CINXE.COM
Search results for: supersonic impeller
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: supersonic impeller</title> <meta name="description" content="Search results for: supersonic impeller"> <meta name="keywords" content="supersonic impeller"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="supersonic impeller" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="supersonic impeller"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 122</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: supersonic impeller</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">122</span> Aerodynamic Designing of Supersonic Centrifugal Compressor Stages</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Galerkin">Y. Galerkin</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Rekstin"> A. Rekstin</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Soldatova"> K. Soldatova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Universal modeling method well proven for industrial compressors was applied for design of the high flow rate supersonic stage. Results were checked by ANSYS CFX and NUMECA Fine Turbo calculations. The impeller appeared to be very effective at transonic flow velocities. Stator elements efficiency is acceptable at design Mach numbers too. Their loss coefficient versus inlet flow angle performances correlates well with Universal modeling prediction. The impeller demonstrated ability of satisfactory operation at design flow rate. Supersonic flow behavior in the impeller inducer at the shroud blade to blade surface Φdes deserves additional study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=centrifugal%20compressor%20stage" title="centrifugal compressor stage">centrifugal compressor stage</a>, <a href="https://publications.waset.org/abstracts/search?q=supersonic%20impeller" title=" supersonic impeller"> supersonic impeller</a>, <a href="https://publications.waset.org/abstracts/search?q=inlet%20flow%20angle" title=" inlet flow angle"> inlet flow angle</a>, <a href="https://publications.waset.org/abstracts/search?q=loss%20coefficient" title=" loss coefficient"> loss coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=return%20channel" title=" return channel"> return channel</a>, <a href="https://publications.waset.org/abstracts/search?q=shock%20wave" title=" shock wave"> shock wave</a>, <a href="https://publications.waset.org/abstracts/search?q=vane%20diffuser" title=" vane diffuser"> vane diffuser</a> </p> <a href="https://publications.waset.org/abstracts/18034/aerodynamic-designing-of-supersonic-centrifugal-compressor-stages" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">467</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">121</span> Calculation Analysis of an Axial Compressor Supersonic Stage Impeller</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Galerkin">Y. Galerkin</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Popova"> E. Popova</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Soldatova"> K. Soldatova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is an evident trend to elevate pressure ratio of a single stage of a turbo compressors - axial compressors in particular. Whilst there was an opinion recently that a pressure ratio 1,9 was a reasonable limit, later appeared information on successful modeling tested of stages with pressure ratio up to 2,8. The Authors recon that lack of information on high pressure stages makes actual a study of rational choice of design parameters before high supersonic flow problems solving. The computer program of an engineering type was developed. Below is presented a sample of its application to study possible parameters of the impeller of the stage with pressure ratio π*=3,0. Influence of two main design parameters on expected efficiency, periphery blade speed and flow structure is demonstrated. The results had lead to choose a variant for further analysis and improvement by CFD methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supersonic%20stage" title="supersonic stage">supersonic stage</a>, <a href="https://publications.waset.org/abstracts/search?q=impeller" title=" impeller"> impeller</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20rate%20coefficient" title=" flow rate coefficient"> flow rate coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=work%20coefficient" title=" work coefficient"> work coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=loss%20coefficient" title=" loss coefficient"> loss coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=oblique%20shock" title=" oblique shock"> oblique shock</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20shock" title=" direct shock"> direct shock</a> </p> <a href="https://publications.waset.org/abstracts/18039/calculation-analysis-of-an-axial-compressor-supersonic-stage-impeller" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18039.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">467</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">120</span> Numerical and Experimental Investigation of Impeller Trimming on Fluid Flow inside a Centrifugal Pump</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rouhollah%20Torabi">Rouhollah Torabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashkan%20Chavoshi"> Ashkan Chavoshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheyda%20Almasi"> Sheyda Almasi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shima%20Almasi"> Shima Almasi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper the effect of impeller trim on centrifugal pump performance is studied and the most important effect which is decreasing the flow rate, differential head and efficiency is analyzed. For this case a low specific speed centrifugal pump is simulated with CFD. Total flow inside the pump including the secondary flow in sidewall gap which form internal leakage is modeled simultaneously in CFX software. The flow field in different area of pumps such as inside impeller, volute, balance holes and leakage through wear rings are studied. To validate the results experimental tests are done for various impeller diameters. Results also compared with analytic equations which predict pump performance with trimmed impeller. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=centrifugal%20pump" title="centrifugal pump">centrifugal pump</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=impeller" title=" impeller"> impeller</a>, <a href="https://publications.waset.org/abstracts/search?q=trim" title=" trim"> trim</a> </p> <a href="https://publications.waset.org/abstracts/24849/numerical-and-experimental-investigation-of-impeller-trimming-on-fluid-flow-inside-a-centrifugal-pump" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24849.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">119</span> Hydrodynamics of Dual Hybrid Impeller of Stirred Reactor Using Radiotracer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noraishah%20Othman">Noraishah Othman</a>, <a href="https://publications.waset.org/abstracts/search?q=Siti%20K.%20Kamarudin"> Siti K. Kamarudin</a>, <a href="https://publications.waset.org/abstracts/search?q=Norinsan%20K.%20Othman"> Norinsan K. Othman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20S.%20Takriff"> Mohd S. Takriff</a>, <a href="https://publications.waset.org/abstracts/search?q=Masli%20I.%20Rosli"> Masli I. Rosli</a>, <a href="https://publications.waset.org/abstracts/search?q=Engku%20M.%20Fahmi"> Engku M. Fahmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mior%20A.%20Khusaini"> Mior A. Khusaini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work describes hydrodynamics of mixing characteristics of two dual hybrid impeller consisting of, radial and axial impeller using radiotracer technique. Type A mixer, a Rushton turbine is mounted above a Pitched Blade Turbine (PBT) at common shaft and Type B mixer, a Rushton turbine is mounted below PBT. The objectives of this paper are to investigate the residence time distribution (RTD) of two hybrid mixers and to represent the respective mixers by RTD model. Each type of mixer will experience five radiotracer experiments using Tc99m as source of tracer and scintillation detectors NaI(Tl) are used for tracer detection. The results showed that mixer in parallel model and mixers in series with exchange can represent the flow model in mixer A whereas only mixer in parallel model can represent Type B mixer well than other models. In conclusion, Type A impeller, Rushton impeller above PBT, reduced the presence of dead zone in the mixer significantly rather than Type B. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20impeller" title="hybrid impeller">hybrid impeller</a>, <a href="https://publications.waset.org/abstracts/search?q=residence%20time%20distribution%20%28RTD%29" title=" residence time distribution (RTD)"> residence time distribution (RTD)</a>, <a href="https://publications.waset.org/abstracts/search?q=radiotracer%20experiments" title=" radiotracer experiments"> radiotracer experiments</a>, <a href="https://publications.waset.org/abstracts/search?q=RTD%20model" title=" RTD model"> RTD model</a> </p> <a href="https://publications.waset.org/abstracts/37495/hydrodynamics-of-dual-hybrid-impeller-of-stirred-reactor-using-radiotracer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37495.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">118</span> Numerical Investigation of a Supersonic Ejector for Refrigeration System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karima%20Megdouli">Karima Megdouli</a>, <a href="https://publications.waset.org/abstracts/search?q=Bourhan%20Taschtouch"> Bourhan Taschtouch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Supersonic ejectors have many applications in refrigeration systems. And improving ejector performance is the key to improve the efficiency of these systems. One of the main advantages of the ejector is its geometric simplicity and the absence of moving parts. This paper presents a theoretical model for evaluating the performance of a new supersonic ejector configuration for refrigeration system applications. The relationship between the flow field and the key parameters of the new configuration has been illustrated by analyzing the Mach number and flow velocity contours. The method of characteristics (MOC) is used to design the supersonic nozzle of the ejector. The results obtained are compared with those obtained by CFD. The ejector is optimized by minimizing exergy destruction due to irreversibility and shock waves. The optimization converges to an efficient optimum solution, ensuring improved and stable performance over the whole considered range of uncertain operating conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supersonic%20ejector" title="supersonic ejector">supersonic ejector</a>, <a href="https://publications.waset.org/abstracts/search?q=theoretical%20model" title=" theoretical model"> theoretical model</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a> </p> <a href="https://publications.waset.org/abstracts/168655/numerical-investigation-of-a-supersonic-ejector-for-refrigeration-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168655.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">117</span> A Model of Condensation and Solidification of Metallurgical Vapor in a Supersonic Nozzle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thien%20X.%20Dinh">Thien X. Dinh</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Witt"> Peter Witt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A one-dimensional model for the simulation of condensation and solidification of a metallurgical vapor in the mixture of gas during supersonic expansion is presented. In the model, condensation is based on critical nucleation and drop-growth theory. When the temperature falls below the supercooling point, all the formed liquid droplets in the condensation phase are assumed to solidify at an infinite rate. The model was verified with a Computational Fluid Dynamics simulation of magnesium vapor condensation and solidification. The obtained results are in reasonable agreement with CFD data. Therefore, the model is a promising, efficient tool for use in the design process for supersonic nozzles applied in mineral processes since it is faster than the CFD counterpart by an order of magnitude. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=condensation" title="condensation">condensation</a>, <a href="https://publications.waset.org/abstracts/search?q=metallurgical%20flow" title=" metallurgical flow"> metallurgical flow</a>, <a href="https://publications.waset.org/abstracts/search?q=solidification" title=" solidification"> solidification</a>, <a href="https://publications.waset.org/abstracts/search?q=supersonic%20expansion" title=" supersonic expansion"> supersonic expansion</a> </p> <a href="https://publications.waset.org/abstracts/175697/a-model-of-condensation-and-solidification-of-metallurgical-vapor-in-a-supersonic-nozzle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175697.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">116</span> Effect of Surface Quality of 3D Printed Impeller on the Performance of a Centrifugal Compressor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nader%20Zirak">Nader Zirak</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammadali%20Shirinbayan"> Mohammadali Shirinbayan</a>, <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Tcharkhtchi"> Abbas Tcharkhtchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Additive manufacturing is referred to as a method for fabrication of parts with a mechanism of layer by layer. Suitable economic efficiency and the ability to fabrication complex parts have made this method the focus of studies and industry. In recent years many studies focused on the fabrication of impellers, which is referred to as a key component of turbomachinery, through this technique. This study considers the important effect of the final surface quality of the impeller on the performance of the system, investigates the fabricated printed rotors through the fused deposition modeling with different process parameters. In this regard, the surface of each impeller was analyzed through the 3D scanner. The results show the vital role of surface quality on the final performance of the centrifugal compressor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=impeller" title=" impeller"> impeller</a>, <a href="https://publications.waset.org/abstracts/search?q=centrifugal%20compressor" title=" centrifugal compressor"> centrifugal compressor</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a> </p> <a href="https://publications.waset.org/abstracts/145589/effect-of-surface-quality-of-3d-printed-impeller-on-the-performance-of-a-centrifugal-compressor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145589.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">115</span> Interaction between Unsteady Supersonic Jet and Vortex Rings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kazumasa%20Kitazono">Kazumasa Kitazono</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroshi%20Fukuoka"> Hiroshi Fukuoka</a>, <a href="https://publications.waset.org/abstracts/search?q=Nao%20Kuniyoshi"> Nao Kuniyoshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Minoru%20Yaga"> Minoru Yaga</a>, <a href="https://publications.waset.org/abstracts/search?q=Eri%20Ueno"> Eri Ueno</a>, <a href="https://publications.waset.org/abstracts/search?q=Naoaki%20Fukuda"> Naoaki Fukuda</a>, <a href="https://publications.waset.org/abstracts/search?q=Toshio%20Takiya"> Toshio Takiya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The unsteady supersonic jet formed by a shock tube with a small high-pressure chamber was used as a simple alternative model for pulsed laser ablation. Understanding the vortex ring formed by the shock wave is crucial in clarifying the behavior of unsteady supersonic jet discharged from an elliptical cell. Therefore, this study investigated the behavior of vortex rings and a jet. The experiment and numerical calculation were conducted using the schlieren method and by solving the axisymmetric two-dimensional compressible Navier–Stokes equations, respectively. In both, the calculation and the experiment, laser ablation is conducted for a certain duration, followed by discharge through the exit. Moreover, a parametric study was performed to demonstrate the effect of pressure ratio on the interaction among vortex rings and the supersonic jet. The interaction between the supersonic jet and the vortex rings increased the velocity of the supersonic jet up to the magnitude of the velocity at the center of the vortex rings. The interaction between the vortex rings increased the velocity at the center of the vortex ring. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title="computational fluid dynamics">computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=shock-wave" title=" shock-wave"> shock-wave</a>, <a href="https://publications.waset.org/abstracts/search?q=unsteady%20jet" title=" unsteady jet"> unsteady jet</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20ring" title=" vortex ring"> vortex ring</a> </p> <a href="https://publications.waset.org/abstracts/50911/interaction-between-unsteady-supersonic-jet-and-vortex-rings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50911.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">114</span> Impact of Mixing Parameters on Homogenization of Borax Solution and Nucleation Rate in Dual Radial Impeller Crystallizer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Ka%C4%87uni%C4%87">A. Kaćunić</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20%C4%86osi%C4%87"> M. Ćosić</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Kuzmani%C4%87"> N. Kuzmanić</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Interaction between mixing and crystallization is often ignored despite the fact that it affects almost every aspect of the operation including nucleation, growth, and maintenance of the crystal slurry. This is especially pronounced in multiple impeller systems where flow complexity is increased. By choosing proper mixing parameters, what closely depends on the knowledge of the hydrodynamics in a mixing vessel, the process of batch cooling crystallization may considerably be improved. The values that render useful information when making this choice are mixing time and power consumption. The predominant motivation for this work was to investigate the extent to which radial dual impeller configuration influences mixing time, power consumption and consequently the values of metastable zone width and nucleation rate. In this research, crystallization of borax was conducted in a 15 dm3 baffled batch cooling crystallizer with an aspect ratio (H/T) of 1.3. Mixing was performed using two straight blade turbines (4-SBT) mounted on the same shaft that generated radial fluid flow. Experiments were conducted at different values of N/NJS ratio (impeller speed/ minimum impeller speed for complete suspension), D/T ratio (impeller diameter/crystallizer diameter), c/D ratio (lower impeller off-bottom clearance/impeller diameter), and s/D ratio (spacing between impellers/impeller diameter). Mother liquor was saturated at 30°C and was cooled at the rate of 6°C/h. Its concentration was monitored in line by Na-ion selective electrode. From the values of supersaturation that was monitored continuously over process time, it was possible to determine the metastable zone width and subsequently the nucleation rate using the Mersmann’s nucleation criterion. For all applied dual impeller configurations, the mixing time was determined by potentiometric method using a pulse technique, while the power consumption was determined using a torque meter produced by Himmelstein & Co. Results obtained in this investigation show that dual impeller configuration significantly influences the values of mixing time, power consumption as well as the metastable zone width and nucleation rate. A special attention should be addressed to the impeller spacing considering the flow interaction that could be more or less pronounced depending on the spacing value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dual%20impeller%20crystallizer" title="dual impeller crystallizer">dual impeller crystallizer</a>, <a href="https://publications.waset.org/abstracts/search?q=mixing%20time" title=" mixing time"> mixing time</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20consumption" title=" power consumption"> power consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=metastable%20zone%20width" title=" metastable zone width"> metastable zone width</a>, <a href="https://publications.waset.org/abstracts/search?q=nucleation%20rate" title=" nucleation rate"> nucleation rate</a> </p> <a href="https://publications.waset.org/abstracts/38553/impact-of-mixing-parameters-on-homogenization-of-borax-solution-and-nucleation-rate-in-dual-radial-impeller-crystallizer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38553.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">113</span> Resolution and Experimental Validation of the Asymptotic Model of a Viscous Laminar Supersonic Flow around a Thin Airfoil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eddegdag%20Nasser">Eddegdag Nasser</a>, <a href="https://publications.waset.org/abstracts/search?q=Naamane%20Azzeddine"> Naamane Azzeddine</a>, <a href="https://publications.waset.org/abstracts/search?q=Radouani%20Mohammed"> Radouani Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Ensam%20Meknes"> Ensam Meknes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we are interested in the asymptotic modeling of the two-dimensional stationary supersonic flow of a viscous compressible fluid around wing airfoil. The aim of this article is to solve the partial differential equations of the flow far from the leading edge and near the wall using the triple-deck technique is what brought again in precision according to the principle of least degeneration. In order to validate our theoretical model, these obtained results will be compared with the experimental results. The comparison of the results of our model with experimentation has shown that they are quantitatively acceptable compared to the obtained experimental results. The experimental study was conducted using the AF300 supersonic wind tunnel and a NACA Reduced airfoil model with two pressure Taps on extrados. In this experiment, we have considered the incident upstream supersonic Mach number over a dissymmetric NACA airfoil wing. The validation and the accuracy of the results support our model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supersonic" title="supersonic">supersonic</a>, <a href="https://publications.waset.org/abstracts/search?q=viscous" title=" viscous"> viscous</a>, <a href="https://publications.waset.org/abstracts/search?q=triple%20deck%20technique" title=" triple deck technique"> triple deck technique</a>, <a href="https://publications.waset.org/abstracts/search?q=asymptotic%20methods" title=" asymptotic methods"> asymptotic methods</a>, <a href="https://publications.waset.org/abstracts/search?q=AF300%20supersonic%20wind%20tunnel" title=" AF300 supersonic wind tunnel"> AF300 supersonic wind tunnel</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced%20airfoil%20model" title=" reduced airfoil model"> reduced airfoil model</a> </p> <a href="https://publications.waset.org/abstracts/141179/resolution-and-experimental-validation-of-the-asymptotic-model-of-a-viscous-laminar-supersonic-flow-around-a-thin-airfoil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141179.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">112</span> Slurry Erosion Behaviour of Cryotreated SS316L Impeller Steel Used for Irrigation Pumps</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jagtar%20Singh">Jagtar Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Kulwinder%20Singh"> Kulwinder Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Slurry erosion is a type of erosion wherein material is removed from the target surface due to impingement of solid particles entrained in liquid medium. Slurry erosion performance of deep cryogenic treatment on impeller steel SS 316 L has been investigated. Slurry collected from an actual irrigation pump used as the abrasive media in an erosion test rig. An attempt has been made to study the effect of velocity of fluid and impingement angle by constant concentration (ppm) on the slurry erosion behavior of these cryotreated steels under different experimental conditions. The slurry erosion wear analysis of cryotreated and untreated steels was done. The slurry erosion performance of cryotreated SS 316L impeller steel has been found to superior to that of untreated steel. Metallurgical investigation, hardness as well as %age of carbide in both types of steel was also investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20cryogenic%20treatment" title="deep cryogenic treatment">deep cryogenic treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=impeller" title=" impeller"> impeller</a>, <a href="https://publications.waset.org/abstracts/search?q=Irrigation%20pumps%20SS316L" title=" Irrigation pumps SS316L"> Irrigation pumps SS316L</a>, <a href="https://publications.waset.org/abstracts/search?q=slurry%20erosion" title=" slurry erosion"> slurry erosion</a> </p> <a href="https://publications.waset.org/abstracts/33629/slurry-erosion-behaviour-of-cryotreated-ss316l-impeller-steel-used-for-irrigation-pumps" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33629.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">111</span> Impact of Fluid Flow Patterns on Metastable Zone Width of Borax in Dual Radial Impeller Crystallizer at Different Impeller Spacings </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20%C4%8Celan">A. Čelan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20%C4%86osi%C4%87"> M. Ćosić</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Ru%C5%A1i%C4%87"> D. Rušić</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Kuzmani%C4%87"> N. Kuzmanić</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conducting crystallization in an agitated vessel requires a proper selection of mixing parameters that would result in a production of crystals of specific properties. In dual impeller systems, which are characterized by a more complex hydrodynamics due to the possible fluid flow interactions, revealing a clear link between mixing parameters and crystallization kinetics is still an open issue. The aim of this work is to establish this connection by investigating how fluid flow patterns, generated by two impellers mounted on the same shaft, reflect on metastable zone width of borax decahydrate, one of the most important parameters of the crystallization process. Investigation was carried out in a 15-dm<sup>3</sup> bench scale batch cooling crystallizer with an aspect ratio (<em>H</em>/<em>T</em>) equal to 1.3. For this reason, two radial straight blade turbines (4-SBT) were used for agitation. Experiments were conducted at different impeller spacings at the state of complete suspension. During the process of an unseeded batch cooling crystallization, solution temperature and supersaturation were continuously monitored what enabled a determination of the metastable zone width. Hydrodynamic conditions in the vessel achieved at different impeller spacings investigated were analyzed in detail. This was done firstly by measuring the mixing time required to attain the desired level of homogeneity. Secondly, fluid flow patterns generated in a described dual impeller system were both photographed and simulated by VisiMix Turbulent software. Also, a comparison of these two visualization methods was performed. Experimentally obtained results showed that metastable zone width is definitely affected by the hydrodynamics in the crystallizer. This means that this crystallization parameter can be controlled not only by adjusting the saturation temperature or cooling rate, as is usually done, but also by choosing a suitable impeller spacing that will result in a formation of crystals of wanted size distribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dual%20impeller%20crystallizer" title="dual impeller crystallizer">dual impeller crystallizer</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20flow%20pattern" title=" fluid flow pattern"> fluid flow pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=metastable%20zone%20width" title=" metastable zone width"> metastable zone width</a>, <a href="https://publications.waset.org/abstracts/search?q=mixing%20time" title=" mixing time"> mixing time</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20impeller" title=" radial impeller"> radial impeller</a> </p> <a href="https://publications.waset.org/abstracts/80502/impact-of-fluid-flow-patterns-on-metastable-zone-width-of-borax-in-dual-radial-impeller-crystallizer-at-different-impeller-spacings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80502.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">110</span> An Accurate Prediction of Surface Temperature History in a Supersonic Flight </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Tahsini">A. M. Tahsini</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Hosseini"> S. A. Hosseini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, the surface temperature history of the adaptor part in a two-stage supersonic launch vehicle is accurately predicted. The full Navier-Stokes equations are used to estimate the aerodynamic heat flux. The one-dimensional heat conduction in solid phase is used to compute the temperature history. The instantaneous surface temperature is used to improve the applied heat flux, to improve the accuracy of the results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamic%20heating" title="aerodynamic heating">aerodynamic heating</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20conduction" title=" heat conduction"> heat conduction</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=supersonic%20flight" title=" supersonic flight"> supersonic flight</a>, <a href="https://publications.waset.org/abstracts/search?q=launch%20vehicle" title=" launch vehicle"> launch vehicle</a> </p> <a href="https://publications.waset.org/abstracts/1462/an-accurate-prediction-of-surface-temperature-history-in-a-supersonic-flight" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1462.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">109</span> Supersonic Flow around a Dihedral Airfoil: Modeling and Experimentation Investigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Naamane">A. Naamane</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hasnaoui"> M. Hasnaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerical modeling of fluid flows, whether compressible or incompressible, laminar or turbulent presents a considerable contribution in the scientific and industrial fields. However, the development of an approximate model of a supersonic flow requires the introduction of specific and more precise techniques and methods. For this purpose, the object of this paper is modeling a supersonic flow of inviscid fluid around a dihedral airfoil. Based on the thin airfoils theory and the non-dimensional stationary Steichen equation of a two-dimensional supersonic flow in isentropic evolution, we obtained a solution for the downstream velocity potential of the oblique shock at the second order of relative thickness that characterizes a perturbation parameter. This result has been dealt with by the asymptotic analysis and characteristics method. In order to validate our model, the results are discussed in comparison with theoretical and experimental results. Indeed, firstly, the comparison of the results of our model has shown that they are quantitatively acceptable compared to the existing theoretical results. Finally, an experimental study was conducted using the AF300 supersonic wind tunnel. In this experiment, we have considered the incident upstream Mach number over a symmetrical dihedral airfoil wing. The comparison of the different Mach number downstream results of our model with those of the existing theoretical data (relative margin between 0.07% and 4%) and with experimental results (concordance for a deflection angle between 1° and 11°) support the validation of our model with accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymptotic%20modelling" title="asymptotic modelling">asymptotic modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=dihedral%20airfoil" title=" dihedral airfoil"> dihedral airfoil</a>, <a href="https://publications.waset.org/abstracts/search?q=supersonic%20flow" title=" supersonic flow"> supersonic flow</a>, <a href="https://publications.waset.org/abstracts/search?q=supersonic%20wind%20tunnel" title=" supersonic wind tunnel"> supersonic wind tunnel</a> </p> <a href="https://publications.waset.org/abstracts/104317/supersonic-flow-around-a-dihedral-airfoil-modeling-and-experimentation-investigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104317.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">108</span> Experimental Study on Dehumidification Performance of Supersonic Nozzle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Esam%20Jassim">Esam Jassim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Supersonic nozzles are commonly used to purify natural gas in gas processing technology. As an innovated technology, it is employed to overcome the deficit of the traditional method, related to gas dynamics, thermodynamics and fluid dynamics theory. An indoor test rig is built to study the dehumidification process of moisture fluid. Humid air was chosen for the study. The working fluid was circulating in an open loop, which had provision for filtering, metering, and humidifying. A stainless steel supersonic separator is constructed together with the C-D nozzle system. The result shows that dehumidification enhances as NPR increases. This is due to the high intensity in the turbulence caused by the shock formation in the divergent section. Such disturbance strengthens the centrifugal force, pushing more particles toward the near-wall region. In return return, the pressure recovery factor, defined as the ratio of the outlet static pressure of the fluid to its inlet value, decreases with NPR. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supersonic%20nozzle" title="supersonic nozzle">supersonic nozzle</a>, <a href="https://publications.waset.org/abstracts/search?q=dehumidification" title=" dehumidification"> dehumidification</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20separation" title=" particle separation"> particle separation</a>, <a href="https://publications.waset.org/abstracts/search?q=nozzle%20geometry" title=" nozzle geometry"> nozzle geometry</a> </p> <a href="https://publications.waset.org/abstracts/64186/experimental-study-on-dehumidification-performance-of-supersonic-nozzle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64186.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">107</span> Analysis of Simple Mechanisms to Continuously Vary Mach Number in a Supersonic Wind Tunnel Facility</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prateek%20Kishore">Prateek Kishore</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20M.%20Muruganandam"> T. M. Muruganandam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Supersonic wind tunnel nozzles are generally capable of producing a constant Mach number flow in the test section of the wind tunnel. As a result, most of the supersonic vehicles are widely designed using steady state flow characteristics which may have errors while facing unsteady situations. This study aims to explore the possibility of varying the Mach number of the flow during wind tunnel operation. The nozzle walls are restricted to be inflexible for cooling near the throat due to high stagnation temperature requirement of the flow to simulate the conditions as experienced by the vehicle. Two simple independent mechanisms, rotation and translation of nozzle walls have been analyzed and the nozzle ranges have been optimized to vary the Mach number from Mach 2 to Mach 5 using minimum number of nozzles in the wind tunnel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=method%20of%20characteristics" title="method of characteristics">method of characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=nozzle" title=" nozzle"> nozzle</a>, <a href="https://publications.waset.org/abstracts/search?q=supersonic%20wind%20tunnel" title=" supersonic wind tunnel"> supersonic wind tunnel</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20mach%20number" title=" variable mach number"> variable mach number</a> </p> <a href="https://publications.waset.org/abstracts/66454/analysis-of-simple-mechanisms-to-continuously-vary-mach-number-in-a-supersonic-wind-tunnel-facility" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">106</span> Effect of Gaseous Imperfections on the Supersonic Flow Parameters for Air in Nozzles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Merouane%20Salhi">Merouane Salhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Toufik%20Zebbiche"> Toufik Zebbiche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When the stagnation pressure of perfect gas increases, the specific heat and their ratio do not remain constant anymore and start to vary with this pressure. The gas doesn’t remain perfect. Its state equation change and it becomes for a real gas. In this case, the effects of molecular size and intermolecular attraction forces intervene to correct the state equation. The aim of this work is to show and discuss the effect of stagnation pressure on supersonic thermodynamical, physical and geometrical flow parameters, to find a general case for real gas. With the assumptions that Berthelot’s state equation accounts for the molecular size and intermolecular force effects, expressions are developed for analyzing supersonic flow for thermally and calorically imperfect gas lower than the dissociation molecules threshold. The designs parameters for supersonic nozzle like thrust coefficient depend directly on stagnation parameters of the combustion chamber. The application is for air. A computation of error is made in this case to give a limit of perfect gas model compared to real gas model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supersonic%20flow" title="supersonic flow">supersonic flow</a>, <a href="https://publications.waset.org/abstracts/search?q=real%20gas%20model" title=" real gas model"> real gas model</a>, <a href="https://publications.waset.org/abstracts/search?q=Berthelot%E2%80%99s%20state%20equation" title=" Berthelot’s state equation"> Berthelot’s state equation</a>, <a href="https://publications.waset.org/abstracts/search?q=Simpson%E2%80%99s%20method" title=" Simpson’s method"> Simpson’s method</a>, <a href="https://publications.waset.org/abstracts/search?q=condensation%20function" title=" condensation function"> condensation function</a>, <a href="https://publications.waset.org/abstracts/search?q=stagnation%20pressure" title=" stagnation pressure"> stagnation pressure</a> </p> <a href="https://publications.waset.org/abstracts/19069/effect-of-gaseous-imperfections-on-the-supersonic-flow-parameters-for-air-in-nozzles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19069.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">105</span> Thermal and Caloric Imperfections Effect on the Supersonic Flow Parameters with Application for Air in Nozzles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Merouane%20Salhi">Merouane Salhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Toufik%20Zebbiche"> Toufik Zebbiche</a>, <a href="https://publications.waset.org/abstracts/search?q=Omar%20Abada"> Omar Abada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When the stagnation pressure of perfect gas increases, the specific heat and their ratio do not remain constant anymore and start to vary with this pressure. The gas does not remain perfect. Its state equation change and it becomes a real gas. In this case, the effects of molecular size and inter molecular attraction forces intervene to correct the state equation. The aim of this work is to show and discuss the effect of stagnation pressure on supersonic thermo dynamical, physical and geometrical flow parameters, to find a general case for real gas. With the assumptions that Berthelot’s state equation accounts for molecular size and inter molecular force effects, expressions are developed for analyzing supersonic flow for thermally and calorically imperfect gas lower than the dissociation molecules threshold. The designs parameters for supersonic nozzle like thrust coefficient depend directly on stagnation parameters of the combustion chamber. The application is for air. A computation of error is made in this case to give a limit of perfect gas model compared to real gas model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supersonic%20flow" title="supersonic flow">supersonic flow</a>, <a href="https://publications.waset.org/abstracts/search?q=real%20gas%20model" title=" real gas model"> real gas model</a>, <a href="https://publications.waset.org/abstracts/search?q=Berthelot%E2%80%99s%20state%20equation" title=" Berthelot’s state equation"> Berthelot’s state equation</a>, <a href="https://publications.waset.org/abstracts/search?q=Simpson%E2%80%99s%20method" title=" Simpson’s method"> Simpson’s method</a>, <a href="https://publications.waset.org/abstracts/search?q=condensation%20function" title=" condensation function"> condensation function</a>, <a href="https://publications.waset.org/abstracts/search?q=stagnation%20pressure" title=" stagnation pressure"> stagnation pressure</a> </p> <a href="https://publications.waset.org/abstracts/18030/thermal-and-caloric-imperfections-effect-on-the-supersonic-flow-parameters-with-application-for-air-in-nozzles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18030.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">525</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">104</span> Flow Field Analysis of Different Intake Bump (Compression Surface) Configurations on a Supersonic Aircraft </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mudassir%20Ghafoor">Mudassir Ghafoor</a>, <a href="https://publications.waset.org/abstracts/search?q=Irsalan%20Arif"> Irsalan Arif</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuaib%20Salamat"> Shuaib Salamat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents modeling and analysis of different intake bump (compression surface) configurations and comparison with an existing supersonic aircraft having bump intake configuration. Many successful aircraft models have shown that Diverter less Supersonic Inlet (DSI) as compared to conventional intake can reduce weight, complexity and also maintenance cost. The research is divided into two parts. In the first part, four different intake bumps are modeled for comparative analysis keeping in view the consistency of outer perimeter dimensions of fighter aircraft and various characteristics such as flow behavior, boundary layer diversion and pressure recovery are analyzed. In the second part, modeled bumps are integrated with intake duct for performance analysis and comparison with existing supersonic aircraft data is carried out. The bumps are named as uniform large (Config 1), uniform small (Config 2), uniform sharp (Config 3), non-uniform (Config 4) based on their geometric features. Analysis is carried out at different Mach Numbers to analyze flow behavior in subsonic and supersonic regime. Flow behavior, boundary layer diversion and Pressure recovery are examined for each bump characteristics, and comparative study is carried out. The analysis reveals that at subsonic speed, Config 1 and Config 2 give similar pressure recoveries as diverterless supersonic intake, but difference in pressure recoveries becomes significant at supersonic speed. It was concluded from research that Config 1 gives better results as compared to Config 3. Also, higher amplitude (Config 1) is preferred over lower (Config 2 and 4). It was observed that maximum height of bump is preferred to be placed near cowl lip of intake duct. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bump%20intake" title="bump intake">bump intake</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer" title=" boundary layer"> boundary layer</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=diverter-less%20supersonic%20inlet" title=" diverter-less supersonic inlet"> diverter-less supersonic inlet</a> </p> <a href="https://publications.waset.org/abstracts/62246/flow-field-analysis-of-different-intake-bump-compression-surface-configurations-on-a-supersonic-aircraft" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62246.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">243</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">103</span> Nitrogen Effects on Ignition Delay Time in Supersonic Premixed and Diffusion Flames </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Tahsini">A. M. Tahsini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Computational study of two dimensional supersonic reacting hydrogen-air flows is performed to investigate the nitrogen effects on ignition delay time for premixed and diffusion flames. Chemical reaction is treated using detail kinetics and the advection upstream splitting method is used to calculate the numerical inviscid fluxes. The results show that only in the stoichiometric condition for both premixed and diffusion flames, there is monotone dependency of the ignition delay time to the nitrogen addition. In other situations, the optimal condition from ignition viewpoint should be found using numerical investigations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diffusion%20flame" title="diffusion flame">diffusion flame</a>, <a href="https://publications.waset.org/abstracts/search?q=ignition%20delay%20time" title=" ignition delay time"> ignition delay time</a>, <a href="https://publications.waset.org/abstracts/search?q=mixing%20layer" title=" mixing layer"> mixing layer</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=premixed%20flame" title=" premixed flame"> premixed flame</a>, <a href="https://publications.waset.org/abstracts/search?q=supersonic%20flow" title=" supersonic flow"> supersonic flow</a> </p> <a href="https://publications.waset.org/abstracts/1461/nitrogen-effects-on-ignition-delay-time-in-supersonic-premixed-and-diffusion-flames" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1461.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">463</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">102</span> Power Consumption for Viscoplastic Fluid in a Rotating Vessel with an Anchor Impeller </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Draoui%20Belkacem">Draoui Belkacem</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahmani%20Lakhdar"> Rahmani Lakhdar</a>, <a href="https://publications.waset.org/abstracts/search?q=Benachour%20Elhadj"> Benachour Elhadj</a>, <a href="https://publications.waset.org/abstracts/search?q=Seghier%20Oussama"> Seghier Oussama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rheology is known to have a strong impact on the flow behavior and the power consumption of mechanically agitated vessels. The laminar 2D agitation flow and power consumption of viscoplastic fluids with an anchor impeller in a stirring tank is studied by using computational fluid dynamics (CFD). In this work the objective of this paper is: to evaluate the power consumption for yield stress fluids in standard mixing system. The power consumption is calculated for the different types of anchor impeller configurations and an optimum configuration is proposed.The hydrodynamic fields of incompressible yield stress fluid with model of Bingham in a cylindrical vessel not chicaned equipped with anchor stirrer was undertaken by means of numerical simulation. The flow structures, and especially the effect of inertia, the plasticity and the yield stress, are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rheology" title="rheology">rheology</a>, <a href="https://publications.waset.org/abstracts/search?q=2D" title=" 2D"> 2D</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical" title=" numerical"> numerical</a>, <a href="https://publications.waset.org/abstracts/search?q=anchor" title=" anchor"> anchor</a>, <a href="https://publications.waset.org/abstracts/search?q=rotating%20vissel" title=" rotating vissel"> rotating vissel</a>, <a href="https://publications.waset.org/abstracts/search?q=non-Newtonien%20fluid" title=" non-Newtonien fluid "> non-Newtonien fluid </a> </p> <a href="https://publications.waset.org/abstracts/20884/power-consumption-for-viscoplastic-fluid-in-a-rotating-vessel-with-an-anchor-impeller" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20884.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">520</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">101</span> Calculation of the Supersonic Air Intake with the Optimization of the Shock Wave System </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elena%20Vinogradova">Elena Vinogradova</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksei%20Pleshakov"> Aleksei Pleshakov</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksei%20Yakovlev"> Aleksei Yakovlev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During the flight of a supersonic aircraft under various conditions (altitude, Mach, etc.), it becomes necessary to coordinate the operating modes of the air intake and engine. On the supersonic aircraft, it’s been done by changing various control factors (the angle of rotation of the wedge panels and etc.). This paper investigates the possibility of using modern optimization methods to determine the optimal position of the supersonic air intake wedge panels in order to maximize the total pressure recovery coefficient. Modern software allows us to conduct auto-optimization, which determines the optimal position of the control elements of the investigated product to achieve its maximum efficiency. In this work, the flow in the supersonic aircraft inlet has investigated and optimized the operation of the flaps of the supersonic inlet in an aircraft in a 2-D setting. This work has done using ANSYS CFX software. The supersonic aircraft inlet is a flat adjustable external compression inlet. The braking surface is made in the form of a three-stage wedge. The IOSO NM software package was chosen for optimization. Change in the position of the panels of the input device is carried out by changing the angle between the first and second steps of the three-stage wedge. The position of the rest of the panels is changed automatically. Within the framework of the presented work, the position of the moving air intake panel was optimized under fixed flight conditions of the aircraft under a certain engine operating mode. As a result of the numerical modeling, the distribution of total pressure losses was obtained for various cases of the engine operation, depending on the incoming flow velocity and the flight altitude of the aircraft. The results make it possible to obtain the maximum total pressure recovery coefficient under given conditions. Also, the initial geometry was set with a certain angle between the first and second wedge panels. Having performed all the calculations, as well as the subsequent optimization of the aircraft input device, it can be concluded that the initial angle was set sufficiently close to the optimal angle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimal%20angle" title="optimal angle">optimal angle</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=supersonic%20air%20intake" title=" supersonic air intake"> supersonic air intake</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20pressure%20recovery%20coefficient" title=" total pressure recovery coefficient"> total pressure recovery coefficient</a> </p> <a href="https://publications.waset.org/abstracts/135524/calculation-of-the-supersonic-air-intake-with-the-optimization-of-the-shock-wave-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135524.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">100</span> Optical Flow Technique for Supersonic Jet Measurements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haoxiang%20Desmond%20Lim">Haoxiang Desmond Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jie%20Wu"> Jie Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Tze%20How%20Daniel%20New"> Tze How Daniel New</a>, <a href="https://publications.waset.org/abstracts/search?q=Shengxian%20Shi"> Shengxian Shi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper outlines the development of a novel experimental technique in quantifying supersonic jet flows, in an attempt to avoid seeding particle problems frequently associated with particle-image velocimetry (PIV) techniques at high Mach numbers. Based on optical flow algorithms, the idea behind the technique involves using high speed cameras to capture Schlieren images of the supersonic jet shear layers, before they are subjected to an adapted optical flow algorithm based on the Horn-Schnuck method to determine the associated flow fields. The proposed method is capable of offering full-field unsteady flow information with potentially higher accuracy and resolution than existing point-measurements or PIV techniques. Preliminary study via numerical simulations of a circular de Laval jet nozzle successfully reveals flow and shock structures typically associated with supersonic jet flows, which serve as useful data for subsequent validation of the optical flow based experimental results. For experimental technique, a Z-type Schlieren setup is proposed with supersonic jet operated in cold mode, stagnation pressure of 8.2 bar and exit velocity of Mach 1.5. High-speed single-frame or double-frame cameras are used to capture successive Schlieren images. As implementation of optical flow technique to supersonic flows remains rare, the current focus revolves around methodology validation through synthetic images. The results of validation test offers valuable insight into how the optical flow algorithm can be further improved to improve robustness and accuracy. Details of the methodology employed and challenges faced will be further elaborated in the final conference paper should the abstract be accepted. Despite these challenges however, this novel supersonic flow measurement technique may potentially offer a simpler way to identify and quantify the fine spatial structures within the shock shear layer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Schlieren" title="Schlieren">Schlieren</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20flow" title=" optical flow"> optical flow</a>, <a href="https://publications.waset.org/abstracts/search?q=supersonic%20jets" title=" supersonic jets"> supersonic jets</a>, <a href="https://publications.waset.org/abstracts/search?q=shock%20shear%20layer" title=" shock shear layer"> shock shear layer</a> </p> <a href="https://publications.waset.org/abstracts/42220/optical-flow-technique-for-supersonic-jet-measurements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42220.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">99</span> Measuring Investigation and Computational Simulation of Cavitation Phenomenon Effects on the Industrial Centrifugal Pump Vibration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Hamzehei">Mahdi Hamzehei</a>, <a href="https://publications.waset.org/abstracts/search?q=Homan%20Alimoradzadeh"> Homan Alimoradzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Shahriyari"> Mahdi Shahriyari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, vibration of the industrial centrifugal pumps studied by measuring analysis and computational simulation. Effects of different parameters on pump vibration were investigated. Also, simulation of cavitation in the centrifugal pump was down. First, via CF-TURBO software, the pump impeller and the fluid passing through the pump is modelled and finally, the phenomenon of cavitation in the impeller has been modelled by Ansys software. Also, the effects of changes in the amount of NPSH and bubbles generation in the pump impeller were investigated. By simulation of piping with pipe flow software, effect of fluid velocity and pressure on hydraulics and vibration were studied computationally by applying Computational Fluid Dynamic (CFD) techniques, fluent software and experimentally. Furthermore, this comparison showed that the model can predict hydraulics and vibration behaviour. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cavitation" title="cavitation">cavitation</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration" title=" vibration"> vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=centrifugal%20pumps" title=" centrifugal pumps"> centrifugal pumps</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20curves" title=" performance curves"> performance curves</a>, <a href="https://publications.waset.org/abstracts/search?q=NPSH" title=" NPSH"> NPSH</a> </p> <a href="https://publications.waset.org/abstracts/5866/measuring-investigation-and-computational-simulation-of-cavitation-phenomenon-effects-on-the-industrial-centrifugal-pump-vibration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5866.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">543</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">98</span> Improvement Performances of the Supersonic Nozzles at High Temperature Type Minimum Length Nozzle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20Hamaidia">W. Hamaidia</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Zebbiche"> T. Zebbiche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the design of axisymmetric supersonic nozzles, in order to accelerate a supersonic flow to the desired Mach number and that having a small weight, in the same time gives a high thrust. The concerned nozzle gives a parallel and uniform flow at the exit section. The nozzle is divided into subsonic and supersonic regions. The supersonic portion is independent to the upstream conditions of the sonic line. The subsonic portion is used to give a sonic flow at the throat. In this case, nozzle gives a uniform and parallel flow at the exit section. It’s named by minimum length Nozzle. The study is done at high temperature, lower than the dissociation threshold of the molecules, in order to improve the aerodynamic performances. Our aim consists of improving the performances both by the increase of exit Mach number and the thrust coefficient and by reduction of the nozzle's mass. The variation of the specific heats with the temperature is considered. The design is made by the Method of Characteristics. The finite differences method with predictor-corrector algorithm is used to make the numerical resolution of the obtained nonlinear algebraic equations. The application is for air. All the obtained results depend on three parameters which are exit Mach number, the stagnation temperature, the chosen mesh in characteristics. A numerical simulation of nozzle through Computational Fluid Dynamics-FASTRAN was done to determine and to confirm the necessary design parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flux%20supersonic%20flow" title="flux supersonic flow">flux supersonic flow</a>, <a href="https://publications.waset.org/abstracts/search?q=axisymmetric%20minimum%20length%20nozzle" title=" axisymmetric minimum length nozzle"> axisymmetric minimum length nozzle</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20temperature" title=" high temperature"> high temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=method%20of%20characteristics" title=" method of characteristics"> method of characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=calorically%20imperfect%20gas" title=" calorically imperfect gas"> calorically imperfect gas</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20difference%20method" title=" finite difference method"> finite difference method</a>, <a href="https://publications.waset.org/abstracts/search?q=trust%20coefficient" title=" trust coefficient"> trust coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20of%20the%20nozzle" title=" mass of the nozzle"> mass of the nozzle</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20heat%20at%20constant%20pressure" title=" specific heat at constant pressure"> specific heat at constant pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=air" title=" air"> air</a>, <a href="https://publications.waset.org/abstracts/search?q=error" title=" error"> error</a> </p> <a href="https://publications.waset.org/abstracts/97205/improvement-performances-of-the-supersonic-nozzles-at-high-temperature-type-minimum-length-nozzle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97205.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">97</span> The Effect of Bottom Shape and Baffle Length on the Flow Field in Stirred Tanks in Turbulent and Transitional Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jie%20Dong">Jie Dong</a>, <a href="https://publications.waset.org/abstracts/search?q=Binjie%20Hu"> Binjie Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrzej%20W%20Pacek"> Andrzej W Pacek</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaogang%20Yang"> Xiaogang Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicholas%20J.%20Miles"> Nicholas J. Miles</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of the shape of the vessel bottom and the length of baffles on the velocity distributions in a turbulent and in a transitional flow has been simulated. The turbulent flow was simulated using standard <em>k</em>-<em>ε</em> model and simulation was verified using LES whereas transitional flow was simulated using only LES. It has been found that both the shape of tank bottom and the baffles’ length has significant effect on the flow pattern and velocity distribution below the impeller. In the dished bottom tank with baffles reaching the edge of the dish, the large rotating volume of liquid was formed below the impeller. Liquid in this rotating region was not fully mixing. A dead zone was formed here. The size and the intensity of circulation within this zone calculated by <em>k</em>-<em>ε</em> model and LES were practically identical what reinforces the accuracy of the numerical simulations. Both types of simulations also show that employing full-length baffles can reduce the size of dead zone formed below the impeller. The LES was also used to simulate the velocity distribution below the impeller in transitional flow and it has been found that secondary circulation loops were formed near the tank bottom in all investigated geometries. However, in this case the length of baffles has smaller effect on the volume of rotating liquid than in the turbulent flow. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=baffles%20length" title="baffles length">baffles length</a>, <a href="https://publications.waset.org/abstracts/search?q=dished%20bottom" title=" dished bottom"> dished bottom</a>, <a href="https://publications.waset.org/abstracts/search?q=dead%20zone" title=" dead zone"> dead zone</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20field" title=" flow field"> flow field</a> </p> <a href="https://publications.waset.org/abstracts/46690/the-effect-of-bottom-shape-and-baffle-length-on-the-flow-field-in-stirred-tanks-in-turbulent-and-transitional-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46690.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">96</span> Supersonic Combustion (Scramjet) Containing Flame-Holder with Slot Injection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anupriya">Anupriya</a>, <a href="https://publications.waset.org/abstracts/search?q=Bikramjit%20Sinfh"> Bikramjit Sinfh</a>, <a href="https://publications.waset.org/abstracts/search?q=Radhay%20Shyam"> Radhay Shyam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to improve mixing phenomena and combustion processes in supersonic flow, the current work has concentrated on identifying the ideal cavity parameters using CFD ANSYS Fluent. Offset ratios (OR) and aft ramp angles () have been manipulated in simulations of several models, but the length-to-depth ratio has remained the same. The length-to-depth ratio of all cavity flows is less than 10, making them all open. Hydrogen fuel was injected into a supersonic air flow with a Mach number of 3.75 using a chamber with a 1 mm diameter and a transverse slot nozzle. The free stream had conditions of a pressure of 1.2 MPa, a temperature of 299K, and a Reynolds number of 2.07x107. This method has the ability to retain a flame since the cavity facilitates rapid mixing of fuel and oxidizer and decreases total pressure losses. The impact of the cavity on combustion efficiency and total pressure loss is discussed, and the results are compared to those of a model without a cavity. Both the mixing qualities and the combustion processes were enhanced in the model with the cavity. The overall pressure loss as well as the effectiveness of the combustion process both increase with the increase in the ramp angle to the rear. When OR is increased, however, resistance to the supersonic flow field is reduced, which has a detrimental effect on both parameters. For a given ramp height, larger pressure losses were observed at steeper ramp angles due to increased eddy-viscous turbulent flow and increased wall drag. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=total%20pressure%20loss" title="total pressure loss">total pressure loss</a>, <a href="https://publications.waset.org/abstracts/search?q=flame%20holder" title=" flame holder"> flame holder</a>, <a href="https://publications.waset.org/abstracts/search?q=supersonic%20combustion" title=" supersonic combustion"> supersonic combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion%20efficiency" title=" combustion efficiency"> combustion efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=cavity" title=" cavity"> cavity</a>, <a href="https://publications.waset.org/abstracts/search?q=nozzle" title=" nozzle"> nozzle</a> </p> <a href="https://publications.waset.org/abstracts/154492/supersonic-combustion-scramjet-containing-flame-holder-with-slot-injection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154492.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">95</span> Computational Fluid Dynamics Simulation of Gas-Liquid Phase Stirred Tank</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thiyam%20Tamphasana%20Devi">Thiyam Tamphasana Devi</a>, <a href="https://publications.waset.org/abstracts/search?q=Bimlesh%20Kumar"> Bimlesh Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A Computational Fluid Dynamics (CFD) technique has been applied to simulate the gas-liquid phase in double stirred tank of Rushton impeller. Eulerian-Eulerian model was adopted to simulate the multiphase with standard correlation of Schiller and Naumann for drag co-efficient. The turbulence was modeled by using standard k-ε turbulence model. The present CFD model predicts flow pattern, local gas hold-up, and local specific area. It also predicts local kLa (mass transfer rate) for single impeller. The predicted results were compared with experimental and CFD results of published literature. The predicted results are slightly over predicted with the experimental results; however, it is in reasonable agreement with other simulated results of published literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eulerian-Eulerian" title="Eulerian-Eulerian">Eulerian-Eulerian</a>, <a href="https://publications.waset.org/abstracts/search?q=gas-hold%20up" title=" gas-hold up"> gas-hold up</a>, <a href="https://publications.waset.org/abstracts/search?q=gas-liquid%20phase" title=" gas-liquid phase"> gas-liquid phase</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20mass%20transfer%20rate" title=" local mass transfer rate"> local mass transfer rate</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20specific%20area" title=" local specific area"> local specific area</a>, <a href="https://publications.waset.org/abstracts/search?q=Rushton%20Impeller" title=" Rushton Impeller"> Rushton Impeller</a> </p> <a href="https://publications.waset.org/abstracts/49631/computational-fluid-dynamics-simulation-of-gas-liquid-phase-stirred-tank" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49631.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">94</span> Simulation of Internal Flow Field of Pitot-Tube Jet Pump</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iqra%20Noor">Iqra Noor</a>, <a href="https://publications.waset.org/abstracts/search?q=Ihtzaz%20Qamar"> Ihtzaz Qamar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pitot-tube Jet pump, single-stage pump with low flow rate and high head, consists of a radial impeller that feeds water to rotating cavity. Water then enters stationary pitot-tube collector (diffuser), which discharges to the outside. By means of ANSYS Fluent 15.0, the internal flow characteristics for Pitot-tube Jet pump with standard pitot and curved pitot are studied. Under design condition, realizable k-e turbulence model and SIMPLEC algorithm are used to calculate 3D flow field inside both pumps. The simulation results reveal that energy is imparted to the flow by impeller and inside the rotor, forced vortex type flow is observed. Total pressure decreases inside pitot-tube whereas static pressure increases. Changing pitot-tube from standard to curved shape results in minimum flow circulation inside pitot-tube and leads to a higher pump performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20circulation" title=" flow circulation"> flow circulation</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20pressure%20pump" title=" high pressure pump"> high pressure pump</a>, <a href="https://publications.waset.org/abstracts/search?q=impeller" title=" impeller"> impeller</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20flow" title=" internal flow"> internal flow</a>, <a href="https://publications.waset.org/abstracts/search?q=pickup%20tube%20pump" title=" pickup tube pump"> pickup tube pump</a>, <a href="https://publications.waset.org/abstracts/search?q=rectangle%20channels" title=" rectangle channels"> rectangle channels</a>, <a href="https://publications.waset.org/abstracts/search?q=rotating%20casing" title=" rotating casing"> rotating casing</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence" title=" turbulence"> turbulence</a> </p> <a href="https://publications.waset.org/abstracts/132118/simulation-of-internal-flow-field-of-pitot-tube-jet-pump" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132118.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">93</span> Investigation of the Flow in Impeller Sidewall Gap of a Centrifugal Pump Using CFD </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammadreza%20DaqiqShirazi">Mohammadreza DaqiqShirazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rouhollah%20Torabi"> Rouhollah Torabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Riasi"> Alireza Riasi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Nourbakhsh"> Ahmad Nourbakhsh </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the flow in a sidewall gap of an impeller which belongs to a centrifugal pump is studied using numerical method. The flow in sidewall gap forms internal leakage and is the source of “disk friction loss” which is the most important cause of reduced efficiency in low specific speed centrifugal pumps. Simulation is done using CFX software and a high quality mesh, therefore the modeling error has been reduced. Navier-Stokes equations have been solved for this domain. In order to predict the turbulence effects the SST model has been employed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=numerical%20study" title="numerical study">numerical study</a>, <a href="https://publications.waset.org/abstracts/search?q=centrifugal%20pumps" title=" centrifugal pumps"> centrifugal pumps</a>, <a href="https://publications.waset.org/abstracts/search?q=disk%20friction%20loss" title=" disk friction loss"> disk friction loss</a>, <a href="https://publications.waset.org/abstracts/search?q=sidewall%20gap" title=" sidewall gap"> sidewall gap</a> </p> <a href="https://publications.waset.org/abstracts/15309/investigation-of-the-flow-in-impeller-sidewall-gap-of-a-centrifugal-pump-using-cfd" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15309.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">530</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=supersonic%20impeller&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=supersonic%20impeller&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=supersonic%20impeller&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=supersonic%20impeller&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=supersonic%20impeller&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>