CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 486 results for author: <span class="mathjax">Sun, Q</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cs" aria-role="search"> Searching in archive <strong>cs</strong>. <a href="/search/?searchtype=author&amp;query=Sun%2C+Q">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Sun, Q"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Sun%2C+Q&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Sun, Q"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Sun%2C+Q&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Sun%2C+Q&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Sun%2C+Q&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Sun%2C+Q&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Sun%2C+Q&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Sun%2C+Q&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.15598">arXiv:2411.15598</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.15598">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Human-Computer Interaction">cs.HC</span> </div> </div> <p class="title is-5 mathjax"> Optimizing Gesture Recognition for Seamless UI Interaction Using Convolutional Neural Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Sun%2C+Q">Qi Sun</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+T">Tong Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Gao%2C+S">Shang Gao</a>, <a href="/search/cs?searchtype=author&amp;query=Yang%2C+L">Liuqingqing Yang</a>, <a href="/search/cs?searchtype=author&amp;query=Shao%2C+F">Fenghua Shao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.15598v1-abstract-short" style="display: inline;"> This study introduces an advanced gesture recognition and user interface (UI) interaction system powered by deep learning, highlighting its transformative impact on UI design and functionality. By utilizing optimized convolutional neural networks (CNNs), the system achieves high-precision gesture recognition, significantly improving user interactions with digital interfaces. The process begins wit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15598v1-abstract-full').style.display = 'inline'; document.getElementById('2411.15598v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.15598v1-abstract-full" style="display: none;"> This study introduces an advanced gesture recognition and user interface (UI) interaction system powered by deep learning, highlighting its transformative impact on UI design and functionality. By utilizing optimized convolutional neural networks (CNNs), the system achieves high-precision gesture recognition, significantly improving user interactions with digital interfaces. The process begins with preprocessing collected gesture images to meet CNN input requirements, followed by sophisticated feature extraction and classification techniques. To address class imbalance, we employ Focal Loss as the loss function, ensuring robust model performance across diverse gesture types. Experimental results demonstrate notable improvements in model metrics, with the Area Under the Curve (AUC) and Recall metrics improving as we transition from simpler models like VGG16 to more advanced ones such as DenseNet. Our enhanced model achieves strong AUC and Recall values, outperforming standard benchmarks. Notably, the system&#39;s ability to support real-time and efficient gesture recognition paves the way for a new era in UI design, where intuitive user gestures can be seamlessly integrated into everyday technology use, reducing the learning curve and enhancing user satisfaction. The implications of this development extend beyond technical performance to fundamentally reshape user-technology interactions, underscoring the critical role of gesture-based interfaces in the next generation of UI development. Such advancements promise to significantly enhance smart life experiences, positioning gesture recognition as a key driver in the evolution of user-centric interfaces. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15598v1-abstract-full').style.display = 'none'; document.getElementById('2411.15598v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.14743">arXiv:2411.14743</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.14743">pdf</a>, <a href="https://arxiv.org/format/2411.14743">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> </div> </div> <p class="title is-5 mathjax"> FOCUS: Knowledge-enhanced Adaptive Visual Compression for Few-shot Whole Slide Image Classification </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Guo%2C+Z">Zhengrui Guo</a>, <a href="/search/cs?searchtype=author&amp;query=Xiong%2C+C">Conghao Xiong</a>, <a href="/search/cs?searchtype=author&amp;query=Ma%2C+J">Jiabo Ma</a>, <a href="/search/cs?searchtype=author&amp;query=Sun%2C+Q">Qichen Sun</a>, <a href="/search/cs?searchtype=author&amp;query=Feng%2C+L">Lishuang Feng</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+J">Jinzhuo Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+H">Hao Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.14743v1-abstract-short" style="display: inline;"> Few-shot learning presents a critical solution for cancer diagnosis in computational pathology (CPath), addressing fundamental limitations in data availability, particularly the scarcity of expert annotations and patient privacy constraints. A key challenge in this paradigm stems from the inherent disparity between the limited training set of whole slide images (WSIs) and the enormous number of co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14743v1-abstract-full').style.display = 'inline'; document.getElementById('2411.14743v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.14743v1-abstract-full" style="display: none;"> Few-shot learning presents a critical solution for cancer diagnosis in computational pathology (CPath), addressing fundamental limitations in data availability, particularly the scarcity of expert annotations and patient privacy constraints. A key challenge in this paradigm stems from the inherent disparity between the limited training set of whole slide images (WSIs) and the enormous number of contained patches, where a significant portion of these patches lacks diagnostically relevant information, potentially diluting the model&#39;s ability to learn and focus on critical diagnostic features. While recent works attempt to address this by incorporating additional knowledge, several crucial gaps hinder further progress: (1) despite the emergence of powerful pathology foundation models (FMs), their potential remains largely untapped, with most approaches limiting their use to basic feature extraction; (2) current language guidance mechanisms attempt to align text prompts with vast numbers of WSI patches all at once, struggling to leverage rich pathological semantic information. To this end, we introduce the knowledge-enhanced adaptive visual compression framework, dubbed FOCUS, which uniquely combines pathology FMs with language prior knowledge to enable a focused analysis of diagnostically relevant regions by prioritizing discriminative WSI patches. Our approach implements a progressive three-stage compression strategy: we first leverage FMs for global visual redundancy elimination, and integrate compressed features with language prompts for semantic relevance assessment, then perform neighbor-aware visual token filtering while preserving spatial coherence. Extensive experiments on pathological datasets spanning breast, lung, and ovarian cancers demonstrate its superior performance in few-shot pathology diagnosis. Code will be made available at https://github.com/dddavid4real/FOCUS. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14743v1-abstract-full').style.display = 'none'; document.getElementById('2411.14743v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.10709">arXiv:2411.10709</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.10709">pdf</a>, <a href="https://arxiv.org/format/2411.10709">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Diagnostic Text-guided Representation Learning in Hierarchical Classification for Pathological Whole Slide Image </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Li%2C+J">Jiawen Li</a>, <a href="/search/cs?searchtype=author&amp;query=Sun%2C+Q">Qiehe Sun</a>, <a href="/search/cs?searchtype=author&amp;query=Yan%2C+R">Renao Yan</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+Y">Yizhi Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Fu%2C+Y">Yuqiu Fu</a>, <a href="/search/cs?searchtype=author&amp;query=Wei%2C+Y">Yani Wei</a>, <a href="/search/cs?searchtype=author&amp;query=Guan%2C+T">Tian Guan</a>, <a href="/search/cs?searchtype=author&amp;query=Shi%2C+H">Huijuan Shi</a>, <a href="/search/cs?searchtype=author&amp;query=He%2C+Y">Yonghonghe He</a>, <a href="/search/cs?searchtype=author&amp;query=Han%2C+A">Anjia Han</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.10709v1-abstract-short" style="display: inline;"> With the development of digital imaging in medical microscopy, artificial intelligent-based analysis of pathological whole slide images (WSIs) provides a powerful tool for cancer diagnosis. Limited by the expensive cost of pixel-level annotation, current research primarily focuses on representation learning with slide-level labels, showing success in various downstream tasks. However, given the di&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10709v1-abstract-full').style.display = 'inline'; document.getElementById('2411.10709v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.10709v1-abstract-full" style="display: none;"> With the development of digital imaging in medical microscopy, artificial intelligent-based analysis of pathological whole slide images (WSIs) provides a powerful tool for cancer diagnosis. Limited by the expensive cost of pixel-level annotation, current research primarily focuses on representation learning with slide-level labels, showing success in various downstream tasks. However, given the diversity of lesion types and the complex relationships between each other, these techniques still deserve further exploration in addressing advanced pathology tasks. To this end, we introduce the concept of hierarchical pathological image classification and propose a representation learning called PathTree. PathTree considers the multi-classification of diseases as a binary tree structure. Each category is represented as a professional pathological text description, which messages information with a tree-like encoder. The interactive text features are then used to guide the aggregation of hierarchical multiple representations. PathTree uses slide-text similarity to obtain probability scores and introduces two extra tree specific losses to further constrain the association between texts and slides. Through extensive experiments on three challenging hierarchical classification datasets: in-house cryosectioned lung tissue lesion identification, public prostate cancer grade assessment, and public breast cancer subtyping, our proposed PathTree is consistently competitive compared to the state-of-the-art methods and provides a new perspective on the deep learning-assisted solution for more complex WSI classification. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10709v1-abstract-full').style.display = 'none'; document.getElementById('2411.10709v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 13 figures. Under Review</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.07267">arXiv:2411.07267</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.07267">pdf</a>, <a href="https://arxiv.org/format/2411.07267">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Databases">cs.DB</span> </div> </div> <p class="title is-5 mathjax"> A Survey on Data Markets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+J">Jiayao Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Bi%2C+Y">Yuran Bi</a>, <a href="/search/cs?searchtype=author&amp;query=Cheng%2C+M">Mengye Cheng</a>, <a href="/search/cs?searchtype=author&amp;query=Liu%2C+J">Jinfei Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Ren%2C+K">Kui Ren</a>, <a href="/search/cs?searchtype=author&amp;query=Sun%2C+Q">Qiheng Sun</a>, <a href="/search/cs?searchtype=author&amp;query=Wu%2C+Y">Yihang Wu</a>, <a href="/search/cs?searchtype=author&amp;query=Cao%2C+Y">Yang Cao</a>, <a href="/search/cs?searchtype=author&amp;query=Fernandez%2C+R+C">Raul Castro Fernandez</a>, <a href="/search/cs?searchtype=author&amp;query=Xu%2C+H">Haifeng Xu</a>, <a href="/search/cs?searchtype=author&amp;query=Jia%2C+R">Ruoxi Jia</a>, <a href="/search/cs?searchtype=author&amp;query=Kwon%2C+Y">Yongchan Kwon</a>, <a href="/search/cs?searchtype=author&amp;query=Pei%2C+J">Jian Pei</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+J+T">Jiachen T. Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Xia%2C+H">Haocheng Xia</a>, <a href="/search/cs?searchtype=author&amp;query=Xiong%2C+L">Li Xiong</a>, <a href="/search/cs?searchtype=author&amp;query=Yu%2C+X">Xiaohui Yu</a>, <a href="/search/cs?searchtype=author&amp;query=Zou%2C+J">James Zou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.07267v1-abstract-short" style="display: inline;"> Data is the new oil of the 21st century. The growing trend of trading data for greater welfare has led to the emergence of data markets. A data market is any mechanism whereby the exchange of data products including datasets and data derivatives takes place as a result of data buyers and data sellers being in contact with one another, either directly or through mediating agents. It serves as a coo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07267v1-abstract-full').style.display = 'inline'; document.getElementById('2411.07267v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.07267v1-abstract-full" style="display: none;"> Data is the new oil of the 21st century. The growing trend of trading data for greater welfare has led to the emergence of data markets. A data market is any mechanism whereby the exchange of data products including datasets and data derivatives takes place as a result of data buyers and data sellers being in contact with one another, either directly or through mediating agents. It serves as a coordinating mechanism by which several functions, including the pricing and the distribution of data as the most important ones, interact to make the value of data fully exploited and enhanced. In this article, we present a comprehensive survey of this important and emerging direction from the aspects of data search, data productization, data transaction, data pricing, revenue allocation as well as privacy, security, and trust issues. We also investigate the government policies and industry status of data markets across different countries and different domains. Finally, we identify the unresolved challenges and discuss possible future directions for the development of data markets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07267v1-abstract-full').style.display = 'none'; document.getElementById('2411.07267v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.07070">arXiv:2411.07070</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.07070">pdf</a>, <a href="https://arxiv.org/format/2411.07070">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> On Active Privacy Auditing in Supervised Fine-tuning for White-Box Language Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Sun%2C+Q">Qian Sun</a>, <a href="/search/cs?searchtype=author&amp;query=Wu%2C+H">Hanpeng Wu</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+X+S">Xi Sheryl Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.07070v2-abstract-short" style="display: inline;"> The pretraining and fine-tuning approach has become the leading technique for various NLP applications. However, recent studies reveal that fine-tuning data, due to their sensitive nature, domain-specific characteristics, and identifiability, pose significant privacy concerns. To help develop more privacy-resilient fine-tuning models, we introduce a novel active privacy auditing framework, dubbed&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07070v2-abstract-full').style.display = 'inline'; document.getElementById('2411.07070v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.07070v2-abstract-full" style="display: none;"> The pretraining and fine-tuning approach has become the leading technique for various NLP applications. However, recent studies reveal that fine-tuning data, due to their sensitive nature, domain-specific characteristics, and identifiability, pose significant privacy concerns. To help develop more privacy-resilient fine-tuning models, we introduce a novel active privacy auditing framework, dubbed Parsing, designed to identify and quantify privacy leakage risks during the supervised fine-tuning (SFT) of language models (LMs). The framework leverages improved white-box membership inference attacks (MIAs) as the core technology, utilizing novel learning objectives and a two-stage pipeline to monitor the privacy of the LMs&#39; fine-tuning process, maximizing the exposure of privacy risks. Additionally, we have improved the effectiveness of MIAs on large LMs including GPT-2, Llama2, and certain variants of them. Our research aims to provide the SFT community of LMs with a reliable, ready-to-use privacy auditing tool, and to offer valuable insights into safeguarding privacy during the fine-tuning process. Experimental results confirm the framework&#39;s efficiency across various models and tasks, emphasizing notable privacy concerns in the fine-tuning process. Project code available for https://anonymous.4open.science/r/PARSING-4817/. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07070v2-abstract-full').style.display = 'none'; document.getElementById('2411.07070v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.02181">arXiv:2411.02181</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.02181">pdf</a>, <a href="https://arxiv.org/ps/2411.02181">ps</a>, <a href="https://arxiv.org/format/2411.02181">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Detect an Object At Once without Fine-tuning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Hao%2C+J">Junyu Hao</a>, <a href="/search/cs?searchtype=author&amp;query=Liu%2C+J">Jianheng Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Zhao%2C+Y">Yongjia Zhao</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+Z">Zuofan Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Sun%2C+Q">Qi Sun</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+J">Jinlong Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Wei%2C+J">Jianguo Wei</a>, <a href="/search/cs?searchtype=author&amp;query=Yang%2C+M">Minghao Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.02181v1-abstract-short" style="display: inline;"> When presented with one or a few photos of a previously unseen object, humans can instantly recognize it in different scenes. Although the human brain mechanism behind this phenomenon is still not fully understood, this work introduces a novel technical realization of this task. It consists of two phases: (1) generating a Similarity Density Map (SDM) by convolving the scene image with the given ob&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02181v1-abstract-full').style.display = 'inline'; document.getElementById('2411.02181v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.02181v1-abstract-full" style="display: none;"> When presented with one or a few photos of a previously unseen object, humans can instantly recognize it in different scenes. Although the human brain mechanism behind this phenomenon is still not fully understood, this work introduces a novel technical realization of this task. It consists of two phases: (1) generating a Similarity Density Map (SDM) by convolving the scene image with the given object image patch(es) so that the highlight areas in the SDM indicate the possible locations; (2) obtaining the object occupied areas in the scene through a Region Alignment Network (RAN). The RAN is constructed on a backbone of Deep Siamese Network (DSN), and different from the traditional DSNs, it aims to obtain the object accurate regions by regressing the location and area differences between the ground truths and the predicted ones indicated by the highlight areas in SDM. By pre-learning from labels annotated in traditional datasets, the SDM-RAN can detect previously unknown objects without fine-tuning. Experiments were conducted on the MS COCO, PASCAL VOC datasets. The results indicate that the proposed method outperforms state-of-the-art methods on the same task. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02181v1-abstract-full').style.display = 'none'; document.getElementById('2411.02181v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.00304">arXiv:2411.00304</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.00304">pdf</a>, <a href="https://arxiv.org/format/2411.00304">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Multimedia">cs.MM</span> </div> </div> <p class="title is-5 mathjax"> Unified Generative and Discriminative Training for Multi-modal Large Language Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Chow%2C+W">Wei Chow</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+J">Juncheng Li</a>, <a href="/search/cs?searchtype=author&amp;query=Yu%2C+Q">Qifan Yu</a>, <a href="/search/cs?searchtype=author&amp;query=Pan%2C+K">Kaihang Pan</a>, <a href="/search/cs?searchtype=author&amp;query=Fei%2C+H">Hao Fei</a>, <a href="/search/cs?searchtype=author&amp;query=Ge%2C+Z">Zhiqi Ge</a>, <a href="/search/cs?searchtype=author&amp;query=Yang%2C+S">Shuai Yang</a>, <a href="/search/cs?searchtype=author&amp;query=Tang%2C+S">Siliang Tang</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+H">Hanwang Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Sun%2C+Q">Qianru Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.00304v1-abstract-short" style="display: inline;"> In recent times, Vision-Language Models (VLMs) have been trained under two predominant paradigms. Generative training has enabled Multimodal Large Language Models (MLLMs) to tackle various complex tasks, yet issues such as hallucinations and weak object discrimination persist. Discriminative training, exemplified by models like CLIP, excels in zero-shot image-text classification and retrieval, yet&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00304v1-abstract-full').style.display = 'inline'; document.getElementById('2411.00304v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.00304v1-abstract-full" style="display: none;"> In recent times, Vision-Language Models (VLMs) have been trained under two predominant paradigms. Generative training has enabled Multimodal Large Language Models (MLLMs) to tackle various complex tasks, yet issues such as hallucinations and weak object discrimination persist. Discriminative training, exemplified by models like CLIP, excels in zero-shot image-text classification and retrieval, yet struggles with complex scenarios requiring fine-grained semantic differentiation. This paper addresses these challenges by proposing a unified approach that integrates the strengths of both paradigms. Considering interleaved image-text sequences as the general format of input samples, we introduce a structure-induced training strategy that imposes semantic relationships between input samples and the MLLM&#39;s hidden state. This approach enhances the MLLM&#39;s ability to capture global semantics and distinguish fine-grained semantics. By leveraging dynamic sequence alignment within the Dynamic Time Warping framework and integrating a novel kernel for fine-grained semantic differentiation, our method effectively balances generative and discriminative tasks. Extensive experiments demonstrate the effectiveness of our approach, achieving state-of-the-art results in multiple generative tasks, especially those requiring cognitive and discrimination abilities. Additionally, our method surpasses discriminative benchmarks in interleaved and fine-grained retrieval tasks. By employing a retrieval-augmented generation strategy, our approach further enhances performance in some generative tasks within one model, offering a promising direction for future research in vision-language modeling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00304v1-abstract-full').style.display = 'none'; document.getElementById('2411.00304v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.23218">arXiv:2410.23218</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.23218">pdf</a>, <a href="https://arxiv.org/format/2410.23218">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Human-Computer Interaction">cs.HC</span> </div> </div> <p class="title is-5 mathjax"> OS-ATLAS: A Foundation Action Model for Generalist GUI Agents </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Wu%2C+Z">Zhiyong Wu</a>, <a href="/search/cs?searchtype=author&amp;query=Wu%2C+Z">Zhenyu Wu</a>, <a href="/search/cs?searchtype=author&amp;query=Xu%2C+F">Fangzhi Xu</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+Y">Yian Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Sun%2C+Q">Qiushi Sun</a>, <a href="/search/cs?searchtype=author&amp;query=Jia%2C+C">Chengyou Jia</a>, <a href="/search/cs?searchtype=author&amp;query=Cheng%2C+K">Kanzhi Cheng</a>, <a href="/search/cs?searchtype=author&amp;query=Ding%2C+Z">Zichen Ding</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+L">Liheng Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Liang%2C+P+P">Paul Pu Liang</a>, <a href="/search/cs?searchtype=author&amp;query=Qiao%2C+Y">Yu Qiao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.23218v1-abstract-short" style="display: inline;"> Existing efforts in building GUI agents heavily rely on the availability of robust commercial Vision-Language Models (VLMs) such as GPT-4o and GeminiProVision. Practitioners are often reluctant to use open-source VLMs due to their significant performance lag compared to their closed-source counterparts, particularly in GUI grounding and Out-Of-Distribution (OOD) scenarios. To facilitate future res&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23218v1-abstract-full').style.display = 'inline'; document.getElementById('2410.23218v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.23218v1-abstract-full" style="display: none;"> Existing efforts in building GUI agents heavily rely on the availability of robust commercial Vision-Language Models (VLMs) such as GPT-4o and GeminiProVision. Practitioners are often reluctant to use open-source VLMs due to their significant performance lag compared to their closed-source counterparts, particularly in GUI grounding and Out-Of-Distribution (OOD) scenarios. To facilitate future research in this area, we developed OS-Atlas - a foundational GUI action model that excels at GUI grounding and OOD agentic tasks through innovations in both data and modeling. We have invested significant engineering effort in developing an open-source toolkit for synthesizing GUI grounding data across multiple platforms, including Windows, Linux, MacOS, Android, and the web. Leveraging this toolkit, we are releasing the largest open-source cross-platform GUI grounding corpus to date, which contains over 13 million GUI elements. This dataset, combined with innovations in model training, provides a solid foundation for OS-Atlas to understand GUI screenshots and generalize to unseen interfaces. Through extensive evaluation across six benchmarks spanning three different platforms (mobile, desktop, and web), OS-Atlas demonstrates significant performance improvements over previous state-of-the-art models. Our evaluation also uncovers valuable insights into continuously improving and scaling the agentic capabilities of open-source VLMs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23218v1-abstract-full').style.display = 'none'; document.getElementById('2410.23218v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.18603">arXiv:2410.18603</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.18603">pdf</a>, <a href="https://arxiv.org/format/2410.18603">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> </div> </div> <p class="title is-5 mathjax"> AgentStore: Scalable Integration of Heterogeneous Agents As Specialized Generalist Computer Assistant </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Jia%2C+C">Chengyou Jia</a>, <a href="/search/cs?searchtype=author&amp;query=Luo%2C+M">Minnan Luo</a>, <a href="/search/cs?searchtype=author&amp;query=Dang%2C+Z">Zhuohang Dang</a>, <a href="/search/cs?searchtype=author&amp;query=Sun%2C+Q">Qiushi Sun</a>, <a href="/search/cs?searchtype=author&amp;query=Xu%2C+F">Fangzhi Xu</a>, <a href="/search/cs?searchtype=author&amp;query=Hu%2C+J">Junlin Hu</a>, <a href="/search/cs?searchtype=author&amp;query=Xie%2C+T">Tianbao Xie</a>, <a href="/search/cs?searchtype=author&amp;query=Wu%2C+Z">Zhiyong Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.18603v1-abstract-short" style="display: inline;"> Digital agents capable of automating complex computer tasks have attracted considerable attention due to their immense potential to enhance human-computer interaction. However, existing agent methods exhibit deficiencies in their generalization and specialization capabilities, especially in handling open-ended computer tasks in real-world environments. Inspired by the rich functionality of the App&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18603v1-abstract-full').style.display = 'inline'; document.getElementById('2410.18603v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.18603v1-abstract-full" style="display: none;"> Digital agents capable of automating complex computer tasks have attracted considerable attention due to their immense potential to enhance human-computer interaction. However, existing agent methods exhibit deficiencies in their generalization and specialization capabilities, especially in handling open-ended computer tasks in real-world environments. Inspired by the rich functionality of the App store, we present AgentStore, a scalable platform designed to dynamically integrate heterogeneous agents for automating computer tasks. AgentStore empowers users to integrate third-party agents, allowing the system to continuously enrich its capabilities and adapt to rapidly evolving operating systems. Additionally, we propose a novel core \textbf{MetaAgent} with the \textbf{AgentToken} strategy to efficiently manage diverse agents and utilize their specialized and generalist abilities for both domain-specific and system-wide tasks. Extensive experiments on three challenging benchmarks demonstrate that AgentStore surpasses the limitations of previous systems with narrow capabilities, particularly achieving a significant improvement from 11.21\% to 23.85\% on the OSWorld benchmark, more than doubling the previous results. Comprehensive quantitative and qualitative results further demonstrate AgentStore&#39;s ability to enhance agent systems in both generalization and specialization, underscoring its potential for developing the specialized generalist computer assistant. All our codes will be made publicly available in https://chengyou-jia.github.io/AgentStore-Home. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18603v1-abstract-full').style.display = 'none'; document.getElementById('2410.18603v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.17277">arXiv:2410.17277</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.17277">pdf</a>, <a href="https://arxiv.org/format/2410.17277">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Neural and Evolutionary Computing">cs.NE</span> </div> </div> <p class="title is-5 mathjax"> A practical applicable quantum-classical hybrid ant colony algorithm for the NISQ era </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Qiu%2C+Q">Qian Qiu</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+L">Liang Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Wu%2C+M">Mohan Wu</a>, <a href="/search/cs?searchtype=author&amp;query=Sun%2C+Q">Qichun Sun</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+X">Xiaogang Li</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+D">Da-Chuang Li</a>, <a href="/search/cs?searchtype=author&amp;query=Xu%2C+H">Hua Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.17277v1-abstract-short" style="display: inline;"> Quantum ant colony optimization (QACO) has drew much attention since it combines the advantages of quantum computing and ant colony optimization (ACO) algorithm overcoming some limitations of the traditional ACO algorithm. However,due to the hardware resource limitations of currently available quantum computers, the practical application of the QACO is still not realized. In this paper, we develop&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17277v1-abstract-full').style.display = 'inline'; document.getElementById('2410.17277v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.17277v1-abstract-full" style="display: none;"> Quantum ant colony optimization (QACO) has drew much attention since it combines the advantages of quantum computing and ant colony optimization (ACO) algorithm overcoming some limitations of the traditional ACO algorithm. However,due to the hardware resource limitations of currently available quantum computers, the practical application of the QACO is still not realized. In this paper, we developed a quantum-classical hybrid algorithm by combining the clustering algorithm with QACO algorithm.This extended QACO can handle large-scale optimization problems with currently available quantum computing resource. We have tested the effectiveness and performance of the extended QACO algorithm with the Travelling Salesman Problem (TSP) as benchmarks, and found the algorithm achieves better performance under multiple diverse datasets. In addition, we investigated the noise impact on the extended QACO and evaluated its operation possibility on current available noisy intermediate scale quantum(NISQ) devices. Our work shows that the combination of the clustering algorithm with QACO effectively improved its problem solving scale, which makes its practical application possible in current NISQ era of quantum computing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17277v1-abstract-full').style.display = 'none'; document.getElementById('2410.17277v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: substantial text overlap with arXiv:2403.00367</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.15774">arXiv:2410.15774</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.15774">pdf</a>, <a href="https://arxiv.org/format/2410.15774">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Generalizing Motion Planners with Mixture of Experts for Autonomous Driving </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Sun%2C+Q">Qiao Sun</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+H">Huimin Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Zhan%2C+J">Jiahao Zhan</a>, <a href="/search/cs?searchtype=author&amp;query=Nie%2C+F">Fan Nie</a>, <a href="/search/cs?searchtype=author&amp;query=Wen%2C+X">Xin Wen</a>, <a href="/search/cs?searchtype=author&amp;query=Xu%2C+L">Leimeng Xu</a>, <a href="/search/cs?searchtype=author&amp;query=Zhan%2C+K">Kun Zhan</a>, <a href="/search/cs?searchtype=author&amp;query=Jia%2C+P">Peng Jia</a>, <a href="/search/cs?searchtype=author&amp;query=Lang%2C+X">Xianpeng Lang</a>, <a href="/search/cs?searchtype=author&amp;query=Zhao%2C+H">Hang Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.15774v2-abstract-short" style="display: inline;"> Large real-world driving datasets have sparked significant research into various aspects of data-driven motion planners for autonomous driving. These include data augmentation, model architecture, reward design, training strategies, and planner pipelines. These planners promise better generalizations on complicated and few-shot cases than previous methods. However, experiment results show that man&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15774v2-abstract-full').style.display = 'inline'; document.getElementById('2410.15774v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.15774v2-abstract-full" style="display: none;"> Large real-world driving datasets have sparked significant research into various aspects of data-driven motion planners for autonomous driving. These include data augmentation, model architecture, reward design, training strategies, and planner pipelines. These planners promise better generalizations on complicated and few-shot cases than previous methods. However, experiment results show that many of these approaches produce limited generalization abilities in planning performance due to overly complex designs or training paradigms. In this paper, we review and benchmark previous methods focusing on generalizations. The experimental results indicate that as models are appropriately scaled, many design elements become redundant. We introduce StateTransformer-2 (STR2), a scalable, decoder-only motion planner that uses a Vision Transformer (ViT) encoder and a mixture-of-experts (MoE) causal Transformer architecture. The MoE backbone addresses modality collapse and reward balancing by expert routing during training. Extensive experiments on the NuPlan dataset show that our method generalizes better than previous approaches across different test sets and closed-loop simulations. Furthermore, we assess its scalability on billions of real-world urban driving scenarios, demonstrating consistent accuracy improvements as both data and model size grow. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15774v2-abstract-full').style.display = 'none'; document.getElementById('2410.15774v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.14932">arXiv:2410.14932</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.14932">pdf</a>, <a href="https://arxiv.org/format/2410.14932">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Can AI weather models predict out-of-distribution gray swan tropical cyclones? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Sun%2C+Y+Q">Y. Qiang Sun</a>, <a href="/search/cs?searchtype=author&amp;query=Hassanzadeh%2C+P">Pedram Hassanzadeh</a>, <a href="/search/cs?searchtype=author&amp;query=Zand%2C+M">Mohsen Zand</a>, <a href="/search/cs?searchtype=author&amp;query=Chattopadhyay%2C+A">Ashesh Chattopadhyay</a>, <a href="/search/cs?searchtype=author&amp;query=Weare%2C+J">Jonathan Weare</a>, <a href="/search/cs?searchtype=author&amp;query=Abbot%2C+D+S">Dorian S. Abbot</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.14932v2-abstract-short" style="display: inline;"> Predicting gray swan weather extremes, which are possible but so rare that they are absent from the training dataset, is a major concern for AI weather/climate models. An important open question is whether AI models can extrapolate from weaker weather events present in the training set to stronger, unseen weather extremes. To test this, we train independent versions of the AI model FourCastNet on&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14932v2-abstract-full').style.display = 'inline'; document.getElementById('2410.14932v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.14932v2-abstract-full" style="display: none;"> Predicting gray swan weather extremes, which are possible but so rare that they are absent from the training dataset, is a major concern for AI weather/climate models. An important open question is whether AI models can extrapolate from weaker weather events present in the training set to stronger, unseen weather extremes. To test this, we train independent versions of the AI model FourCastNet on the 1979-2015 ERA5 dataset with all data, or with Category 3-5 tropical cyclones (TCs) removed, either globally or only over the North Atlantic or Western Pacific basin. We then test these versions of FourCastNet on 2018-2023 Category 5 TCs (gray swans). All versions yield similar accuracy for global weather, but the one trained without Category 3-5 TCs cannot accurately forecast Category 5 TCs, indicating that these models cannot extrapolate from weaker storms. The versions trained without Category 3-5 TCs in one basin show some skill forecasting Category 5 TCs in that basin, suggesting that FourCastNet can generalize across tropical basins. This is encouraging and surprising because regional information is implicitly encoded in inputs. No version satisfies gradient-wind balance, implying that enforcing such physical constraints may not improve generalizability to gray swans. Given that current state-of-the-art AI weather/climate models have similar learning strategies, we expect our findings to apply to other models and extreme events. Our work demonstrates that novel learning strategies are needed for AI weather/climate models to provide early warning or estimated statistics for the rarest, most impactful weather extremes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14932v2-abstract-full').style.display = 'none'; document.getElementById('2410.14932v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13872">arXiv:2410.13872</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.13872">pdf</a>, <a href="https://arxiv.org/format/2410.13872">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neural and Evolutionary Computing">cs.NE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> </div> </div> <p class="title is-5 mathjax"> BLEND: Behavior-guided Neural Population Dynamics Modeling via Privileged Knowledge Distillation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Guo%2C+Z">Zhengrui Guo</a>, <a href="/search/cs?searchtype=author&amp;query=Zhou%2C+F">Fangxu Zhou</a>, <a href="/search/cs?searchtype=author&amp;query=Wu%2C+W">Wei Wu</a>, <a href="/search/cs?searchtype=author&amp;query=Sun%2C+Q">Qichen Sun</a>, <a href="/search/cs?searchtype=author&amp;query=Feng%2C+L">Lishuang Feng</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+J">Jinzhuo Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+H">Hao Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13872v1-abstract-short" style="display: inline;"> Modeling the nonlinear dynamics of neuronal populations represents a key pursuit in computational neuroscience. Recent research has increasingly focused on jointly modeling neural activity and behavior to unravel their interconnections. Despite significant efforts, these approaches often necessitate either intricate model designs or oversimplified assumptions. Given the frequent absence of perfect&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13872v1-abstract-full').style.display = 'inline'; document.getElementById('2410.13872v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13872v1-abstract-full" style="display: none;"> Modeling the nonlinear dynamics of neuronal populations represents a key pursuit in computational neuroscience. Recent research has increasingly focused on jointly modeling neural activity and behavior to unravel their interconnections. Despite significant efforts, these approaches often necessitate either intricate model designs or oversimplified assumptions. Given the frequent absence of perfectly paired neural-behavioral datasets in real-world scenarios when deploying these models, a critical yet understudied research question emerges: how to develop a model that performs well using only neural activity as input at inference, while benefiting from the insights gained from behavioral signals during training? To this end, we propose BLEND, the behavior-guided neural population dynamics modeling framework via privileged knowledge distillation. By considering behavior as privileged information, we train a teacher model that takes both behavior observations (privileged features) and neural activities (regular features) as inputs. A student model is then distilled using only neural activity. Unlike existing methods, our framework is model-agnostic and avoids making strong assumptions about the relationship between behavior and neural activity. This allows BLEND to enhance existing neural dynamics modeling architectures without developing specialized models from scratch. Extensive experiments across neural population activity modeling and transcriptomic neuron identity prediction tasks demonstrate strong capabilities of BLEND, reporting over 50% improvement in behavioral decoding and over 15% improvement in transcriptomic neuron identity prediction after behavior-guided distillation. Furthermore, we empirically explore various behavior-guided distillation strategies within the BLEND framework and present a comprehensive analysis of effectiveness and implications for model performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13872v1-abstract-full').style.display = 'none'; document.getElementById('2410.13872v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 5 figures, 3 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13166">arXiv:2410.13166</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.13166">pdf</a>, <a href="https://arxiv.org/format/2410.13166">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> An Evolved Universal Transformer Memory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Cetin%2C+E">Edoardo Cetin</a>, <a href="/search/cs?searchtype=author&amp;query=Sun%2C+Q">Qi Sun</a>, <a href="/search/cs?searchtype=author&amp;query=Zhao%2C+T">Tianyu Zhao</a>, <a href="/search/cs?searchtype=author&amp;query=Tang%2C+Y">Yujin Tang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13166v2-abstract-short" style="display: inline;"> Prior methods propose to offset the escalating costs of modern foundation models by dropping specific parts of their contexts with hand-designed rules, while attempting to preserve their original performance. We overcome this trade-off with Neural Attention Memory Models (NAMMs), introducing a learned network for memory management that improves both the performance and efficiency of transformers.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13166v2-abstract-full').style.display = 'inline'; document.getElementById('2410.13166v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13166v2-abstract-full" style="display: none;"> Prior methods propose to offset the escalating costs of modern foundation models by dropping specific parts of their contexts with hand-designed rules, while attempting to preserve their original performance. We overcome this trade-off with Neural Attention Memory Models (NAMMs), introducing a learned network for memory management that improves both the performance and efficiency of transformers. We evolve NAMMs atop pre-trained transformers to provide different latent contexts focusing on the most relevant information for individual layers and attention heads. NAMMs are universally applicable to any model using self-attention as they condition exclusively on the values in the produced attention matrices. Learning NAMMs on a small set of problems, we achieve substantial performance improvements across multiple long-context benchmarks while cutting the model&#39;s input contexts up to a fraction of the original sizes. We show the generality of our conditioning enables zero-shot transfer of NAMMs trained only on language to entirely new transformer architectures even across input modalities, with their benefits carrying over to vision and reinforcement learning. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13166v2-abstract-full').style.display = 'none'; document.getElementById('2410.13166v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 14 figures. Preprint, under submission. Source code is available at https://github.com/SakanaAI/evo-memory</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.11997">arXiv:2410.11997</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.11997">pdf</a>, <a href="https://arxiv.org/format/2410.11997">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Engineering, Finance, and Science">cs.CE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Finance">q-fin.CP</span> </div> </div> <p class="title is-5 mathjax"> Quantum Computing for Multi Period Asset Allocation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Sun%2C+Q">Queenie Sun</a>, <a href="/search/cs?searchtype=author&amp;query=Grablevsky%2C+N">Nicholas Grablevsky</a>, <a href="/search/cs?searchtype=author&amp;query=Deng%2C+H">Huaizhang Deng</a>, <a href="/search/cs?searchtype=author&amp;query=Azadi%2C+P">Pooya Azadi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.11997v1-abstract-short" style="display: inline;"> Portfolio construction has been a long-standing topic of research in finance. The computational complexity and the time taken both increase rapidly with the number of investments in the portfolio. It becomes difficult, even impossible for classic computers to solve. Quantum computing is a new way of computing which takes advantage of quantum superposition and entanglement. It changes how such prob&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11997v1-abstract-full').style.display = 'inline'; document.getElementById('2410.11997v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.11997v1-abstract-full" style="display: none;"> Portfolio construction has been a long-standing topic of research in finance. The computational complexity and the time taken both increase rapidly with the number of investments in the portfolio. It becomes difficult, even impossible for classic computers to solve. Quantum computing is a new way of computing which takes advantage of quantum superposition and entanglement. It changes how such problems are approached and is not constrained by some of the classic computational complexity. Studies have shown that quantum computing can offer significant advantages over classical computing in many fields. The application of quantum computing has been constrained by the unavailability of actual quantum computers. In the past decade, there has been the rapid development of the large-scale quantum computer. However, software development for quantum computing is slow in many fields. In our study, we apply quantum computing to a multi-asset portfolio simulation. The simulation is based on historic data, covariance, and expected returns, all calculated using quantum computing. Although technically a solvable problem for classical computing, we believe the software development is important to the future application of quantum computing in finance. We conducted this study through simulation of a quantum computer and the use of Rensselaer Polytechnic Institute&#39;s IBM quantum computer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11997v1-abstract-full').style.display = 'none'; document.getElementById('2410.11997v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.11120">arXiv:2410.11120</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.11120">pdf</a>, <a href="https://arxiv.org/format/2410.11120">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> </div> </div> <p class="title is-5 mathjax"> Audio-based Kinship Verification Using Age Domain Conversion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Sun%2C+Q">Qiyang Sun</a>, <a href="/search/cs?searchtype=author&amp;query=Akman%2C+A">Alican Akman</a>, <a href="/search/cs?searchtype=author&amp;query=Jing%2C+X">Xin Jing</a>, <a href="/search/cs?searchtype=author&amp;query=Milling%2C+M">Manuel Milling</a>, <a href="/search/cs?searchtype=author&amp;query=Schuller%2C+B+W">Bj枚rn W. Schuller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.11120v1-abstract-short" style="display: inline;"> Audio-based kinship verification (AKV) is important in many domains, such as home security monitoring, forensic identification, and social network analysis. A key challenge in the task arises from differences in age across samples from different individuals, which can be interpreted as a domain bias in a cross-domain verification task. To address this issue, we design the notion of an &#34;age-standar&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11120v1-abstract-full').style.display = 'inline'; document.getElementById('2410.11120v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.11120v1-abstract-full" style="display: none;"> Audio-based kinship verification (AKV) is important in many domains, such as home security monitoring, forensic identification, and social network analysis. A key challenge in the task arises from differences in age across samples from different individuals, which can be interpreted as a domain bias in a cross-domain verification task. To address this issue, we design the notion of an &#34;age-standardised domain&#34; wherein we utilise the optimised CycleGAN-VC3 network to perform age-audio conversion to generate the in-domain audio. The generated audio dataset is employed to extract a range of features, which are then fed into a metric learning architecture to verify kinship. Experiments are conducted on the KAN_AV audio dataset, which contains age and kinship labels. The results demonstrate that the method markedly enhances the accuracy of kinship verification, while also offering novel insights for future kinship verification research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11120v1-abstract-full').style.display = 'none'; document.getElementById('2410.11120v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 2 figures, submitted to IEEE Signal Processing Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 68T10 <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> I.5.4; I.2.6 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.10663">arXiv:2410.10663</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.10663">pdf</a>, <a href="https://arxiv.org/format/2410.10663">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Cross-Modal Few-Shot Learning: a Generative Transfer Learning Framework </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Yang%2C+Z">Zhengwei Yang</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+Y">Yuke Li</a>, <a href="/search/cs?searchtype=author&amp;query=Sun%2C+Q">Qiang Sun</a>, <a href="/search/cs?searchtype=author&amp;query=Fernando%2C+B">Basura Fernando</a>, <a href="/search/cs?searchtype=author&amp;query=Huang%2C+H">Heng Huang</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+Z">Zheng Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.10663v1-abstract-short" style="display: inline;"> Most existing studies on few-shot learning focus on unimodal settings, where models are trained to generalize on unseen data using only a small number of labeled examples from the same modality. However, real-world data are inherently multi-modal, and unimodal approaches limit the practical applications of few-shot learning. To address this gap, this paper introduces the Cross-modal Few-Shot Learn&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10663v1-abstract-full').style.display = 'inline'; document.getElementById('2410.10663v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.10663v1-abstract-full" style="display: none;"> Most existing studies on few-shot learning focus on unimodal settings, where models are trained to generalize on unseen data using only a small number of labeled examples from the same modality. However, real-world data are inherently multi-modal, and unimodal approaches limit the practical applications of few-shot learning. To address this gap, this paper introduces the Cross-modal Few-Shot Learning (CFSL) task, which aims to recognize instances from multiple modalities when only a few labeled examples are available. This task presents additional challenges compared to classical few-shot learning due to the distinct visual characteristics and structural properties unique to each modality. To tackle these challenges, we propose a Generative Transfer Learning (GTL) framework consisting of two stages: the first stage involves training on abundant unimodal data, and the second stage focuses on transfer learning to adapt to novel data. Our GTL framework jointly estimates the latent shared concept across modalities and in-modality disturbance in both stages, while freezing the generative module during the transfer phase to maintain the stability of the learned representations and prevent overfitting to the limited multi-modal samples. Our finds demonstrate that GTL has superior performance compared to state-of-the-art methods across four distinct multi-modal datasets: Sketchy, TU-Berlin, Mask1K, and SKSF-A. Additionally, the results suggest that the model can estimate latent concepts from vast unimodal data and generalize these concepts to unseen modalities using only a limited number of available samples, much like human cognitive processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10663v1-abstract-full').style.display = 'none'; document.getElementById('2410.10663v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.10453">arXiv:2410.10453</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.10453">pdf</a>, <a href="https://arxiv.org/format/2410.10453">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Self-Assessed Generation: Trustworthy Label Generation for Optical Flow and Stereo Matching in Real-world </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Ling%2C+H">Han Ling</a>, <a href="/search/cs?searchtype=author&amp;query=Sun%2C+Y">Yinghui Sun</a>, <a href="/search/cs?searchtype=author&amp;query=Sun%2C+Q">Quansen Sun</a>, <a href="/search/cs?searchtype=author&amp;query=Tsang%2C+I">Ivor Tsang</a>, <a href="/search/cs?searchtype=author&amp;query=Zheng%2C+Y">Yuhui Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.10453v1-abstract-short" style="display: inline;"> A significant challenge facing current optical flow and stereo methods is the difficulty in generalizing them well to the real world. This is mainly due to the high costs required to produce datasets, and the limitations of existing self-supervised methods on fuzzy results and complex model training problems. To address the above challenges, we propose a unified self-supervised generalization fram&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10453v1-abstract-full').style.display = 'inline'; document.getElementById('2410.10453v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.10453v1-abstract-full" style="display: none;"> A significant challenge facing current optical flow and stereo methods is the difficulty in generalizing them well to the real world. This is mainly due to the high costs required to produce datasets, and the limitations of existing self-supervised methods on fuzzy results and complex model training problems. To address the above challenges, we propose a unified self-supervised generalization framework for optical flow and stereo tasks: Self-Assessed Generation (SAG). Unlike previous self-supervised methods, SAG is data-driven, using advanced reconstruction techniques to construct a reconstruction field from RGB images and generate datasets based on it. Afterward, we quantified the confidence level of the generated results from multiple perspectives, such as reconstruction field distribution, geometric consistency, and structural similarity, to eliminate inevitable defects in the generation process. We also designed a 3D flight foreground automatic rendering pipeline in SAG to encourage the network to learn occlusion and motion foreground. Experimentally, because SAG does not involve changes to methods or loss functions, it can directly self-supervised train the state-of-the-art deep networks, greatly improving the generalization performance of self-supervised methods on current mainstream optical flow and stereo-matching datasets. Compared to previous training modes, SAG is more generalized, cost-effective, and accurate. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10453v1-abstract-full').style.display = 'none'; document.getElementById('2410.10453v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.09817">arXiv:2410.09817</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.09817">pdf</a>, <a href="https://arxiv.org/format/2410.09817">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> Reverse Modeling in Large Language Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Yu%2C+S">Sicheng Yu</a>, <a href="/search/cs?searchtype=author&amp;query=Xu%2C+Y">Yuanchen Xu</a>, <a href="/search/cs?searchtype=author&amp;query=Du%2C+C">Cunxiao Du</a>, <a href="/search/cs?searchtype=author&amp;query=Zhou%2C+Y">Yanying Zhou</a>, <a href="/search/cs?searchtype=author&amp;query=Qiu%2C+M">Minghui Qiu</a>, <a href="/search/cs?searchtype=author&amp;query=Sun%2C+Q">Qianru Sun</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+H">Hao Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Wu%2C+J">Jiawei Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.09817v1-abstract-short" style="display: inline;"> Humans are accustomed to reading and writing in a forward manner, and this natural bias extends to text understanding in auto-regressive large language models (LLMs). This paper investigates whether LLMs, like humans, struggle with reverse modeling, specifically with reversed text inputs. We found that publicly available pre-trained LLMs cannot understand such inputs. However, LLMs trained from sc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09817v1-abstract-full').style.display = 'inline'; document.getElementById('2410.09817v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.09817v1-abstract-full" style="display: none;"> Humans are accustomed to reading and writing in a forward manner, and this natural bias extends to text understanding in auto-regressive large language models (LLMs). This paper investigates whether LLMs, like humans, struggle with reverse modeling, specifically with reversed text inputs. We found that publicly available pre-trained LLMs cannot understand such inputs. However, LLMs trained from scratch with both forward and reverse texts can understand them equally well during inference. Our case study shows that different-content texts result in different losses if input (to LLMs) in different directions -- some get lower losses for forward while some for reverse. This leads us to a simple and nice solution for data selection based on the loss differences between forward and reverse directions. Using our selected data in continued pretraining can boost LLMs&#39; performance by a large margin across different language understanding benchmarks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09817v1-abstract-full').style.display = 'none'; document.getElementById('2410.09817v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 Pages, 6 Figures, 7 Tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.09018">arXiv:2410.09018</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.09018">pdf</a>, <a href="https://arxiv.org/ps/2410.09018">ps</a>, <a href="https://arxiv.org/format/2410.09018">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> </div> </div> <p class="title is-5 mathjax"> Data-Driven Neural Estimation of Indirect Rate-Distortion Function </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Yu%2C+Z">Zichao Yu</a>, <a href="/search/cs?searchtype=author&amp;query=Sun%2C+Q">Qiang Sun</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+W">Wenyi Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.09018v1-abstract-short" style="display: inline;"> The rate-distortion function (RDF) has long been an information-theoretic benchmark for data compression. As its natural extension, the indirect rate-distortion function (iRDF) corresponds to the scenario where the encoder can only access an observation correlated with the source, rather than the source itself. Such scenario is also relevant for modern applications like remote sensing and goal-ori&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09018v1-abstract-full').style.display = 'inline'; document.getElementById('2410.09018v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.09018v1-abstract-full" style="display: none;"> The rate-distortion function (RDF) has long been an information-theoretic benchmark for data compression. As its natural extension, the indirect rate-distortion function (iRDF) corresponds to the scenario where the encoder can only access an observation correlated with the source, rather than the source itself. Such scenario is also relevant for modern applications like remote sensing and goal-oriented communication. The iRDF can be reduced into a standard RDF with the distortion measure replaced by its conditional expectation conditioned upon the observation. This reduction, however, leads to a non-trivial challenge when one needs to estimate the iRDF given datasets only, because without statistical knowledge of the joint probability distribution between the source and its observation, the conditional expectation cannot be evaluated. To tackle this challenge, starting from the well known fact that conditional expectation is the minimum mean-squared error estimator and exploiting a Markovian relationship, we identify a functional equivalence between the reduced distortion measure in the iRDF and the solution of a quadratic loss minimization problem, which can be efficiently approximated by neural network approach. We proceed to reformulate the iRDF as a variational problem corresponding to the Lagrangian representation of the iRDF curve, and propose a neural network based approximate solution, integrating the aforementioned distortion measure estimator. Asymptotic analysis guarantees consistency of the solution, and numerical experimental results demonstrate the accuracy and effectiveness of the algorithm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09018v1-abstract-full').style.display = 'none'; document.getElementById('2410.09018v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.07530">arXiv:2410.07530</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.07530">pdf</a>, <a href="https://arxiv.org/format/2410.07530">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> </div> </div> <p class="title is-5 mathjax"> Audio Explanation Synthesis with Generative Foundation Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Akman%2C+A">Alican Akman</a>, <a href="/search/cs?searchtype=author&amp;query=Sun%2C+Q">Qiyang Sun</a>, <a href="/search/cs?searchtype=author&amp;query=Schuller%2C+B+W">Bj枚rn W. Schuller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.07530v1-abstract-short" style="display: inline;"> The increasing success of audio foundation models across various tasks has led to a growing need for improved interpretability to understand their intricate decision-making processes better. Existing methods primarily focus on explaining these models by attributing importance to elements within the input space based on their influence on the final decision. In this paper, we introduce a novel audi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.07530v1-abstract-full').style.display = 'inline'; document.getElementById('2410.07530v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.07530v1-abstract-full" style="display: none;"> The increasing success of audio foundation models across various tasks has led to a growing need for improved interpretability to understand their intricate decision-making processes better. Existing methods primarily focus on explaining these models by attributing importance to elements within the input space based on their influence on the final decision. In this paper, we introduce a novel audio explanation method that capitalises on the generative capacity of audio foundation models. Our method leverages the intrinsic representational power of the embedding space within these models by integrating established feature attribution techniques to identify significant features in this space. The method then generates listenable audio explanations by prioritising the most important features. Through rigorous benchmarking against standard datasets, including keyword spotting and speech emotion recognition, our model demonstrates its efficacy in producing audio explanations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.07530v1-abstract-full').style.display = 'none'; document.getElementById('2410.07530v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.06593">arXiv:2410.06593</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.06593">pdf</a>, <a href="https://arxiv.org/format/2410.06593">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Towards Natural Image Matting in the Wild via Real-Scenario Prior </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Xia%2C+R">Ruihao Xia</a>, <a href="/search/cs?searchtype=author&amp;query=Liang%2C+Y">Yu Liang</a>, <a href="/search/cs?searchtype=author&amp;query=Jiang%2C+P">Peng-Tao Jiang</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+H">Hao Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Sun%2C+Q">Qianru Sun</a>, <a href="/search/cs?searchtype=author&amp;query=Tang%2C+Y">Yang Tang</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+B">Bo Li</a>, <a href="/search/cs?searchtype=author&amp;query=Zhou%2C+P">Pan Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.06593v1-abstract-short" style="display: inline;"> Recent approaches attempt to adapt powerful interactive segmentation models, such as SAM, to interactive matting and fine-tune the models based on synthetic matting datasets. However, models trained on synthetic data fail to generalize to complex and occlusion scenes. We address this challenge by proposing a new matting dataset based on the COCO dataset, namely COCO-Matting. Specifically, the cons&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06593v1-abstract-full').style.display = 'inline'; document.getElementById('2410.06593v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.06593v1-abstract-full" style="display: none;"> Recent approaches attempt to adapt powerful interactive segmentation models, such as SAM, to interactive matting and fine-tune the models based on synthetic matting datasets. However, models trained on synthetic data fail to generalize to complex and occlusion scenes. We address this challenge by proposing a new matting dataset based on the COCO dataset, namely COCO-Matting. Specifically, the construction of our COCO-Matting includes accessory fusion and mask-to-matte, which selects real-world complex images from COCO and converts semantic segmentation masks to matting labels. The built COCO-Matting comprises an extensive collection of 38,251 human instance-level alpha mattes in complex natural scenarios. Furthermore, existing SAM-based matting methods extract intermediate features and masks from a frozen SAM and only train a lightweight matting decoder by end-to-end matting losses, which do not fully exploit the potential of the pre-trained SAM. Thus, we propose SEMat which revamps the network architecture and training objectives. For network architecture, the proposed feature-aligned transformer learns to extract fine-grained edge and transparency features. The proposed matte-aligned decoder aims to segment matting-specific objects and convert coarse masks into high-precision mattes. For training objectives, the proposed regularization and trimap loss aim to retain the prior from the pre-trained model and push the matting logits extracted from the mask decoder to contain trimap-based semantic information. Extensive experiments across seven diverse datasets demonstrate the superior performance of our method, proving its efficacy in interactive natural image matting. We open-source our code, models, and dataset at https://github.com/XiaRho/SEMat. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06593v1-abstract-full').style.display = 'none'; document.getElementById('2410.06593v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.04546">arXiv:2410.04546</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.04546">pdf</a>, <a href="https://arxiv.org/format/2410.04546">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Learning De-Biased Representations for Remote-Sensing Imagery </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Tian%2C+Z">Zichen Tian</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+Z">Zhaozheng Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Sun%2C+Q">Qianru Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.04546v1-abstract-short" style="display: inline;"> Remote sensing (RS) imagery, requiring specialized satellites to collect and being difficult to annotate, suffers from data scarcity and class imbalance in certain spectrums. Due to data scarcity, training any large-scale RS models from scratch is unrealistic, and the alternative is to transfer pre-trained models by fine-tuning or a more data-efficient method LoRA. Due to class imbalance, transfer&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.04546v1-abstract-full').style.display = 'inline'; document.getElementById('2410.04546v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.04546v1-abstract-full" style="display: none;"> Remote sensing (RS) imagery, requiring specialized satellites to collect and being difficult to annotate, suffers from data scarcity and class imbalance in certain spectrums. Due to data scarcity, training any large-scale RS models from scratch is unrealistic, and the alternative is to transfer pre-trained models by fine-tuning or a more data-efficient method LoRA. Due to class imbalance, transferred models exhibit strong bias, where features of the major class dominate over those of the minor class. In this paper, we propose debLoRA, a generic training approach that works with any LoRA variants to yield debiased features. It is an unsupervised learning approach that can diversify minor class features based on the shared attributes with major classes, where the attributes are obtained by a simple step of clustering. To evaluate it, we conduct extensive experiments in two transfer learning scenarios in the RS domain: from natural to optical RS images, and from optical RS to multi-spectrum RS images. We perform object classification and oriented object detection tasks on the optical RS dataset DOTA and the SAR dataset FUSRS. Results show that our debLoRA consistently surpasses prior arts across these RS adaptation settings, yielding up to 3.3 and 4.7 percentage points gains on the tail classes for natural to optical RS and optical RS to multi-spectrum RS adaptations, respectively, while preserving the performance on head classes, substantiating its efficacy and adaptability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.04546v1-abstract-full').style.display = 'none'; document.getElementById('2410.04546v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.03226">arXiv:2410.03226</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.03226">pdf</a>, <a href="https://arxiv.org/format/2410.03226">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> Frame-Voyager: Learning to Query Frames for Video Large Language Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Yu%2C+S">Sicheng Yu</a>, <a href="/search/cs?searchtype=author&amp;query=Jin%2C+C">Chengkai Jin</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+H">Huanyu Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+Z">Zhenghao Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Jin%2C+S">Sheng Jin</a>, <a href="/search/cs?searchtype=author&amp;query=Zuo%2C+Z">Zhongrong Zuo</a>, <a href="/search/cs?searchtype=author&amp;query=Xu%2C+X">Xiaolei Xu</a>, <a href="/search/cs?searchtype=author&amp;query=Sun%2C+Z">Zhenbang Sun</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+B">Bingni Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Wu%2C+J">Jiawei Wu</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+H">Hao Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Sun%2C+Q">Qianru Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.03226v2-abstract-short" style="display: inline;"> Video Large Language Models (Video-LLMs) have made remarkable progress in video understanding tasks. However, they are constrained by the maximum length of input tokens, making it impractical to input entire videos. Existing frame selection approaches, such as uniform frame sampling and text-frame retrieval, fail to account for the information density variations in the videos or the complex instru&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.03226v2-abstract-full').style.display = 'inline'; document.getElementById('2410.03226v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.03226v2-abstract-full" style="display: none;"> Video Large Language Models (Video-LLMs) have made remarkable progress in video understanding tasks. However, they are constrained by the maximum length of input tokens, making it impractical to input entire videos. Existing frame selection approaches, such as uniform frame sampling and text-frame retrieval, fail to account for the information density variations in the videos or the complex instructions in the tasks, leading to sub-optimal performance. In this paper, we propose Frame-Voyager that learns to query informative frame combinations, based on the given textual queries in the task. To train Frame-Voyager, we introduce a new data collection and labeling pipeline, by ranking frame combinations using a pre-trained Video-LLM. Given a video of M frames, we traverse its T-frame combinations, feed them into a Video-LLM, and rank them based on Video-LLM&#39;s prediction losses. Using this ranking as supervision, we train Frame-Voyager to query the frame combinations with lower losses. In experiments, we evaluate Frame-Voyager on four Video Question Answering benchmarks by plugging it into two different Video-LLMs. The experimental results demonstrate that Frame-Voyager achieves impressive results in all settings, highlighting its potential as a plug-and-play solution for Video-LLMs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.03226v2-abstract-full').style.display = 'none'; document.getElementById('2410.03226v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.03103">arXiv:2410.03103</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.03103">pdf</a>, <a href="https://arxiv.org/format/2410.03103">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Software Engineering">cs.SE</span> </div> </div> <p class="title is-5 mathjax"> Horizon-Length Prediction: Advancing Fill-in-the-Middle Capabilities for Code Generation with Lookahead Planning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Ding%2C+Y">Yifeng Ding</a>, <a href="/search/cs?searchtype=author&amp;query=Ding%2C+H">Hantian Ding</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+S">Shiqi Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Sun%2C+Q">Qing Sun</a>, <a href="/search/cs?searchtype=author&amp;query=Kumar%2C+V">Varun Kumar</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+Z">Zijian Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.03103v1-abstract-short" style="display: inline;"> Fill-in-the-Middle (FIM) has become integral to code language models, enabling generation of missing code given both left and right contexts. However, the current FIM training paradigm, which reorders original training sequences and then performs regular next-token prediction (NTP), often leads to models struggling to generate content that aligns smoothly with the surrounding context. Crucially, w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.03103v1-abstract-full').style.display = 'inline'; document.getElementById('2410.03103v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.03103v1-abstract-full" style="display: none;"> Fill-in-the-Middle (FIM) has become integral to code language models, enabling generation of missing code given both left and right contexts. However, the current FIM training paradigm, which reorders original training sequences and then performs regular next-token prediction (NTP), often leads to models struggling to generate content that aligns smoothly with the surrounding context. Crucially, while existing works rely on rule-based post-processing to circumvent this weakness, such methods are not practically usable in open-domain code completion tasks as they depend on restrictive, dataset-specific assumptions (e.g., generating the same number of lines as in the ground truth). Moreover, model performance on FIM tasks deteriorates significantly without these unrealistic assumptions. We hypothesize that NTP alone is insufficient for models to learn effective planning conditioned on the distant right context, a critical factor for successful code infilling. To overcome this, we propose Horizon-Length Prediction (HLP), a novel training objective that teaches models to predict the number of remaining middle tokens (i.e., horizon length) at each step. HLP advances FIM with lookahead planning, enabling models to inherently learn infilling boundaries for arbitrary left and right contexts without relying on dataset-specific post-processing. Our evaluation across different models and sizes shows that HLP significantly improves FIM performance by up to 24% relatively on diverse benchmarks, across file-level and repository-level, and without resorting to unrealistic post-processing methods. Furthermore, the enhanced planning capability gained through HLP boosts model performance on code reasoning. Importantly, HLP only incurs negligible training overhead and no additional inference cost, ensuring its practicality for real-world scenarios. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.03103v1-abstract-full').style.display = 'none'; document.getElementById('2410.03103v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.19872">arXiv:2409.19872</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.19872">pdf</a>, <a href="https://arxiv.org/format/2409.19872">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Towards Unified Multimodal Editing with Enhanced Knowledge Collaboration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Pan%2C+K">Kaihang Pan</a>, <a href="/search/cs?searchtype=author&amp;query=Fan%2C+Z">Zhaoyu Fan</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+J">Juncheng Li</a>, <a href="/search/cs?searchtype=author&amp;query=Yu%2C+Q">Qifan Yu</a>, <a href="/search/cs?searchtype=author&amp;query=Fei%2C+H">Hao Fei</a>, <a href="/search/cs?searchtype=author&amp;query=Tang%2C+S">Siliang Tang</a>, <a href="/search/cs?searchtype=author&amp;query=Hong%2C+R">Richang Hong</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+H">Hanwang Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Sun%2C+Q">Qianru Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.19872v3-abstract-short" style="display: inline;"> The swift advancement in Multimodal LLMs (MLLMs) also presents significant challenges for effective knowledge editing. Current methods, including intrinsic knowledge editing and external knowledge resorting, each possess strengths and weaknesses, struggling to balance the desired properties of reliability, generality, and locality when applied to MLLMs. In this paper, we propose UniKE, a novel mul&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19872v3-abstract-full').style.display = 'inline'; document.getElementById('2409.19872v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.19872v3-abstract-full" style="display: none;"> The swift advancement in Multimodal LLMs (MLLMs) also presents significant challenges for effective knowledge editing. Current methods, including intrinsic knowledge editing and external knowledge resorting, each possess strengths and weaknesses, struggling to balance the desired properties of reliability, generality, and locality when applied to MLLMs. In this paper, we propose UniKE, a novel multimodal editing method that establishes a unified perspective and paradigm for intrinsic knowledge editing and external knowledge resorting. Both types of knowledge are conceptualized as vectorized key-value memories, with the corresponding editing processes resembling the assimilation and accommodation phases of human cognition, conducted at the same semantic levels. Within such a unified framework, we further promote knowledge collaboration by disentangling the knowledge representations into the semantic and truthfulness spaces. Extensive experiments validate the effectiveness of our method, which ensures that the post-edit MLLM simultaneously maintains excellent reliability, generality, and locality. The code for UniKE is available at \url{https://github.com/beepkh/UniKE}. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19872v3-abstract-full').style.display = 'none'; document.getElementById('2409.19872v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by NeurIPS 2024 (Spotlight)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.18869">arXiv:2409.18869</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.18869">pdf</a>, <a href="https://arxiv.org/format/2409.18869">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Emu3: Next-Token Prediction is All You Need </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Wang%2C+X">Xinlong Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+X">Xiaosong Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Luo%2C+Z">Zhengxiong Luo</a>, <a href="/search/cs?searchtype=author&amp;query=Sun%2C+Q">Quan Sun</a>, <a href="/search/cs?searchtype=author&amp;query=Cui%2C+Y">Yufeng Cui</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+J">Jinsheng Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+F">Fan Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+Y">Yueze Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+Z">Zhen Li</a>, <a href="/search/cs?searchtype=author&amp;query=Yu%2C+Q">Qiying Yu</a>, <a href="/search/cs?searchtype=author&amp;query=Zhao%2C+Y">Yingli Zhao</a>, <a href="/search/cs?searchtype=author&amp;query=Ao%2C+Y">Yulong Ao</a>, <a href="/search/cs?searchtype=author&amp;query=Min%2C+X">Xuebin Min</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+T">Tao Li</a>, <a href="/search/cs?searchtype=author&amp;query=Wu%2C+B">Boya Wu</a>, <a href="/search/cs?searchtype=author&amp;query=Zhao%2C+B">Bo Zhao</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+B">Bowen Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+L">Liangdong Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Liu%2C+G">Guang Liu</a>, <a href="/search/cs?searchtype=author&amp;query=He%2C+Z">Zheqi He</a>, <a href="/search/cs?searchtype=author&amp;query=Yang%2C+X">Xi Yang</a>, <a href="/search/cs?searchtype=author&amp;query=Liu%2C+J">Jingjing Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Lin%2C+Y">Yonghua Lin</a>, <a href="/search/cs?searchtype=author&amp;query=Huang%2C+T">Tiejun Huang</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+Z">Zhongyuan Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.18869v1-abstract-short" style="display: inline;"> While next-token prediction is considered a promising path towards artificial general intelligence, it has struggled to excel in multimodal tasks, which are still dominated by diffusion models (e.g., Stable Diffusion) and compositional approaches (e.g., CLIP combined with LLMs). In this paper, we introduce Emu3, a new suite of state-of-the-art multimodal models trained solely with next-token predi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18869v1-abstract-full').style.display = 'inline'; document.getElementById('2409.18869v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.18869v1-abstract-full" style="display: none;"> While next-token prediction is considered a promising path towards artificial general intelligence, it has struggled to excel in multimodal tasks, which are still dominated by diffusion models (e.g., Stable Diffusion) and compositional approaches (e.g., CLIP combined with LLMs). In this paper, we introduce Emu3, a new suite of state-of-the-art multimodal models trained solely with next-token prediction. By tokenizing images, text, and videos into a discrete space, we train a single transformer from scratch on a mixture of multimodal sequences. Emu3 outperforms several well-established task-specific models in both generation and perception tasks, surpassing flagship models such as SDXL and LLaVA-1.6, while eliminating the need for diffusion or compositional architectures. Emu3 is also capable of generating high-fidelity video via predicting the next token in a video sequence. We simplify complex multimodal model designs by converging on a singular focus: tokens, unlocking great potential for scaling both during training and inference. Our results demonstrate that next-token prediction is a promising path towards building general multimodal intelligence beyond language. We open-source key techniques and models to support further research in this direction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18869v1-abstract-full').style.display = 'none'; document.getElementById('2409.18869v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Project Page: https://emu.baai.ac.cn</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.18168">arXiv:2409.18168</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.18168">pdf</a>, <a href="https://arxiv.org/format/2409.18168">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Jump Diffusion-Informed Neural Networks with Transfer Learning for Accurate American Option Pricing under Data Scarcity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Sun%2C+Q">Qiguo Sun</a>, <a href="/search/cs?searchtype=author&amp;query=Huang%2C+H">Hanyue Huang</a>, <a href="/search/cs?searchtype=author&amp;query=Yang%2C+X">XiBei Yang</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+Y">Yuwei Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.18168v1-abstract-short" style="display: inline;"> Option pricing models, essential in financial mathematics and risk management, have been extensively studied and recently advanced by AI methodologies. However, American option pricing remains challenging due to the complexity of determining optimal exercise times and modeling non-linear payoffs resulting from stochastic paths. Moreover, the prevalent use of the Black-Scholes formula in hybrid mod&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18168v1-abstract-full').style.display = 'inline'; document.getElementById('2409.18168v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.18168v1-abstract-full" style="display: none;"> Option pricing models, essential in financial mathematics and risk management, have been extensively studied and recently advanced by AI methodologies. However, American option pricing remains challenging due to the complexity of determining optimal exercise times and modeling non-linear payoffs resulting from stochastic paths. Moreover, the prevalent use of the Black-Scholes formula in hybrid models fails to accurately capture the discontinuity in the price process, limiting model performance, especially under scarce data conditions. To address these issues, this study presents a comprehensive framework for American option pricing consisting of six interrelated modules, which combine nonlinear optimization algorithms, analytical and numerical models, and neural networks to improve pricing performance. Additionally, to handle the scarce data challenge, this framework integrates the transfer learning through numerical data augmentation and a physically constrained, jump diffusion process-informed neural network to capture the leptokurtosis of the log return distribution. To increase training efficiency, a warm-up period using Bayesian optimization is designed to provide optimal data loss and physical loss coefficients. Experimental results of six case studies demonstrate the accuracy, convergence, physical effectiveness, and generalization of the framework. Moreover, the proposed model shows superior performance in pricing deep out-of-the-money options. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18168v1-abstract-full').style.display = 'none'; document.getElementById('2409.18168v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.17162">arXiv:2409.17162</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.17162">pdf</a>, <a href="https://arxiv.org/format/2409.17162">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Autonomous Vehicle Decision-Making Framework for Considering Malicious Behavior at Unsignalized Intersections </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Li%2C+Q">Qing Li</a>, <a href="/search/cs?searchtype=author&amp;query=Hua%2C+J">Jinxing Hua</a>, <a href="/search/cs?searchtype=author&amp;query=Sun%2C+Q">Qiuxia Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.17162v1-abstract-short" style="display: inline;"> In this paper, we propose a Q-learning based decision-making framework to improve the safety and efficiency of Autonomous Vehicles when they encounter other maliciously behaving vehicles while passing through unsignalized intersections. In Autonomous Vehicles, conventional reward signals are set as regular rewards regarding feedback factors such as safety and efficiency. In this paper, safety gain&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17162v1-abstract-full').style.display = 'inline'; document.getElementById('2409.17162v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.17162v1-abstract-full" style="display: none;"> In this paper, we propose a Q-learning based decision-making framework to improve the safety and efficiency of Autonomous Vehicles when they encounter other maliciously behaving vehicles while passing through unsignalized intersections. In Autonomous Vehicles, conventional reward signals are set as regular rewards regarding feedback factors such as safety and efficiency. In this paper, safety gains are modulated by variable weighting parameters to ensure that safety can be emphasized more in emergency situations. The framework proposed in this paper introduces first-order theory of mind inferences on top of conventional rewards, using first-order beliefs as additional reward signals. The decision framework enables Autonomous Vehicles to make informed decisions when encountering vehicles with potentially malicious behaviors at unsignalized intersections, thereby improving the overall safety and efficiency of Autonomous Vehicle transportation systems. In order to verify the performance of the decision framework, this paper uses Prescan/Simulink co-simulations for simulation, and the results show that the performance of the decision framework can meet the set requirements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17162v1-abstract-full').style.display = 'none'; document.getElementById('2409.17162v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.16504">arXiv:2409.16504</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.16504">pdf</a>, <a href="https://arxiv.org/format/2409.16504">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Low Latency Point Cloud Rendering with Learned Splatting </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Hu%2C+Y">Yueyu Hu</a>, <a href="/search/cs?searchtype=author&amp;query=Gong%2C+R">Ran Gong</a>, <a href="/search/cs?searchtype=author&amp;query=Sun%2C+Q">Qi Sun</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+Y">Yao Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.16504v1-abstract-short" style="display: inline;"> Point cloud is a critical 3D representation with many emerging applications. Because of the point sparsity and irregularity, high-quality rendering of point clouds is challenging and often requires complex computations to recover the continuous surface representation. On the other hand, to avoid visual discomfort, the motion-to-photon latency has to be very short, under 10 ms. Existing rendering s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16504v1-abstract-full').style.display = 'inline'; document.getElementById('2409.16504v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.16504v1-abstract-full" style="display: none;"> Point cloud is a critical 3D representation with many emerging applications. Because of the point sparsity and irregularity, high-quality rendering of point clouds is challenging and often requires complex computations to recover the continuous surface representation. On the other hand, to avoid visual discomfort, the motion-to-photon latency has to be very short, under 10 ms. Existing rendering solutions lack in either quality or speed. To tackle these challenges, we present a framework that unlocks interactive, free-viewing and high-fidelity point cloud rendering. We train a generic neural network to estimate 3D elliptical Gaussians from arbitrary point clouds and use differentiable surface splatting to render smooth texture and surface normal for arbitrary views. Our approach does not require per-scene optimization, and enable real-time rendering of dynamic point cloud. Experimental results demonstrate the proposed solution enjoys superior visual quality and speed, as well as generalizability to different scene content and robustness to compression artifacts. The code is available at https://github.com/huzi96/gaussian-pcloud-render . <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16504v1-abstract-full').style.display = 'none'; document.getElementById('2409.16504v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published at CVPR 2024 Workshop on AIS: Vision, Graphics and AI for Streaming (https://ai4streaming-workshop.github.io/)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.14277">arXiv:2409.14277</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.14277">pdf</a>, <a href="https://arxiv.org/format/2409.14277">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> </div> </div> <p class="title is-5 mathjax"> Can-Do! A Dataset and Neuro-Symbolic Grounded Framework for Embodied Planning with Large Multimodal Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Chia%2C+Y+K">Yew Ken Chia</a>, <a href="/search/cs?searchtype=author&amp;query=Sun%2C+Q">Qi Sun</a>, <a href="/search/cs?searchtype=author&amp;query=Bing%2C+L">Lidong Bing</a>, <a href="/search/cs?searchtype=author&amp;query=Poria%2C+S">Soujanya Poria</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.14277v1-abstract-short" style="display: inline;"> Large multimodal models have demonstrated impressive problem-solving abilities in vision and language tasks, and have the potential to encode extensive world knowledge. However, it remains an open challenge for these models to perceive, reason, plan, and act in realistic environments. In this work, we introduce Can-Do, a benchmark dataset designed to evaluate embodied planning abilities through mo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14277v1-abstract-full').style.display = 'inline'; document.getElementById('2409.14277v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.14277v1-abstract-full" style="display: none;"> Large multimodal models have demonstrated impressive problem-solving abilities in vision and language tasks, and have the potential to encode extensive world knowledge. However, it remains an open challenge for these models to perceive, reason, plan, and act in realistic environments. In this work, we introduce Can-Do, a benchmark dataset designed to evaluate embodied planning abilities through more diverse and complex scenarios than previous datasets. Our dataset includes 400 multimodal samples, each consisting of natural language user instructions, visual images depicting the environment, state changes, and corresponding action plans. The data encompasses diverse aspects of commonsense knowledge, physical understanding, and safety awareness. Our fine-grained analysis reveals that state-of-the-art models, including GPT-4V, face bottlenecks in visual perception, comprehension, and reasoning abilities. To address these challenges, we propose NeuroGround, a neurosymbolic framework that first grounds the plan generation in the perceived environment states and then leverages symbolic planning engines to augment the model-generated plans. Experimental results demonstrate the effectiveness of our framework compared to strong baselines. Our code and dataset are available at https://embodied-planning.github.io. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14277v1-abstract-full').style.display = 'none'; document.getElementById('2409.14277v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.12728">arXiv:2409.12728</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.12728">pdf</a>, <a href="https://arxiv.org/format/2409.12728">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Genomics">q-bio.GN</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> PRAGA: Prototype-aware Graph Adaptive Aggregation for Spatial Multi-modal Omics Analysis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Huang%2C+X">Xinlei Huang</a>, <a href="/search/cs?searchtype=author&amp;query=Ma%2C+Z">Zhiqi Ma</a>, <a href="/search/cs?searchtype=author&amp;query=Meng%2C+D">Dian Meng</a>, <a href="/search/cs?searchtype=author&amp;query=Liu%2C+Y">Yanran Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Ruan%2C+S">Shiwei Ruan</a>, <a href="/search/cs?searchtype=author&amp;query=Sun%2C+Q">Qingqiang Sun</a>, <a href="/search/cs?searchtype=author&amp;query=Zheng%2C+X">Xubin Zheng</a>, <a href="/search/cs?searchtype=author&amp;query=Qiao%2C+Z">Ziyue Qiao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.12728v3-abstract-short" style="display: inline;"> Spatial multi-modal omics technology, highlighted by Nature Methods as an advanced biological technique in 2023, plays a critical role in resolving biological regulatory processes with spatial context. Recently, graph neural networks based on K-nearest neighbor (KNN) graphs have gained prominence in spatial multi-modal omics methods due to their ability to model semantic relations between sequenci&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.12728v3-abstract-full').style.display = 'inline'; document.getElementById('2409.12728v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.12728v3-abstract-full" style="display: none;"> Spatial multi-modal omics technology, highlighted by Nature Methods as an advanced biological technique in 2023, plays a critical role in resolving biological regulatory processes with spatial context. Recently, graph neural networks based on K-nearest neighbor (KNN) graphs have gained prominence in spatial multi-modal omics methods due to their ability to model semantic relations between sequencing spots. However, the fixed KNN graph fails to capture the latent semantic relations hidden by the inevitable data perturbations during the biological sequencing process, resulting in the loss of semantic information. In addition, the common lack of spot annotation and class number priors in practice further hinders the optimization of spatial multi-modal omics models. Here, we propose a novel spatial multi-modal omics resolved framework, termed PRototype-Aware Graph Adaptative Aggregation for Spatial Multi-modal Omics Analysis (PRAGA). PRAGA constructs a dynamic graph to capture latent semantic relations and comprehensively integrate spatial information and feature semantics. The learnable graph structure can also denoise perturbations by learning cross-modal knowledge. Moreover, a dynamic prototype contrastive learning is proposed based on the dynamic adaptability of Bayesian Gaussian Mixture Models to optimize the multi-modal omics representations for unknown biological priors. Quantitative and qualitative experiments on simulated and real datasets with 7 competing methods demonstrate the superior performance of PRAGA. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.12728v3-abstract-full').style.display = 'none'; document.getElementById('2409.12728v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.12202">arXiv:2409.12202</a> <span>&nbsp;&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> ScaleFlow++: Robust and Accurate Estimation of 3D Motion from Video </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Ling%2C+H">Han Ling</a>, <a href="/search/cs?searchtype=author&amp;query=Sun%2C+Y">Yinghui Sun</a>, <a href="/search/cs?searchtype=author&amp;query=Sun%2C+Q">Quansen Sun</a>, <a href="/search/cs?searchtype=author&amp;query=Zheng%2C+Y">Yuhui Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.12202v2-abstract-short" style="display: inline;"> Perceiving and understanding 3D motion is a core technology in fields such as autonomous driving, robots, and motion prediction. This paper proposes a 3D motion perception method called ScaleFlow++ that is easy to generalize. With just a pair of RGB images, ScaleFlow++ can robustly estimate optical flow and motion-in-depth (MID). Most existing methods directly regress MID from two RGB frames or op&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.12202v2-abstract-full').style.display = 'inline'; document.getElementById('2409.12202v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.12202v2-abstract-full" style="display: none;"> Perceiving and understanding 3D motion is a core technology in fields such as autonomous driving, robots, and motion prediction. This paper proposes a 3D motion perception method called ScaleFlow++ that is easy to generalize. With just a pair of RGB images, ScaleFlow++ can robustly estimate optical flow and motion-in-depth (MID). Most existing methods directly regress MID from two RGB frames or optical flow, resulting in inaccurate and unstable results. Our key insight is cross-scale matching, which extracts deep motion clues by matching objects in pairs of images at different scales. Unlike previous methods, ScaleFlow++ integrates optical flow and MID estimation into a unified architecture, estimating optical flow and MID end-to-end based on feature matching. Moreover, we also proposed modules such as global initialization network, global iterative optimizer, and hybrid training pipeline to integrate global motion information, reduce the number of iterations, and prevent overfitting during training. On KITTI, ScaleFlow++ achieved the best monocular scene flow estimation performance, reducing SF-all from 6.21 to 5.79. The evaluation of MID even surpasses RGBD-based methods. In addition, ScaleFlow++ has achieved stunning zero-shot generalization performance in both rigid and nonrigid scenes. Code is available at \url{https://github.com/HanLingsgjk/CSCV}. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.12202v2-abstract-full').style.display = 'none'; document.getElementById('2409.12202v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This is a product uploaded incorrectly. I originally intended to use it to replace ScaleRAFT (arXiv:2407.09797), but I made a mistake in the operation</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.06754">arXiv:2409.06754</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.06754">pdf</a>, <a href="https://arxiv.org/format/2409.06754">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Scaling Law Hypothesis for Multimodal Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Sun%2C+Q">Qingyun Sun</a>, <a href="/search/cs?searchtype=author&amp;query=Guo%2C+Z">Zhen Guo</a>, <a href="/search/cs?searchtype=author&amp;query=Team%2C+P+A">PIN AI Team</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.06754v4-abstract-short" style="display: inline;"> We propose a scaling law hypothesis for multimodal models processing text, audio, images, and video within a shared token and embedding space. Our framework predicts model performance based on modality-specific compression and tokenization efficiency, extending established scaling laws from text-based decoder models to mixed-modality systems. We explore whether leveraging more training data in mul&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06754v4-abstract-full').style.display = 'inline'; document.getElementById('2409.06754v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.06754v4-abstract-full" style="display: none;"> We propose a scaling law hypothesis for multimodal models processing text, audio, images, and video within a shared token and embedding space. Our framework predicts model performance based on modality-specific compression and tokenization efficiency, extending established scaling laws from text-based decoder models to mixed-modality systems. We explore whether leveraging more training data in multiple modalities can reduce the size of the multimodal model, enabling efficient deployment on resource-constrained devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06754v4-abstract-full').style.display = 'none'; document.getElementById('2409.06754v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.03320">arXiv:2409.03320</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.03320">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> YOLO-PPA based Efficient Traffic Sign Detection for Cruise Control in Autonomous Driving </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+J">Jingyu Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+W">Wenqing Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Tan%2C+C">Chaoyi Tan</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+X">Xiangtian Li</a>, <a href="/search/cs?searchtype=author&amp;query=Sun%2C+Q">Qianyi Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.03320v1-abstract-short" style="display: inline;"> It is very important to detect traffic signs efficiently and accurately in autonomous driving systems. However, the farther the distance, the smaller the traffic signs. Existing object detection algorithms can hardly detect these small scaled signs.In addition, the performance of embedded devices on vehicles limits the scale of detection models.To address these challenges, a YOLO PPA based traffic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03320v1-abstract-full').style.display = 'inline'; document.getElementById('2409.03320v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.03320v1-abstract-full" style="display: none;"> It is very important to detect traffic signs efficiently and accurately in autonomous driving systems. However, the farther the distance, the smaller the traffic signs. Existing object detection algorithms can hardly detect these small scaled signs.In addition, the performance of embedded devices on vehicles limits the scale of detection models.To address these challenges, a YOLO PPA based traffic sign detection algorithm is proposed in this paper.The experimental results on the GTSDB dataset show that compared to the original YOLO, the proposed method improves inference efficiency by 11.2%. The mAP 50 is also improved by 93.2%, which demonstrates the effectiveness of the proposed YOLO PPA. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03320v1-abstract-full').style.display = 'none'; document.getElementById('2409.03320v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.05554">arXiv:2408.05554</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.05554">pdf</a>, <a href="https://arxiv.org/format/2408.05554">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> </div> </div> <p class="title is-5 mathjax"> Improving Whisper&#39;s Recognition Performance for Under-Represented Language Kazakh Leveraging Unpaired Speech and Text </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Li%2C+J">Jinpeng Li</a>, <a href="/search/cs?searchtype=author&amp;query=Pu%2C+Y">Yu Pu</a>, <a href="/search/cs?searchtype=author&amp;query=Sun%2C+Q">Qi Sun</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+W">Wei-Qiang Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.05554v1-abstract-short" style="display: inline;"> Whisper and other large-scale automatic speech recognition models have made significant progress in performance. However, their performance on many low-resource languages, such as Kazakh, is not satisfactory. It is worth researching how to utilize low-cost data to improve the performance of Whisper on under-represented languages. In this study, we utilized easily accessible unpaired speech and tex&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05554v1-abstract-full').style.display = 'inline'; document.getElementById('2408.05554v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.05554v1-abstract-full" style="display: none;"> Whisper and other large-scale automatic speech recognition models have made significant progress in performance. However, their performance on many low-resource languages, such as Kazakh, is not satisfactory. It is worth researching how to utilize low-cost data to improve the performance of Whisper on under-represented languages. In this study, we utilized easily accessible unpaired speech and text data and combined the language model GPT with Whisper on Kazakh. We implemented end of transcript (EOT) judgment modification and hallucination penalty to improve the performance of speech recognition. Further, we employed the decoding average token log probability as a criterion to select samples from unlabeled speech data and used pseudo-labeled data to fine-tune the model to further improve its performance. Ultimately, we achieved more than 10\% absolute WER reduction in multiple experiments, and the whole process has the potential to be generalized to other under-represented languages. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05554v1-abstract-full').style.display = 'none'; document.getElementById('2408.05554v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by INTERSPEECH 2024;Minor typo correction</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.03238">arXiv:2408.03238</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.03238">pdf</a>, <a href="https://arxiv.org/format/2408.03238">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> LAC-Net: Linear-Fusion Attention-Guided Convolutional Network for Accurate Robotic Grasping Under the Occlusion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+J">Jinyu Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Gu%2C+Y">Yongchong Gu</a>, <a href="/search/cs?searchtype=author&amp;query=Gao%2C+J">Jianxiong Gao</a>, <a href="/search/cs?searchtype=author&amp;query=Lin%2C+H">Haitao Lin</a>, <a href="/search/cs?searchtype=author&amp;query=Sun%2C+Q">Qiang Sun</a>, <a href="/search/cs?searchtype=author&amp;query=Sun%2C+X">Xinwei Sun</a>, <a href="/search/cs?searchtype=author&amp;query=Xue%2C+X">Xiangyang Xue</a>, <a href="/search/cs?searchtype=author&amp;query=Fu%2C+Y">Yanwei Fu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.03238v1-abstract-short" style="display: inline;"> This paper addresses the challenge of perceiving complete object shapes through visual perception. While prior studies have demonstrated encouraging outcomes in segmenting the visible parts of objects within a scene, amodal segmentation, in particular, has the potential to allow robots to infer the occluded parts of objects. To this end, this paper introduces a new framework that explores amodal s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03238v1-abstract-full').style.display = 'inline'; document.getElementById('2408.03238v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.03238v1-abstract-full" style="display: none;"> This paper addresses the challenge of perceiving complete object shapes through visual perception. While prior studies have demonstrated encouraging outcomes in segmenting the visible parts of objects within a scene, amodal segmentation, in particular, has the potential to allow robots to infer the occluded parts of objects. To this end, this paper introduces a new framework that explores amodal segmentation for robotic grasping in cluttered scenes, thus greatly enhancing robotic grasping abilities. Initially, we use a conventional segmentation algorithm to detect the visible segments of the target object, which provides shape priors for completing the full object mask. Particularly, to explore how to utilize semantic features from RGB images and geometric information from depth images, we propose a Linear-fusion Attention-guided Convolutional Network (LAC-Net). LAC-Net utilizes the linear-fusion strategy to effectively fuse this cross-modal data, and then uses the prior visible mask as attention map to guide the network to focus on target feature locations for further complete mask recovery. Using the amodal mask of the target object provides advantages in selecting more accurate and robust grasp points compared to relying solely on the visible segments. The results on different datasets show that our method achieves state-of-the-art performance. Furthermore, the robot experiments validate the feasibility and robustness of this method in the real world. Our code and demonstrations are available on the project page: https://jrryzh.github.io/LAC-Net. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03238v1-abstract-full').style.display = 'none'; document.getElementById('2408.03238v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted by IROS2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.03047">arXiv:2408.03047</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.03047">pdf</a>, <a href="https://arxiv.org/format/2408.03047">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Human-Computer Interaction">cs.HC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> OpenOmni: A Collaborative Open Source Tool for Building Future-Ready Multimodal Conversational Agents </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Sun%2C+Q">Qiang Sun</a>, <a href="/search/cs?searchtype=author&amp;query=Luo%2C+Y">Yuanyi Luo</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+S">Sirui Li</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+W">Wenxiao Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Liu%2C+W">Wei Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.03047v2-abstract-short" style="display: inline;"> Multimodal conversational agents are highly desirable because they offer natural and human-like interaction. However, there is a lack of comprehensive end-to-end solutions to support collaborative development and benchmarking. While proprietary systems like GPT-4o and Gemini demonstrating impressive integration of audio, video, and text with response times of 200-250ms, challenges remain in balanc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03047v2-abstract-full').style.display = 'inline'; document.getElementById('2408.03047v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.03047v2-abstract-full" style="display: none;"> Multimodal conversational agents are highly desirable because they offer natural and human-like interaction. However, there is a lack of comprehensive end-to-end solutions to support collaborative development and benchmarking. While proprietary systems like GPT-4o and Gemini demonstrating impressive integration of audio, video, and text with response times of 200-250ms, challenges remain in balancing latency, accuracy, cost, and data privacy. To better understand and quantify these issues, we developed OpenOmni, an open-source, end-to-end pipeline benchmarking tool that integrates advanced technologies such as Speech-to-Text, Emotion Detection, Retrieval Augmented Generation, Large Language Models, along with the ability to integrate customized models. OpenOmni supports local and cloud deployment, ensuring data privacy and supporting latency and accuracy benchmarking. This flexible framework allows researchers to customize the pipeline, focusing on real bottlenecks and facilitating rapid proof-of-concept development. OpenOmni can significantly enhance applications like indoor assistance for visually impaired individuals, advancing human-computer interaction. Our demonstration video is available https://www.youtube.com/watch?v=zaSiT3clWqY, demo is available via https://openomni.ai4wa.com, code is available via https://github.com/AI4WA/OpenOmniFramework. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03047v2-abstract-full').style.display = 'none'; document.getElementById('2408.03047v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: System Demonstrations (EMNLP 2024) Best Demo Paper Award at EMNLP 2024</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> EMNLP 2024 (System Demonstrations), pp. 46-52 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.00764">arXiv:2408.00764</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.00764">pdf</a>, <a href="https://arxiv.org/format/2408.00764">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> AgentGen: Enhancing Planning Abilities for Large Language Model based Agent via Environment and Task Generation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Hu%2C+M">Mengkang Hu</a>, <a href="/search/cs?searchtype=author&amp;query=Zhao%2C+P">Pu Zhao</a>, <a href="/search/cs?searchtype=author&amp;query=Xu%2C+C">Can Xu</a>, <a href="/search/cs?searchtype=author&amp;query=Sun%2C+Q">Qingfeng Sun</a>, <a href="/search/cs?searchtype=author&amp;query=Lou%2C+J">Jianguang Lou</a>, <a href="/search/cs?searchtype=author&amp;query=Lin%2C+Q">Qingwei Lin</a>, <a href="/search/cs?searchtype=author&amp;query=Luo%2C+P">Ping Luo</a>, <a href="/search/cs?searchtype=author&amp;query=Rajmohan%2C+S">Saravan Rajmohan</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+D">Dongmei Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.00764v1-abstract-short" style="display: inline;"> Large Language Model (LLM) based agents have garnered significant attention and are becoming increasingly popular. Furthermore, planning ability is a crucial component of an LLM-based agent, involving interaction with the environment and executing actions to complete a planning task, which generally entails achieving a desired goal from an initial state. This paper investigates enhancing the plann&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00764v1-abstract-full').style.display = 'inline'; document.getElementById('2408.00764v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.00764v1-abstract-full" style="display: none;"> Large Language Model (LLM) based agents have garnered significant attention and are becoming increasingly popular. Furthermore, planning ability is a crucial component of an LLM-based agent, involving interaction with the environment and executing actions to complete a planning task, which generally entails achieving a desired goal from an initial state. This paper investigates enhancing the planning abilities of LLMs through instruction tuning, referred to as agent training. Recent studies have demonstrated that utilizing expert-level trajectory for instruction-tuning LLMs effectively enhances their planning capabilities. However, existing work primarily focuses on synthesizing trajectories from manually designed planning tasks and environments. The labor-intensive nature of creating these environments and tasks impedes the generation of sufficiently varied and extensive trajectories. To address this limitation, this paper explores the automated synthesis of diverse environments and a gradual range of planning tasks, from easy to difficult. We introduce a framework, AgentGen, that leverages LLMs first to generate environments and subsequently generate planning tasks conditioned on these environments. Specifically, to improve environmental diversity, we propose using an inspiration corpus composed of various domain-specific text segments as the context for synthesizing environments. Moreover, to increase the difficulty diversity of generated planning tasks, we propose a bidirectional evolution method, Bi-Evol, that evolves planning tasks from easier and harder directions to synthesize a task set with a smoother difficulty curve. The evaluation results derived from AgentBoard show that AgentGen greatly improves LLMs&#39; planning ability, e.g., the AgentGen instruction-tuned Llama-3 8B surpasses GPT-3.5 in overall performance. Moreover, in certain tasks, it even outperforms GPT-4. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00764v1-abstract-full').style.display = 'none'; document.getElementById('2408.00764v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.00695">arXiv:2408.00695</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.00695">pdf</a>, <a href="https://arxiv.org/format/2408.00695">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Accelerating Full Waveform Inversion By Transfer Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Singh%2C+D+S">Divya Shyam Singh</a>, <a href="/search/cs?searchtype=author&amp;query=Herrmann%2C+L">Leon Herrmann</a>, <a href="/search/cs?searchtype=author&amp;query=Sun%2C+Q">Qing Sun</a>, <a href="/search/cs?searchtype=author&amp;query=B%C3%BCrchner%2C+T">Tim B眉rchner</a>, <a href="/search/cs?searchtype=author&amp;query=Dietrich%2C+F">Felix Dietrich</a>, <a href="/search/cs?searchtype=author&amp;query=Kollmannsberger%2C+S">Stefan Kollmannsberger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.00695v1-abstract-short" style="display: inline;"> Full waveform inversion (FWI) is a powerful tool for reconstructing material fields based on sparsely measured data obtained by wave propagation. For specific problems, discretizing the material field with a neural network (NN) improves the robustness and reconstruction quality of the corresponding optimization problem. We call this method NN-based FWI. Starting from an initial guess, the weights&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00695v1-abstract-full').style.display = 'inline'; document.getElementById('2408.00695v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.00695v1-abstract-full" style="display: none;"> Full waveform inversion (FWI) is a powerful tool for reconstructing material fields based on sparsely measured data obtained by wave propagation. For specific problems, discretizing the material field with a neural network (NN) improves the robustness and reconstruction quality of the corresponding optimization problem. We call this method NN-based FWI. Starting from an initial guess, the weights of the NN are iteratively updated to fit the simulated wave signals to the sparsely measured data set. For gradient-based optimization, a suitable choice of the initial guess, i.e., a suitable NN weight initialization, is crucial for fast and robust convergence. In this paper, we introduce a novel transfer learning approach to further improve NN-based FWI. This approach leverages supervised pretraining to provide a better NN weight initialization, leading to faster convergence of the subsequent optimization problem. Moreover, the inversions yield physically more meaningful local minima. The network is pretrained to predict the unknown material field using the gradient information from the first iteration of conventional FWI. In our computational experiments on two-dimensional domains, the training data set consists of reference simulations with arbitrarily positioned elliptical voids of different shapes and orientations. We compare the performance of the proposed transfer learning NN-based FWI with three other methods: conventional FWI, NN-based FWI without pretraining and conventional FWI with an initial guess predicted from the pretrained NN. Our results show that transfer learning NN-based FWI outperforms the other methods in terms of convergence speed and reconstruction quality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00695v1-abstract-full').style.display = 'none'; document.getElementById('2408.00695v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.20171">arXiv:2407.20171</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.20171">pdf</a>, <a href="https://arxiv.org/format/2407.20171">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Diffusion Feedback Helps CLIP See Better </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Wang%2C+W">Wenxuan Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Sun%2C+Q">Quan Sun</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+F">Fan Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Tang%2C+Y">Yepeng Tang</a>, <a href="/search/cs?searchtype=author&amp;query=Liu%2C+J">Jing Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+X">Xinlong Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.20171v4-abstract-short" style="display: inline;"> Contrastive Language-Image Pre-training (CLIP), which excels at abstracting open-world representations across domains and modalities, has become a foundation for a variety of vision and multimodal tasks. However, recent studies reveal that CLIP has severe visual shortcomings, such as which can hardly distinguish orientation, quantity, color, structure, etc. These visual shortcomings also limit the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20171v4-abstract-full').style.display = 'inline'; document.getElementById('2407.20171v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.20171v4-abstract-full" style="display: none;"> Contrastive Language-Image Pre-training (CLIP), which excels at abstracting open-world representations across domains and modalities, has become a foundation for a variety of vision and multimodal tasks. However, recent studies reveal that CLIP has severe visual shortcomings, such as which can hardly distinguish orientation, quantity, color, structure, etc. These visual shortcomings also limit the perception capabilities of multimodal large language models (MLLMs) built on CLIP. The main reason could be that the image-text pairs used to train CLIP are inherently biased, due to the lack of the distinctiveness of the text and the diversity of images. In this work, we present a simple post-training approach for CLIP models, which largely overcomes its visual shortcomings via a self-supervised diffusion process. We introduce DIVA, which uses the DIffusion model as a Visual Assistant for CLIP. Specifically, DIVA leverages generative feedback from text-to-image diffusion models to optimize CLIP representations, with only images (without corresponding text). We demonstrate that DIVA improves CLIP&#39;s performance on the challenging MMVP-VLM benchmark which assesses fine-grained visual abilities to a large extent (e.g., 3-7%), and enhances the performance of MLLMs and vision models on multimodal understanding and segmentation tasks. Extensive evaluation on 29 image classification and retrieval benchmarks confirms that our framework preserves CLIP&#39;s strong zero-shot capabilities. The code is available at https://github.com/baaivision/DIVA. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20171v4-abstract-full').style.display = 'none'; document.getElementById('2407.20171v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.16719">arXiv:2407.16719</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.16719">pdf</a>, <a href="https://arxiv.org/format/2407.16719">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Other Computer Science">cs.OH</span> </div> </div> <p class="title is-5 mathjax"> A Brief Discussion on the Philosophical Principles and Development Directions of Data Circulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Li%2C+Z">Zhi Li</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+L">Lei Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Xin%2C+J">Junyi Xin</a>, <a href="/search/cs?searchtype=author&amp;query=He%2C+J">Jianfei He</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+Y">Yan Li</a>, <a href="/search/cs?searchtype=author&amp;query=Ma%2C+Z">Zhenjun Ma</a>, <a href="/search/cs?searchtype=author&amp;query=Sun%2C+Q">Qi Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.16719v1-abstract-short" style="display: inline;"> The data circulation is a complex scenario involving a large number of participants and different types of requirements, which not only has to comply with the laws and regulations, but also faces multiple challenges in technical and business areas. In order to systematically and comprehensively address these issues, it is essential to have a comprehensive and profound understanding of &#39;data circul&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16719v1-abstract-full').style.display = 'inline'; document.getElementById('2407.16719v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.16719v1-abstract-full" style="display: none;"> The data circulation is a complex scenario involving a large number of participants and different types of requirements, which not only has to comply with the laws and regulations, but also faces multiple challenges in technical and business areas. In order to systematically and comprehensively address these issues, it is essential to have a comprehensive and profound understanding of &#39;data circulation&#39;. The traditional analysis method tends to proceed based on the traditional circulation model of commodities, that is, tangible objects, which has some defects and shortcomings, and tends to be a formalized approach, which is faced numerous challenges in practice. This paper analyzes the circulation of data with a philosophical approach, obtains the new explication of data and executing entity, and provides a new definition of the concepts of data utilization and data key stakeholders (objects). At the same time, it puts forward the idea of ``data alienation&#39;&#39;, and constructs a new interpretive framework of ``data circulation&#39;&#39;. Based on the framework of this interpretation, it is clearly proposed that ``data alienation&#39;&#39; is the core of ``data circulation&#39;&#39;, benefit distribution is the driving force, and legal compliance is the foundation, and further discussed the three modes of ``data circulation&#39;&#39;. It further discusses the three modes of ``data circulation&#39;&#39;. It is pointed out that ``data circulation&#39;&#39; is different from traditional ``commodity circulation&#39;&#39;. To achieve ``data circulation&#39;&#39;,a comprehensive information infrastructure needs to be established. from a theoretical point of view, it lays a solid foundation for the development of ``data circulation&#39;&#39;. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16719v1-abstract-full').style.display = 'none'; document.getElementById('2407.16719v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.15083">arXiv:2407.15083</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.15083">pdf</a>, <a href="https://arxiv.org/format/2407.15083">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Rocket Landing Control with Random Annealing Jump Start Reinforcement Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Jiang%2C+Y">Yuxuan Jiang</a>, <a href="/search/cs?searchtype=author&amp;query=Yang%2C+Y">Yujie Yang</a>, <a href="/search/cs?searchtype=author&amp;query=Lan%2C+Z">Zhiqian Lan</a>, <a href="/search/cs?searchtype=author&amp;query=Zhan%2C+G">Guojian Zhan</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+S+E">Shengbo Eben Li</a>, <a href="/search/cs?searchtype=author&amp;query=Sun%2C+Q">Qi Sun</a>, <a href="/search/cs?searchtype=author&amp;query=Ma%2C+J">Jian Ma</a>, <a href="/search/cs?searchtype=author&amp;query=Yu%2C+T">Tianwen Yu</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+C">Changwu Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.15083v1-abstract-short" style="display: inline;"> Rocket recycling is a crucial pursuit in aerospace technology, aimed at reducing costs and environmental impact in space exploration. The primary focus centers on rocket landing control, involving the guidance of a nonlinear underactuated rocket with limited fuel in real-time. This challenging task prompts the application of reinforcement learning (RL), yet goal-oriented nature of the problem pose&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15083v1-abstract-full').style.display = 'inline'; document.getElementById('2407.15083v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.15083v1-abstract-full" style="display: none;"> Rocket recycling is a crucial pursuit in aerospace technology, aimed at reducing costs and environmental impact in space exploration. The primary focus centers on rocket landing control, involving the guidance of a nonlinear underactuated rocket with limited fuel in real-time. This challenging task prompts the application of reinforcement learning (RL), yet goal-oriented nature of the problem poses difficulties for standard RL algorithms due to the absence of intermediate reward signals. This paper, for the first time, significantly elevates the success rate of rocket landing control from 8% with a baseline controller to 97% on a high-fidelity rocket model using RL. Our approach, called Random Annealing Jump Start (RAJS), is tailored for real-world goal-oriented problems by leveraging prior feedback controllers as guide policy to facilitate environmental exploration and policy learning in RL. In each episode, the guide policy navigates the environment for the guide horizon, followed by the exploration policy taking charge to complete remaining steps. This jump-start strategy prunes exploration space, rendering the problem more tractable to RL algorithms. The guide horizon is sampled from a uniform distribution, with its upper bound annealing to zero based on performance metrics, mitigating distribution shift and mismatch issues in existing methods. Additional enhancements, including cascading jump start, refined reward and terminal condition, and action smoothness regulation, further improve policy performance and practical applicability. The proposed method is validated through extensive evaluation and Hardware-in-the-Loop testing, affirming the effectiveness, real-time feasibility, and smoothness of the proposed controller. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15083v1-abstract-full').style.display = 'none'; document.getElementById('2407.15083v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">IROS 2024 Oral</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.12857">arXiv:2407.12857</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.12857">pdf</a>, <a href="https://arxiv.org/format/2407.12857">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Digital Libraries">cs.DL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Retrieval">cs.IR</span> </div> </div> <p class="title is-5 mathjax"> Automated Peer Reviewing in Paper SEA: Standardization, Evaluation, and Analysis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Yu%2C+J">Jianxiang Yu</a>, <a href="/search/cs?searchtype=author&amp;query=Ding%2C+Z">Zichen Ding</a>, <a href="/search/cs?searchtype=author&amp;query=Tan%2C+J">Jiaqi Tan</a>, <a href="/search/cs?searchtype=author&amp;query=Luo%2C+K">Kangyang Luo</a>, <a href="/search/cs?searchtype=author&amp;query=Weng%2C+Z">Zhenmin Weng</a>, <a href="/search/cs?searchtype=author&amp;query=Gong%2C+C">Chenghua Gong</a>, <a href="/search/cs?searchtype=author&amp;query=Zeng%2C+L">Long Zeng</a>, <a href="/search/cs?searchtype=author&amp;query=Cui%2C+R">Renjing Cui</a>, <a href="/search/cs?searchtype=author&amp;query=Han%2C+C">Chengcheng Han</a>, <a href="/search/cs?searchtype=author&amp;query=Sun%2C+Q">Qiushi Sun</a>, <a href="/search/cs?searchtype=author&amp;query=Wu%2C+Z">Zhiyong Wu</a>, <a href="/search/cs?searchtype=author&amp;query=Lan%2C+Y">Yunshi Lan</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+X">Xiang Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.12857v2-abstract-short" style="display: inline;"> In recent years, the rapid increase in scientific papers has overwhelmed traditional review mechanisms, resulting in varying quality of publications. Although existing methods have explored the capabilities of Large Language Models (LLMs) for automated scientific reviewing, their generated contents are often generic or partial. To address the issues above, we introduce an automated paper reviewing&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12857v2-abstract-full').style.display = 'inline'; document.getElementById('2407.12857v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.12857v2-abstract-full" style="display: none;"> In recent years, the rapid increase in scientific papers has overwhelmed traditional review mechanisms, resulting in varying quality of publications. Although existing methods have explored the capabilities of Large Language Models (LLMs) for automated scientific reviewing, their generated contents are often generic or partial. To address the issues above, we introduce an automated paper reviewing framework SEA. It comprises of three modules: Standardization, Evaluation, and Analysis, which are represented by models SEA-S, SEA-E, and SEA-A, respectively. Initially, SEA-S distills data standardization capabilities of GPT-4 for integrating multiple reviews for a paper. Then, SEA-E utilizes standardized data for fine-tuning, enabling it to generate constructive reviews. Finally, SEA-A introduces a new evaluation metric called mismatch score to assess the consistency between paper contents and reviews. Moreover, we design a self-correction strategy to enhance the consistency. Extensive experimental results on datasets collected from eight venues show that SEA can generate valuable insights for authors to improve their papers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12857v2-abstract-full').style.display = 'none'; document.getElementById('2407.12857v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by EMNLP 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.12260">arXiv:2407.12260</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.12260">pdf</a>, <a href="https://arxiv.org/format/2407.12260">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Human-Computer Interaction">cs.HC</span> </div> </div> <p class="title is-5 mathjax"> HuBar: A Visual Analytics Tool to Explore Human Behaviour based on fNIRS in AR guidance systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Castelo%2C+S">Sonia Castelo</a>, <a href="/search/cs?searchtype=author&amp;query=Rulff%2C+J">Joao Rulff</a>, <a href="/search/cs?searchtype=author&amp;query=Solunke%2C+P">Parikshit Solunke</a>, <a href="/search/cs?searchtype=author&amp;query=McGowan%2C+E">Erin McGowan</a>, <a href="/search/cs?searchtype=author&amp;query=Wu%2C+G">Guande Wu</a>, <a href="/search/cs?searchtype=author&amp;query=Roman%2C+I">Iran Roman</a>, <a href="/search/cs?searchtype=author&amp;query=Lopez%2C+R">Roque Lopez</a>, <a href="/search/cs?searchtype=author&amp;query=Steers%2C+B">Bea Steers</a>, <a href="/search/cs?searchtype=author&amp;query=Sun%2C+Q">Qi Sun</a>, <a href="/search/cs?searchtype=author&amp;query=Bello%2C+J">Juan Bello</a>, <a href="/search/cs?searchtype=author&amp;query=Feest%2C+B">Bradley Feest</a>, <a href="/search/cs?searchtype=author&amp;query=Middleton%2C+M">Michael Middleton</a>, <a href="/search/cs?searchtype=author&amp;query=Mckendrick%2C+R">Ryan Mckendrick</a>, <a href="/search/cs?searchtype=author&amp;query=Silva%2C+C">Claudio Silva</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.12260v1-abstract-short" style="display: inline;"> The concept of an intelligent augmented reality (AR) assistant has significant, wide-ranging applications, with potential uses in medicine, military, and mechanics domains. Such an assistant must be able to perceive the environment and actions, reason about the environment state in relation to a given task, and seamlessly interact with the task performer. These interactions typically involve an AR&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12260v1-abstract-full').style.display = 'inline'; document.getElementById('2407.12260v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.12260v1-abstract-full" style="display: none;"> The concept of an intelligent augmented reality (AR) assistant has significant, wide-ranging applications, with potential uses in medicine, military, and mechanics domains. Such an assistant must be able to perceive the environment and actions, reason about the environment state in relation to a given task, and seamlessly interact with the task performer. These interactions typically involve an AR headset equipped with sensors which capture video, audio, and haptic feedback. Previous works have sought to facilitate the development of intelligent AR assistants by visualizing these sensor data streams in conjunction with the assistant&#39;s perception and reasoning model outputs. However, existing visual analytics systems do not focus on user modeling or include biometric data, and are only capable of visualizing a single task session for a single performer at a time. Moreover, they typically assume a task involves linear progression from one step to the next. We propose a visual analytics system that allows users to compare performance during multiple task sessions, focusing on non-linear tasks where different step sequences can lead to success. In particular, we design visualizations for understanding user behavior through functional near-infrared spectroscopy (fNIRS) data as a proxy for perception, attention, and memory as well as corresponding motion data (acceleration, angular velocity, and gaze). We distill these insights into embedding representations that allow users to easily select groups of sessions with similar behaviors. We provide two case studies that demonstrate how to use these visualizations to gain insights about task performance using data collected during helicopter copilot training tasks. Finally, we evaluate our approach by conducting an in-depth examination of a think-aloud experiment with five domain experts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12260v1-abstract-full').style.display = 'none'; document.getElementById('2407.12260v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures. This is the author&#39;s version of the article that has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics (TVCG)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.10810">arXiv:2407.10810</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.10810">pdf</a>, <a href="https://arxiv.org/format/2407.10810">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> FabGPT: An Efficient Large Multimodal Model for Complex Wafer Defect Knowledge Queries </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Jiang%2C+Y">Yuqi Jiang</a>, <a href="/search/cs?searchtype=author&amp;query=Lu%2C+X">Xudong Lu</a>, <a href="/search/cs?searchtype=author&amp;query=Jin%2C+Q">Qian Jin</a>, <a href="/search/cs?searchtype=author&amp;query=Sun%2C+Q">Qi Sun</a>, <a href="/search/cs?searchtype=author&amp;query=Wu%2C+H">Hanming Wu</a>, <a href="/search/cs?searchtype=author&amp;query=Zhuo%2C+C">Cheng Zhuo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.10810v1-abstract-short" style="display: inline;"> Intelligence is key to advancing integrated circuit (IC) fabrication. Recent breakthroughs in Large Multimodal Models (LMMs) have unlocked unparalleled abilities in understanding images and text, fostering intelligent fabrication. Leveraging the power of LMMs, we introduce FabGPT, a customized IC fabrication large multimodal model for wafer defect knowledge query. FabGPT manifests expertise in con&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10810v1-abstract-full').style.display = 'inline'; document.getElementById('2407.10810v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.10810v1-abstract-full" style="display: none;"> Intelligence is key to advancing integrated circuit (IC) fabrication. Recent breakthroughs in Large Multimodal Models (LMMs) have unlocked unparalleled abilities in understanding images and text, fostering intelligent fabrication. Leveraging the power of LMMs, we introduce FabGPT, a customized IC fabrication large multimodal model for wafer defect knowledge query. FabGPT manifests expertise in conducting defect detection in Scanning Electron Microscope (SEM) images, performing root cause analysis, and providing expert question-answering (Q&amp;A) on fabrication processes. FabGPT matches enhanced multimodal features to automatically detect minute defects under complex wafer backgrounds and reduce the subjectivity of manual threshold settings. Besides, the proposed modulation module and interactive corpus training strategy embed wafer defect knowledge into the pre-trained model, effectively balancing Q&amp;A queries related to defect knowledge and original knowledge and mitigating the modality bias issues. Experiments on in-house fab data (SEM-WaD) show that our FabGPT achieves significant performance improvement in wafer defect detection and knowledge querying. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10810v1-abstract-full').style.display = 'none'; document.getElementById('2407.10810v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.10627">arXiv:2407.10627</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.10627">pdf</a>, <a href="https://arxiv.org/format/2407.10627">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Arena Learning: Build Data Flywheel for LLMs Post-training via Simulated Chatbot Arena </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Luo%2C+H">Haipeng Luo</a>, <a href="/search/cs?searchtype=author&amp;query=Sun%2C+Q">Qingfeng Sun</a>, <a href="/search/cs?searchtype=author&amp;query=Xu%2C+C">Can Xu</a>, <a href="/search/cs?searchtype=author&amp;query=Zhao%2C+P">Pu Zhao</a>, <a href="/search/cs?searchtype=author&amp;query=Lin%2C+Q">Qingwei Lin</a>, <a href="/search/cs?searchtype=author&amp;query=Lou%2C+J">Jianguang Lou</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+S">Shifeng Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Tang%2C+Y">Yansong Tang</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+W">Weizhu Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.10627v1-abstract-short" style="display: inline;"> Assessing the effectiveness of large language models (LLMs) presents substantial challenges. The method of conducting human-annotated battles in an online Chatbot Arena is a highly effective evaluative technique. However, this approach is limited by the costs and time required for human annotation. In this paper, we introduce Arena Learning, an innovative offline strategy designed to simulate thes&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10627v1-abstract-full').style.display = 'inline'; document.getElementById('2407.10627v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.10627v1-abstract-full" style="display: none;"> Assessing the effectiveness of large language models (LLMs) presents substantial challenges. The method of conducting human-annotated battles in an online Chatbot Arena is a highly effective evaluative technique. However, this approach is limited by the costs and time required for human annotation. In this paper, we introduce Arena Learning, an innovative offline strategy designed to simulate these arena battles using AI-driven annotations to evaluate battle outcomes, thus facilitating the continuous improvement of the target model through both supervised fine-tuning and reinforcement learning. Arena Learning comprises two key elements. First, it ensures precise evaluations and maintains consistency between offline simulations and online competitions via WizardArena, a pipeline developed to accurately predict the Elo rankings of various models using a meticulously designed offline test set. Our results demonstrate that WizardArena&#39;s predictions closely align with those from the online Arena. Second, it involves the continuous improvement of training data based on the battle results and the refined model. We establish a data flywheel to iteratively update the training data by highlighting the weaknesses of the target model based on its battle results, enabling it to learn from the strengths of multiple different models. We apply Arena Learning to train our target model, WizardLM-$尾$, and demonstrate significant performance enhancements across various metrics. This fully automated training and evaluation pipeline sets the stage for continuous advancements in various LLMs via post-training. Notably, Arena Learning plays a pivotal role in the success of WizardLM-2, and this paper serves both as an exploration of its efficacy and a foundational study for future discussions related to WizardLM-2 and its derivatives. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10627v1-abstract-full').style.display = 'none'; document.getElementById('2407.10627v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.10181">arXiv:2407.10181</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.10181">pdf</a>, <a href="https://arxiv.org/format/2407.10181">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Multiscale Sliced Wasserstein Distances as Perceptual Color Difference Measures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=He%2C+J">Jiaqi He</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+Z">Zhihua Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+L">Leon Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Liu%2C+T">Tsein-I Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Fang%2C+Y">Yuming Fang</a>, <a href="/search/cs?searchtype=author&amp;query=Sun%2C+Q">Qilin Sun</a>, <a href="/search/cs?searchtype=author&amp;query=Ma%2C+K">Kede Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.10181v1-abstract-short" style="display: inline;"> Contemporary color difference (CD) measures for photographic images typically operate by comparing co-located pixels, patches in a ``perceptually uniform&#39;&#39; color space, or features in a learned latent space. Consequently, these measures inadequately capture the human color perception of misaligned image pairs, which are prevalent in digital photography (e.g., the same scene captured by different s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10181v1-abstract-full').style.display = 'inline'; document.getElementById('2407.10181v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.10181v1-abstract-full" style="display: none;"> Contemporary color difference (CD) measures for photographic images typically operate by comparing co-located pixels, patches in a ``perceptually uniform&#39;&#39; color space, or features in a learned latent space. Consequently, these measures inadequately capture the human color perception of misaligned image pairs, which are prevalent in digital photography (e.g., the same scene captured by different smartphones). In this paper, we describe a perceptual CD measure based on the multiscale sliced Wasserstein distance, which facilitates efficient comparisons between non-local patches of similar color and structure. This aligns with the modern understanding of color perception, where color and structure are inextricably interdependent as a unitary process of perceptual organization. Meanwhile, our method is easy to implement and training-free. Experimental results indicate that our CD measure performs favorably in assessing CDs in photographic images, and consistently surpasses competing models in the presence of image misalignment. Additionally, we empirically verify that our measure functions as a metric in the mathematical sense, and show its promise as a loss function for image and video color transfer tasks. The code is available at https://github.com/real-hjq/MS-SWD. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10181v1-abstract-full').style.display = 'none'; document.getElementById('2407.10181v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">ECCV 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.09797">arXiv:2407.09797</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.09797">pdf</a>, <a href="https://arxiv.org/format/2407.09797">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> ScaleFlow++: Robust and Accurate Estimation of 3D Motion from Video </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Ling%2C+H">Han Ling</a>, <a href="/search/cs?searchtype=author&amp;query=Sun%2C+Q">Quansen Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.09797v2-abstract-short" style="display: inline;"> Perceiving and understanding 3D motion is a core technology in fields such as autonomous driving, robots, and motion prediction. This paper proposes a 3D motion perception method called ScaleFlow++ that is easy to generalize. With just a pair of RGB images, ScaleFlow++ can robustly estimate optical flow and motion-in-depth (MID). Most existing methods directly regress MID from two RGB frames or op&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.09797v2-abstract-full').style.display = 'inline'; document.getElementById('2407.09797v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.09797v2-abstract-full" style="display: none;"> Perceiving and understanding 3D motion is a core technology in fields such as autonomous driving, robots, and motion prediction. This paper proposes a 3D motion perception method called ScaleFlow++ that is easy to generalize. With just a pair of RGB images, ScaleFlow++ can robustly estimate optical flow and motion-in-depth (MID). Most existing methods directly regress MID from two RGB frames or optical flow, resulting in inaccurate and unstable results. Our key insight is cross-scale matching, which extracts deep motion clues by matching objects in pairs of images at different scales. Unlike previous methods, ScaleFlow++ integrates optical flow and MID estimation into a unified architecture, estimating optical flow and MID end-to-end based on feature matching. Moreover, we also proposed modules such as global initialization network, global iterative optimizer, and hybrid training pipeline to integrate global motion information, reduce the number of iterations, and prevent overfitting during training. On KITTI, ScaleFlow++ achieved the best monocular scene flow estimation performance, reducing SF-all from 6.21 to 5.79. The evaluation of MID even surpasses RGBD-based methods. In addition, ScaleFlow++ has achieved stunning zero-shot generalization performance in both rigid and nonrigid scenes. Code is available at \url{https://github.com/HanLingsgjk/CSCV}. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.09797v2-abstract-full').style.display = 'none'; document.getElementById('2407.09797v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages; Previously this version appeared as arXiv:2409.12202 which was submitted as a new work by accident</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.09298">arXiv:2407.09298</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.09298">pdf</a>, <a href="https://arxiv.org/format/2407.09298">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> Transformer Layers as Painters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Sun%2C+Q">Qi Sun</a>, <a href="/search/cs?searchtype=author&amp;query=Pickett%2C+M">Marc Pickett</a>, <a href="/search/cs?searchtype=author&amp;query=Nain%2C+A+K">Aakash Kumar Nain</a>, <a href="/search/cs?searchtype=author&amp;query=Jones%2C+L">Llion Jones</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.09298v2-abstract-short" style="display: inline;"> Despite their nearly universal adoption for large language models, the internal workings of transformers are not well understood. We aim to better understand the impact of removing or reorganizing information throughout the layers of a pretrained transformer. Such an understanding could both yield better usage of existing models as well as to make architectural improvements to produce new variants&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.09298v2-abstract-full').style.display = 'inline'; document.getElementById('2407.09298v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.09298v2-abstract-full" style="display: none;"> Despite their nearly universal adoption for large language models, the internal workings of transformers are not well understood. We aim to better understand the impact of removing or reorganizing information throughout the layers of a pretrained transformer. Such an understanding could both yield better usage of existing models as well as to make architectural improvements to produce new variants. We present a series of empirical studies on frozen models that show that the lower and final layers of pretrained transformers differ from middle layers, but that middle layers have a surprising amount of uniformity. We further show that some classes of problems have robustness to skipping layers, running the layers in an order different from how they were trained, or running the layers in parallel. Our observations suggest that even frozen pretrained models may gracefully trade accuracy for latency by skipping layers or running layers in parallel. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.09298v2-abstract-full').style.display = 'none'; document.getElementById('2407.09298v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages total, including references and appendices</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Sun%2C+Q&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Sun%2C+Q&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Sun%2C+Q&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Sun%2C+Q&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Sun%2C+Q&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Sun%2C+Q&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10