CINXE.COM

Search results for: Escherichia coli (E. coli)

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Escherichia coli (E. coli)</title> <meta name="description" content="Search results for: Escherichia coli (E. coli)"> <meta name="keywords" content="Escherichia coli (E. coli)"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Escherichia coli (E. coli)" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Escherichia coli (E. coli)"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 700</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Escherichia coli (E. coli)</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">700</span> Visual Detection of Escherichia coli (E. coli) through Formation of Beads Aggregation in Capillary Tube by Rolling Circle Amplification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bo%20Ram%20Choi">Bo Ram Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji%20Su%20Kim"> Ji Su Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Juyeon%20Cho"> Juyeon Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyukjin%20Lee"> Hyukjin Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Food contaminated by bacteria (E.coli), causes food poisoning, which occurs to many patients worldwide annually. We have introduced an application of rolling circle amplification (RCA) as a versatile biosensor and developed a diagnostic platform composed of capillary tube and microbeads for rapid and easy detection of Escherichia coli (E. coli). When specific mRNA of E.coli is extracted from cell lysis, rolling circle amplification (RCA) of DNA template can be achieved and can be visualized by beads aggregation in capillary tube. In contrast, if there is no bacterial pathogen in sample, no beads aggregation can be seen. This assay is possible to detect visually target gene without specific equipment. It is likely to the development of a genetic kit for point of care testing (POCT) that can detect target gene using microbeads. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rolling%20circle%20amplification%20%28RCA%29" title="rolling circle amplification (RCA)">rolling circle amplification (RCA)</a>, <a href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli%20%28E.%20coli%29" title=" Escherichia coli (E. coli)"> Escherichia coli (E. coli)</a>, <a href="https://publications.waset.org/abstracts/search?q=point%20of%20care%20testing%20%28POCT%29" title=" point of care testing (POCT)"> point of care testing (POCT)</a>, <a href="https://publications.waset.org/abstracts/search?q=beads%20aggregation" title=" beads aggregation"> beads aggregation</a>, <a href="https://publications.waset.org/abstracts/search?q=capillary%20tube" title=" capillary tube"> capillary tube</a> </p> <a href="https://publications.waset.org/abstracts/72639/visual-detection-of-escherichia-coli-e-coli-through-formation-of-beads-aggregation-in-capillary-tube-by-rolling-circle-amplification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72639.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">699</span> DNA Isolation and Identification of Virulence Factors of Escherichia coli and Salmonella Species Isolated from Fresh Vegetables in Phnom Penh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Heng%20Sreyly">Heng Sreyly</a>, <a href="https://publications.waset.org/abstracts/search?q=Phoeurk%20Chanrith"> Phoeurk Chanrith</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fresh-eaten vegetables have become more popular in the Cambodian diet. However, according to WHO, these vegetables should be one of the main sources of infection if contaminated with pathogenic microorganisms. The outbreaks of foodborne diseases related to fresh fruits and vegetables have been increasingly reported and raised concerns regarding the safety of these products. Therefore, it is very important to conduct the determination of virulence factors Escherichia coli and Salmonella spp. in fresh vegetables. This study aims to identify virulence strains of Escherichia coli and Salmonella species from fresh vegetables, including cucumber (Cucumis sativus), saw-herb (Eryngium foetidum), and lettuce (Lactuca sativa) from different market and supermarket in Phnom Penh. The PCR method was used to detect the virulence strains of each sample. The results indicate that there are ninety five samples containing extracted DNA among one hundred and three samples. Moreover, the virulence strain of E. coli and salmonella have been found in leafy vegetables (lettuce and saw-herb) much more than in fruit vegetables (cucumber). This research is mainly used to raise public awareness of washing fresh vegetables with clean water more carefully to reduce adverse health impacts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DNA" title="DNA">DNA</a>, <a href="https://publications.waset.org/abstracts/search?q=virulence%20factor" title=" virulence factor"> virulence factor</a>, <a href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli" title=" Escherichia coli"> Escherichia coli</a>, <a href="https://publications.waset.org/abstracts/search?q=Salmonella" title=" Salmonella"> Salmonella</a> </p> <a href="https://publications.waset.org/abstracts/189186/dna-isolation-and-identification-of-virulence-factors-of-escherichia-coli-and-salmonella-species-isolated-from-fresh-vegetables-in-phnom-penh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189186.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">30</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">698</span> The Effect of Cinnamaldehyde on Escherichia coli Survival during Low Temperature Long Time Cooking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fuji%20Astuti">Fuji Astuti</a>, <a href="https://publications.waset.org/abstracts/search?q=Helen%20Onyeaka"> Helen Onyeaka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the study was to investigate the combine effects of cinnamaldehyde (0.25 and 0.45% v/v) on thermal resistance of pathogenic Escherichia coli during low temperature long time (LT-LT) cooking below 60℃. Three different static temperatures (48, 53 and 50℃) were performed, and the number of viable cells was studied. The starting concentrations of cells were 10⁸ CFU/ml. In this experiment, heat treatment efficiency for safe reduction indicated by decimal logarithm reduction of viable recovered cells, which was monitored for heating over 6 hours. Thermal inactivation was measured by means of establishing the death curves between the mean log surviving cells (log₁₀ CFU/ml) and designated time points (minutes) for each temperature test. The findings depicted that addition of cinnamaldehyde exhibited to elevate the thermal sensitivity of E. coli. However, the injured cells found to be well-adapted to all temperature tests after certain time point of cooking, in which they grew to more than 10⁵ CFU/ml. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cinnamaldehyde" title="cinnamaldehyde">cinnamaldehyde</a>, <a href="https://publications.waset.org/abstracts/search?q=decimal%20logarithm%20reduction" title=" decimal logarithm reduction"> decimal logarithm reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli" title=" Escherichia coli"> Escherichia coli</a>, <a href="https://publications.waset.org/abstracts/search?q=LT-LT%20cooking" title=" LT-LT cooking"> LT-LT cooking</a> </p> <a href="https://publications.waset.org/abstracts/71349/the-effect-of-cinnamaldehyde-on-escherichia-coli-survival-during-low-temperature-long-time-cooking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71349.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">697</span> Riparian Buffer Strips’ Capability of E. coli Removal in New York Streams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Helen%20Sanders">Helen Sanders</a>, <a href="https://publications.waset.org/abstracts/search?q=Joshua%20Cousins"> Joshua Cousins</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to ascertain whether riparian buffer strips could be used to reduce Escherichia Coli (E. coli) runoff into streams in Central New York. Mainstream methods currently utilized to reduce E. coli runoff include fencing and staggered fertilizing plans for agriculture. These methods still do not significantly limit E. coli and thus, pose a serious health risk to individuals who swim in contaminated waters or consume contaminated produce. One additional method still in research development involves the planting of vegetated riparian buffers along waterways. Currently, riparian buffer strips are primarily used for filtration of nitrate and phosphate runoff to slow erosion, regulate pH and, improve biodiversity within waterways. For my research, four different stream sites were selected for the study, in which rainwater runoff was collected at both the riparian buffer and the E. coli sourced runoff upstream. Preliminary results indicate that there is an average 70% decrease in E. coli content in streams at the riparian buffer strips compared to upstream runoff. This research could be utilized to include vegetated buffer planting as a method to decrease manure runoff into essential waterways. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli" title="Escherichia coli">Escherichia coli</a>, <a href="https://publications.waset.org/abstracts/search?q=riparian%20buffer%20strips" title=" riparian buffer strips"> riparian buffer strips</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetated%20riparian%20buffers" title=" vegetated riparian buffers"> vegetated riparian buffers</a>, <a href="https://publications.waset.org/abstracts/search?q=runoff" title=" runoff"> runoff</a>, <a href="https://publications.waset.org/abstracts/search?q=filtration" title=" filtration"> filtration</a> </p> <a href="https://publications.waset.org/abstracts/142236/riparian-buffer-strips-capability-of-e-coli-removal-in-new-york-streams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142236.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">696</span> Open Reading Frame Marker-Based Capacitive DNA Sensor for Ultrasensitive Detection of Escherichia coli O157:H7 in Potable Water </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rehan%20Deshmukh">Rehan Deshmukh</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunil%20Bhand"> Sunil Bhand</a>, <a href="https://publications.waset.org/abstracts/search?q=Utpal%20Roy"> Utpal Roy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We report the label-free electrochemical detection of Escherichia coli O157:H7 (ATCC 43895) in potable water using a DNA probe as a sensing molecule targeting the open reading frame marker. Indium tin oxide (ITO) surface was modified with organosilane and, glutaraldehyde was applied as a linker to fabricate the DNA sensor chip. Non-Faradic electrochemical impedance spectroscopy (EIS) behavior was investigated at each step of sensor fabrication using cyclic voltammetry, impedance, phase, relative permittivity, capacitance, and admittance. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) revealed significant changes in surface topographies of DNA sensor chip fabrication. The decrease in the percentage of pinholes from 2.05 (Bare ITO) to 1.46 (after DNA hybridization) suggested the capacitive behavior of the DNA sensor chip. The results of non-Faradic EIS studies of DNA sensor chip showed a systematic declining trend of the capacitance as well as the relative permittivity upon DNA hybridization. DNA sensor chip exhibited linearity in 0.5 to 25 pg/10mL for E. coli O157:H7 (ATCC 43895). The limit of detection (LOD) at 95% confidence estimated by logistic regression was 0.1 pg DNA/10mL of E. coli O157:H7 (equivalent to 13.67 CFU/10mL) with a p-value of 0.0237. Moreover, the fabricated DNA sensor chip used for detection of E. coli O157:H7 showed no significant cross-reactivity with closely and distantly related bacteria such as Escherichia coli MTCC 3221, Escherichia coli O78:H11 MTCC 723 and Bacillus subtilis MTCC 736. Consequently, the results obtained in our study demonstrated the possible application of developed DNA sensor chips for E. coli O157:H7 ATCC 43895 in real water samples as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capacitance" title="capacitance">capacitance</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20sensor" title=" DNA sensor"> DNA sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli%20O157%3AH7" title=" Escherichia coli O157:H7"> Escherichia coli O157:H7</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20reading%20frame%20marker" title=" open reading frame marker"> open reading frame marker</a> </p> <a href="https://publications.waset.org/abstracts/112328/open-reading-frame-marker-based-capacitive-dna-sensor-for-ultrasensitive-detection-of-escherichia-coli-o157h7-in-potable-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112328.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">695</span> Purification, Extraction and Visualization of Lipopolysaccharide of Escherichia coli from Urine Samples of Patients with Urinary Tract Infection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fariha%20Akhter%20Chowdhury">Fariha Akhter Chowdhury</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Nurul%20Islam"> Mohammad Nurul Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=Anamika%20Saha"> Anamika Saha</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabrina%20Mahboob"> Sabrina Mahboob</a>, <a href="https://publications.waset.org/abstracts/search?q=Abu%20Syed%20Md.%20Mosaddek"> Abu Syed Md. Mosaddek</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Omar%20Faruque"> Md. Omar Faruque</a>, <a href="https://publications.waset.org/abstracts/search?q=Most.%20Fahmida%20Begum"> Most. Fahmida Begum</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajib%20Bhattacharjee"> Rajib Bhattacharjee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Urinary tract infection (UTI) is one of the most common infectious diseases in Bangladesh where Escherichia coli is the prevalent organism and responsible for most of the infections. Lipopolysaccharide (LPS) is known to act as a major virulence factor of E. coli. The present study aimed to purify, extract and visualize LPS of E. coli clinical isolates from urine samples of patients with UTI. The E. coli strain was isolated from the urine samples of 10 patients with UTI and then the antibiotic sensitivity pattern of the isolates was determined. The purification of LPS was carried out using the hot aqueous-phenol method and separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis, which was directly stained using the modified silver staining method and Coomassie blue. The silver-stained gel demonstrated both smooth and rough type LPS by showing trail-like band patterns with the presence and lacking O-antigen region, respectively. Coomassie blue staining showed no band assuring the absence of any contaminating protein. Our successful extraction of purified LPS from E. coli isolates of UTI patients’ urine samples can be an important step to understand the UTI disease conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli" title="Escherichia coli">Escherichia coli</a>, <a href="https://publications.waset.org/abstracts/search?q=electrophoresis" title=" electrophoresis"> electrophoresis</a>, <a href="https://publications.waset.org/abstracts/search?q=polyacrylamide%20gel" title=" polyacrylamide gel"> polyacrylamide gel</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20staining" title=" silver staining"> silver staining</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20dodecyl%20sulfate%20polyacrylamide%20gel%20electrophoresis%20%28SDS-PAGE%29" title=" sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)"> sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)</a> </p> <a href="https://publications.waset.org/abstracts/64173/purification-extraction-and-visualization-of-lipopolysaccharide-of-escherichia-coli-from-urine-samples-of-patients-with-urinary-tract-infection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">694</span> Production of Human BMP-7 with Recombinant E. coli and B. subtilis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jong%20Il%20Rhee">Jong Il Rhee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The polypeptide representing the mature part of human BMP-7 was cloned and efficiently expressed in Escherichia coli and Bacillus subtilis, which had a clear band for hBMP-7, a homodimeric protein with an apparent molecular weight of 15.4 kDa. Recombinant E.coli produced 111 pg hBMP-7/mg of protein hBMP-7 through IPTG induction. Recombinant B. subtilis also produced 350 pg hBMP-7/ml of culture medium. The hBMP-7 was purified in 2 steps using an FPLC system with an ion exchange column and a gel filtration column. The hBMP-7 produced in this work also stimulated the alkaline phosphatase (ALP) activity in a dose-dependent manner, i.e. 2.5- and 8.9-fold at 100 and 300 ng hBMP-7/ml, respectively, and showed intact biological activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20subtilis" title="B. subtilis">B. subtilis</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20coli" title=" E. coli"> E. coli</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=hBMP-7" title=" hBMP-7"> hBMP-7</a> </p> <a href="https://publications.waset.org/abstracts/35799/production-of-human-bmp-7-with-recombinant-e-coli-and-b-subtilis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35799.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">693</span> Cell Surface Display of Xylanase on Escherichia coli by TibA Autotransporter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yeng%20Min%20Yi">Yeng Min Yi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosli%20Md%20Illias"> Rosli Md Illias</a>, <a href="https://publications.waset.org/abstracts/search?q=Salehhuddin%20Hamdan"> Salehhuddin Hamdan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Industrial biocatalysis is mainly based on the use of cell free or intracellular enzyme systems. However, the expensive cost and relatively lower operational stability of free enzymes limit practical use in industries. Cell surface display system can be used as a cost-efficient alternative to overcome the laborious purification and substrate transport limitation. In this research, TibA autotransporter from E. coli was used to display Aspergillus fumigatus xylanase (xyn). The amplified xyn was fused in between N-terminal signal peptide and C-terminal β-barrel of TibA. The cloned was transformed and expressed in E. coli BL21 (DE3). Outer membrane localization of TibA-xyn fusion protein was confirmed by SDS PAGE and western blot with expected size of 62.5 kDa. Functional display of xyn was examined by activity assay. Cell surface displayed xyn exhibited the highest activity at 37 °c, 0.3 mM IPTG. As a summary, TibA displaying system has the potential for further industrial applications. Moreover, this is the first report of the display of xylanase using TibA on the surface of E. coli. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocatalysis" title="biocatalysis">biocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20surface%20display" title=" cell surface display"> cell surface display</a>, <a href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli" title=" Escherichia coli"> Escherichia coli</a>, <a href="https://publications.waset.org/abstracts/search?q=TibA%20autotransporter" title=" TibA autotransporter"> TibA autotransporter</a> </p> <a href="https://publications.waset.org/abstracts/39502/cell-surface-display-of-xylanase-on-escherichia-coli-by-tiba-autotransporter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39502.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">692</span> Prevalence of Multidrug-resistant Escherichia coli Isolated from Ready to Eat: Crispy Fried Chicken in Jember, Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Enny%20Suswati">Enny Suswati</a>, <a href="https://publications.waset.org/abstracts/search?q=Supangat%20Supangat"> Supangat Supangat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background. Ready-to-eat food products are becoming increasingly popular because consumers are increasingly busy, competitive, and changing lifestyles. Examples of ready-to-eat foods include crispy fried chicken. Escherichia coli is one of the most important causes of food-borne diseases and the most frequent antibiotic-resistant pathogen globally. This study assessed the prevalence and antibiotic resistance profile of E. coli from ready-to-eat crispy fried chicken in Jember city, Indonesia. Methodology. This cross-sectional study was conducted from November 2020 to April 2021 by collecting 81crispy fried chicken samples from 27 food stalls in campus area using a simple random sampling method. Isolation and determination of E. coli use were performed by conventional culture method. An antibiotic susceptibility test was conducted using Kirby Bauer disk diffusion method on the Mueller–Hinton agar. Result. Out of 81crispy fried chicken samples, 77 (95.06%) were positive for E. coli. High E. coli drug resistance was observed on ampicillin, amoxicillin (100%) followed by cefixime (98.72%), erythromycin (97.59%), sulfamethoxazole (93.59%), azithromicin (83.33%), cefotaxime (78.28%), choramphenicol (75.64%), and cefixime (74.36%). On the other hand, there was the highest susceptibility for ciprofloxacin (64.10%). The multiple antibiotic resistance indexes of E. coli isolates varied from 0.4 to 1. The predominant antimicrobial resistance profiles of E. coli were CfmCroAmlAmpAzmCtxSxtCE (n=17), CfmCroAmlCipAmpAzmCtxSxtCE (n=16), and CfmAmlAmpAzmCtxSxtCE (n=5), respectively. Multidrug resistance was also found in the isolates' 76/77 (98.70%). Conclusion. The resistance pattern CfmCroAmlAmpAzmCtxSxtCE was the most common among the E. coli isolates, with 17 showing it. The multiple antibiotic index (MAR index) ranged from 0.4 to 1. Hygienic measures should be rigorously implemented and monitoring resistance of E. coli is required to reduce the risks related to the emergence of multi-resistant bacteria <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20drug" title="antibacterial drug">antibacterial drug</a>, <a href="https://publications.waset.org/abstracts/search?q=ready%20to%20eat" title=" ready to eat"> ready to eat</a>, <a href="https://publications.waset.org/abstracts/search?q=crispy%20fried%20chicken" title=" crispy fried chicken"> crispy fried chicken</a>, <a href="https://publications.waset.org/abstracts/search?q=escherichia%20coli" title=" escherichia coli"> escherichia coli</a> </p> <a href="https://publications.waset.org/abstracts/163867/prevalence-of-multidrug-resistant-escherichia-coli-isolated-from-ready-to-eat-crispy-fried-chicken-in-jember-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163867.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">691</span> Prediction and Identification of a Permissive Epitope Insertion Site for St Toxoid in cfaB from Enterotoxigenic Escherichia coli</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Zeinalzadeh">N. Zeinalzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Sadeghi"> Mahdi Sadeghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Enterotoxigenic Escherichia coli (ETEC) is the most common cause of non-inflammatory diarrhea in the developing countries, resulting in approximately 20% of all diarrheal episodes in children in these areas. ST is one of the most important virulence factors and CFA/I is one of the frequent colonization factors that help to process of ETEC infection. ST and CfaB (CFA/I subunit) are among vaccine candidates against ETEC. So, ST because of its small size is not a good immunogenic in the natural form. However to increase its immunogenic potential, here we explored candidate positions for ST insertion in CfaB sequence. After bioinformatics analysis, one of the candidate positions was selected and the chimeric gene (cfaB*st) sequence was synthesized and expressed in E. coli BL21 (DE3). The chimeric recombinant protein was purified with Ni-NTA columns and characterized with western blot analysis. The residue 74-75 of CfaB sequence could be a good candidate position for ST and other epitopes insertion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioinformatics" title="bioinformatics">bioinformatics</a>, <a href="https://publications.waset.org/abstracts/search?q=CFA%2FI" title=" CFA/I"> CFA/I</a>, <a href="https://publications.waset.org/abstracts/search?q=enterotoxigenic%20E.%20coli" title=" enterotoxigenic E. coli"> enterotoxigenic E. coli</a>, <a href="https://publications.waset.org/abstracts/search?q=ST%20toxoid" title=" ST toxoid"> ST toxoid</a> </p> <a href="https://publications.waset.org/abstracts/41728/prediction-and-identification-of-a-permissive-epitope-insertion-site-for-st-toxoid-in-cfab-from-enterotoxigenic-escherichia-coli" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41728.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">690</span> The Determination of Contamination Rate of Traditional White Cheese in Behbahan Markets to Coliforms and Pathogenic Escherichia Coli</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sana%20Mohammad%20Jafar">Sana Mohammad Jafar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossaini%20Seyahi%20Zohreh"> Hossaini Seyahi Zohreh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Infections and food intoxication caused by microbial contamination of food is of major issues in different countries, and diseases caused by the consumption of contaminated food included a large percentage of the country's health problems. Since traditional cheese for cultural reasons, good taste and smell in many parts of the area still has the important place in people's food basket, transmission of pathogenic bacteria could be at risk human health through the consumption of this food. In this study selected randomly 100 samples of 250 grams of traditional cheeses supplied in the city Behbahan market and adjacent to the ice was transferred to the laboratory and microbiological tests were performed immediately. According to the results, from 100 samples tested traditional cheese, 94 samples (94% of samples) were contaminated with coliforms, which of this number 75 samples (75% of samples) the contamination rate was higher than the limit (more than 100 cfu/g). Of the total samples, 36 samples (36% of samples) were contaminated with fecal coliform which of this number 30 samples (30% of samples) were contaminated with Escherichia.coli bacteria. Based on the results of agglutination test,no samples was found positive as pathogenic Escherichia.coli. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=determination" title="determination">determination</a>, <a href="https://publications.waset.org/abstracts/search?q=traditional%20cheese" title=" traditional cheese"> traditional cheese</a>, <a href="https://publications.waset.org/abstracts/search?q=Behbahan" title=" Behbahan"> Behbahan</a>, <a href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli" title=" Escherichia coli"> Escherichia coli</a> </p> <a href="https://publications.waset.org/abstracts/32561/the-determination-of-contamination-rate-of-traditional-white-cheese-in-behbahan-markets-to-coliforms-and-pathogenic-escherichia-coli" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32561.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">503</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">689</span> Prevalence and Risk Factors of Faecal Carriage Fluoroquinolone-Resistant Escherichia coli among Hospitalized Patients in Ado-Ekiti, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20A.%20Ologunde">C. A. Ologunde</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Escherichia coli have been a major microorganisms associated with, and isolated from feacal samples either in adult or children all over the world. Strains of these organisms are resistant to cephalosporins and fluoroquinolone (FQ) antimicrobial agents among hospitalized patients and FQs are the most frequently prescribed antimicrobial class in hospitals, and the level of resistant of E. coli to these antimicrobial agents is a risk factor that should be assessed. Hence, this study was conducted to determine the prevalence and risk factors for colonization with fluoroquinolone (FQ)-resistant E. coli in hospitalized patients in Ado-Ekiti. Rectal swabs were obtained from patients in hospitals in the study area and FQ-resistant E. coli were isolated and identified by means of Nalidixic acid multi-disk and a 1-step screening procedure. Species identification and FQ resistance were confirmed by automated testing (Vitek, bioMerieux, USA). Individual colonies were subjected to pulse-field gel electrophoresis (PAGE) to determine macro-restriction polymorphism after digestion of chromosomal DNA. FQ-resistant E. coli was detected in the stool sample of 37(62%) hospitalized patient. With multivariable analyses, the use of FQ before hospitalization was the only independent risk factor for FQ-resistant E. coli carriage and was consistent for FQ exposures for the 3-12 months of study. Pulsed-field gel electrophoresis of FQ-resistant E. coli identified conal spread of 1(one) strain among 18 patients. Loss (9 patients) or acquisition (10 residents) of FQ-resistant E. coli was documented and was associated with de novo colonization with genetically distinct strains. It was concluded that FQ-resistant E. coli carriage was associated with clonal spread. The differential effects of individual fluoroquinolone on antimicrobial drug resistance are an important area for future study, as hospitals manipulate their formularies with regard to use of individual fluoroquinolone, often for economic reasons. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20coli" title="E. coli">E. coli</a>, <a href="https://publications.waset.org/abstracts/search?q=fluoroquinolone" title=" fluoroquinolone"> fluoroquinolone</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20factors" title=" risk factors"> risk factors</a>, <a href="https://publications.waset.org/abstracts/search?q=feacal%20carriage" title=" feacal carriage"> feacal carriage</a>, <a href="https://publications.waset.org/abstracts/search?q=hospitalized%20patients" title=" hospitalized patients"> hospitalized patients</a>, <a href="https://publications.waset.org/abstracts/search?q=Ado-Ekiti" title=" Ado-Ekiti"> Ado-Ekiti</a> </p> <a href="https://publications.waset.org/abstracts/92734/prevalence-and-risk-factors-of-faecal-carriage-fluoroquinolone-resistant-escherichia-coli-among-hospitalized-patients-in-ado-ekiti-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92734.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">688</span> Assessment of the Role of Plasmid in Multidrug Resistance in Extended Spectrum βEtalactamase Producing Escherichia Coli Stool Isolates from Diarrhoeal Patients in Kano Metropolis Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullahi%20Musa">Abdullahi Musa</a>, <a href="https://publications.waset.org/abstracts/search?q=Yakubu%20Kukure%20Enebe%20Ibrahim"> Yakubu Kukure Enebe Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Adeshina%20Gujumbola"> Adeshina Gujumbola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The emergence of multidrug resistance in clinical Escherichia coli has been associated with plasmid-mediated genes. DNA transfer among bacteria is critical to the dissemination of resistance. Plasmids have proved to be the ideal vehicles for dissemination of resistance genes. Plasmids coding for antibiotic resistance were long being recognized by many researchers globally. The study aimed at determining the antibiotic susceptibility pattern of ESBL E. coli isolates claimed to be multidrug resistance using disc diffusion method. Antibacterial activity of the test isolates was carried out using disk diffusion methods. The results showed that, majority of the multidrug resistance among clinical isolates of ESBL E. coli was as a result of acquisition of plasmid carrying antibiotic-resistance genes. Production of these ESBL enzymes by these organisms which are normally carried by plasmid and transfer from one bacterium to another has greatly contributed to the rapid spread of antibiotic resistance amongst E. coli isolates, which lead to high economic burden, increase morbidity and mortality rate, complication in therapy and limit treatment options. To curtail these problems, it is of significance to checkmate the rate at which over the counter drugs are sold and antibiotic misused in animal feeds. This will play a very important role in minimizing the spread of resistance bacterial strains in our environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli" title="Escherichia coli">Escherichia coli</a>, <a href="https://publications.waset.org/abstracts/search?q=plasmid" title=" plasmid"> plasmid</a>, <a href="https://publications.waset.org/abstracts/search?q=multidrug%20resistance" title=" multidrug resistance"> multidrug resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=ESBL" title=" ESBL"> ESBL</a>, <a href="https://publications.waset.org/abstracts/search?q=pan%20drug%20resistance" title=" pan drug resistance"> pan drug resistance</a> </p> <a href="https://publications.waset.org/abstracts/181463/assessment-of-the-role-of-plasmid-in-multidrug-resistance-in-extended-spectrum-vetalactamase-producing-escherichia-coli-stool-isolates-from-diarrhoeal-patients-in-kano-metropolis-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181463.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">687</span> An Alternative Antimicrobial Approach to Fight Bacterial Pathogens from Phellinus linteus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Techaoei">S. Techaoei</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Jarmkom"> K. Jarmkom</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Eakwaropas"> P. Eakwaropas</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Khobjai"> W. Khobjai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this research was focused on investigating <em>in</em> <em>vitro</em> antimicrobial activity of <em>Phellinus linteus</em> fruiting body extracts on <em>Pseudomonas aeruginosa</em>, <em>Escherichia coli</em>, <em>Staphylococcus aureus</em> and Methicillin-resistant <em>Staphylococcus aureus</em>. <em>Phellinus linteus</em> fruiting body was extracted with ethanol and ethyl acetate and was vaporized. The disc diffusion assay was used to assess antimicrobial activity against tested bacterial strains. Primary screening of chemical profile of crude extract was determined by using thin layer chromatography. The positive control and the negative control were used as erythromycin and dimethyl sulfoxide, respectively. Initial screening of <em>Phellinus linteus</em> crude extract with the disc diffusion assay demonstrated that only ethanol had greater antimicrobial activity against <em>Pseudomonas aeruginosa</em>, <em>Escherichia coli</em>, <em>Staphylococcus aureus</em> and Methicillin-resistant <em>Staphylococcus aureus</em>. The MIC assay showed that the lower MIC was observed with 0.5 mg/ml of <em>Pseudomonas aeruginosa</em> and Methicillin-resistant <em>Staphylococcus aureus</em> and 0.25 mg/ml. of <em>Escherichia coli</em> and <em>Staphylococcus aureus</em>, respectively. TLC chemical profile of extract was represented at R<sub>f</sub> &asymp; 0.71-0.76. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Staphylococcus%20aureus" title="Staphylococcus aureus">Staphylococcus aureus</a>, <a href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli" title=" Escherichia coli"> Escherichia coli</a>, <a href="https://publications.waset.org/abstracts/search?q=Phellinus%20linteus" title=" Phellinus linteus"> Phellinus linteus</a>, <a href="https://publications.waset.org/abstracts/search?q=Methicillin-resistant%20Staphylococcus%20aureus" title=" Methicillin-resistant Staphylococcus aureus"> Methicillin-resistant Staphylococcus aureus</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title=" antimicrobial activity"> antimicrobial activity</a> </p> <a href="https://publications.waset.org/abstracts/61558/an-alternative-antimicrobial-approach-to-fight-bacterial-pathogens-from-phellinus-linteus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61558.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">686</span> High Prevalence of Multi-drug Resistant Diarrheagenic Escherichia coli among Hospitalised Diarrheal Patients in Kolkata, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Debjani%20Ghosh">Debjani Ghosh</a>, <a href="https://publications.waset.org/abstracts/search?q=Goutam%20Chowdhury"> Goutam Chowdhury</a>, <a href="https://publications.waset.org/abstracts/search?q=Prosenjit%20Samanta"> Prosenjit Samanta</a>, <a href="https://publications.waset.org/abstracts/search?q=Asish%20Kumar%20Mukhopadhyay"> Asish Kumar Mukhopadhyay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Acute diarrhoea caused by diarrheagenic Escherichia coli (DEC) is one of the major public health problem in developing countries, mainly in Asia and Africa. DEC consists of six pathogroups, but the majority of the cases were associated with the three pathogropus, enterotoxigenic E. coli (ETEC), enteroaggregative E. coli (EAEC), and enteropathogenic E. coli (EPEC). Hence, we studied the prevalence and antimicrobial resistance of these three major DEC pathogroups in hospitalized diarrheal patients in Kolkata, India, during 2012-2019 with a large sample size. 8,891 stool samples were processed, and 7.8% of them was identified as DEC infection screened by multiplex PCR, in which ETEC was most common (47.7%) followed by EAEC (38.4%) and EPEC (13.9%). Clinical patient history suggested that children <5 years of age were mostly affected with ETEC and EAEC, whereas people within >5-14 years of age were significantly associated with EPEC and ETEC infections. Antibiogram profile showed a high prevalence of multidrug resistant (MDR) isolates among DEC (56.9%), in which 9% were resistant to antibiotics of six different antimicrobial classes. Screening of the antibiotic resistance conferring genes in DEC showed the presence of blaCTX-M (30.2%) in highest number followed by blaTEM (27.5%), tetB (18%), sul2 (12.6%), strA (11.8%), aadA1 (9.8%), blaOXA-1 (9%), dfrA1 (1.6%) and blaSHV (1.2%) which indicates the existence of mobile genetic elements in those isolates. Therefore, the presence of MDR DEC strains in higher number alarms the public health authorities to take preventive measures before the upsurge of the DEC caused diarrhea cases in near future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diarrheagenic%20escherichia%20coli" title="diarrheagenic escherichia coli">diarrheagenic escherichia coli</a>, <a href="https://publications.waset.org/abstracts/search?q=ETEC" title=" ETEC"> ETEC</a>, <a href="https://publications.waset.org/abstracts/search?q=EAEC" title=" EAEC"> EAEC</a>, <a href="https://publications.waset.org/abstracts/search?q=EPEC" title=" EPEC"> EPEC</a> </p> <a href="https://publications.waset.org/abstracts/143560/high-prevalence-of-multi-drug-resistant-diarrheagenic-escherichia-coli-among-hospitalised-diarrheal-patients-in-kolkata-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143560.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">685</span> Effect of Oxidative Stress on Glutathione Reductase Activity of Escherichia coli Clinical Isolates from Patients with Urinary Tract Infection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fariha%20Akhter%20Chowdhury">Fariha Akhter Chowdhury</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabrina%20Mahboob"> Sabrina Mahboob</a>, <a href="https://publications.waset.org/abstracts/search?q=Anamika%20Saha"> Anamika Saha</a>, <a href="https://publications.waset.org/abstracts/search?q=Afrin%20Jahan"> Afrin Jahan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Nurul%20Islam"> Mohammad Nurul Islam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Urinary tract infection (UTI) is frequently experienced by the female population where the prevalence increases with aging. Escherichia coli, one of the most common UTI causing organisms, retains glutathione defense mechanism that aids the organism to withstand the harsh physiological environment of urinary tract, host oxidative immune response and even to affect antibiotic-mediated cell death and the emergence of resistance. In this study, we aimed to investigate the glutathione reductase activity of uropathogenic E. coli (UPEC) by observing the reduced glutathione (GSH) level alteration under stressful condition. Urine samples of 58 patients with UTI were collected. Upon isolation and identification, 88% of the samples presented E. coli as UTI causing organism among which randomly selected isolates (n=9), obtained from urine samples of female patients, were considered for this study. E. coli isolates were grown under normal and stressful conditions where H₂O₂ was used as the stress-inducing agent. GSH level estimation of the isolates in both conditions was carried out based on the colorimetric measurement of 5,5'-dithio-bis (2-nitrobenzoic acid) (DTNB) and GSH reaction product using microplate reader assay. The GSH level of isolated E. coli sampled from adult patients decreased under stress compared to normal condition (p = 0.011). On the other hand, GSH production increased markedly in samples that were collected from elderly subjects (p = 0.024). A significant partial correlation between age and change of GSH level was found as well (p = 0.007). This study may help to reveal ways for better understanding of E. coli pathogenesis of UTI prevalence in elderly patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli" title="Escherichia coli">Escherichia coli</a>, <a href="https://publications.waset.org/abstracts/search?q=glutathione%20reductase%20activity" title=" glutathione reductase activity"> glutathione reductase activity</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced%20glutathione%20%28GSH%29" title=" reduced glutathione (GSH)"> reduced glutathione (GSH)</a>, <a href="https://publications.waset.org/abstracts/search?q=urinary%20tract%20infection%20%28UTI%29" title=" urinary tract infection (UTI)"> urinary tract infection (UTI)</a> </p> <a href="https://publications.waset.org/abstracts/64174/effect-of-oxidative-stress-on-glutathione-reductase-activity-of-escherichia-coli-clinical-isolates-from-patients-with-urinary-tract-infection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64174.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">684</span> Effects of β-Glucan on the Release of Nitric Oxide by RAW264.7 Cells Stimulated with Escherichia coli Lipopolysaccharide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eun%20Young%20Choi">Eun Young Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=So%20Hui%20Choe"> So Hui Choe</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin%20Yi%20Hyeon"> Jin Yi Hyeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji%20Young%20Jin"> Ji Young Jin</a>, <a href="https://publications.waset.org/abstracts/search?q=Bo%20Ram%20Keum"> Bo Ram Keum</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong%20Min%20Lim"> Jong Min Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyung%20Rae%20Cho"> Hyung Rae Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwang%20Keun%20Cho"> Kwang Keun Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=In%20Soon%20Choi"> In Soon Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research analyzed the effect of β-glucan that is expected to alleviate the production of inflammatory mediator in macrophagocyte, which was processed by the lipopolysaccharide (LPS) of Escherichia, a pathogen related to allergy. The incubated layer was used for nitric oxide (NO) analysis. The DNA-binding activation of the small unit of NF-κB was measured using ELISA-based kit. In RAW264.7 cells that were vitalized by E.coli LPS, β-glucan inhibited both the combatant and rendering phases of inducible NO synthase (iNOS)-derived NO. β-glucan increased the expression of heme oxygenase-1 (HO-1) in the cell that was stimulated by E.coli LPS, and HO-1 activation was inhibited by SnPP. This shows that NO production induced by LPS is related to the inhibition effect of β-glucan. The phosphorylation of JNK and p38 induced by LPS were not influenced by β-glucan, and IκB-α decomposition was not influenced either. Instead, β-glucan remarkably inhibited the phosphorylation of STAT1 that was induced by E.coli LPS. Overall, β-glucan inhibited the production of NO in macrophagocyte that was vitalized by E.coli LPS through HO-1 induction and STAT1 pathways inhibition in this research. As the host inflammation reaction control by β-glucan weakens the progress of allergy, β-glucan can be used as an effective treatment method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%CE%B2-glucan" title="β-glucan">β-glucan</a>, <a href="https://publications.waset.org/abstracts/search?q=lipopolysaccharide%20%28LPS%29" title=" lipopolysaccharide (LPS)"> lipopolysaccharide (LPS)</a>, <a href="https://publications.waset.org/abstracts/search?q=nitric%20oxide%20%28NO%29" title=" nitric oxide (NO)"> nitric oxide (NO)</a>, <a href="https://publications.waset.org/abstracts/search?q=RAW264.7%20cells" title=" RAW264.7 cells"> RAW264.7 cells</a>, <a href="https://publications.waset.org/abstracts/search?q=STAT1" title=" STAT1"> STAT1</a> </p> <a href="https://publications.waset.org/abstracts/49496/effects-of-v-glucan-on-the-release-of-nitric-oxide-by-raw2647-cells-stimulated-with-escherichia-coli-lipopolysaccharide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">683</span> The Effect of Electrical Discharge Plasma on Inactivation of Escherichia Coli MG 1655 in Pure Culture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zoran%20Herceg">Zoran Herceg</a>, <a href="https://publications.waset.org/abstracts/search?q=Vi%C5%A1nja%20Stuli%C4%87"> Višnja Stulić</a>, <a href="https://publications.waset.org/abstracts/search?q=Anet%20Re%C5%BEek%20Jambrak"> Anet Režek Jambrak</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomislava%20Vuku%C5%A1i%C4%87"> Tomislava Vukušić</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrical discharge plasma is a new non-thermal processing technique which is used for the inactivation of contaminating and hazardous microbes in liquids. Plasma is a source of different antimicrobial species including UV photons, charged particles, and reactive species such as superoxide, hydroxyl radicals, nitric oxide and ozone. Escherichia coli was studied as foodborne pathogen. The aim of this work was to examine inactivation effects of electrical discharge plasma treatment on the Escherichia coli MG 1655 in pure culture. Two types of plasma configuration and polarity were used. First configuration was with titanium wire as high voltage needle and another with medical stainless steel needle used to form bubbles in treated volume and titanium wire as high voltage needle. Model solution samples were inoculated with Escerichia coli MG 1655 and treated by electrical discharge plasma at treatment time of 5 and 10 min, and frequency of 60, 90 and 120 Hz. With the first configuration after 5 minutes of treatment at frequency of 120 Hz the inactivation rate was 1.3 log₁₀ reduction and after 10 minutes of treatment the inactivation rate was 3.0 log₁₀ reduction. At the frequency of 90 Hz after 10 minutes inactivation rate was 1.3 log₁₀ reduction. With the second configuration after 5 minutes of treatment at frequency of 120 Hz the inactivation rate was 1.2 log₁₀ reduction and after 10 minutes of treatment the inactivation rate was also 3.0 log₁₀ reduction. In this work it was also examined the formation of biofilm, nucleotide and protein leakage at 260/280 nm, before and after treatment and recuperation of treated samples. Further optimization of method is needed to understand mechanism of inactivation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrical%20discharge%20plasma" title="electrical discharge plasma">electrical discharge plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=escherichia%20coli%20MG%201655" title=" escherichia coli MG 1655"> escherichia coli MG 1655</a>, <a href="https://publications.waset.org/abstracts/search?q=inactivation" title=" inactivation"> inactivation</a>, <a href="https://publications.waset.org/abstracts/search?q=point-to-plate%20electrode%20configuration" title=" point-to-plate electrode configuration"> point-to-plate electrode configuration</a> </p> <a href="https://publications.waset.org/abstracts/48189/the-effect-of-electrical-discharge-plasma-on-inactivation-of-escherichia-coli-mg-1655-in-pure-culture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48189.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">682</span> Molecular Detection and Characterization of Shiga Toxogenic Escherichia coli Associated with Dairy Product</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Al-Hazmi">Mohamed Al-Hazmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Al-Arfaj"> Abdullah Al-Arfaj</a>, <a href="https://publications.waset.org/abstracts/search?q=Moussa%20Ihab"> Moussa Ihab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Raw, unpasteurized milk can carry dangerous bacteria such as Salmonella, E. coli, and Listeria, which are responsible for causing numerous foodborne illnesses. The objective of this study was molecular characterization of shiga toxogenic E. coli in raw milk collected from different Egyptian governorates by multiplex PCR. During the period of 25th May to 25th October 2012, a total of 320 bulk-tank milk samples were collected from 10 cow farms located in different Egyptian governorates. Bacteriological examination of milk samples revealed the presence of E. coli organisms in 65 samples (20.3%), serotyping of the E. coli isolates revealed, 35 strains (10.94%) O111, 15 strains (4.69%) O157: H7, 10 strains (3.13%) O128 and 5 strains (1.56%) O119. Multiplex PCR for detection of shiga toxin type 2 and intimin genes revealed positive amplification of 255 bp fragment of shiga toxin type 2 gene and 384 bp fragment of intimin gene from all E. coli serovar O157: H7, while from serovar O111 were 25 (71.43%), 20 (57.14%) and from serovar O128 were 6 (60%), 8 (80%), respectively. The results of multiplex PCR assay are useful for identification of STEC possessing the eaeA and stx2 genes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=raw%20milk" title="raw milk">raw milk</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20coli" title=" E. coli"> E. coli</a>, <a href="https://publications.waset.org/abstracts/search?q=multiplex%20PCR" title=" multiplex PCR"> multiplex PCR</a>, <a href="https://publications.waset.org/abstracts/search?q=Shiga%20toxin%20type%202" title=" Shiga toxin type 2"> Shiga toxin type 2</a>, <a href="https://publications.waset.org/abstracts/search?q=intimin%20gene" title=" intimin gene"> intimin gene</a> </p> <a href="https://publications.waset.org/abstracts/2617/molecular-detection-and-characterization-of-shiga-toxogenic-escherichia-coli-associated-with-dairy-product" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2617.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">681</span> Design of an Artificial Oil Body-Cyanogen Bromide Technology Platform for the Expression of Small Bioactive Peptide, Mastoparan B</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tzyy-Rong%20Jinn">Tzyy-Rong Jinn</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheng-Kuo%20Hsieh"> Sheng-Kuo Hsieh</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Ching%20Chung"> Yi-Ching Chung</a>, <a href="https://publications.waset.org/abstracts/search?q=Feng-Chia%20Hsieh"> Feng-Chia Hsieh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we attempted to develop a recombinant oleosin-based fusion expression strategy in Escherichia coli (E. coli) and coupled with the artificial oil bodies (AOB)-cyanogen bromide technology platform to produce bioactive mastoparan B (MP-B). As reported, the oleosin in AOB system plays a carrier (fusion with target protein), since oleosin possess two amphipathic regions (at the N-terminus and C-terminus), which result in the N-terminus and C-terminus of oleosin could be arranged on the surface of AOB. Thus, the target protein fused to the N-terminus or C-terminus of oleosin which also is exposed on the surface of AOB, and this process will greatly facilitate the subsequent separation and purification of target protein from AOB. In addition, oleosin, a unique structural protein of seed oil bodies, has the added advantage of helping the fused MP-B expressed in inclusion bodies, which can protect from proteolytic degradation. In this work, MP-B was fused to the C-terminus of oleosin and then was expressed in E. coli as an insoluble recombinant protein. As a consequence, we successfully developed a reliable recombinant oleosin-based fusion expression strategy in Escherichia coli and coupled with the artificial oil bodies (AOB)-cyanogen bromide technology platform to produce the small peptide, MP-B. Take together, this platform provides an insight into the production of active MP-B, which will facilitate studies and applications of this peptide in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arti%EF%AC%81cial%20oil%20bodies" title="artificial oil bodies">artificial oil bodies</a>, <a href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli" title=" Escherichia coli"> Escherichia coli</a>, <a href="https://publications.waset.org/abstracts/search?q=Oleosin-fusion%20protein" title=" Oleosin-fusion protein"> Oleosin-fusion protein</a>, <a href="https://publications.waset.org/abstracts/search?q=Mastoparan-B" title=" Mastoparan-B"> Mastoparan-B</a> </p> <a href="https://publications.waset.org/abstracts/68074/design-of-an-artificial-oil-body-cyanogen-bromide-technology-platform-for-the-expression-of-small-bioactive-peptide-mastoparan-b" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68074.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">680</span> Prevalence, Antimicrobial Susceptibility Pattern and Associated Risk Factors for Salmonella Species and Escherichia Coli from Raw Meat at Butchery Houses in Mekelle, Tigray, Northern Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haftay%20Abraha%20Tadesse">Haftay Abraha Tadesse</a>, <a href="https://publications.waset.org/abstracts/search?q=Dawit%20Gebreegziabiher%20Hagos"> Dawit Gebreegziabiher Hagos</a>, <a href="https://publications.waset.org/abstracts/search?q=Atsebaha%20Gebrekidan%20Kahsay"> Atsebaha Gebrekidan Kahsay</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahumd%20Abdulkader"> Mahumd Abdulkader</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Salmonella species and Escherichia coli (E. coli) are important foodborne pathogens affecting humans and animals. They are among the most important causes of infection that are associated with the consumption of contaminated food. This study was aimed to determine the prevalence, antimicrobial susceptibility patterns and associated risk factors for Salmonella species and E. coli in raw meat from butchery houses of Mekelle, Northern Ethiopia. Method: A cross-sectional study was conducted from January to December 2019. Socio-demographic data and risk factors were collected using a predesigned questionnaire. Meat samples were collected aseptically from the butchery houses and transported using icebox to Mekelle University, College of Veterinary Sciences for the isolation and identification of Salmonella species and E. coli. Antimicrobial susceptibility patterns were determined using Kirby disc diffusion method. Data obtained were cleaned and entered into Statistical Package for the Social Sciences version 22 and logistic regression models with odds ratio were calculated. P-value < 0.05 was considered as statistically significant. Results: A total of 153 out of 384 (39.8%) of the meat specimens were found to be contaminated. The contamination of Salmonella species and E. coli were 15.6% (n=60) and 20.8%) (n=80), respectively. Mixed contamination (Salmonella species and E. coli) was observed in 13 (3.4 %) of the analyzed. Poor washing hands regularly (AOR = 8.37; 95% CI: 2.75-25.50) and not using gloves during meat handling (AOR=11. 28; 95% CI:(4.69 27.10) were associated with overall bacterial contamination. About 100% of the tested isolates were sensitive to ciprofloxacin, gentamicin, Co trimoxazole , sulphamethoxazole, ceftriaxone, and trimethoprim and ciprofloxacin, gentamicin, and norfloxacine of E. coli and Salmonella species, respectively, while the resistance of amoxyclav_amoxicillin and erythromycin were both isolated bacteria species. The overall multidrug resistance pattern for Salmonella and E. coli were 51.4% (n=19) and 31.8% (14), respectively. Conclusion: Of the 153 (153/384) contaminated raw meat, 60 (15.6%) and 80 (20.8%) were contaminated by Salmonella species and E. coli, respectively. Poor handwashing practice and not using glove during meat handling showed a significant association with bacterial contamination. Multidrug-resistant showed in Salmonella species, and E. coli were 19 (51.4%) and 14 (31.8%), respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20susceptibility%20test" title="antimicrobial susceptibility test">antimicrobial susceptibility test</a>, <a href="https://publications.waset.org/abstracts/search?q=butchery%20houses" title=" butchery houses"> butchery houses</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20coli" title=" E. coli"> E. coli</a>, <a href="https://publications.waset.org/abstracts/search?q=raw%20meat" title=" raw meat"> raw meat</a>, <a href="https://publications.waset.org/abstracts/search?q=salmonella%20species" title=" salmonella species"> salmonella species</a> </p> <a href="https://publications.waset.org/abstracts/131231/prevalence-antimicrobial-susceptibility-pattern-and-associated-risk-factors-for-salmonella-species-and-escherichia-coli-from-raw-meat-at-butchery-houses-in-mekelle-tigray-northern-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131231.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">679</span> Optimization of Fermentation Parameters for Bioethanol Production from Waste Glycerol by Microwave Induced Mutant Escherichia coli EC-MW (ATCC 11105)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Refal%20Hussain">Refal Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=Saifuddin%20M.%20Nomanbhay"> Saifuddin M. Nomanbhay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glycerol is a valuable raw material for the production of industrially useful metabolites. Among many promising applications for the use of glycerol is its bioconversion to high value-added compounds, such as bioethanol through microbial fermentation. Bioethanol is an important industrial chemical with emerging potential as a biofuel to replace vanishing fossil fuels. The yield of liquid fuel in this process was greatly influenced by various parameters viz, temperature, pH, glycerol concentration, organic concentration, and agitation speed were considered. The present study was undertaken to investigate optimum parameters for bioethanol production from raw glycerol by immobilized mutant Escherichia coli (E.coli) (ATCC11505) strain on chitosan cross linked glutaraldehyde optimized by Taguchi statistical method in shake flasks. The initial parameters were set each at four levels and the orthogonal array layout of L16 (45) conducted. The important controlling parameters for optimized the operational fermentation was temperature 38 °C, medium pH 6.5, initial glycerol concentration (250 g/l), and organic source concentration (5 g/l). Fermentation with optimized parameters was carried out in a custom fabricated shake flask. The predicted value of bioethanol production under optimized conditions was (118.13 g/l). Immobilized cells are mainly used for economic benefits of continuous production or repeated use in continuous as well as in batch mode. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioethanol" title="bioethanol">bioethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli" title=" Escherichia coli"> Escherichia coli</a>, <a href="https://publications.waset.org/abstracts/search?q=immobilization" title=" immobilization"> immobilization</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/26809/optimization-of-fermentation-parameters-for-bioethanol-production-from-waste-glycerol-by-microwave-induced-mutant-escherichia-coli-ec-mw-atcc-11105" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">653</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">678</span> Prevalence, Antimicrobial Susceptibility Pattern and Associated Risk Factors for Salmonella Species and Escherichia coli from Raw Meat at Butchery Houses in Mekelle, Tigray, Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haftay%20Abraha%20Tadesse">Haftay Abraha Tadesse</a>, <a href="https://publications.waset.org/abstracts/search?q=Atsebaha%20Gebrekidan%20Kahsay"> Atsebaha Gebrekidan Kahsay</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahumd%20Abdulkader"> Mahumd Abdulkader</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Salmonella species and Escherichia coli are important foodborne pathogens affecting humans and animals. They are among the most important causes of infection that are associated with the consumption of contaminated food. This study was aimed to determine the prevalence, antimicrobial susceptibility patterns and associated risk factors for Salmonella species and E. coli in raw meat from butchery houses of Mekelle, Northern Ethiopia. Methodology: A cross-sectional study was conducted from January to September 2019. Socio-demographic data and risk factors were collected using a predesigned questionnaire. Meat samples were collected aseptically from the butchery houses and transported using icebox to Mekelle University, College of Veterinary Sciences for the isolation and identification of Salmonella species and E. coli, Antimicrobial susceptibility patterns were determined using Kirby disc diffusion method. Data obtained were cleaned and entered into Statistical Package for the Social Sciences version 22 and logistic regression models with odds ratio were calculated. P-value < 0.05 was considered as statistically significant. Results: A total of 153 out of 384 (39.8%) of the meat specimens were found to be contaminated. The contamination of Salmonella species and E. coli were 15.6% (n=60) and 20.8%) (n=80), respectively. Mixed contamination (Salmonella species and E. coli) was observed in 13 (3.4 %) of the analyzed. Poor washing hands regularly (AOR = 8.37; 95% CI: 2.75-25.50) and not using gloves during meat handling (AOR=11. 28; 95% CI: (4.69 27.10) were associated with an overall bacterial contamination.About 95.5% of the tested isolates were sensitive to chloramphenicol and norfloxacin while the resistance of amoxyclav_amoxicillin and erythromycin were both isolated bacteria species. The overall multidrug resistance pattern for Salmonella and E. coli were 51.4% (n=19) and 31.8% (14), respectively. Conclusion: Of the 153 (153/384) contaminated raw meat, 60 (15.6%) and 80 (20.8%) were contaminated by Salmonella species and E. coli, respectively. Poor hand washing practice and not using glove during meat handling showed significant association with bacterial contamination. Multidrug-resistant showed in Salmonella species and E. coli were 19 (51.4%) and 14 (31.8%), respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20susceptibility%20test" title="antimicrobial susceptibility test">antimicrobial susceptibility test</a>, <a href="https://publications.waset.org/abstracts/search?q=butchery%20houses" title=" butchery houses"> butchery houses</a>, <a href="https://publications.waset.org/abstracts/search?q=e.%20coli" title=" e. coli"> e. coli</a>, <a href="https://publications.waset.org/abstracts/search?q=salmonella%20species" title=" salmonella species"> salmonella species</a> </p> <a href="https://publications.waset.org/abstracts/164863/prevalence-antimicrobial-susceptibility-pattern-and-associated-risk-factors-for-salmonella-species-and-escherichia-coli-from-raw-meat-at-butchery-houses-in-mekelle-tigray-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164863.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">52</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">677</span> Production of Recombinant Human Serum Albumin in Escherichia coli: A Crucial Biomolecule for Biotechnological and Healthcare Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashima%20Sharma">Ashima Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Tapan%20K.%20Chaudhuri"> Tapan K. Chaudhuri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human Serum Albumin (HSA) is one of the most demanded therapeutic protein with immense biotechnological applications. The current source of HSA is human blood plasma. Blood is a limited and an unsafe source as it possesses the risk of contamination by various blood derived pathogens. This issue led to exploitation of various hosts with the aim to obtain an alternative source for the production of the rHSA. But, till now no host has been proven to be effective commercially for rHSA production because of their respective limitations. Thus, there exists an indispensable need to promote non-animal derived rHSA production. Of all the host systems, Escherichia coli is one of the most convenient hosts which has contributed in the production of more than 30% of the FDA approved recombinant pharmaceuticals. E. coli grows rapidly and its culture reaches high cell density using inexpensive and simple substrates. The fermentation batch turnaround number for E. coli culture is 300 per year, which is far greater than any of the host systems available. Therefore, E. coli derived recombinant products have more economical potential as fermentation processes are cheaper compared to the other expression hosts available. Despite of all the mentioned advantages, E. coli had not been successfully adopted as a host for rHSA production. The major bottleneck in exploiting E. coli as a host for rHSA production was aggregation i.e. majority of the expressed recombinant protein was forming inclusion bodies (more than 90% of the total expressed rHSA) in the E. coli cytosol. Recovery of functional rHSA form inclusion body is not preferred because it is tedious, time consuming, laborious and expensive. Because of this limitation, E. coli host system was neglected for rHSA production for last few decades. Considering the advantages of E. coli as a host, the present work has targeted E. coli as an alternate host for rHSA production through resolving the major issue of inclusion body formation associated with it. In the present study, we have developed a novel and innovative method for enhanced soluble and functional production of rHSA in E.coli (~60% of the total expressed rHSA in the soluble fraction) through modulation of the cellular growth, folding and environmental parameters, thereby leading to significantly improved and enhanced -expression levels as well as the functional and soluble proportion of the total expressed rHSA in the cytosolic fraction of the host. Therefore, in the present case we have filled in the gap in the literature, by exploiting the most well studied host system Escherichia coli which is of low cost, fast growing, scalable and ‘yet neglected’, for the enhancement of functional production of HSA- one of the most crucial biomolecule for clinical and biotechnological applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=enhanced%20functional%20production%20of%20rHSA%20in%20E.%20coli" title="enhanced functional production of rHSA in E. coli">enhanced functional production of rHSA in E. coli</a>, <a href="https://publications.waset.org/abstracts/search?q=recombinant%20human%20serum%20albumin" title=" recombinant human serum albumin"> recombinant human serum albumin</a>, <a href="https://publications.waset.org/abstracts/search?q=recombinant%20protein%20expression" title=" recombinant protein expression"> recombinant protein expression</a>, <a href="https://publications.waset.org/abstracts/search?q=recombinant%20protein%20processing" title=" recombinant protein processing"> recombinant protein processing</a> </p> <a href="https://publications.waset.org/abstracts/67504/production-of-recombinant-human-serum-albumin-in-escherichia-coli-a-crucial-biomolecule-for-biotechnological-and-healthcare-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67504.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">676</span> Elucidation of the Sequential Transcriptional Activity in Escherichia coli Using Time-Series RNA-Seq Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pui%20Shan%20Wong">Pui Shan Wong</a>, <a href="https://publications.waset.org/abstracts/search?q=Kosuke%20Tashiro"> Kosuke Tashiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Satoru%20Kuhara"> Satoru Kuhara</a>, <a href="https://publications.waset.org/abstracts/search?q=Sachiyo%20Aburatani"> Sachiyo Aburatani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Functional genomics and gene regulation inference has readily expanded our knowledge and understanding of gene interactions with regards to expression regulation. With the advancement of transcriptome sequencing in time-series comes the ability to study the sequential changes of the transcriptome. This method presented here works to augment existing regulation networks accumulated in literature with transcriptome data gathered from time-series experiments to construct a sequential representation of transcription factor activity. This method is applied on a time-series RNA-Seq data set from Escherichia coli as it transitions from growth to stationary phase over five hours. Investigations are conducted on the various metabolic activities in gene regulation processes by taking advantage of the correlation between regulatory gene pairs to examine their activity on a dynamic network. Especially, the changes in metabolic activity during phase transition are analyzed with focus on the pagP gene as well as other associated transcription factors. The visualization of the sequential transcriptional activity is used to describe the change in metabolic pathway activity originating from the pagP transcription factor, phoP. The results show a shift from amino acid and nucleic acid metabolism, to energy metabolism during the transition to stationary phase in E. coli. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli" title="Escherichia coli">Escherichia coli</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20regulation" title=" gene regulation"> gene regulation</a>, <a href="https://publications.waset.org/abstracts/search?q=network" title=" network"> network</a>, <a href="https://publications.waset.org/abstracts/search?q=time-series" title=" time-series"> time-series</a> </p> <a href="https://publications.waset.org/abstracts/65272/elucidation-of-the-sequential-transcriptional-activity-in-escherichia-coli-using-time-series-rna-seq-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">675</span> Anti-Microbial Activity of Ag-N Co-Doped ZnS and ZnS-Fe2O3 Composite Nanoparticles </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20P.%20Yadav">O. P. Yadav </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ag-N co-doped ZnS and ZnS/Fe2O3 composite nanoparticles have been synthesized by chemical and sol-gel methods. As-synthesized nanomaterial have been characterized by XRD and TEM techniques and their antimicrobial effects were studied using paper disc diffusion technique against gram positive (Staphylococcus aureus) and gram negative (Escherichia coli) bacteria. As-synthesized nanomaterial showed potent antimicrobial activity against studied bacterial strains. Antimicrobial activity of synthesized nanomaterial has also been compared with some commonly used antibiotics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibiotic" title="antibiotic">antibiotic</a>, <a href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli" title=" Escherichia coli"> Escherichia coli</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomaterial" title=" nanomaterial"> nanomaterial</a>, <a href="https://publications.waset.org/abstracts/search?q=TEM" title=" TEM"> TEM</a>, <a href="https://publications.waset.org/abstracts/search?q=Staphylococcus%20aureus" title=" Staphylococcus aureus"> Staphylococcus aureus</a> </p> <a href="https://publications.waset.org/abstracts/18258/anti-microbial-activity-of-ag-n-co-doped-zns-and-zns-fe2o3-composite-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18258.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">674</span> Effects of Palm Kernel Expeller Processing on the Ileal Populations of Lactobacilli and Escherichia Coli in Broiler Chickens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Navidshad">B. Navidshad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this study was to examine the effects of enzymatic treatment and shell content of palm kernel expeller (PKE) on the ileal Lactobacilli and Escherichia coli populations in broiler chickens. At the finisher phase, one hundred male broiler chickens (Cobb-500) were fed a control diet or the diets containing 200 g/kg of normal PKE (70 g/kg shell), low shell PKE (30 g/kg shell), enzymatic treated PKE or low shell-enzymatic treated PKE. The quantitative real-time PCR were used to determine the ileal bacteria populations. The lowest ileal Lactobacilli population was found in the chickens fed the low shell PKE diet. Dietary normal PKE or low shell-enzymatic treated PKE decreased the Escherichia coli population compared to the control diet. The results suggested that PKE could be included up to 200 g/kg in the finisher diet, however, any screening practice to reduce the shell content of PKE without enzymatic degradation of β-mannan, decrease ileal Lactobacilli population. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=palm%20kernel%20expeller" title="palm kernel expeller">palm kernel expeller</a>, <a href="https://publications.waset.org/abstracts/search?q=exogenous%20enzyme" title=" exogenous enzyme"> exogenous enzyme</a>, <a href="https://publications.waset.org/abstracts/search?q=shell%20content" title=" shell content"> shell content</a>, <a href="https://publications.waset.org/abstracts/search?q=ileum%20bacteria" title=" ileum bacteria"> ileum bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=broiler%20chickens" title=" broiler chickens"> broiler chickens</a> </p> <a href="https://publications.waset.org/abstracts/33444/effects-of-palm-kernel-expeller-processing-on-the-ileal-populations-of-lactobacilli-and-escherichia-coli-in-broiler-chickens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33444.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">673</span> Antibacterial Activity of Green Synthesis Silver Nanoparticles from Moringa Oleifera</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Fadhel%20Ahmed">Ali Fadhel Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Tuqa%20Abdulkareem%20Hameed"> Tuqa Abdulkareem Hameed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Moringa oleifera (leaves and seeds) ethanolic and aqueous extracts were tested for antibacterial activity. The effect of plant extracts on three types of bacterial species: Staphylococcus aureus, Escherichia coli, and Klebsiella pneumoniae, was investigated. Using the agar well diffusion method, ethanolic extracts of Moringa oleifera demonstrated a significant antibacterial effect on the forty tested bacterial strains. Seed-induced inhibition zones (ethanolic extracts)were ranged from16 to 24 mm in diameter against S. aureus, respectively, whileE. coli and K. pneumonia had no effect. Gram-positive and Gram-negative bacteria were not affected by alcoholic and aqueous plant leaf extracts. The purpose of this present study was to look at the cytotoxic effects of M.Oleifera plant (alcoholic extracts). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=moringa%20oleifera" title="moringa oleifera">moringa oleifera</a>, <a href="https://publications.waset.org/abstracts/search?q=escherichia%20coli" title=" escherichia coli"> escherichia coli</a>, <a href="https://publications.waset.org/abstracts/search?q=klebsiella%20pneumoniae" title=" klebsiella pneumoniae"> klebsiella pneumoniae</a>, <a href="https://publications.waset.org/abstracts/search?q=staphylococcus%20aureus" title=" staphylococcus aureus"> staphylococcus aureus</a> </p> <a href="https://publications.waset.org/abstracts/142190/antibacterial-activity-of-green-synthesis-silver-nanoparticles-from-moringa-oleifera" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142190.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">672</span> Modified Genome-Scale Metabolic Model of Escherichia coli by Adding Hyaluronic Acid Biosynthesis-Related Enzymes (GLMU2 and HYAD) from Pasteurella multocida</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Pasomboon">P. Pasomboon</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Chumnanpuen"> P. Chumnanpuen</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20E-kobon"> T. E-kobon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hyaluronic acid (HA) consists of linear heteropolysaccharides repeat of D-glucuronic acid and N-acetyl-D-glucosamine. HA has various useful properties to maintain skin elasticity and moisture, reduce inflammation, and lubricate the movement of various body parts without causing immunogenic allergy. HA can be found in several animal tissues as well as in the capsule component of some bacteria including <em>Pasteurella multocida</em>. This study aimed to modify a genome-scale metabolic model of<em> Escherichia coli</em> using computational simulation and flux analysis methods to predict HA productivity under different carbon sources and nitrogen supplement by the addition of two enzymes (GLMU2 and HYAD) from <em>P. multocida</em> to improve the HA production under the specified amount of carbon sources and nitrogen supplements. Result revealed that threonine and aspartate supplement raised the HA production by 12.186%. Our analyses proposed the genome-scale metabolic model is useful for improving the HA production and narrows the number of conditions to be tested further. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pasteurella%20multocida" title="Pasteurella multocida">Pasteurella multocida</a>, <a href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli" title=" Escherichia coli"> Escherichia coli</a>, <a href="https://publications.waset.org/abstracts/search?q=hyaluronic%20acid" title=" hyaluronic acid"> hyaluronic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=genome-scale%20metabolic%20model" title=" genome-scale metabolic model"> genome-scale metabolic model</a>, <a href="https://publications.waset.org/abstracts/search?q=bioinformatics" title=" bioinformatics"> bioinformatics</a> </p> <a href="https://publications.waset.org/abstracts/134495/modified-genome-scale-metabolic-model-of-escherichia-coli-by-adding-hyaluronic-acid-biosynthesis-related-enzymes-glmu2-and-hyad-from-pasteurella-multocida" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134495.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">671</span> Biosynthesis of L-Xylose from Xylitol Using a Dual Enzyme Cascade in Escherichia coli</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mesfin%20Angaw%20Tesfay">Mesfin Angaw Tesfay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> L-xylose is an important intermediate in the pharmaceutical industry, playing a key role in the production of various antiviral and anticancer drugs. Despite its significance, L-xylose is a rare and costly sugar with limited availability in nature. In recent years, enzymatic production methods have garnered considerable attention due to their benefits over conventional chemical synthesis. In this research, a dual enzyme cascade system was developed to synthesize L-xylose from an inexpensive substrate, xylitol. The study involved cloning and co-expressing two key genes: the L-fucose isomerase (L-fucI) gene from Escherichia coli K-12 and the xylitol-4-dehydrogenase (xdh) gene from Pantoea ananatis ATCC 43072 in Escherichia coli. The resulting recombinant cells, engineered with the PET28a-xdh/L-fucI vector, were able to effectively convert xylitol to L-xylose. The system showed optimal performance at 40°C and a pH of 10.0. Moreover, Zn²⁺ (7.5 mM) enhanced the catalytic activity by 1.34 times. This approach yielded 52.2 g/L of L-xylose from an initial 80 g/L xylitol concentration, with a 65% conversion efficiency and a productivity rate of 1.86. The study highlights a practical method for producing L-xylose from xylitol through a co-expression system carrying the L-fucI and xdh genes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=l-fucose%20isomerase" title="l-fucose isomerase">l-fucose isomerase</a>, <a href="https://publications.waset.org/abstracts/search?q=xylitol-4-dehydrogenase" title=" xylitol-4-dehydrogenase"> xylitol-4-dehydrogenase</a>, <a href="https://publications.waset.org/abstracts/search?q=l-xylose" title=" l-xylose"> l-xylose</a>, <a href="https://publications.waset.org/abstracts/search?q=xylitol" title=" xylitol"> xylitol</a>, <a href="https://publications.waset.org/abstracts/search?q=co-expression" title=" co-expression"> co-expression</a> </p> <a href="https://publications.waset.org/abstracts/192338/biosynthesis-of-l-xylose-from-xylitol-using-a-dual-enzyme-cascade-in-escherichia-coli" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192338.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">25</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli%20%28E.%20coli%29&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli%20%28E.%20coli%29&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli%20%28E.%20coli%29&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli%20%28E.%20coli%29&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli%20%28E.%20coli%29&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli%20%28E.%20coli%29&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli%20%28E.%20coli%29&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli%20%28E.%20coli%29&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli%20%28E.%20coli%29&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli%20%28E.%20coli%29&amp;page=23">23</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli%20%28E.%20coli%29&amp;page=24">24</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli%20%28E.%20coli%29&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10