CINXE.COM
Search
<!DOCTYPE html> <html lang="en" class="no-js"> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes"> <title>Search</title> <meta id="meta-title" property="citation_title" content="Search"/> <meta id="og-title" property="og:title" content="Search"/> <meta name="twitter:widgets:autoload" content="off"/> <meta name="twitter:dnt" content="on"/> <meta name="twitter:widgets:csp" content="on"/> <meta name="google-site-verification" content="lQbRRf0vgPqMbnbCsgELjAjIIyJjiIWo917M7hBshvI"/> <meta id="og-image" property="og:image" content="https://escholarship.org/images/escholarship-facebook2.jpg"/> <meta id="og-image-width" property="og:image:width" content="1242"/> <meta id="og-image-height" property="og:image:height" content="1242"/> <link rel="stylesheet" href="/css/main-fa87d2fbdbef47d2.css"> <link rel="resource" type="application/l10n" href="/node_modules/pdfjs-embed2/dist/locale/locale.properties"> <noscript><style> .jsonly { display: none } </style></noscript> <!-- Matomo --> <!-- TBD Configure Matomo for SPA https://developer.matomo.org/guides/spa-tracking --> <script type="text/plain" data-type="application/javascript" data-name="matomo"> var _paq = window._paq = window._paq || []; /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ _paq.push(['trackPageView']); _paq.push(['enableLinkTracking']); (function() { var u="//matomo.cdlib.org/"; _paq.push(['setTrackerUrl', u+'matomo.php']); _paq.push(['setSiteId', '7']); var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); console.log('*** MATOMO LOADED ***'); })(); </script> <!-- End Matomo Code --> </head> <body> <div id="main"><div data-reactroot=""><div class="body"><a href="#maincontent" class="c-skipnav">Skip to main content</a><div class="l_search"><div><div style="margin-top:-10px"></div><header id="#top" class="c-header"><a class="c-header__logo2" href="/"><picture><source srcSet="/images/logo_eschol-small.svg" media="(min-width: 870px)"/><img src="/images/logo_eschol-mobile.svg" alt="eScholarship"/></picture><div class="c-header__logo2-tagline">Open Access Publications from the University of California</div></a><div class="c-header__search"><form class="c-search1"><label class="c-search1__label" for="c-search1__field">search</label><input type="search" id="c-search1__field" name="q" class="c-search1__field" placeholder="Search over 500,000 items" autoCapitalize="off" value="author:Zhao, Yunde"/><button type="submit" class="c-search1__submit-button" aria-label="submit search"></button><button type="button" class="c-search1__search-close-button" aria-label="close search field"></button></form></div><button class="c-header__search-open-button" aria-label="open search field"></button></header></div><div class="c-navbar"><nav class="c-nav"><details open="" class="c-nav__main"><summary class="c-nav__main-button">Menu</summary><ul class="c-nav__main-items"><li><details class="c-nav__sub"><summary class="c-nav__sub-button">About eScholarship</summary><div class="c-nav__sub-items"><button class="c-nav__sub-items-button" aria-label="return to menu">Main Menu</button><ul><li><a href="/aboutEschol">About eScholarship</a></li><li><a href="/repository">eScholarship Repository</a></li><li><a href="/publishing">eScholarship Publishing</a></li><li><a href="/policies">Site policies</a></li><li><a href="/terms">Terms of Use and Copyright Information</a></li><li><a href="/privacyPolicy">Privacy statement</a></li></ul></div></details></li><li><details class="c-nav__sub"><summary class="c-nav__sub-button">Campus Sites</summary><div class="c-nav__sub-items"><button class="c-nav__sub-items-button" aria-label="return to menu">Main Menu</button><ul><li><a href="/uc/ucb">UC Berkeley</a></li><li><a href="/uc/ucd">UC Davis</a></li><li><a href="/uc/uci">UC Irvine</a></li><li><a href="/uc/ucla">UCLA</a></li><li><a href="/uc/ucm">UC Merced</a></li><li><a href="/uc/ucr">UC Riverside</a></li><li><a href="/uc/ucsd">UC San Diego</a></li><li><a href="/uc/ucsf">UCSF</a></li><li><a href="/uc/ucsb">UC Santa Barbara</a></li><li><a href="/uc/ucsc">UC Santa Cruz</a></li><li><a href="/uc/ucop">UC Office of the President</a></li><li><a href="/uc/lbnl">Lawrence Berkeley National Laboratory</a></li><li><a href="/uc/anrcs">UC Agriculture & Natural Resources</a></li></ul></div></details></li><li><a href="/ucoapolicies">UC Open Access Policies</a></li><li><a href="/publishing">eScholarship Publishing</a></li><li><a href="/ucpubs">UCPUBS</a></li></ul></details></nav></div><form id="facetForm" class="c-columns"><aside><div><div class="c-filter"><h1 class="c-filter__heading">Your search: "author:Zhao, Yunde"</h1><input type="hidden" name="q" value="author:Zhao, Yunde"/><div class="c-filter__results">42<!-- --> results</div><div class="c-filter__inactive-note">No filters applied</div><details class="c-filter__active" open=""><summary><span><strong></strong> filter<!-- -->s<!-- --> applied</span></summary><button class="c-filter__clear-all">clear all</button><ul class="c-filter__active-list"></ul></details><a href="https://help.escholarship.org/support/solutions/articles/9000148939-using-advanced-search-beta-" class="c-filter__tips">Search tips</a></div><div class="c-refine--has-drawer"><button class="c-refine__button--open">Refine Results</button><button class="c-refine__button--close" hidden="">Back to Results</button><div class="c-refine__drawer--closed"><details class="c-facetbox" open=""><summary class="c-facetbox__summary"><span id="facetbox0">Type of Work</span></summary><fieldset aria-labelledby="facetbox0"><ul class="c-checkbox"><li class=""><input type="checkbox" id="type_of_work-article" class="c-checkbox__input" name="type_of_work" value="article"/><label for="type_of_work-article" class="c-checkbox__label">Article<!-- --> (<!-- -->37<!-- -->)</label></li><li class=""><input type="checkbox" id="type_of_work-monograph" class="c-checkbox__input" name="type_of_work" value="monograph"/><label for="type_of_work-monograph" class="c-checkbox__label">Book<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="type_of_work-dissertation" class="c-checkbox__input" name="type_of_work" value="dissertation"/><label for="type_of_work-dissertation" class="c-checkbox__label">Theses<!-- --> (<!-- -->4<!-- -->)</label></li><li class=""><input type="checkbox" id="type_of_work-multimedia" class="c-checkbox__input" name="type_of_work" value="multimedia"/><label for="type_of_work-multimedia" class="c-checkbox__label">Multimedia<!-- --> (<!-- -->1<!-- -->)</label></li></ul></fieldset></details><details class="c-facetbox" open=""><summary class="c-facetbox__summary"><span id="facetbox1">Peer Review</span></summary><fieldset aria-labelledby="facetbox1"><ul class="c-checkbox"><li class=""><input type="checkbox" id="peer_reviewed-1" class="c-checkbox__input" name="peer_reviewed" value="1"/><label for="peer_reviewed-1" class="c-checkbox__label">Peer-reviewed only<!-- --> (<!-- -->42<!-- -->)</label></li></ul></fieldset></details><details class="c-facetbox"><summary class="c-facetbox__summary"><span id="facetbox2">Supplemental Material</span></summary><fieldset aria-labelledby="facetbox2"><ul class="c-checkbox--2column"><li class=""><input type="checkbox" id="supp_file_types-video" class="c-checkbox__input" name="supp_file_types" value="video"/><label for="supp_file_types-video" class="c-checkbox__label">Video<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="supp_file_types-audio" class="c-checkbox__input" name="supp_file_types" value="audio"/><label for="supp_file_types-audio" class="c-checkbox__label">Audio<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="supp_file_types-images" class="c-checkbox__input" name="supp_file_types" value="images"/><label for="supp_file_types-images" class="c-checkbox__label">Images<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="supp_file_types-zip" class="c-checkbox__input" name="supp_file_types" value="zip"/><label for="supp_file_types-zip" class="c-checkbox__label">Zip<!-- --> (<!-- -->1<!-- -->)</label></li><li class=""><input type="checkbox" id="supp_file_types-other_files" class="c-checkbox__input" name="supp_file_types" value="other files"/><label for="supp_file_types-other_files" class="c-checkbox__label">Other files<!-- --> (<!-- -->0<!-- -->)</label></li></ul></fieldset></details><details class="c-facetbox"><summary class="c-facetbox__summary"><span id="facetbox3">Publication Year</span></summary><fieldset aria-labelledby="facetbox3"><div class="c-pubyear"><div class="c-pubyear__field"><label for="c-pubyear__textfield1">From:</label><input type="text" id="c-pubyear__textfield1" name="pub_year_start" maxLength="4" placeholder="1900" value=""/></div><div class="c-pubyear__field"><label for="c-pubyear__textfield2">To:</label><input type="text" id="c-pubyear__textfield2" name="pub_year_end" maxLength="4" placeholder="2025" value=""/></div><button class="c-pubyear__button">Apply</button></div></fieldset></details><details class="c-facetbox"><summary class="c-facetbox__summary"><span id="facetbox4">Campus</span></summary><fieldset aria-labelledby="facetbox4"><ul class="c-checkbox"><li class=""><input type="checkbox" id="campuses-ucb" class="c-checkbox__input" name="campuses" value="ucb"/><label for="campuses-ucb" class="c-checkbox__label">UC Berkeley<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucd" class="c-checkbox__input" name="campuses" value="ucd"/><label for="campuses-ucd" class="c-checkbox__label">UC Davis<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-uci" class="c-checkbox__input" name="campuses" value="uci"/><label for="campuses-uci" class="c-checkbox__label">UC Irvine<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucla" class="c-checkbox__input" name="campuses" value="ucla"/><label for="campuses-ucla" class="c-checkbox__label">UCLA<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucm" class="c-checkbox__input" name="campuses" value="ucm"/><label for="campuses-ucm" class="c-checkbox__label">UC Merced<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucr" class="c-checkbox__input" name="campuses" value="ucr"/><label for="campuses-ucr" class="c-checkbox__label">UC Riverside<!-- --> (<!-- -->1<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucsd" class="c-checkbox__input" name="campuses" value="ucsd"/><label for="campuses-ucsd" class="c-checkbox__label">UC San Diego<!-- --> (<!-- -->42<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucsf" class="c-checkbox__input" name="campuses" value="ucsf"/><label for="campuses-ucsf" class="c-checkbox__label">UCSF<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucsb" class="c-checkbox__input" name="campuses" value="ucsb"/><label for="campuses-ucsb" class="c-checkbox__label">UC Santa Barbara<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucsc" class="c-checkbox__input" name="campuses" value="ucsc"/><label for="campuses-ucsc" class="c-checkbox__label">UC Santa Cruz<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucop" class="c-checkbox__input" name="campuses" value="ucop"/><label for="campuses-ucop" class="c-checkbox__label">UC Office of the President<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-lbnl" class="c-checkbox__input" name="campuses" value="lbnl"/><label for="campuses-lbnl" class="c-checkbox__label">Lawrence Berkeley National Laboratory<!-- --> (<!-- -->1<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-anrcs" class="c-checkbox__input" name="campuses" value="anrcs"/><label for="campuses-anrcs" class="c-checkbox__label">UC Agriculture & Natural Resources<!-- --> (<!-- -->0<!-- -->)</label></li></ul></fieldset></details><details class="c-facetbox"><summary class="c-facetbox__summary"><span id="facetbox5">Department</span></summary><fieldset aria-labelledby="facetbox5"><ul class="c-checkbox"><li class=""><input type="checkbox" id="departments-lbnl_bs" class="c-checkbox__input" name="departments" value="lbnl_bs"/><label for="departments-lbnl_bs" class="c-checkbox__label">BioSciences<!-- --> (<!-- -->1<!-- -->)</label></li></ul></fieldset></details><details class="c-facetbox"><summary class="c-facetbox__summary"><span id="facetbox6">Journal</span></summary><fieldset aria-labelledby="facetbox6"><ul class="c-checkbox"></ul></fieldset></details><details class="c-facetbox"><summary class="c-facetbox__summary"><span id="facetbox7">Discipline</span></summary><fieldset aria-labelledby="facetbox7"><ul class="c-checkbox"></ul></fieldset></details><details class="c-facetbox"><summary class="c-facetbox__summary"><span id="facetbox8">Reuse License</span></summary><fieldset aria-labelledby="facetbox8"><ul class="c-checkbox"><li class="c-checkbox__attrib-cc-by"><input type="checkbox" id="rights-CC_BY" class="c-checkbox__input" name="rights" value="CC BY"/><label for="rights-CC_BY" class="c-checkbox__label">BY - Attribution required<!-- --> (<!-- -->14<!-- -->)</label></li><li class="c-checkbox__attrib-cc-by-nc-nd"><input type="checkbox" id="rights-CC_BY-NC-ND" class="c-checkbox__input" name="rights" value="CC BY-NC-ND"/><label for="rights-CC_BY-NC-ND" class="c-checkbox__label">BY-NC-ND - Attribution; NonCommercial use; No derivatives<!-- --> (<!-- -->2<!-- -->)</label></li><li class="c-checkbox__attrib-cc-by-nc"><input type="checkbox" id="rights-CC_BY-NC" class="c-checkbox__input" name="rights" value="CC BY-NC"/><label for="rights-CC_BY-NC" class="c-checkbox__label">BY-NC - Attribution; NonCommercial use only<!-- --> (<!-- -->1<!-- -->)</label></li></ul></fieldset></details></div></div><button type="submit" id="facet-form-submit" style="display:none">Search</button></div></aside><main id="maincontent"><section class="o-columnbox1"><header><h2 class="o-columnbox1__heading" aria-live="polite">Scholarly Works (<!-- -->42 results<!-- -->)</h2></header><div class="c-sortpagination"><div class="c-sort"><div class="o-input__droplist1"><label for="c-sort1">Sort By:</label><select name="sort" id="c-sort1" form="facetForm"><option selected="" value="rel">Relevance</option><option value="a-title">A-Z By Title</option><option value="z-title">Z-A By Title</option><option value="a-author">A-Z By Author</option><option value="z-author">Z-A By Author</option><option value="asc">Date Ascending</option><option value="desc">Date Descending</option></select></div><div class="o-input__droplist1 c-sort__page-input"><label for="c-sort2">Show:</label><select name="rows" id="c-sort2" form="facetForm"><option selected="" value="10">10</option><option value="20">20</option><option value="30">30</option><option value="40">40</option><option value="50">50</option></select></div></div><input type="hidden" name="start" form="facetForm" value="0"/><nav class="c-pagination"><ul><li><a href="" aria-label="you are on result set 1" class="c-pagination__item--current">1</a></li><li><a href="" aria-label="go to result set 2" class="c-pagination__item">2</a></li><li><a href="" aria-label="go to result set 3" class="c-pagination__item">3</a></li><li><a href="" aria-label="go to result set 4" class="c-pagination__item">4</a></li><li><a href="" aria-label="go to result set 5" class="c-pagination__item">5</a></li></ul></nav></div><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-article">Article</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/36q955z7"><div class="c-clientmarkup">Auxin Biosynthesis</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3AZhao%2C%20Yunde">Zhao, Yunde</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/ucsd_postprints">UC San Diego Previously Published Works</a> (<!-- -->2014<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup">lndole-3-acetic acid (IAA), the most important natural auxin in plants, is mainly synthesized from the amino acid tryptophan (Trp). Recent genetic and biochemical studies in Arabidopsis have unambiguously established the first complete Trp-dependent auxin biosynthesis pathway. The first chemical step of auxin biosynthesis is the removal of the amino group from Trp by the TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS (TAA) family of transaminases to generate indole-3-pyruvate (IPA). IPA then undergoes oxidative decarboxylation catalyzed by the YUCCA (YUC) family of flavin monooxygenases to produce IAA. This two-step auxin biosynthesis pathway is highly conserved throughout the plant kingdom and is essential for almost all of the major developmental processes. The successful elucidation of a complete auxin biosynthesis pathway provides the necessary tools for effectively modulating auxin concentrations in plants with temporal and spatial precision. The progress in auxin biosynthesis also lays a foundation for understanding polar auxin transport and for dissecting auxin signaling mechanisms during plant development.</div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a class="c-scholworks__thumbnail" href="/uc/item/36q955z7"><img src="/cms-assets/d94e8243b741014bf9e5b1ed9face1e87ce54e4ac90821e56197307d9a7106f2" alt="Cover page: Auxin Biosynthesis"/></a></div></section><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-article">Article</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/0wq5b113"><div class="c-clientmarkup">Technological breakthroughs in generating transgene-free and genetically stable CRISPR-edited plants</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3AHe%2C%20Yubing">He, Yubing</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3AZhao%2C%20Yunde">Zhao, Yunde</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/ucsd_postprints">UC San Diego Previously Published Works</a> (<!-- -->2020<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup">CRISPR/Cas9 gene-editing technologies have been very effective in editing target genes in all major crop plants and offer unprecedented potentials in crop improvement. A major challenge in using CRISPR gene-editing technology for agricultural applications is that the target gene-edited crop plants need to be transgene free to maintain trait stability and to gain regulatory approval for commercial production. In this article, we present various strategies for generating transgene-free and target gene-edited crop plants. The <i>CRISPR</i> transgenes can be removed by genetic segregation if the crop plants are reproduced sexually. Marker-assisted tracking and eliminating transgenes greatly decrease the time and labor needed for identifying the ideal transgene-free plants. Transgenes can be programed to undergo self-elimination when <i>CRISPR</i> genes and suicide genes are sequentially activated, greatly accelerating the isolation of transgene-free and target gene-edited plants. Transgene-free plants can also be generated using approaches that are considered non-transgenic such as ribonucleoprotein transfection, transient expression of transgenes without DNA integration, and nano-biotechnology. Here, we discuss the advantages and disadvantages of the various strategies in generating transgene-free plants and provide guidance for adopting the best strategies in editing a crop plant.</div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a class="c-scholworks__thumbnail" href="/uc/item/0wq5b113"><img src="/cms-assets/488a7b9a6137bcf5a89b15044dd71654ba8f7fa80c99a53fb4bd815106c2c1b2" alt="Cover page: Technological breakthroughs in generating transgene-free and genetically stable CRISPR-edited plants"/></a></div></section><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-thesis">Thesis</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/157280hw"><div class="c-clientmarkup">Elucidating Molecular Mechanisms of Auxin Metabolism in Arabidopsis thaliana Using the Bacterial iaaB Gene</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3AYu%2C%20Hanchuanzhi">Yu, Hanchuanzhi</a> </li><li class="c-authorlist__begin"><span class="c-authorlist__heading">Advisor(s):</span> <a href="/search/?q=author%3AZhao%2C%20Yunde">Zhao, Yunde</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/ucsd_etd">UC San Diego Electronic Theses and Dissertations</a> (<!-- -->2018<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup"><p>The phytohormone auxin regulates nearly every aspect of plant growth and development. How plants control auxin biosynthesis, conjugation, degradation and auxin transport has been a major research topic in auxin biology. Great progress has been made in auxin biosynthesis and conjugation as well as auxin transport in the past decades. The recent discovery of DAO genes also contributes to the knowledge of auxin catabolism in plants. The bacteria Aromatoleum aromaticum is able to degrade auxin in anaerobic conditions. The iaaB gene encodes an indole acetate-CoA ligase that converts IAA to IAA-CoA in the auxin degradation pathway in A. aromaticum. IAA-CoA can be potentially converted back to IAA providing a source of auxin, or form IAA conjugates or IBA. We overexpressed the iaaB gene in Arabidopsis thaliana using the CaMV 35S promoter to investigate the potential roles of IAA-CoA in auxin metabolism in Arabidopsis. Distinct auxin-related phenotypes of the iaaB-overexpression Arabidopsis plants were observed. The overall size of the iaaB-overexpression plants was much smaller than that of Col-0 (wild-type), suggesting that the overall auxin homeostasis is altered. Moreover, we found that the auxin reporter was activated at the basal end of hypocotyls and resulted in longer hypocotyl. We also observed that the DR5-GUS expression was reduced at root tips, which correlates with reduced gravitropism and fewer lateral roots. We conclude that overexpression of the iaaB gene alters the auxin homeostasis and affects the growth and development of Arabidopsis. We believe that different cells/tissues may have different sensitivities to iaaB overexpression. Future studies are needed to demonstrate the exact role of the iaaB gene and IAA-CoA in Arabidopsis.</p></div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a class="c-scholworks__thumbnail" href="/uc/item/157280hw"><img src="/cms-assets/d3c5d00343aadb10445fe81f343779f49490bc6c1d26e4b8a9bad482fddde651" alt="Cover page: Elucidating Molecular Mechanisms of Auxin Metabolism in Arabidopsis thaliana Using the Bacterial iaaB Gene"/></a></div></section><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-multimedia">Multimedia</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/0g00c265"><div class="c-clientmarkup">Mechanisms of auxin transport and signaling in Arabidopsis thaliana flower initiation</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3AMudgett%2C%20Michael">Mudgett, Michael</a> </li><li class="c-authorlist__begin"><span class="c-authorlist__heading">Advisor(s):</span> <a href="/search/?q=author%3AZhao%2C%20Yunde">Zhao, Yunde</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/ucsd_etd">UC San Diego Electronic Theses and Dissertations</a> (<!-- -->2024<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup"><p>Plants possess the remarkable ability to continually generate new organs from undifferentiated tissue throughout many stages of their lives. For angiosperms, this includes their floral reproductive organs. Many different molecular signals coordinate the complex process of flower generation, but the foremost regulator is the phytohormone auxin. In this dissertation, we present work that has advanced our understanding of the flower initiation process and will provide useful methods and ideas for future research. In the introduction, we provide an overview of the main topics which this dissertation will address: genetic techniques in plant research, auxin signaling from a general perspective, and finally auxin transport and signaling as they relate to floral organogenesis. In Chapter 1, we detail an improved strategy for creating genetic materials for plant research. Specifically, we devised a technique to insert genetic sequences into desired genomic loci, also known as gene targeting. The new technology allows us to tag genes without relying on traditional random insertions into the genome. In Chapter 2, we present a genetic interaction between the auxin exporter PIN-FORMED 1 and the kinase PINOID. The results from this chapter indicate that flower formation depends on a stoichiometric balance between these two genes and that PIN- FORMED 1 is part of a larger protein complex that is yet to be characterized. In Chapter 3, we supply evidence that the three members of the ENHANCER OF SHOOT REGENERATION transcription factor family are required for flower initiation. We link the activity of these transcription factors to the auxin signaling pathway and identify a downstream target which is also a positive regulator of floral meristem formation. Finally, we conclude by discussing future directions for continuing the work presented in each chapter.</p></div></div><div class="c-scholworks__media"><ul class="c-medialist"><li class="c-medialist__zip">4<!-- --> supplemental <abbr title="zips">ZIPs</abbr></li></ul></div></div></section><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-article">Article</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/4974b6wc"><div class="c-clientmarkup">Auxin perception and downstream events</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3AStrader%2C%20Lucia%20C">Strader, Lucia C</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3AZhao%2C%20Yunde">Zhao, Yunde</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/ucsd_postprints">UC San Diego Previously Published Works</a> (<!-- -->2016<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup">Auxin responses have been arbitrarily divided into two categories: genomic and non-genomic effects. Genomic effects are largely mediated by SCF<sup>TIR1/AFB</sup>-Aux/IAA auxin receptor complexes whereas it has been postulated that AUXIN BINDING PROTEIN 1 (ABP1) controls the non-genomic effects. However, the roles of ABP1 in auxin signaling and plant development were recently called into question. In this paper, we present recent progress in understanding the SCF<sup>TIR1/AFB</sup>-Aux/IAA pathway. In more detail, we discuss the current understanding of ABP1 research and provide an updated view of ABP1-related genetic materials. Further, we propose a model in which auxin efflux carriers may play a role in auxin perception and we briefly describe recent insight on processes downstream of auxin perception.</div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a class="c-scholworks__thumbnail" href="/uc/item/4974b6wc"><img src="/cms-assets/0cc4b6d4f952adfaf0a23c95ef8d9544647e3246d9effacec30cd9e3e1a9871f" alt="Cover page: Auxin perception and downstream events"/></a></div></section><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-thesis">Thesis</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/14p6g0bk"><div class="c-clientmarkup">The ESR Gene Family’s Roles in Arabidopsis Development and Organogenesis</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3AYoung%2C%20Ethan%20S">Young, Ethan S</a> </li><li class="c-authorlist__begin"><span class="c-authorlist__heading">Advisor(s):</span> <a href="/search/?q=author%3AZhao%2C%20Yunde%20YZ">Zhao, Yunde YZ</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/ucsd_etd">UC San Diego Electronic Theses and Dissertations</a> (<!-- -->2024<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup"><p>In Arabidopsis thaliana, the shoot and root apical meristems (SAM and RAM) regulate vertical growth and lateral growth. Meristems contain stem cells that differentiate to form organs under the influence of hormones and transcription factors. This thesis focuses on the ESR gene family: a subclass of the AP2/ERF super family of transcription factors. The ESR gene family has 6 members: ESR1/DRN, ESR2/DRNL, PUCHI, LEP, LEP2 (AT1G28160), and ESR3 (AT1G12890). Previous studies show that the ESR gene family plays a role in embryogenesis and floral/lateral root organogenesis, though the particular roles of LEP2 and ESR3 have not been defined. To further determine the “collective function” of the ESR gene family, I have generated ESR-gene-free plants named “esr sextuple (6x) mutants” using CRISPR/Cas9-mediated gene editing and selective mutant crossing over multiple generations. The lack of ESR genes led to incomplete flowers, though esr sextuple mutants retain the ability to transition into the reproductive phase. The esr sextuple (6x) mutants produced pin-like structures, indicating floral meristem arrest. The majority of esr sextuple mutants die right after gemination and most seedlings had no cotyledons. Preliminary auxin root elongation assays were conducted with a population of plants that were esr2 heterozygous and homozygous for the other ESR genes. I observed that the esr high-order mutants had delayed initiation of lateral root growth, similar to puchi single mutants. Transgenic lines overexpressing ESR3 and LEP2 were generated to further study their functions. Overexpression of ESR3 led to stunted growth, increased organ density along the stem, and rippled leaf phenotypes. Overexpression of LEP2 caused seed arrest, with few germinated seeds that died soon after germination.</p></div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div></section><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-thesis">Thesis</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/55t0z58m"><div class="c-clientmarkup">Blood Retinal Barrier Breakdown in the Long Oxygen Induced Retinopathy Mouse Model</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3AHan%2C%20Everett%20Julian">Han, Everett Julian</a> </li><li class="c-authorlist__begin"><span class="c-authorlist__heading">Advisor(s):</span> <a href="/search/?q=author%3ADaneman%2C%20Richard%20RD">Daneman, Richard RD</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3AZhao%2C%20Yunde%20YZ">Zhao, Yunde YZ</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/ucsd_etd">UC San Diego Electronic Theses and Dissertations</a> (<!-- -->2024<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup"><p>Human retinal vasculopathies commonly result in breakdown of the blood retinal barrier and formation of scars on the retinal surface. The formation of rigid scar tissue creates traction on the retinal layers that can result in tearing, detachment, and complete blindness. Currently, the only treatment option for retinal fibrosis is surgical removal, an invasive procedure that lacks consistent success at treating the condition. Furthermore, an optimized animal model for retinal fibrosis has yet to be developed. The absence of an animal model severely limits the improvement of patient standard of care. This creates a strong need for a model capable of emulating the clinical progression of retinal fibrosis in a laboratory setting. Mouse models have been proven effective at modeling the angiogenic features of retinal vasculopathies. However, current models have yet to produce the long-term scarring that is also present in a variety of ischemic retinal vasculopathies. Therefore, this study focuses on the scarring and leakage induced by the long oxygen induced retinopathy (l-OIR) as it compares to the classical oxygen induced retinopathy model, referred to as the standard-oxygen induced retinopathy (s-OIR) model. This study primarily focuses on how breakdown of the blood retinal barrier contributes to disease pathophysiology. This was accomplished through an extensive set of leakage assays that follow the disease progression in the mice across an array of time points. It was observed that leakage occurs immediately upon completion of the high oxygen treatment in the l-OIR model. This leakage persists for 7 days and was no longer observed at 14 days. While the s-OIR model leads to a greater acute peak in leakage, the l-OIR model produces leakage over a longer duration as well as a defined fibrotic plaque. This difference may be due to the difference in induced disease severity across the models, with l-OIR producing retinas with more damaged vascular structures, often lacking in central veins and arteries. Furthering scientific and clinical understanding of the role that leakage and scarring play in ischemic retinal vasculopathies will allow future research into bettering the standard of care for patients suffering from such diseases.</p></div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div></section><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-article">Article</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/2cv2f3nz"><div class="c-clientmarkup">Positional effects on efficiency of CRISPR/Cas9-based transcriptional activation in rice plants</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3AGong%2C%20Xiaoyu">Gong, Xiaoyu</a>; </li><li><a href="/search/?q=author%3AZhang%2C%20Tao">Zhang, Tao</a>; </li><li><a href="/search/?q=author%3AXing%2C%20Jialing">Xing, Jialing</a>; </li><li><a href="/search/?q=author%3AWang%2C%20Rongchen">Wang, Rongchen</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3AZhao%2C%20Yunde">Zhao, Yunde</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/ucsd_postprints">UC San Diego Previously Published Works</a> (<!-- -->2020<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup">The nuclease-dead Cas9 (dCas9) has been reprogrammed for transcriptional activation by fusing dCas9 to a transcriptional activation domain. In the presence of a guide RNA (gRNA), the dCas9 fusions specifically bind to regions of a promoter to activate transcription. Significant amount of effort has been directed toward the identification and optimization of the fusions of dCas9-activation domain, but very little is known about the impact of gRNA target positions within a promoter in plants on transcriptional activation efficiency. The dCas9-6TAL-VP128 system (dCas9-TV) has been optimized to activate transcription in plants. Here we use the dCas9-TV to activate transcription of <i>OsWOX11</i> and <i>OsYUC1</i>, two genes that cause dramatic developmental phenotypes when overexpressed. We designed a series of gRNAs targeting the promoters of the two genes. We show that gRNAs that target regions within 350 bp upstream of the transcription start site were most effective in transcriptional activation. Moreover, we show that using two gRNAs that simultaneously target two discrete sites in a promoter can further enhance transcription. This work provides guidelines for designed transcriptional activation through CRISPR/dCas9 systems.</div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a class="c-scholworks__thumbnail" href="/uc/item/2cv2f3nz"><img src="/cms-assets/c5c74b6fd5b6d1761a4a0c0bf71c066b9506d0a7e82085014f7fcefe672ba48f" alt="Cover page: Positional effects on efficiency of CRISPR/Cas9-based transcriptional activation in rice plants"/></a></div></section><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-article">Article</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/8xh2d9hq"><div class="c-clientmarkup">ESCRT‐dependent vacuolar sorting and degradation of the auxin biosynthetic enzyme YUC1 flavin monooxygenase</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3AGe%2C%20Chennan">Ge, Chennan</a>; </li><li><a href="/search/?q=author%3AGao%2C%20Caiji">Gao, Caiji</a>; </li><li><a href="/search/?q=author%3AChen%2C%20Qingguo">Chen, Qingguo</a>; </li><li><a href="/search/?q=author%3AJiang%2C%20Liwen">Jiang, Liwen</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3AZhao%2C%20Yunde">Zhao, Yunde</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/ucsd_postprints">UC San Diego Previously Published Works</a> (<!-- -->2019<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup">YUC flavin monooxygenases catalyze the rate-limiting step of auxin biosynthesis. Here we report the vacuolar targeting and degradation of GFP-YUC1. GFP-YUC1 fusion expressed in Arabidopsis protoplasts or transgenic plants was primarily localized in vacuoles. Surprisingly, we established that GFP-YUC1, a soluble protein, was sorted to vacuoles through the ESCRT pathway, which has long been recognized for sorting and targeting integral membrane proteins. We further show that GFP-YUC1 was ubiquitinated and in this form GFP-YUC1 was targeted for degradation, a process that was also stimulated by elevated auxin levels. Our findings revealed a molecular mechanism of GFP-YUC1 degradation and demonstrate that the ESCRT pathway can recognize both soluble and integral membrane proteins as cargoes.</div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a class="c-scholworks__thumbnail" href="/uc/item/8xh2d9hq"><img src="/cms-assets/b11d3b212b5707674abd5ca66968d1d5b568a43558bd60828e5e19203b1744c7" alt="Cover page: ESCRT‐dependent vacuolar sorting and degradation of the auxin biosynthetic enzyme YUC1 flavin monooxygenase"/></a></div></section><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-article">Article</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/26d4f1w8"><div class="c-clientmarkup">A reporter for noninvasively monitoring gene expression and plant transformation</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3AHe%2C%20Yubing">He, Yubing</a>; </li><li><a href="/search/?q=author%3AZhang%2C%20Tao">Zhang, Tao</a>; </li><li><a href="/search/?q=author%3ASun%2C%20Hui">Sun, Hui</a>; </li><li><a href="/search/?q=author%3AZhan%2C%20Huadong">Zhan, Huadong</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3AZhao%2C%20Yunde">Zhao, Yunde</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/ucsd_postprints">UC San Diego Previously Published Works</a> (<!-- -->2020<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup">Reporters have been widely used to visualize gene expression, protein localization, and other cellular activities, but the commonly used reporters require special equipment, expensive chemicals, or invasive treatments. Here, we construct a new reporter <i>RUBY</i> that converts tyrosine to vividly red betalain, which is clearly visible to naked eyes without the need of using special equipment or chemical treatments. We show that <i>RUBY</i> can be used to noninvasively monitor gene expression in plants. Furthermore, we show that <i>RUBY</i> is an effective selection marker for transformation events in both rice and Arabidopsis. The new reporter will be especially useful for monitoring cellular activities in large crop plants such as a fruit tree under field conditions and for observing transformation and gene expression in tissue culture under sterile conditions.</div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a class="c-scholworks__thumbnail" href="/uc/item/26d4f1w8"><img src="/cms-assets/c848af5f2212f2fa6fd4f244187c35609eaf922ca99db26b87663a9d12ce19c4" alt="Cover page: A reporter for noninvasively monitoring gene expression and plant transformation"/></a><a href="https://creativecommons.org/licenses/by/4.0/" class="c-scholworks__license"><img class="c-lazyimage" data-src="/images/cc-by-small.svg" alt="Creative Commons 'BY' version 4.0 license"/></a></div></section><nav class="c-pagination"><ul><li><a href="" aria-label="you are on result set 1" class="c-pagination__item--current">1</a></li><li><a href="" aria-label="go to result set 2" class="c-pagination__item">2</a></li><li><a href="" aria-label="go to result set 3" class="c-pagination__item">3</a></li><li><a href="" aria-label="go to result set 4" class="c-pagination__item">4</a></li><li><a href="" aria-label="go to result set 5" class="c-pagination__item">5</a></li></ul></nav></section></main></form></div><div><div class="c-toplink"><a href="javascript:window.scrollTo(0, 0)">Top</a></div><footer class="c-footer"><nav class="c-footer__nav"><ul><li><a href="/">Home</a></li><li><a href="/aboutEschol">About eScholarship</a></li><li><a href="/campuses">Campus Sites</a></li><li><a href="/ucoapolicies">UC Open Access Policy</a></li><li><a href="/publishing">eScholarship Publishing</a></li><li><a href="https://www.cdlib.org/about/accessibility.html">Accessibility</a></li><li><a href="/privacypolicy">Privacy Statement</a></li><li><a href="/policies">Site Policies</a></li><li><a href="/terms">Terms of Use</a></li><li><a href="/login"><strong>Admin Login</strong></a></li><li><a href="https://help.escholarship.org"><strong>Help</strong></a></li></ul></nav><div class="c-footer__logo"><a href="/"><img class="c-lazyimage" data-src="/images/logo_footer-eschol.svg" alt="eScholarship, University of California"/></a></div><div class="c-footer__copyright">Powered by the<br/><a href="http://www.cdlib.org">California Digital Library</a><br/>Copyright © 2017<br/>The Regents of the University of California</div></footer></div></div></div></div> <script src="/js/vendors~app-bundle-2aefc956e545366a5d4e.js"></script> <script src="/js/app-bundle-4477d7630fb8c6f70662.js"></script> </body> </html>