CINXE.COM

Search results for: steel building

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: steel building</title> <meta name="description" content="Search results for: steel building"> <meta name="keywords" content="steel building"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="steel building" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="steel building"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5592</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: steel building</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5592</span> Using Recyclable Steel Material in Tall Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Eren">O. Eren</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Zakar"> L. Zakar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recycling steel building components is key to the sustainability of a structure’s end-of-life, as it is the most economical solution. In this paper the effects of usage of recycled steel material in tall buildings aspects are investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building" title="building">building</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20material" title=" recycled material"> recycled material</a>, <a href="https://publications.waset.org/abstracts/search?q=steel" title=" steel"> steel</a>, <a href="https://publications.waset.org/abstracts/search?q=structure" title=" structure"> structure</a> </p> <a href="https://publications.waset.org/abstracts/2796/using-recyclable-steel-material-in-tall-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2796.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5591</span> Research on Architectural Steel Structure Design Based on BIM</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tianyu%20Gao">Tianyu Gao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Digital architectures use computer-aided design, programming, simulation, and imaging to create virtual forms and physical structures. Today's customers want to know more about their buildings. They want an automatic thermostat to learn their behavior and contact them, such as the doors and windows they want to open with a mobile app. Therefore, the architectural display form is more closely related to the customer's experience. Based on the purpose of building informationization, this paper studies the steel structure design based on BIM. Taking the Zigan office building in Hangzhou as an example, it is divided into four parts, namely, the digital design modulus of the steel structure, the node analysis of the steel structure, the digital production and construction of the steel structure. Through the application of BIM software, the architectural design can be synergized, and the building components can be informationized. Not only can the architectural design be feedback in the early stage, but also the stability of the construction can be guaranteed. In this way, the monitoring of the entire life cycle of the building and the meeting of customer needs can be realized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20architectures" title="digital architectures">digital architectures</a>, <a href="https://publications.waset.org/abstracts/search?q=BIM" title=" BIM"> BIM</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20structure" title=" steel structure"> steel structure</a>, <a href="https://publications.waset.org/abstracts/search?q=architectural%20design" title=" architectural design"> architectural design</a> </p> <a href="https://publications.waset.org/abstracts/107854/research-on-architectural-steel-structure-design-based-on-bim" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107854.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5590</span> Cold Formed Steel Sections: Analysis, Design and Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Saha%20Chaudhuri">A. Saha Chaudhuri</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Sarkar"> D. Sarkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In steel construction, there are two families of structural members. One is hot rolled steel and another is cold formed steel. Cold formed steel section includes steel sheet, strip, plate or flat bar. Cold formed steel section is manufactured in roll forming machine by press brake or bending operation. Cold formed steel (CFS), also known as Light Gauge Steel (LGS). As cold formed steel is a sustainable material, it is widely used in green building. Cold formed steel can be recycled and reused with no degradation in structural properties. Cold formed steel structures can earn credits for green building ratings such as LEED and similar programs. Cold formed steel construction satisfies international demand for better, more efficient and affordable buildings. Cold formed steel sections are used in building, car body, railway coach, various types of equipment, storage rack, grain bin, highway product, transmission tower, transmission pole, drainage facility, bridge construction etc. Various shapes of cold formed steel sections are available, such as C section, Z section, I section, T section, angle section, hat section, box section, square hollow section (SHS), rectangular hollow section (RHS), circular hollow section (CHS) etc. In building construction cold formed steel is used as eave strut, purlin, girt, stud, header, floor joist, brace, diaphragm and covering for roof, wall and floor. Cold formed steel has high strength to weight ratio and high stiffness. Cold formed steel is non shrinking and non creeping at ambient temperature, it is termite proof and rot proof. CFS is durable, dimensionally stable and non combustible material. CFS is economical in transportation and handling. At present days cold formed steel becomes a competitive building material. In this paper all these applications related present research work are described and how the CFS can be used as blast resistant structural system that is examined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cold%20form%20steel%20sections" title="cold form steel sections">cold form steel sections</a>, <a href="https://publications.waset.org/abstracts/search?q=applications" title=" applications"> applications</a>, <a href="https://publications.waset.org/abstracts/search?q=present%20research%20review" title=" present research review"> present research review</a>, <a href="https://publications.waset.org/abstracts/search?q=blast%20resistant%20design" title=" blast resistant design"> blast resistant design</a> </p> <a href="https://publications.waset.org/abstracts/103415/cold-formed-steel-sections-analysis-design-and-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103415.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5589</span> Design of Seismically Resistant Tree-Branching Steel Frames Using Theory and Design Guides for Eccentrically Braced Frames</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Gary%20Black">R. Gary Black</a>, <a href="https://publications.waset.org/abstracts/search?q=Abolhassan%20Astaneh-Asl"> Abolhassan Astaneh-Asl</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The International Building Code (IBC) and the California Building Code (CBC) both recognize four basic types of steel seismic resistant frames; moment frames, concentrically braced frames, shear walls and eccentrically braced frames. Based on specified geometries and detailing, the seismic performance of these steel frames is well understood. In 2011, the authors designed an innovative steel braced frame system with tapering members in the general shape of a branching tree as a seismic retrofit solution to an existing four story “lift-slab” building. Located in the seismically active San Francisco Bay Area of California, a frame of this configuration, not covered by the governing codes, would typically require model or full scale testing to obtain jurisdiction approval. This paper describes how the theories, protocols, and code requirements of eccentrically braced frames (EBFs) were employed to satisfy the 2009 International Building Code (IBC) and the 2010 California Building Code (CBC) for seismically resistant steel frames and permit construction of these nonconforming geometries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eccentrically%20braced%20frame" title="eccentrically braced frame">eccentrically braced frame</a>, <a href="https://publications.waset.org/abstracts/search?q=lift%20slab%20construction" title=" lift slab construction"> lift slab construction</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20retrofit" title=" seismic retrofit"> seismic retrofit</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20link" title=" shear link"> shear link</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20design" title=" steel design"> steel design</a> </p> <a href="https://publications.waset.org/abstracts/2712/design-of-seismically-resistant-tree-branching-steel-frames-using-theory-and-design-guides-for-eccentrically-braced-frames" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2712.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5588</span> Recommendation of Semi Permanent Buildings for Tsunami Prone Areas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fitri%20Nugraheni">Fitri Nugraheni</a>, <a href="https://publications.waset.org/abstracts/search?q=Adwitya%20Bhaskara"> Adwitya Bhaskara</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Faried%20Hanafi"> N. Faried Hanafi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Coastal is one area that can be a place to live. Various buildings can be built in the area around the beach. Many Indonesians use beaches as housing and work, but we know that coastal areas are identical to tsunami and wind. Costs incurred due to permanent damage caused by tsunamis and wind disasters in Indonesia can be minimized by replacing permanent buildings into semi-permanent buildings. Semi-permanent buildings can be realized by using cold-formed steel as a building. Thus, the purpose of this research is to provide efficient semi-permanent building recommendations for residents around the coast. The research is done by first designing the building model by using sketch-up software, then the validation phase is done in consultation with the expert consultant of cold form steel structure. Based on the results of the interview there are several revisions on several sides of the building by adding some bracing rods on the roof, walls and floor frame. The result of this research is recommendation of semi-permanent building model, where the nature of the building; easy to disassemble and install (knockdown), tsunami-friendly (continue the tsunami load), cost and time efficient (using cold-formed-steel and prefabricated GRC), zero waste, does not require many workers (less labor). The recommended building design concept also keeps the architecture side in mind thus it remains a comfortable occupancy for the residents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction%20method" title="construction method">construction method</a>, <a href="https://publications.waset.org/abstracts/search?q=cold-formed%20steel" title=" cold-formed steel"> cold-formed steel</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-permanent%20building" title=" semi-permanent building"> semi-permanent building</a>, <a href="https://publications.waset.org/abstracts/search?q=tsunami" title=" tsunami"> tsunami</a> </p> <a href="https://publications.waset.org/abstracts/84906/recommendation-of-semi-permanent-buildings-for-tsunami-prone-areas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84906.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5587</span> Comparison of Steel and Composite Analysis of a Multi-Storey Building</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C3%87i%C4%9Fdem%20Avc%C4%B1%20Karata%C5%9F">Çiğdem Avcı Karataş</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mitigation of structural damage caused by earthquake and reduction of fatality is one of the main concerns of engineers in seismic prone zones of the world. To achieve this aim many technologies have been developed in the last decades and applied in construction and retrofit of structures. On the one hand Turkey is well-known a country of high level of seismicity; on the other hand steel-composite structures appear competitive today in this country by comparison with other types of structures, for example only-steel or concrete structures. Composite construction is the dominant form of construction for the multi-storey building sector. The reason why composite construction is often so good can be expressed in one simple way - concrete is good in compression and steel is good in tension. By joining the two materials together structurally these strengths can be exploited to result in a highly efficient design. The reduced self-weight of composite elements has a knock-on effect by reducing the forces in those elements supporting them, including the foundations. The floor depth reductions that can be achieved using composite construction can also provide significant benefits in terms of the costs of services and the building envelope. The scope of this paper covers analysis, materials take-off, cost analysis and economic comparisons of a multi-storey building with composite and steel frames. The aim of this work is to show that designing load carrying systems as composite is more economical than designing as steel. Design of the nine stories building which is under consideration is done according to the regulation of the 2007, Turkish Earthquake Code and by using static and dynamic analysis methods. For the analyses of the steel and composite systems, plastic analysis methods have been used and whereas steel system analyses have been checked in compliance with EC3 and composite system analyses have been checked in compliance with EC4. At the end of the comparisons, it is revealed that composite load carrying systems analysis is more economical than the steel load carrying systems analysis considering the materials to be used in the load carrying system and the workmanship to be spent for this job. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20analysis" title="composite analysis">composite analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake" title=" earthquake"> earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=steel" title=" steel"> steel</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-storey%20building" title=" multi-storey building "> multi-storey building </a> </p> <a href="https://publications.waset.org/abstracts/20662/comparison-of-steel-and-composite-analysis-of-a-multi-storey-building" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20662.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">571</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5586</span> Evaluation of the Need for Seismic Retrofitting of the Foundation of a Five Story Steel Building Because of Adding of a New Story</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammadreza%20Baradaran">Mohammadreza Baradaran</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Hamzezarghani"> F. Hamzezarghani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Every year in different points of the world it occurs with different strengths and thousands of people lose their lives because of this natural phenomenon. One of the reasons for destruction of buildings because of earthquake in addition to the passing of time and the effect of environmental conditions and the wearing-out of a building is changing the uses of the building and change the structure and skeleton of the building. A large number of structures that are located in earthquake bearing areas have been designed according to the old quake design regulations which are out dated. In addition, many of the major earthquakes which have occurred in recent years, emphasize retrofitting to decrease the dangers of quakes. Retrofitting structural quakes available is one of the most effective methods for reducing dangers and compensating lack of resistance caused by the weaknesses existing. In this article the foundation of a five-floor steel building with the moment frame system has been evaluated for quakes and the effect of adding a floor to this five-floor steel building has been evaluated and analyzed. The considered building is with a metallic skeleton and a piled roof and clayed block which after addition of a floor has increased to a six-floor foundation of 1416 square meters, and the height of the sixth floor from ground state has increased 18.95 meters. After analysis of the foundation model, the behavior of the soil under the foundation and also the behavior of the body or element of the foundation has been evaluated and the model of the foundation and its type of change in form and the amount of stress of the soil under the foundation for some of the composition has been determined many times in the SAFE software modeling and finally the need for retrofitting of the building's foundation has been determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismic" title="seismic">seismic</a>, <a href="https://publications.waset.org/abstracts/search?q=rehabilitation" title=" rehabilitation"> rehabilitation</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20building" title=" steel building"> steel building</a>, <a href="https://publications.waset.org/abstracts/search?q=foundation" title=" foundation"> foundation</a> </p> <a href="https://publications.waset.org/abstracts/52562/evaluation-of-the-need-for-seismic-retrofitting-of-the-foundation-of-a-five-story-steel-building-because-of-adding-of-a-new-story" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52562.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5585</span> Comparative Study of R.C.C. Steel and Concrete Building</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahesh%20Suresh%20Kumawat">Mahesh Suresh Kumawat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Steel concrete composite construction means the concrete slab is connected to the steel beam with the help of shear connectors so that they act as a single unit. In the present work, steel concrete composite with RCC options are considered for comparative study of G+9 story commercial building which is situated in earthquake zone-III and for earthquake loading, the provisions of IS: 1893(Part1)-2002 is considered. A three dimensional modeling and analysis of the structure are carried out with the help of SAP 2000 software. Equivalent Static Method of Analysis and Response spectrum analysis method are used for the analysis of both Composite & R.C.C. structures. The results are compared and it was found that composite structure is more economical. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20beam" title="composite beam">composite beam</a>, <a href="https://publications.waset.org/abstracts/search?q=column" title=" column"> column</a>, <a href="https://publications.waset.org/abstracts/search?q=RCC%20column" title=" RCC column"> RCC column</a>, <a href="https://publications.waset.org/abstracts/search?q=RCC%20beam" title=" RCC beam"> RCC beam</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20connector" title=" shear connector"> shear connector</a>, <a href="https://publications.waset.org/abstracts/search?q=SAP%202000%20software" title=" SAP 2000 software"> SAP 2000 software</a> </p> <a href="https://publications.waset.org/abstracts/8085/comparative-study-of-rcc-steel-and-concrete-building" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8085.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5584</span> Layered Fiberconcrete Element Building Technology and Strength</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vitalijs%20Lusis">Vitalijs Lusis</a>, <a href="https://publications.waset.org/abstracts/search?q=Videvuds-Arijs%20Lapsa"> Videvuds-Arijs Lapsa</a>, <a href="https://publications.waset.org/abstracts/search?q=Olga%20Kononova"> Olga Kononova</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrejs%20Krasnikovs"> Andrejs Krasnikovs </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Steel fibres use in a concrete, such way obtaining Steel Fibre Reinforced Concrete (SFRC), is an important technological direction in building industry. Steel fibers are substituting the steel bars in conventional concrete in another situation is possible to combine them in the concrete structures. Traditionally fibers are homogeneously dispersed in a concrete. At the same time in many situations fiber concrete with homogeneously dispersed fibers is not optimal (majority of added fibers are not participating in a load bearing process). It is obvious, that is possible to create constructions with oriented fibers distribution in them, in different ways. Present research is devoted to one of them. Acknowledgment: This work has been supported by the European Social Fund within the project «Support for the implementation of doctoral studies at Riga Technical University» and project No. 2013/0025/1DP/1.1.1.2.0/13/APIA/VIAA/019 “New “Smart” Nanocomposite Materials for Roads, Bridges, Buildings and Transport Vehicle”. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fiber%20reinforced%20concrete" title="fiber reinforced concrete">fiber reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=4-point%20bending" title=" 4-point bending"> 4-point bending</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20fiber" title=" steel fiber"> steel fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=SFRC" title=" SFRC"> SFRC</a> </p> <a href="https://publications.waset.org/abstracts/21624/layered-fiberconcrete-element-building-technology-and-strength" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21624.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">629</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5583</span> The Side Effect of the Perforation Shape towards Behaviour Flexural in Castellated Beam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harrys%20Purnama">Harrys Purnama</a>, <a href="https://publications.waset.org/abstracts/search?q=Wardatul%20Jannah"> Wardatul Jannah</a>, <a href="https://publications.waset.org/abstracts/search?q=Rizkia%20Nita%20Hawari"> Rizkia Nita Hawari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the development of the times, there are many materials used to plan a building structure. Steel became one of the most widely used materials in building construction that works as the main structure. Steel Castellated Beam is a type of innovation in the use of steel in building construction. Steel Castellated Beam is a beam that used for long span construction (more than 10 meters). The Castellated Beam is two steel profiles that unified into one to get the appropriate profile height (more than 10 meters). The profile is perforated to minimize the profile's weight, increase the rate, save costs, and have architectural value. The perforations shape in the Castellated Beam can be circular, elliptical, hexagonal, and rectangular. The Castellated beam has a height (h) almost 50% higher than the initial profile thus increasing the axial bending value and the moment of inertia (Iₓ). In this analysis, there are 3 specimens were used with 12.1 meters span of Castellated Beam as the sample with varied perforation, such us round, hexagon, and octagon. Castellated Beam testing system is done with computer-based applications that named Staad Pro V8i. It is to provide a central load in the middle of the steel beam span. It aims to determine the effect of perforation on bending behavior on the steel Castellated Beam by applying some form of perforations on the steel Castellated Beam with test specimen WF 200.100.5.5.8. From the analysis, results found the behavior of steel Castellated Beam when receiving such central load. From the results of the analysis will be obtained the amount of load, shear, strain, and Δ (deflection). The result of analysis by using Staad Pro V8i shows that with the different form of perforations on the profile of Castellated steel, then we get the different tendency of inertia moment. From the analysis, results obtained the moment of the greatest inertia can increase the stiffness of Castellated steel. By increasing the stiffness of the steel Castellated Beam the deflection will be smaller, so it can withstand the moment and a large strength. The results of the analysis show that the most effective and efficient perforations are the steel beam with a hexagon perforation shape. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Castellated%20Beam" title="Castellated Beam">Castellated Beam</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20moment%20of%20inertia" title=" the moment of inertia"> the moment of inertia</a>, <a href="https://publications.waset.org/abstracts/search?q=stress" title=" stress"> stress</a>, <a href="https://publications.waset.org/abstracts/search?q=deflection" title=" deflection"> deflection</a>, <a href="https://publications.waset.org/abstracts/search?q=bending%20test" title=" bending test"> bending test</a> </p> <a href="https://publications.waset.org/abstracts/90019/the-side-effect-of-the-perforation-shape-towards-behaviour-flexural-in-castellated-beam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90019.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5582</span> Earthquake Resistant Sustainable Steel Green Building</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arup%20Saha%20Chaudhuri">Arup Saha Chaudhuri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Structural steel is a very ductile material with high strength carrying capacity, thus it is very useful to make earthquake resistant buildings. It is a homogeneous material also. The member section and the structural system can be made very efficient for economical design. As the steel is recyclable and reused, it is a green material. The embodied energy for the efficiently designed steel structure is less than the RC structure. For sustainable green building steel is the best material nowadays. Moreover, pre-engineered and pre-fabricated faster construction methodologies help the development work to complete within the stipulated time. In this paper, the usefulness of Eccentric Bracing Frame (EBF) in steel structure over Moment Resisting Frame (MRF) and Concentric Bracing Frame (CBF) is shown. Stability of the steel structures against horizontal forces especially in seismic condition is efficiently possible by Eccentric bracing systems with economic connection details. The EBF is pin–ended, but the beam-column joints are designed for pin ended or for full connectivity. The EBF has several desirable features for seismic resistance. In comparison with CBF system, EBF system can be designed for appropriate stiffness and drift control. The link beam is supposed to yield in shear or flexure before initiation of yielding or buckling of the bracing member in tension or compression. The behavior of a 2-D steel frame is observed under seismic loading condition in the present paper. Ductility and brittleness of the frames are compared with respect to time period of vibration and dynamic base shear. It is observed that the EBF system is better than MRF system comparing the time period of vibration and base shear participation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=steel%20building" title="steel building">steel building</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20and%20sustainable" title=" green and sustainable"> green and sustainable</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20resistant" title=" earthquake resistant"> earthquake resistant</a>, <a href="https://publications.waset.org/abstracts/search?q=EBF%20system" title=" EBF system"> EBF system</a> </p> <a href="https://publications.waset.org/abstracts/78519/earthquake-resistant-sustainable-steel-green-building" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78519.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5581</span> High Strength Steel Thin-Walled Cold-Formed Profiles Manufactured for Automated Rack Supported Warehouses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Natali">A. Natali</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20V.%20Lippi"> F. V. Lippi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Morelli"> F. Morelli</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Salvatore"> W. Salvatore</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20H.%20M.%20De%20Paula%20Filho"> J. H. M. De Paula Filho</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Pol"> P. Pol</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Automated Rack Supported Warehouses (ARSWs) are storage buildings whose load-bearing structure is made of the same steel racks where goods are stocked. These racks are made of cold formed elements, and the main supporting structure is repeated several times along the length of the building, resulting in a huge quantity of steel. The possibility of using high strength steel to manufacture the traditional cold-formed profiles used for ARSWs is numerically investigated, with the aim of reducing the necessary steel quantity but guaranteeing optimal structural performance levels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=steel%20racks" title="steel racks">steel racks</a>, <a href="https://publications.waset.org/abstracts/search?q=automated%20rack%20supported%20warehouse" title=" automated rack supported warehouse"> automated rack supported warehouse</a>, <a href="https://publications.waset.org/abstracts/search?q=thin-walled%20cold-formed%20elements" title=" thin-walled cold-formed elements"> thin-walled cold-formed elements</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20strength%20steel" title=" high strength steel"> high strength steel</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20optimization" title=" structural optimization"> structural optimization</a> </p> <a href="https://publications.waset.org/abstracts/143759/high-strength-steel-thin-walled-cold-formed-profiles-manufactured-for-automated-rack-supported-warehouses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143759.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5580</span> Weaknesses and Performance Defects of Steel Structures According to the Executive Criteria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Sadie">Ehsan Sadie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Despite the experience of heavy losses and damages of recent earthquakes such as 8 km E of Pāhala, Hawaii, 11 km W of Salvaleón de Higüey, Dominican Republic and 49 km SSE of Punta Cana, Dominican Republic earthquakes, the possibility of large earthquakes in most populated areas of any country and the serious need for quality control in the design and implementation of buildings, not enough attention has been paid to the proper construction. Steel structures constitute a significant part of construction in any metropolitan area. This article gives a brief overview of the implementation status of these buildings in urban areas and considers the weaknesses of performance that typically occur due to negligence or insufficient mastery of the building supervisor in the principles of operation of earthquake-resistant buildings, and provide appropriate and possible solutions to improve the construction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bracing%20member" title="bracing member">bracing member</a>, <a href="https://publications.waset.org/abstracts/search?q=concentrated%20load" title=" concentrated load"> concentrated load</a>, <a href="https://publications.waset.org/abstracts/search?q=diaphragm%20system" title=" diaphragm system"> diaphragm system</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20engineering" title=" earthquake engineering"> earthquake engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=load-bearing%20system" title=" load-bearing system"> load-bearing system</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20force" title=" shear force"> shear force</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20retrofitting" title=" seismic retrofitting"> seismic retrofitting</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20building" title=" steel building"> steel building</a>, <a href="https://publications.waset.org/abstracts/search?q=strip%20foundation" title=" strip foundation"> strip foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=supervising%20engineer" title=" supervising engineer"> supervising engineer</a>, <a href="https://publications.waset.org/abstracts/search?q=vulnerability%20of%20building" title=" vulnerability of building"> vulnerability of building</a> </p> <a href="https://publications.waset.org/abstracts/144524/weaknesses-and-performance-defects-of-steel-structures-according-to-the-executive-criteria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144524.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5579</span> Damages Inflicted on Steel Structures and Metal Buildings due to Insufficient Supervision and Monitoring and Non-Observance of the Rules of the Regulations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Sadie">Ehsan Sadie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Despite the experience of heavy losses and damages of recent earthquakes such as 8 km E of Pāhala, Hawaii, 11 km W of Salvaleón de Higüey, Dominican Republic and 49 km SSE of Punta Cana, Dominican Republic earthquakes, the possibility of large earthquakes in most populated areas of any country and the serious need for quality control in the design and implementation of buildings, not enough attention has been paid to the proper construction. Steel structures constitute a significant part of construction in any metropolitan area. This article gives a brief overview of the implementation status of these buildings in urban areas and considers the weaknesses of performance that typically occur due to negligence or insufficient mastery of the building supervisor in the principles of operation of earthquake-resistant buildings, and provides appropriate and possible solutions to improve the construction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bracing%20member" title="bracing member">bracing member</a>, <a href="https://publications.waset.org/abstracts/search?q=concentrated%20load" title=" concentrated load"> concentrated load</a>, <a href="https://publications.waset.org/abstracts/search?q=diaphragm%20system" title=" diaphragm system"> diaphragm system</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20engineering" title=" earthquake engineering"> earthquake engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=load-bearing%20system" title=" load-bearing system"> load-bearing system</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20force" title=" shear force"> shear force</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20retrofitting" title=" seismic retrofitting"> seismic retrofitting</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20building" title=" steel building"> steel building</a>, <a href="https://publications.waset.org/abstracts/search?q=strip%20foundation" title=" strip foundation"> strip foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=supervising%20engineer" title=" supervising engineer"> supervising engineer</a>, <a href="https://publications.waset.org/abstracts/search?q=vulnerability%20of%20building" title=" vulnerability of building"> vulnerability of building</a> </p> <a href="https://publications.waset.org/abstracts/144527/damages-inflicted-on-steel-structures-and-metal-buildings-due-to-insufficient-supervision-and-monitoring-and-non-observance-of-the-rules-of-the-regulations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144527.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5578</span> Low-Level Forced and Ambient Vibration Tests on URM Building Strengthened by Dampers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rafik%20Taleb">Rafik Taleb</a>, <a href="https://publications.waset.org/abstracts/search?q=Farid%20Bouriche"> Farid Bouriche</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Boukri"> Mehdi Boukri</a>, <a href="https://publications.waset.org/abstracts/search?q=Fouad%20Kehila"> Fouad Kehila</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the paper is to investigate the dynamic behavior of an unreinforced masonry (URM) building strengthened by DC-90 dampers by ambient and low-level forced vibration tests. Ambient and forced vibration techniques are usually applied to reinforced concrete or steel buildings to understand and identify their dynamic behavior, however, less is known about their applicability for masonry buildings. Ambient vibrations were measured before and after strengthening of the URM building by DC-90 dampers system. For forced vibration test, a series of low amplitude steady state harmonic forced vibration tests were conducted after strengthening using eccentric mass shaker. The resonant frequency curves, mode shapes and damping coefficients as well as stress distribution in the steel braces of the DC-90 dampers have been investigated and could be defined. It was shown that the dynamic behavior of the masonry building, even if not regular and with deformable floors, can be effectively represented. It can be concluded that the strengthening of the building does not change the dynamic properties of the building due to the fact of low amplitude excitation which do not activate the dampers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ambient%20vibrations" title="ambient vibrations">ambient vibrations</a>, <a href="https://publications.waset.org/abstracts/search?q=masonry%20buildings" title=" masonry buildings"> masonry buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=forced%20vibrations" title=" forced vibrations"> forced vibrations</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20dynamic%20identification" title=" structural dynamic identification"> structural dynamic identification</a> </p> <a href="https://publications.waset.org/abstracts/41511/low-level-forced-and-ambient-vibration-tests-on-urm-building-strengthened-by-dampers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41511.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5577</span> Analysis of Steel Beam-Column Joints Under Seismic Loads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mizam%20Do%C4%9Fan">Mizam Doğan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Adapazarı railway car factory, the only railway car factory of Turkey, was constructed in 1950. It was a steel design and it had filled beam sections and truss beam systems. Columns were steel profiles and box sections. The factory was damaged heavily on Izmit Earthquake and closed. In this earthquake 90% of damaged structures are reinforced concrete, the others are %7 prefabricated and 3% steel construction. As can be seen in statistical data, damaged industrial buildings in this earthquake were generally reinforced concrete and prefabricated structures. Adapazari railway car factory is the greatest steel structure damaged in the earthquake. This factory has 95% of the total damaged steel structure area. In this paper; earthquake damages on beams and columns of the factory are studied by considering TS648 'Turkish Standard Building Code for Steel Structures' and also damaged connection elements as welds, rivets and bolts are examined. A model similar to the damaged system is made and high-stress zones are searched. These examinations, conclusions, suggestions are explained by damage photos and details. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=column-beam%20connection" title="column-beam connection">column-beam connection</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20analysis" title=" seismic analysis"> seismic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20load" title=" seismic load"> seismic load</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20structure" title=" steel structure"> steel structure</a> </p> <a href="https://publications.waset.org/abstracts/45749/analysis-of-steel-beam-column-joints-under-seismic-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45749.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5576</span> Seismic Behavior and Loss Assessment of High–Rise Buildings with Light Gauge Steel–Concrete Hybrid Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bing%20Lu">Bing Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuang%20Li"> Shuang Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongyuan%20Zhou"> Hongyuan Zhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The steel–concrete hybrid structure has been extensively employed in high–rise buildings and super high–rise buildings. The light gauge steel–concrete hybrid structure, including light gauge steel structure and concrete hybrid structure, is a new–type steel–concrete hybrid structure, which possesses some advantages of light gauge steel structure and concrete hybrid structure. The seismic behavior and loss assessment of three high–rise buildings with three different concrete hybrid structures were investigated through finite element software, respectively. The three concrete hybrid structures are reinforced concrete column–steel beam (RC‒S) hybrid structure, concrete–filled steel tube column–steel beam (CFST‒S) hybrid structure, and tubed concrete column–steel beam (TC‒S) hybrid structure. The nonlinear time-history analysis of three high–rise buildings under 80 earthquakes was carried out. After simulation, it indicated that the seismic performances of three high–rise buildings were superior. Under extremely rare earthquakes, the maximum inter–storey drifts of three high–rise buildings are significantly lower than 1/50. The inter–storey drift and floor acceleration of high–rise building with CFST‒S hybrid structure were bigger than those of high–rise buildings with RC‒S hybrid structure, and smaller than those of high–rise building with TC‒S hybrid structure. Then, based on the time–history analysis results, the post-earthquake repair cost ratio and repair time of three high–rise buildings were predicted through an economic performance analysis method proposed in FEMA‒P58 report. Under frequent earthquakes, basic earthquakes and rare earthquakes, the repair cost ratio and repair time of three high-rise buildings were less than 5% and 15 days, respectively. Under extremely rare earthquakes, the repair cost ratio and repair time of high-rise buildings with TC‒S hybrid structure were the most among three high rise buildings. Due to the advantages of CFST-S hybrid structure, it could be extensively employed in high-rise buildings subjected to earthquake excitations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismic%20behavior" title="seismic behavior">seismic behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=loss%20assessment" title=" loss assessment"> loss assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20gauge%20steel%E2%80%93concrete%20hybrid%20structure" title=" light gauge steel–concrete hybrid structure"> light gauge steel–concrete hybrid structure</a>, <a href="https://publications.waset.org/abstracts/search?q=high%E2%80%93rise%20building" title=" high–rise building"> high–rise building</a>, <a href="https://publications.waset.org/abstracts/search?q=time%E2%80%93history%20analysis" title=" time–history analysis"> time–history analysis</a> </p> <a href="https://publications.waset.org/abstracts/133887/seismic-behavior-and-loss-assessment-of-high-rise-buildings-with-light-gauge-steel-concrete-hybrid-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5575</span> Effect of Steel Fibers on M30 Fly Ash Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saksham">Saksham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concrete's versatility and affordability make it a highly competitive building material capable of meeting diverse requirements. However, the increasing demands placed on structures and the need for enhanced durability and performance have driven the development of distinct cementitious materials and concrete composites. One significant aspect of this advancement is the utilization of waste materials from industries, such as fly ash, to improve concrete's properties. Fly ash, a byproduct of coal combustion can enhance concrete's strength and durability while reducing environmental impact. Additionally, steel fibers can enhance concrete's toughness and crack resistance, contributing to improved structural performance. The experimental study aims to optimize the proportion of ingredients in M30-grade concrete, incorporating fly ash and steel fibers. By varying fly ash content (10% to 30%) and steel fiber dosage (0% to 1.5%), the research seeks to determine the optimal combination for achieving the desired compressive strength. Two sets of experiments are conducted: one focusing on varying fly ash content while keeping steel fiber dosage constant, and the other focusing on varying steel fiber dosage while keeping other parameters fixed. Through systematic testing, molding, curing, and evaluation according to specified standards, the research aims to analyze the impact of fly ash and steel fibers on concrete's compressive strength. The findings have the potential to inform engineers about optimized concrete mix designs that balance performance, cost-effectiveness, and sustainability, advancing toward more resilient and environmentally friendly building practices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete" title="concrete">concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=durability" title=" durability"> durability</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a> </p> <a href="https://publications.waset.org/abstracts/183828/effect-of-steel-fibers-on-m30-fly-ash-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183828.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">52</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5574</span> Hybrid Stainless Steel Girder for Bridge Construction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tetsuya%20Yabuki">Tetsuya Yabuki</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasunori%20Arizumi"> Yasunori Arizumi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tetsuhiro%20Shimozato"> Tetsuhiro Shimozato</a>, <a href="https://publications.waset.org/abstracts/search?q=Samy%20Guezouli"> Samy Guezouli</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroaki%20Matsusita"> Hiroaki Matsusita</a>, <a href="https://publications.waset.org/abstracts/search?q=Masayuki%20Tai"> Masayuki Tai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main object of this paper is to present the research results of the development of a hybrid stainless steel girder system for bridge construction undertaken at University of Ryukyu. In order to prevent the corrosion damage and reduce the fabrication costs, a hybrid stainless steel girder in bridge construction is developed, the stainless steel girder of which is stiffened and braced by structural carbon steel materials. It is verified analytically and experimentally that the ultimate strength of the hybrid stainless steel girder is equal to or greater than that of conventional carbon steel girder. The benefit of the life-cycle cost of the hybrid stainless steel girder is also shown. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smart%20structure" title="smart structure">smart structure</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20stainless%20steel%20members" title=" hybrid stainless steel members"> hybrid stainless steel members</a>, <a href="https://publications.waset.org/abstracts/search?q=ultimate%20strength" title=" ultimate strength"> ultimate strength</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20bridge" title=" steel bridge"> steel bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20prevention" title=" corrosion prevention"> corrosion prevention</a> </p> <a href="https://publications.waset.org/abstracts/51375/hybrid-stainless-steel-girder-for-bridge-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51375.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5573</span> Assessing the Effect of the Position of the Cavities on the Inner Plate of the Steel Shear Wall under Time History Dynamic Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Mahdavi">Masoud Mahdavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mojtaba%20Farzaneh%20Moghadam"> Mojtaba Farzaneh Moghadam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The seismic forces caused by the waves created in the depths of the earth during the earthquake hit the structure and cause the building to vibrate<span dir="RTL">.</span> Creating large seismic forces will cause low-strength sections in the structure to suffer extensive surface damage. The use of new steel shear walls in steel structures has caused the strength of the building and its main members (columns) to increase due to the reduction and depreciation of seismic forces during earthquakes. In the present study, an attempt was made to evaluate a type of steel shear wall that has regular holes in the inner sheet by modeling the finite element model with Abacus software. The shear wall of the steel plate, measuring 6000 &times; 3000 mm (one floor) and 3 mm thickness, was modeled with four different pores with a cross-sectional area. The shear wall was dynamically subjected to a time history of 5 seconds by three accelerators, El Centro, Imperial Valley and Kobe. The results showed that increasing the distance between the geometric center of the hole and the geometric center of the inner plate in the steel shear wall (increasing the R<sub>CS</sub> index) caused the total maximum acceleration to be transferred from the perimeter of the hole to horizontal and vertical beams. The results also show that there is no direct relationship between R<sub>CS</sub> index and total acceleration in steel shear wall and R<sub>CS</sub> index is separate from the peak ground acceleration value of earthquake. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hollow%20steel%20plate%20shear%20wall" title="hollow steel plate shear wall">hollow steel plate shear wall</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20history%20analysis" title=" time history analysis"> time history analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=abaqus%20software" title=" abaqus software"> abaqus software</a> </p> <a href="https://publications.waset.org/abstracts/127716/assessing-the-effect-of-the-position-of-the-cavities-on-the-inner-plate-of-the-steel-shear-wall-under-time-history-dynamic-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5572</span> Collapse Performance of Steel Frame with Hysteric Energy Dissipating Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyung-Joon%20Kim">Hyung-Joon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-Young%20Park"> Jin-Young Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Energy dissipating devices (EDDs) have become more popular as seismic-force-resisting systems for building structures. However, there is little information on the collapse capacities of frames employing EDDs which are an important criterion for their seismic design. This study investigates the collapse capacities of steel frames with TADAS hysteric energy dissipative devices (HEDDs) that become an alternative to steel braced frames. To do this, 5-story steel ordinary concentrically braced frame and steel frame with HEDDs are designed and modeled. Nonlinear dynamic analyses and incremental dynamic analysis with 40 ground motions scaled to maximum considered earthquake are carried out. It is shown from analysis results that the significant enhancement in terms of the collapse capacities is found due to the introduction HEDDs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=collapse%20capacity" title="collapse capacity">collapse capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=incremental%20dynamic%20analysis" title=" incremental dynamic analysis"> incremental dynamic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20braced%20frame" title=" steel braced frame"> steel braced frame</a>, <a href="https://publications.waset.org/abstracts/search?q=TADAS%20hysteric%20energy%20dissipative%20device" title=" TADAS hysteric energy dissipative device"> TADAS hysteric energy dissipative device</a> </p> <a href="https://publications.waset.org/abstracts/14461/collapse-performance-of-steel-frame-with-hysteric-energy-dissipating-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14461.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5571</span> Evaluation of Seismic Behavior of Steel Shear Wall with Opening with Hardener and Beam with Reduced Cross Section under Cycle Loading with Finite Element Analysis Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Mahdavi">Masoud Mahdavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During an earthquake, the structure is subjected to seismic loads that cause tension in the members of the building. The use of energy dissipation elements in the structure reduces the percentage of seismic forces on the main members of the building (especially the columns). Steel plate shear wall, as one of the most widely used types of energy dissipation element, has evolved today, and regular drilling of its inner plate is one of the common cases. In the present study, using a finite element method, the shear wall of the steel plate is designed as a floor (with dimensions of 447 &times; 6/246 cm) with Abacus software and in three different modes on which a cyclic load has been applied. The steel shear wall has a horizontal element (beam) with a reduced beam section (RBS). The hole in the interior plate of the models is created in such a way that it has the process of increasing the area, which makes the effect of increasing the surface area of the hole on the seismic performance of the steel shear wall completely clear. In the end, it was found that with increasing the opening level in the steel shear wall (with reduced cross-section beam), total displacement and plastic strain indicators increased, structural capacity and total energy indicators decreased and the Mises Monson stress index did not change much. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=steel%20plate%20shear%20wall%20with%20opening" title="steel plate shear wall with opening">steel plate shear wall with opening</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20loading" title=" cyclic loading"> cyclic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced%20cross-section%20beam" title=" reduced cross-section beam"> reduced cross-section beam</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=Abaqus%20software" title=" Abaqus software"> Abaqus software</a> </p> <a href="https://publications.waset.org/abstracts/127920/evaluation-of-seismic-behavior-of-steel-shear-wall-with-opening-with-hardener-and-beam-with-reduced-cross-section-under-cycle-loading-with-finite-element-analysis-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127920.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5570</span> Experimental Study of Application of Steel Slag as Aggregate in Road Construction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meftah%20M.%20Elsaraiti">Meftah M. Elsaraiti</a>, <a href="https://publications.waset.org/abstracts/search?q=Samir%20Milad%20Elsariti"> Samir Milad Elsariti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Steel slag is a by-product of the steel production and utilizing it potentially as new or substitute materials in road construction is advantageous regarding cost reduction and flattening improvement or properties pavement. Ease of use, low cost, and resource availability are some of few advantages of reuse and recycling of steel slag. This study assesses the use of Steel Slag Aggregates (SSA) as an alternative to natural road building aggregates. This paper discusses the basic characteristics of steel slag based on extensive laboratory tests, and to determine the possibilities of using steel slag in road construction. Samples were taken from the furnaces directly at different times and dates. Moreover, random samples were also taken from the slag field from various areas at different far distances from each other. A necessary analysis was performed through the use of (XRF). Three different percentages of SSA (0, 50 and 100%) were added as an alternative to natural aggregate in hot mix asphalt (HMA) production. The proposed design of the mix was made according to the Marshall mix design. The results of the experiments revealed that the percentages of iron oxide ranged from (9 to 26%) and that the addition of SSA has a significant improvement on HMA properties. It was observed that the Marshall stability obtained in the mix of 100% slag ranged from 600 to 800 N as a minimum, and the flow of Marshall obtained from 2.4 to 3.23 mm and the specification requires from 2 to 4 mm. The results may be showed possibilities to use steel slag as new or substitute materials in road construction in Libya. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=by-product%20material" title="by-product material">by-product material</a>, <a href="https://publications.waset.org/abstracts/search?q=properties" title=" properties"> properties</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20construction" title=" road construction"> road construction</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20slag" title=" steel slag"> steel slag</a> </p> <a href="https://publications.waset.org/abstracts/93914/experimental-study-of-application-of-steel-slag-as-aggregate-in-road-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93914.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5569</span> A Range of Steel Production in Japan towards 2050</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reina%20Kawase">Reina Kawase</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Japan set the goal of 80% reduction in GHG emissions by 2050. To consider countermeasures for reducing GHG emission, the production estimation of energy intensive materials, such as steel, is essential. About 50% of steel production is exported in Japan, so it is necessary to consider steel production including export. Steel productions from 2005-2050 in Japan were estimated under various global assumptions based on combination of scenarios such as goods trade scenarios and steel making process selection scenarios. Process selection scenarios decide volume of steel production by process (basic oxygen furnace and electric arc furnace) with considering steel consumption projection, supply-demand balance of steel, and scrap surplus. The range of steel production by process was analyzed. Maximum steel production was estimated under the scenario which consumes scrap in domestic steel production at maximum level. In 2035, steel production reaches 149 million ton because of increase in electric arc furnace steel. However, it decreases towards 2050 and amounts to 120 million ton, which is almost same as a current level. Minimum steel production is under the scenario which assumes technology progress in steel making and supply-demand balance consideration in each region. Steel production decreases from base year and is 44 million ton in 2050. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=goods%20trade%20scenario" title="goods trade scenario">goods trade scenario</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20making%20process%20selection%20scenario" title=" steel making process selection scenario"> steel making process selection scenario</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20production" title=" steel production"> steel production</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20warming" title=" global warming"> global warming</a> </p> <a href="https://publications.waset.org/abstracts/41704/a-range-of-steel-production-in-japan-towards-2050" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41704.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5568</span> Seismic Behavior of Steel Moment-Resisting Frames for Uplift Permitted in Near-Fault Regions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Tehranizadeh">M. Tehranizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Shoushtari%20Rezvani"> E. Shoushtari Rezvani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seismic performance of steel moment-resisting frame structures is investigated considering nonlinear soil-structure interaction (SSI) effects. 10-, 15-, and 20-story planar building frames with aspect ratio of 3 are designed in accordance with current building codes. Inelastic seismic demands of the superstructure are considered using concentrated plasticity model. The raft foundation system is designed for different soil types. Beam-on-nonlinear Winkler foundation (BNWF) is used to represent dynamic impedance of the underlying soil. Two sets of pulse-like as well as no-pulse near-fault earthquakes are used as input ground motions. The results show that the reduction in drift demands due to nonlinear SSI is characterized by a more uniform distribution pattern along the height when compared to the fixed-base and linear SSI condition. It is also concluded that beneficial effects of nonlinear SSI on displacement demands is more significant in case of pulse-like ground motions and performance level of the steel moment-resisting frames can be enhanced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil-structure%20interaction" title="soil-structure interaction">soil-structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=uplifting" title=" uplifting"> uplifting</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20plasticity" title=" soil plasticity"> soil plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=near-fault%20earthquake" title=" near-fault earthquake"> near-fault earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=tall%20building" title=" tall building"> tall building</a> </p> <a href="https://publications.waset.org/abstracts/21997/seismic-behavior-of-steel-moment-resisting-frames-for-uplift-permitted-in-near-fault-regions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21997.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">549</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5567</span> Structural Performance of Concrete Beams Reinforced with Steel Plates: Experimental Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mazin%20Mohammed%20S.%20Sarhan">Mazin Mohammed S. Sarhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents the performance of concrete beams reinforced with steel plates as a technique of reinforcement. Three reinforced concrete beams with the dimensions of 200 mm x 300 mm x 4000 mm (width x height x length, respectively) were experimentally investigated under flexural loading. The deformed steel bars were used as the main reinforcement for the first beam. A steel plate placed horizontally was used as the main reinforcement for the second beam. The bond between the steel plate and the surrounding concrete was enhanced by using steel bolts (with a diameter of 20 mm and length of 100 mm) welded to the steel plate at a regular distance of 200 mm. A pair of steel plates placed vertically was used as the main reinforcement for the third beam. The bond between the pair steel plates and the surrounding concrete was enhanced by using 4 equal steel angles (with the dimensions of 75 mm x 75 mm and the thickness of 8 mm) for each vertical steel plate. Two steel angles were welded at each end of the steel plate. The outcomes revealed that the bending stiffness of the beams reinforced with steel plates was higher than that reinforced with deformed steel bars. Also, the flexural ductile behavior of the second beam was much higher than the rest beams. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20beam" title="concrete beam">concrete beam</a>, <a href="https://publications.waset.org/abstracts/search?q=deflection" title=" deflection"> deflection</a>, <a href="https://publications.waset.org/abstracts/search?q=ductility" title=" ductility"> ductility</a>, <a href="https://publications.waset.org/abstracts/search?q=plate" title=" plate"> plate</a> </p> <a href="https://publications.waset.org/abstracts/114584/structural-performance-of-concrete-beams-reinforced-with-steel-plates-experimental-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114584.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5566</span> Ultimate Stress of the Steel Tube in Circular Concrete-Filled Steel Tube Stub Columns Subjected to Axial Compression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siqi%20Lin">Siqi Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yangang%20Zhao"> Yangang Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concrete-filled steel tube column achieves the excellent performance of high strength, stiffness, and ductility due to the confinement from the steel tube. Well understanding the stress of the steel tube is important to make clear the confinement effect. In this paper, the ultimate stress of the steel tube in circular concrete-filled steel tube columns subjected to axial compression was studied. Experimental tests were conducted to investigate the effects of the parameters, including concrete strength, steel strength, and D/t ratio, on the ultimate stress of the steel tube. The stress of the steel tube was determined by employing the Prandtl-Reuss flow rule associated with isotropic strain hardening. Results indicate that the stress of steel tube was influenced by the parameters. Specimen with higher strength ratio fy/fc and smaller D/t ratio generally leads to a higher utilization efficiency of the steel tube. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete-filled%20steel%20tube" title="concrete-filled steel tube">concrete-filled steel tube</a>, <a href="https://publications.waset.org/abstracts/search?q=axial%20compression" title=" axial compression"> axial compression</a>, <a href="https://publications.waset.org/abstracts/search?q=ultimate%20stress" title=" ultimate stress"> ultimate stress</a>, <a href="https://publications.waset.org/abstracts/search?q=utilization%20efficiency" title=" utilization efficiency"> utilization efficiency</a> </p> <a href="https://publications.waset.org/abstracts/71468/ultimate-stress-of-the-steel-tube-in-circular-concrete-filled-steel-tube-stub-columns-subjected-to-axial-compression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71468.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5565</span> Architectural Strategies for Designing Durable Steel Structural Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Taghdiri">Alireza Taghdiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Ghanbarzade%20Ghomi"> Sara Ghanbarzade Ghomi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, steel structures are used for not only common buildings but also high-rise construction and wide span covering. The advanced methods of construction as well as the advanced structural connections have a great effect on architecture. However a better use of steel structural systems will be achieved with the deep understanding of steel structures specifications and their substantial advantages. On the other hand, the steel structures face to the different environmental factors such as air flow which cause erosion and corrosion. With the time passing, the amount of these steel mass damages and also the imposed stress will be increased. In other words, the position of erosion in steel structures related to existing stresses indicates that effective environmental conditions will gradually decrease the structural resistance of steel components and result in decreasing the durability of steel components. In this paper, the durability of different steel structural components is evaluated and on the basis of these stress, architectural strategies for designing the system and the components of steel structures is recognized in order to achieve an optimum life cycle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=durability" title="durability">durability</a>, <a href="https://publications.waset.org/abstracts/search?q=bending%20stress" title=" bending stress"> bending stress</a>, <a href="https://publications.waset.org/abstracts/search?q=erosion%20in%20steel%20structure" title=" erosion in steel structure"> erosion in steel structure</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle" title=" life cycle"> life cycle</a> </p> <a href="https://publications.waset.org/abstracts/18159/architectural-strategies-for-designing-durable-steel-structural-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18159.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">561</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5564</span> Optimal Design of Profiled Steel Sheet for Composite Slab</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adinew%20Gebremeskel%20Tizazu">Adinew Gebremeskel Tizazu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, in our world of technological development, there is an enhanced intention imposed on the building construction industry to improve the time, economy, and structural efficiency of structures. Modern profiled steel sheets are mostly designed as formwork and tensile reinforcement. This research is concerned with the optimal design of profiled steel sheets for composite slabs. Apart from satisfying the safety requirement, the design should be economical. For a given condition, there might be a large number of alternatives that satisfy the requirement set by the codes. But the designer must be in a position to choose the design, which is optimal against certain measures of optimality. Therefore, the designers have to do some optimization to arrive at such a design. In this research, the optimal cross-sectional dimensions of profiled steel sheets will be determined by considering different spans, loadings, and materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=profiled%20sheeting" title="profiled sheeting">profiled sheeting</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20cross-sectional%20dimensions" title=" optimal cross-sectional dimensions"> optimal cross-sectional dimensions</a>, <a href="https://publications.waset.org/abstracts/search?q=cold-formed%20profiled%20sheets" title=" cold-formed profiled sheets"> cold-formed profiled sheets</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20slab" title=" composite slab"> composite slab</a> </p> <a href="https://publications.waset.org/abstracts/189307/optimal-design-of-profiled-steel-sheet-for-composite-slab" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189307.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">23</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5563</span> Mechanical and Microstructural Properties of SA 210 Gr. C Pipes Welded by Tungsten Inert Gas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Demirta%C5%9F">H. Demirtaş</a>, <a href="https://publications.waset.org/abstracts/search?q=%C4%B0.%20H.%20Kara"> İ. H. Kara</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Ahlatc%C4%B1"> H. Ahlatcı</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Welding failures of steel pipes in power plants usually occur in weld zones. This is similar for the economizer, water walls and superheaters in the power plants where SA 210 Gr. C steel pipes are used. Although these steel pipes have very good welding properties, the welding parameters are also important for the welding life. Welding processes of this pipes are carried out by TIG and SMA techniques. In this study SA 210 Gr. C steel pipes were welded by TIG method and investigated how PWHT affected the welding properties. The results show that this steel does not require post weld heat treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SA%20210%20Gr.%20C%20steel%20pipes" title="SA 210 Gr. C steel pipes">SA 210 Gr. C steel pipes</a>, <a href="https://publications.waset.org/abstracts/search?q=TIG%20welding" title=" TIG welding"> TIG welding</a>, <a href="https://publications.waset.org/abstracts/search?q=HAZ%20region" title=" HAZ region"> HAZ region</a>, <a href="https://publications.waset.org/abstracts/search?q=Widmanstatten%20ferrite" title=" Widmanstatten ferrite"> Widmanstatten ferrite</a> </p> <a href="https://publications.waset.org/abstracts/62986/mechanical-and-microstructural-properties-of-sa-210-gr-c-pipes-welded-by-tungsten-inert-gas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62986.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=steel%20building&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=steel%20building&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=steel%20building&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=steel%20building&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=steel%20building&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=steel%20building&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=steel%20building&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=steel%20building&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=steel%20building&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=steel%20building&amp;page=186">186</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=steel%20building&amp;page=187">187</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=steel%20building&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10