x}f(x)}"></span>.</dd></dl> <div class="mw-heading mw-heading2"><h2 id="Utregning_av_den_deriverte">Utregning av den deriverte</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Derivasjon&veaction=edit&section=14" title="Rediger avsnitt: Utregning av den deriverte" class="mw-editsection-visualeditor"><span>rediger</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Derivasjon&action=edit&section=14" title="Rediger kildekoden til seksjonen Utregning av den deriverte"><span>rediger kilde</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Den deriverte til en gitt funksjon regnes vanligvis ut ved å kombinere </p> <ul><li>kjennskap til deriverte for et sett av <a href="/wiki/Funksjon_(matematikk)#Funksjonstyper" title="Funksjon (matematikk)">elementære funksjoner</a>; med</li> <li>et sett av derivasjonsregler for å behandle <a href="/wiki/Funksjon_(matematikk)#Som_sammensatt_funksjon" title="Funksjon (matematikk)">sammensatte funksjoner</a>.</li></ul> <div class="mw-heading mw-heading3"><h3 id="Derivasjon_av_elementære_funksjoner"><span id="Derivasjon_av_element.C3.A6re_funksjoner"></span>Derivasjon av elementære funksjoner</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Derivasjon&veaction=edit&section=15" title="Rediger avsnitt: Derivasjon av elementære funksjoner" class="mw-editsection-visualeditor"><span>rediger</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Derivasjon&action=edit&section=15" title="Rediger kildekoden til seksjonen Derivasjon av elementære funksjoner"><span>rediger kilde</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dt>Konstante funksjoner</dt> <dd></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d}{dx}}a=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mi>a</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d}{dx}}a=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/49f5a5f3e39fbc5ea801d34a87f888d3a4922cf9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:8.872ex; height:5.509ex;" alt="{\displaystyle {\frac {d}{dx}}a=0}"></span></dd></dl> <dl><dt><a href="/wiki/Potens_(matematikk)" title="Potens (matematikk)">Potensfunksjonen</a></dt> <dd></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d}{dx}}x^{a}=ax^{a-1}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> <mo>=</mo> <mi>a</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d}{dx}}x^{a}=ax^{a-1}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6537e707dd9cbfc868475876e63e1718236dce0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:15.32ex; height:5.509ex;" alt="{\displaystyle {\frac {d}{dx}}x^{a}=ax^{a-1}.}"></span></dd></dl> <dl><dt><a href="/wiki/Eksponentialfunksjon" title="Eksponentialfunksjon">Eksponential-</a> og <a href="/wiki/Logaritme" title="Logaritme">logaritmefunksjoner</a></dt> <dd></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d}{dx}}e^{x}=e^{x}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d}{dx}}e^{x}=e^{x}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d0c27fbdebbf544403f5f1442939f21e7f77eae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:11.639ex; height:5.509ex;" alt="{\displaystyle {\frac {d}{dx}}e^{x}=e^{x}.}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d}{dx}}a^{x}=a^{x}\ln(a),\qquad a>0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> <mo>=</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mspace width="2em" /> <mi>a</mi> <mo>></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d}{dx}}a^{x}=a^{x}\ln(a),\qquad a>0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d45f4385b350131524cc1672f79de17340944c09" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:27.82ex; height:5.509ex;" alt="{\displaystyle {\frac {d}{dx}}a^{x}=a^{x}\ln(a),\qquad a>0}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d}{dx}}\ln(x)={\frac {1}{x}},\qquad x>0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>x</mi> </mfrac> </mrow> <mo>,</mo> <mspace width="2em" /> <mi>x</mi> <mo>></mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d}{dx}}\ln(x)={\frac {1}{x}},\qquad x>0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3f5c086b15d3f8c104011b5125089811cd704fa0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:26.028ex; height:5.509ex;" alt="{\displaystyle {\frac {d}{dx}}\ln(x)={\frac {1}{x}},\qquad x>0.}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d}{dx}}\log _{a}(x)={\frac {1}{x\ln(a)}},\qquad x,a>0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>x</mi> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>,</mo> <mspace width="2em" /> <mi>x</mi> <mo>,</mo> <mi>a</mi> <mo>></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d}{dx}}\log _{a}(x)={\frac {1}{x\ln(a)}},\qquad x,a>0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4e8d6dc82c78d0c9f98fa48093b76dd23d5f47a4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:35.145ex; height:6.176ex;" alt="{\displaystyle {\frac {d}{dx}}\log _{a}(x)={\frac {1}{x\ln(a)}},\qquad x,a>0}"></span></dd></dl> <dl><dt><a href="/wiki/Trigonometrisk_funksjon" title="Trigonometrisk funksjon">Trigonometriske funksjoner</a></dt> <dd></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d}{dx}}\sin(x)=\cos(x).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mi>sin</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d}{dx}}\sin(x)=\cos(x).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/915954b5c6cae7e5d3a9f07c468df37774814425" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:19.759ex; height:5.509ex;" alt="{\displaystyle {\frac {d}{dx}}\sin(x)=\cos(x).}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d}{dx}}\cos(x)=-\sin(x).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mi>cos</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>−<!-- − --></mo> <mi>sin</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d}{dx}}\cos(x)=-\sin(x).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9afa3b6c5bad945865d67462f735210947f6643c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:21.954ex; height:5.509ex;" alt="{\displaystyle {\frac {d}{dx}}\cos(x)=-\sin(x).}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d}{dx}}\tan(x)=\sec ^{2}(x)={\frac {1}{\cos ^{2}(x)}}=1+\tan ^{2}(x).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mi>tan</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>sec</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mn>1</mn> <mo>+</mo> <msup> <mi>tan</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d}{dx}}\tan(x)=\sec ^{2}(x)={\frac {1}{\cos ^{2}(x)}}=1+\tan ^{2}(x).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1acc5256c9c7398f48a7e04486ce6b23d42484a2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:47.08ex; height:6.176ex;" alt="{\displaystyle {\frac {d}{dx}}\tan(x)=\sec ^{2}(x)={\frac {1}{\cos ^{2}(x)}}=1+\tan ^{2}(x).}"></span></dd></dl> <dl><dt><a href="/wiki/Inverse_trigonometriske_funksjoner" title="Inverse trigonometriske funksjoner">Inverse trigonometriske funksjoner</a></dt> <dd></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d}{dx}}\arcsin(x)={\frac {1}{\sqrt {1-x^{2}}}},\qquad -1<x<1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mi>arcsin</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>1</mn> <mo>−<!-- − --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> <mo>,</mo> <mspace width="2em" /> <mo>−<!-- − --></mo> <mn>1</mn> <mo><</mo> <mi>x</mi> <mo><</mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d}{dx}}\arcsin(x)={\frac {1}{\sqrt {1-x^{2}}}},\qquad -1<x<1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b2782bb120952f09dc4243b852c37cc49da29f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:43.501ex; height:6.676ex;" alt="{\displaystyle {\frac {d}{dx}}\arcsin(x)={\frac {1}{\sqrt {1-x^{2}}}},\qquad -1<x<1.}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d}{dx}}\arccos(x)=-{\frac {1}{\sqrt {1-x^{2}}}},\qquad -1<x<1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mi>arccos</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>1</mn> <mo>−<!-- − --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> <mo>,</mo> <mspace width="2em" /> <mo>−<!-- − --></mo> <mn>1</mn> <mo><</mo> <mi>x</mi> <mo><</mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d}{dx}}\arccos(x)=-{\frac {1}{\sqrt {1-x^{2}}}},\qquad -1<x<1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43e1ac34e152d4c7b8d3415b88162ce7ccf1915d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:45.564ex; height:6.676ex;" alt="{\displaystyle {\frac {d}{dx}}\arccos(x)=-{\frac {1}{\sqrt {1-x^{2}}}},\qquad -1<x<1.}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d}{dx}}\arctan(x)={\frac {1}{1+x^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mi>arctan</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d}{dx}}\arctan(x)={\frac {1}{1+x^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/800fa10df1f1af1c75bd75d858ad62d885031035" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:23.695ex; height:5.843ex;" alt="{\displaystyle {\frac {d}{dx}}\arctan(x)={\frac {1}{1+x^{2}}}}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Derivasjonsregler">Derivasjonsregler</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Derivasjon&veaction=edit&section=16" title="Rediger avsnitt: Derivasjonsregler" class="mw-editsection-visualeditor"><span>rediger</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Derivasjon&action=edit&section=16" title="Rediger kildekoden til seksjonen Derivasjonsregler"><span>rediger kilde</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>La <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span> og <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b26be3e694314bc90c3215047e4a2010c6ee184a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.339ex; height:2.176ex;" alt="{\displaystyle h}"></span> være reelle, deriverbare funksjoner. La videre <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> og <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> være reelle tall. Da gjelder: </p> <dl><dt>Faktorregelen</dt></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a\cdot f)'=a\cdot f'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>⋅<!-- ⋅ --></mo> <mi>f</mi> <msup> <mo stretchy="false">)</mo> <mo>′</mo> </msup> <mo>=</mo> <mi>a</mi> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>f</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a\cdot f)'=a\cdot f'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3e308728043f480d59a3f9bb7109c8d9cba954f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.694ex; height:3.009ex;" alt="{\displaystyle (a\cdot f)'=a\cdot f'}"></span></dd></dl> <dl><dt>Summeregelen</dt></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(g\pm h\right)'=g'\pm h'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow> <mo>(</mo> <mrow> <mi>g</mi> <mo>±<!-- ± --></mo> <mi>h</mi> </mrow> <mo>)</mo> </mrow> <mo>′</mo> </msup> <mo>=</mo> <msup> <mi>g</mi> <mo>′</mo> </msup> <mo>±<!-- ± --></mo> <msup> <mi>h</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(g\pm h\right)'=g'\pm h'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b46620201b8360c490f5041f327d8825e14d616c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.555ex; height:3.176ex;" alt="{\displaystyle \left(g\pm h\right)'=g'\pm h'}"></span></dd></dl> <dl><dt>Produktregelen</dt></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (g\cdot h)'=g'\cdot h+g\cdot h'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>g</mi> <mo>⋅<!-- ⋅ --></mo> <mi>h</mi> <msup> <mo stretchy="false">)</mo> <mo>′</mo> </msup> <mo>=</mo> <msup> <mi>g</mi> <mo>′</mo> </msup> <mo>⋅<!-- ⋅ --></mo> <mi>h</mi> <mo>+</mo> <mi>g</mi> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>h</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (g\cdot h)'=g'\cdot h+g\cdot h'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05cff9657c544b74ab128545a57aaef16431f575" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.207ex; height:3.009ex;" alt="{\displaystyle (g\cdot h)'=g'\cdot h+g\cdot h'}"></span></dd></dl> <dl><dt>Kvotientregelen eller brøkregelen</dt></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left({\frac {g}{h}}\right)'={\frac {g'\cdot h-g\cdot h'}{h^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>g</mi> <mi>h</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>′</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>g</mi> <mo>′</mo> </msup> <mo>⋅<!-- ⋅ --></mo> <mi>h</mi> <mo>−<!-- − --></mo> <mi>g</mi> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>h</mi> <mo>′</mo> </msup> </mrow> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left({\frac {g}{h}}\right)'={\frac {g'\cdot h-g\cdot h'}{h^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f14cbf031987cefc5420324fafa426decf4cd314" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:22.05ex; height:5.843ex;" alt="{\displaystyle \left({\frac {g}{h}}\right)'={\frac {g'\cdot h-g\cdot h'}{h^{2}}}}"></span></dd></dl> <dl><dt>Kjerneregelen</dt></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (g\circ h)'(x)=(g(h(x)))'=g'(h(x))\cdot h'(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>g</mi> <mo>∘<!-- ∘ --></mo> <mi>h</mi> <msup> <mo stretchy="false">)</mo> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>h</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <msup> <mo stretchy="false">)</mo> <mo>′</mo> </msup> <mo>=</mo> <msup> <mi>g</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>h</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>h</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (g\circ h)'(x)=(g(h(x)))'=g'(h(x))\cdot h'(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4eb45ef8447352cbe95eeca6c9e9cb12d0c271f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:41.309ex; height:3.009ex;" alt="{\displaystyle (g\circ h)'(x)=(g(h(x)))'=g'(h(x))\cdot h'(x)}"></span></dd></dl> <dl><dt>Kombinert kjerne og produktregel</dt></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{alignedat}{2}f&=c\cdot k^{u}\cdot l^{v}\cdot m^{w}\cdot ...\\[5pt]f'&=f\cdot ({\frac {u}{k}}\cdot k'+{\frac {v}{l}}\cdot l'+{\frac {w}{m}}\cdot m'+...)\end{alignedat}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left" rowspacing="0.8em 0.3em" columnspacing="0em 0em 0em 0em" displaystyle="true"> <mtr> <mtd> <mi>f</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>c</mi> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>l</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>w</mi> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <msup> <mi>f</mi> <mo>′</mo> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>f</mi> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>u</mi> <mi>k</mi> </mfrac> </mrow> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>k</mi> <mo>′</mo> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>v</mi> <mi>l</mi> </mfrac> </mrow> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>l</mi> <mo>′</mo> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>w</mi> <mi>m</mi> </mfrac> </mrow> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>m</mi> <mo>′</mo> </msup> <mo>+</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{alignedat}{2}f&=c\cdot k^{u}\cdot l^{v}\cdot m^{w}\cdot ...\\[5pt]f'&=f\cdot ({\frac {u}{k}}\cdot k'+{\frac {v}{l}}\cdot l'+{\frac {w}{m}}\cdot m'+...)\end{alignedat}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/596895f401c9b766afbd3618a4aaefdad45e0358" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.838ex; width:39.255ex; height:8.843ex;" alt="{\displaystyle {\begin{alignedat}{2}f&=c\cdot k^{u}\cdot l^{v}\cdot m^{w}\cdot ...\\[5pt]f'&=f\cdot ({\frac {u}{k}}\cdot k'+{\frac {v}{l}}\cdot l'+{\frac {w}{m}}\cdot m'+...)\end{alignedat}}}"></span></dd></dl> <dl><dt>Inverse funksjoner</dt></dl> <p>Hvis <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> er en <a href="/wiki/Bijeksjon" title="Bijeksjon">bijektiv funksjon</a> som er deriverbar i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86f21d0e31751534cd6584264ecf864a6aa792cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{0}}"></span> med <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'(x_{0})\neq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>≠<!-- ≠ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'(x_{0})\neq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a104aeedfd950013c62c892d6068dbc3ab3c211" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.459ex; height:3.009ex;" alt="{\displaystyle f'(x_{0})\neq 0}"></span>, og den inverse funksjonen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e5cfa2f5c08d6fe7d046b73faa6e3f213acc802" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.653ex; height:3.009ex;" alt="{\displaystyle f^{-1}}"></span> er deriverbar ved <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x_{0})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x_{0})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/27cf1dbaefc6038a22779fb2943aff758a592a3a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.472ex; height:2.843ex;" alt="{\displaystyle f(x_{0})}"></span>, så gjelder: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (f^{-1})'(f(x_{0}))={\frac {1}{f'(x_{0})}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (f^{-1})'(f(x_{0}))={\frac {1}{f'(x_{0})}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a2ab03fa67263fba66377dd7e1fd4d4519a3cd71" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:24.208ex; height:6.009ex;" alt="{\displaystyle (f^{-1})'(f(x_{0}))={\frac {1}{f'(x_{0})}}.}"></span></dd></dl> <dl><dt>Leibniz’ regel</dt></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (fg)^{(n)}=\sum _{k=0}^{n}{n \choose k}f^{(k)}g^{(n-k)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>f</mi> <mi>g</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> </mrow> </msup> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mi>k</mi> <mo stretchy="false">)</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (fg)^{(n)}=\sum _{k=0}^{n}{n \choose k}f^{(k)}g^{(n-k)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6096866646c0c3c0e4ebe0cd563076a39a89b92" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:27.798ex; height:7.009ex;" alt="{\displaystyle (fg)^{(n)}=\sum _{k=0}^{n}{n \choose k}f^{(k)}g^{(n-k)}}"></span>.</dd></dl> <p>Her er <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {n \choose k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {n \choose k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e8cc51538192fdf193790d4378c3a998a6b94262" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:4.816ex; height:6.176ex;" alt="{\displaystyle {n \choose k}}"></span> <a href="/wiki/Binomialkoeffisient" title="Binomialkoeffisient">binomialkoeffisienter</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Implisitt_derivasjon">Implisitt derivasjon</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Derivasjon&veaction=edit&section=17" title="Rediger avsnitt: Implisitt derivasjon" class="mw-editsection-visualeditor"><span>rediger</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Derivasjon&action=edit&section=17" title="Rediger kildekoden til seksjonen Implisitt derivasjon"><span>rediger kilde</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Hvis en funksjon <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=y(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <mi>y</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y=y(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c66fc1db874a7395b28e294c7db30f51bcd8df20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.548ex; height:2.843ex;" alt="{\displaystyle y=y(x)}"></span> er definert implisitt ved en ligning </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F\left(x,y(x)\right)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F\left(x,y(x)\right)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7ba2f9af75c3e6d6cd579381f0600032f701d8d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.856ex; height:2.843ex;" alt="{\displaystyle F\left(x,y(x)\right)=0}"></span>,</dd></dl> <p>så følger det av den generaliserte kjerneregelen for funksjoner av flere variabler at </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{x}+F_{y}y'=0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <msup> <mi>y</mi> <mo>′</mo> </msup> <mo>=</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{x}+F_{y}y'=0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2344cdb8dae2a524a50d9d409b46f19e2bd87838" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:14.804ex; height:3.176ex;" alt="{\displaystyle F_{x}+F_{y}y'=0.}"></span></dd></dl> <p>I denne ligningen er </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{alignedat}{2}F_{x}={\frac {\partial F}{\partial x}}\\F_{y}={\frac {\partial F}{\partial y}}\end{alignedat}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left" rowspacing="3pt" columnspacing="0em 0em 0em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>F</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>x</mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>F</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>y</mi> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{alignedat}{2}F_{x}={\frac {\partial F}{\partial x}}\\F_{y}={\frac {\partial F}{\partial y}}\end{alignedat}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f65609299a14f8d44681e9f36ae1a1ac4811b85" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.171ex; width:10.412ex; height:11.509ex;" alt="{\displaystyle {\begin{alignedat}{2}F_{x}={\frac {\partial F}{\partial x}}\\F_{y}={\frac {\partial F}{\partial y}}\end{alignedat}}}"></span></dd></dl> <p>partiell deriverte av funksjonen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span>. Forutsatt at den partiell deriverte <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{y}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{y}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/170e2b3a1ee797adf59f0a732b32eb0028e8437c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.544ex; height:2.843ex;" alt="{\displaystyle F_{y}}"></span> er ulik null, så kan den deriverte av funksjonen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=y(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <mi>y</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y=y(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c66fc1db874a7395b28e294c7db30f51bcd8df20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.548ex; height:2.843ex;" alt="{\displaystyle y=y(x)}"></span> uttrykkes som en brøk: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y'=-{\frac {F_{x}}{F_{y}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>y</mi> <mo>′</mo> </msup> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y'=-{\frac {F_{x}}{F_{y}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c49f6fb7ab66fa6a999bb24ec282f12f5e57af50" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:10.255ex; height:5.843ex;" alt="{\displaystyle y'=-{\frac {F_{x}}{F_{y}}}}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Eksempel">Eksempel</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Derivasjon&veaction=edit&section=18" title="Rediger avsnitt: Eksempel" class="mw-editsection-visualeditor"><span>rediger</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Derivasjon&action=edit&section=18" title="Rediger kildekoden til seksjonen Eksempel"><span>rediger kilde</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Gitt funksjonen </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=x^{4}+\sin \left(x^{2}\right)-\ln(x)e^{x}+7}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo>+</mo> <mi>sin</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>)</mo> </mrow> <mo>−<!-- − --></mo> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> <mo>+</mo> <mn>7</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=x^{4}+\sin \left(x^{2}\right)-\ln(x)e^{x}+7}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb0674e453c727ebe6a253133e369263531772d1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:34.287ex; height:3.343ex;" alt="{\displaystyle f(x)=x^{4}+\sin \left(x^{2}\right)-\ln(x)e^{x}+7}"></span></dd></dl> <p>Den deriverte er da gitt som følger: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}f'(x)&=4x^{(4-1)}+{\frac {d\left(x^{2}\right)}{dx}}\cos \left(x^{2}\right)-{\frac {d\left(\ln {x}\right)}{dx}}e^{x}-\ln(x){\frac {d\left(e^{x}\right)}{dx}}+0\\&=4x^{3}+2x\cos \left(x^{2}\right)-{\frac {1}{x}}e^{x}-\ln(x)e^{x}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>4</mn> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>4</mn> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mrow> <mo>(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>)</mo> </mrow> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mi>cos</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>)</mo> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mrow> <mo>(</mo> <mrow> <mi>ln</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mrow> <mo>(</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> <mo>)</mo> </mrow> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mn>4</mn> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <mn>2</mn> <mi>x</mi> <mi>cos</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>)</mo> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>x</mi> </mfrac> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}f'(x)&=4x^{(4-1)}+{\frac {d\left(x^{2}\right)}{dx}}\cos \left(x^{2}\right)-{\frac {d\left(\ln {x}\right)}{dx}}e^{x}-\ln(x){\frac {d\left(e^{x}\right)}{dx}}+0\\&=4x^{3}+2x\cos \left(x^{2}\right)-{\frac {1}{x}}e^{x}-\ln(x)e^{x}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b2fe68d50ae0d718cd766c35ceb64407013a166" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.171ex; width:65.152ex; height:11.509ex;" alt="{\displaystyle {\begin{aligned}f'(x)&=4x^{(4-1)}+{\frac {d\left(x^{2}\right)}{dx}}\cos \left(x^{2}\right)-{\frac {d\left(\ln {x}\right)}{dx}}e^{x}-\ln(x){\frac {d\left(e^{x}\right)}{dx}}+0\\&=4x^{3}+2x\cos \left(x^{2}\right)-{\frac {1}{x}}e^{x}-\ln(x)e^{x}.\end{aligned}}}"></span></dd></dl> <p>Det første leddet er derivert ved å bruke regelen for en potensfunksjon. Det andre leddet er håndtert ved hjelp av kjerneregelen samt regler for derivasjon av trigonometriske funksjoner og potensfunksjoner. Derivasjon av det tredje leddet er gjennomført ved å bruke produktregelen. </p> <div class="mw-heading mw-heading2"><h2 id="Egenskaper_til_deriverbare_funksjoner">Egenskaper til deriverbare funksjoner</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Derivasjon&veaction=edit&section=19" title="Rediger avsnitt: Egenskaper til deriverbare funksjoner" class="mw-editsection-visualeditor"><span>rediger</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Derivasjon&action=edit&section=19" title="Rediger kildekoden til seksjonen Egenskaper til deriverbare funksjoner"><span>rediger kilde</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Derivasjon_og_kontinuitet">Derivasjon og kontinuitet</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Derivasjon&veaction=edit&section=20" title="Rediger avsnitt: Derivasjon og kontinuitet" class="mw-editsection-visualeditor"><span>rediger</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Derivasjon&action=edit&section=20" title="Rediger kildekoden til seksjonen Derivasjon og kontinuitet"><span>rediger kilde</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>En funksjon som er deriverbar for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04e899fc6eba0b387b91f070adc7bc4fe5a706cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.812ex; height:2.009ex;" alt="{\displaystyle x=x_{0}}"></span>, er også <a href="/wiki/Kontinuerlig_funksjon" title="Kontinuerlig funksjon">kontinuerlig</a> i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04e899fc6eba0b387b91f070adc7bc4fe5a706cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.812ex; height:2.009ex;" alt="{\displaystyle x=x_{0}}"></span>. En funksjon kan altså ikke være deriverbar i en diskontinuitet. </p><p>Omvendt kan en funksjon være kontinuerlig i et punkt, uten å være deriverbar i punktet. Et eksempel på dette er punktet <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/953917eaf52f2e1baad54c8c9e3d6f9bb3710cdc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.591ex; height:2.176ex;" alt="{\displaystyle x=0}"></span> for absoluttverdi-funksjonen. </p><p>Dersom funksjonen har en derivert som også er kontinuerlig, sies funksjonen å være <i>kontinuerlig deriverbar</i>. Hvis den <i>n</i>-te ordens deriverte eksisterer og er kontinuerlig, så er funksjonen <i>n</i> ganger kontinuerlig deriverbar. Klassen av slike funksjoner er viktig nok til å ha fått sitt eget symbol: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{n}(D)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>D</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{n}(D)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88969ae66074d6e28b831d6293ec3aae2c074900" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.75ex; height:2.843ex;" alt="{\displaystyle C^{n}(D)}"></span></dd></dl> <p>betegner klassen av funksjoner som er <i>n</i> ganger kontinuerlig deriverbar på definisjonsmengden <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"></span>. Klassen av kontinuerlige funksjoner er <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c14274cad45f7c22b662e7a4e56b1db052883d1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.852ex; height:2.676ex;" alt="{\displaystyle C^{0}}"></span>. En funksjon som er uendelig mange ganger kontinuerlig deriverbar kalles en <a href="/wiki/Glatt_funksjon" title="Glatt funksjon">glatt funksjon</a>, og klassen av slike funksjoner betegnes som <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{\infty }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{\infty }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/971ed05871d69309df32efdfd2020128c9cf69d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.673ex; height:2.343ex;" alt="{\displaystyle C^{\infty }}"></span>. </p><p>Generelt gjelder at </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{n}\subset C^{n-1}\subset \dots \ C^{1}\subset C^{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>⊂<!-- ⊂ --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>⊂<!-- ⊂ --></mo> <mo>…<!-- … --></mo> <mtext> </mtext> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo>⊂<!-- ⊂ --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{n}\subset C^{n-1}\subset \dots \ C^{1}\subset C^{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0354ab4016704d43ce2e9f8789f3942905297831" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:26.824ex; height:2.676ex;" alt="{\displaystyle C^{n}\subset C^{n-1}\subset \dots \ C^{1}\subset C^{0}}"></span>.</dd></dl> <div class="mw-heading mw-heading3"><h3 id="Middelverdisetningen">Middelverdisetningen</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Derivasjon&veaction=edit&section=21" title="Rediger avsnitt: Middelverdisetningen" class="mw-editsection-visualeditor"><span>rediger</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Derivasjon&action=edit&section=21" title="Rediger kildekoden til seksjonen Middelverdisetningen"><span>rediger kilde</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Fil:Mittelwertsatz3.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/94/Mittelwertsatz3.svg/250px-Mittelwertsatz3.svg.png" decoding="async" width="250" height="179" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/94/Mittelwertsatz3.svg/375px-Mittelwertsatz3.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/94/Mittelwertsatz3.svg/500px-Mittelwertsatz3.svg.png 2x" data-file-width="403" data-file-height="288" /></a><figcaption>Middelverdisetningen uttrykker at sekanten mellom to punkt har en parallel tangent mellom de to punktene.</figcaption></figure> <p>For en funksjon som er deriverbar i et intervall, vil stigningen til sekanten mellom to vilkårlige punkt på grafen til funksjonen være et uttrykk for den midlere endringen til funksjonen mellom de to punktene. <a href="/wiki/Middelverdisetningen" title="Middelverdisetningen">Middelverdisetningen</a> uttrykker at grafen til funksjonen mellom de to punktene må ha en tangent med samme stigning som sekanten. Setningen kalles også <i>sekantsetningen</i>: </p><p>La <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:[a,b]\to \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mo stretchy="false">[</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">]</mo> <mo stretchy="false">→<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:[a,b]\to \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b592d102ccd1ba134d401c5b3ea177baaba3ffac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.063ex; height:2.843ex;" alt="{\displaystyle f:[a,b]\to \mathbb {R} }"></span> være en funksjon som er kontinuerlig på et lukket intervall <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [a,b]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [a,b]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c4b788fc5c637e26ee98b45f89a5c08c85f7935" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.555ex; height:2.843ex;" alt="{\displaystyle [a,b]}"></span> (med <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a<b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo><</mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a<b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/91a7698e4c7401bb321f97888b872b583a9e4642" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.326ex; height:2.176ex;" alt="{\displaystyle a<b}"></span>). Anta videre at <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> er deriverbar i det åpne intervallet <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a,b)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a,b)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7e5710198f33b00695903460983021e75860e2c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.071ex; height:2.843ex;" alt="{\displaystyle (a,b)}"></span>. Da finnes minst ett punkt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}\in (a,b)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>∈<!-- ∈ --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}\in (a,b)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c4d03f71523a733bbcdbd4ef0601099717cd1b75" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.295ex; height:2.843ex;" alt="{\displaystyle x_{0}\in (a,b)}"></span>, slik at </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'(x_{0})={\frac {f(b)-f(a)}{b-a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>b</mi> <mo>−<!-- − --></mo> <mi>a</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'(x_{0})={\frac {f(b)-f(a)}{b-a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81be90aca3a3be2ef9ae8a7fb17183bcebfa5ab4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:21.377ex; height:6.009ex;" alt="{\displaystyle f'(x_{0})={\frac {f(b)-f(a)}{b-a}}}"></span>.</dd></dl> <p>Dersom <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(a)=f(b)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(a)=f(b)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f70209bf143b8417feef2aed98b2e86bc8f447e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.502ex; height:2.843ex;" alt="{\displaystyle f(a)=f(b)}"></span>, medfører dette at funksjonen må ha en derivert mellom <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> og <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> som er lik null, det vil si at tangenten er horisontal. Dette spesialtilfellet av middelverdisetningen kalles <a href="/wiki/Rolles_teorem" title="Rolles teorem">Rolles sats</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Monotonisitet">Monotonisitet</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Derivasjon&veaction=edit&section=22" title="Rediger avsnitt: Monotonisitet" class="mw-editsection-visualeditor"><span>rediger</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Derivasjon&action=edit&section=22" title="Rediger kildekoden til seksjonen Monotonisitet"><span>rediger kilde</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>En funksjon er <a href="/wiki/Monotoniegenskaper" title="Monotoniegenskaper">monoton</a> i et intervall dersom den er voksende eller minkende i hele intervallet. Tilsvarende sier en også at funksjonen er <i>strengt monoton</i> i et intervall dersom den er strengt voksende eller strengt minkende i hele intervallet. Disse egenskapene følger direkte fra middelverdisetningen. </p><p>En deriverbar funksjon er voksende i et intervall dersom den deriverte av funksjonen er ikke-negativ i hele intervallet. Tilsvarende er funksjonen minkende i et intervall dersom den deriverte er ikke-positiv i intervallet. </p><p>En deriverbar funksjon er strengt voksende i et intervall dersom den deriverte av funksjonen er positiv i hele intervallet. Tilsvarende er funksjonen strengt minkende i et intervall dersom den deriverte er negativ i intervallet. </p> <div class="mw-heading mw-heading3"><h3 id="Ekstremalverdier_og_vendepunkt">Ekstremalverdier og vendepunkt</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Derivasjon&veaction=edit&section=23" title="Rediger avsnitt: Ekstremalverdier og vendepunkt" class="mw-editsection-visualeditor"><span>rediger</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Derivasjon&action=edit&section=23" title="Rediger kildekoden til seksjonen Ekstremalverdier og vendepunkt"><span>rediger kilde</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure typeof="mw:File/Thumb"><a href="/wiki/Fil:Funksjonsdrofting_example.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3d/Funksjonsdrofting_example.png/400px-Funksjonsdrofting_example.png" decoding="async" width="400" height="233" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3d/Funksjonsdrofting_example.png/600px-Funksjonsdrofting_example.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3d/Funksjonsdrofting_example.png/800px-Funksjonsdrofting_example.png 2x" data-file-width="1187" data-file-height="690" /></a><figcaption>Funksjonsgraf med ekstremalpunkt og vendepunkt</figcaption></figure> <p>Dersom en funksjon er deriverbar i et punkt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04e899fc6eba0b387b91f070adc7bc4fe5a706cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.812ex; height:2.009ex;" alt="{\displaystyle x=x_{0}}"></span>, så er <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'(x_{0})=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'(x_{0})=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7174944436b983b143e07db4f628f53dc8508922" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.459ex; height:3.009ex;" alt="{\displaystyle f'(x_{0})=0}"></span> et <i>nødvendig</i> vilkår for at funksjonen skal ha et <a href="/wiki/Ekstremalverdi" class="mw-redirect" title="Ekstremalverdi">ekstremalpunkt</a> for dette argumentet. Et punkt der den deriverte er lik null kalles et <i>stasjonært punkt</i>.<sup id="cite_ref-COLLINS558_8-0" class="reference"><a href="#cite_note-COLLINS558-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> Sammen med punkt der funksjonen ikke er deriverbar og eventuelle endepunkt for et definisjonsintervall, kalles dette også <a href="/w/index.php?title=Kritisk_punkt_(matematikk)&action=edit&redlink=1" class="new" title="Kritisk punkt (matematikk) (ikke skrevet ennå)">kritiske punkt</a>. Et ekstremalpunkt må alltid være et kritisk punkt.<sup id="cite_ref-TL246_9-0" class="reference"><a href="#cite_note-TL246-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> Et <i>terassepunkt</i> er et stasjonært punkt der den deriverte ikke skifter fortegn.<sup id="cite_ref-ABS_10-0" class="reference"><a href="#cite_note-ABS-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> </p><p>For et punkt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04e899fc6eba0b387b91f070adc7bc4fe5a706cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.812ex; height:2.009ex;" alt="{\displaystyle x=x_{0}}"></span> der en funksjon er deriverbar vil hver av de to følgende testene gi <i>tilstrekkelige</i> vilkår for at punktet er et maksimumspunkt: </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04e899fc6eba0b387b91f070adc7bc4fe5a706cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.812ex; height:2.009ex;" alt="{\displaystyle x=x_{0}}"></span> er et lokalt strengt maksimumspunkt dersom <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'(x_{0})=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'(x_{0})=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7174944436b983b143e07db4f628f53dc8508922" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.459ex; height:3.009ex;" alt="{\displaystyle f'(x_{0})=0}"></span> og den deriverte skifter fortegn fra positiv til negativ når <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> vokser gjennom <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86f21d0e31751534cd6584264ecf864a6aa792cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{0}}"></span>.</li></ul> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04e899fc6eba0b387b91f070adc7bc4fe5a706cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.812ex; height:2.009ex;" alt="{\displaystyle x=x_{0}}"></span> er et lokalt strengt maksimumspunkt dersom <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'(x_{0})=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'(x_{0})=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7174944436b983b143e07db4f628f53dc8508922" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.459ex; height:3.009ex;" alt="{\displaystyle f'(x_{0})=0}"></span> og <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f''(x_{0})<0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>″</mo> </msup> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo><</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f''(x_{0})<0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64f7d496608ef59361c01ee3c5f912c387816721" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.912ex; height:3.009ex;" alt="{\displaystyle f''(x_{0})<0}"></span>.</li></ul> <p>Tilsvarende har en for et minimumspunkt: </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04e899fc6eba0b387b91f070adc7bc4fe5a706cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.812ex; height:2.009ex;" alt="{\displaystyle x=x_{0}}"></span> er et lokalt strengt minimumspunkt dersom <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'(x_{0})=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'(x_{0})=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7174944436b983b143e07db4f628f53dc8508922" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.459ex; height:3.009ex;" alt="{\displaystyle f'(x_{0})=0}"></span> og den deriverte skifter fortegn fra negativ til positiv når <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> vokser gjennom <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86f21d0e31751534cd6584264ecf864a6aa792cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{0}}"></span>.</li></ul> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04e899fc6eba0b387b91f070adc7bc4fe5a706cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.812ex; height:2.009ex;" alt="{\displaystyle x=x_{0}}"></span> er et lokalt strengt minimumspunkt dersom <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'(x_{0})=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'(x_{0})=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7174944436b983b143e07db4f628f53dc8508922" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.459ex; height:3.009ex;" alt="{\displaystyle f'(x_{0})=0}"></span> og <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f''(x_{0})>0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>″</mo> </msup> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f''(x_{0})>0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae92e07699290afc2d950dba2a49f3f405b81a25" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.912ex; height:3.009ex;" alt="{\displaystyle f''(x_{0})>0}"></span>.</li></ul> <p>Kartlegging av ekstremalpunkt inngår som en viktig del av <a href="/wiki/Funksjonsdr%C3%B8fting" title="Funksjonsdrøfting">funksjonsdrøfting</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Krumning_og_vendepunkt">Krumning og vendepunkt</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Derivasjon&veaction=edit&section=24" title="Rediger avsnitt: Krumning og vendepunkt" class="mw-editsection-visualeditor"><span>rediger</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Derivasjon&action=edit&section=24" title="Rediger kildekoden til seksjonen Krumning og vendepunkt"><span>rediger kilde</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>En funksjon er <a href="/wiki/Konveks_funksjon" title="Konveks funksjon">konveks</a> i et intervall dersom en rett linje mellom to vilkårlige punkt i intervallet ligger <i>over</i> grafen til funksjonen i intervallet. Dette kan også uttrykkes som at grafen til funksjonen vender den hule siden oppover eller krummer opp. Funksjonen er <i>strengt</i> konveks dersom grafen ligger helt under den rette linjen. Tilsvarende kan en definere at funksjonen er konkav, dersom den vender den hule siden nedover eller krummer ned. </p><p>En deriverbar funksjon er konveks eller krummer opp i et intervall dersom den deriverte er voksende i intervallet. En funksjon som er to ganger deriverbar, er strengt konveks i et intervall dersom den dobbelt-deriverte <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f''(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>″</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f''(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0e2e84959f7e6426747625eee3248602ef8b2e60" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.597ex; height:3.009ex;" alt="{\displaystyle f''(x)}"></span> er positiv i intervallet. Den dobbelt-deriverte kan også være lik null i isolerte punkt i intervallet. </p><p>Funksjonen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=x^{4}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=x^{4}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/765bdfd72f1d27f28d6dc8921aaa1ac1aa16af7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.9ex; height:3.176ex;" alt="{\displaystyle f(x)=x^{4}}"></span> har dobbelt-derivert <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f''(x)=12x^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>″</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>12</mn> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f''(x)=12x^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9455f52ad07517ddeb6059c1e4f8cf9ad0ca7a2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.404ex; height:3.176ex;" alt="{\displaystyle f''(x)=12x^{2}}"></span>. Funksjonen er altså strengt konveks i hele <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span>. </p><p>I <a href="/wiki/Differensialgeometri" title="Differensialgeometri">differensialgeometri</a> er <a href="/wiki/Krumning" title="Krumning">krumningen</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>κ<!-- κ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \kappa }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54ddec2e922c5caea4e47d04feef86e782dc8e6d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.339ex; height:1.676ex;" alt="{\displaystyle \kappa }"></span> til en funksjon gitt ved det følgende uttrykket:<sup id="cite_ref-TL1_11-0" class="reference"><a href="#cite_note-TL1-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa ={f'' \over (1+f'^{2})^{3/2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>κ<!-- κ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>f</mi> <mo>″</mo> </msup> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <msup> <mi>f</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \kappa ={f'' \over (1+f'^{2})^{3/2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/50eefb434394fd0cba6f2204b57a926271e83985" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:16.611ex; height:6.509ex;" alt="{\displaystyle \kappa ={f'' \over (1+f'^{2})^{3/2}}}"></span></dd></dl> <p>Et <i>vendepunkt</i> er et stasjonært punkt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86f21d0e31751534cd6584264ecf864a6aa792cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{0}}"></span> der funksjonen skifter krumning, fra opp til ned eller omvendt. Dette vil være tilfelle dersom den dobbelt-deriverte skifter fortegn i punktet. </p><p>Funksjonen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=x^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=x^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b666f585570f17a4015f8bc1797a8c074744d27" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.9ex; height:3.176ex;" alt="{\displaystyle f(x)=x^{3}}"></span> har dobbelt-derivert <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f''(x)=6x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>″</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>6</mn> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f''(x)=6x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3f6ec8e49b9587ce3d7f7b4604563436f5beabf1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.187ex; height:3.009ex;" alt="{\displaystyle f''(x)=6x}"></span>. Funksjonen har altså et vendepunkt i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/953917eaf52f2e1baad54c8c9e3d6f9bb3710cdc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.591ex; height:2.176ex;" alt="{\displaystyle x=0}"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Taylorrekker">Taylorrekker</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Derivasjon&veaction=edit&section=25" title="Rediger avsnitt: Taylorrekker" class="mw-editsection-visualeditor"><span>rediger</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Derivasjon&action=edit&section=25" title="Rediger kildekoden til seksjonen Taylorrekker"><span>rediger kilde</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/w/index.php?title=Taylors_teorem&action=edit&redlink=1" class="new" title="Taylors teorem (ikke skrevet ennå)">Taylors teorem</a> sier at en funksjon som er (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n+1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n+1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a135e65a42f2d73cccbfc4569523996ca0036f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.398ex; height:2.343ex;" alt="{\displaystyle n+1}"></span>) ganger kontinuerlig deriverbar på et intervall <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span>, kan tilnærmes med et <a href="/wiki/Polynom" title="Polynom">polynom</a> i intervallet, og teoremet gir også et uttrykk for feilen i denne tilnærmingen. Dersom <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aaae23950e96a955ab5b07015a168fd931d4d82b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.658ex; height:1.676ex;" alt="{\displaystyle x=a}"></span> er et vilkårlig punkt i intervallet, så er </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=T_{n}(x;a)+R_{n+1}(x;a)\qquad \forall x\in I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>;</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>+</mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>;</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mspace width="2em" /> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=T_{n}(x;a)+R_{n+1}(x;a)\qquad \forall x\in I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48902748144f6cad60b2497375700ddb69f93c6d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:40.101ex; height:2.843ex;" alt="{\displaystyle f(x)=T_{n}(x;a)+R_{n+1}(x;a)\qquad \forall x\in I}"></span></dd></dl> <p>Her er <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4d9241493be76739f2400f258f32c24f9689161f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.576ex; height:2.509ex;" alt="{\displaystyle T_{n}}"></span> <i>taylorpolynomet</i> av grad <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}T_{n}(x;a)&=\sum _{k=0}^{n}\left({\frac {f^{(k)}(a)}{k!}}(x-a)^{k}\right)\\&=f(a)+{\frac {f'(a)}{1!}}(x-a)+{\frac {f''(a)}{2!}}(x-a)^{2}+\dotsb +{\frac {f^{(n)}(a)}{n!}}(x-a)^{n}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>;</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>k</mi> <mo>!</mo> </mrow> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>a</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>1</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>f</mi> <mo>″</mo> </msup> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>2</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>a</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>n</mi> <mo>!</mo> </mrow> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>a</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}T_{n}(x;a)&=\sum _{k=0}^{n}\left({\frac {f^{(k)}(a)}{k!}}(x-a)^{k}\right)\\&=f(a)+{\frac {f'(a)}{1!}}(x-a)+{\frac {f''(a)}{2!}}(x-a)^{2}+\dotsb +{\frac {f^{(n)}(a)}{n!}}(x-a)^{n}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f4eb234df6c09439eb1cfddabe2ca849f9aa01e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:74.038ex; height:13.843ex;" alt="{\displaystyle {\begin{aligned}T_{n}(x;a)&=\sum _{k=0}^{n}\left({\frac {f^{(k)}(a)}{k!}}(x-a)^{k}\right)\\&=f(a)+{\frac {f'(a)}{1!}}(x-a)+{\frac {f''(a)}{2!}}(x-a)^{2}+\dotsb +{\frac {f^{(n)}(a)}{n!}}(x-a)^{n}\end{aligned}}}"></span>.</dd></dl> <p>Restleddet <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{n+1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{n+1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/63c2ee264cee03dc4f70a642008025969ee15ca6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.083ex; height:2.509ex;" alt="{\displaystyle R_{n+1}}"></span> kan uttrykkes på flere forskjellige måter, og Joseph Louis Lagranges form er gitt som<sup id="cite_ref-THOMAS795_12-0" class="reference"><a href="#cite_note-THOMAS795-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{n+1}(x;a)={\frac {1}{(n+1)!}}f^{(n+1)}(b)(x-a)^{n+1}\qquad }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>;</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>a</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mspace width="2em" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{n+1}(x;a)={\frac {1}{(n+1)!}}f^{(n+1)}(b)(x-a)^{n+1}\qquad }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d04a285e13c1e1a4a8b89114ff38985fc22423d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:46.173ex; height:6.009ex;" alt="{\displaystyle R_{n+1}(x;a)={\frac {1}{(n+1)!}}f^{(n+1)}(b)(x-a)^{n+1}\qquad }"></span>.</dd></dl> <p>Argumentet <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> er en verdi mellom <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> og <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span>. Når <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d9ec7e1edc2e6d98f5aec2a39ae5f1c99d1e1425" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\displaystyle n=1}"></span> svarer Taylors formel til middelverdisetningen. </p><p>I mange praktske anvendelser brukes tilnærmingen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=T_{n}(x;a)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>;</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=T_{n}(x;a)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6b224b11436dc19a85accef63ed988d62ee4f418" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.495ex; height:2.843ex;" alt="{\displaystyle f(x)=T_{n}(x;a)}"></span>, og restleddet er da et uttrykk for feilen i tilnærmingen. Feilen vil typisk vokse når <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> fjerner seg fra verdien <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span>. </p><p>For en glatt funksjon kan en i noen tilfeller vise at funksjonen kan uttrykkes som en uendelig konvergent <a href="/wiki/Taylorrekke" title="Taylorrekke">taylorrekke</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}f(x)&=f(a)+f'(a)(x-a)+{\frac {f''(a)}{2}}(x-a)^{2}+\dotsb +{\frac {f^{(n)}(a)}{n!}}(x-a)^{n}+\dotsb \\&=\sum _{n=0}^{\infty }{\frac {f^{(n)}(a)}{n!}}(x-a)^{n}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>+</mo> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>f</mi> <mo>″</mo> </msup> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>a</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>n</mi> <mo>!</mo> </mrow> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>a</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>n</mi> <mo>!</mo> </mrow> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>a</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}f(x)&=f(a)+f'(a)(x-a)+{\frac {f''(a)}{2}}(x-a)^{2}+\dotsb +{\frac {f^{(n)}(a)}{n!}}(x-a)^{n}+\dotsb \\&=\sum _{n=0}^{\infty }{\frac {f^{(n)}(a)}{n!}}(x-a)^{n}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c08af8d34860e41a2cec25c13b887531879e8ea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.171ex; width:75.205ex; height:13.509ex;" alt="{\displaystyle {\begin{aligned}f(x)&=f(a)+f'(a)(x-a)+{\frac {f''(a)}{2}}(x-a)^{2}+\dotsb +{\frac {f^{(n)}(a)}{n!}}(x-a)^{n}+\dotsb \\&=\sum _{n=0}^{\infty }{\frac {f^{(n)}(a)}{n!}}(x-a)^{n}.\end{aligned}}}"></span></dd></dl> <p>Denne sammenhengen gjelder imidlertid ikke for alle glatte funksjoner. En glatt funksjon som samsvarer lokalt med sin egen taylorrekke, kalles en <a href="/wiki/Analytisk_funksjon" title="Analytisk funksjon">analytisk funksjon</a>.<sup id="cite_ref-COLLINS16_13-0" class="reference"><a href="#cite_note-COLLINS16-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Analysens_fundamentalteorem">Analysens fundamentalteorem</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Derivasjon&veaction=edit&section=26" title="Rediger avsnitt: Analysens fundamentalteorem" class="mw-editsection-visualeditor"><span>rediger</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Derivasjon&action=edit&section=26" title="Rediger kildekoden til seksjonen Analysens fundamentalteorem"><span>rediger kilde</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Analysens_fundamentalteorem" title="Analysens fundamentalteorem">Analysens fundamentalteorem</a> uttrykker en sammenheng mellom derivasjon og <a href="/wiki/Integrasjon" title="Integrasjon">integrasjon</a>.<sup id="cite_ref-TL331_14-0" class="reference"><a href="#cite_note-TL331-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> </p><p>Hvis <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:[a,b]\to \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mo stretchy="false">[</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">]</mo> <mo stretchy="false">→<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:[a,b]\to \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b592d102ccd1ba134d401c5b3ea177baaba3ffac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.063ex; height:2.843ex;" alt="{\displaystyle f:[a,b]\to \mathbb {R} }"></span> er en integrerbar funksjon, så er funksjonen </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(x)=\int _{a}^{x}f(t)\,\mathrm {d} t\qquad x\in [a,b]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> <mspace width="2em" /> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mo stretchy="false">[</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(x)=\int _{a}^{x}f(t)\,\mathrm {d} t\qquad x\in [a,b]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7088f0be513eb8106dd9c5dc1f1e4299035b97a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:31.819ex; height:5.843ex;" alt="{\displaystyle F(x)=\int _{a}^{x}f(t)\,\mathrm {d} t\qquad x\in [a,b]}"></span></dd></dl> <p>kontinuerlig i intervallet <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [a,b]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [a,b]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c4b788fc5c637e26ee98b45f89a5c08c85f7935" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.555ex; height:2.843ex;" alt="{\displaystyle [a,b]}"></span>. Hvis <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> er deriverbar i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04e899fc6eba0b387b91f070adc7bc4fe5a706cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.812ex; height:2.009ex;" alt="{\displaystyle x=x_{0}}"></span>, så er også <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span> deriverbar i dette punktet, og <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F\,'(x_{0})=f(x_{0})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <msup> <mspace width="thinmathspace" /> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F\,'(x_{0})=f(x_{0})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32324cd9e51e6010059a73e598b63b721676a90d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.576ex; height:3.009ex;" alt="{\displaystyle F\,'(x_{0})=f(x_{0})}"></span>. </p><p>Teoremet gir en bruksanvisning for kunne integrere en funksjon <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>, omtalt som <i>integranden</i>. Dersom den antideriverte til integranden kan bestemmes som <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span>, så er </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{a}^{b}f(x)\,\mathrm {d} x=F(b)-F(a)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>x</mi> <mo>=</mo> <mi>F</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>F</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{a}^{b}f(x)\,\mathrm {d} x=F(b)-F(a)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e272c5ec268675124f4f31b6c551aebe450fa6ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:26.482ex; height:6.343ex;" alt="{\displaystyle \int _{a}^{b}f(x)\,\mathrm {d} x=F(b)-F(a)}"></span>.</dd></dl> <div class="mw-heading mw-heading2"><h2 id="Derivasjon_av_en_kompleks_funksjon_av_én_variabel"><span id="Derivasjon_av_en_kompleks_funksjon_av_.C3.A9n_variabel"></span>Derivasjon av en kompleks funksjon av én variabel</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Derivasjon&veaction=edit&section=27" title="Rediger avsnitt: Derivasjon av en kompleks funksjon av én variabel" class="mw-editsection-visualeditor"><span>rediger</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Derivasjon&action=edit&section=27" title="Rediger kildekoden til seksjonen Derivasjon av en kompleks funksjon av én variabel"><span>rediger kilde</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Formell_definisjon">Formell definisjon</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Derivasjon&veaction=edit&section=28" title="Rediger avsnitt: Formell definisjon" class="mw-editsection-visualeditor"><span>rediger</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Derivasjon&action=edit&section=28" title="Rediger kildekoden til seksjonen Formell definisjon"><span>rediger kilde</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Definisjonen av en <a href="/wiki/Komplekst_tall" title="Komplekst tall">kompleks</a> funksjon <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:\mathbb {C} \rightarrow \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mo stretchy="false">→<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:\mathbb {C} \rightarrow \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32da9c2dcc989dac4409b19eb47edef7a6cebae7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.186ex; height:2.509ex;" alt="{\displaystyle f:\mathbb {C} \rightarrow \mathbb {C} }"></span> er i notasjon lik definisjonen for en reell funksjon: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\!\,'(x)=\lim _{h\to 0}{\frac {f(x+h)-f(x)}{h}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mspace width="negativethinmathspace" /> <msup> <mspace width="thinmathspace" /> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mi>h</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\!\,'(x)=\lim _{h\to 0}{\frac {f(x+h)-f(x)}{h}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54aaa4a0449297261633f7b1060a11b42f29dc09" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:28.691ex; height:5.843ex;" alt="{\displaystyle f\!\,'(x)=\lim _{h\to 0}{\frac {f(x+h)-f(x)}{h}}}"></span>.</dd></dl> <p>Forskjellen ligger i definisjonen av grenseverdien, som nå er definert i det komplekse planet. Den komplekse størrelsen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b26be3e694314bc90c3215047e4a2010c6ee184a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.339ex; height:2.176ex;" alt="{\displaystyle h}"></span> skal nå kunne nærme seg null langs en vilkårlig rute i det kompekse planet. Dette gjør at definisjonen av deriverbarhet for komplekse funksjoner er et strengere krav enn deriverbarhet for reelle funksjoner. Realdelen og imaginærdelen av en kompleks funksjon kan hver for seg være deriverbare, uten at den komplekse funksjonen er deriverbar. </p><p>En kompleks funksjon kan være deriverbar i et punkt, uten å være deriverbar i andre nærliggende punkt. En kompleks funksjon sies å være en <a href="/wiki/Analytisk_funksjon" title="Analytisk funksjon">analytisk funksjon</a> i et punkt dersom funksjonen er deriverbar i en omegn om punktet. Begrepet <i>holomorf funksjon</i> er synonymt med analytisk funksjon. En funksjon som er analytisk i hele det komplekse planet, kalles en <i>hel</i> funksjon. </p> <div class="mw-heading mw-heading3"><h3 id="Cauchy-Riemann-ligningene">Cauchy-Riemann-ligningene</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Derivasjon&veaction=edit&section=29" title="Rediger avsnitt: Cauchy-Riemann-ligningene" class="mw-editsection-visualeditor"><span>rediger</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Derivasjon&action=edit&section=29" title="Rediger kildekoden til seksjonen Cauchy-Riemann-ligningene"><span>rediger kilde</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>En kompleks funksjon kan generelt skrives på formen </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(z)=u(x,y)+iv(x,y)\qquad \qquad z=x+iy}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>u</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>i</mi> <mi>v</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mspace width="2em" /> <mspace width="2em" /> <mi>z</mi> <mo>=</mo> <mi>x</mi> <mo>+</mo> <mi>i</mi> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(z)=u(x,y)+iv(x,y)\qquad \qquad z=x+iy}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d66b02d32bb25b42b9ea2d6293a3401b62c896d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:43.636ex; height:2.843ex;" alt="{\displaystyle f(z)=u(x,y)+iv(x,y)\qquad \qquad z=x+iy}"></span></dd></dl> <p>der <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span> er den <a href="/wiki/Imagin%C3%A6r_enhet" title="Imaginær enhet">imaginære enheten</a>, med egenskapen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i^{2}=-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i^{2}=-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88e98a401d352e5037d5043028e2d7f449e83fa6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:7.926ex; height:2.843ex;" alt="{\displaystyle i^{2}=-1}"></span>. De to funksjonene <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>u</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3e6bb763d22c20916ed4f0bb6bd49d7470cffd8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle u}"></span> og <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e07b00e7fc0847fbd16391c778d65bc25c452597" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.128ex; height:1.676ex;" alt="{\displaystyle v}"></span> er reelle funksjoner. Hvis funksjonen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8dd568d570b390c337c0a911f0a1c5c214e8240" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.176ex; height:2.843ex;" alt="{\displaystyle f(z)}"></span> er deriverbar, så er også de to <a href="/wiki/Cauchy-Riemann-ligningene" class="mw-redirect" title="Cauchy-Riemann-ligningene">Cauchy-Riemann-ligningene</a> oppfylte. Dette er to differensialligninger på formen </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{alignedat}{2}u_{x}&=v_{y}\\u_{y}&=-v_{x}\end{alignedat}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left" rowspacing="3pt" columnspacing="0em 0em 0em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo>−<!-- − --></mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{alignedat}{2}u_{x}&=v_{y}\\u_{y}&=-v_{x}\end{alignedat}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7993401f81105044859e44cb3d345b2998ce1deb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:10.46ex; height:6.176ex;" alt="{\displaystyle {\begin{alignedat}{2}u_{x}&=v_{y}\\u_{y}&=-v_{x}\end{alignedat}}}"></span></dd></dl> <p>Ligningene er oppkalt etter <a href="/wiki/Augustin_Louis_Cauchy" title="Augustin Louis Cauchy">Augustin Louis Cauchy</a> og <a href="/wiki/Bernhard_Riemann" title="Bernhard Riemann">Bernhard Riemann</a>. Den deriverte er gitt ved </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'(z)=u_{x}+iv_{x}=v_{y}-iv_{x}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>+</mo> <mi>i</mi> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>−<!-- − --></mo> <mi>i</mi> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'(z)=u_{x}+iv_{x}=v_{y}-iv_{x}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed545d217a0b2ab157761292feb2709a64345ec3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:27.665ex; height:3.176ex;" alt="{\displaystyle f'(z)=u_{x}+iv_{x}=v_{y}-iv_{x}}"></span></dd></dl> <p>Omvendt gjelder at dersom de to funksjonene <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>u</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3e6bb763d22c20916ed4f0bb6bd49d7470cffd8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle u}"></span> og <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e07b00e7fc0847fbd16391c778d65bc25c452597" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.128ex; height:1.676ex;" alt="{\displaystyle v}"></span> har kontinuerlige deriverte med hensyn på begge variablene, og de deriverte oppfyller Cauchy-Riemann-ligningene, så er funksjonen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> deriverbar. </p> <div class="mw-heading mw-heading3"><h3 id="Eksempler_2">Eksempler</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Derivasjon&veaction=edit&section=30" title="Rediger avsnitt: Eksempler" class="mw-editsection-visualeditor"><span>rediger</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Derivasjon&action=edit&section=30" title="Rediger kildekoden til seksjonen Eksempler"><span>rediger kilde</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Den komplekse eksponentialfunksjonen kan defineres ved </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(z)=e^{z}=e^{x}(\cos y+i\sin y)\qquad \qquad z=x+iy}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msup> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mi>y</mi> <mo>+</mo> <mi>i</mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>y</mi> <mo stretchy="false">)</mo> <mspace width="2em" /> <mspace width="2em" /> <mi>z</mi> <mo>=</mo> <mi>x</mi> <mo>+</mo> <mi>i</mi> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(z)=e^{z}=e^{x}(\cos y+i\sin y)\qquad \qquad z=x+iy}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/28802df85f87b2588165a30f6f452452d6ffde4d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:49.21ex; height:2.843ex;" alt="{\displaystyle f(z)=e^{z}=e^{x}(\cos y+i\sin y)\qquad \qquad z=x+iy}"></span></dd></dl> <p>De to funksjonene </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{alignedat}{2}u(x,y)=e^{x}\cos y\\v(x,y)=e^{x}\sin x\end{alignedat}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left" rowspacing="3pt" columnspacing="0em 0em 0em 0em" displaystyle="true"> <mtr> <mtd> <mi>u</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> <mi>cos</mi> <mo>⁡<!-- --></mo> <mi>y</mi> </mtd> </mtr> <mtr> <mtd> <mi>v</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>x</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{alignedat}{2}u(x,y)=e^{x}\cos y\\v(x,y)=e^{x}\sin x\end{alignedat}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/285d063c939bf37e71dd90c943cb9e443676c7a4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:17.805ex; height:6.176ex;" alt="{\displaystyle {\begin{alignedat}{2}u(x,y)=e^{x}\cos y\\v(x,y)=e^{x}\sin x\end{alignedat}}}"></span></dd></dl> <p>har begge kontinuerlige deriverte og oppfyller Cauchy-Riemann-ligningene. Da følger det at </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'(z)=u_{x}+iv_{x}=e^{x}(\cos y+i\sin y)=e^{z}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>+</mo> <mi>i</mi> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mi>y</mi> <mo>+</mo> <mi>i</mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'(z)=u_{x}+iv_{x}=e^{x}(\cos y+i\sin y)=e^{z}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff9075601dc31f42a9943fb45355694305d7987a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:41.875ex; height:3.009ex;" alt="{\displaystyle f'(z)=u_{x}+iv_{x}=e^{x}(\cos y+i\sin y)=e^{z}}"></span></dd></dl> <p>Også den komplekse eksponentialfunksjonen er lik sin egen derivert. Eksponentialfunksjonen er en hel funksjon. Siden de trigonometriske funksjonene <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/840154d23e7487c8c0d9bef213611822d5b09463" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.331ex; height:2.176ex;" alt="{\displaystyle \sin z}"></span> og <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cos z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cos</mi> <mo>⁡<!-- --></mo> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cos z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c26ac0eb3eee2aa3b07447f04fa98ff5964b2772" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.586ex; height:1.676ex;" alt="{\displaystyle \cos z}"></span> kan defineres som lineærkombinasjonar av den komplekse eksponentialfunksjonen, er også disse to funksjonene hele. Alle polynomfunksjoner er hele funksjoner. </p><p>Den komplekse funksjonen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(z)=|z|^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>z</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(z)=|z|^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f8b5e74e3179788a2dd4c66b39d42b9e380c012f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.711ex; height:3.343ex;" alt="{\displaystyle f(z)=|z|^{2}}"></span> er deriverbar kun for argumentet <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b92bfc06485cc90286474b14a516a68d8bfdd7b3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.349ex; height:2.176ex;" alt="{\displaystyle z=0}"></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Generalisering_til_andre_typer_funksjoner">Generalisering til andre typer funksjoner</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Derivasjon&veaction=edit&section=31" title="Rediger avsnitt: Generalisering til andre typer funksjoner" class="mw-editsection-visualeditor"><span>rediger</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Derivasjon&action=edit&section=31" title="Rediger kildekoden til seksjonen Generalisering til andre typer funksjoner"><span>rediger kilde</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Flere typer deriverte kan defineres for funksjoner, også for funksjonstyper der argumentet ikke er et reelt eller et komplekst tall. </p> <div class="mw-heading mw-heading3"><h3 id="Retningsderivasjon_for_skalarfelt">Retningsderivasjon for skalarfelt</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Derivasjon&veaction=edit&section=32" title="Rediger avsnitt: Retningsderivasjon for skalarfelt" class="mw-editsection-visualeditor"><span>rediger</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Derivasjon&action=edit&section=32" title="Rediger kildekoden til seksjonen Retningsderivasjon for skalarfelt"><span>rediger kilde</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Et <a href="/wiki/Skalarfelt" title="Skalarfelt">skalarfelt</a> er en reell funksjon av flere variable, på formen </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=f({\mathbf {x} }):D\rightarrow \mathbb {R} \qquad D\subset \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>:</mo> <mi>D</mi> <mo stretchy="false">→<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mspace width="2em" /> <mi>D</mi> <mo>⊂<!-- ⊂ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y=f({\mathbf {x} }):D\rightarrow \mathbb {R} \qquad D\subset \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b4352ba39604d25e2a9cc459b1af28f3e25d01c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:30.471ex; height:2.843ex;" alt="{\displaystyle y=f({\mathbf {x} }):D\rightarrow \mathbb {R} \qquad D\subset \mathbb {R} ^{n}}"></span></dd></dl> <p>Argumentet <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathbf {x} }=(x_{1},x_{2},x_{3},...,x_{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathbf {x} }=(x_{1},x_{2},x_{3},...,x_{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0121804570fa794598de5ae0be3473cd0cc5ce4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.256ex; height:2.843ex;" alt="{\displaystyle {\mathbf {x} }=(x_{1},x_{2},x_{3},...,x_{n})}"></span> er her en <i>n</i>-dimensjonal <a href="/wiki/Vektor" class="mw-disambig" title="Vektor">vektor</a>. </p><p>For et skalarfelt kan en definere den <a href="/wiki/Retningsderivert" title="Retningsderivert">retningsderiverte</a> i retningen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathbf {v} }\in \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mrow> <mo>∈<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathbf {v} }\in \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a0a400c143287364f198c06968685ce965eec3a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.148ex; height:2.343ex;" alt="{\displaystyle {\mathbf {v} }\in \mathbb {R} ^{n}}"></span> ved<sup id="cite_ref-APOSTOL252_15-0" class="reference"><a href="#cite_note-APOSTOL252-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'({\mathbf {x} };{\mathbf {v} })=\lim _{h\to 0}{\frac {f({\mathbf {x} }+h{\mathbf {v} })-f({\mathbf {x} })}{h}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mrow> <mo>;</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mrow> <mo>+</mo> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mrow> <mo stretchy="false">)</mo> </mrow> <mi>h</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'({\mathbf {x} };{\mathbf {v} })=\lim _{h\to 0}{\frac {f({\mathbf {x} }+h{\mathbf {v} })-f({\mathbf {x} })}{h}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc42bd469a48b3542d63d72631064bd33b8eae2e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:32.832ex; height:5.843ex;" alt="{\displaystyle f'({\mathbf {x} };{\mathbf {v} })=\lim _{h\to 0}{\frac {f({\mathbf {x} }+h{\mathbf {v} })-f({\mathbf {x} })}{h}}}"></span></dd></dl> <p>forutsatt at grenseverdien eksisterer. Det er ikke krav at vektoren <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathbf {v} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathbf {v} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c555f9553f82a3560c735b76dc25a3a203358b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle {\mathbf {v} }}"></span> skal ha lengde lik én. Eksistens av en retningsderivert er ikke tilstrekkelig for at funksjonen skal være kontinuerlig. </p><p>Den retningsderiverte oppfyller et middelverditeorem, tilsvarende en funksjon av én variabel: Dersom den retningsderiverte <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'({\mathbf {x} +t{\mathbf {v} }};{\mathbf {v} })}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>+</mo> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mrow> </mrow> <mo>;</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'({\mathbf {x} +t{\mathbf {v} }};{\mathbf {v} })}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/31967b69973d7997ec298b6716e9146f351bc0b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.761ex; height:3.009ex;" alt="{\displaystyle f'({\mathbf {x} +t{\mathbf {v} }};{\mathbf {v} })}"></span> eksisterer for alle verdier av <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span> i intervallet <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [0,1]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [0,1]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/738f7d23bb2d9642bab520020873cccbef49768d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.653ex; height:2.843ex;" alt="{\displaystyle [0,1]}"></span>, så er </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f({\mathbf {x} }+{\mathbf {v} })-f({\mathbf {x} })=f'({\mathbf {x} +\theta {\mathbf {v} }};{\mathbf {v} })\qquad \theta \in (0,1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>+</mo> <mi>θ<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mrow> </mrow> <mo>;</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mspace width="2em" /> <mi>θ<!-- θ --></mi> <mo>∈<!-- ∈ --></mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f({\mathbf {x} }+{\mathbf {v} })-f({\mathbf {x} })=f'({\mathbf {x} +\theta {\mathbf {v} }};{\mathbf {v} })\qquad \theta \in (0,1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c52cbcce3facf55a8ea1abd0daf27a88e25015c0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:45.945ex; height:3.009ex;" alt="{\displaystyle f({\mathbf {x} }+{\mathbf {v} })-f({\mathbf {x} })=f'({\mathbf {x} +\theta {\mathbf {v} }};{\mathbf {v} })\qquad \theta \in (0,1)}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Partiell_derivasjon">Partiell derivasjon</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Derivasjon&veaction=edit&section=33" title="Rediger avsnitt: Partiell derivasjon" class="mw-editsection-visualeditor"><span>rediger</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Derivasjon&action=edit&section=33" title="Rediger kildekoden til seksjonen Partiell derivasjon"><span>rediger kilde</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="utdypende-artikkel" style="padding-left:2em; font-style: italic;"> <p>Utdypende artikkel: <a href="/wiki/Partiellderivert" class="mw-redirect" title="Partiellderivert">Partiellderivert</a> </p> </div> <p>For et skalarfelt er den <i>partiellderiverte</i> det samme som den retningsderivert langs en av akseretningene, gitt at retningsvektoren har lengde én. Vanligvis uttrykkes definisjonen av den partiellderiverte med hensyn på variabelen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e87000dd6142b81d041896a30fe58f0c3acb2158" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.129ex; height:2.009ex;" alt="{\displaystyle x_{i}}"></span> på formen </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\partial f}{\partial x_{i}}}=\lim _{h\to 0}{\frac {f(x_{1},\dots ,x_{i}+h,\dots ,x_{n})-f(x_{1},\dots ,x_{i},\dots ,x_{n})}{h}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>f</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>+</mo> <mi>h</mi> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mi>h</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\partial f}{\partial x_{i}}}=\lim _{h\to 0}{\frac {f(x_{1},\dots ,x_{i}+h,\dots ,x_{n})-f(x_{1},\dots ,x_{i},\dots ,x_{n})}{h}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/413170f980fd4ff8ca418a4e24ab45969a2576df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:60.048ex; height:6.176ex;" alt="{\displaystyle {\frac {\partial f}{\partial x_{i}}}=\lim _{h\to 0}{\frac {f(x_{1},\dots ,x_{i}+h,\dots ,x_{n})-f(x_{1},\dots ,x_{i},\dots ,x_{n})}{h}}}"></span>,</dd></dl> <p>forutstatt at grenseverdien eksisterer. Et skalarfelt med definisjonsmengde i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c510b63578322050121fe966f2e5770bea43308d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}}"></span> kan ha <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> partiellderiverte. </p><p>For en funksjon <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f=f(x,y,z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f=f(x,y,z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/63495e3dffa38c2965b421aa22cafdd3d59071e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.106ex; height:2.843ex;" alt="{\displaystyle f=f(x,y,z)}"></span> kan en bruke flere typer notasjon for partiellderiverte: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{alignedat}{2}{\frac {\partial f}{\partial x}}=f_{x}=D_{x}f\\{\frac {\partial f}{\partial y}}=f_{y}=D_{y}f\\{\frac {\partial f}{\partial z}}=f_{z}=D_{z}f\\\end{alignedat}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left" rowspacing="3pt" columnspacing="0em 0em 0em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>f</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mi>f</mi> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>f</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>y</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mi>f</mi> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>f</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>z</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mi>f</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{alignedat}{2}{\frac {\partial f}{\partial x}}=f_{x}=D_{x}f\\{\frac {\partial f}{\partial y}}=f_{y}=D_{y}f\\{\frac {\partial f}{\partial z}}=f_{z}=D_{z}f\\\end{alignedat}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5b8b95c1a32ec42dfdae634e3dbec47aa125136" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -8.171ex; width:17.119ex; height:17.509ex;" alt="{\displaystyle {\begin{alignedat}{2}{\frac {\partial f}{\partial x}}=f_{x}=D_{x}f\\{\frac {\partial f}{\partial y}}=f_{y}=D_{y}f\\{\frac {\partial f}{\partial z}}=f_{z}=D_{z}f\\\end{alignedat}}}"></span></dd></dl> <p>De partiellderiverte uttrykker endringene i funksjonen i hver av retningene parallelt med aksene. Dersom <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f=f(x,y,z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f=f(x,y,z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/63495e3dffa38c2965b421aa22cafdd3d59071e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.106ex; height:2.843ex;" alt="{\displaystyle f=f(x,y,z)}"></span> representerer variasjonen i temperatur i et rom, så er <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{x}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{x}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb36605624ab2287dc5ec558513c625b88acfee3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.312ex; height:2.509ex;" alt="{\displaystyle f_{x}}"></span> et mål for temperaturendringen i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>-retningen. </p><p><a href="/wiki/Gradient" title="Gradient">Gradienten</a> til en funksjon er en vektor sammensatt av alle partiellderiverte. For <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f=f(x,y,z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f=f(x,y,z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/63495e3dffa38c2965b421aa22cafdd3d59071e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.106ex; height:2.843ex;" alt="{\displaystyle f=f(x,y,z)}"></span> uttrykkes gradienten som </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla f=(f_{x},f_{y},f_{z})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mi>f</mi> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla f=(f_{x},f_{y},f_{z})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df92e18e2dd582dd0e180c7a3c76adff684e4d44" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:16.831ex; height:3.009ex;" alt="{\displaystyle \nabla f=(f_{x},f_{y},f_{z})}"></span></dd></dl> <p>Denne vektoren vil peke i retningen der funksjonen endrer seg mest. Dersom gradienten er definert, så er den retningsderiverte i retningen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathbf {v} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathbf {v} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c555f9553f82a3560c735b76dc25a3a203358b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle {\mathbf {v} }}"></span> gitt ved </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'({\mathbf {x} };{\mathbf {v} })={\mathbf {v} }\cdot \nabla f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mrow> <mo>;</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mrow> <mo>⋅<!-- ⋅ --></mo> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'({\mathbf {x} };{\mathbf {v} })={\mathbf {v} }\cdot \nabla f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/00ab403eb487951e068f3d6157d7aee96310a5ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.073ex; height:3.009ex;" alt="{\displaystyle f'({\mathbf {x} };{\mathbf {v} })={\mathbf {v} }\cdot \nabla f}"></span></dd></dl> <p>Også for partiellderiverte kan en definere høyere-ordens deriverte, i alle kombinasjoner, for eksempel </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{alignedat}{2}{\frac {\partial ^{2}f}{\partial x^{2}}}=f_{xx}\\{\frac {\partial ^{2}f}{\partial x\partial y}}=f_{xy}\end{alignedat}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left" rowspacing="3pt" columnspacing="0em 0em 0em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>f</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mi>x</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>f</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>x</mi> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>y</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mi>y</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{alignedat}{2}{\frac {\partial ^{2}f}{\partial x^{2}}}=f_{xx}\\{\frac {\partial ^{2}f}{\partial x\partial y}}=f_{xy}\end{alignedat}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e2c2b3329692d9dc31ca5f4f40658aa971265fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:12.936ex; height:12.509ex;" alt="{\displaystyle {\begin{alignedat}{2}{\frac {\partial ^{2}f}{\partial x^{2}}}=f_{xx}\\{\frac {\partial ^{2}f}{\partial x\partial y}}=f_{xy}\end{alignedat}}}"></span></dd></dl> <p><a href="/wiki/Hessematrisen" title="Hessematrisen">Hessematrisen</a> er en <a href="/wiki/Matrise" title="Matrise">matrise</a> av alle de andre-ordens partiell deriverte til et skalarfelt. Ekstremalverdier for et skalarfelt kan studeres ved hjelp av gradienten og hessematrisen. </p><p>Et tilstrekkelig vilkår for at de to partiell deriverte <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{xy}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mi>y</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{xy}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db458f42b1914cab348f2e27f7b611cbe1bc4d59" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.129ex; height:2.843ex;" alt="{\displaystyle f_{xy}}"></span> og <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{yx}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> <mi>x</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{yx}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8728faf244f63da20bc4f8a1ad0782564f290258" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.129ex; height:2.843ex;" alt="{\displaystyle f_{yx}}"></span> skal være like i et punkt, er at begge eksisterer og er kontinuerlige i punktet.<sup id="cite_ref-APOSTOL277_16-0" class="reference"><a href="#cite_note-APOSTOL277-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Derivasjon_for_vektorfelt">Derivasjon for vektorfelt</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Derivasjon&veaction=edit&section=34" title="Rediger avsnitt: Derivasjon for vektorfelt" class="mw-editsection-visualeditor"><span>rediger</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Derivasjon&action=edit&section=34" title="Rediger kildekoden til seksjonen Derivasjon for vektorfelt"><span>rediger kilde</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Et <a href="/wiki/Vektorfelt" title="Vektorfelt">vektorfelt</a> er en funksjon der både argument og funksjonsverdi er vektorer: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{alignedat}{2}{\mathbf {y} }&={\mathbf {f} }({\mathbf {x} }):D\rightarrow \mathbb {R} ^{m}\qquad D\subset \mathbb {R} ^{n}\\{\mathbf {x} }&=(x_{1},x_{2},x_{3},.....,x_{n})\\{\mathbf {y} }&=(y_{1},y_{2},y_{3},...,y_{m})\end{alignedat}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left" rowspacing="3pt" columnspacing="0em 0em 0em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">f</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>:</mo> <mi>D</mi> <mo stretchy="false">→<!-- → --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mspace width="2em" /> <mi>D</mi> <mo>⊂<!-- ⊂ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{alignedat}{2}{\mathbf {y} }&={\mathbf {f} }({\mathbf {x} }):D\rightarrow \mathbb {R} ^{m}\qquad D\subset \mathbb {R} ^{n}\\{\mathbf {x} }&=(x_{1},x_{2},x_{3},.....,x_{n})\\{\mathbf {y} }&=(y_{1},y_{2},y_{3},...,y_{m})\end{alignedat}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6b991d5507cab79b53c573fc174d145a26aa5f00" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:32.928ex; height:9.176ex;" alt="{\displaystyle {\begin{alignedat}{2}{\mathbf {y} }&={\mathbf {f} }({\mathbf {x} }):D\rightarrow \mathbb {R} ^{m}\qquad D\subset \mathbb {R} ^{n}\\{\mathbf {x} }&=(x_{1},x_{2},x_{3},.....,x_{n})\\{\mathbf {y} }&=(y_{1},y_{2},y_{3},...,y_{m})\end{alignedat}}}"></span></dd></dl> <p>For hver av komponentene i funksjonsverdien kan en definere partiellderiverte: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\partial f_{i}}{\partial x_{j}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\partial f_{i}}{\partial x_{j}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae86e8db6c5a89358633e0164b13fccae8a7ab14" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:4.394ex; height:6.343ex;" alt="{\displaystyle {\frac {\partial f_{i}}{\partial x_{j}}}}"></span></dd></dl> <p><a href="/wiki/Jacobimatrise" title="Jacobimatrise">Jacobimatrisen</a> til et vektorfelt er en <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (m\times n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>m</mi> <mo>×<!-- × --></mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (m\times n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aba857b5d17e977455273ca9af1baf4da35de324" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.085ex; height:2.843ex;" alt="{\displaystyle (m\times n)}"></span>-matrise der elementene er første-ordens partiellderiverte: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathbf {J} }={\begin{bmatrix}{\dfrac {\partial f_{1}}{\partial x_{1}}}&\cdots &{\dfrac {\partial f_{1}}{\partial x_{n}}}\\\vdots &\ddots &\vdots \\{\dfrac {\partial f_{m}}{\partial x_{1}}}&\cdots &{\dfrac {\partial f_{m}}{\partial x_{n}}}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">J</mi> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </mfrac> </mstyle> </mrow> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> </mfrac> </mstyle> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> <mtd> <mo>⋱<!-- ⋱ --></mo> </mtd> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </mfrac> </mstyle> </mrow> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> </mfrac> </mstyle> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathbf {J} }={\begin{bmatrix}{\dfrac {\partial f_{1}}{\partial x_{1}}}&\cdots &{\dfrac {\partial f_{1}}{\partial x_{n}}}\\\vdots &\ddots &\vdots \\{\dfrac {\partial f_{m}}{\partial x_{1}}}&\cdots &{\dfrac {\partial f_{m}}{\partial x_{n}}}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51aa0da4ab42b47c08490ce8c54ab285e276e4fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -8.005ex; width:25.892ex; height:17.176ex;" alt="{\displaystyle {\mathbf {J} }={\begin{bmatrix}{\dfrac {\partial f_{1}}{\partial x_{1}}}&\cdots &{\dfrac {\partial f_{1}}{\partial x_{n}}}\\\vdots &\ddots &\vdots \\{\dfrac {\partial f_{m}}{\partial x_{1}}}&\cdots &{\dfrac {\partial f_{m}}{\partial x_{n}}}\end{bmatrix}}}"></span></dd></dl> <p>For vektorfelt kan en også definere total derivasjon. </p> <div class="mw-heading mw-heading3"><h3 id="Total_derivasjon">Total derivasjon</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Derivasjon&veaction=edit&section=35" title="Rediger avsnitt: Total derivasjon" class="mw-editsection-visualeditor"><span>rediger</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Derivasjon&action=edit&section=35" title="Rediger kildekoden til seksjonen Total derivasjon"><span>rediger kilde</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Den <a href="/w/index.php?title=Total_derivasjon&action=edit&redlink=1" class="new" title="Total derivasjon (ikke skrevet ennå)">totalderiverte</a> til et generelt vektorfelt er en transformasjon som lokalt er den beste lineære tilnærmingen til funksjonen. </p><p>En funksjon <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:U\to V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mi>U</mi> <mo stretchy="false">→<!-- → --></mo> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:U\to V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99d431c81a43bf61447672a1c6e62d56fc73026a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.4ex; height:2.509ex;" alt="{\displaystyle f:U\to V}"></span>, hvor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.783ex; height:2.176ex;" alt="{\displaystyle U}"></span> er en åpen mengde i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c510b63578322050121fe966f2e5770bea43308d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}}"></span> kalles <i>totalt deriverbar</i> eller <i>totalderiverbar</i> i punktet <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}\in U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>∈<!-- ∈ --></mo> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}\in U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2dee8010e46dd5891756fb4b02b43bc661f7c666" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.007ex; height:2.509ex;" alt="{\displaystyle x_{0}\in U}"></span>, hvis det finnes en lineær avbildning <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L:\,\mathbb {R} ^{n}\to \mathbb {R} ^{m}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo>:</mo> <mspace width="thinmathspace" /> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">→<!-- → --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L:\,\mathbb {R} ^{n}\to \mathbb {R} ^{m}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bfc9feab3e64faa5c7d134843213dc945ec9fd58" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:13.771ex; height:2.343ex;" alt="{\displaystyle L:\,\mathbb {R} ^{n}\to \mathbb {R} ^{m}}"></span> slik at </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{h\to 0}{\frac {\|f(x_{0}+h)-f(x_{0})-Lh\|}{\|h\|}}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>L</mi> <mi>h</mi> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> </mrow> <mrow> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>h</mi> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{h\to 0}{\frac {\|f(x_{0}+h)-f(x_{0})-Lh\|}{\|h\|}}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab752cf770fa5793accc204b149c43eeba71f04b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:34.947ex; height:6.509ex;" alt="{\displaystyle \lim _{h\to 0}{\frac {\|f(x_{0}+h)-f(x_{0})-Lh\|}{\|h\|}}=0}"></span>.</dd></dl> <p>Hvis en slik lineær avbildning <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span> eksisterer, er den entydig bestemt og avhenger ikke av hvilken <a href="/wiki/Norm" title="Norm">norm</a> som benyttes. </p><p>For <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=m=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=m=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd469697e1893c049e1f06846869e0da69aa9fd8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.794ex; height:2.176ex;" alt="{\displaystyle n=m=1}"></span> svarer den totalderiverte til den ordinære deriverte av en reell funksjon. For et skalarfelt er <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b6100c5ebd48c6fd848709f2be624465203eb173" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.301ex; height:2.176ex;" alt="{\displaystyle m=1}"></span>, og den totalderiverte er lik gradienten til funksjonen. For et vektorfelt er jacobimatrisen en representasjon av den lineære transformasjonen. </p><p>En funksjon som er totalderiverbar i et punkt, vil være kontinuerlig i punktet. </p><p>Hvis den totalderiverte eksisterer i et punkt, så eksisterer også alle de partiellderiverte i punktet. Omvendt vil <i>ikke</i> eksistensen til samtlige partiell deriverte i et punkt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86f21d0e31751534cd6584264ecf864a6aa792cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{0}}"></span> garantere at den totalt deriverte eksisterer i punktet. Er de partiellderiverte definert og kontinuerlige i en omegn om <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86f21d0e31751534cd6584264ecf864a6aa792cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{0}}"></span>, så er funksjonen totalderiverbar i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86f21d0e31751534cd6584264ecf864a6aa792cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{0}}"></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Anvendelser">Anvendelser</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Derivasjon&veaction=edit&section=36" title="Rediger avsnitt: Anvendelser" class="mw-editsection-visualeditor"><span>rediger</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Derivasjon&action=edit&section=36" title="Rediger kildekoden til seksjonen Anvendelser"><span>rediger kilde</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Beskrivelse_av_endringer">Beskrivelse av endringer</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Derivasjon&veaction=edit&section=37" title="Rediger avsnitt: Beskrivelse av endringer" class="mw-editsection-visualeditor"><span>rediger</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Derivasjon&action=edit&section=37" title="Rediger kildekoden til seksjonen Beskrivelse av endringer"><span>rediger kilde</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Derivasjon blir brukt i mange <a href="/wiki/Matematisk_modell" title="Matematisk modell">matematiske modeller</a> der en må beskrive <i>endringer</i> av en eller annen type. Typisk vil en endring av en størrelse <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> over tid kunne uttrykkes som den deriverte <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/258eaada38956fb69b8cb1a2eef46bcb97d3126b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.005ex; height:2.843ex;" alt="{\displaystyle f'}"></span> eller en partiell derivert <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{t}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{t}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/874c306411e808e8191e8aeb95e3440e1c68d6e9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.965ex; height:2.509ex;" alt="{\displaystyle f_{t}}"></span>. En endring i størrelsen i rommet kan tilsvarende beskrives som en partiell derivert med hensyn på en romlig koordinat eller en gradient. </p><p>Den førstederiverte til en strekning <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s=s(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>=</mo> <mi>s</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s=s(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/14acdab8bb33a0931f9679f477e7491010e1698a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.928ex; height:2.843ex;" alt="{\displaystyle s=s(t)}"></span> etter tiden <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span> representerer en skalar <a href="/wiki/Hastighet" title="Hastighet">hastighet</a>, mens den andrederiverte er et uttrykk for <a href="/wiki/Akselerasjon" title="Akselerasjon">akselerasjonen</a>. I det tredimensjonale rommet er den deriverte a posisjonsvektoren <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {r} =\mathbf {r} (t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {r} =\mathbf {r} (t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a8fdcb23819ac04dd491e370474f33cf4e90fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.952ex; height:2.843ex;" alt="{\displaystyle \mathbf {r} =\mathbf {r} (t)}"></span> lik den vektorielle hastigheten. </p><p><a href="/wiki/Vinkelhastighet" title="Vinkelhastighet">Vinkelhastigheten</a> er definert som den tidsderiverte av en rotasjonsvinkel, og <a href="/wiki/Vinkelakselerasjon" title="Vinkelakselerasjon">vinkelakselerasjonen</a> er den andrederiverte. </p> <div class="mw-heading mw-heading3"><h3 id="Differensialligninger">Differensialligninger</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Derivasjon&veaction=edit&section=38" title="Rediger avsnitt: Differensialligninger" class="mw-editsection-visualeditor"><span>rediger</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Derivasjon&action=edit&section=38" title="Rediger kildekoden til seksjonen Differensialligninger"><span>rediger kilde</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="utdypende-artikkel" style="padding-left:2em; font-style: italic;"> <p>Utdypende artikkel: <a href="/wiki/Differensialligning" title="Differensialligning">Differensialligning</a> </p> </div> <p>En differensialligning er en ligning som kombinerer deriverte av en funksjon med funksjonen selv samt koeffisienter der den uavhengige variabelen inngår. Et eksempel er differensialligningen </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y''-y=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>y</mi> <mo>″</mo> </msup> <mo>−<!-- − --></mo> <mi>y</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y''-y=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/569cb6699ac437787831d3ac4a4dbd856f74ea22" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.554ex; height:2.843ex;" alt="{\displaystyle y''-y=0}"></span></dd></dl> <p>Den ukjente i en differensialligning er en funksjon. Ligningen over har løsningen </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=Ae^{x}+Be^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <mi>A</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> <mo>+</mo> <mi>B</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y=Ae^{x}+Be^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a6d4c9ff8a62668ab7c89cc6307efa033b603fe5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:16.274ex; height:3.009ex;" alt="{\displaystyle y=Ae^{x}+Be^{-1}}"></span>,</dd></dl> <p>der <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> og <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> er vilkårlige konstanter. </p><p>Dersom den ukjente er en funksjon av én variabel, sies ligningen å være en <i>ordinær</i> differensialligning. En <i>partiell</i> differensialligning inneholder partiellderiverte, og den ukjente er en funksjon av flere variable. </p><p><a href="/wiki/Newtons_bevegelseslover" title="Newtons bevegelseslover">Newtons bevegelseslov</a> kan gi opphav til mange differensialligninger. Loven kombinerer kraft <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da18bef8c979f3548bb0d8976f5844012d7b8256" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.683ex; height:2.176ex;" alt="{\displaystyle \mathbf {F} }"></span>, masse <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"></span> og akselerasjon <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a957216653a9ee0d0133dcefd13fb75e36b8b9d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.299ex; height:1.676ex;" alt="{\displaystyle \mathbf {a} }"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} (t)=m\mathbf {a} (t)=m{\ddot {\mathbf {r} }}=m{\frac {\mathrm {d} ^{2}\mathbf {r} }{\mathrm {d} t^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>¨<!-- ¨ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} (t)=m\mathbf {a} (t)=m{\ddot {\mathbf {r} }}=m{\frac {\mathrm {d} ^{2}\mathbf {r} }{\mathrm {d} t^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3fabe1538b20e659591d8fa8188a267ea3ff390a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:29.144ex; height:6.009ex;" alt="{\displaystyle \mathbf {F} (t)=m\mathbf {a} (t)=m{\ddot {\mathbf {r} }}=m{\frac {\mathrm {d} ^{2}\mathbf {r} }{\mathrm {d} t^{2}}}}"></span></dd></dl> <p>Dersom kraften for eksempel kan uttrykkes som en funksjon av posisjonen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathbf {r} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathbf {r} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb19eb313ea5fd985454fb71fe17b8479f780c45" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.102ex; height:1.676ex;" alt="{\displaystyle {\mathbf {r} }}"></span>, så leder dette til en differensialligning for posisjonen. </p> <div class="mw-heading mw-heading3"><h3 id="Et_eksempel_fra_økonomi"><span id="Et_eksempel_fra_.C3.B8konomi"></span>Et eksempel fra økonomi</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Derivasjon&veaction=edit&section=39" title="Rediger avsnitt: Et eksempel fra økonomi" class="mw-editsection-visualeditor"><span>rediger</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Derivasjon&action=edit&section=39" title="Rediger kildekoden til seksjonen Et eksempel fra økonomi"><span>rediger kilde</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Fil:Neokl_produksjonskurve.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b5/Neokl_produksjonskurve.png/250px-Neokl_produksjonskurve.png" decoding="async" width="250" height="143" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b5/Neokl_produksjonskurve.png/375px-Neokl_produksjonskurve.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b5/Neokl_produksjonskurve.png/500px-Neokl_produksjonskurve.png 2x" data-file-width="1102" data-file-height="631" /></a><figcaption>Neoklassisk produksjonskurve</figcaption></figure> <p>I <a href="/wiki/Mikro%C3%B8konomi" title="Mikroøkonomi">mikroøkonomi</a> kan en analysere forskjellige former for <a href="/w/index.php?title=Produksjonsfunksjon&action=edit&redlink=1" class="new" title="Produksjonsfunksjon (ikke skrevet ennå)">produksjonsfunksjoner</a>, for å skape forståelse for <a href="/wiki/Makro%C3%B8konomi" title="Makroøkonomi">makroøkonomiske</a> sammenhenger. Det er først og fremst den typiske oppførselen til en produksjonsfunksjon som er av interesse: Hvordan reagerer de avhengige variablene <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> (for eksempel den mengden av en vare som produseres) når <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> (for eksempel arbeid eller <a href="/wiki/Kapital" title="Kapital">kapital</a>) økes med en (infinitesimal) enhet. </p><p>En grunntype av produksjonsfunksjoner er den <a href="/wiki/Nyklassisk_%C3%B8konomi" title="Nyklassisk økonomi">nyklassiske</a> produksjonsfunksjonen. Denne funksjonen har egenskapen at produksjonen stiger når argumentet øker, samtidig som at økningen avtar når argumentet vokser. For eksempel kan man ha den følgende produksjonsfunksjonen for en virksomhet: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=f(x)={\sqrt {4x-400}}\quad \mathrm {for} \quad x\geq 100}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>4</mn> <mi>x</mi> <mo>−<!-- − --></mo> <mn>400</mn> </msqrt> </mrow> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">f</mi> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">r</mi> </mrow> <mspace width="1em" /> <mi>x</mi> <mo>≥<!-- ≥ --></mo> <mn>100</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y=f(x)={\sqrt {4x-400}}\quad \mathrm {for} \quad x\geq 100}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e8071d5d9438e36eeba60139d392a3282662c94" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:38.026ex; height:3.009ex;" alt="{\displaystyle y=f(x)={\sqrt {4x-400}}\quad \mathrm {for} \quad x\geq 100}"></span></dd></dl> <p>Den deriverte følger av kjerneregelen: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'(x)={\frac {2}{\sqrt {4x-400}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <msqrt> <mn>4</mn> <mi>x</mi> <mo>−<!-- − --></mo> <mn>400</mn> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'(x)={\frac {2}{\sqrt {4x-400}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7711ce62c0c84c178e98b3ab6040ac02e6446d6c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:19.835ex; height:6.176ex;" alt="{\displaystyle f'(x)={\frac {2}{\sqrt {4x-400}}}}"></span>.</dd></dl> <p>Da rotuttrykket alltid er positivt, vil produksjonen øke med økende innverdi. Den andrederiverte er gitt ved </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\mathrm {d} ^{2}y}{\mathrm {d} x^{2}}}=-{\frac {4}{\sqrt {(4x-400)^{3}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>y</mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>4</mn> <msqrt> <mo stretchy="false">(</mo> <mn>4</mn> <mi>x</mi> <mo>−<!-- − --></mo> <mn>400</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\mathrm {d} ^{2}y}{\mathrm {d} x^{2}}}=-{\frac {4}{\sqrt {(4x-400)^{3}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d2760aa8fe0fc76ae71c8923421adc621adca76c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:24.262ex; height:7.176ex;" alt="{\displaystyle {\frac {\mathrm {d} ^{2}y}{\mathrm {d} x^{2}}}=-{\frac {4}{\sqrt {(4x-400)^{3}}}}}"></span>.</dd></dl> <p>Denne er alltid negativ, så økningen er synkende. </p> <div class="mw-heading mw-heading2"><h2 id="Historie">Historie</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Derivasjon&veaction=edit&section=40" title="Rediger avsnitt: Historie" class="mw-editsection-visualeditor"><span>rediger</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Derivasjon&action=edit&section=40" title="Rediger kildekoden til seksjonen Historie"><span>rediger kilde</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Fil:Gottfried_Wilhelm_von_Leibniz.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/6a/Gottfried_Wilhelm_von_Leibniz.jpg/250px-Gottfried_Wilhelm_von_Leibniz.jpg" decoding="async" width="250" height="316" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/6/6a/Gottfried_Wilhelm_von_Leibniz.jpg 1.5x" data-file-width="316" data-file-height="400" /></a><figcaption>Gottfried Wilhelm Leibniz</figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Fil:Sir_Isaac_Newton_by_Sir_Godfrey_Kneller,_Bt.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/50/Sir_Isaac_Newton_by_Sir_Godfrey_Kneller%2C_Bt.jpg/250px-Sir_Isaac_Newton_by_Sir_Godfrey_Kneller%2C_Bt.jpg" decoding="async" width="250" height="303" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/50/Sir_Isaac_Newton_by_Sir_Godfrey_Kneller%2C_Bt.jpg/375px-Sir_Isaac_Newton_by_Sir_Godfrey_Kneller%2C_Bt.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/50/Sir_Isaac_Newton_by_Sir_Godfrey_Kneller%2C_Bt.jpg/500px-Sir_Isaac_Newton_by_Sir_Godfrey_Kneller%2C_Bt.jpg 2x" data-file-width="2400" data-file-height="2912" /></a><figcaption>Isaac Newton</figcaption></figure> <p>Problemstillingen som differensialregningen betrakter, var kjent som <i>tangentproblemet</i> helt siden antikken. Den nærliggende løsningen var å approksimere tangenten ved hjelp av sekanter over et positivt, men vilkårlig lite intervall. Den tekniske vanskeligheten bestod av å regne med slike <i>infinitesimalt</i> små intervallengder. <a href="/wiki/Pierre_de_Fermat" title="Pierre de Fermat">Pierre de Fermat</a> løste rundt 1640 tangentproblemer for polynomer. Her beskrev han den deriverte, men uten å betrakte grenseverdier, og uten å forklare hva den matematiske rettferdiggjøringen for fremgangsmåten hans var. På samme tid valgte <a href="/wiki/Descartes" class="mw-redirect" title="Descartes">Descartes</a> en algebraisk fremgangsmåte, hvor han anbrakte en sirkel nær kurven. Her vil sirkelen skjære kurven i to punkter, med mindre sirkelen og kurven tangerer hverandre. Da var det mulig å bestemme stigningen til tangenten for visse kurver. </p><p>På slutten av 1600-tallet lyktes det <a href="/wiki/Isaac_Newton" title="Isaac Newton">Isaac Newton</a> og <a href="/wiki/Gottfried_Wilhelm_Leibniz" class="mw-redirect" title="Gottfried Wilhelm Leibniz">Gottfried Wilhelm Leibniz</a> uavhengig av hverandre å utvikle fungerende fremgangsmåter uten selvmotsigelser. Newton og Leibniz angrep problemet fra forskjellige vinkler. Mens Newton nærmet seg problemet via momentanhastighetsproblemet, prøvde Leibniz å løse det geometrisk ved hjelp av tangentproblemet. Arbeidene deres tillot en abstraksjon fra den rent geometriske beskrivelsen, og regnes derfor som begynnelsen av matematisk analyse. De ble først og fremst kjent gjennom boka til adelsmannen <a href="/wiki/Guillaume_Fran%C3%A7ois_Antoine,_marquis_de_L%27H%C3%B4pital" class="mw-redirect" title="Guillaume François Antoine, marquis de L'Hôpital">Guillaume François Antoine, marquis de L'Hôpital</a>, som fikk privatundervisning av <a href="/wiki/Johann_Bernoulli" title="Johann Bernoulli">Johann Bernoulli</a> og publiserte dennes forskning innen analyse. De derivasjonsreglene som er best kjent i dag, er først og fremst basert på verkene til <a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a>, som satte sitt preg på funksjonsbegrepet. Newton og Leibniz arbeidet med vilkårlig små tall, men som er større enn null. Dette ble kritisert av samtidige som ulogisk, eksempelvis av <a href="/wiki/George_Berkeley" title="George Berkeley">biskop Berkeley</a> i det polemiske skriftet <i>The analyst: or a discourse addressed to an infidel mathematician</i>. Differensialregningen ble likevel, tross den herskende usikkerheten, konsekvent videreutviklet, i første rekke på grunn av de tallrike anvendelsene i fysikk og andre områder av matematikken. Symptomatisk for den tiden var prisutskrivningen til <a href="/wiki/Det_pr%C3%B8yssiske_vitenskapsakademiet" title="Det prøyssiske vitenskapsakademiet">Det prøyssiske vitenskapsakademiet</a> i 1784: <style data-mw-deduplicate="TemplateStyles:r22146855">@media only screen and (min-width:840px){.mw-parser-output .aligned-right{float:right;width:20em;margin:0.5em 0 2.2em 1em;clear:right}.mw-parser-output .aligned-left{float:left;width:20em;padding-left:0em;border-left:none;border-right:solid 0.3em #eee;clear:left}}@media all{.mw-parser-output .quoted{text-align:right;font-size:smaller}.mw-parser-output .textbox-heading{font-weight:bold;line-height:2}}.mw-parser-output .mw-parser-output>dl:first-child dd{margin-left:0;margin-right:0;padding-left:1em;padding-right:1em;border-left:0.4em solid green;border-right:1px solid silver}.mw-parser-output .mw-parser-output>dl:first-child dd:first-child{margin-bottom:0;padding-top:0.5em;border-top:1px solid silver}.mw-parser-output .mw-parser-output>dl:first-child dd:last-child{margin-bottom:0;padding-bottom:0.5em;border-bottom:1px solid silver}.mw-parser-output .mw-parser-output>dl:first-child dd+dd{padding-top:0.5em}</style> </p> <blockquote class="" style=""><p><span class="skin-invert-image" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/58/Laquote.svg/17px-Laquote.svg.png" decoding="async" width="17" height="17" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/58/Laquote.svg/26px-Laquote.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/58/Laquote.svg/34px-Laquote.svg.png 2x" data-file-width="720" data-file-height="720" /></span></span>… Den høyere geometri benytter ofte uendelig store og uendelig små størrelser; imidlertid har de gamle lærde omhyggelig unngått det uendelige, og enkelte berømte analytikere i vår tid bekjenner at begrepene er selvmotsigende. Akademiet forlanger altså at man forklarer hvordan så mange sanne satser kan oppstå av en selvmotsigende antagelse, og at man angir et sikkert og klart grunnbegrep som kan erstatte det uendelige, uten å gjøre utregningene for vanskelige eller lange …<span class="skin-invert-image" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/9c/Raquote.svg/17px-Raquote.svg.png" decoding="async" width="17" height="17" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/9c/Raquote.svg/26px-Raquote.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/9c/Raquote.svg/34px-Raquote.svg.png 2x" data-file-width="720" data-file-height="720" /></span></span> </p></blockquote> <p>Først på begynnelsen av 1800-tallet lyktes det <a href="/wiki/Augustin_Louis_Cauchy" title="Augustin Louis Cauchy">Augustin Louis Cauchy</a> å gi differensialregningen den logiske stringensen vi er vant til i dag, i det han gikk bort fra de infinitesimale størrelsene og definerte den deriverte som grenseverdien til stigningen av sekantene. Den definisjonen av grenseverdier som brukes i dag ble formulert av <a href="/wiki/Karl_Weierstra%C3%9F" class="mw-redirect" title="Karl Weierstraß">Karl Weierstraß</a> på slutten av 1800-tallet. </p> <div class="mw-heading mw-heading2"><h2 id="Se_også"><span id="Se_ogs.C3.A5"></span>Se også</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Derivasjon&veaction=edit&section=41" title="Rediger avsnitt: Se også" class="mw-editsection-visualeditor"><span>rediger</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Derivasjon&action=edit&section=41" title="Rediger kildekoden til seksjonen Se også"><span>rediger kilde</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Retningsderivert" title="Retningsderivert">Retningsderivert</a></li> <li><a href="/w/index.php?title=Lie-derivert&action=edit&redlink=1" class="new" title="Lie-derivert (ikke skrevet ennå)">Lie-derivert</a></li> <li><a href="/wiki/Tensor#Kovariant_derivasjon" title="Tensor">Kovariant derivasjon</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Referanser">Referanser</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Derivasjon&veaction=edit&section=42" title="Rediger avsnitt: Referanser" class="mw-editsection-visualeditor"><span>rediger</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Derivasjon&action=edit&section=42" title="Rediger kildekoden til seksjonen Referanser"><span>rediger kilde</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-RTL1-1"><b><a href="#cite_ref-RTL1_1-0">^</a></b> <span class="reference-text"><cite class="citation book">R. Tambs Lyche (1961). <i>Matematisk Analyse, Bind I</i>. Oslo: Gyldendal Norsk Forlag.</cite><span title="ctx_ver=Z39.88-2004&rfr_id=info%3Asid%2Fno.wikipedia.org%3ADerivasjon&rft.au=R.+Tambs+Lyche&rft.btitle=Matematisk+Analyse%2C+Bind+I&rft.date=1961&rft.genre=book&rft.place=Oslo&rft.pub=Gyldendal+Norsk+Forlag&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-CAJ204-2"><b><a href="#cite_ref-CAJ204_2-0">^</a></b> <span class="reference-text"><a href="#CAJ">F. Cajori: <i>A history of mathematical notations</i> </a> Bind II, s.204 </span> </li> <li id="cite_note-CAJ207-3"><b><a href="#cite_ref-CAJ207_3-0">^</a></b> <span class="reference-text"><a href="#CAJ">F. Cajori: <i>A history of mathematical notations</i> </a> Bind II, s.207 </span> </li> <li id="cite_note-CAJ197-4"><b><a href="#cite_ref-CAJ197_4-0">^</a></b> <span class="reference-text"><a href="#CAJ">F. Cajori: <i>A history of mathematical notations</i> </a> Bind II, s.197 </span> </li> <li id="cite_note-STRUIK-5"><b><a href="#cite_ref-STRUIK_5-0">^</a></b> <span class="reference-text"><cite class="citation book">D.J. Struik (1961). <i>Lectures on classical differential geometry</i>. New York: Dover Publications. s. 6. <a href="/wiki/ISBN" title="ISBN">ISBN</a> <a href="/wiki/Spesial:Bokkilder/0-486-65609-8" title="Spesial:Bokkilder/0-486-65609-8">0-486-65609-8</a>.</cite><span title="ctx_ver=Z39.88-2004&rfr_id=info%3Asid%2Fno.wikipedia.org%3ADerivasjon&rft.au=D.J.+Struik&rft.btitle=Lectures+on+classical+differential+geometry&rft.date=1961&rft.genre=book&rft.isbn=0-486-65609-8&rft.pages=6&rft.place=New+York&rft.pub=Dover+Publications&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-CAJ213-6"><b><a href="#cite_ref-CAJ213_6-0">^</a></b> <span class="reference-text"><a href="#CAJ">F. Cajori: <i>A history of mathematical notations</i> </a> Bind II, s.213 </span> </li> <li id="cite_note-CAJ208-7"><b><a href="#cite_ref-CAJ208_7-0">^</a></b> <span class="reference-text"><a href="#CAJ">F. Cajori: <i>A history of mathematical notations</i> </a> Bind II, s.208-209 </span> </li> <li id="cite_note-COLLINS558-8"><b><a href="#cite_ref-COLLINS558_8-0">^</a></b> <span class="reference-text"><a href="#COLLINS">E.J.Borowski, J.M.Borwein: <i>Dictionary of mathematics</i></a> s.558 </span> </li> <li id="cite_note-TL246-9"><b><a href="#cite_ref-TL246_9-0">^</a></b> <span class="reference-text"><a href="#TL">T. Lindstrøm: <i>Kalkulus</i></a> s.246 </span> </li> <li id="cite_note-ABS-10"><b><a href="#cite_ref-ABS_10-0">^</a></b> <span class="reference-text"><cite class="citation web"><a rel="nofollow" class="external text" href="https://www.uio.no/studier/emner/matnat/math/MAT1050/v19/hele%282%29.pdf">«Kompendium, Mat 1050»</a> <span style="font-size:85%;">(PDF)</span>. Arne B. Sletsjøe, UiB<span class="reference-accessdate">. Besøkt 23. januar 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rfr_id=info%3Asid%2Fno.wikipedia.org%3ADerivasjon&rft.btitle=Kompendium%2C+Mat+1050&rft.genre=unknown&rft.pub=Arne+B.+Sletsj%C3%B8e%2C+UiB&rft_id=https%3A%2F%2Fwww.uio.no%2Fstudier%2Femner%2Fmatnat%2Fmath%2FMAT1050%2Fv19%2Fhele%25282%2529.pdf&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-TL1-11"><b><a href="#cite_ref-TL1_11-0">^</a></b> <span class="reference-text"><cite class="citation book">R. Tambs Lyche (1961). <i>Matematisk Analyse, Bind I</i>. Oslo: Gyldendal Norsk Forlag.</cite><span title="ctx_ver=Z39.88-2004&rfr_id=info%3Asid%2Fno.wikipedia.org%3ADerivasjon&rft.au=R.+Tambs+Lyche&rft.btitle=Matematisk+Analyse%2C+Bind+I&rft.date=1961&rft.genre=book&rft.place=Oslo&rft.pub=Gyldendal+Norsk+Forlag&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-THOMAS795-12"><b><a href="#cite_ref-THOMAS795_12-0">^</a></b> <span class="reference-text"><a href="#THOMAS">: G. Thomas, R. Finney; <i>Calculus and Analytic Geometry</i></a> s.795 </span> </li> <li id="cite_note-COLLINS16-13"><b><a href="#cite_ref-COLLINS16_13-0">^</a></b> <span class="reference-text"><a href="#COLLINS">E.J.Borowski, J.M.Borwein: <i>Dictionary of mathematics</i></a> s.16 </span> </li> <li id="cite_note-TL331-14"><b><a href="#cite_ref-TL331_14-0">^</a></b> <span class="reference-text"><a href="#TL">T. Lindstrøm: <i>Kalkulus</i></a> s.331 </span> </li> <li id="cite_note-APOSTOL252-15"><b><a href="#cite_ref-APOSTOL252_15-0">^</a></b> <span class="reference-text"><a href="#APOSTOL">T.M. Apostol: <i>Calculus </i>, Bind II </a> s.252ff </span> </li> <li id="cite_note-APOSTOL277-16"><b><a href="#cite_ref-APOSTOL277_16-0">^</a></b> <span class="reference-text"><a href="#APOSTOL">T.M. Apostol: <i>Calculus </i>, Bind II </a> s.277 </span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="Litteratur">Litteratur</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Derivasjon&veaction=edit&section=43" title="Rediger avsnitt: Litteratur" class="mw-editsection-visualeditor"><span>rediger</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Derivasjon&action=edit&section=43" title="Rediger kildekoden til seksjonen Litteratur"><span>rediger kilde</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><cite id="APOSTOL" class="citation book">T.M. Apostol (1969). <i>Calculus</i>. II. New York: John Wiley & Sons. <a href="/wiki/ISBN" title="ISBN">ISBN</a> <a href="/wiki/Spesial:Bokkilder/0-471-00008-6" title="Spesial:Bokkilder/0-471-00008-6">0-471-00008-6</a>.</cite><span title="ctx_ver=Z39.88-2004&rfr_id=info%3Asid%2Fno.wikipedia.org%3ADerivasjon&rft.au=T.M.+Apostol&rft.btitle=Calculus&rft.date=1969&rft.genre=book&rft.isbn=0-471-00008-6&rft.place=New+York&rft.pub=John+Wiley+%26+Sons&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;"> </span></span> </p> <ul><li><cite id="COLLINS" class="citation book">E.J.Borowski, J.M.Borwein (1989). <i>Dictionary of mathematics</i>. Glasgow: Collins. <a href="/wiki/ISBN" title="ISBN">ISBN</a> <a href="/wiki/Spesial:Bokkilder/0-00-434347-6" title="Spesial:Bokkilder/0-00-434347-6">0-00-434347-6</a>.</cite><span title="ctx_ver=Z39.88-2004&rfr_id=info%3Asid%2Fno.wikipedia.org%3ADerivasjon&rft.au=E.J.Borowski%2C+J.M.Borwein&rft.btitle=Dictionary+of+mathematics&rft.date=1989&rft.genre=book&rft.isbn=0-00-434347-6&rft.place=Glasgow&rft.pub=Collins&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;"> </span></span></li> <li><cite id="Mal:Sfnref" class="citation book">T. Lindstrøm (2006). <a rel="nofollow" class="external text" href="http://books.google.com/books?id=4E1ytwAACAAJ"><i>Kalkulus</i></a> (på norsk). Universitetsforlaget. <a href="/wiki/ISBN" title="ISBN">ISBN</a> <a href="/wiki/Spesial:Bokkilder/978-82-15-00977-3" title="Spesial:Bokkilder/978-82-15-00977-3">978-82-15-00977-3</a><span class="reference-accessdate">. Besøkt 30. august 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&rfr_id=info%3Asid%2Fno.wikipedia.org%3ADerivasjon&rft.au=T.+Lindstr%C3%B8m&rft.btitle=Kalkulus&rft.date=2006&rft.genre=book&rft.isbn=978-82-15-00977-3&rft_id=http%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D4E1ytwAACAAJ&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;"> </span></span></li> <li><cite id="Mal:Sfnref" class="citation book">S.B. Lindström (2013). <a rel="nofollow" class="external text" href="http://books.google.com/books?id=GgoaAwAAQBAJ&pg=PA126"><i>Matematisk ordbok för högskolan: engelsk-svensk, svensk-engelsk:</i></a> (på svensk). Stefan B. Lindström. <a href="/wiki/ISBN" title="ISBN">ISBN</a> <a href="/wiki/Spesial:Bokkilder/978-91-981287-0-3" title="Spesial:Bokkilder/978-91-981287-0-3">978-91-981287-0-3</a><span class="reference-accessdate">. Besøkt 30. august 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&rfr_id=info%3Asid%2Fno.wikipedia.org%3ADerivasjon&rft.au=S.B.+Lindstr%C3%B6m&rft.btitle=Matematisk+ordbok+f%C3%B6r+h%C3%B6gskolan%3A+engelsk-svensk%2C+svensk-engelsk%3A&rft.date=2013&rft.genre=book&rft.isbn=978-91-981287-0-3&rft_id=http%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DGgoaAwAAQBAJ%26pg%3DPA126&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;"> </span></span></li> <li><cite id="THOMAS" class="citation book">G. Thomas, R. Finney (1995). <i>Calculus and Analytic Geometry</i> (5th edition utg.). Reading, USA: Addison-Wesley. <a href="/wiki/ISBN" title="ISBN">ISBN</a> <a href="/wiki/Spesial:Bokkilder/0-201-53174-7" title="Spesial:Bokkilder/0-201-53174-7">0-201-53174-7</a>.</cite><span title="ctx_ver=Z39.88-2004&rfr_id=info%3Asid%2Fno.wikipedia.org%3ADerivasjon&rft.au=G.+Thomas%2C+R.+Finney&rft.btitle=Calculus+and+Analytic+Geometry&rft.date=1995&rft.edition=5th+edition&rft.genre=book&rft.isbn=0-201-53174-7&rft.place=Reading%2C+USA&rft.pub=Addison-Wesley&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;"> </span></span><span class="citation-comment" style="display:none; color:#33aa33; margin-left:0.3em">CS1-vedlikehold: Ekstra tekst (<a href="/wiki/Kategori:CS1-vedlikehold:_Ekstra_tekst" title="Kategori:CS1-vedlikehold: Ekstra tekst">link</a>)</span></li> <li><cite id="CBV" class="citation book">R.V Churchill, J.W. Brown, R.F. Verhey (1974). <i>Complex variables and applications</i> (på english). Tokyo: McGraw-Hill Kogakusha. <a href="/wiki/ISBN" title="ISBN">ISBN</a> <a href="/wiki/Spesial:Bokkilder/0-07-010855-2" title="Spesial:Bokkilder/0-07-010855-2">0-07-010855-2</a>.</cite><span title="ctx_ver=Z39.88-2004&rfr_id=info%3Asid%2Fno.wikipedia.org%3ADerivasjon&rft.au=R.V+Churchill%2C+J.W.+Brown%2C+R.F.+Verhey&rft.btitle=Complex+variables+and+applications&rft.date=1974&rft.genre=book&rft.isbn=0-07-010855-2&rft.place=Tokyo&rft.pub=McGraw-Hill+Kogakusha&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;"> </span></span><span class="citation-comment" style="display:none; color:#33aa33; margin-left:0.3em">CS1-vedlikehold: Flere navn: forfatterliste (<a href="/wiki/Kategori:CS1-vedlikehold:_Flere_navn:_forfatterliste" title="Kategori:CS1-vedlikehold: Flere navn: forfatterliste">link</a>)</span></li> <li><cite id="CAJ" class="citation book">Florian Cajori (2007). <i>A history of mathematical notations</i>. I og II. Princeton, USA: Cosimo. <a href="/wiki/ISBN" title="ISBN">ISBN</a> <a href="/wiki/Spesial:Bokkilder/978-1-60206-684-7" title="Spesial:Bokkilder/978-1-60206-684-7">978-1-60206-684-7</a>.</cite><span title="ctx_ver=Z39.88-2004&rfr_id=info%3Asid%2Fno.wikipedia.org%3ADerivasjon&rft.au=Florian+Cajori&rft.btitle=A+history+of+mathematical+notations&rft.date=2007&rft.genre=book&rft.isbn=978-1-60206-684-7&rft.place=Princeton%2C+USA&rft.pub=Cosimo&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;"> </span></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="Eksterne_lenker">Eksterne lenker</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Derivasjon&veaction=edit&section=44" title="Rediger avsnitt: Eksterne lenker" class="mw-editsection-visualeditor"><span>rediger</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Derivasjon&action=edit&section=44" title="Rediger kildekoden til seksjonen Eksterne lenker"><span>rediger kilde</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a rel="nofollow" class="external text" href="http://wims.unice.fr/wims/wims.cgi?module=tool/analysis/function.en">Function calculator</a></li> <li><a rel="nofollow" class="external text" href="http://kalkuler.no">Kalkulator som kan derivere funksjoner av én variabel</a></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r23230704">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r24561737">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}</style></div><div role="navigation" class="navbox" aria-labelledby="Hovedområder_i_matematikk" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r23230704"><style data-mw-deduplicate="TemplateStyles:r24561741">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-vis"><a href="/wiki/Mal:Matematikk" title="Mal:Matematikk"><abbr title="Vis denne malen">v</abbr></a></li><li class="nv-diskuter"><a href="/w/index.php?title=Maldiskusjon:Matematikk&action=edit&redlink=1" class="new" title="Maldiskusjon:Matematikk (ikke skrevet ennå)"><abbr title="Diskuter denne malen">d</abbr></a></li><li class="nv-rediger"><a href="/wiki/Spesial:Rediger_side/Mal:Matematikk" title="Spesial:Rediger side/Mal:Matematikk"><abbr title="Rediger denne malen">r</abbr></a></li></ul></div><div id="Hovedområder_i_matematikk" style="font-size:114%;margin:0 4em">Hovedområder i <a href="/wiki/Matematikk" title="Matematikk">matematikk</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0em 0.25em"><a href="/wiki/Algebra" title="Algebra">Algebra</a> <b>·</b> <a href="/wiki/Matematisk_analyse" title="Matematisk analyse">Analyse</a> <b>·</b> <a href="/wiki/Anvendt_matematikk" title="Anvendt matematikk">Anvendt matematikk</a> <b>·</b> <a href="/wiki/Geometri" title="Geometri">Geometri</a> <b>·</b> <a href="/wiki/Kombinatorikk" title="Kombinatorikk">Kombinatorikk</a> <b>·</b> <a href="/wiki/Numerisk_analyse" title="Numerisk analyse">Numerisk analyse</a> <b>·</b> <a href="/wiki/Topologi" title="Topologi">Topologi</a> <b>·</b> <a href="/wiki/Statistikk" title="Statistikk">Statistikk</a></div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r23230704"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r24561737"></div><div role="navigation" class="navbox" aria-labelledby="Oppslagsverk/autoritetsdata" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th id="Oppslagsverk/autoritetsdata" scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Hjelp:Autoritetsdata" title="Hjelp:Autoritetsdata">Oppslagsverk/autoritetsdata</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0em 0.25em"><a rel="nofollow" class="external text" href="https://snl.no/derivasjon_-_matematikk">Store norske leksikon</a> <b>·</b> <a rel="nofollow" class="external text" href="https://www.britannica.com/topic/derivative-mathematics">Encyclopædia Britannica</a> <b>·</b> <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/Derivative.html">MathWorld</a> <b>·</b> <a rel="nofollow" class="external text" href="https://www.ne.se/uppslagsverk/encyklopedi/lång/differentialkalkyl">Nationalencyklopedin</a> <b>·</b> <a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4233840-2">GND</a> <b>·</b> <a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh2011005437">LCCN</a> <b>·</b> <a rel="nofollow" class="external text" href="https://aleph.nkp.cz/F/?func=find-c&local_base=aut&ccl_term=ica=ph137564">NKC</a></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐6f4956b788‐qnd85 Cached time: 20241128164331 Cache expiry: 2592000 Reduced expiry: false Complications: [show‐toc] CPU time usage: 0.560 seconds Real time usage: 0.902 seconds Preprocessor visited node count: 3889/1000000 Post‐expand include size: 31292/2097152 bytes Template argument size: 2181/2097152 bytes Highest expansion depth: 8/100 Expensive parser function count: 6/500 Unstrip recursion depth: 0/20 Unstrip post‐expand size: 31871/5000000 bytes Lua time usage: 0.214/10.000 seconds Lua memory usage: 5898401/52428800 bytes Number of Wikibase entities loaded: 7/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 381.299 1 -total 40.92% 156.016 1 Mal:Autoritetsdata 28.07% 107.027 2 Mal:Navboks 27.12% 103.411 2 Mal:Navbox 23.23% 88.587 1 Mal:Matematikk 20.27% 77.303 10 Mal:Kilde_bok 4.16% 15.870 1 Mal:Sitat 3.57% 13.595 1 Mal:Tekstboks 1.54% 5.854 1 Mal:Utdypende 1.33% 5.063 1 Mal:Kilde_www --> <!-- Saved in parser cache with key nowiki:pcache:38111:|#|:idhash:canonical and timestamp 20241128164331 and revision id 23920936. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&useformat=desktop" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Hentet fra «<a dir="ltr" href="https://no.wikipedia.org/w/index.php?title=Derivasjon&oldid=23920936">https://no.wikipedia.org/w/index.php?title=Derivasjon&oldid=23920936</a>»</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Kategori:Kategorier" title="Kategori:Kategorier">Kategorier</a>: <ul><li><a href="/wiki/Kategori:Differensialregning" title="Kategori:Differensialregning">Differensialregning</a></li><li><a href="/wiki/Kategori:Funksjoner" title="Kategori:Funksjoner">Funksjoner</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Skjulte kategorier: <ul><li><a href="/wiki/Kategori:Sider_med_duplikatargumenter_i_malkall" title="Kategori:Sider med duplikatargumenter i malkall">Sider med duplikatargumenter i malkall</a></li><li><a href="/wiki/Kategori:CS1-vedlikehold:_Ekstra_tekst" title="Kategori:CS1-vedlikehold: Ekstra tekst">CS1-vedlikehold: Ekstra tekst</a></li><li><a href="/wiki/Kategori:CS1-vedlikehold:_Flere_navn:_forfatterliste" title="Kategori:CS1-vedlikehold: Flere navn: forfatterliste">CS1-vedlikehold: Flere navn: forfatterliste</a></li><li><a href="/wiki/Kategori:Artikler_med_autoritetsdatalenker_fra_Wikidata" title="Kategori:Artikler med autoritetsdatalenker fra Wikidata">Artikler med autoritetsdatalenker fra Wikidata</a></li><li><a href="/wiki/Kategori:Sider_som_bruker_et_utdatert_format_for_mattetagger" title="Kategori:Sider som bruker et utdatert format for mattetagger">Sider som bruker et utdatert format for mattetagger</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Denne siden ble sist redigert 27. okt. 2023 kl. 08:52.</li> <li id="footer-info-copyright">Innholdet er tilgjengelig under <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by-sa/4.0/deed.no">Creative Commons-lisensen Navngivelse-DelPåSammeVilkår</a>, men ytterligere betingelser kan gjelde. Se <a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use">bruksvilkårene</a> for detaljer.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Personvern</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:Om">Om Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:Generelle_forbehold">Forbehold</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Atferdsnorm</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Utviklere</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/no.wikipedia.org">Statistikk</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Erklæring om informasjonskapsler</a></li> <li id="footer-places-mobileview"><a href="//no.m.wikipedia.org/w/index.php?title=Derivasjon&section=8&veaction=edit&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobilvisning</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-5f58cd8b6-kmbps","wgBackendResponseTime":167,"wgPageParseReport":{"limitreport":{"cputime":"0.560","walltime":"0.902","ppvisitednodes":{"value":3889,"limit":1000000},"postexpandincludesize":{"value":31292,"limit":2097152},"templateargumentsize":{"value":2181,"limit":2097152},"expansiondepth":{"value":8,"limit":100},"expensivefunctioncount":{"value":6,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":31871,"limit":5000000},"entityaccesscount":{"value":7,"limit":400},"timingprofile":["100.00% 381.299 1 -total"," 40.92% 156.016 1 Mal:Autoritetsdata"," 28.07% 107.027 2 Mal:Navboks"," 27.12% 103.411 2 Mal:Navbox"," 23.23% 88.587 1 Mal:Matematikk"," 20.27% 77.303 10 Mal:Kilde_bok"," 4.16% 15.870 1 Mal:Sitat"," 3.57% 13.595 1 Mal:Tekstboks"," 1.54% 5.854 1 Mal:Utdypende"," 1.33% 5.063 1 Mal:Kilde_www"]},"scribunto":{"limitreport-timeusage":{"value":"0.214","limit":"10.000"},"limitreport-memusage":{"value":5898401,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-6f4956b788-qnd85","timestamp":"20241128164331","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Derivasjon","url":"https:\/\/no.wikipedia.org\/wiki\/Derivasjon","sameAs":"http:\/\/www.wikidata.org\/entity\/Q29175","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q29175","author":{"@type":"Organization","name":"Bidragsytere til Wikimedia-prosjektene"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2005-03-07T20:49:03Z","dateModified":"2023-10-27T07:52:15Z","headline":"matematisk operasjon som viser hvordan en funksjon endrer seg"}</script> </body> </html>