CINXE.COM
Laser Plasma Interactions Research Papers - Academia.edu
<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Laser Plasma Interactions Research Papers - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "by_tag", 'action': "show_one", 'controller_action': 'by_tag#show_one', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="a8FNQK8LMUJXGhBzz80KQ_2y0-Ylg-3tyJ1S3N-EswS3wmSmy4bmRvO2nh-ACxysx6eDvNoaVUSjszkYrunJlw" /> <link href="/Documents/in/Laser_Plasma_Interactions?after=50%2C12432998" rel="next" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-2b6f90dbd75f5941bc38f4ad716615f3ac449e7398313bb3bc225fba451cd9fa.css" /> <meta name="description" content="View Laser Plasma Interactions Research Papers on Academia.edu for free." /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'by_tag'; var $action_name = "show_one"; var $rails_env = 'production'; var $app_rev = '29cbb9485f79f49ca3eb38b6f0905739256f19a4'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":14030,"monthly_visitors":"103 million","monthly_visitor_count":103095310,"monthly_visitor_count_in_millions":103,"user_count":283439571,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1740252316000); window.Aedu.timeDifference = new Date().getTime() - 1740252316000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link rel="preload" href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" as="style" onload="this.rel='stylesheet'"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-1eb081e01ca8bc0c1b1d866df79d9eb4dd2c484e4beecf76e79a7806c72fee08.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-b42d48e01e9cb3bf5ae55ea154ab7133fe47240c1d7c59b0249065c67d6f65ab.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-f3fdf92d2e211a3fd7a717a75adb7bf4af30f5d7651964d9f223129f218112cd.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://www.academia.edu/Documents/in/Laser_Plasma_Interactions" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-by_tag a-show_one logged_out u-bgColorWhite'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-by_tag a-show_one logged_out u-bgColorWhite'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&c2=26766707&cv=2.0&cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav no-sm no-md"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more <span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i> We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><i class="fa fa-question-circle"></i> Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less <span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <div class="DesignSystem" style="margin-top:-40px"><div class="PageHeader"><div class="container"><div class="row"><style type="text/css">.sor-abstract { display: -webkit-box; overflow: hidden; text-overflow: ellipsis; -webkit-line-clamp: 3; -webkit-box-orient: vertical; }</style><div class="col-xs-12 clearfix"><div class="u-floatLeft"><h1 class="PageHeader-title u-m0x u-fs30">Laser Plasma Interactions</h1><div class="u-tcGrayDark">9,995 Followers</div><div class="u-tcGrayDark u-mt2x">Recent papers in <b>Laser Plasma Interactions</b></div></div></div></div></div></div><div class="TabbedNavigation"><div class="container"><div class="row"><div class="col-xs-12 clearfix"><ul class="nav u-m0x u-p0x list-inline u-displayFlex"><li class="active"><a href="https://www.academia.edu/Documents/in/Laser_Plasma_Interactions">Top Papers</a></li><li><a href="https://www.academia.edu/Documents/in/Laser_Plasma_Interactions/MostCited">Most Cited Papers</a></li><li><a href="https://www.academia.edu/Documents/in/Laser_Plasma_Interactions/MostDownloaded">Most Downloaded Papers</a></li><li><a href="https://www.academia.edu/Documents/in/Laser_Plasma_Interactions/MostRecent">Newest Papers</a></li><li><a class="" href="https://www.academia.edu/People/Laser_Plasma_Interactions">People</a></li></ul></div><style type="text/css">ul.nav{flex-direction:row}@media(max-width: 567px){ul.nav{flex-direction:column}.TabbedNavigation li{max-width:100%}.TabbedNavigation li.active{background-color:var(--background-grey, #dddde2)}.TabbedNavigation li.active:before,.TabbedNavigation li.active:after{display:none}}</style></div></div></div><div class="container"><div class="row"><div class="col-xs-12"><div class="u-displayFlex"><div class="u-flexGrow1"><div class="works"><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_61424944" data-work_id="61424944" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/61424944/Laser_driven_cylindrical_compression_of_targets_for_fast_electron_transport_study_in_warm_and_dense_plasmas">Laser-driven cylindrical compression of targets for fast electron transport study in warm and dense plasmas</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Fast ignition requires a precise knowledge of fast electron propagation in a dense hydrogen plasma. In this context, a dedicated HiPER (High Power laser Energy Research) experiment was performed on the VULCAN laser facility where the... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_61424944" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Fast ignition requires a precise knowledge of fast electron propagation in a dense hydrogen plasma. In this context, a dedicated HiPER (High Power laser Energy Research) experiment was performed on the VULCAN laser facility where the propagation of relativistic electron beams through cylindrically compressed plastic targets was studied. In this paper, we characterize the plasma parameters such as temperature and density during the compression of cylindrical polyimide shells filled with CH foams at three different initial densities. X-ray and proton radiography were used to measure the cylinder radius at different stages of the compression. By comparing both diagnostics results with 2D hydrodynamic simulations, we could infer densities from 2 to 11 g=cm 3 and temperatures from 30 to 120 eV at maximum compression at the center of targets. According to the initial foam density, kinetic, coupled (sometimes degenerated) plasmas were obtained. The temporal and spatial evolution of the resulting areal densities and electrical conductivities allow for testing electron transport in a wide range of configurations. V</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/61424944" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="a631a1d521fd6eb9342adf4bfe828e56" rel="nofollow" data-download="{"attachment_id":74458097,"asset_id":61424944,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/74458097/download_file?st=MTc0MDI1MjMxNSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="104153760" href="https://independent.academia.edu/RashidaJafer">Rashida Jafer</a><script data-card-contents-for-user="104153760" type="text/json">{"id":104153760,"first_name":"Rashida","last_name":"Jafer","domain_name":"independent","page_name":"RashidaJafer","display_name":"Rashida Jafer","profile_url":"https://independent.academia.edu/RashidaJafer?f_ri=20949","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_61424944 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="61424944"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 61424944, container: ".js-paper-rank-work_61424944", }); });</script></li><li class="js-percentile-work_61424944 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 61424944; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_61424944"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_61424944 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="61424944"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 61424944; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=61424944]").text(description); $(".js-view-count-work_61424944").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_61424944").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="61424944"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">17</a> </div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="4987" rel="nofollow" href="https://www.academia.edu/Documents/in/Kinetics">Kinetics</a>, <script data-card-contents-for-ri="4987" type="text/json">{"id":4987,"name":"Kinetics","url":"https://www.academia.edu/Documents/in/Kinetics?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="16012" rel="nofollow" href="https://www.academia.edu/Documents/in/High_Energy_Density_Physics">High Energy Density Physics</a>, <script data-card-contents-for-ri="16012" type="text/json">{"id":16012,"name":"High Energy Density Physics","url":"https://www.academia.edu/Documents/in/High_Energy_Density_Physics?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="20949" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_Plasma_Interactions">Laser Plasma Interactions</a>, <script data-card-contents-for-ri="20949" type="text/json">{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="33315" rel="nofollow" href="https://www.academia.edu/Documents/in/Inertial_Fusion_Energy">Inertial Fusion Energy</a><script data-card-contents-for-ri="33315" type="text/json">{"id":33315,"name":"Inertial Fusion Energy","url":"https://www.academia.edu/Documents/in/Inertial_Fusion_Energy?f_ri=20949","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=61424944]'), work: {"id":61424944,"title":"Laser-driven cylindrical compression of targets for fast electron transport study in warm and dense plasmas","created_at":"2021-11-09T13:03:41.912-08:00","url":"https://www.academia.edu/61424944/Laser_driven_cylindrical_compression_of_targets_for_fast_electron_transport_study_in_warm_and_dense_plasmas?f_ri=20949","dom_id":"work_61424944","summary":"Fast ignition requires a precise knowledge of fast electron propagation in a dense hydrogen plasma. In this context, a dedicated HiPER (High Power laser Energy Research) experiment was performed on the VULCAN laser facility where the propagation of relativistic electron beams through cylindrically compressed plastic targets was studied. In this paper, we characterize the plasma parameters such as temperature and density during the compression of cylindrical polyimide shells filled with CH foams at three different initial densities. X-ray and proton radiography were used to measure the cylinder radius at different stages of the compression. By comparing both diagnostics results with 2D hydrodynamic simulations, we could infer densities from 2 to 11 g=cm 3 and temperatures from 30 to 120 eV at maximum compression at the center of targets. According to the initial foam density, kinetic, coupled (sometimes degenerated) plasmas were obtained. The temporal and spatial evolution of the resulting areal densities and electrical conductivities allow for testing electron transport in a wide range of configurations. V","downloadable_attachments":[{"id":74458097,"asset_id":61424944,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":104153760,"first_name":"Rashida","last_name":"Jafer","domain_name":"independent","page_name":"RashidaJafer","display_name":"Rashida Jafer","profile_url":"https://independent.academia.edu/RashidaJafer?f_ri=20949","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":4987,"name":"Kinetics","url":"https://www.academia.edu/Documents/in/Kinetics?f_ri=20949","nofollow":true},{"id":16012,"name":"High Energy Density Physics","url":"https://www.academia.edu/Documents/in/High_Energy_Density_Physics?f_ri=20949","nofollow":true},{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true},{"id":33315,"name":"Inertial Fusion Energy","url":"https://www.academia.edu/Documents/in/Inertial_Fusion_Energy?f_ri=20949","nofollow":true},{"id":56001,"name":"X Rays","url":"https://www.academia.edu/Documents/in/X_Rays?f_ri=20949"},{"id":60653,"name":"Transport Properties","url":"https://www.academia.edu/Documents/in/Transport_Properties?f_ri=20949"},{"id":80799,"name":"Classical Physics","url":"https://www.academia.edu/Documents/in/Classical_Physics?f_ri=20949"},{"id":186094,"name":"Electron Transport","url":"https://www.academia.edu/Documents/in/Electron_Transport?f_ri=20949"},{"id":323552,"name":"High Power","url":"https://www.academia.edu/Documents/in/High_Power?f_ri=20949"},{"id":436755,"name":"Degeneration","url":"https://www.academia.edu/Documents/in/Degeneration?f_ri=20949"},{"id":506413,"name":"Laser Matter Interactions","url":"https://www.academia.edu/Documents/in/Laser_Matter_Interactions?f_ri=20949"},{"id":882075,"name":"Light Propagation","url":"https://www.academia.edu/Documents/in/Light_Propagation?f_ri=20949"},{"id":912885,"name":"Gamma Ray","url":"https://www.academia.edu/Documents/in/Gamma_Ray?f_ri=20949"},{"id":920313,"name":"Electron Beam","url":"https://www.academia.edu/Documents/in/Electron_Beam?f_ri=20949"},{"id":1202042,"name":"Electric Conductivity","url":"https://www.academia.edu/Documents/in/Electric_Conductivity?f_ri=20949"},{"id":1753694,"name":"Plasma Diagnostic","url":"https://www.academia.edu/Documents/in/Plasma_Diagnostic?f_ri=20949"},{"id":2756779,"name":"transport process","url":"https://www.academia.edu/Documents/in/transport_process?f_ri=20949"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_35938074" data-work_id="35938074" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/35938074/Call_for_papers_High_Power_Laser_Systems_and_Applications">Call for papers: High Power Laser Systems and Applications</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized"><a href="http://www.hplsa2018.com" rel="nofollow">www.hplsa2018.com</a> On behalf of the Organizing Committee, we extend a warm and cordial welcome to you to be part of 22th Symposium on High Power Laser Systems and Applications, held conjointly with eminent researchers and scholars from... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_35938074" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden"><a href="http://www.hplsa2018.com" rel="nofollow">www.hplsa2018.com</a> <br /> <br />On behalf of the Organizing Committee, we extend a warm and cordial welcome to you to be part of 22th Symposium on High Power Laser Systems and Applications, held conjointly with eminent researchers and scholars from all around the globe during October 9 - 12, 2018 in the amazing venue of Villa Mondragone, Frascati, near Rome, Italy. <br />You can be a part of this event by participating as a speaker by giving oral presentation or you can give poster presentation in your area of expertise. <br />Selected papers will be published in the Proceedings published by SPIE. <br />The conference will also provide delegates with the opportunity to consolidate their knowledge and understanding of the latest scientific advancements on laser systems and their applications. <br /> <br />Welcome in Frascati!</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/35938074" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="bac45e5eca1da7f449f65a7a7facc1d3" rel="nofollow" data-download="{"attachment_id":56910362,"asset_id":35938074,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/56910362/download_file?st=MTc0MDI1MjMxNSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="4078142" href="https://enea.academia.edu/PaoloDiLazzaro">Paolo Di Lazzaro</a><script data-card-contents-for-user="4078142" type="text/json">{"id":4078142,"first_name":"Paolo","last_name":"Di Lazzaro","domain_name":"enea","page_name":"PaoloDiLazzaro","display_name":"Paolo Di Lazzaro","profile_url":"https://enea.academia.edu/PaoloDiLazzaro?f_ri=20949","photo":"https://0.academia-photos.com/4078142/1877033/31450696/s65_paolo.di_lazzaro.jpg"}</script></span></span></li><li class="js-paper-rank-work_35938074 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="35938074"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 35938074, container: ".js-paper-rank-work_35938074", }); });</script></li><li class="js-percentile-work_35938074 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 35938074; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_35938074"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_35938074 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="35938074"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 35938074; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=35938074]").text(description); $(".js-view-count-work_35938074").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_35938074").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="35938074"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">31</a> </div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="1430" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_Spectroscopy">Laser Spectroscopy</a>, <script data-card-contents-for-ri="1430" type="text/json">{"id":1430,"name":"Laser Spectroscopy","url":"https://www.academia.edu/Documents/in/Laser_Spectroscopy?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="2415" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_Physics">Laser Physics</a>, <script data-card-contents-for-ri="2415" type="text/json">{"id":2415,"name":"Laser Physics","url":"https://www.academia.edu/Documents/in/Laser_Physics?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="2416" rel="nofollow" href="https://www.academia.edu/Documents/in/Free_Electron_Lasers">Free Electron Lasers</a>, <script data-card-contents-for-ri="2416" type="text/json">{"id":2416,"name":"Free Electron Lasers","url":"https://www.academia.edu/Documents/in/Free_Electron_Lasers?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="4135" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser">Laser</a><script data-card-contents-for-ri="4135" type="text/json">{"id":4135,"name":"Laser","url":"https://www.academia.edu/Documents/in/Laser?f_ri=20949","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=35938074]'), work: {"id":35938074,"title":"Call for papers: High Power Laser Systems and Applications","created_at":"2018-02-16T07:44:38.114-08:00","url":"https://www.academia.edu/35938074/Call_for_papers_High_Power_Laser_Systems_and_Applications?f_ri=20949","dom_id":"work_35938074","summary":"www.hplsa2018.com\r\n\r\nOn behalf of the Organizing Committee, we extend a warm and cordial welcome to you to be part of 22th Symposium on High Power Laser Systems and Applications, held conjointly with eminent researchers and scholars from all around the globe during October 9 - 12, 2018 in the amazing venue of Villa Mondragone, Frascati, near Rome, Italy.\r\nYou can be a part of this event by participating as a speaker by giving oral presentation or you can give poster presentation in your area of expertise.\r\nSelected papers will be published in the Proceedings published by SPIE.\r\nThe conference will also provide delegates with the opportunity to consolidate their knowledge and understanding of the latest scientific advancements on laser systems and their applications.\r\n\r\nWelcome in Frascati!","downloadable_attachments":[{"id":56910362,"asset_id":35938074,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":4078142,"first_name":"Paolo","last_name":"Di Lazzaro","domain_name":"enea","page_name":"PaoloDiLazzaro","display_name":"Paolo Di Lazzaro","profile_url":"https://enea.academia.edu/PaoloDiLazzaro?f_ri=20949","photo":"https://0.academia-photos.com/4078142/1877033/31450696/s65_paolo.di_lazzaro.jpg"}],"research_interests":[{"id":1430,"name":"Laser Spectroscopy","url":"https://www.academia.edu/Documents/in/Laser_Spectroscopy?f_ri=20949","nofollow":true},{"id":2415,"name":"Laser Physics","url":"https://www.academia.edu/Documents/in/Laser_Physics?f_ri=20949","nofollow":true},{"id":2416,"name":"Free Electron Lasers","url":"https://www.academia.edu/Documents/in/Free_Electron_Lasers?f_ri=20949","nofollow":true},{"id":4135,"name":"Laser","url":"https://www.academia.edu/Documents/in/Laser?f_ri=20949","nofollow":true},{"id":4655,"name":"Laser-Matter interactions","url":"https://www.academia.edu/Documents/in/Laser-Matter_interactions?f_ri=20949"},{"id":11367,"name":"Laser Materials Processings - Photonic devices - Nonlinear optics","url":"https://www.academia.edu/Documents/in/Laser_Materials_Processings_-_Photonic_devices_-_Nonlinear_optics?f_ri=20949"},{"id":15600,"name":"Femtosecond Laser","url":"https://www.academia.edu/Documents/in/Femtosecond_Laser?f_ri=20949"},{"id":16515,"name":"Fiber Lasers","url":"https://www.academia.edu/Documents/in/Fiber_Lasers?f_ri=20949"},{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949"},{"id":31163,"name":"Fiber Laser","url":"https://www.academia.edu/Documents/in/Fiber_Laser?f_ri=20949"},{"id":34046,"name":"Laser Material Processing","url":"https://www.academia.edu/Documents/in/Laser_Material_Processing?f_ri=20949"},{"id":45583,"name":"Laser Ablation - Inductively Coupled Plasma - Mass Spectrometry","url":"https://www.academia.edu/Documents/in/Laser_Ablation_-_Inductively_Coupled_Plasma_-_Mass_Spectrometry?f_ri=20949"},{"id":47865,"name":"Laser Welding","url":"https://www.academia.edu/Documents/in/Laser_Welding?f_ri=20949"},{"id":50972,"name":"LASER SHOCK PEENING SUPERFICIAL TREATMENT","url":"https://www.academia.edu/Documents/in/LASER_SHOCK_PEENING_SUPERFICIAL_TREATMENT?f_ri=20949"},{"id":58933,"name":"Organic Semiconductor Laser","url":"https://www.academia.edu/Documents/in/Organic_Semiconductor_Laser?f_ri=20949"},{"id":62565,"name":"Diode Lasers","url":"https://www.academia.edu/Documents/in/Diode_Lasers?f_ri=20949"},{"id":66343,"name":"Pulsed Laser Deposition","url":"https://www.academia.edu/Documents/in/Pulsed_Laser_Deposition?f_ri=20949"},{"id":70361,"name":"Conferences","url":"https://www.academia.edu/Documents/in/Conferences?f_ri=20949"},{"id":75396,"name":"Conferences and Seminars","url":"https://www.academia.edu/Documents/in/Conferences_and_Seminars?f_ri=20949"},{"id":80221,"name":"Lasers","url":"https://www.academia.edu/Documents/in/Lasers?f_ri=20949"},{"id":113460,"name":"Laser Scanning","url":"https://www.academia.edu/Documents/in/Laser_Scanning?f_ri=20949"},{"id":120856,"name":"Semiconductor Lasers","url":"https://www.academia.edu/Documents/in/Semiconductor_Lasers?f_ri=20949"},{"id":159153,"name":"Laser Ablation","url":"https://www.academia.edu/Documents/in/Laser_Ablation?f_ri=20949"},{"id":165236,"name":"3D Laser scanning","url":"https://www.academia.edu/Documents/in/3D_Laser_scanning?f_ri=20949"},{"id":383380,"name":"Ring Laser Gyroscopes","url":"https://www.academia.edu/Documents/in/Ring_Laser_Gyroscopes?f_ri=20949"},{"id":432208,"name":"3D laser scanner","url":"https://www.academia.edu/Documents/in/3D_laser_scanner?f_ri=20949"},{"id":530721,"name":"Selective Laser Sintering","url":"https://www.academia.edu/Documents/in/Selective_Laser_Sintering?f_ri=20949"},{"id":591158,"name":"Laser Induced Breakdown Spectroscopy","url":"https://www.academia.edu/Documents/in/Laser_Induced_Breakdown_Spectroscopy?f_ri=20949"},{"id":729676,"name":"Study of Laser Produced Plasma","url":"https://www.academia.edu/Documents/in/Study_of_Laser_Produced_Plasma?f_ri=20949"},{"id":931781,"name":"Laser Communication Networks","url":"https://www.academia.edu/Documents/in/Laser_Communication_Networks?f_ri=20949"},{"id":953615,"name":"Terrestrial Laser Scanning (TLS)","url":"https://www.academia.edu/Documents/in/Terrestrial_Laser_Scanning_TLS_?f_ri=20949"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_13160069" data-work_id="13160069" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/13160069/Self_focusing_of_Hermite_Gaussian_laser_beams_in_plasma_under_plasma_density_ramp">Self-focusing of Hermite–Gaussian laser beams in plasma under plasma density ramp</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Self-focusing of Hermite–Gaussian laser beams in plasma under plasma density ramp has been investigated. It is known that a laser beam shows an oscillatory self-focusing and defocusing behavior with the propagation distance. To overcome... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_13160069" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Self-focusing of Hermite–Gaussian laser beams in plasma under plasma density ramp has been<br />investigated. It is known that a laser beam shows an oscillatory self-focusing and defocusing behavior<br />with the propagation distance. To overcome the defocusing, localized upward plasma density ramp is<br />introduced, so that the laser beam attains a minimum spot size and maintains it with only a mild ripple.<br />The density ramp could be important for the self-focusing of a Hermite–Gaussian laser by choosing the<br />laser and plasma parameters appropriately. Self-focusing becomes stronger as the propagation distance<br />increases. The behavior of beam-width parameters with the distance of propagation is presented<br />graphically.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/13160069" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="98212856d4964dd236692c9897e38e48" rel="nofollow" data-download="{"attachment_id":37964240,"asset_id":13160069,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/37964240/download_file?st=MTc0MDI1MjMxNSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="31179609" href="https://allduniv.academia.edu/NitiKant">Niti Kant</a><script data-card-contents-for-user="31179609" type="text/json">{"id":31179609,"first_name":"Niti","last_name":"Kant","domain_name":"allduniv","page_name":"NitiKant","display_name":"Niti Kant","profile_url":"https://allduniv.academia.edu/NitiKant?f_ri=20949","photo":"https://0.academia-photos.com/31179609/9658074/77615836/s65_niti.kant.jpeg"}</script></span></span></li><li class="js-paper-rank-work_13160069 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="13160069"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 13160069, container: ".js-paper-rank-work_13160069", }); });</script></li><li class="js-percentile-work_13160069 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 13160069; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_13160069"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_13160069 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="13160069"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 13160069; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=13160069]").text(description); $(".js-view-count-work_13160069").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_13160069").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="13160069"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i></div><span class="InlineList-item-text u-textTruncate u-pl6x"><a class="InlineList-item-text" data-has-card-for-ri="20949" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_Plasma_Interactions">Laser Plasma Interactions</a><script data-card-contents-for-ri="20949" type="text/json">{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true}</script></span></li><script>(function(){ if (false) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=13160069]'), work: {"id":13160069,"title":"Self-focusing of Hermite–Gaussian laser beams in plasma under plasma density ramp","created_at":"2015-06-21T20:55:44.246-07:00","url":"https://www.academia.edu/13160069/Self_focusing_of_Hermite_Gaussian_laser_beams_in_plasma_under_plasma_density_ramp?f_ri=20949","dom_id":"work_13160069","summary":"Self-focusing of Hermite–Gaussian laser beams in plasma under plasma density ramp has been\ninvestigated. It is known that a laser beam shows an oscillatory self-focusing and defocusing behavior\nwith the propagation distance. To overcome the defocusing, localized upward plasma density ramp is\nintroduced, so that the laser beam attains a minimum spot size and maintains it with only a mild ripple.\nThe density ramp could be important for the self-focusing of a Hermite–Gaussian laser by choosing the\nlaser and plasma parameters appropriately. Self-focusing becomes stronger as the propagation distance\nincreases. The behavior of beam-width parameters with the distance of propagation is presented\ngraphically.","downloadable_attachments":[{"id":37964240,"asset_id":13160069,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":31179609,"first_name":"Niti","last_name":"Kant","domain_name":"allduniv","page_name":"NitiKant","display_name":"Niti Kant","profile_url":"https://allduniv.academia.edu/NitiKant?f_ri=20949","photo":"https://0.academia-photos.com/31179609/9658074/77615836/s65_niti.kant.jpeg"}],"research_interests":[{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_42262295" data-work_id="42262295" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/42262295/%D8%A7%D9%84%D9%83%D9%8A%D9%85%D9%8A%D8%A7%D8%A1_%D8%A7%D9%84%D8%B6%D9%88%D8%A6%D9%8A%D8%A9_%D8%A7%D9%84%D8%B5%D9%88%D8%B1%D8%A9_%D8%A7%D9%84%D9%83%D8%A7%D9%85%D9%84%D8%A9_%D9%84%D8%AA%D9%81%D8%A7%D8%B9%D9%84%D8%A7%D8%AA_%D8%A7%D9%84%D8%B6%D9%88%D8%A1_%D9%88%D8%A7%D9%84%D9%85%D8%A7%D8%AF%D8%A9">الكيمياء الضوئية: الصورة الكاملة لتفاعلات الضوء والمادة</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">معادلات علي يوسف تم اكتشافها منذ 2016 بعدما قرأت كتب عن الثيرمودايناميك والكيمياء الفيزيائية، ولاحظت ان تناول هذه الكتب في عنوان الكيمياء الضوئية ليس مكتمل وانما هنالك ابواب ناقصة فمثلا لماذا يتفاعل الضوء مع هذه المادة دون غيرها، والظواهر... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_42262295" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">معادلات علي يوسف تم اكتشافها منذ 2016 بعدما قرأت كتب عن الثيرمودايناميك والكيمياء الفيزيائية، ولاحظت ان تناول هذه الكتب في عنوان الكيمياء الضوئية ليس مكتمل وانما هنالك ابواب ناقصة فمثلا لماذا يتفاعل الضوء مع هذه المادة دون غيرها، والظواهر الضوئية التي تحدث بصورة طبيعية مثل الفلورة Fluorescence والفسفرة Phosphorescence و الأنبعاث الضوئي photoluminescence بالاضاقة الي الكهروضوئية Photoelectric وغيرها من التفاعلات التي يدخل فيها الضوء واهم مثال عليها هي الظواهر الضوئية غير الخطية للمواد Nonlinear Optics ، كل هذه الظواهر وجدت تفسيرات علمية لها وتطبيقات ولكن السؤال هل هنالك قانون واحد يجمعها؟ مهمة الفيزيائي حسب اعتقادي هي ان يرصد هذه الظواهر ثم جمعها في قانون فيزيائي واحد بحيث يسهل علينا التنبؤ بتصرفات هذه الظواهر في المستقبل مهما اختلفت الظروف. حقيقة كنت اظن من البداية ان قوانين الثيرمودايناميك يمكن ان تقودني الي هذه الفكرة لذا اعتكفت على دراستها حتى توصلت الي هذه المعادلات.<br />ومما اكتشفته بعد ذلك ان معادلاتي والبالغ عددها اكثر من ثلاثين معادلة تستطيع تفسير اغلب الظواهر الضوئية في هذا الكون وذلك بسبب اندماجها وملائمتها الكاملة لقوانين الثيرمودايناميك، فقد ارتبطت بمفاهيم مثل الانثالبي والجهد الكيميائي وثابت الاتزان وغيرها من المفاهيم التي تعتبر قلب علم الديناميكا الحرارية. حتى التفاعلات الكيميائية المعقدة مثل تفاعلات الانزيمات وغيرها يمكن ان توصف بهذه المفاهيم.<br />احدى النظريات المبشرة -امل ان تكون كذلك- منذ اكتشاف معادلات علي يوسف هي ان الضوء وخصوصا الليزر وجد طريقه في ان يحل مكان البترول والوقود الاحفري في توفير الطاقة للتصنيعات الكيميائية، وبالتالي يمكن توفير هذه المصادر كمواد خام تدخل في التصنيعات مباشر بدلا من أراقتها لتوفير الطاقة. كما امل ان علم الطاقة المتجددة سيأخذ مفاهيم اخرى خصوصا بعد ادخال علم الليزر عالي الطاقة والكثافة الي الثقافة العلمية وأرث المعرفة الانسانية. <br />معادلات علي بمشيئة الله ستغير بعض المفاهيم عن الضوء وستكون دراسات الضوء عند التفاعلات الكيميائية والتي تغتبر عالم لوحدها وذلك للطريقة الغريبة التي يتصرفها الضوء عند التفاعلات . وكمثال لذلك انه يعتقد ان عمل الليزر عند تفاعله مع سطوح المواد هو فقط تكوين بلازما ودرجات حرارة عالية يفضي الي انصهار هذا السطح وعمل فجوة بداخله بسبب هذه الحرارة ولكن معادلات علي يوسف تستطيع الاضافة علي ذلك بأن الليزر يستطيع ان يحدث هذه الفجوة بواسطة تبخير جزيئات او ذرات هذا السطح اذا تم ضبط طاقة وكثافة هذا الليزر للتغلب على القوة الرابطة لذرات هذا السطح دون عمل بلازما امام هذا السطح. ايضا من المفاهيم التي قد تغيرها معادلات علي يوسف هو الفهم السائد بأن الضوء عموما يستطيع أبداء التفاعلات او أنهائها ، لكن الفهم الصحيح ان الضوء يستطيع ان يتحكم تحكما كاملا في قيادة اي تفاعل كيميائي وبذلك يمكن له ان يتحكم في 90% من تكلفة التصنيعات العالمية عموما و الكيميائية خصوصا.<br />هذا اول كتاب لي باللغة العربية وسابع طبعة من سلسلة تفسير علاقات الضوء والمادة باستخدام معادلات علي يوسف ، هذه المعادلات التي اجتهدت فيها طيلة اربع سنوات في تطويرها وتفسيرها لتقدم امثل اداء في تفسير هذه العلاقة ، هذا الكتاب اسال الله ان يكون اضافة حقيقية الي المعرفة العربية. <br />تنقسم محتويات هذا الكتاب الي ستة فصول، ينتاول الفصل الاول الاشتقاق او مصدر معادلات علي يوسف من القوانين الرئيسية وهي معادلة ارهينيوس ودالة موجة الضوء ومعادلة شرودينجر او الهاملتوليان ثم القوانين التي تحكم الكثافة الاشعاعية بمركبات الموجة مثل المجال الكهربائي والمغناطيسي.<br />الفصل الثاني يقدم تعريفات اكثر عن حدود المعادلة الرئيسية وتفسير بعض سلوك المعادلة. الفصل الثالث يتحدث عن سلوك المعادلة في الواقع ، وبسبب ان الطبيعة لها قوانينها الخاصة وبالتالي ليس اي قانون يضعه الانسان ستقبله الطبيعة لان الانسان ليس من خلق الطبيعة لهذا مقارنة قوانينه وافتراضاته مع سلوك الطبيعة امر مهم جدا وضروري.<br />الفصل الرابع يتحدث عن علاقة معادلة علي يوسف بمفاهيم الثيرمودايناميك مثل الانثالبي والطاقة الحرة والانتروبيا وثابت الاتزان الكيميائي، هذه المفاهيم هي المحرك الرئيسي لجميع التفاعلات الكيميائية في هذا الكون. ادخال هذه المعادلة في تلك المفاهيم اعطت المعادلة حجم اكبر وجعلها اكثر دقة وشمولية لوصف الظواهر الضوئية في الكون.<br />الفصل الخامس عبارة عن مثال رياضي تقريبي قمت به لمقارنة النتيجة مع التجارب والابحاث العالمية والحمد لله تحصلت علي نتائج مرضية بالرغم من عدم دقتها وذلك لان المعادلة تحتوي على بعض الثوابت التي نحتاج الي تعيينها معمليا.<br />الفصل السادس يتحدث عن مقارنة المعادلات مع بعض القوانين الكونية التي تم اكتشافها في مطلع القرن السابق مثل معادلة اينشتاين للظاهرة الكهروضوئية و تشتت ريلاي وقد تحصلت على نتائج مرضية بحيث استطاعت معادلاتي تفسير هذه القوانين والحمد لله. بعد ذلك تاتي الخاتمة ثم قائمة المراجع ولله الحمد والمنة.<br />ختاما اتمنى لكم قراءة مفيدة لهذا الكتاب وامل ان يتلمس عندكم روح الابداع والاقدام لأنه في الحقيقة هذا الكتاب قد فتح بابا جديدا في مجال الفوتونات خصوصا يمكن ان يفضي الي تطبيقات كتيرة وعديدة ويضيف مفردات وافكار في جسم المعرفة الانسانية.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/42262295" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="9412ad10411fa9f06fb404d1a55d3442" rel="nofollow" data-download="{"attachment_id":62414391,"asset_id":42262295,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/62414391/download_file?st=MTc0MDI1MjMxNSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="75741122" href="https://sustech.academia.edu/AliYousifHassan">Ali Yousif Hassan Edriss</a><script data-card-contents-for-user="75741122" type="text/json">{"id":75741122,"first_name":"Ali Yousif","last_name":"Hassan Edriss","domain_name":"sustech","page_name":"AliYousifHassan","display_name":"Ali Yousif Hassan Edriss","profile_url":"https://sustech.academia.edu/AliYousifHassan?f_ri=20949","photo":"https://0.academia-photos.com/75741122/19929450/19731804/s65_ali.hassan.jpg"}</script></span></span></li><li class="js-paper-rank-work_42262295 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="42262295"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 42262295, container: ".js-paper-rank-work_42262295", }); });</script></li><li class="js-percentile-work_42262295 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 42262295; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_42262295"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_42262295 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="42262295"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 42262295; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=42262295]").text(description); $(".js-view-count-work_42262295").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_42262295").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="42262295"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">20</a> </div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="72" rel="nofollow" href="https://www.academia.edu/Documents/in/Chemical_Engineering">Chemical Engineering</a>, <script data-card-contents-for-ri="72" type="text/json">{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="498" rel="nofollow" href="https://www.academia.edu/Documents/in/Physics">Physics</a>, <script data-card-contents-for-ri="498" type="text/json">{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="516" rel="nofollow" href="https://www.academia.edu/Documents/in/Optics">Optics</a>, <script data-card-contents-for-ri="516" type="text/json">{"id":516,"name":"Optics","url":"https://www.academia.edu/Documents/in/Optics?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="518" rel="nofollow" href="https://www.academia.edu/Documents/in/Quantum_Physics">Quantum Physics</a><script data-card-contents-for-ri="518" type="text/json">{"id":518,"name":"Quantum Physics","url":"https://www.academia.edu/Documents/in/Quantum_Physics?f_ri=20949","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=42262295]'), work: {"id":42262295,"title":"الكيمياء الضوئية: الصورة الكاملة لتفاعلات الضوء والمادة","created_at":"2020-03-19T10:30:15.345-07:00","url":"https://www.academia.edu/42262295/%D8%A7%D9%84%D9%83%D9%8A%D9%85%D9%8A%D8%A7%D8%A1_%D8%A7%D9%84%D8%B6%D9%88%D8%A6%D9%8A%D8%A9_%D8%A7%D9%84%D8%B5%D9%88%D8%B1%D8%A9_%D8%A7%D9%84%D9%83%D8%A7%D9%85%D9%84%D8%A9_%D9%84%D8%AA%D9%81%D8%A7%D8%B9%D9%84%D8%A7%D8%AA_%D8%A7%D9%84%D8%B6%D9%88%D8%A1_%D9%88%D8%A7%D9%84%D9%85%D8%A7%D8%AF%D8%A9?f_ri=20949","dom_id":"work_42262295","summary":"معادلات علي يوسف تم اكتشافها منذ 2016 بعدما قرأت كتب عن الثيرمودايناميك والكيمياء الفيزيائية، ولاحظت ان تناول هذه الكتب في عنوان الكيمياء الضوئية ليس مكتمل وانما هنالك ابواب ناقصة فمثلا لماذا يتفاعل الضوء مع هذه المادة دون غيرها، والظواهر الضوئية التي تحدث بصورة طبيعية مثل الفلورة Fluorescence والفسفرة Phosphorescence و الأنبعاث الضوئي photoluminescence بالاضاقة الي الكهروضوئية Photoelectric وغيرها من التفاعلات التي يدخل فيها الضوء واهم مثال عليها هي الظواهر الضوئية غير الخطية للمواد Nonlinear Optics ، كل هذه الظواهر وجدت تفسيرات علمية لها وتطبيقات ولكن السؤال هل هنالك قانون واحد يجمعها؟ مهمة الفيزيائي حسب اعتقادي هي ان يرصد هذه الظواهر ثم جمعها في قانون فيزيائي واحد بحيث يسهل علينا التنبؤ بتصرفات هذه الظواهر في المستقبل مهما اختلفت الظروف. حقيقة كنت اظن من البداية ان قوانين الثيرمودايناميك يمكن ان تقودني الي هذه الفكرة لذا اعتكفت على دراستها حتى توصلت الي هذه المعادلات.\nومما اكتشفته بعد ذلك ان معادلاتي والبالغ عددها اكثر من ثلاثين معادلة تستطيع تفسير اغلب الظواهر الضوئية في هذا الكون وذلك بسبب اندماجها وملائمتها الكاملة لقوانين الثيرمودايناميك، فقد ارتبطت بمفاهيم مثل الانثالبي والجهد الكيميائي وثابت الاتزان وغيرها من المفاهيم التي تعتبر قلب علم الديناميكا الحرارية. حتى التفاعلات الكيميائية المعقدة مثل تفاعلات الانزيمات وغيرها يمكن ان توصف بهذه المفاهيم.\nاحدى النظريات المبشرة -امل ان تكون كذلك- منذ اكتشاف معادلات علي يوسف هي ان الضوء وخصوصا الليزر وجد طريقه في ان يحل مكان البترول والوقود الاحفري في توفير الطاقة للتصنيعات الكيميائية، وبالتالي يمكن توفير هذه المصادر كمواد خام تدخل في التصنيعات مباشر بدلا من أراقتها لتوفير الطاقة. كما امل ان علم الطاقة المتجددة سيأخذ مفاهيم اخرى خصوصا بعد ادخال علم الليزر عالي الطاقة والكثافة الي الثقافة العلمية وأرث المعرفة الانسانية. \nمعادلات علي بمشيئة الله ستغير بعض المفاهيم عن الضوء وستكون دراسات الضوء عند التفاعلات الكيميائية والتي تغتبر عالم لوحدها وذلك للطريقة الغريبة التي يتصرفها الضوء عند التفاعلات . وكمثال لذلك انه يعتقد ان عمل الليزر عند تفاعله مع سطوح المواد هو فقط تكوين بلازما ودرجات حرارة عالية يفضي الي انصهار هذا السطح وعمل فجوة بداخله بسبب هذه الحرارة ولكن معادلات علي يوسف تستطيع الاضافة علي ذلك بأن الليزر يستطيع ان يحدث هذه الفجوة بواسطة تبخير جزيئات او ذرات هذا السطح اذا تم ضبط طاقة وكثافة هذا الليزر للتغلب على القوة الرابطة لذرات هذا السطح دون عمل بلازما امام هذا السطح. ايضا من المفاهيم التي قد تغيرها معادلات علي يوسف هو الفهم السائد بأن الضوء عموما يستطيع أبداء التفاعلات او أنهائها ، لكن الفهم الصحيح ان الضوء يستطيع ان يتحكم تحكما كاملا في قيادة اي تفاعل كيميائي وبذلك يمكن له ان يتحكم في 90% من تكلفة التصنيعات العالمية عموما و الكيميائية خصوصا.\nهذا اول كتاب لي باللغة العربية وسابع طبعة من سلسلة تفسير علاقات الضوء والمادة باستخدام معادلات علي يوسف ، هذه المعادلات التي اجتهدت فيها طيلة اربع سنوات في تطويرها وتفسيرها لتقدم امثل اداء في تفسير هذه العلاقة ، هذا الكتاب اسال الله ان يكون اضافة حقيقية الي المعرفة العربية. \nتنقسم محتويات هذا الكتاب الي ستة فصول، ينتاول الفصل الاول الاشتقاق او مصدر معادلات علي يوسف من القوانين الرئيسية وهي معادلة ارهينيوس ودالة موجة الضوء ومعادلة شرودينجر او الهاملتوليان ثم القوانين التي تحكم الكثافة الاشعاعية بمركبات الموجة مثل المجال الكهربائي والمغناطيسي.\nالفصل الثاني يقدم تعريفات اكثر عن حدود المعادلة الرئيسية وتفسير بعض سلوك المعادلة. الفصل الثالث يتحدث عن سلوك المعادلة في الواقع ، وبسبب ان الطبيعة لها قوانينها الخاصة وبالتالي ليس اي قانون يضعه الانسان ستقبله الطبيعة لان الانسان ليس من خلق الطبيعة لهذا مقارنة قوانينه وافتراضاته مع سلوك الطبيعة امر مهم جدا وضروري.\nالفصل الرابع يتحدث عن علاقة معادلة علي يوسف بمفاهيم الثيرمودايناميك مثل الانثالبي والطاقة الحرة والانتروبيا وثابت الاتزان الكيميائي، هذه المفاهيم هي المحرك الرئيسي لجميع التفاعلات الكيميائية في هذا الكون. ادخال هذه المعادلة في تلك المفاهيم اعطت المعادلة حجم اكبر وجعلها اكثر دقة وشمولية لوصف الظواهر الضوئية في الكون.\nالفصل الخامس عبارة عن مثال رياضي تقريبي قمت به لمقارنة النتيجة مع التجارب والابحاث العالمية والحمد لله تحصلت علي نتائج مرضية بالرغم من عدم دقتها وذلك لان المعادلة تحتوي على بعض الثوابت التي نحتاج الي تعيينها معمليا.\nالفصل السادس يتحدث عن مقارنة المعادلات مع بعض القوانين الكونية التي تم اكتشافها في مطلع القرن السابق مثل معادلة اينشتاين للظاهرة الكهروضوئية و تشتت ريلاي وقد تحصلت على نتائج مرضية بحيث استطاعت معادلاتي تفسير هذه القوانين والحمد لله. بعد ذلك تاتي الخاتمة ثم قائمة المراجع ولله الحمد والمنة.\nختاما اتمنى لكم قراءة مفيدة لهذا الكتاب وامل ان يتلمس عندكم روح الابداع والاقدام لأنه في الحقيقة هذا الكتاب قد فتح بابا جديدا في مجال الفوتونات خصوصا يمكن ان يفضي الي تطبيقات كتيرة وعديدة ويضيف مفردات وافكار في جسم المعرفة الانسانية.\n","downloadable_attachments":[{"id":62414391,"asset_id":42262295,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":75741122,"first_name":"Ali Yousif","last_name":"Hassan Edriss","domain_name":"sustech","page_name":"AliYousifHassan","display_name":"Ali Yousif Hassan Edriss","profile_url":"https://sustech.academia.edu/AliYousifHassan?f_ri=20949","photo":"https://0.academia-photos.com/75741122/19929450/19731804/s65_ali.hassan.jpg"}],"research_interests":[{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering?f_ri=20949","nofollow":true},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics?f_ri=20949","nofollow":true},{"id":516,"name":"Optics","url":"https://www.academia.edu/Documents/in/Optics?f_ri=20949","nofollow":true},{"id":518,"name":"Quantum Physics","url":"https://www.academia.edu/Documents/in/Quantum_Physics?f_ri=20949","nofollow":true},{"id":1430,"name":"Laser Spectroscopy","url":"https://www.academia.edu/Documents/in/Laser_Spectroscopy?f_ri=20949"},{"id":4135,"name":"Laser","url":"https://www.academia.edu/Documents/in/Laser?f_ri=20949"},{"id":5104,"name":"Photochemistry","url":"https://www.academia.edu/Documents/in/Photochemistry?f_ri=20949"},{"id":10019,"name":"Photonics","url":"https://www.academia.edu/Documents/in/Photonics?f_ri=20949"},{"id":15600,"name":"Femtosecond Laser","url":"https://www.academia.edu/Documents/in/Femtosecond_Laser?f_ri=20949"},{"id":17871,"name":"Physics Education","url":"https://www.academia.edu/Documents/in/Physics_Education?f_ri=20949"},{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949"},{"id":45180,"name":"Chemical Reaction Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Reaction_Engineering?f_ri=20949"},{"id":73677,"name":"Femtochemistry","url":"https://www.academia.edu/Documents/in/Femtochemistry?f_ri=20949"},{"id":112313,"name":"GAS CHEMICAL ENGINEERING","url":"https://www.academia.edu/Documents/in/GAS_CHEMICAL_ENGINEERING?f_ri=20949"},{"id":159153,"name":"Laser Ablation","url":"https://www.academia.edu/Documents/in/Laser_Ablation?f_ri=20949"},{"id":185380,"name":"Optical Properties","url":"https://www.academia.edu/Documents/in/Optical_Properties?f_ri=20949"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES?f_ri=20949"},{"id":263152,"name":"Optical physics","url":"https://www.academia.edu/Documents/in/Optical_physics?f_ri=20949"},{"id":1405574,"name":"كيمياء","url":"https://www.academia.edu/Documents/in/%D9%83%D9%8A%D9%85%D9%8A%D8%A7%D8%A1?f_ri=20949"},{"id":1768797,"name":"فيزياء","url":"https://www.academia.edu/Documents/in/%D9%81%D9%8A%D8%B2%D9%8A%D8%A7%D8%A1?f_ri=20949"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_1421550" data-work_id="1421550" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/1421550/Simulation_methods_for_laser_plasma_based_x_ray_sources">Simulation methods for laser-plasma based x-ray sources</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Laser-plasma accelerators (LPAs) hold great promise for compact, bright x-ray sources due to the extraordinary field strengths available. The longitudinal fields in a relativistic plasma wave enable acceleration of high-quality electron... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_1421550" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Laser-plasma accelerators (LPAs) hold great promise for compact, bright x-ray sources due to the extraordinary field strengths available. The longitudinal fields in a relativistic plasma wave enable acceleration of high-quality electron bunches up to several hundred MeV in just a few mm of plasma. The strong transverse focusing fields enable betatron radiation in the x-ray regime. Design of these x-ray sources requires large-scale particle-in-cell simulations. We describe new algorithms that improve the accuracy and reliability of PIC simulations of LPA x-ray sources. These include a perfect dispersion algorithm, which allows use of lower resolution without loss of accuracy for greater efficiency; post-processing routines for evaluation of betatron radiation, and methods for reducing the statistical noise in the simulation of the self-injection process.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/1421550" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="b7bd756e71069cfdda4a2bf6e3989a4c" rel="nofollow" data-download="{"attachment_id":37664692,"asset_id":1421550,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/37664692/download_file?st=MTc0MDI1MjMxNiw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="665665" href="https://leidos.academia.edu/SergeYouriKalmykov">Serge Youri Kalmykov</a><script data-card-contents-for-user="665665" type="text/json">{"id":665665,"first_name":"Serge Youri","last_name":"Kalmykov","domain_name":"leidos","page_name":"SergeYouriKalmykov","display_name":"Serge Youri Kalmykov","profile_url":"https://leidos.academia.edu/SergeYouriKalmykov?f_ri=20949","photo":"https://0.academia-photos.com/665665/586468/1570803/s65_serguei.kalmykov.png"}</script></span></span></li><li class="js-paper-rank-work_1421550 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="1421550"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 1421550, container: ".js-paper-rank-work_1421550", }); });</script></li><li class="js-percentile-work_1421550 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 1421550; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_1421550"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_1421550 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="1421550"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 1421550; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=1421550]").text(description); $(".js-view-count-work_1421550").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_1421550").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="1421550"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">4</a> </div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="20949" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_Plasma_Interactions">Laser Plasma Interactions</a>, <script data-card-contents-for-ri="20949" type="text/json">{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="29617" rel="nofollow" href="https://www.academia.edu/Documents/in/Synchrotron_Radiation">Synchrotron Radiation</a>, <script data-card-contents-for-ri="29617" type="text/json">{"id":29617,"name":"Synchrotron Radiation","url":"https://www.academia.edu/Documents/in/Synchrotron_Radiation?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="589927" rel="nofollow" href="https://www.academia.edu/Documents/in/Particle-in-cell_simulation">Particle-in-cell simulation</a>, <script data-card-contents-for-ri="589927" type="text/json">{"id":589927,"name":"Particle-in-cell simulation","url":"https://www.academia.edu/Documents/in/Particle-in-cell_simulation?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="589935" rel="nofollow" href="https://www.academia.edu/Documents/in/Numerical_modelling_of_high-power_laser-plasma_interactions">Numerical modelling of high-power laser-plasma interactions</a><script data-card-contents-for-ri="589935" type="text/json">{"id":589935,"name":"Numerical modelling of high-power laser-plasma interactions","url":"https://www.academia.edu/Documents/in/Numerical_modelling_of_high-power_laser-plasma_interactions?f_ri=20949","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=1421550]'), work: {"id":1421550,"title":"Simulation methods for laser-plasma based x-ray sources","created_at":"2012-02-21T14:27:38.676-08:00","url":"https://www.academia.edu/1421550/Simulation_methods_for_laser_plasma_based_x_ray_sources?f_ri=20949","dom_id":"work_1421550","summary":"Laser-plasma accelerators (LPAs) hold great promise for compact, bright x-ray sources due to the extraordinary field strengths available. The longitudinal fields in a relativistic plasma wave enable acceleration of high-quality electron bunches up to several hundred MeV in just a few mm of plasma. The strong transverse focusing fields enable betatron radiation in the x-ray regime. Design of these x-ray sources requires large-scale particle-in-cell simulations. We describe new algorithms that improve the accuracy and reliability of PIC simulations of LPA x-ray sources. These include a perfect dispersion algorithm, which allows use of lower resolution without loss of accuracy for greater efficiency; post-processing routines for evaluation of betatron radiation, and methods for reducing the statistical noise in the simulation of the self-injection process.","downloadable_attachments":[{"id":37664692,"asset_id":1421550,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":665665,"first_name":"Serge Youri","last_name":"Kalmykov","domain_name":"leidos","page_name":"SergeYouriKalmykov","display_name":"Serge Youri Kalmykov","profile_url":"https://leidos.academia.edu/SergeYouriKalmykov?f_ri=20949","photo":"https://0.academia-photos.com/665665/586468/1570803/s65_serguei.kalmykov.png"}],"research_interests":[{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true},{"id":29617,"name":"Synchrotron Radiation","url":"https://www.academia.edu/Documents/in/Synchrotron_Radiation?f_ri=20949","nofollow":true},{"id":589927,"name":"Particle-in-cell simulation","url":"https://www.academia.edu/Documents/in/Particle-in-cell_simulation?f_ri=20949","nofollow":true},{"id":589935,"name":"Numerical modelling of high-power laser-plasma interactions","url":"https://www.academia.edu/Documents/in/Numerical_modelling_of_high-power_laser-plasma_interactions?f_ri=20949","nofollow":true}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_45452090" data-work_id="45452090" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/45452090/Frankenstein_Mary_Shellys_Frankenstein">Frankenstein - Mary Shelly's Frankenstein</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">FRANKENSTEIN Summary Around the age of seven, Victor's younger brother is born. Up to this point, he and Elizabeth have been the primary receivers of their parents' love. Their parents decide to settle down in Geneva to concentrate on... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_45452090" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">FRANKENSTEIN<br /><br />Summary<br /><br />Around the age of seven, Victor's younger brother is born. Up to this point, he and Elizabeth have been the primary receivers of their parents' love. Their parents decide to settle down in Geneva to concentrate on raising their family.<br /><br />Victor introduces his life-long friend Henry Clerval, a creative child who studies literature and folklore.<br /><br />At the age of 13, Victor discovers the works of Cornelius Agrippa, Paracelsus, and Albertus Magnus, all alchemists from an earlier age. His voracious appetite for knowledge thus begins, and eventually leads him to study science and alchemy. At age 15, Victor witnesses an electrical storm that peaks his interest in electricity and possible applications for its use.<br /><br />Analysis<br /><br />Victor tells how he and Elizabeth are brought up together as "there was not quite a year difference in our ages." He is serious and loud as a child, while Elizabeth has a more calm and subdued personality. The reader now sees a small glimpse of Victor's obsession with knowledge and learning. It is not unlike Mary Shelley's own lust for learning as a child and as the wife of Percy Shelley. Victor is the seeker of knowledge, "delighting in investigating their causes." He seeks answers to what occurs in nature and the physical world.<br /><br />When Victor's parents return to Geneva to settle down, Victor is more solitary, doesn't like crowds, and finds himself alone at school. He befriends Henry Clerval, a Romantic character, who becomes his life-long pal. Henry is a writer and poet, a more creative person than the scientifically minded Victor. Henry is fascinated with the heroes of Roncesvalles, King Arthur and the Knights of the Round Table, and the knights of the Crusades.<br /><br />We now begin to see Victor's personality type as sometimes "violent and my passions vehement." He dislikes learning languages, politics, and government and instead chooses to throw himself into the study of science, which he calls "the physical secrets of the world." While Elizabeth and Henry pursue the normal activities of children, Victor wants to learn all he can about the how's and why's of the world.<br /><br />At the age of 13, Victor makes a discovery that forever changes his life. A storm confines him to remain inside one day where he discovers a volume of Cornelius Agrippa's works. His passion for learning leads him to Paracelsus and Albertus Magnus, two other scientists from earlier days, and invigorates Victor into a serious study of science and its possible applications. He reads science books for pleasure and knowledge, seeking to improve his mind and stimulate his curiosity. He laments that his father "was not scientific." Victor "was left to struggle with a child's blindness, added to a student's thirst for knowledge." He also exults, "The raising of ghosts or devils was a promise literally accorded by my favorite authors, the fulfillment of which I most eagerly sought." This gives us an idea of where he got the idea to create his own creature. He goes on to say that, "if my incantations were always unsuccessful, I attributed the failure rather to my own inexperience and mistake than to a want of skill or fidelity in my instructors." This seems to tell us that he wasn't having any luck with the teachings of his "instructors," so he knew that there must be another way, which opens up the possibility of using another science, electricity.<br /><br />At age 15, Victor witnesses a summer thunderstorm that arouses his thoughts about electricity and possible applications for its use. The storm indirectly gives Victor the opportunity to learn more about technology and science. The storm Shelley describes is much like the one she and her fellow writers experience during the summer of 1816. Victor sees how the lightning has the power of destruction when a tree near their home is destroyed from a lightning strike. This confirms his belief that electricity and "galvanism" are worthy subjects for further study. A visitor in the Frankenstein home explains the phenomena to the young boy, and it facilitates a change in his thinking.<br /><br />Although the details of the monster's creation are not described later in the book, Shelley hints that Victor uses his knowledge from the science books and of electricity to create his monster. Shelley makes Victor's interest in these topics very clear, so that the reader can deduce that he will use this knowledge in his creation.<br /><br />Victor becomes a student of mathematics and pure science, seeking to learn the most he can, while abandoning his earlier study of well-known alchemists. His mind is not eased but spurred on by his lust for all knowledge and learning. He sees his fate as sealed after this choice in life saying:"Destiny was too potent, and her immutable laws had decreed my utter and terrible destruction."<br /><br />Glossary<br /><br />galvanism electricity produced by a chemical reaction.<br />campagne open country.<br />filial of, suitable to, or due from a son or daughter.<br />vehement having or characterized by intense feeling or strong passion; fervent, impassioned, etc.<br />predilection a preconceived liking; partiality or preference (for).<br />preceptors teachers.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/45452090" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="864367761d695d2bb6442e83d293c8af" rel="nofollow" data-download="{"attachment_id":65960561,"asset_id":45452090,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/65960561/download_file?st=MTc0MDI1MjMxNiw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="16005828" href="https://ulg.academia.edu/DavidVanderper">David Vanderper</a><script data-card-contents-for-user="16005828" type="text/json">{"id":16005828,"first_name":"David","last_name":"Vanderper","domain_name":"ulg","page_name":"DavidVanderper","display_name":"David Vanderper","profile_url":"https://ulg.academia.edu/DavidVanderper?f_ri=20949","photo":"https://0.academia-photos.com/16005828/4341433/19170987/s65_david.vanderper.jpg"}</script></span></span></li><li class="js-paper-rank-work_45452090 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="45452090"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 45452090, container: ".js-paper-rank-work_45452090", }); });</script></li><li class="js-percentile-work_45452090 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 45452090; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_45452090"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_45452090 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="45452090"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 45452090; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=45452090]").text(description); $(".js-view-count-work_45452090").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_45452090").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="45452090"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">20</a> </div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="49" rel="nofollow" href="https://www.academia.edu/Documents/in/Electrical_Engineering">Electrical Engineering</a>, <script data-card-contents-for-ri="49" type="text/json">{"id":49,"name":"Electrical Engineering","url":"https://www.academia.edu/Documents/in/Electrical_Engineering?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="498" rel="nofollow" href="https://www.academia.edu/Documents/in/Physics">Physics</a>, <script data-card-contents-for-ri="498" type="text/json">{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="517" rel="nofollow" href="https://www.academia.edu/Documents/in/Plasma_Physics">Plasma Physics</a>, <script data-card-contents-for-ri="517" type="text/json">{"id":517,"name":"Plasma Physics","url":"https://www.academia.edu/Documents/in/Plasma_Physics?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="518" rel="nofollow" href="https://www.academia.edu/Documents/in/Quantum_Physics">Quantum Physics</a><script data-card-contents-for-ri="518" type="text/json">{"id":518,"name":"Quantum Physics","url":"https://www.academia.edu/Documents/in/Quantum_Physics?f_ri=20949","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=45452090]'), work: {"id":45452090,"title":"Frankenstein - Mary Shelly's Frankenstein","created_at":"2021-03-10T05:15:46.739-08:00","url":"https://www.academia.edu/45452090/Frankenstein_Mary_Shellys_Frankenstein?f_ri=20949","dom_id":"work_45452090","summary":"FRANKENSTEIN\n\nSummary\n\nAround the age of seven, Victor's younger brother is born. Up to this point, he and Elizabeth have been the primary receivers of their parents' love. Their parents decide to settle down in Geneva to concentrate on raising their family.\n\nVictor introduces his life-long friend Henry Clerval, a creative child who studies literature and folklore.\n\nAt the age of 13, Victor discovers the works of Cornelius Agrippa, Paracelsus, and Albertus Magnus, all alchemists from an earlier age. His voracious appetite for knowledge thus begins, and eventually leads him to study science and alchemy. At age 15, Victor witnesses an electrical storm that peaks his interest in electricity and possible applications for its use.\n\nAnalysis\n\nVictor tells how he and Elizabeth are brought up together as \"there was not quite a year difference in our ages.\" He is serious and loud as a child, while Elizabeth has a more calm and subdued personality. The reader now sees a small glimpse of Victor's obsession with knowledge and learning. It is not unlike Mary Shelley's own lust for learning as a child and as the wife of Percy Shelley. Victor is the seeker of knowledge, \"delighting in investigating their causes.\" He seeks answers to what occurs in nature and the physical world.\n\nWhen Victor's parents return to Geneva to settle down, Victor is more solitary, doesn't like crowds, and finds himself alone at school. He befriends Henry Clerval, a Romantic character, who becomes his life-long pal. Henry is a writer and poet, a more creative person than the scientifically minded Victor. Henry is fascinated with the heroes of Roncesvalles, King Arthur and the Knights of the Round Table, and the knights of the Crusades.\n\nWe now begin to see Victor's personality type as sometimes \"violent and my passions vehement.\" He dislikes learning languages, politics, and government and instead chooses to throw himself into the study of science, which he calls \"the physical secrets of the world.\" While Elizabeth and Henry pursue the normal activities of children, Victor wants to learn all he can about the how's and why's of the world.\n\nAt the age of 13, Victor makes a discovery that forever changes his life. A storm confines him to remain inside one day where he discovers a volume of Cornelius Agrippa's works. His passion for learning leads him to Paracelsus and Albertus Magnus, two other scientists from earlier days, and invigorates Victor into a serious study of science and its possible applications. He reads science books for pleasure and knowledge, seeking to improve his mind and stimulate his curiosity. He laments that his father \"was not scientific.\" Victor \"was left to struggle with a child's blindness, added to a student's thirst for knowledge.\" He also exults, \"The raising of ghosts or devils was a promise literally accorded by my favorite authors, the fulfillment of which I most eagerly sought.\" This gives us an idea of where he got the idea to create his own creature. He goes on to say that, \"if my incantations were always unsuccessful, I attributed the failure rather to my own inexperience and mistake than to a want of skill or fidelity in my instructors.\" This seems to tell us that he wasn't having any luck with the teachings of his \"instructors,\" so he knew that there must be another way, which opens up the possibility of using another science, electricity.\n\nAt age 15, Victor witnesses a summer thunderstorm that arouses his thoughts about electricity and possible applications for its use. The storm indirectly gives Victor the opportunity to learn more about technology and science. The storm Shelley describes is much like the one she and her fellow writers experience during the summer of 1816. Victor sees how the lightning has the power of destruction when a tree near their home is destroyed from a lightning strike. This confirms his belief that electricity and \"galvanism\" are worthy subjects for further study. A visitor in the Frankenstein home explains the phenomena to the young boy, and it facilitates a change in his thinking.\n\nAlthough the details of the monster's creation are not described later in the book, Shelley hints that Victor uses his knowledge from the science books and of electricity to create his monster. Shelley makes Victor's interest in these topics very clear, so that the reader can deduce that he will use this knowledge in his creation.\n\nVictor becomes a student of mathematics and pure science, seeking to learn the most he can, while abandoning his earlier study of well-known alchemists. His mind is not eased but spurred on by his lust for all knowledge and learning. He sees his fate as sealed after this choice in life saying:\"Destiny was too potent, and her immutable laws had decreed my utter and terrible destruction.\"\n\nGlossary\n\ngalvanism electricity produced by a chemical reaction.\ncampagne open country.\nfilial of, suitable to, or due from a son or daughter.\nvehement having or characterized by intense feeling or strong passion; fervent, impassioned, etc.\npredilection a preconceived liking; partiality or preference (for).\npreceptors teachers.","downloadable_attachments":[{"id":65960561,"asset_id":45452090,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":16005828,"first_name":"David","last_name":"Vanderper","domain_name":"ulg","page_name":"DavidVanderper","display_name":"David Vanderper","profile_url":"https://ulg.academia.edu/DavidVanderper?f_ri=20949","photo":"https://0.academia-photos.com/16005828/4341433/19170987/s65_david.vanderper.jpg"}],"research_interests":[{"id":49,"name":"Electrical Engineering","url":"https://www.academia.edu/Documents/in/Electrical_Engineering?f_ri=20949","nofollow":true},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics?f_ri=20949","nofollow":true},{"id":517,"name":"Plasma Physics","url":"https://www.academia.edu/Documents/in/Plasma_Physics?f_ri=20949","nofollow":true},{"id":518,"name":"Quantum Physics","url":"https://www.academia.edu/Documents/in/Quantum_Physics?f_ri=20949","nofollow":true},{"id":3682,"name":"Energy Engineering","url":"https://www.academia.edu/Documents/in/Energy_Engineering?f_ri=20949"},{"id":5412,"name":"Energy","url":"https://www.academia.edu/Documents/in/Energy?f_ri=20949"},{"id":5457,"name":"Artificial Life","url":"https://www.academia.edu/Documents/in/Artificial_Life?f_ri=20949"},{"id":7855,"name":"Plasma Engineering","url":"https://www.academia.edu/Documents/in/Plasma_Engineering?f_ri=20949"},{"id":7857,"name":"Electrical Discharge Machining","url":"https://www.academia.edu/Documents/in/Electrical_Discharge_Machining?f_ri=20949"},{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949"},{"id":28025,"name":"Frankenstein","url":"https://www.academia.edu/Documents/in/Frankenstein?f_ri=20949"},{"id":34819,"name":"Electric Power Systems","url":"https://www.academia.edu/Documents/in/Electric_Power_Systems?f_ri=20949"},{"id":59314,"name":"Castles","url":"https://www.academia.edu/Documents/in/Castles?f_ri=20949"},{"id":109198,"name":"Lightning","url":"https://www.academia.edu/Documents/in/Lightning?f_ri=20949"},{"id":117555,"name":"Plasma","url":"https://www.academia.edu/Documents/in/Plasma?f_ri=20949"},{"id":128057,"name":"Light","url":"https://www.academia.edu/Documents/in/Light?f_ri=20949"},{"id":176238,"name":"Trees","url":"https://www.academia.edu/Documents/in/Trees?f_ri=20949"},{"id":219644,"name":"Lightning Physics","url":"https://www.academia.edu/Documents/in/Lightning_Physics?f_ri=20949"},{"id":902201,"name":"Monumental Trees","url":"https://www.academia.edu/Documents/in/Monumental_Trees?f_ri=20949"},{"id":1314876,"name":"Frankenstein Mary Shelley","url":"https://www.academia.edu/Documents/in/Frankenstein_Mary_Shelley?f_ri=20949"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_7654724" data-work_id="7654724" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/7654724/Laser_experiments_on_Radiative_Shocks_relevant_to_Stellar_Accretion">Laser experiments on Radiative Shocks relevant to Stellar Accretion</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/7654724" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="286bd7b9dd9822b66eb4bbde2c157fd1" rel="nofollow" data-download="{"attachment_id":34193029,"asset_id":7654724,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/34193029/download_file?st=MTc0MDI1MjMxNiw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="1291087" href="https://sorbonne-fr.academia.edu/UddhabChaulagain">Uddhab Chaulagain</a><script data-card-contents-for-user="1291087" type="text/json">{"id":1291087,"first_name":"Uddhab","last_name":"Chaulagain","domain_name":"sorbonne-fr","page_name":"UddhabChaulagain","display_name":"Uddhab Chaulagain","profile_url":"https://sorbonne-fr.academia.edu/UddhabChaulagain?f_ri=20949","photo":"https://0.academia-photos.com/1291087/842691/1047265/s65_uddhab.chaulagain.png"}</script></span></span></li><li class="js-paper-rank-work_7654724 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="7654724"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 7654724, container: ".js-paper-rank-work_7654724", }); });</script></li><li class="js-percentile-work_7654724 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 7654724; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_7654724"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_7654724 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="7654724"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 7654724; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=7654724]").text(description); $(".js-view-count-work_7654724").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_7654724").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="7654724"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">3</a> </div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="4337" rel="nofollow" href="https://www.academia.edu/Documents/in/Space_Plasma_Physics">Space Plasma Physics</a>, <script data-card-contents-for-ri="4337" type="text/json">{"id":4337,"name":"Space Plasma Physics","url":"https://www.academia.edu/Documents/in/Space_Plasma_Physics?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="15904" rel="nofollow" href="https://www.academia.edu/Documents/in/Laboratory_Astrophysics">Laboratory Astrophysics</a>, <script data-card-contents-for-ri="15904" type="text/json">{"id":15904,"name":"Laboratory Astrophysics","url":"https://www.academia.edu/Documents/in/Laboratory_Astrophysics?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="20949" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_Plasma_Interactions">Laser Plasma Interactions</a><script data-card-contents-for-ri="20949" type="text/json">{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=7654724]'), work: {"id":7654724,"title":"Laser experiments on Radiative Shocks relevant to Stellar Accretion","created_at":"2014-07-13T20:28:59.573-07:00","url":"https://www.academia.edu/7654724/Laser_experiments_on_Radiative_Shocks_relevant_to_Stellar_Accretion?f_ri=20949","dom_id":"work_7654724","summary":null,"downloadable_attachments":[{"id":34193029,"asset_id":7654724,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":1291087,"first_name":"Uddhab","last_name":"Chaulagain","domain_name":"sorbonne-fr","page_name":"UddhabChaulagain","display_name":"Uddhab Chaulagain","profile_url":"https://sorbonne-fr.academia.edu/UddhabChaulagain?f_ri=20949","photo":"https://0.academia-photos.com/1291087/842691/1047265/s65_uddhab.chaulagain.png"}],"research_interests":[{"id":4337,"name":"Space Plasma Physics","url":"https://www.academia.edu/Documents/in/Space_Plasma_Physics?f_ri=20949","nofollow":true},{"id":15904,"name":"Laboratory Astrophysics","url":"https://www.academia.edu/Documents/in/Laboratory_Astrophysics?f_ri=20949","nofollow":true},{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_80479006" data-work_id="80479006" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/80479006/Electromagnetic_Humanitarian_Solidarity_Frequency_Locking_with_Spiritual_Bandwidths_Celebration_of_Human_Dignity_and_The_Global_Coherence_Initiative">Electromagnetic Humanitarian Solidarity: Frequency Locking with Spiritual Bandwidths Celebration of Human Dignity & The Global Coherence Initiative</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Solutions to the crisis of planetary extinction cannot be achieved "at the polls". The challenge goes much deeper than democratic selection of political representatives. Solutions require timely "coherent entrainment" of humanitarian... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_80479006" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Solutions to the crisis of planetary extinction cannot be achieved "at the polls". The challenge goes much deeper than democratic selection of political representatives. Solutions require timely "coherent entrainment" of humanitarian agency with First Cause Intention (FCI) that can be coherently entrained and embodied during the specific time of The Celebration of Human Dignity. The time has finally come when human responsibility must be consciously harmonized (concerted) with Divine Intention. Of course, this has been the ideal of ages, but with new understanding of the quantum-field reality the impossibility of reading "God's Heart-Mind" can be achieved by maintaining electromagnetic Humanitarian Solidarity with the use of the technological media. Increasingly, the teachings of "perfection" have been understood as impossible for humans, but technological maintenance of coherent entrainment is a practical possibility leading to perfectiopn. Both FCI and responsible human agency can be addressed from quantum dimensions of electromagnetic (EM) tension that is usually rationalized and misunderstood in the human brain as God's "error". However, tension/error are requisite to "learning" and-therefore-to "evolution". It may be stipulated that the current stage of human development requires transcendence of misdirection by "brain" creativity in favor of "heartmind" imaginational creativity, and such transcendence occurs at quantum scales of technological frequency. Today, an unprecedented imaginational seeding methodology exists as the "coherent entrainment" (CE) or "frequency locking" of First Cause Purpose and human purpose which is akin to Jungian "synchronicity" as the "frequency" of "meaningful discovery". CE is the measurable EM signature of First Cause Intention which-if appreciated as heartmind frequencies-can be used to guide human agency with Communication & Information Technology (CIT).</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/80479006" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="5057cb2ce5995b9b66a05198d16fa1e8" rel="nofollow" data-download="{"attachment_id":86846645,"asset_id":80479006,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/86846645/download_file?st=MTc0MDI1MjMxNiw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="38718333" href="https://independent.academia.edu/schaferstephen">stephen schafer</a><script data-card-contents-for-user="38718333" type="text/json">{"id":38718333,"first_name":"stephen","last_name":"schafer","domain_name":"independent","page_name":"schaferstephen","display_name":"stephen schafer","profile_url":"https://independent.academia.edu/schaferstephen?f_ri=20949","photo":"https://0.academia-photos.com/38718333/10739711/18529142/s65_stephen.schafer.jpg"}</script></span></span></li><li class="js-paper-rank-work_80479006 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="80479006"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 80479006, container: ".js-paper-rank-work_80479006", }); });</script></li><li class="js-percentile-work_80479006 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 80479006; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_80479006"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_80479006 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="80479006"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 80479006; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=80479006]").text(description); $(".js-view-count-work_80479006").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_80479006").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="80479006"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">11</a> </div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="1430" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_Spectroscopy">Laser Spectroscopy</a>, <script data-card-contents-for-ri="1430" type="text/json">{"id":1430,"name":"Laser Spectroscopy","url":"https://www.academia.edu/Documents/in/Laser_Spectroscopy?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="2415" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_Physics">Laser Physics</a>, <script data-card-contents-for-ri="2415" type="text/json">{"id":2415,"name":"Laser Physics","url":"https://www.academia.edu/Documents/in/Laser_Physics?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="4427" rel="nofollow" href="https://www.academia.edu/Documents/in/Topological_Quantum_Field_Theory">Topological Quantum Field Theory</a>, <script data-card-contents-for-ri="4427" type="text/json">{"id":4427,"name":"Topological Quantum Field Theory","url":"https://www.academia.edu/Documents/in/Topological_Quantum_Field_Theory?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="10092" rel="nofollow" href="https://www.academia.edu/Documents/in/Quantum_Field_Theory">Quantum Field Theory</a><script data-card-contents-for-ri="10092" type="text/json">{"id":10092,"name":"Quantum Field Theory","url":"https://www.academia.edu/Documents/in/Quantum_Field_Theory?f_ri=20949","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=80479006]'), work: {"id":80479006,"title":"Electromagnetic Humanitarian Solidarity: Frequency Locking with Spiritual Bandwidths Celebration of Human Dignity \u0026 The Global Coherence Initiative","created_at":"2022-06-01T12:55:01.137-07:00","url":"https://www.academia.edu/80479006/Electromagnetic_Humanitarian_Solidarity_Frequency_Locking_with_Spiritual_Bandwidths_Celebration_of_Human_Dignity_and_The_Global_Coherence_Initiative?f_ri=20949","dom_id":"work_80479006","summary":"Solutions to the crisis of planetary extinction cannot be achieved \"at the polls\". The challenge goes much deeper than democratic selection of political representatives. Solutions require timely \"coherent entrainment\" of humanitarian agency with First Cause Intention (FCI) that can be coherently entrained and embodied during the specific time of The Celebration of Human Dignity. The time has finally come when human responsibility must be consciously harmonized (concerted) with Divine Intention. Of course, this has been the ideal of ages, but with new understanding of the quantum-field reality the impossibility of reading \"God's Heart-Mind\" can be achieved by maintaining electromagnetic Humanitarian Solidarity with the use of the technological media. Increasingly, the teachings of \"perfection\" have been understood as impossible for humans, but technological maintenance of coherent entrainment is a practical possibility leading to perfectiopn. Both FCI and responsible human agency can be addressed from quantum dimensions of electromagnetic (EM) tension that is usually rationalized and misunderstood in the human brain as God's \"error\". However, tension/error are requisite to \"learning\" and-therefore-to \"evolution\". It may be stipulated that the current stage of human development requires transcendence of misdirection by \"brain\" creativity in favor of \"heartmind\" imaginational creativity, and such transcendence occurs at quantum scales of technological frequency. Today, an unprecedented imaginational seeding methodology exists as the \"coherent entrainment\" (CE) or \"frequency locking\" of First Cause Purpose and human purpose which is akin to Jungian \"synchronicity\" as the \"frequency\" of \"meaningful discovery\". CE is the measurable EM signature of First Cause Intention which-if appreciated as heartmind frequencies-can be used to guide human agency with Communication \u0026 Information Technology (CIT).","downloadable_attachments":[{"id":86846645,"asset_id":80479006,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":38718333,"first_name":"stephen","last_name":"schafer","domain_name":"independent","page_name":"schaferstephen","display_name":"stephen schafer","profile_url":"https://independent.academia.edu/schaferstephen?f_ri=20949","photo":"https://0.academia-photos.com/38718333/10739711/18529142/s65_stephen.schafer.jpg"}],"research_interests":[{"id":1430,"name":"Laser Spectroscopy","url":"https://www.academia.edu/Documents/in/Laser_Spectroscopy?f_ri=20949","nofollow":true},{"id":2415,"name":"Laser Physics","url":"https://www.academia.edu/Documents/in/Laser_Physics?f_ri=20949","nofollow":true},{"id":4427,"name":"Topological Quantum Field Theory","url":"https://www.academia.edu/Documents/in/Topological_Quantum_Field_Theory?f_ri=20949","nofollow":true},{"id":10092,"name":"Quantum Field Theory","url":"https://www.academia.edu/Documents/in/Quantum_Field_Theory?f_ri=20949","nofollow":true},{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949"},{"id":123242,"name":"String Theory, Quantum Field Theory, Black Holes","url":"https://www.academia.edu/Documents/in/String_Theory_Quantum_Field_Theory_Black_Holes?f_ri=20949"},{"id":277960,"name":"Celebration of cultural diversity and promotion of intercultural relationship among cultures","url":"https://www.academia.edu/Documents/in/Celebration_of_cultural_diversity_and_promotion_of_intercultural_relationship_among_cultures?f_ri=20949"},{"id":302815,"name":"Quantum Optics, Quantum Field Theory, Optical Engineering","url":"https://www.academia.edu/Documents/in/Quantum_Optics_Quantum_Field_Theory_Optical_Engineering?f_ri=20949"},{"id":552976,"name":"Non-Equilibrium Quantum Field Theory","url":"https://www.academia.edu/Documents/in/Non-Equilibrium_Quantum_Field_Theory?f_ri=20949"},{"id":931781,"name":"Laser Communication Networks","url":"https://www.academia.edu/Documents/in/Laser_Communication_Networks?f_ri=20949"},{"id":967027,"name":"Celebrations In Early modern Times","url":"https://www.academia.edu/Documents/in/Celebrations_In_Early_modern_Times?f_ri=20949"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_45048634" data-work_id="45048634" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/45048634/Plasma_Cutting">Plasma Cutting</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Plasma cutting is a process that cuts through electrically conductive materials by means of an accelerated jet of hot plasma. Typical materials cut with a plasma torch include steel, stainless steel, aluminum, brass and copper, although... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_45048634" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Plasma cutting is a process that cuts through electrically conductive materials by means of an accelerated jet of hot plasma. Typical materials cut with a plasma torch include steel, stainless steel, aluminum, brass and copper, although other conductive metals may be cut as well. Plasma cutting is often used in fabrication shops, automotive repair and restoration, industrial construction, and salvage and scrapping operations. Due to the high speed and precision cuts combined with low cost, plasma cutting sees widespread use from large-scale industrial CNC applications down to small hobbyist shops.<br /><br />The basic plasma cutting process involves creating an electrical channel of superheated, electrically ionized gas i.e. plasma from the plasma cutter itself, through the work piece to be cut, thus forming a completed electric circuit back to the plasma cutter through a grounding clamp. This is accomplished by a compressed gas (oxygen, air, inert and others depending on material being cut) which is blown through a focused nozzle at high speed toward the work piece. An electrical arc is then formed within the gas, between an electrode near or integrated into the gas nozzle and the work piece itself. The electrical arc ionizes some of the gas, thereby creating an electrically conductive channel of plasma. As electricity from the cutter torch travels down this plasma it delivers sufficient heat to melt through the work piece. At the same time, much of the high velocity plasma and compressed gas blow the hot molten metal away, thereby separating, i.e. cutting through, the work piece.<br /><br />Plasma cutting is an effective way of cutting thin and thick materials alike. Hand-held torches can usually cut up to 38 mm (1.5 in) thick steel plate, and stronger computer-controlled torches can cut steel up to 150 mm (6 in) thick.[1] Since plasma cutters produce a very hot and very localized "cone" to cut with, they are extremely useful for cutting sheet metal in curved or angled shapes.<br /><br />The arcs are generated in a three step process. A high voltage spark briefly ionizes the air within the torch head. This makes the air conductive and allows the "pilot arc" to form. The pilot arc forms within the torch head, with current flowing from the electrode to the nozzle inside the torch head. The pilot arc burns up the nozzle, a consumable part, while in this phase. The air then blows the plasma out the nozzle towards the work, providing a current path from the electrode to the work. When the control system senses current flowing from the electrode to the work, it cuts the electrical connection to the nozzle. Current then flows from the electrode to the work, and the arc forms outside the nozzle. Cutting can then proceed, without burning up the nozzle. Nozzle life is limited by the number of arc starts, not cutting time.<br /><br /><br />Natural lightning is considered an electric spark.<br /><br />An electric arc, or arc discharge, is an electrical breakdown of a gas that produces a prolonged electrical discharge. The current through a normally nonconductive medium such as air produces a plasma; the plasma may produce visible light. An arc discharge is characterized by a lower voltage than a glow discharge and relies on thermionic emission of electrons from the electrodes supporting the arc. An archaic term is voltaic arc, as used in the phrase "voltaic arc lamp".<br /><br />Techniques for arc suppression can be used to reduce the duration or likelihood of arc formation.<br /><br />In the late 1800s, electric arc lighting was in wide use for public lighting. Some low-pressure electric arcs are used in many applications. For example, fluorescent tubes, mercury, sodium, and metal-halide lamps are used for lighting; xenon arc lamps have been used for movie projectors. Electric arcs can be utilized for manufacturing processes, such as electric arc welding and electric arc furnaces for steel recycling.<br /><br />Sir Humphry Davy discovered the short-pulse electrical arc in 1800. <br />In 1801, he described the phenomenon in a paper published in William Nicholson's Journal of Natural Philosophy, Chemistry and the Arts.<br />According to modern science, Davy's description was a spark rather than an arc.<br />In the same year Davy publicly demonstrated the effect, before the Royal Society, by transmitting an electric current through two carbon rods that touched, and then pulling them a short distance apart. The demonstration produced a "feeble" arc, not readily distinguished from a sustained spark, between charcoal points. The Society subscribed for a more powerful battery of 1,000 plates, and in 1808 he demonstrated the large-scale arc. He is credited with naming the arc. <br /> He called it an arc because it assumes the shape of an upward bow when the distance between the electrodes is not small. This is due to the buoyant force on the hot gas.<br /><br />The first continuous arc was discovered independently in 1802 and described in 1803[7] as a "special fluid with electrical properties", by Vasily V. Petrov, a Russian scientist experimenting with a copper-zinc battery consisting of 4200 discs.[7][8]<br /><br />In the late nineteenth century, electric arc lighting was in wide use for public lighting. The tendency of electric arcs to flicker and hiss was a major problem. In 1895, Hertha Marks Ayrton wrote a series of articles for the Electrician, explaining that these phenomena were the result of oxygen coming into contact with the carbon rods used to create the arc. In 1899, she was the first woman ever to read her own paper before the Institution of Electrical Engineers (IEE). Her paper was entitled "The Hissing of the Electric Arc". Shortly thereafter, Ayrton was elected the first female member of the IEE; the next woman to be admitted to the IEE was in 1958.[9] She petitioned to present a paper before the Royal Society, but she was not allowed because of her gender, and "The Mechanism of the Electric Arc" was read by John Perry in her stead in 1901.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/45048634" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="171d63c57825c74540c2bd960ae739ed" rel="nofollow" data-download="{"attachment_id":65601939,"asset_id":45048634,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/65601939/download_file?st=MTc0MDI1MjMxNiw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="16005828" href="https://ulg.academia.edu/DavidVanderper">David Vanderper</a><script data-card-contents-for-user="16005828" type="text/json">{"id":16005828,"first_name":"David","last_name":"Vanderper","domain_name":"ulg","page_name":"DavidVanderper","display_name":"David Vanderper","profile_url":"https://ulg.academia.edu/DavidVanderper?f_ri=20949","photo":"https://0.academia-photos.com/16005828/4341433/19170987/s65_david.vanderper.jpg"}</script></span></span></li><li class="js-paper-rank-work_45048634 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="45048634"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 45048634, container: ".js-paper-rank-work_45048634", }); });</script></li><li class="js-percentile-work_45048634 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 45048634; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_45048634"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_45048634 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="45048634"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 45048634; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=45048634]").text(description); $(".js-view-count-work_45048634").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_45048634").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="45048634"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">18</a> </div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="128" rel="nofollow" href="https://www.academia.edu/Documents/in/History">History</a>, <script data-card-contents-for-ri="128" type="text/json">{"id":128,"name":"History","url":"https://www.academia.edu/Documents/in/History?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="130" rel="nofollow" href="https://www.academia.edu/Documents/in/Ancient_History">Ancient History</a>, <script data-card-contents-for-ri="130" type="text/json">{"id":130,"name":"Ancient History","url":"https://www.academia.edu/Documents/in/Ancient_History?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="498" rel="nofollow" href="https://www.academia.edu/Documents/in/Physics">Physics</a>, <script data-card-contents-for-ri="498" type="text/json">{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="517" rel="nofollow" href="https://www.academia.edu/Documents/in/Plasma_Physics">Plasma Physics</a><script data-card-contents-for-ri="517" type="text/json">{"id":517,"name":"Plasma Physics","url":"https://www.academia.edu/Documents/in/Plasma_Physics?f_ri=20949","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=45048634]'), work: {"id":45048634,"title":"Plasma Cutting","created_at":"2021-02-04T01:31:17.142-08:00","url":"https://www.academia.edu/45048634/Plasma_Cutting?f_ri=20949","dom_id":"work_45048634","summary":"Plasma cutting is a process that cuts through electrically conductive materials by means of an accelerated jet of hot plasma. Typical materials cut with a plasma torch include steel, stainless steel, aluminum, brass and copper, although other conductive metals may be cut as well. Plasma cutting is often used in fabrication shops, automotive repair and restoration, industrial construction, and salvage and scrapping operations. Due to the high speed and precision cuts combined with low cost, plasma cutting sees widespread use from large-scale industrial CNC applications down to small hobbyist shops.\n\nThe basic plasma cutting process involves creating an electrical channel of superheated, electrically ionized gas i.e. plasma from the plasma cutter itself, through the work piece to be cut, thus forming a completed electric circuit back to the plasma cutter through a grounding clamp. This is accomplished by a compressed gas (oxygen, air, inert and others depending on material being cut) which is blown through a focused nozzle at high speed toward the work piece. An electrical arc is then formed within the gas, between an electrode near or integrated into the gas nozzle and the work piece itself. The electrical arc ionizes some of the gas, thereby creating an electrically conductive channel of plasma. As electricity from the cutter torch travels down this plasma it delivers sufficient heat to melt through the work piece. At the same time, much of the high velocity plasma and compressed gas blow the hot molten metal away, thereby separating, i.e. cutting through, the work piece.\n\nPlasma cutting is an effective way of cutting thin and thick materials alike. Hand-held torches can usually cut up to 38 mm (1.5 in) thick steel plate, and stronger computer-controlled torches can cut steel up to 150 mm (6 in) thick.[1] Since plasma cutters produce a very hot and very localized \"cone\" to cut with, they are extremely useful for cutting sheet metal in curved or angled shapes.\n\nThe arcs are generated in a three step process. A high voltage spark briefly ionizes the air within the torch head. This makes the air conductive and allows the \"pilot arc\" to form. The pilot arc forms within the torch head, with current flowing from the electrode to the nozzle inside the torch head. The pilot arc burns up the nozzle, a consumable part, while in this phase. The air then blows the plasma out the nozzle towards the work, providing a current path from the electrode to the work. When the control system senses current flowing from the electrode to the work, it cuts the electrical connection to the nozzle. Current then flows from the electrode to the work, and the arc forms outside the nozzle. Cutting can then proceed, without burning up the nozzle. Nozzle life is limited by the number of arc starts, not cutting time.\n\n\nNatural lightning is considered an electric spark.\n\nAn electric arc, or arc discharge, is an electrical breakdown of a gas that produces a prolonged electrical discharge. The current through a normally nonconductive medium such as air produces a plasma; the plasma may produce visible light. An arc discharge is characterized by a lower voltage than a glow discharge and relies on thermionic emission of electrons from the electrodes supporting the arc. An archaic term is voltaic arc, as used in the phrase \"voltaic arc lamp\".\n\nTechniques for arc suppression can be used to reduce the duration or likelihood of arc formation.\n\nIn the late 1800s, electric arc lighting was in wide use for public lighting. Some low-pressure electric arcs are used in many applications. For example, fluorescent tubes, mercury, sodium, and metal-halide lamps are used for lighting; xenon arc lamps have been used for movie projectors. Electric arcs can be utilized for manufacturing processes, such as electric arc welding and electric arc furnaces for steel recycling.\n\nSir Humphry Davy discovered the short-pulse electrical arc in 1800. \nIn 1801, he described the phenomenon in a paper published in William Nicholson's Journal of Natural Philosophy, Chemistry and the Arts.\nAccording to modern science, Davy's description was a spark rather than an arc.\nIn the same year Davy publicly demonstrated the effect, before the Royal Society, by transmitting an electric current through two carbon rods that touched, and then pulling them a short distance apart. The demonstration produced a \"feeble\" arc, not readily distinguished from a sustained spark, between charcoal points. The Society subscribed for a more powerful battery of 1,000 plates, and in 1808 he demonstrated the large-scale arc. He is credited with naming the arc. \n He called it an arc because it assumes the shape of an upward bow when the distance between the electrodes is not small. This is due to the buoyant force on the hot gas.\n\nThe first continuous arc was discovered independently in 1802 and described in 1803[7] as a \"special fluid with electrical properties\", by Vasily V. Petrov, a Russian scientist experimenting with a copper-zinc battery consisting of 4200 discs.[7][8]\n\nIn the late nineteenth century, electric arc lighting was in wide use for public lighting. The tendency of electric arcs to flicker and hiss was a major problem. In 1895, Hertha Marks Ayrton wrote a series of articles for the Electrician, explaining that these phenomena were the result of oxygen coming into contact with the carbon rods used to create the arc. In 1899, she was the first woman ever to read her own paper before the Institution of Electrical Engineers (IEE). Her paper was entitled \"The Hissing of the Electric Arc\". Shortly thereafter, Ayrton was elected the first female member of the IEE; the next woman to be admitted to the IEE was in 1958.[9] She petitioned to present a paper before the Royal Society, but she was not allowed because of her gender, and \"The Mechanism of the Electric Arc\" was read by John Perry in her stead in 1901.\n\n","downloadable_attachments":[{"id":65601939,"asset_id":45048634,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":16005828,"first_name":"David","last_name":"Vanderper","domain_name":"ulg","page_name":"DavidVanderper","display_name":"David Vanderper","profile_url":"https://ulg.academia.edu/DavidVanderper?f_ri=20949","photo":"https://0.academia-photos.com/16005828/4341433/19170987/s65_david.vanderper.jpg"}],"research_interests":[{"id":128,"name":"History","url":"https://www.academia.edu/Documents/in/History?f_ri=20949","nofollow":true},{"id":130,"name":"Ancient History","url":"https://www.academia.edu/Documents/in/Ancient_History?f_ri=20949","nofollow":true},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics?f_ri=20949","nofollow":true},{"id":517,"name":"Plasma Physics","url":"https://www.academia.edu/Documents/in/Plasma_Physics?f_ri=20949","nofollow":true},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry?f_ri=20949"},{"id":532,"name":"Physical Chemistry","url":"https://www.academia.edu/Documents/in/Physical_Chemistry?f_ri=20949"},{"id":4337,"name":"Space Plasma Physics","url":"https://www.academia.edu/Documents/in/Space_Plasma_Physics?f_ri=20949"},{"id":7855,"name":"Plasma Engineering","url":"https://www.academia.edu/Documents/in/Plasma_Engineering?f_ri=20949"},{"id":15094,"name":"Laws of Nature","url":"https://www.academia.edu/Documents/in/Laws_of_Nature?f_ri=20949"},{"id":15836,"name":"Environmental Chemistry","url":"https://www.academia.edu/Documents/in/Environmental_Chemistry?f_ri=20949"},{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949"},{"id":33319,"name":"Nature","url":"https://www.academia.edu/Documents/in/Nature?f_ri=20949"},{"id":34817,"name":"Prehistory","url":"https://www.academia.edu/Documents/in/Prehistory?f_ri=20949"},{"id":45583,"name":"Laser Ablation - Inductively Coupled Plasma - Mass Spectrometry","url":"https://www.academia.edu/Documents/in/Laser_Ablation_-_Inductively_Coupled_Plasma_-_Mass_Spectrometry?f_ri=20949"},{"id":109198,"name":"Lightning","url":"https://www.academia.edu/Documents/in/Lightning?f_ri=20949"},{"id":117555,"name":"Plasma","url":"https://www.academia.edu/Documents/in/Plasma?f_ri=20949"},{"id":176238,"name":"Trees","url":"https://www.academia.edu/Documents/in/Trees?f_ri=20949"},{"id":902201,"name":"Monumental Trees","url":"https://www.academia.edu/Documents/in/Monumental_Trees?f_ri=20949"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_39005969" data-work_id="39005969" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/39005969/Controlled_Surface_Wettability_by_Plasma_Polymer_2_Surface_Modification_3">Controlled Surface Wettability by Plasma Polymer 2 Surface Modification 3</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Various methods of polymer surface tailoring have been studied to control the changes in wetting behavior. Polymers having precisely controlled wetting behavior in a specific environment are blessed with a wealth of opportunities and... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_39005969" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Various methods of polymer surface tailoring have been studied to control the changes in wetting behavior. Polymers having precisely controlled wetting behavior in a specific environment are blessed with a wealth of opportunities and potential applications exploitable in biomaterial engineering. The controlled wetting behavior can be obtained by combining surface chemistry and morphology. Plasma assisted polymer surface modification technique have played a significant part to control surface chemistry and morphology. This review focuses on plasma polymerization and investigations regarding surface chemistry, surface wettability, coating kinetics, as well as coating stability. We begin with brief overview of plasma polymerization; these include growth mechanisms of plasma polymerization and influence of plasma parameters. Next, surface wettability and theoretical background structures and chemistry of superhydrophobic and superhydrophilic surfaces. In this review, overview of recent work on tunable wettability by tailoring surface chemistry and physical appearance (i.e. substrate texture) is also described. The formation of smart polymer coatings, which adjust their surface wettability by according to outside environment, including, pH, light, electric field and temperature. Finally, the applications of tunable wettability and pH responsiveness of polymer coatings in real life are addressed. This review should be of interest to plasma surface science communality specifically focused controlled wettability of smart polymer surfaces.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/39005969" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="b32dfcd1288dd2a6d63f79a63e828404" rel="nofollow" data-download="{"attachment_id":59114106,"asset_id":39005969,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/59114106/download_file?st=MTc0MDI1MjMxNiw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="65951333" href="https://unimaas.academia.edu/plasmascholar">Muzammil Iqbal</a><script data-card-contents-for-user="65951333" type="text/json">{"id":65951333,"first_name":"Muzammil","last_name":"Iqbal","domain_name":"unimaas","page_name":"plasmascholar","display_name":"Muzammil Iqbal","profile_url":"https://unimaas.academia.edu/plasmascholar?f_ri=20949","photo":"https://0.academia-photos.com/65951333/17190843/17329087/s65_muzammil.iqbal.jpg"}</script></span></span></li><li class="js-paper-rank-work_39005969 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="39005969"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 39005969, container: ".js-paper-rank-work_39005969", }); });</script></li><li class="js-percentile-work_39005969 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 39005969; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_39005969"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_39005969 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="39005969"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 39005969; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=39005969]").text(description); $(".js-view-count-work_39005969").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_39005969").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="39005969"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">20</a> </div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="517" rel="nofollow" href="https://www.academia.edu/Documents/in/Plasma_Physics">Plasma Physics</a>, <script data-card-contents-for-ri="517" type="text/json">{"id":517,"name":"Plasma Physics","url":"https://www.academia.edu/Documents/in/Plasma_Physics?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="2465" rel="nofollow" href="https://www.academia.edu/Documents/in/Surface_Science">Surface Science</a>, <script data-card-contents-for-ri="2465" type="text/json">{"id":2465,"name":"Surface Science","url":"https://www.academia.edu/Documents/in/Surface_Science?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="2526" rel="nofollow" href="https://www.academia.edu/Documents/in/Polymer_Chemistry">Polymer Chemistry</a>, <script data-card-contents-for-ri="2526" type="text/json">{"id":2526,"name":"Polymer Chemistry","url":"https://www.academia.edu/Documents/in/Polymer_Chemistry?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="3746" rel="nofollow" href="https://www.academia.edu/Documents/in/Colloids_and_Surfaces">Colloids and Surfaces</a><script data-card-contents-for-ri="3746" type="text/json">{"id":3746,"name":"Colloids and Surfaces","url":"https://www.academia.edu/Documents/in/Colloids_and_Surfaces?f_ri=20949","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=39005969]'), work: {"id":39005969,"title":"Controlled Surface Wettability by Plasma Polymer 2 Surface Modification 3","created_at":"2019-05-02T18:12:16.366-07:00","url":"https://www.academia.edu/39005969/Controlled_Surface_Wettability_by_Plasma_Polymer_2_Surface_Modification_3?f_ri=20949","dom_id":"work_39005969","summary":"Various methods of polymer surface tailoring have been studied to control the changes in wetting behavior. Polymers having precisely controlled wetting behavior in a specific environment are blessed with a wealth of opportunities and potential applications exploitable in biomaterial engineering. The controlled wetting behavior can be obtained by combining surface chemistry and morphology. Plasma assisted polymer surface modification technique have played a significant part to control surface chemistry and morphology. This review focuses on plasma polymerization and investigations regarding surface chemistry, surface wettability, coating kinetics, as well as coating stability. We begin with brief overview of plasma polymerization; these include growth mechanisms of plasma polymerization and influence of plasma parameters. Next, surface wettability and theoretical background structures and chemistry of superhydrophobic and superhydrophilic surfaces. In this review, overview of recent work on tunable wettability by tailoring surface chemistry and physical appearance (i.e. substrate texture) is also described. The formation of smart polymer coatings, which adjust their surface wettability by according to outside environment, including, pH, light, electric field and temperature. Finally, the applications of tunable wettability and pH responsiveness of polymer coatings in real life are addressed. This review should be of interest to plasma surface science communality specifically focused controlled wettability of smart polymer surfaces.\n","downloadable_attachments":[{"id":59114106,"asset_id":39005969,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":65951333,"first_name":"Muzammil","last_name":"Iqbal","domain_name":"unimaas","page_name":"plasmascholar","display_name":"Muzammil Iqbal","profile_url":"https://unimaas.academia.edu/plasmascholar?f_ri=20949","photo":"https://0.academia-photos.com/65951333/17190843/17329087/s65_muzammil.iqbal.jpg"}],"research_interests":[{"id":517,"name":"Plasma Physics","url":"https://www.academia.edu/Documents/in/Plasma_Physics?f_ri=20949","nofollow":true},{"id":2465,"name":"Surface Science","url":"https://www.academia.edu/Documents/in/Surface_Science?f_ri=20949","nofollow":true},{"id":2526,"name":"Polymer Chemistry","url":"https://www.academia.edu/Documents/in/Polymer_Chemistry?f_ri=20949","nofollow":true},{"id":3746,"name":"Colloids and Surfaces","url":"https://www.academia.edu/Documents/in/Colloids_and_Surfaces?f_ri=20949","nofollow":true},{"id":3771,"name":"Hydrogen","url":"https://www.academia.edu/Documents/in/Hydrogen?f_ri=20949"},{"id":7855,"name":"Plasma Engineering","url":"https://www.academia.edu/Documents/in/Plasma_Engineering?f_ri=20949"},{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949"},{"id":21466,"name":"Polymers","url":"https://www.academia.edu/Documents/in/Polymers?f_ri=20949"},{"id":21551,"name":"Hydrogen Storage","url":"https://www.academia.edu/Documents/in/Hydrogen_Storage?f_ri=20949"},{"id":23124,"name":"Surface Engineering","url":"https://www.academia.edu/Documents/in/Surface_Engineering?f_ri=20949"},{"id":29067,"name":"Surface Chemistry","url":"https://www.academia.edu/Documents/in/Surface_Chemistry?f_ri=20949"},{"id":33296,"name":"Surface Roughness","url":"https://www.academia.edu/Documents/in/Surface_Roughness?f_ri=20949"},{"id":45488,"name":"Plasma Chemistry","url":"https://www.academia.edu/Documents/in/Plasma_Chemistry?f_ri=20949"},{"id":66036,"name":"Surface Coatings","url":"https://www.academia.edu/Documents/in/Surface_Coatings?f_ri=20949"},{"id":117555,"name":"Plasma","url":"https://www.academia.edu/Documents/in/Plasma?f_ri=20949"},{"id":146245,"name":"Hydrogen Production","url":"https://www.academia.edu/Documents/in/Hydrogen_Production?f_ri=20949"},{"id":253171,"name":"polymer science and Engineering","url":"https://www.academia.edu/Documents/in/polymer_science_and_Engineering?f_ri=20949"},{"id":274826,"name":"Hydrogen Peroxide","url":"https://www.academia.edu/Documents/in/Hydrogen_Peroxide?f_ri=20949"},{"id":370958,"name":"Surface treatment","url":"https://www.academia.edu/Documents/in/Surface_treatment?f_ri=20949"},{"id":939200,"name":"Hydrogen Economy","url":"https://www.academia.edu/Documents/in/Hydrogen_Economy?f_ri=20949"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_14895802" data-work_id="14895802" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/14895802/Density_Transition_Based_Self_Focusing_of_cosh_Gaussian_Laser_Beam_in_Plasma_with_Linear_Absorption">Density Transition Based Self-Focusing of cosh-Gaussian Laser Beam in Plasma with Linear Absorption</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Density transition based self-focusing of cosh-Gaussian laser beam in plasma with linear absorption has been studied. The ¯eld distribution in the plasma is expressed in terms of beam width parameter, decentered parameter, and linear... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_14895802" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Density transition based self-focusing of cosh-Gaussian laser beam in plasma with linear absorption has<br />been studied. The ¯eld distribution in the plasma is expressed in terms of beam width parameter, decentered parameter,<br />and linear absorption coe±cient. The di®erential equation for the beam width parameter is solved by following Wentzel{<br />Kramers{Brillouin (WKB) and paraxial approximation through parabolic wave equation approach. The behaviour of<br />beam width parameter with dimensionless distance of propagation is studied at optimum values of plasma density,<br />decentered parameter and with di®erent absorption levels in the medium. The results reveal that these parameters can<br />a®ect the self-focusing signi¯cantly.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/14895802" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="d375a7f9931fc1248957406fed7cb55e" rel="nofollow" data-download="{"attachment_id":38464012,"asset_id":14895802,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/38464012/download_file?st=MTc0MDI1MjMxNiw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="31179609" href="https://allduniv.academia.edu/NitiKant">Niti Kant</a><script data-card-contents-for-user="31179609" type="text/json">{"id":31179609,"first_name":"Niti","last_name":"Kant","domain_name":"allduniv","page_name":"NitiKant","display_name":"Niti Kant","profile_url":"https://allduniv.academia.edu/NitiKant?f_ri=20949","photo":"https://0.academia-photos.com/31179609/9658074/77615836/s65_niti.kant.jpeg"}</script></span></span></li><li class="js-paper-rank-work_14895802 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="14895802"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 14895802, container: ".js-paper-rank-work_14895802", }); });</script></li><li class="js-percentile-work_14895802 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 14895802; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_14895802"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_14895802 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="14895802"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 14895802; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=14895802]").text(description); $(".js-view-count-work_14895802").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_14895802").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="14895802"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i></div><span class="InlineList-item-text u-textTruncate u-pl6x"><a class="InlineList-item-text" data-has-card-for-ri="20949" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_Plasma_Interactions">Laser Plasma Interactions</a><script data-card-contents-for-ri="20949" type="text/json">{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true}</script></span></li><script>(function(){ if (false) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=14895802]'), work: {"id":14895802,"title":"Density Transition Based Self-Focusing of cosh-Gaussian Laser Beam in Plasma with Linear Absorption","created_at":"2015-08-13T04:17:23.442-07:00","url":"https://www.academia.edu/14895802/Density_Transition_Based_Self_Focusing_of_cosh_Gaussian_Laser_Beam_in_Plasma_with_Linear_Absorption?f_ri=20949","dom_id":"work_14895802","summary":"Density transition based self-focusing of cosh-Gaussian laser beam in plasma with linear absorption has\nbeen studied. The ¯eld distribution in the plasma is expressed in terms of beam width parameter, decentered parameter,\nand linear absorption coe±cient. The di®erential equation for the beam width parameter is solved by following Wentzel{\nKramers{Brillouin (WKB) and paraxial approximation through parabolic wave equation approach. The behaviour of\nbeam width parameter with dimensionless distance of propagation is studied at optimum values of plasma density,\ndecentered parameter and with di®erent absorption levels in the medium. The results reveal that these parameters can\na®ect the self-focusing signi¯cantly.","downloadable_attachments":[{"id":38464012,"asset_id":14895802,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":31179609,"first_name":"Niti","last_name":"Kant","domain_name":"allduniv","page_name":"NitiKant","display_name":"Niti Kant","profile_url":"https://allduniv.academia.edu/NitiKant?f_ri=20949","photo":"https://0.academia-photos.com/31179609/9658074/77615836/s65_niti.kant.jpeg"}],"research_interests":[{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_4504162 coauthored" data-work_id="4504162" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/4504162/CHARACTERISATION_AND_MITIGATION_OF_IONS_AND_PARTICULATE_EMITTED_BY_SOURCES_FOR_EXTREME_ULTRAVIOLET_LITHOGRAPHY">CHARACTERISATION AND MITIGATION OF IONS AND PARTICULATE EMITTED BY SOURCES FOR EXTREME ULTRAVIOLET LITHOGRAPHY </a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Laser produced plasmas are widely used as extreme ultraviolet (EUV) and soft X-ray radiation sources in many different fields. Lithography is one of the most challenging applications of the EUV spectral region (5-50 nm). The worldwide... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_4504162" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Laser produced plasmas are widely used as extreme ultraviolet (EUV) and soft X-ray radiation sources in many different fields. Lithography is one of the most challenging <br />applications of the EUV spectral region (5-50 nm). The worldwide importance of EUV lithography (EUVL) is basically due to its potential to extend optical projection lithography to higher resolution in integrated circuit manufacturing, thanks to the shorter wavelength and to the availability of high reflectivity normal incidence mirrors. In addition to the huge technological and financial effort carried out by international consortia to raise EUVL at the industrial level, less expensive laboratory-scale facilities have been built up to perform component testing and metrology. Within a national project on nanotechnologies at the ENEA Research Centre in Frascati a micro exposure tool (MET) has been designed and developed for projection lithography, exploiting the facility <br />EGERIA (extreme ultraviolet radiation generation for experimental research and industrial applications). EGERIA is a EUV/soft X-ray laser produced plasma source equipped with a high efficiency debris mitigation system (DMS).</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/4504162" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="7bba5d811978b99d42fe4c91072fb930" rel="nofollow" data-download="{"attachment_id":81468746,"asset_id":4504162,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/81468746/download_file?st=MTc0MDI1MjMxNiw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="4078142" href="https://enea.academia.edu/PaoloDiLazzaro">Paolo Di Lazzaro</a><script data-card-contents-for-user="4078142" type="text/json">{"id":4078142,"first_name":"Paolo","last_name":"Di Lazzaro","domain_name":"enea","page_name":"PaoloDiLazzaro","display_name":"Paolo Di Lazzaro","profile_url":"https://enea.academia.edu/PaoloDiLazzaro?f_ri=20949","photo":"https://0.academia-photos.com/4078142/1877033/31450696/s65_paolo.di_lazzaro.jpg"}</script></span></span><span class="u-displayInlineBlock InlineList-item-text"> and <span class="u-textDecorationUnderline u-clickable InlineList-item-text js-work-more-authors-4504162">+1</span><div class="hidden js-additional-users-4504162"><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://enea.academia.edu/DanieleMurra">Daniele Murra</a></span></div></div></span><script>(function(){ var popoverSettings = { el: $('.js-work-more-authors-4504162'), placement: 'bottom', hide_delay: 200, html: true, content: function(){ return $('.js-additional-users-4504162').html(); } } new HoverPopover(popoverSettings); })();</script></li><li class="js-paper-rank-work_4504162 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="4504162"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 4504162, container: ".js-paper-rank-work_4504162", }); });</script></li><li class="js-percentile-work_4504162 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 4504162; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_4504162"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_4504162 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="4504162"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 4504162; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=4504162]").text(description); $(".js-view-count-work_4504162").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_4504162").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="4504162"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">12</a> </div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="517" rel="nofollow" href="https://www.academia.edu/Documents/in/Plasma_Physics">Plasma Physics</a>, <script data-card-contents-for-ri="517" type="text/json">{"id":517,"name":"Plasma Physics","url":"https://www.academia.edu/Documents/in/Plasma_Physics?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="15064" rel="nofollow" href="https://www.academia.edu/Documents/in/Atomic_processes_-_recombination_of_positive_ions_electron_detachment_atom-ion_collisions_-_beams_">Atomic processes - recombination of positive ions, electron detachment, atom-ion collisions - beams and plasma spectroscopy</a>, <script data-card-contents-for-ri="15064" type="text/json">{"id":15064,"name":"Atomic processes - recombination of positive ions, electron detachment, atom-ion collisions - beams and plasma spectroscopy","url":"https://www.academia.edu/Documents/in/Atomic_processes_-_recombination_of_positive_ions_electron_detachment_atom-ion_collisions_-_beams_?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="20949" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_Plasma_Interactions">Laser Plasma Interactions</a>, <script data-card-contents-for-ri="20949" type="text/json">{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="41877" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_produced_plasma">Laser produced plasma</a><script data-card-contents-for-ri="41877" type="text/json">{"id":41877,"name":"Laser produced plasma","url":"https://www.academia.edu/Documents/in/Laser_produced_plasma?f_ri=20949","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=4504162]'), work: {"id":4504162,"title":"CHARACTERISATION AND MITIGATION OF IONS AND PARTICULATE EMITTED BY SOURCES FOR EXTREME ULTRAVIOLET LITHOGRAPHY ","created_at":"2013-09-16T18:12:20.961-07:00","url":"https://www.academia.edu/4504162/CHARACTERISATION_AND_MITIGATION_OF_IONS_AND_PARTICULATE_EMITTED_BY_SOURCES_FOR_EXTREME_ULTRAVIOLET_LITHOGRAPHY?f_ri=20949","dom_id":"work_4504162","summary":"Laser produced plasmas are widely used as extreme ultraviolet (EUV) and soft X-ray radiation sources in many different fields. Lithography is one of the most challenging\r\napplications of the EUV spectral region (5-50 nm). The worldwide importance of EUV lithography (EUVL) is basically due to its potential to extend optical projection lithography to higher resolution in integrated circuit manufacturing, thanks to the shorter wavelength and to the availability of high reflectivity normal incidence mirrors. In addition to the huge technological and financial effort carried out by international consortia to raise EUVL at the industrial level, less expensive laboratory-scale facilities have been built up to perform component testing and metrology. Within a national project on nanotechnologies at the ENEA Research Centre in Frascati a micro exposure tool (MET) has been designed and developed for projection lithography, exploiting the facility\r\nEGERIA (extreme ultraviolet radiation generation for experimental research and industrial applications). EGERIA is a EUV/soft X-ray laser produced plasma source equipped with a high efficiency debris mitigation system (DMS).","downloadable_attachments":[{"id":81468746,"asset_id":4504162,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":4078142,"first_name":"Paolo","last_name":"Di Lazzaro","domain_name":"enea","page_name":"PaoloDiLazzaro","display_name":"Paolo Di Lazzaro","profile_url":"https://enea.academia.edu/PaoloDiLazzaro?f_ri=20949","photo":"https://0.academia-photos.com/4078142/1877033/31450696/s65_paolo.di_lazzaro.jpg"},{"id":37616270,"first_name":"Daniele","last_name":"Murra","domain_name":"enea","page_name":"DanieleMurra","display_name":"Daniele Murra","profile_url":"https://enea.academia.edu/DanieleMurra?f_ri=20949","photo":"https://0.academia-photos.com/37616270/10661705/11902300/s65_daniele.murra.jpg"}],"research_interests":[{"id":517,"name":"Plasma Physics","url":"https://www.academia.edu/Documents/in/Plasma_Physics?f_ri=20949","nofollow":true},{"id":15064,"name":"Atomic processes - recombination of positive ions, electron detachment, atom-ion collisions - beams and plasma spectroscopy","url":"https://www.academia.edu/Documents/in/Atomic_processes_-_recombination_of_positive_ions_electron_detachment_atom-ion_collisions_-_beams_?f_ri=20949","nofollow":true},{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true},{"id":41877,"name":"Laser produced plasma","url":"https://www.academia.edu/Documents/in/Laser_produced_plasma?f_ri=20949","nofollow":true},{"id":41897,"name":"Debris Flows","url":"https://www.academia.edu/Documents/in/Debris_Flows?f_ri=20949"},{"id":82998,"name":"Laser driven ion acceleration, high-power laser plasma interactions","url":"https://www.academia.edu/Documents/in/Laser_driven_ion_acceleration_high-power_laser_plasma_interactions?f_ri=20949"},{"id":306597,"name":"EUV, Optics","url":"https://www.academia.edu/Documents/in/EUV_Optics-1?f_ri=20949"},{"id":398660,"name":"Plasma and Laser","url":"https://www.academia.edu/Documents/in/Plasma_and_Laser?f_ri=20949"},{"id":729676,"name":"Study of Laser Produced Plasma","url":"https://www.academia.edu/Documents/in/Study_of_Laser_Produced_Plasma?f_ri=20949"},{"id":839499,"name":"Debris Mitigation System","url":"https://www.academia.edu/Documents/in/Debris_Mitigation_System?f_ri=20949"},{"id":907776,"name":"EUV Lithography","url":"https://www.academia.edu/Documents/in/EUV_Lithography?f_ri=20949"},{"id":907783,"name":"Micro Exposure Tool","url":"https://www.academia.edu/Documents/in/Micro_Exposure_Tool?f_ri=20949"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_75011888" data-work_id="75011888" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" rel="nofollow" href="https://www.academia.edu/75011888/Formation_of_electron_holes_in_the_long_time_evolution_of_the_bump_on_tail_instability">Formation of electron holes in the long-time evolution of the bump-on-tail instability</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">An Eulerian Vlasov code is applied for the numerical solution of the one-dimensional Vlasov-Poisson system of equations for electrons, and with ions forming an immobile background. We study the non-linear evolution of the bump-on-tail... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_75011888" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">An Eulerian Vlasov code is applied for the numerical solution of the one-dimensional Vlasov-Poisson system of equations for electrons, and with ions forming an immobile background. We study the non-linear evolution of the bump-on-tail instability in the case when the system length L is greater than the wavelength λ of the unstable mode, with a beam density of 10% of the total density, n b = 0.1. We follow the growth and the saturation of an initially unstable wave perturbation, and the formation of a traveling Bernstein-Greene-Kruskal (BGK) mode, which evolves out of the instability. This first stage is followed by sidebands growing from round-off errors which develop and disrupt the BGK equilibrium. In the excited spectrum, mode coupling is mediated by the oscillating resonant particles and results in the electric energy of the system flowing to the longest wavelengths (inverse cascade), and reaching in the asymptotic state a steady state with constant amplitude oscillation modulated by the persistent oscillation of the trapped particles. Coherent phase-space electron holes are formed, which are localized phase-space regions of reduced density on trapped electron orbits, where the electron density is lower than the surrounding plasma electron density. The distribution function evolves to a shape with stationary inflection points of zero slope, at the phase velocities of the excited waves. The longest wavelengths show oscillations at frequencies below the plasma frequency, with phase velocities higher than that of the injected beam, which can accelerate electrons to energies in excess of the initial beam energy. The present work makes a connection between the formation of electron holes, the existence of inflection points of zero slopes in the electron distribution function at the phase velocities of the dominant waves, and at frequencies below the plasma frequency. A fine resolution grid is used in the Eulerian Vlasov code in the phase space and time to allow an accurate calculation of the time history of the system and of the dynamic and oscillation of the trapped particles in the low-density regions of the phase space, and of those particles at the separatrix regions of the vortex structures which evolve periodically between trapping and untrapping states and which can only be accurately studied using a fineresolution phase-space grid.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/75011888" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="fe37e0869da6c59a70dd8899fa8c5bda" rel="nofollow" data-download="{"attachment_id":82954036,"asset_id":75011888,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/82954036/download_file?st=MTc0MDI1MjMxNiw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="148188507" rel="nofollow" href="https://independent.academia.edu/MagdiShoucri">Magdi Shoucri</a><script data-card-contents-for-user="148188507" type="text/json">{"id":148188507,"first_name":"Magdi","last_name":"Shoucri","domain_name":"independent","page_name":"MagdiShoucri","display_name":"Magdi Shoucri","profile_url":"https://independent.academia.edu/MagdiShoucri?f_ri=20949","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_75011888 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="75011888"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 75011888, container: ".js-paper-rank-work_75011888", }); });</script></li><li class="js-percentile-work_75011888 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75011888; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_75011888"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_75011888 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="75011888"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75011888; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75011888]").text(description); $(".js-view-count-work_75011888").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_75011888").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="75011888"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i></div><span class="InlineList-item-text u-textTruncate u-pl6x"><a class="InlineList-item-text" data-has-card-for-ri="20949" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_Plasma_Interactions">Laser Plasma Interactions</a><script data-card-contents-for-ri="20949" type="text/json">{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true}</script></span></li><script>(function(){ if (false) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=75011888]'), work: {"id":75011888,"title":"Formation of electron holes in the long-time evolution of the bump-on-tail instability","created_at":"2022-03-30T15:49:20.692-07:00","url":"https://www.academia.edu/75011888/Formation_of_electron_holes_in_the_long_time_evolution_of_the_bump_on_tail_instability?f_ri=20949","dom_id":"work_75011888","summary":"An Eulerian Vlasov code is applied for the numerical solution of the one-dimensional Vlasov-Poisson system of equations for electrons, and with ions forming an immobile background. We study the non-linear evolution of the bump-on-tail instability in the case when the system length L is greater than the wavelength λ of the unstable mode, with a beam density of 10% of the total density, n b = 0.1. We follow the growth and the saturation of an initially unstable wave perturbation, and the formation of a traveling Bernstein-Greene-Kruskal (BGK) mode, which evolves out of the instability. This first stage is followed by sidebands growing from round-off errors which develop and disrupt the BGK equilibrium. In the excited spectrum, mode coupling is mediated by the oscillating resonant particles and results in the electric energy of the system flowing to the longest wavelengths (inverse cascade), and reaching in the asymptotic state a steady state with constant amplitude oscillation modulated by the persistent oscillation of the trapped particles. Coherent phase-space electron holes are formed, which are localized phase-space regions of reduced density on trapped electron orbits, where the electron density is lower than the surrounding plasma electron density. The distribution function evolves to a shape with stationary inflection points of zero slope, at the phase velocities of the excited waves. The longest wavelengths show oscillations at frequencies below the plasma frequency, with phase velocities higher than that of the injected beam, which can accelerate electrons to energies in excess of the initial beam energy. The present work makes a connection between the formation of electron holes, the existence of inflection points of zero slopes in the electron distribution function at the phase velocities of the dominant waves, and at frequencies below the plasma frequency. A fine resolution grid is used in the Eulerian Vlasov code in the phase space and time to allow an accurate calculation of the time history of the system and of the dynamic and oscillation of the trapped particles in the low-density regions of the phase space, and of those particles at the separatrix regions of the vortex structures which evolve periodically between trapping and untrapping states and which can only be accurately studied using a fineresolution phase-space grid.","downloadable_attachments":[{"id":82954036,"asset_id":75011888,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":148188507,"first_name":"Magdi","last_name":"Shoucri","domain_name":"independent","page_name":"MagdiShoucri","display_name":"Magdi Shoucri","profile_url":"https://independent.academia.edu/MagdiShoucri?f_ri=20949","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_37411453" data-work_id="37411453" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" rel="nofollow" href="https://www.academia.edu/37411453/Optical_Rocket_Plasma_Accelerator">Optical Rocket Plasma Accelerator</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">In a recent experiment at the University of Nebraska–Lincoln, plasma electrons in the paths of intense laser light pulses were almost instantly accelerated close to the speed of light. [42] Plasma particle accelerators more powerful than... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_37411453" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">In a recent experiment at the University of Nebraska–Lincoln, plasma electrons in the paths of intense laser light pulses were almost instantly accelerated close to the speed of light. [42] Plasma particle accelerators more powerful than existing machines could help probe some of the outstanding mysteries of our universe, as well as make leaps forward in cancer treatment and security scanning—all in a package that's around a thousandth of the size of current accelerators. [41] The Department of Energy's SLAC National Accelerator Laboratory has started to assemble a new facility for revolutionary accelerator technologies that could make future accelerators 100 to 1,000 times smaller and boost their capabilities. [40] The authors designed a mechanism based on the deployment of a transport barrier to confine the particles and prevent them from moving from one region of the accelerator to another. "There is strong experimental evidence that there is indeed some new physics lurking in the lepton sector," Dev said. [38] Now, in a new result unveiled today at the Neutrino 2018 conference in Heidelberg, Germany, the collaboration has announced its first results using antineutrinos, and has seen strong evidence of muon antineutrinos oscillating into electron antineutrinos over long distances, a phenomenon that has never been unambiguously observed. [37] The Precision Reactor Oscillation and Spectrum Experiment (PROSPECT) has completed the installation of a novel antineutrino detector that will probe the possible existence of a new form of matter. [36] The MINERvA collaboration analyzed data from the interactions of an antineutrino— the antimatter partner of a neutrino—with a nucleus. [35] The inclusion of short-range interactions in models of neutrinoless double-beta decay could impact the interpretation of experimental searches for the elusive decay. [34]</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/37411453" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="2dff08277fd51bc7fe06caf8b8a15384" rel="nofollow" data-download="{"attachment_id":57375615,"asset_id":37411453,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/57375615/download_file?st=MTc0MDI1MjMxNiw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="4716086" rel="nofollow" href="https://independent.academia.edu/GeorgeRajna">George Rajna</a><script data-card-contents-for-user="4716086" type="text/json">{"id":4716086,"first_name":"George","last_name":"Rajna","domain_name":"independent","page_name":"GeorgeRajna","display_name":"George Rajna","profile_url":"https://independent.academia.edu/GeorgeRajna?f_ri=20949","photo":"https://0.academia-photos.com/4716086/1992312/2351930/s65_george.rajna.jpg"}</script></span></span></li><li class="js-paper-rank-work_37411453 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="37411453"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 37411453, container: ".js-paper-rank-work_37411453", }); });</script></li><li class="js-percentile-work_37411453 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 37411453; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_37411453"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_37411453 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="37411453"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 37411453; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=37411453]").text(description); $(".js-view-count-work_37411453").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_37411453").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="37411453"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i></div><span class="InlineList-item-text u-textTruncate u-pl6x"><a class="InlineList-item-text" data-has-card-for-ri="20949" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_Plasma_Interactions">Laser Plasma Interactions</a><script data-card-contents-for-ri="20949" type="text/json">{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true}</script></span></li><script>(function(){ if (false) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=37411453]'), work: {"id":37411453,"title":"Optical Rocket Plasma Accelerator","created_at":"2018-09-14T09:01:37.551-07:00","url":"https://www.academia.edu/37411453/Optical_Rocket_Plasma_Accelerator?f_ri=20949","dom_id":"work_37411453","summary":"In a recent experiment at the University of Nebraska–Lincoln, plasma electrons in the paths of intense laser light pulses were almost instantly accelerated close to the speed of light. [42] Plasma particle accelerators more powerful than existing machines could help probe some of the outstanding mysteries of our universe, as well as make leaps forward in cancer treatment and security scanning—all in a package that's around a thousandth of the size of current accelerators. [41] The Department of Energy's SLAC National Accelerator Laboratory has started to assemble a new facility for revolutionary accelerator technologies that could make future accelerators 100 to 1,000 times smaller and boost their capabilities. [40] The authors designed a mechanism based on the deployment of a transport barrier to confine the particles and prevent them from moving from one region of the accelerator to another. \"There is strong experimental evidence that there is indeed some new physics lurking in the lepton sector,\" Dev said. [38] Now, in a new result unveiled today at the Neutrino 2018 conference in Heidelberg, Germany, the collaboration has announced its first results using antineutrinos, and has seen strong evidence of muon antineutrinos oscillating into electron antineutrinos over long distances, a phenomenon that has never been unambiguously observed. [37] The Precision Reactor Oscillation and Spectrum Experiment (PROSPECT) has completed the installation of a novel antineutrino detector that will probe the possible existence of a new form of matter. [36] The MINERvA collaboration analyzed data from the interactions of an antineutrino— the antimatter partner of a neutrino—with a nucleus. [35] The inclusion of short-range interactions in models of neutrinoless double-beta decay could impact the interpretation of experimental searches for the elusive decay. [34]","downloadable_attachments":[{"id":57375615,"asset_id":37411453,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":4716086,"first_name":"George","last_name":"Rajna","domain_name":"independent","page_name":"GeorgeRajna","display_name":"George Rajna","profile_url":"https://independent.academia.edu/GeorgeRajna?f_ri=20949","photo":"https://0.academia-photos.com/4716086/1992312/2351930/s65_george.rajna.jpg"}],"research_interests":[{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_50065934" data-work_id="50065934" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/50065934/Analysis_of_liquid_petroleum_using_a_laser_induced_breakdown_spectroscopy_instrument">Analysis of liquid petroleum using a laser-induced breakdown spectroscopy instrument</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">This article may be openly shared because it is the work created by US government employee, and is considered to be in public domain according to an agreement between Elsevier and the US government. The US government is the copyright... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_50065934" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">This article may be openly shared because it is the work created by US government employee, and is considered to be in public domain according to an agreement between Elsevier and the US government. The US government is the copyright owner. The abstract follows: …. A prototype analyzer for the direct LIBS analysis of nebulized liquid samples was developed and tested, particularly for the analysis of petroleum, organic solvents and aqueous solutions. The LIBS analyzer requires about 750 μl of liquid sample, 1 l of N 2 gas, and 10 s of the analysis time to record 100 spectra. The limits of detection in oil and solvent are as low as 0.01-0.04 ppm for Li, Mg, and Cu. They increase for the difficult elements, such as Pb and Hg (7-10 ppm), Cl (250 ppm), and S (~0.7%). The relative standard deviation of measuring 100 ppm vanadium in oil and solvent was 1.5%. The LIBS detection limits and repeatability are better than required by the standard method ASTM D5185 for the analysis of lubricating oils in ICP-OES. Several petroleum samples were analyzed by LIBS and the quantitative results for V, Ni, and Fe compared to the ICP-OES data. Light crude oils can be nebulized and analyzed directly. Medium crude oils may require minimal dilution at least 1:1, otherwise errors of determination may become large. Presumably, utilization of the internal standard and chemometrics can be useful to correct for the matrix effects. In addition to the trace element analysis, the LIBS prototype demonstrated ability to measure the hydrogen-to-carbon ratio in organic liquid samples. Several unidentified features were observed in the carbon spectrum. Their possible origin is discussed. ☆ This article is published in a special honor issue dedicated to Richard E. Russo to commemorate his 70th. birthday, for his achievements in the fields of laser-material interaction, plasma modeling and evolution, surface analysis with lasers, and for his vision of what is needed and critical in future theoretical, instrumental and methodological development.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/50065934" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="68651753f47801f26fb73e58c4119738" rel="nofollow" data-download="{"attachment_id":68189014,"asset_id":50065934,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/68189014/download_file?st=MTc0MDI1MjMxNiw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="2474323" href="https://umass.academia.edu/AlexanderBolshakov">Alexander Bolshakov</a><script data-card-contents-for-user="2474323" type="text/json">{"id":2474323,"first_name":"Alexander","last_name":"Bolshakov","domain_name":"umass","page_name":"AlexanderBolshakov","display_name":"Alexander Bolshakov","profile_url":"https://umass.academia.edu/AlexanderBolshakov?f_ri=20949","photo":"https://0.academia-photos.com/2474323/774128/962096/s65_alexander.bolshakov.jpg"}</script></span></span></li><li class="js-paper-rank-work_50065934 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="50065934"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 50065934, container: ".js-paper-rank-work_50065934", }); });</script></li><li class="js-percentile-work_50065934 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 50065934; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_50065934"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_50065934 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="50065934"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 50065934; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=50065934]").text(description); $(".js-view-count-work_50065934").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_50065934").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="50065934"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">11</a> </div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="20949" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_Plasma_Interactions">Laser Plasma Interactions</a>, <script data-card-contents-for-ri="20949" type="text/json">{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="36763" rel="nofollow" href="https://www.academia.edu/Documents/in/Aerosols">Aerosols</a>, <script data-card-contents-for-ri="36763" type="text/json">{"id":36763,"name":"Aerosols","url":"https://www.academia.edu/Documents/in/Aerosols?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="41877" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_produced_plasma">Laser produced plasma</a>, <script data-card-contents-for-ri="41877" type="text/json">{"id":41877,"name":"Laser produced plasma","url":"https://www.academia.edu/Documents/in/Laser_produced_plasma?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="60221" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser-induced_breakdown_spectrosocpy">Laser-induced breakdown spectrosocpy</a><script data-card-contents-for-ri="60221" type="text/json">{"id":60221,"name":"Laser-induced breakdown spectrosocpy","url":"https://www.academia.edu/Documents/in/Laser-induced_breakdown_spectrosocpy?f_ri=20949","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=50065934]'), work: {"id":50065934,"title":"Analysis of liquid petroleum using a laser-induced breakdown spectroscopy instrument","created_at":"2021-07-19T02:30:16.270-07:00","url":"https://www.academia.edu/50065934/Analysis_of_liquid_petroleum_using_a_laser_induced_breakdown_spectroscopy_instrument?f_ri=20949","dom_id":"work_50065934","summary":"This article may be openly shared because it is the work created by US government employee, and is considered to be in public domain according to an agreement between Elsevier and the US government. The US government is the copyright owner. The abstract follows: …. A prototype analyzer for the direct LIBS analysis of nebulized liquid samples was developed and tested, particularly for the analysis of petroleum, organic solvents and aqueous solutions. The LIBS analyzer requires about 750 μl of liquid sample, 1 l of N 2 gas, and 10 s of the analysis time to record 100 spectra. The limits of detection in oil and solvent are as low as 0.01-0.04 ppm for Li, Mg, and Cu. They increase for the difficult elements, such as Pb and Hg (7-10 ppm), Cl (250 ppm), and S (~0.7%). The relative standard deviation of measuring 100 ppm vanadium in oil and solvent was 1.5%. The LIBS detection limits and repeatability are better than required by the standard method ASTM D5185 for the analysis of lubricating oils in ICP-OES. Several petroleum samples were analyzed by LIBS and the quantitative results for V, Ni, and Fe compared to the ICP-OES data. Light crude oils can be nebulized and analyzed directly. Medium crude oils may require minimal dilution at least 1:1, otherwise errors of determination may become large. Presumably, utilization of the internal standard and chemometrics can be useful to correct for the matrix effects. In addition to the trace element analysis, the LIBS prototype demonstrated ability to measure the hydrogen-to-carbon ratio in organic liquid samples. Several unidentified features were observed in the carbon spectrum. Their possible origin is discussed. ☆ This article is published in a special honor issue dedicated to Richard E. Russo to commemorate his 70th. birthday, for his achievements in the fields of laser-material interaction, plasma modeling and evolution, surface analysis with lasers, and for his vision of what is needed and critical in future theoretical, instrumental and methodological development.","downloadable_attachments":[{"id":68189014,"asset_id":50065934,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":2474323,"first_name":"Alexander","last_name":"Bolshakov","domain_name":"umass","page_name":"AlexanderBolshakov","display_name":"Alexander Bolshakov","profile_url":"https://umass.academia.edu/AlexanderBolshakov?f_ri=20949","photo":"https://0.academia-photos.com/2474323/774128/962096/s65_alexander.bolshakov.jpg"}],"research_interests":[{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true},{"id":36763,"name":"Aerosols","url":"https://www.academia.edu/Documents/in/Aerosols?f_ri=20949","nofollow":true},{"id":41877,"name":"Laser produced plasma","url":"https://www.academia.edu/Documents/in/Laser_produced_plasma?f_ri=20949","nofollow":true},{"id":60221,"name":"Laser-induced breakdown spectrosocpy","url":"https://www.academia.edu/Documents/in/Laser-induced_breakdown_spectrosocpy?f_ri=20949","nofollow":true},{"id":87501,"name":"Aerosol","url":"https://www.academia.edu/Documents/in/Aerosol?f_ri=20949"},{"id":316233,"name":"Crude Oil","url":"https://www.academia.edu/Documents/in/Crude_Oil?f_ri=20949"},{"id":476328,"name":"Laser Induced Plasma","url":"https://www.academia.edu/Documents/in/Laser_Induced_Plasma?f_ri=20949"},{"id":542433,"name":"Laser Plasmas","url":"https://www.academia.edu/Documents/in/Laser_Plasmas?f_ri=20949"},{"id":591158,"name":"Laser Induced Breakdown Spectroscopy","url":"https://www.academia.edu/Documents/in/Laser_Induced_Breakdown_Spectroscopy?f_ri=20949"},{"id":729676,"name":"Study of Laser Produced Plasma","url":"https://www.academia.edu/Documents/in/Study_of_Laser_Produced_Plasma?f_ri=20949"},{"id":1290330,"name":"Laser Plasma","url":"https://www.academia.edu/Documents/in/Laser_Plasma?f_ri=20949"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_35989392" data-work_id="35989392" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/35989392/Optically_controlled_laser_plasma_electron_accelerator_for_compact_gamma_ray_sources">Optically controlled laser-plasma electron accelerator for compact gamma-ray sources</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Generating quasi-monochromatic, femtosecond γ-ray pulses via Thomson scattering (TS) demands exceptional electron beam (e-beam) quality, such as percent scale energy spread and five-dimensional brightness over 10^16 A/m^2. We show that... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_35989392" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Generating quasi-monochromatic, femtosecond γ-ray pulses via Thomson scattering (TS) demands exceptional electron beam (e-beam) quality, such as percent scale energy spread and five-dimensional brightness over 10^16 A/m^2. We show that near-GeV e-beams with these metrics can be accelerated in a cavity of electron density, driven with an incoherent stack of Joule-scale laser pulses through a mm-size, dense plasma (n ~ 10^19 cm^-3). Changing the time delay, frequency difference, and energy ratio of the stack components controls the e-beam phase space on the femtosecond scale, while the modest energy of the optical driver helps afford kHz-scale repetition rate at manageable average power. Blue-shifting one stack component by a considerable fraction of the carrier frequency makes the stack immune to self-compression. This, in turn, minimizes uncontrolled variation in the cavity shape, suppressing continuous injection of ambient plasma electrons, preserving a single, ultra-bright electron bunch. In addition, weak focusing of the trailing stack component induces periodic injection, generating, in a single shot, a train of bunches with controllable energy spacing and femtosecond synchronization. These designer e-beams, inaccessible to conventional acceleration methods, generate, via TS, gigawatt gamma-ray pulses (or multi-color pulse trains) with the mean energy in the range of interest for nuclear photonics (4 – 16 MeV), containing over 10^6 photons within a microsteradian-scale observation cone.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/35989392" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="bcb44b81eacf8ffe24caf036bd1b5dc1" rel="nofollow" data-download="{"attachment_id":55880874,"asset_id":35989392,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/55880874/download_file?st=MTc0MDI1MjMxNiw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="665665" href="https://leidos.academia.edu/SergeYouriKalmykov">Serge Youri Kalmykov</a><script data-card-contents-for-user="665665" type="text/json">{"id":665665,"first_name":"Serge Youri","last_name":"Kalmykov","domain_name":"leidos","page_name":"SergeYouriKalmykov","display_name":"Serge Youri Kalmykov","profile_url":"https://leidos.academia.edu/SergeYouriKalmykov?f_ri=20949","photo":"https://0.academia-photos.com/665665/586468/1570803/s65_serguei.kalmykov.png"}</script></span></span></li><li class="js-paper-rank-work_35989392 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="35989392"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 35989392, container: ".js-paper-rank-work_35989392", }); });</script></li><li class="js-percentile-work_35989392 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 35989392; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_35989392"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_35989392 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="35989392"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 35989392; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=35989392]").text(description); $(".js-view-count-work_35989392").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_35989392").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="35989392"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">3</a> </div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="20949" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_Plasma_Interactions">Laser Plasma Interactions</a>, <script data-card-contents-for-ri="20949" type="text/json">{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="589929" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser-plasma_electron_acceleration_in_blowout_regime">Laser-plasma electron acceleration in blowout regime</a>, <script data-card-contents-for-ri="589929" type="text/json">{"id":589929,"name":"Laser-plasma electron acceleration in blowout regime","url":"https://www.academia.edu/Documents/in/Laser-plasma_electron_acceleration_in_blowout_regime?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="1305090" rel="nofollow" href="https://www.academia.edu/Documents/in/Thomson_Scattering-1">Thomson Scattering</a><script data-card-contents-for-ri="1305090" type="text/json">{"id":1305090,"name":"Thomson Scattering","url":"https://www.academia.edu/Documents/in/Thomson_Scattering-1?f_ri=20949","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=35989392]'), work: {"id":35989392,"title":"Optically controlled laser-plasma electron accelerator for compact gamma-ray sources","created_at":"2018-02-22T12:09:28.445-08:00","url":"https://www.academia.edu/35989392/Optically_controlled_laser_plasma_electron_accelerator_for_compact_gamma_ray_sources?f_ri=20949","dom_id":"work_35989392","summary":"Generating quasi-monochromatic, femtosecond γ-ray pulses via Thomson scattering (TS) demands exceptional electron beam (e-beam) quality, such as percent scale energy spread and five-dimensional brightness over 10^16 A/m^2. We show that near-GeV e-beams with these metrics can be accelerated in a cavity of electron density, driven with an incoherent stack of Joule-scale laser pulses through a mm-size, dense plasma (n ~ 10^19 cm^-3). Changing the time delay, frequency difference, and energy ratio of the stack components controls the e-beam phase space on the femtosecond scale, while the modest energy of the optical driver helps afford kHz-scale repetition rate at manageable average power. Blue-shifting one stack component by a considerable fraction of the carrier frequency makes the stack immune to self-compression. This, in turn, minimizes uncontrolled variation in the cavity shape, suppressing continuous injection of ambient plasma electrons, preserving a single, ultra-bright electron bunch. In addition, weak focusing of the trailing stack component induces periodic injection, generating, in a single shot, a train of bunches with controllable energy spacing and femtosecond synchronization. These designer e-beams, inaccessible to conventional acceleration methods, generate, via TS, gigawatt gamma-ray pulses (or multi-color pulse trains) with the mean energy in the range of interest for nuclear photonics (4 – 16 MeV), containing over 10^6 photons within a microsteradian-scale observation cone.","downloadable_attachments":[{"id":55880874,"asset_id":35989392,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":665665,"first_name":"Serge Youri","last_name":"Kalmykov","domain_name":"leidos","page_name":"SergeYouriKalmykov","display_name":"Serge Youri Kalmykov","profile_url":"https://leidos.academia.edu/SergeYouriKalmykov?f_ri=20949","photo":"https://0.academia-photos.com/665665/586468/1570803/s65_serguei.kalmykov.png"}],"research_interests":[{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true},{"id":589929,"name":"Laser-plasma electron acceleration in blowout regime","url":"https://www.academia.edu/Documents/in/Laser-plasma_electron_acceleration_in_blowout_regime?f_ri=20949","nofollow":true},{"id":1305090,"name":"Thomson Scattering","url":"https://www.academia.edu/Documents/in/Thomson_Scattering-1?f_ri=20949","nofollow":true}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_25829985" data-work_id="25829985" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/25829985/Instrumentation_for_diagnostics_and_control_of_laser_accelerated_proton_ion_beams">Instrumentation for diagnostics and control of laser-accelerated proton (ion) beams</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Suitable instrumentation for laser-accelerated proton (ion) beams is critical for development of integrated, laser-driven ion accelerator systems. Instrumentation aimed at beam diagnostics and control must be applied to the driving laser... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_25829985" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Suitable instrumentation for laser-accelerated proton (ion) beams is critical for development of integrated, laser-driven ion accelerator systems. Instrumentation aimed at beam diagnostics and control must be applied to the driving laser pulse, the lasereplasma that forms at the target and the emergent proton (ion) bunch in a correlated way to develop these novel accelerators. This report is a brief overview of established diagnostic techniques and new developments based on material presented at the first workshop on 'Instrumentation for Diagnostics and Control of Laser-accelerated Proton (Ion) Beams' in Abingdon, UK. It includes radiochromic film (RCF), image plates (IP), micro-channel plates (MCP), Thomson spectrometers, prompt inline scintillators, time and space-resolved interferometry (TASRI) and nuclear activation schemes. Repetition-rated instrumentation requirements for target metrology are also addressed.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/25829985" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="540b6c107b13f88a9c31a8f2e5e06595" rel="nofollow" data-download="{"attachment_id":46196564,"asset_id":25829985,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/46196564/download_file?st=MTc0MDI1MjMxNiw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="32729173" href="https://independent.academia.edu/TolleyM">M. Tolley</a><script data-card-contents-for-user="32729173" type="text/json">{"id":32729173,"first_name":"M.","last_name":"Tolley","domain_name":"independent","page_name":"TolleyM","display_name":"M. Tolley","profile_url":"https://independent.academia.edu/TolleyM?f_ri=20949","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_25829985 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="25829985"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 25829985, container: ".js-paper-rank-work_25829985", }); });</script></li><li class="js-percentile-work_25829985 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 25829985; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_25829985"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_25829985 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="25829985"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 25829985; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=25829985]").text(description); $(".js-view-count-work_25829985").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_25829985").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="25829985"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">8</a> </div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="20949" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_Plasma_Interactions">Laser Plasma Interactions</a>, <script data-card-contents-for-ri="20949" type="text/json">{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="47884" rel="nofollow" href="https://www.academia.edu/Documents/in/Biological_Sciences">Biological Sciences</a>, <script data-card-contents-for-ri="47884" type="text/json">{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="80221" rel="nofollow" href="https://www.academia.edu/Documents/in/Lasers">Lasers</a>, <script data-card-contents-for-ri="80221" type="text/json">{"id":80221,"name":"Lasers","url":"https://www.academia.edu/Documents/in/Lasers?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="118582" rel="nofollow" href="https://www.academia.edu/Documents/in/Physical_sciences">Physical sciences</a><script data-card-contents-for-ri="118582" type="text/json">{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences?f_ri=20949","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=25829985]'), work: {"id":25829985,"title":"Instrumentation for diagnostics and control of laser-accelerated proton (ion) beams","created_at":"2016-06-03T05:18:32.136-07:00","url":"https://www.academia.edu/25829985/Instrumentation_for_diagnostics_and_control_of_laser_accelerated_proton_ion_beams?f_ri=20949","dom_id":"work_25829985","summary":"Suitable instrumentation for laser-accelerated proton (ion) beams is critical for development of integrated, laser-driven ion accelerator systems. Instrumentation aimed at beam diagnostics and control must be applied to the driving laser pulse, the lasereplasma that forms at the target and the emergent proton (ion) bunch in a correlated way to develop these novel accelerators. This report is a brief overview of established diagnostic techniques and new developments based on material presented at the first workshop on 'Instrumentation for Diagnostics and Control of Laser-accelerated Proton (Ion) Beams' in Abingdon, UK. It includes radiochromic film (RCF), image plates (IP), micro-channel plates (MCP), Thomson spectrometers, prompt inline scintillators, time and space-resolved interferometry (TASRI) and nuclear activation schemes. Repetition-rated instrumentation requirements for target metrology are also addressed.","downloadable_attachments":[{"id":46196564,"asset_id":25829985,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":32729173,"first_name":"M.","last_name":"Tolley","domain_name":"independent","page_name":"TolleyM","display_name":"M. Tolley","profile_url":"https://independent.academia.edu/TolleyM?f_ri=20949","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences?f_ri=20949","nofollow":true},{"id":80221,"name":"Lasers","url":"https://www.academia.edu/Documents/in/Lasers?f_ri=20949","nofollow":true},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences?f_ri=20949","nofollow":true},{"id":444844,"name":"Spectrum analysis","url":"https://www.academia.edu/Documents/in/Spectrum_analysis?f_ri=20949"},{"id":713377,"name":"Laser Based Particle Acceleration","url":"https://www.academia.edu/Documents/in/Laser_Based_Particle_Acceleration?f_ri=20949"},{"id":1208793,"name":"Protons","url":"https://www.academia.edu/Documents/in/Protons?f_ri=20949"},{"id":1390449,"name":"Particle Accelerators","url":"https://www.academia.edu/Documents/in/Particle_Accelerators?f_ri=20949"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_9064479" data-work_id="9064479" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/9064479/MSc_Thesis_Single_Cluster_Laser_Interaction_Modelling_and_understanding_laser_single_cluster_interaction_for_cluster_fusion">MSc. Thesis: Single Cluster Laser Interaction: Modelling and understanding laser-single cluster interaction for cluster fusion</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">When an ultrashort, intense laser pulse interacts with a nano-cluster (radius ∼ nm, solid-state density), high ion energies and high ion charges are obtained in a very short amount of time. These high ion energies can be used to induce... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_9064479" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">When an ultrashort, intense laser pulse interacts with a nano-cluster (radius ∼ nm, solid-state<br />density), high ion energies and high ion charges are obtained in a very short amount of time.<br />These high ion energies can be used to induce fusion reactions: cluster fusion. In current cluster<br />fusion experiments sub nanosecond neutron pulses of 1e4 − 1e6 neutrons per pulse with Q-values<br />of 1e−8 − 1e−7 are obtained. We have devised a simplified process-based laser-single cluster<br />interaction model for ascertaining the theoretical feasibility of single cluster fusion (fusion within<br />one exploding nano-cluster upon laser irradiation) and for ascertaining the possibility of generating<br />mono-energetic ion energy spectra from a single cluster for enhancing fusion yields in current<br />cluster fusion schemes.<br /><br />Laser-cluster interaction has been dissected in three processes: inner field ionisation, electron<br />ejection and cluster expansion. In low-Z laser-cluster interaction, these processes occur sequen<br />tially. Field ionisation rapidly ionises the cluster, creating a nano-plasma. The resulting electron<br />cloud is subjective to a driving force by the laser field and a retaining force by the ion cloud, resulting in a forced oscillator model for the electron cloud motion during the laser pulse irradiation,<br />which is used for determining the portion of ejected electrons from the cluster. After electron<br />ejection, the cluster obtains an ion charge excess causing the cluster to expand under its self<br />generated potential, accelerating the cluster ions to high energies when all electrons are ejected.<br /><br />In the case of high-Z laser-cluster interaction we have shown that the electron cloud oscillation and<br />field ionisation processes occur simultaneously and have a synergistic effect on each other, which<br />explains why extraordinarily high charge states can be obtained by laser-single cluster interaction.<br />We used our process-based model to show that it is theoretically possible to obtain nuclear<br />fusion for deuterium-deuterium, deuterium-tritium and proton-boron fuel mixes from a single ex<br />ploding nano-cluster by using peaked density cluster profiles and/or by combining ion species with<br />a different mass/charge ratio. Single cluster fusion results in a sub picosecond neutron (deuterium<br />deuterium, deuterium-tritium fusion) / α radiation (proton-boron fusion) pulse, which can poten<br />tially lead to very high instantaneous (pulsed) neutron fluxes of up to 1e22 − 1e24 neutrons/s m^2.<br /><br />Additionally, we have shown that it is theoretically possible to obtain mono-energetic ion energy<br />spectra from cluster fusion by controlling the density profile in a double pulse set-up, which can<br />enhance the fusion yield in current cluster fusion schemes by up to a factor 4.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/9064479" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="0561ef232b5f9f8e9790574972234ca3" rel="nofollow" data-download="{"attachment_id":35365901,"asset_id":9064479,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/35365901/download_file?st=MTc0MDI1MjMxNiw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="20522793" href="https://york.academia.edu/KevinVerhaegh">Kevin Verhaegh</a><script data-card-contents-for-user="20522793" type="text/json">{"id":20522793,"first_name":"Kevin","last_name":"Verhaegh","domain_name":"york","page_name":"KevinVerhaegh","display_name":"Kevin Verhaegh","profile_url":"https://york.academia.edu/KevinVerhaegh?f_ri=20949","photo":"https://0.academia-photos.com/20522793/5682533/6464634/s65_kevin.verhaegh.jpg_oh_481632b350eafa7fde2bd388e9312e27_oe_54f71d67___gda___1420477911_85489135b96349099780d387fa6f54e1"}</script></span></span></li><li class="js-paper-rank-work_9064479 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="9064479"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 9064479, container: ".js-paper-rank-work_9064479", }); });</script></li><li class="js-percentile-work_9064479 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 9064479; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_9064479"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_9064479 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="9064479"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 9064479; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=9064479]").text(description); $(".js-view-count-work_9064479").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_9064479").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="9064479"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">8</a> </div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="8658" rel="nofollow" href="https://www.academia.edu/Documents/in/Physics_of_Intense_Charged_Particle_Beams">Physics of Intense Charged Particle Beams</a>, <script data-card-contents-for-ri="8658" type="text/json">{"id":8658,"name":"Physics of Intense Charged Particle Beams","url":"https://www.academia.edu/Documents/in/Physics_of_Intense_Charged_Particle_Beams?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="8660" rel="nofollow" href="https://www.academia.edu/Documents/in/Charged_Particle_Optics">Charged Particle Optics</a>, <script data-card-contents-for-ri="8660" type="text/json">{"id":8660,"name":"Charged Particle Optics","url":"https://www.academia.edu/Documents/in/Charged_Particle_Optics?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="15600" rel="nofollow" href="https://www.academia.edu/Documents/in/Femtosecond_Laser">Femtosecond Laser</a>, <script data-card-contents-for-ri="15600" type="text/json">{"id":15600,"name":"Femtosecond Laser","url":"https://www.academia.edu/Documents/in/Femtosecond_Laser?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="20949" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_Plasma_Interactions">Laser Plasma Interactions</a><script data-card-contents-for-ri="20949" type="text/json">{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=9064479]'), work: {"id":9064479,"title":"MSc. Thesis: Single Cluster Laser Interaction: Modelling and understanding laser-single cluster interaction for cluster fusion","created_at":"2014-11-01T07:43:34.616-07:00","url":"https://www.academia.edu/9064479/MSc_Thesis_Single_Cluster_Laser_Interaction_Modelling_and_understanding_laser_single_cluster_interaction_for_cluster_fusion?f_ri=20949","dom_id":"work_9064479","summary":"When an ultrashort, intense laser pulse interacts with a nano-cluster (radius ∼ nm, solid-state\ndensity), high ion energies and high ion charges are obtained in a very short amount of time.\nThese high ion energies can be used to induce fusion reactions: cluster fusion. In current cluster\nfusion experiments sub nanosecond neutron pulses of 1e4 − 1e6 neutrons per pulse with Q-values\nof 1e−8 − 1e−7 are obtained. We have devised a simplified process-based laser-single cluster\ninteraction model for ascertaining the theoretical feasibility of single cluster fusion (fusion within\none exploding nano-cluster upon laser irradiation) and for ascertaining the possibility of generating\nmono-energetic ion energy spectra from a single cluster for enhancing fusion yields in current\ncluster fusion schemes.\n\nLaser-cluster interaction has been dissected in three processes: inner field ionisation, electron\nejection and cluster expansion. In low-Z laser-cluster interaction, these processes occur sequen\ntially. Field ionisation rapidly ionises the cluster, creating a nano-plasma. The resulting electron\ncloud is subjective to a driving force by the laser field and a retaining force by the ion cloud, resulting in a forced oscillator model for the electron cloud motion during the laser pulse irradiation,\nwhich is used for determining the portion of ejected electrons from the cluster. After electron\nejection, the cluster obtains an ion charge excess causing the cluster to expand under its self\ngenerated potential, accelerating the cluster ions to high energies when all electrons are ejected.\n\nIn the case of high-Z laser-cluster interaction we have shown that the electron cloud oscillation and\nfield ionisation processes occur simultaneously and have a synergistic effect on each other, which\nexplains why extraordinarily high charge states can be obtained by laser-single cluster interaction.\nWe used our process-based model to show that it is theoretically possible to obtain nuclear\nfusion for deuterium-deuterium, deuterium-tritium and proton-boron fuel mixes from a single ex\nploding nano-cluster by using peaked density cluster profiles and/or by combining ion species with\na different mass/charge ratio. Single cluster fusion results in a sub picosecond neutron (deuterium\ndeuterium, deuterium-tritium fusion) / α radiation (proton-boron fusion) pulse, which can poten\ntially lead to very high instantaneous (pulsed) neutron fluxes of up to 1e22 − 1e24 neutrons/s m^2.\n\nAdditionally, we have shown that it is theoretically possible to obtain mono-energetic ion energy\nspectra from cluster fusion by controlling the density profile in a double pulse set-up, which can\nenhance the fusion yield in current cluster fusion schemes by up to a factor 4.","downloadable_attachments":[{"id":35365901,"asset_id":9064479,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":20522793,"first_name":"Kevin","last_name":"Verhaegh","domain_name":"york","page_name":"KevinVerhaegh","display_name":"Kevin Verhaegh","profile_url":"https://york.academia.edu/KevinVerhaegh?f_ri=20949","photo":"https://0.academia-photos.com/20522793/5682533/6464634/s65_kevin.verhaegh.jpg_oh_481632b350eafa7fde2bd388e9312e27_oe_54f71d67___gda___1420477911_85489135b96349099780d387fa6f54e1"}],"research_interests":[{"id":8658,"name":"Physics of Intense Charged Particle Beams","url":"https://www.academia.edu/Documents/in/Physics_of_Intense_Charged_Particle_Beams?f_ri=20949","nofollow":true},{"id":8660,"name":"Charged Particle Optics","url":"https://www.academia.edu/Documents/in/Charged_Particle_Optics?f_ri=20949","nofollow":true},{"id":15600,"name":"Femtosecond Laser","url":"https://www.academia.edu/Documents/in/Femtosecond_Laser?f_ri=20949","nofollow":true},{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true},{"id":24034,"name":"Cold Fusion","url":"https://www.academia.edu/Documents/in/Cold_Fusion?f_ri=20949"},{"id":33315,"name":"Inertial Fusion Energy","url":"https://www.academia.edu/Documents/in/Inertial_Fusion_Energy?f_ri=20949"},{"id":70906,"name":"Intense laser matter interactions","url":"https://www.academia.edu/Documents/in/Intense_laser_matter_interactions?f_ri=20949"},{"id":891448,"name":"Highly Charged Ions","url":"https://www.academia.edu/Documents/in/Highly_Charged_Ions?f_ri=20949"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_39804062" data-work_id="39804062" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/39804062/Tunable_surface_chemistry_and_wettability_of_octafluorocyclobutane_and_acrylic_acid_copolymer_combined_LDPE_substrate_by_pulsed_plasma_polymerization">Tunable surface chemistry and wettability of octafluorocyclobutane and acrylic acid copolymer combined LDPE substrate by pulsed plasma polymerization</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Octafluorocyclobutane and acrylic acid (C 4 F 8-co-AA) are plasma copolymerized onto low-density polyethylene (LDPE) and glass slides under various pulsation periods of radio frequency pulsed plasma. The surface wettability of plasma... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_39804062" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Octafluorocyclobutane and acrylic acid (C 4 F 8-co-AA) are plasma copolymerized onto low-density polyethylene (LDPE) and glass slides under various pulsation periods of radio frequency pulsed plasma. The surface wettability of plasma polymer coating is traditionally considered as a substrate-independent property. The combined effect of ultra-thin C 4 F 8-co-AA coatings and LDPE substrate on surface wettability is presented. The high concentration of the carboxylic acid functional groups gives rise to hydrophilicity via lowering duty cycle, and substrate impact gives rise to hydrophobicity for ultrathin coatings. The X-ray photoelectron spectroscopy and coating thickness measurements confirmed that the sudden increase in water contact angle for the lower duty cycle is influenced by the hydrophobic substrate for ultrathin polymer coatings. It is highlighted that the precise control over the surface wettability is attained by tuning the plasma parameters. The substrate-dependent wettability for flat substrate persisted for longer than 8 weeks, which demonstrates wetting stability for ultrathin coatings.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/39804062" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="33c13120b203dfdb59e0997e62050243" rel="nofollow" data-download="{"attachment_id":59988336,"asset_id":39804062,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/59988336/download_file?st=MTc0MDI1MjMxNiw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="65951333" href="https://unimaas.academia.edu/plasmascholar">Muzammil Iqbal</a><script data-card-contents-for-user="65951333" type="text/json">{"id":65951333,"first_name":"Muzammil","last_name":"Iqbal","domain_name":"unimaas","page_name":"plasmascholar","display_name":"Muzammil Iqbal","profile_url":"https://unimaas.academia.edu/plasmascholar?f_ri=20949","photo":"https://0.academia-photos.com/65951333/17190843/17329087/s65_muzammil.iqbal.jpg"}</script></span></span></li><li class="js-paper-rank-work_39804062 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="39804062"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 39804062, container: ".js-paper-rank-work_39804062", }); });</script></li><li class="js-percentile-work_39804062 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 39804062; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_39804062"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_39804062 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="39804062"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 39804062; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=39804062]").text(description); $(".js-view-count-work_39804062").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_39804062").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="39804062"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">19</a> </div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="517" rel="nofollow" href="https://www.academia.edu/Documents/in/Plasma_Physics">Plasma Physics</a>, <script data-card-contents-for-ri="517" type="text/json">{"id":517,"name":"Plasma Physics","url":"https://www.academia.edu/Documents/in/Plasma_Physics?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="2465" rel="nofollow" href="https://www.academia.edu/Documents/in/Surface_Science">Surface Science</a>, <script data-card-contents-for-ri="2465" type="text/json">{"id":2465,"name":"Surface Science","url":"https://www.academia.edu/Documents/in/Surface_Science?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="4337" rel="nofollow" href="https://www.academia.edu/Documents/in/Space_Plasma_Physics">Space Plasma Physics</a>, <script data-card-contents-for-ri="4337" type="text/json">{"id":4337,"name":"Space Plasma Physics","url":"https://www.academia.edu/Documents/in/Space_Plasma_Physics?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="7855" rel="nofollow" href="https://www.academia.edu/Documents/in/Plasma_Engineering">Plasma Engineering</a><script data-card-contents-for-ri="7855" type="text/json">{"id":7855,"name":"Plasma Engineering","url":"https://www.academia.edu/Documents/in/Plasma_Engineering?f_ri=20949","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=39804062]'), work: {"id":39804062,"title":"Tunable surface chemistry and wettability of octafluorocyclobutane and acrylic acid copolymer combined LDPE substrate by pulsed plasma polymerization","created_at":"2019-07-11T22:34:34.723-07:00","url":"https://www.academia.edu/39804062/Tunable_surface_chemistry_and_wettability_of_octafluorocyclobutane_and_acrylic_acid_copolymer_combined_LDPE_substrate_by_pulsed_plasma_polymerization?f_ri=20949","dom_id":"work_39804062","summary":"Octafluorocyclobutane and acrylic acid (C 4 F 8-co-AA) are plasma copolymerized onto low-density polyethylene (LDPE) and glass slides under various pulsation periods of radio frequency pulsed plasma. The surface wettability of plasma polymer coating is traditionally considered as a substrate-independent property. The combined effect of ultra-thin C 4 F 8-co-AA coatings and LDPE substrate on surface wettability is presented. The high concentration of the carboxylic acid functional groups gives rise to hydrophilicity via lowering duty cycle, and substrate impact gives rise to hydrophobicity for ultrathin coatings. The X-ray photoelectron spectroscopy and coating thickness measurements confirmed that the sudden increase in water contact angle for the lower duty cycle is influenced by the hydrophobic substrate for ultrathin polymer coatings. It is highlighted that the precise control over the surface wettability is attained by tuning the plasma parameters. The substrate-dependent wettability for flat substrate persisted for longer than 8 weeks, which demonstrates wetting stability for ultrathin coatings.","downloadable_attachments":[{"id":59988336,"asset_id":39804062,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":65951333,"first_name":"Muzammil","last_name":"Iqbal","domain_name":"unimaas","page_name":"plasmascholar","display_name":"Muzammil Iqbal","profile_url":"https://unimaas.academia.edu/plasmascholar?f_ri=20949","photo":"https://0.academia-photos.com/65951333/17190843/17329087/s65_muzammil.iqbal.jpg"}],"research_interests":[{"id":517,"name":"Plasma Physics","url":"https://www.academia.edu/Documents/in/Plasma_Physics?f_ri=20949","nofollow":true},{"id":2465,"name":"Surface Science","url":"https://www.academia.edu/Documents/in/Surface_Science?f_ri=20949","nofollow":true},{"id":4337,"name":"Space Plasma Physics","url":"https://www.academia.edu/Documents/in/Space_Plasma_Physics?f_ri=20949","nofollow":true},{"id":7855,"name":"Plasma Engineering","url":"https://www.academia.edu/Documents/in/Plasma_Engineering?f_ri=20949","nofollow":true},{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949"},{"id":23124,"name":"Surface Engineering","url":"https://www.academia.edu/Documents/in/Surface_Engineering?f_ri=20949"},{"id":29067,"name":"Surface Chemistry","url":"https://www.academia.edu/Documents/in/Surface_Chemistry?f_ri=20949"},{"id":33296,"name":"Surface Roughness","url":"https://www.academia.edu/Documents/in/Surface_Roughness?f_ri=20949"},{"id":37529,"name":"Plasma Medicine","url":"https://www.academia.edu/Documents/in/Plasma_Medicine?f_ri=20949"},{"id":45488,"name":"Plasma Chemistry","url":"https://www.academia.edu/Documents/in/Plasma_Chemistry?f_ri=20949"},{"id":57736,"name":"Microwave technology and plasma physics","url":"https://www.academia.edu/Documents/in/Microwave_technology_and_plasma_physics?f_ri=20949"},{"id":62455,"name":"Plasma spray coatings","url":"https://www.academia.edu/Documents/in/Plasma_spray_coatings?f_ri=20949"},{"id":66036,"name":"Surface Coatings","url":"https://www.academia.edu/Documents/in/Surface_Coatings?f_ri=20949"},{"id":117555,"name":"Plasma","url":"https://www.academia.edu/Documents/in/Plasma?f_ri=20949"},{"id":143737,"name":"Plasma Enhanced Chemical vapour deposition (PECVD)","url":"https://www.academia.edu/Documents/in/Plasma_Enhanced_Chemical_vapour_deposition_PECVD_?f_ri=20949"},{"id":154129,"name":"Plasma Technology","url":"https://www.academia.edu/Documents/in/Plasma_Technology?f_ri=20949"},{"id":370958,"name":"Surface treatment","url":"https://www.academia.edu/Documents/in/Surface_treatment?f_ri=20949"},{"id":440924,"name":"Surface Properties","url":"https://www.academia.edu/Documents/in/Surface_Properties?f_ri=20949"},{"id":445838,"name":"Cold Plasma","url":"https://www.academia.edu/Documents/in/Cold_Plasma?f_ri=20949"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_18974539" data-work_id="18974539" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/18974539/TUTTI_I_COLORI_DELL_ENEA">TUTTI I "COLORI" DELL’ENEA</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">A partire dai pioneristici studi sui sistemi laser applicati alla diagnostica dei plasmi del gruppo di Ascoli Bartoli nei primissimi anni ’60 a Frascati, i laboratori del CNEN poi l’ENEA hanno sviluppato e mantenuto nei decenni competenze... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_18974539" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">A partire dai pioneristici studi sui sistemi laser applicati alla diagnostica dei plasmi del gruppo di Ascoli Bartoli nei primissimi anni ’60 a Frascati, i laboratori del CNEN poi l’ENEA hanno sviluppato e mantenuto nei decenni competenze di assoluto livello internazionale nello sviluppo e nelle applicazioni di sistemi laser e più in generale di sorgenti di luce sia coerenti, sia incoerenti. Oggi, la compresenza nello stesso Centro di diverse sorgenti di luce che coprono una larghissima parte dello spettro delle onde elettromagnetiche (tutti ‘i colori’ a cui fa riferimento il titolo), dal THz ai raggi X duri, costituisce un caso unico in Italia di cui si parla poco ma che è una realtà scientifica e tecnologica acclarata da decenni. In questo articolo presentiamo un riassunto di alcune sorgenti di luce progettate e realizzate nel Centro ENEA di Frascati, e delle loro applicazioni in diversi campi scientifici e tecnologici.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/18974539" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="a9fa5fbea6b24a8b1fdc6e03ac196b57" rel="nofollow" data-download="{"attachment_id":43600382,"asset_id":18974539,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/43600382/download_file?st=MTc0MDI1MjMxNiw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="4078142" href="https://enea.academia.edu/PaoloDiLazzaro">Paolo Di Lazzaro</a><script data-card-contents-for-user="4078142" type="text/json">{"id":4078142,"first_name":"Paolo","last_name":"Di Lazzaro","domain_name":"enea","page_name":"PaoloDiLazzaro","display_name":"Paolo Di Lazzaro","profile_url":"https://enea.academia.edu/PaoloDiLazzaro?f_ri=20949","photo":"https://0.academia-photos.com/4078142/1877033/31450696/s65_paolo.di_lazzaro.jpg"}</script></span></span></li><li class="js-paper-rank-work_18974539 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="18974539"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 18974539, container: ".js-paper-rank-work_18974539", }); });</script></li><li class="js-percentile-work_18974539 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 18974539; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_18974539"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_18974539 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="18974539"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 18974539; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=18974539]").text(description); $(".js-view-count-work_18974539").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_18974539").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="18974539"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">19</a> </div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="2415" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_Physics">Laser Physics</a>, <script data-card-contents-for-ri="2415" type="text/json">{"id":2415,"name":"Laser Physics","url":"https://www.academia.edu/Documents/in/Laser_Physics?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="2416" rel="nofollow" href="https://www.academia.edu/Documents/in/Free_Electron_Lasers">Free Electron Lasers</a>, <script data-card-contents-for-ri="2416" type="text/json">{"id":2416,"name":"Free Electron Lasers","url":"https://www.academia.edu/Documents/in/Free_Electron_Lasers?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="4135" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser">Laser</a>, <script data-card-contents-for-ri="4135" type="text/json">{"id":4135,"name":"Laser","url":"https://www.academia.edu/Documents/in/Laser?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="4655" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser-Matter_interactions">Laser-Matter interactions</a><script data-card-contents-for-ri="4655" type="text/json">{"id":4655,"name":"Laser-Matter interactions","url":"https://www.academia.edu/Documents/in/Laser-Matter_interactions?f_ri=20949","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=18974539]'), work: {"id":18974539,"title":"TUTTI I \"COLORI\" DELL’ENEA","created_at":"2015-11-25T02:44:13.952-08:00","url":"https://www.academia.edu/18974539/TUTTI_I_COLORI_DELL_ENEA?f_ri=20949","dom_id":"work_18974539","summary":"A partire dai pioneristici studi sui sistemi laser applicati alla diagnostica dei plasmi del gruppo di Ascoli Bartoli nei primissimi anni ’60 a Frascati, i laboratori del CNEN poi l’ENEA hanno sviluppato e mantenuto nei decenni competenze di assoluto livello internazionale nello sviluppo e nelle applicazioni di sistemi laser e più in generale di sorgenti di luce sia coerenti, sia incoerenti. Oggi, la compresenza nello stesso Centro di diverse sorgenti di luce che coprono una larghissima parte dello spettro delle onde elettromagnetiche (tutti ‘i colori’ a cui fa riferimento il titolo), dal THz ai raggi X duri, costituisce un caso unico in Italia di cui si parla poco ma che è una realtà scientifica e tecnologica acclarata da decenni. In questo articolo presentiamo un riassunto di alcune sorgenti di luce progettate e realizzate nel Centro ENEA di Frascati, e delle loro applicazioni in diversi campi scientifici e tecnologici.","downloadable_attachments":[{"id":43600382,"asset_id":18974539,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":4078142,"first_name":"Paolo","last_name":"Di Lazzaro","domain_name":"enea","page_name":"PaoloDiLazzaro","display_name":"Paolo Di Lazzaro","profile_url":"https://enea.academia.edu/PaoloDiLazzaro?f_ri=20949","photo":"https://0.academia-photos.com/4078142/1877033/31450696/s65_paolo.di_lazzaro.jpg"}],"research_interests":[{"id":2415,"name":"Laser Physics","url":"https://www.academia.edu/Documents/in/Laser_Physics?f_ri=20949","nofollow":true},{"id":2416,"name":"Free Electron Lasers","url":"https://www.academia.edu/Documents/in/Free_Electron_Lasers?f_ri=20949","nofollow":true},{"id":4135,"name":"Laser","url":"https://www.academia.edu/Documents/in/Laser?f_ri=20949","nofollow":true},{"id":4655,"name":"Laser-Matter interactions","url":"https://www.academia.edu/Documents/in/Laser-Matter_interactions?f_ri=20949","nofollow":true},{"id":8665,"name":"Terahertz Waves","url":"https://www.academia.edu/Documents/in/Terahertz_Waves?f_ri=20949"},{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949"},{"id":25333,"name":"Terahertz Photonics","url":"https://www.academia.edu/Documents/in/Terahertz_Photonics?f_ri=20949"},{"id":41877,"name":"Laser produced plasma","url":"https://www.academia.edu/Documents/in/Laser_produced_plasma?f_ri=20949"},{"id":45583,"name":"Laser Ablation - Inductively Coupled Plasma - Mass Spectrometry","url":"https://www.academia.edu/Documents/in/Laser_Ablation_-_Inductively_Coupled_Plasma_-_Mass_Spectrometry?f_ri=20949"},{"id":80221,"name":"Lasers","url":"https://www.academia.edu/Documents/in/Lasers?f_ri=20949"},{"id":82998,"name":"Laser driven ion acceleration, high-power laser plasma interactions","url":"https://www.academia.edu/Documents/in/Laser_driven_ion_acceleration_high-power_laser_plasma_interactions?f_ri=20949"},{"id":127997,"name":"Terahertz","url":"https://www.academia.edu/Documents/in/Terahertz?f_ri=20949"},{"id":413521,"name":"Excimer Lasers","url":"https://www.academia.edu/Documents/in/Excimer_Lasers?f_ri=20949"},{"id":729676,"name":"Study of Laser Produced Plasma","url":"https://www.academia.edu/Documents/in/Study_of_Laser_Produced_Plasma?f_ri=20949"},{"id":829241,"name":"Lampade UV","url":"https://www.academia.edu/Documents/in/Lampade_UV?f_ri=20949"},{"id":838674,"name":"Excimer Laser","url":"https://www.academia.edu/Documents/in/Excimer_Laser?f_ri=20949"},{"id":1015954,"name":"Excimer Discharge","url":"https://www.academia.edu/Documents/in/Excimer_Discharge?f_ri=20949"},{"id":1669070,"name":"THz Imaging","url":"https://www.academia.edu/Documents/in/THz_Imaging?f_ri=20949"},{"id":2181258,"name":"Laser Fusion","url":"https://www.academia.edu/Documents/in/Laser_Fusion?f_ri=20949"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_17708355" data-work_id="17708355" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/17708355/Shadow_monochromatic_backlighting_Large_field_high_resolution_X_ray_shadowgraphy_with_improved_spectral_tunability">Shadow monochromatic backlighting: Large-field high resolution X-ray shadowgraphy with improved spectral tunability</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">The shadow monochromatic backlighting (SMB) scheme, a modification of the well-known soft X-ray monochromatic backlighting scheme, is proposed. It is based on a spherical crystal as the dispersive element and extends the traditional... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_17708355" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">The shadow monochromatic backlighting (SMB) scheme, a modification of the well-known soft X-ray monochromatic backlighting scheme, is proposed. It is based on a spherical crystal as the dispersive element and extends the traditional scheme by allowing one to work with a wide range of Bragg angles and thus in a wide spectral range. The advantages of the new scheme are demonstrated experimentally and supported numerically by ray-tracing simulations. In the experiments, the X-ray backlighter source is a laser-produced plasma, created by the interaction of an ultrashort pulse, Ti:Sapphire laser (120 fs, 3–5 mJ, 10^16 W/cm^2 on target) or a short wavelength XeCl laser (10 ns, 1–2 J, 10^13 W/cm^2 on target) with various solid targets (Dy, Ni + Cr, BaF2). In both experiments, the X-ray sources are well localized spatially (∼20 μm) and are spectrally tunable in a relatively wide wavelength range (λ = 8–15 Å). High quality monochromatic (δλ/λ ∼ 10^−5–10^−3) images with high spatial resolution (up to ∼4 μm) over a large field of view (a few square millimeters) were obtained. Utilization of spherically bent crystals to obtain high-resolution, large field, monochromatic images in a wide range of Bragg angles (35° < Θ < 90°) is demonstrated for the first time.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/17708355" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="b9ac10128a7cd25beb24f4add974825d" rel="nofollow" data-download="{"attachment_id":39667508,"asset_id":17708355,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/39667508/download_file?st=MTc0MDI1MjMxNiw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="4078142" href="https://enea.academia.edu/PaoloDiLazzaro">Paolo Di Lazzaro</a><script data-card-contents-for-user="4078142" type="text/json">{"id":4078142,"first_name":"Paolo","last_name":"Di Lazzaro","domain_name":"enea","page_name":"PaoloDiLazzaro","display_name":"Paolo Di Lazzaro","profile_url":"https://enea.academia.edu/PaoloDiLazzaro?f_ri=20949","photo":"https://0.academia-photos.com/4078142/1877033/31450696/s65_paolo.di_lazzaro.jpg"}</script></span></span></li><li class="js-paper-rank-work_17708355 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="17708355"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 17708355, container: ".js-paper-rank-work_17708355", }); });</script></li><li class="js-percentile-work_17708355 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 17708355; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_17708355"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_17708355 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="17708355"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 17708355; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=17708355]").text(description); $(".js-view-count-work_17708355").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_17708355").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="17708355"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">13</a> </div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="517" rel="nofollow" href="https://www.academia.edu/Documents/in/Plasma_Physics">Plasma Physics</a>, <script data-card-contents-for-ri="517" type="text/json">{"id":517,"name":"Plasma Physics","url":"https://www.academia.edu/Documents/in/Plasma_Physics?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="10654" rel="nofollow" href="https://www.academia.edu/Documents/in/X-ray_imaging">X-ray imaging</a>, <script data-card-contents-for-ri="10654" type="text/json">{"id":10654,"name":"X-ray imaging","url":"https://www.academia.edu/Documents/in/X-ray_imaging?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="19568" rel="nofollow" href="https://www.academia.edu/Documents/in/Atomic_Spectroscopy">Atomic Spectroscopy</a>, <script data-card-contents-for-ri="19568" type="text/json">{"id":19568,"name":"Atomic Spectroscopy","url":"https://www.academia.edu/Documents/in/Atomic_Spectroscopy?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="20949" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_Plasma_Interactions">Laser Plasma Interactions</a><script data-card-contents-for-ri="20949" type="text/json">{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=17708355]'), work: {"id":17708355,"title":"Shadow monochromatic backlighting: Large-field high resolution X-ray shadowgraphy with improved spectral tunability","created_at":"2015-11-04T00:08:03.442-08:00","url":"https://www.academia.edu/17708355/Shadow_monochromatic_backlighting_Large_field_high_resolution_X_ray_shadowgraphy_with_improved_spectral_tunability?f_ri=20949","dom_id":"work_17708355","summary":"The shadow monochromatic backlighting (SMB) scheme, a modification of the well-known soft X-ray monochromatic backlighting scheme, is proposed. It is based on a spherical crystal as the dispersive element and extends the traditional scheme by allowing one to work with a wide range of Bragg angles and thus in a wide spectral range. The advantages of the new scheme are demonstrated experimentally and supported numerically by ray-tracing simulations. In the experiments, the X-ray backlighter source is a laser-produced plasma, created by the interaction of an ultrashort pulse, Ti:Sapphire laser (120 fs, 3–5 mJ, 10^16 W/cm^2 on target) or a short wavelength XeCl laser (10 ns, 1–2 J, 10^13 W/cm^2 on target) with various solid targets (Dy, Ni + Cr, BaF2). In both experiments, the X-ray sources are well localized spatially (∼20 μm) and are spectrally tunable in a relatively wide wavelength range (λ = 8–15 Å). High quality monochromatic (δλ/λ ∼ 10^−5–10^−3) images with high spatial resolution (up to ∼4 μm) over a large field of view (a few square millimeters) were obtained. Utilization of spherically bent crystals to obtain high-resolution, large field, monochromatic images in a wide range of Bragg angles (35° \u003c Θ \u003c 90°) is demonstrated for the first time.","downloadable_attachments":[{"id":39667508,"asset_id":17708355,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":4078142,"first_name":"Paolo","last_name":"Di Lazzaro","domain_name":"enea","page_name":"PaoloDiLazzaro","display_name":"Paolo Di Lazzaro","profile_url":"https://enea.academia.edu/PaoloDiLazzaro?f_ri=20949","photo":"https://0.academia-photos.com/4078142/1877033/31450696/s65_paolo.di_lazzaro.jpg"}],"research_interests":[{"id":517,"name":"Plasma Physics","url":"https://www.academia.edu/Documents/in/Plasma_Physics?f_ri=20949","nofollow":true},{"id":10654,"name":"X-ray imaging","url":"https://www.academia.edu/Documents/in/X-ray_imaging?f_ri=20949","nofollow":true},{"id":19568,"name":"Atomic Spectroscopy","url":"https://www.academia.edu/Documents/in/Atomic_Spectroscopy?f_ri=20949","nofollow":true},{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true},{"id":56001,"name":"X Rays","url":"https://www.academia.edu/Documents/in/X_Rays?f_ri=20949"},{"id":284873,"name":"X-Ray Optics","url":"https://www.academia.edu/Documents/in/X-Ray_Optics?f_ri=20949"},{"id":613527,"name":"Shadowgraphy","url":"https://www.academia.edu/Documents/in/Shadowgraphy?f_ri=20949"},{"id":625267,"name":"X-ray Spectroscopy","url":"https://www.academia.edu/Documents/in/X-ray_Spectroscopy?f_ri=20949"},{"id":729676,"name":"Study of Laser Produced Plasma","url":"https://www.academia.edu/Documents/in/Study_of_Laser_Produced_Plasma?f_ri=20949"},{"id":908306,"name":"Spherically Bent Crystals","url":"https://www.academia.edu/Documents/in/Spherically_Bent_Crystals?f_ri=20949"},{"id":984988,"name":"Backlighting","url":"https://www.academia.edu/Documents/in/Backlighting?f_ri=20949"},{"id":1590825,"name":"wavelength dispersive X-ray analysis","url":"https://www.academia.edu/Documents/in/wavelength_dispersive_X-ray_analysis?f_ri=20949"},{"id":1753694,"name":"Plasma Diagnostic","url":"https://www.academia.edu/Documents/in/Plasma_Diagnostic?f_ri=20949"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_4086830 coauthored" data-work_id="4086830" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/4086830/ACCURATE_WAVELENGTH_MEASUREMENTS_AND_MODELING_OF_Fe_xv_TO_Fe_xix_SPECTRA_RECORDED_IN_HIGH_DENSITY_PLASMAS_BETWEEN_13_5_AND_17_A">ACCURATE WAVELENGTH MEASUREMENTS AND MODELING OF Fe xv TO Fe xix SPECTRA RECORDED IN HIGH-DENSITY PLASMAS BETWEEN 13.5 AND 17 A</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Iron spectra have been recorded from plasmas created at three different laser plasma facilities: the Tor Vergata University laser in Rome (Italy), the Hercules laser at ENEA in Frascati (Italy), and the Compact Multipulse Terawatt (COMET)... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_4086830" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Iron spectra have been recorded from plasmas created at three different laser plasma facilities: the Tor Vergata University laser in Rome (Italy), the Hercules laser at ENEA in Frascati (Italy), and the Compact Multipulse Terawatt (COMET) laser at LLNL in California (USA). The measurements provide a means of identifying dielectronic satellite lines from Fe xvi and Fe xv in the vicinity of the strong 2p ! 3d transitions of Fe xvii. About 80n 1 lines of Fe xv (Mg-like) to Fe xix (O-like) were recorded between 13.8 and 17.1 8 with a high spectral resolution (k/k 4000); about 30 of these lines are from Fe xvi and Fe xv. The laser-produced plasmas had electron temperatures between 100 and 500 eV and electron densities between 10^20 and 10^22 cm3. The Hebrew University Lawrence Livermore Atomic Code (HULLAC) was used to calculate the atomic structure and atomic rates for Fe xv–xix. HULLAC was used to calculate synthetic line intensities at Te ¼ 200 eV and ne ¼ 1021 cm3 for three different conditions to illustrate the role of opacity: optically thin plasmas with no excitation-autoionization/dielectronic recombination (EA/DR) contributions to the line intensities, optically thin plasmas that included EA/DR contributions to the line intensities, and optically thick plasmas (optical depth 200 m) that included EA/DR contributions to the line intensities. The optically thick simulation best reproduced the recorded spectrum from the Hercules laser. However, some discrepancies between the modeling and the recorded spectra remain.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/4086830" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="db97a8dad3e1e8588ba41efc47d8659a" rel="nofollow" data-download="{"attachment_id":31612234,"asset_id":4086830,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/31612234/download_file?st=MTc0MDI1MjMxNiw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="4078142" href="https://enea.academia.edu/PaoloDiLazzaro">Paolo Di Lazzaro</a><script data-card-contents-for-user="4078142" type="text/json">{"id":4078142,"first_name":"Paolo","last_name":"Di Lazzaro","domain_name":"enea","page_name":"PaoloDiLazzaro","display_name":"Paolo Di Lazzaro","profile_url":"https://enea.academia.edu/PaoloDiLazzaro?f_ri=20949","photo":"https://0.academia-photos.com/4078142/1877033/31450696/s65_paolo.di_lazzaro.jpg"}</script></span></span><span class="u-displayInlineBlock InlineList-item-text"> and <span class="u-textDecorationUnderline u-clickable InlineList-item-text js-work-more-authors-4086830">+1</span><div class="hidden js-additional-users-4086830"><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://independent.academia.edu/SarahBollanti">Sarah Bollanti</a></span></div></div></span><script>(function(){ var popoverSettings = { el: $('.js-work-more-authors-4086830'), placement: 'bottom', hide_delay: 200, html: true, content: function(){ return $('.js-additional-users-4086830').html(); } } new HoverPopover(popoverSettings); })();</script></li><li class="js-paper-rank-work_4086830 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="4086830"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 4086830, container: ".js-paper-rank-work_4086830", }); });</script></li><li class="js-percentile-work_4086830 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 4086830; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_4086830"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_4086830 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="4086830"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 4086830; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=4086830]").text(description); $(".js-view-count-work_4086830").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_4086830").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="4086830"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">9</a> </div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="14326" rel="nofollow" href="https://www.academia.edu/Documents/in/X-Ray_Absorption_Spectroscopy_in_Materials_Characterisation_X_Ray_Analysis_">X-Ray Absorption Spectroscopy (in Materials Characterisation/X Ray Analysis)</a>, <script data-card-contents-for-ri="14326" type="text/json">{"id":14326,"name":"X-Ray Absorption Spectroscopy (in Materials Characterisation/X Ray Analysis)","url":"https://www.academia.edu/Documents/in/X-Ray_Absorption_Spectroscopy_in_Materials_Characterisation_X_Ray_Analysis_?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="19568" rel="nofollow" href="https://www.academia.edu/Documents/in/Atomic_Spectroscopy">Atomic Spectroscopy</a>, <script data-card-contents-for-ri="19568" type="text/json">{"id":19568,"name":"Atomic Spectroscopy","url":"https://www.academia.edu/Documents/in/Atomic_Spectroscopy?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="20949" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_Plasma_Interactions">Laser Plasma Interactions</a>, <script data-card-contents-for-ri="20949" type="text/json">{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="41877" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_produced_plasma">Laser produced plasma</a><script data-card-contents-for-ri="41877" type="text/json">{"id":41877,"name":"Laser produced plasma","url":"https://www.academia.edu/Documents/in/Laser_produced_plasma?f_ri=20949","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=4086830]'), work: {"id":4086830,"title":"ACCURATE WAVELENGTH MEASUREMENTS AND MODELING OF Fe xv TO Fe xix SPECTRA RECORDED IN HIGH-DENSITY PLASMAS BETWEEN 13.5 AND 17 A","created_at":"2013-07-22T23:04:16.775-07:00","url":"https://www.academia.edu/4086830/ACCURATE_WAVELENGTH_MEASUREMENTS_AND_MODELING_OF_Fe_xv_TO_Fe_xix_SPECTRA_RECORDED_IN_HIGH_DENSITY_PLASMAS_BETWEEN_13_5_AND_17_A?f_ri=20949","dom_id":"work_4086830","summary":"Iron spectra have been recorded from plasmas created at three different laser plasma facilities: the Tor Vergata University laser in Rome (Italy), the Hercules laser at ENEA in Frascati (Italy), and the Compact Multipulse Terawatt (COMET) laser at LLNL in California (USA). The measurements provide a means of identifying dielectronic satellite lines from Fe xvi and Fe xv in the vicinity of the strong 2p ! 3d transitions of Fe xvii. About 80\u0001n \u0001 1 lines of Fe xv (Mg-like) to Fe xix (O-like) were recorded between 13.8 and 17.1 8 with a high spectral resolution (k/\u0001k \u0002 4000); about 30 of these lines are from Fe xvi and Fe xv. The laser-produced plasmas had electron temperatures between 100 and 500 eV and electron densities between 10^20 and 10^22 cm\u00033. The Hebrew University Lawrence Livermore Atomic Code (HULLAC) was used to calculate the atomic structure and atomic rates for Fe xv–xix. HULLAC was used to calculate synthetic line intensities at Te ¼ 200 eV and ne ¼ 1021 cm\u00033 for three different conditions to illustrate the role of opacity: optically thin plasmas with no excitation-autoionization/dielectronic recombination (EA/DR) contributions to the line intensities, optically thin plasmas that included EA/DR contributions to the line intensities, and optically thick plasmas (optical depth \u0002200 \u0001m) that included EA/DR contributions to the line intensities. The optically thick simulation best reproduced the recorded spectrum from the Hercules laser. However, some discrepancies between the modeling and the recorded spectra remain.","downloadable_attachments":[{"id":31612234,"asset_id":4086830,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":4078142,"first_name":"Paolo","last_name":"Di Lazzaro","domain_name":"enea","page_name":"PaoloDiLazzaro","display_name":"Paolo Di Lazzaro","profile_url":"https://enea.academia.edu/PaoloDiLazzaro?f_ri=20949","photo":"https://0.academia-photos.com/4078142/1877033/31450696/s65_paolo.di_lazzaro.jpg"},{"id":37433252,"first_name":"Sarah","last_name":"Bollanti","domain_name":"independent","page_name":"SarahBollanti","display_name":"Sarah Bollanti","profile_url":"https://independent.academia.edu/SarahBollanti?f_ri=20949","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":14326,"name":"X-Ray Absorption Spectroscopy (in Materials Characterisation/X Ray Analysis)","url":"https://www.academia.edu/Documents/in/X-Ray_Absorption_Spectroscopy_in_Materials_Characterisation_X_Ray_Analysis_?f_ri=20949","nofollow":true},{"id":19568,"name":"Atomic Spectroscopy","url":"https://www.academia.edu/Documents/in/Atomic_Spectroscopy?f_ri=20949","nofollow":true},{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true},{"id":41877,"name":"Laser produced plasma","url":"https://www.academia.edu/Documents/in/Laser_produced_plasma?f_ri=20949","nofollow":true},{"id":82998,"name":"Laser driven ion acceleration, high-power laser plasma interactions","url":"https://www.academia.edu/Documents/in/Laser_driven_ion_acceleration_high-power_laser_plasma_interactions?f_ri=20949"},{"id":398660,"name":"Plasma and Laser","url":"https://www.academia.edu/Documents/in/Plasma_and_Laser?f_ri=20949"},{"id":589935,"name":"Numerical modelling of high-power laser-plasma interactions","url":"https://www.academia.edu/Documents/in/Numerical_modelling_of_high-power_laser-plasma_interactions?f_ri=20949"},{"id":729676,"name":"Study of Laser Produced Plasma","url":"https://www.academia.edu/Documents/in/Study_of_Laser_Produced_Plasma?f_ri=20949"},{"id":907565,"name":"Atomic Spectrum Modelling","url":"https://www.academia.edu/Documents/in/Atomic_Spectrum_Modelling?f_ri=20949"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_3342190" data-work_id="3342190" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/3342190/LIBS_limit_of_detection_and_plasma_parameters_of_some_elements_in_two_different_metallic_matrices">LIBS limit of detection and plasma parameters of some elements in two different metallic matrices</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">In the present work a detailed study has been performed on the effect of the matrix on the limit of detection (LOD) and the plasma parameters of the laser induced breakdown spectroscopy (LIBS) technique. The LOD of magnesium, silicon,... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_3342190" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">In the present work a detailed study has been performed on the effect of the matrix on the limit of detection (LOD) and the plasma parameters of the laser induced breakdown spectroscopy (LIBS) technique. The LOD of magnesium, silicon, manganese and copper as minor elements was evaluated in aluminium standard sample alloys compared to the values of the LOD of the same elements in standard steel alloys. The effect of changing the matrix on the laser induced plasma plume parameters, namely the plasma temperature T e and the electron density N e , has been also studied. Calibrations were achieved for the four elements with linear regression coefficients between 98-99% on average. According to the obtained results Mn and Cu have the lowest LOD in the steel alloy matrix, while Mg has much lower LOD in the aluminium alloy matrix. These results may be interpreted in view of the compatibility of the physical properties of the elements existing in the same matrix. Approximately similar electronic structure and values of melting point, density, atomic weight, etc., may facilitate better conditions for energy transfer within the matrix. From the application view point, it is possible for LIBS in the on-line industrial process control to follow up only a single element (that with the lowest LOD in such matrix) as a marker for the correct alloying in metals and mixing in pharmaceuticals.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/3342190" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="f4180329c09eea840af089ea3afddb3d" rel="nofollow" data-download="{"attachment_id":31157688,"asset_id":3342190,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/31157688/download_file?st=MTc0MDI1MjMxNiw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="3870464" href="https://hti.academia.edu/AsmaaElhassan">Asmaa Elhassan</a><script data-card-contents-for-user="3870464" type="text/json">{"id":3870464,"first_name":"Asmaa","last_name":"Elhassan","domain_name":"hti","page_name":"AsmaaElhassan","display_name":"Asmaa Elhassan","profile_url":"https://hti.academia.edu/AsmaaElhassan?f_ri=20949","photo":"https://0.academia-photos.com/3870464/1425869/2985141/s65_asmaa.elhassan.jpg"}</script></span></span></li><li class="js-paper-rank-work_3342190 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="3342190"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 3342190, container: ".js-paper-rank-work_3342190", }); });</script></li><li class="js-percentile-work_3342190 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 3342190; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_3342190"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_3342190 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="3342190"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 3342190; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=3342190]").text(description); $(".js-view-count-work_3342190").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_3342190").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="3342190"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">8</a> </div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="524" rel="nofollow" href="https://www.academia.edu/Documents/in/Analytical_Chemistry">Analytical Chemistry</a>, <script data-card-contents-for-ri="524" type="text/json">{"id":524,"name":"Analytical Chemistry","url":"https://www.academia.edu/Documents/in/Analytical_Chemistry?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="1430" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_Spectroscopy">Laser Spectroscopy</a>, <script data-card-contents-for-ri="1430" type="text/json">{"id":1430,"name":"Laser Spectroscopy","url":"https://www.academia.edu/Documents/in/Laser_Spectroscopy?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="2415" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_Physics">Laser Physics</a>, <script data-card-contents-for-ri="2415" type="text/json">{"id":2415,"name":"Laser Physics","url":"https://www.academia.edu/Documents/in/Laser_Physics?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="4135" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser">Laser</a><script data-card-contents-for-ri="4135" type="text/json">{"id":4135,"name":"Laser","url":"https://www.academia.edu/Documents/in/Laser?f_ri=20949","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=3342190]'), work: {"id":3342190,"title":"LIBS limit of detection and plasma parameters of some elements in two different metallic matrices","created_at":"2013-04-20T04:53:23.605-07:00","url":"https://www.academia.edu/3342190/LIBS_limit_of_detection_and_plasma_parameters_of_some_elements_in_two_different_metallic_matrices?f_ri=20949","dom_id":"work_3342190","summary":"In the present work a detailed study has been performed on the effect of the matrix on the limit of detection (LOD) and the plasma parameters of the laser induced breakdown spectroscopy (LIBS) technique. The LOD of magnesium, silicon, manganese and copper as minor elements was evaluated in aluminium standard sample alloys compared to the values of the LOD of the same elements in standard steel alloys. The effect of changing the matrix on the laser induced plasma plume parameters, namely the plasma temperature T e and the electron density N e , has been also studied. Calibrations were achieved for the four elements with linear regression coefficients between 98-99% on average. According to the obtained results Mn and Cu have the lowest LOD in the steel alloy matrix, while Mg has much lower LOD in the aluminium alloy matrix. These results may be interpreted in view of the compatibility of the physical properties of the elements existing in the same matrix. Approximately similar electronic structure and values of melting point, density, atomic weight, etc., may facilitate better conditions for energy transfer within the matrix. From the application view point, it is possible for LIBS in the on-line industrial process control to follow up only a single element (that with the lowest LOD in such matrix) as a marker for the correct alloying in metals and mixing in pharmaceuticals.","downloadable_attachments":[{"id":31157688,"asset_id":3342190,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":3870464,"first_name":"Asmaa","last_name":"Elhassan","domain_name":"hti","page_name":"AsmaaElhassan","display_name":"Asmaa Elhassan","profile_url":"https://hti.academia.edu/AsmaaElhassan?f_ri=20949","photo":"https://0.academia-photos.com/3870464/1425869/2985141/s65_asmaa.elhassan.jpg"}],"research_interests":[{"id":524,"name":"Analytical Chemistry","url":"https://www.academia.edu/Documents/in/Analytical_Chemistry?f_ri=20949","nofollow":true},{"id":1430,"name":"Laser Spectroscopy","url":"https://www.academia.edu/Documents/in/Laser_Spectroscopy?f_ri=20949","nofollow":true},{"id":2415,"name":"Laser Physics","url":"https://www.academia.edu/Documents/in/Laser_Physics?f_ri=20949","nofollow":true},{"id":4135,"name":"Laser","url":"https://www.academia.edu/Documents/in/Laser?f_ri=20949","nofollow":true},{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949"},{"id":132569,"name":"Analytical","url":"https://www.academia.edu/Documents/in/Analytical?f_ri=20949"},{"id":151699,"name":"LIBS","url":"https://www.academia.edu/Documents/in/LIBS?f_ri=20949"},{"id":506413,"name":"Laser Matter Interactions","url":"https://www.academia.edu/Documents/in/Laser_Matter_Interactions?f_ri=20949"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_28927478 coauthored" data-work_id="28927478" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/28927478/Electron_acceleration_and_generation_of_high_brilliance_x_ray_radiation_in_kilojoule_subpicosecond_laser_plasma_interactions">Electron acceleration and generation of high-brilliance x-ray radiation in kilojoule, subpicosecond laser-plasma interactions</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Petawatt, picosecond laser pulses offer rich opportunities in generating synchrotron x-rays. This paper concentrates on the regimes accessible with the PETAL laser, which is a part of the Laser Megajoule (LMJ) facility. We explore two... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_28927478" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Petawatt, picosecond laser pulses offer rich opportunities in generating synchrotron x-rays. This paper concentrates on the regimes accessible with the PETAL laser, which is a part of the Laser Megajoule (LMJ) facility. We explore two physically distinct scenarios through Particle-in-Cell simulations. The first one realizes in a dense plasma, such that the period of electron Langmuir oscillations is much shorter than the pulse duration. Hallmarks of this regime are longitudinal breakup (" self-modulation ") of the picosecond-scale laser pulse and excitation of a rapidly evolving broken plasma wake. It is found that electron beams with a charge of several tens of nC can be obtained, with a quasi-Maxwellian energy distribution extending to a few-GeV level. In the second scenario, at lower plasma densities, the pulse is shorter than the electron plasma period. The pulse blows out plasma electrons, creating a single accelerating cavity, while injection on the density downramp creates a nC quasi-monoenergetic electron bunch within the cavity. This bunch accelerates without degradation beyond 1 GeV. The x-ray sources in the self-modulated regime offer a high number of photons (∼10^12) with the slowly decaying energy spectra extending beyond 60 keV. In turn, quasimonoenergetic character of the electron beam in the blowout regime results in the synchrotron-like spectra with the critical energy around 10 MeV and a number of photons > 10^9. Yet, much smaller source duration and transverse size increase the x-ray brilliance by more than an order of magnitude against the self-modulated case, also favoring high spatial and temporal resolution in x-ray imaging. In all explored cases, accelerated electrons emit synchrotron x-rays of high brilliance, B > 10^20 photons/s/mm^2/mrad^2/0.1%BW. Synchrotron sources driven by picosecond kilojoule lasers may thus find an application in x-ray diagnostics on such facilities such as the LMJ or National Ignition Facility (NIF).</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/28927478" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="f9c714ae8e330dba8e5786c0d40dd5f9" rel="nofollow" data-download="{"attachment_id":49363538,"asset_id":28927478,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/49363538/download_file?st=MTc0MDI1MjMxNiw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="54822912" href="https://independent.academia.edu/JulienFerri">Julien Ferri</a><script data-card-contents-for-user="54822912" type="text/json">{"id":54822912,"first_name":"Julien","last_name":"Ferri","domain_name":"independent","page_name":"JulienFerri","display_name":"Julien Ferri","profile_url":"https://independent.academia.edu/JulienFerri?f_ri=20949","photo":"/images/s65_no_pic.png"}</script></span></span><span class="u-displayInlineBlock InlineList-item-text"> and <span class="u-textDecorationUnderline u-clickable InlineList-item-text js-work-more-authors-28927478">+1</span><div class="hidden js-additional-users-28927478"><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://leidos.academia.edu/SergeYouriKalmykov">Serge Youri Kalmykov</a></span></div></div></span><script>(function(){ var popoverSettings = { el: $('.js-work-more-authors-28927478'), placement: 'bottom', hide_delay: 200, html: true, content: function(){ return $('.js-additional-users-28927478').html(); } } new HoverPopover(popoverSettings); })();</script></li><li class="js-paper-rank-work_28927478 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="28927478"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 28927478, container: ".js-paper-rank-work_28927478", }); });</script></li><li class="js-percentile-work_28927478 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 28927478; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_28927478"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_28927478 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="28927478"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 28927478; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=28927478]").text(description); $(".js-view-count-work_28927478").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_28927478").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="28927478"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">3</a> </div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="16131" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_Wakefield_Acceleration">Laser Wakefield Acceleration</a>, <script data-card-contents-for-ri="16131" type="text/json">{"id":16131,"name":"Laser Wakefield Acceleration","url":"https://www.academia.edu/Documents/in/Laser_Wakefield_Acceleration?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="20949" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_Plasma_Interactions">Laser Plasma Interactions</a>, <script data-card-contents-for-ri="20949" type="text/json">{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="29617" rel="nofollow" href="https://www.academia.edu/Documents/in/Synchrotron_Radiation">Synchrotron Radiation</a><script data-card-contents-for-ri="29617" type="text/json">{"id":29617,"name":"Synchrotron Radiation","url":"https://www.academia.edu/Documents/in/Synchrotron_Radiation?f_ri=20949","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=28927478]'), work: {"id":28927478,"title":"Electron acceleration and generation of high-brilliance x-ray radiation in kilojoule, subpicosecond laser-plasma interactions","created_at":"2016-10-04T22:37:56.840-07:00","url":"https://www.academia.edu/28927478/Electron_acceleration_and_generation_of_high_brilliance_x_ray_radiation_in_kilojoule_subpicosecond_laser_plasma_interactions?f_ri=20949","dom_id":"work_28927478","summary":"Petawatt, picosecond laser pulses offer rich opportunities in generating synchrotron x-rays. This paper concentrates on the regimes accessible with the PETAL laser, which is a part of the Laser Megajoule (LMJ) facility. We explore two physically distinct scenarios through Particle-in-Cell simulations. The first one realizes in a dense plasma, such that the period of electron Langmuir oscillations is much shorter than the pulse duration. Hallmarks of this regime are longitudinal breakup (\" self-modulation \") of the picosecond-scale laser pulse and excitation of a rapidly evolving broken plasma wake. It is found that electron beams with a charge of several tens of nC can be obtained, with a quasi-Maxwellian energy distribution extending to a few-GeV level. In the second scenario, at lower plasma densities, the pulse is shorter than the electron plasma period. The pulse blows out plasma electrons, creating a single accelerating cavity, while injection on the density downramp creates a nC quasi-monoenergetic electron bunch within the cavity. This bunch accelerates without degradation beyond 1 GeV. The x-ray sources in the self-modulated regime offer a high number of photons (∼10^12) with the slowly decaying energy spectra extending beyond 60 keV. In turn, quasimonoenergetic character of the electron beam in the blowout regime results in the synchrotron-like spectra with the critical energy around 10 MeV and a number of photons \u003e 10^9. Yet, much smaller source duration and transverse size increase the x-ray brilliance by more than an order of magnitude against the self-modulated case, also favoring high spatial and temporal resolution in x-ray imaging. In all explored cases, accelerated electrons emit synchrotron x-rays of high brilliance, B \u003e 10^20 photons/s/mm^2/mrad^2/0.1%BW. Synchrotron sources driven by picosecond kilojoule lasers may thus find an application in x-ray diagnostics on such facilities such as the LMJ or National Ignition Facility (NIF).","downloadable_attachments":[{"id":49363538,"asset_id":28927478,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":54822912,"first_name":"Julien","last_name":"Ferri","domain_name":"independent","page_name":"JulienFerri","display_name":"Julien Ferri","profile_url":"https://independent.academia.edu/JulienFerri?f_ri=20949","photo":"/images/s65_no_pic.png"},{"id":665665,"first_name":"Serge Youri","last_name":"Kalmykov","domain_name":"leidos","page_name":"SergeYouriKalmykov","display_name":"Serge Youri Kalmykov","profile_url":"https://leidos.academia.edu/SergeYouriKalmykov?f_ri=20949","photo":"https://0.academia-photos.com/665665/586468/1570803/s65_serguei.kalmykov.png"}],"research_interests":[{"id":16131,"name":"Laser Wakefield Acceleration","url":"https://www.academia.edu/Documents/in/Laser_Wakefield_Acceleration?f_ri=20949","nofollow":true},{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true},{"id":29617,"name":"Synchrotron Radiation","url":"https://www.academia.edu/Documents/in/Synchrotron_Radiation?f_ri=20949","nofollow":true}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_4495098 coauthored" data-work_id="4495098" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/4495098/ENEA_EXTREME_ULTRAVIOLET_LITHOGRAPHY_MICRO_EXPOSURE_TOOL_MAIN_FEATURES">ENEA EXTREME ULTRAVIOLET LITHOGRAPHY MICRO-EXPOSURE TOOL: MAIN FEATURES</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">The laboratory-scale Micro-Exposure Tool (MET) for Extreme Ultraviolet projection Lithography (EUVL), realised at the Frascati ENEA Centre within the context of a National Project, was successfully operated in 2008 by achieving a 160-nm... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_4495098" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">The laboratory-scale Micro-Exposure Tool (MET) for Extreme Ultraviolet projection Lithography (EUVL), realised at the Frascati ENEA Centre within the context of a National Project, was successfully operated in 2008 by achieving a 160-nm resolution imaging of mask patterns onto a polymethylmethacrylate (PMMA) photoresist through 14.4-nm radiation (EPL 84, 58003 (2008)). <br />The MET uses a laser-produced plasma as EUV radiation source, a couple of twin ellipsoidal mirrors as collecting optics to gather the 14.4-nm radiation from the source to the mask, an efficient combination of ambient gas and mechanical device as Debris Mitigation System and flnally a low-cost Schwarzschild objective as projection optics to image the patterned mask onto the wafer. <br />The paper gives details of the ENEA MET components and of the aforementioned successful operation along with subsequent related investigations.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/4495098" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="cf812a92e27b8887b66dfcdea2613eaa" rel="nofollow" data-download="{"attachment_id":63853330,"asset_id":4495098,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/63853330/download_file?st=MTc0MDI1MjMxNiw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="4078142" href="https://enea.academia.edu/PaoloDiLazzaro">Paolo Di Lazzaro</a><script data-card-contents-for-user="4078142" type="text/json">{"id":4078142,"first_name":"Paolo","last_name":"Di Lazzaro","domain_name":"enea","page_name":"PaoloDiLazzaro","display_name":"Paolo Di Lazzaro","profile_url":"https://enea.academia.edu/PaoloDiLazzaro?f_ri=20949","photo":"https://0.academia-photos.com/4078142/1877033/31450696/s65_paolo.di_lazzaro.jpg"}</script></span></span><span class="u-displayInlineBlock InlineList-item-text"> and <span class="u-textDecorationUnderline u-clickable InlineList-item-text js-work-more-authors-4495098">+1</span><div class="hidden js-additional-users-4495098"><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://enea.academia.edu/DanieleMurra">Daniele Murra</a></span></div></div></span><script>(function(){ var popoverSettings = { el: $('.js-work-more-authors-4495098'), placement: 'bottom', hide_delay: 200, html: true, content: function(){ return $('.js-additional-users-4495098').html(); } } new HoverPopover(popoverSettings); })();</script></li><li class="js-paper-rank-work_4495098 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="4495098"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 4495098, container: ".js-paper-rank-work_4495098", }); });</script></li><li class="js-percentile-work_4495098 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 4495098; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_4495098"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_4495098 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="4495098"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 4495098; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=4495098]").text(description); $(".js-view-count-work_4495098").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_4495098").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="4495098"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">16</a> </div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="517" rel="nofollow" href="https://www.academia.edu/Documents/in/Plasma_Physics">Plasma Physics</a>, <script data-card-contents-for-ri="517" type="text/json">{"id":517,"name":"Plasma Physics","url":"https://www.academia.edu/Documents/in/Plasma_Physics?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="13697" rel="nofollow" href="https://www.academia.edu/Documents/in/Optical_Measurement_Methods">Optical Measurement Methods</a>, <script data-card-contents-for-ri="13697" type="text/json">{"id":13697,"name":"Optical Measurement Methods","url":"https://www.academia.edu/Documents/in/Optical_Measurement_Methods?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="15064" rel="nofollow" href="https://www.academia.edu/Documents/in/Atomic_processes_-_recombination_of_positive_ions_electron_detachment_atom-ion_collisions_-_beams_">Atomic processes - recombination of positive ions, electron detachment, atom-ion collisions - beams and plasma spectroscopy</a>, <script data-card-contents-for-ri="15064" type="text/json">{"id":15064,"name":"Atomic processes - recombination of positive ions, electron detachment, atom-ion collisions - beams and plasma spectroscopy","url":"https://www.academia.edu/Documents/in/Atomic_processes_-_recombination_of_positive_ions_electron_detachment_atom-ion_collisions_-_beams_?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="20949" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_Plasma_Interactions">Laser Plasma Interactions</a><script data-card-contents-for-ri="20949" type="text/json">{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=4495098]'), work: {"id":4495098,"title":"ENEA EXTREME ULTRAVIOLET LITHOGRAPHY MICRO-EXPOSURE TOOL: MAIN FEATURES","created_at":"2013-09-15T20:19:31.091-07:00","url":"https://www.academia.edu/4495098/ENEA_EXTREME_ULTRAVIOLET_LITHOGRAPHY_MICRO_EXPOSURE_TOOL_MAIN_FEATURES?f_ri=20949","dom_id":"work_4495098","summary":"The laboratory-scale Micro-Exposure Tool (MET) for Extreme Ultraviolet projection Lithography (EUVL), realised at the Frascati ENEA Centre within the context of a National Project, was successfully operated in 2008 by achieving a 160-nm resolution imaging of mask patterns onto a polymethylmethacrylate (PMMA) photoresist through 14.4-nm radiation (EPL 84, 58003 (2008)). \nThe MET uses a laser-produced plasma as EUV radiation source, a couple of twin ellipsoidal mirrors as collecting optics to gather the 14.4-nm radiation from the source to the mask, an efficient combination of ambient gas and mechanical device as Debris Mitigation System and flnally a low-cost Schwarzschild objective as projection optics to image the patterned mask onto the wafer. \nThe paper gives details of the ENEA MET components and of the aforementioned successful operation along with subsequent related investigations.","downloadable_attachments":[{"id":63853330,"asset_id":4495098,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":4078142,"first_name":"Paolo","last_name":"Di Lazzaro","domain_name":"enea","page_name":"PaoloDiLazzaro","display_name":"Paolo Di Lazzaro","profile_url":"https://enea.academia.edu/PaoloDiLazzaro?f_ri=20949","photo":"https://0.academia-photos.com/4078142/1877033/31450696/s65_paolo.di_lazzaro.jpg"},{"id":37616270,"first_name":"Daniele","last_name":"Murra","domain_name":"enea","page_name":"DanieleMurra","display_name":"Daniele Murra","profile_url":"https://enea.academia.edu/DanieleMurra?f_ri=20949","photo":"https://0.academia-photos.com/37616270/10661705/11902300/s65_daniele.murra.jpg"}],"research_interests":[{"id":517,"name":"Plasma Physics","url":"https://www.academia.edu/Documents/in/Plasma_Physics?f_ri=20949","nofollow":true},{"id":13697,"name":"Optical Measurement Methods","url":"https://www.academia.edu/Documents/in/Optical_Measurement_Methods?f_ri=20949","nofollow":true},{"id":15064,"name":"Atomic processes - recombination of positive ions, electron detachment, atom-ion collisions - beams and plasma spectroscopy","url":"https://www.academia.edu/Documents/in/Atomic_processes_-_recombination_of_positive_ions_electron_detachment_atom-ion_collisions_-_beams_?f_ri=20949","nofollow":true},{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true},{"id":29024,"name":"Optical Design","url":"https://www.academia.edu/Documents/in/Optical_Design?f_ri=20949"},{"id":41877,"name":"Laser produced plasma","url":"https://www.academia.edu/Documents/in/Laser_produced_plasma?f_ri=20949"},{"id":45583,"name":"Laser Ablation - Inductively Coupled Plasma - Mass Spectrometry","url":"https://www.academia.edu/Documents/in/Laser_Ablation_-_Inductively_Coupled_Plasma_-_Mass_Spectrometry?f_ri=20949"},{"id":123286,"name":"EUV Optics","url":"https://www.academia.edu/Documents/in/EUV_Optics?f_ri=20949"},{"id":174649,"name":"Lithography","url":"https://www.academia.edu/Documents/in/Lithography?f_ri=20949"},{"id":306597,"name":"EUV, Optics","url":"https://www.academia.edu/Documents/in/EUV_Optics-1?f_ri=20949"},{"id":398660,"name":"Plasma and Laser","url":"https://www.academia.edu/Documents/in/Plasma_and_Laser?f_ri=20949"},{"id":459797,"name":"Schwarzschild","url":"https://www.academia.edu/Documents/in/Schwarzschild?f_ri=20949"},{"id":729676,"name":"Study of Laser Produced Plasma","url":"https://www.academia.edu/Documents/in/Study_of_Laser_Produced_Plasma?f_ri=20949"},{"id":907776,"name":"EUV Lithography","url":"https://www.academia.edu/Documents/in/EUV_Lithography?f_ri=20949"},{"id":907783,"name":"Micro Exposure Tool","url":"https://www.academia.edu/Documents/in/Micro_Exposure_Tool?f_ri=20949"},{"id":997558,"name":"EUV Lithography for Chemical Patterning of SAM","url":"https://www.academia.edu/Documents/in/EUV_Lithography_for_Chemical_Patterning_of_SAM?f_ri=20949"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_30593759 coauthored" data-work_id="30593759" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/30593759/Plasma_Scale_Length_Effects_on_Protons_Generated_in_Ultra_Intense_Laser_Plasmas">Plasma Scale Length Effects on Protons Generated in Ultra Intense Laser Plasmas</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">The energy spectra of protons generated by ultra intense (10 20 W cm −2) laser interactions with a pre formed plasma of scale length measured by shadowgraphy are presented. The effects of the preformed plasma on the proton beam... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_30593759" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">The energy spectra of protons generated by ultra intense (10 20 W cm −2) laser interactions with a pre formed plasma of scale length measured by shadowgraphy are presented. The effects of the preformed plasma on the proton beam temperature and number of protons are evaluated. 2D EPOCH PIC code simulations of the proton spectra are found to be in agreement with measurements over a range of experimental parameters.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/30593759" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="cfed4c9a13a0aeef73f9a7a6ab3f1045" rel="nofollow" data-download="{"attachment_id":51034800,"asset_id":30593759,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/51034800/download_file?st=MTc0MDI1MjMxNiw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="32800349" href="https://ifin.academia.edu/OzgurCulfa">Ozgur Culfa</a><script data-card-contents-for-user="32800349" type="text/json">{"id":32800349,"first_name":"Ozgur","last_name":"Culfa","domain_name":"ifin","page_name":"OzgurCulfa","display_name":"Ozgur Culfa","profile_url":"https://ifin.academia.edu/OzgurCulfa?f_ri=20949","photo":"https://0.academia-photos.com/32800349/10027986/11185428/s65_ozgur.culfa.jpg"}</script></span></span><span class="u-displayInlineBlock InlineList-item-text"> and <span class="u-textDecorationUnderline u-clickable InlineList-item-text js-work-more-authors-30593759">+3</span><div class="hidden js-additional-users-30593759"><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://york.academia.edu/GTallents">G. Tallents</a></span></div><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://independent.academia.edu/MehmetEminKORKMAZ2">Mehmet Emin KORKMAZ</a></span></div><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://york.academia.edu/EWagenaars">Erik Wagenaars</a></span></div></div></span><script>(function(){ var popoverSettings = { el: $('.js-work-more-authors-30593759'), placement: 'bottom', hide_delay: 200, html: true, content: function(){ return $('.js-additional-users-30593759').html(); } } new HoverPopover(popoverSettings); })();</script></li><li class="js-paper-rank-work_30593759 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="30593759"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 30593759, container: ".js-paper-rank-work_30593759", }); });</script></li><li class="js-percentile-work_30593759 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 30593759; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_30593759"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_30593759 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="30593759"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 30593759; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=30593759]").text(description); $(".js-view-count-work_30593759").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_30593759").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="30593759"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i></div><span class="InlineList-item-text u-textTruncate u-pl6x"><a class="InlineList-item-text" data-has-card-for-ri="20949" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_Plasma_Interactions">Laser Plasma Interactions</a><script data-card-contents-for-ri="20949" type="text/json">{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true}</script></span></li><script>(function(){ if (false) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=30593759]'), work: {"id":30593759,"title":"Plasma Scale Length Effects on Protons Generated in Ultra Intense Laser Plasmas","created_at":"2016-12-23T12:41:04.066-08:00","url":"https://www.academia.edu/30593759/Plasma_Scale_Length_Effects_on_Protons_Generated_in_Ultra_Intense_Laser_Plasmas?f_ri=20949","dom_id":"work_30593759","summary":"The energy spectra of protons generated by ultra intense (10 20 W cm −2) laser interactions with a pre formed plasma of scale length measured by shadowgraphy are presented. The effects of the preformed plasma on the proton beam temperature and number of protons are evaluated. 2D EPOCH PIC code simulations of the proton spectra are found to be in agreement with measurements over a range of experimental parameters.","downloadable_attachments":[{"id":51034800,"asset_id":30593759,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":32800349,"first_name":"Ozgur","last_name":"Culfa","domain_name":"ifin","page_name":"OzgurCulfa","display_name":"Ozgur Culfa","profile_url":"https://ifin.academia.edu/OzgurCulfa?f_ri=20949","photo":"https://0.academia-photos.com/32800349/10027986/11185428/s65_ozgur.culfa.jpg"},{"id":46896793,"first_name":"G.","last_name":"Tallents","domain_name":"york","page_name":"GTallents","display_name":"G. Tallents","profile_url":"https://york.academia.edu/GTallents?f_ri=20949","photo":"https://0.academia-photos.com/46896793/84566336/73201416/s65_g..tallents.jpg"},{"id":58349334,"first_name":"Mehmet Emin","last_name":"KORKMAZ","domain_name":"independent","page_name":"MehmetEminKORKMAZ2","display_name":"Mehmet Emin KORKMAZ","profile_url":"https://independent.academia.edu/MehmetEminKORKMAZ2?f_ri=20949","photo":"/images/s65_no_pic.png"},{"id":32591885,"first_name":"Erik","last_name":"Wagenaars","domain_name":"york","page_name":"EWagenaars","display_name":"Erik Wagenaars","profile_url":"https://york.academia.edu/EWagenaars?f_ri=20949","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_14895854" data-work_id="14895854" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/14895854/Self_focusing_of_a_Hermite_cosh_Gaussian_laser_beam_in_a_magnetoplasma_with_ramp_density_profile">Self-focusing of a Hermite-cosh Gaussian laser beam in a magnetoplasma with ramp density profile</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">The early and strong self-focusing of a Hermite-cosh-Gaussian laser beam in magnetoplasma in the presence of density ramp has been observed. Focusing and de-focusing nature of the Hermite-coshGaussian laser beam with decentered parameter... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_14895854" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">The early and strong self-focusing of a Hermite-cosh-Gaussian laser beam in magnetoplasma in the<br />presence of density ramp has been observed. Focusing and de-focusing nature of the Hermite-coshGaussian<br />laser beam with decentered parameter and magnetic field has been studied, and strong<br />self-focusing is reported. It is investigated that decentered parameter "b" plays a significant role for<br />the self-focusing of the laser beam and is very sensitive as in case of extraordinary mode. For mode<br />indices, m ¼ 0; 1; 2; and b ¼ 4:00; 3:14; and 2:05, strong self-focusing is observed. Similarly<br />in case of ordinary mode, for m ¼ 0; 1; 2 and b ¼ 4:00; 3:14; 2:049, respectively, strong<br />self-focusing is reported. Further, it is seen that extraordinary mode is more prominent toward<br />self-focusing rather than ordinary mode of propagation. For mode indices m ¼ 0; 1; and 2,<br />diffraction term becomes more dominant over nonlinear term for decentered parameter b ¼ 0. For<br />selective higher values of decentered parameter in case of mode indices m ¼ 0; 1; and 2,<br />self-focusing effect becomes strong for extraordinary mode. Also increase in the value of magnetic<br />field enhances the self-focusing ability of the laser beam, which is very useful in the applications<br />like the generation of inertial fusion energy driven by lasers, laser driven accelerators, and x-ray<br />lasers.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/14895854" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="508d7644ff3dd67d96f9e6e11d1a6e5e" rel="nofollow" data-download="{"attachment_id":38464045,"asset_id":14895854,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/38464045/download_file?st=MTc0MDI1MjMxNiw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="31179609" href="https://allduniv.academia.edu/NitiKant">Niti Kant</a><script data-card-contents-for-user="31179609" type="text/json">{"id":31179609,"first_name":"Niti","last_name":"Kant","domain_name":"allduniv","page_name":"NitiKant","display_name":"Niti Kant","profile_url":"https://allduniv.academia.edu/NitiKant?f_ri=20949","photo":"https://0.academia-photos.com/31179609/9658074/77615836/s65_niti.kant.jpeg"}</script></span></span></li><li class="js-paper-rank-work_14895854 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="14895854"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 14895854, container: ".js-paper-rank-work_14895854", }); });</script></li><li class="js-percentile-work_14895854 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 14895854; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_14895854"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_14895854 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="14895854"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 14895854; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=14895854]").text(description); $(".js-view-count-work_14895854").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_14895854").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="14895854"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i></div><span class="InlineList-item-text u-textTruncate u-pl6x"><a class="InlineList-item-text" data-has-card-for-ri="20949" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_Plasma_Interactions">Laser Plasma Interactions</a><script data-card-contents-for-ri="20949" type="text/json">{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true}</script></span></li><script>(function(){ if (false) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=14895854]'), work: {"id":14895854,"title":"Self-focusing of a Hermite-cosh Gaussian laser beam in a magnetoplasma with ramp density profile","created_at":"2015-08-13T04:21:11.956-07:00","url":"https://www.academia.edu/14895854/Self_focusing_of_a_Hermite_cosh_Gaussian_laser_beam_in_a_magnetoplasma_with_ramp_density_profile?f_ri=20949","dom_id":"work_14895854","summary":"The early and strong self-focusing of a Hermite-cosh-Gaussian laser beam in magnetoplasma in the\npresence of density ramp has been observed. Focusing and de-focusing nature of the Hermite-coshGaussian\nlaser beam with decentered parameter and magnetic field has been studied, and strong\nself-focusing is reported. It is investigated that decentered parameter \"b\" plays a significant role for\nthe self-focusing of the laser beam and is very sensitive as in case of extraordinary mode. For mode\nindices, m ¼ 0; 1; 2; and b ¼ 4:00; 3:14; and 2:05, strong self-focusing is observed. Similarly\nin case of ordinary mode, for m ¼ 0; 1; 2 and b ¼ 4:00; 3:14; 2:049, respectively, strong\nself-focusing is reported. Further, it is seen that extraordinary mode is more prominent toward\nself-focusing rather than ordinary mode of propagation. For mode indices m ¼ 0; 1; and 2,\ndiffraction term becomes more dominant over nonlinear term for decentered parameter b ¼ 0. For\nselective higher values of decentered parameter in case of mode indices m ¼ 0; 1; and 2,\nself-focusing effect becomes strong for extraordinary mode. Also increase in the value of magnetic\nfield enhances the self-focusing ability of the laser beam, which is very useful in the applications\nlike the generation of inertial fusion energy driven by lasers, laser driven accelerators, and x-ray\nlasers.\n","downloadable_attachments":[{"id":38464045,"asset_id":14895854,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":31179609,"first_name":"Niti","last_name":"Kant","domain_name":"allduniv","page_name":"NitiKant","display_name":"Niti Kant","profile_url":"https://allduniv.academia.edu/NitiKant?f_ri=20949","photo":"https://0.academia-photos.com/31179609/9658074/77615836/s65_niti.kant.jpeg"}],"research_interests":[{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_7041527" data-work_id="7041527" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/7041527/X_ray_radiation_from_ions_with_K_shell_vacancies">X-ray radiation from ions with K-shell vacancies</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">New types of space resolved X-ray spectra produced in light matter experiments with high intensity lasers have been investigated experimentally and theoretically. This type of spectra is characterised by the disappearance of distinct... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_7041527" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">New types of space resolved X-ray spectra produced in light matter experiments with high intensity lasers have been investigated experimentally and theoretically. This type of spectra is characterised by the disappearance of distinct resonance line emission and the appearance of very broad emission structures due to the dielectronic satellite transitions associated to the resonance lines. Atomic data calculations have shown, that rather exotic states with K-shell vacancies are involved. For quantitative spectra interpretation we developed a model for dielectronic satellite accumulation (DSA-model) in cold dense optically thick plasmas which are tested by rigorous comparison with space resolved spectra from ns-lasers. In experiments with laser intensities up to 1019 W/cm2 focused into nitrogen gas targets, hollow ion configurations are observed by means of soft X-ray spectroscopy. It is shown that transitions in hollow ions can be used for plasma diagnostic. The determination of the electron temperature in the long lasting recombining regime is demonstrated. In Light-matter interaction experiments with extremely high contrast (up to 10^10) short pulse (400 fs) lasers electron densities of ne≈3×10^23cm^−3 at temperatures between kTe=200–300 eV have been determined by means of spectral simulations developed previously for ns-laser produced plasmas. Expansion velocities are determined analysing asymmetric optically thick line emission. Further, the results are checked by observing the spectral windows involving the region about the Heα-line and the region from the Heβ-line to the He-like continuum. Finally, plasmas of solid density are characteristic in experiments with heavy ion beams heating massive targets. <br />We report the first spectroscopic investigations in plasmas of this type with results on solid neon heated by Ar-ions. A spectroscopic method for the determination of the electron temperature in extreme optically thick plasmas is developed. <br />1. Introduction <br />The investigation of dense plasma has received great interest in a widespread community: inertial fusion driven by lasers and heavy ion beams, X-ray lasers, non-coherent X-ray sources, and correlation effects in dense cold plasmas. In these investigations plasma spectroscopy has provided important information for basic research and for the optimisation of desired plasma parameters. X-ray spectroscopy of these dense plasmas, which contain highly charged ions, has turned out to be extremely useful for the determination of the plasma parameters and several models have been successfully developed in the last decades, e.g. see [1] and [2]. The general feature of these traditional spectra are the dominant emission of resonance lines. <br /> <br />Recently, the interaction of radiation with matter by means of powerful lasers with extremely high contrast of up to 1011 produce spectra which differ dramatically from traditional ones, e.g. known from ns-laser experiments. A general feature of these newer spectra is the disappearance of the resonance lines and the appearance of very broad emission structures associated to the resonance lines. Theoretical calculations readily showed that neither Stark-broadening nor opacity effects could account for the experimental observation. Only recently, Rosmej and Faenov [3] proposed a model of accumulated dielectronic satellites (DSA-model) for the interpretation of the experimental findings [4], [5], [6], [7] and [8]. <br /> <br />It became immediately clear that spectra from short pulse high-power high-contrast lasers were not appropriate to study the origins of the observed spectra. Transient effects, field ionisation, continuum level depression at high densities and optical thickness made the theoretical interpretation difficult. Therefore, it was appropriate to perform experiments that could illuminate the situation and perform systematic investigations at ns-laser installation. The keypoint in these experiments being the measurement of X-ray spectra with high luminosity at high spectral and spatial resolution. This was realised by means of spherically bent mica crystals providing a spectral resolution of λ/δλ≈104 simultaneously with spatial resolution of m [9], [10] and [11]. Note that spectra emitted from plasmas in traditional ns-laser experiments arising from regions close to the target surface showed emission features similar to those known from high-intensity high-contrast laser pulses. <br /> <br />Not all questions could be addressed in these experiments, in particular the broad emission structures located far from usual resonance line positions [12], [13] and [14] required further study. A major step the atomic data calculations that showed these structures might be due to transitions in hollow ions [7], [8], [14], [15] and [16]. However, the question concerning the excitation mechanisms however remained unresolved. <br /> <br />The similarity of cold, dense plasmas created by short pulse high-contrast lasers and plasmas generated through heating solids with heavy ion beams made the beam–solid interaction experiments attractive to the laser community. Spectroscopic investigations of the first experiments with Ar-ions heating solid neon [17] were thus pursued. <br /> <br />2. Laser produced plasmas <br />2.1. Observation of unusual X-ray spectra from high-intensity high-contrast laser pulses <br />Experiments on the interaction of high-intensity high-contrast lasers with solid targets have been performed at the Centre for Ultrafast Optical Science of the University of Michigan [18] and [19]. The pulse had a duration of 400 fs, a wavelength of m, an energy of 1 J, and an intensity contrast of 1010. The diameter of the focal spot was about m and a peak intensity of 0.5×1019 W/cm2 was achieved at the surface of a solid target. In addition, experiments with prepulses were performed with a total energy of 2 J and a time separation from the main pulse of 2 ps. Solid Mg targets were used. X-ray spectra [19] have been recorded with spherically bent mica crystals with a 186 mm radius of curvature and X-ray CCD camera. The geometrical arrangement uses the FSSR-1D scheme [10].</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/7041527" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="4b91e9f8938f32d44b4f93bc8dc7e4a9" rel="nofollow" data-download="{"attachment_id":35704300,"asset_id":7041527,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/35704300/download_file?st=MTc0MDI1MjMxNiw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="4078142" href="https://enea.academia.edu/PaoloDiLazzaro">Paolo Di Lazzaro</a><script data-card-contents-for-user="4078142" type="text/json">{"id":4078142,"first_name":"Paolo","last_name":"Di Lazzaro","domain_name":"enea","page_name":"PaoloDiLazzaro","display_name":"Paolo Di Lazzaro","profile_url":"https://enea.academia.edu/PaoloDiLazzaro?f_ri=20949","photo":"https://0.academia-photos.com/4078142/1877033/31450696/s65_paolo.di_lazzaro.jpg"}</script></span></span></li><li class="js-paper-rank-work_7041527 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="7041527"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 7041527, container: ".js-paper-rank-work_7041527", }); });</script></li><li class="js-percentile-work_7041527 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 7041527; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_7041527"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_7041527 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="7041527"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 7041527; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=7041527]").text(description); $(".js-view-count-work_7041527").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_7041527").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="7041527"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">14</a> </div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="15064" rel="nofollow" href="https://www.academia.edu/Documents/in/Atomic_processes_-_recombination_of_positive_ions_electron_detachment_atom-ion_collisions_-_beams_">Atomic processes - recombination of positive ions, electron detachment, atom-ion collisions - beams and plasma spectroscopy</a>, <script data-card-contents-for-ri="15064" type="text/json">{"id":15064,"name":"Atomic processes - recombination of positive ions, electron detachment, atom-ion collisions - beams and plasma spectroscopy","url":"https://www.academia.edu/Documents/in/Atomic_processes_-_recombination_of_positive_ions_electron_detachment_atom-ion_collisions_-_beams_?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="19568" rel="nofollow" href="https://www.academia.edu/Documents/in/Atomic_Spectroscopy">Atomic Spectroscopy</a>, <script data-card-contents-for-ri="19568" type="text/json">{"id":19568,"name":"Atomic Spectroscopy","url":"https://www.academia.edu/Documents/in/Atomic_Spectroscopy?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="20949" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_Plasma_Interactions">Laser Plasma Interactions</a>, <script data-card-contents-for-ri="20949" type="text/json">{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="41877" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_produced_plasma">Laser produced plasma</a><script data-card-contents-for-ri="41877" type="text/json">{"id":41877,"name":"Laser produced plasma","url":"https://www.academia.edu/Documents/in/Laser_produced_plasma?f_ri=20949","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=7041527]'), work: {"id":7041527,"title":"X-ray radiation from ions with K-shell vacancies","created_at":"2014-05-13T23:12:20.298-07:00","url":"https://www.academia.edu/7041527/X_ray_radiation_from_ions_with_K_shell_vacancies?f_ri=20949","dom_id":"work_7041527","summary":"New types of space resolved X-ray spectra produced in light matter experiments with high intensity lasers have been investigated experimentally and theoretically. This type of spectra is characterised by the disappearance of distinct resonance line emission and the appearance of very broad emission structures due to the dielectronic satellite transitions associated to the resonance lines. Atomic data calculations have shown, that rather exotic states with K-shell vacancies are involved. For quantitative spectra interpretation we developed a model for dielectronic satellite accumulation (DSA-model) in cold dense optically thick plasmas which are tested by rigorous comparison with space resolved spectra from ns-lasers. In experiments with laser intensities up to 1019 W/cm2 focused into nitrogen gas targets, hollow ion configurations are observed by means of soft X-ray spectroscopy. It is shown that transitions in hollow ions can be used for plasma diagnostic. The determination of the electron temperature in the long lasting recombining regime is demonstrated. In Light-matter interaction experiments with extremely high contrast (up to 10^10) short pulse (400 fs) lasers electron densities of ne≈3×10^23cm^−3 at temperatures between kTe=200–300 eV have been determined by means of spectral simulations developed previously for ns-laser produced plasmas. Expansion velocities are determined analysing asymmetric optically thick line emission. Further, the results are checked by observing the spectral windows involving the region about the Heα-line and the region from the Heβ-line to the He-like continuum. Finally, plasmas of solid density are characteristic in experiments with heavy ion beams heating massive targets. \r\nWe report the first spectroscopic investigations in plasmas of this type with results on solid neon heated by Ar-ions. A spectroscopic method for the determination of the electron temperature in extreme optically thick plasmas is developed.\r\n1. Introduction\r\nThe investigation of dense plasma has received great interest in a widespread community: inertial fusion driven by lasers and heavy ion beams, X-ray lasers, non-coherent X-ray sources, and correlation effects in dense cold plasmas. In these investigations plasma spectroscopy has provided important information for basic research and for the optimisation of desired plasma parameters. X-ray spectroscopy of these dense plasmas, which contain highly charged ions, has turned out to be extremely useful for the determination of the plasma parameters and several models have been successfully developed in the last decades, e.g. see [1] and [2]. The general feature of these traditional spectra are the dominant emission of resonance lines.\r\n\r\nRecently, the interaction of radiation with matter by means of powerful lasers with extremely high contrast of up to 1011 produce spectra which differ dramatically from traditional ones, e.g. known from ns-laser experiments. A general feature of these newer spectra is the disappearance of the resonance lines and the appearance of very broad emission structures associated to the resonance lines. Theoretical calculations readily showed that neither Stark-broadening nor opacity effects could account for the experimental observation. Only recently, Rosmej and Faenov [3] proposed a model of accumulated dielectronic satellites (DSA-model) for the interpretation of the experimental findings [4], [5], [6], [7] and [8].\r\n\r\nIt became immediately clear that spectra from short pulse high-power high-contrast lasers were not appropriate to study the origins of the observed spectra. Transient effects, field ionisation, continuum level depression at high densities and optical thickness made the theoretical interpretation difficult. Therefore, it was appropriate to perform experiments that could illuminate the situation and perform systematic investigations at ns-laser installation. The keypoint in these experiments being the measurement of X-ray spectra with high luminosity at high spectral and spatial resolution. This was realised by means of spherically bent mica crystals providing a spectral resolution of λ/δλ≈104 simultaneously with spatial resolution of m [9], [10] and [11]. Note that spectra emitted from plasmas in traditional ns-laser experiments arising from regions close to the target surface showed emission features similar to those known from high-intensity high-contrast laser pulses.\r\n\r\nNot all questions could be addressed in these experiments, in particular the broad emission structures located far from usual resonance line positions [12], [13] and [14] required further study. A major step the atomic data calculations that showed these structures might be due to transitions in hollow ions [7], [8], [14], [15] and [16]. However, the question concerning the excitation mechanisms however remained unresolved.\r\n\r\nThe similarity of cold, dense plasmas created by short pulse high-contrast lasers and plasmas generated through heating solids with heavy ion beams made the beam–solid interaction experiments attractive to the laser community. Spectroscopic investigations of the first experiments with Ar-ions heating solid neon [17] were thus pursued.\r\n\r\n2. Laser produced plasmas\r\n2.1. Observation of unusual X-ray spectra from high-intensity high-contrast laser pulses\r\nExperiments on the interaction of high-intensity high-contrast lasers with solid targets have been performed at the Centre for Ultrafast Optical Science of the University of Michigan [18] and [19]. The pulse had a duration of 400 fs, a wavelength of m, an energy of 1 J, and an intensity contrast of 1010. The diameter of the focal spot was about m and a peak intensity of 0.5×1019 W/cm2 was achieved at the surface of a solid target. In addition, experiments with prepulses were performed with a total energy of 2 J and a time separation from the main pulse of 2 ps. Solid Mg targets were used. X-ray spectra [19] have been recorded with spherically bent mica crystals with a 186 mm radius of curvature and X-ray CCD camera. The geometrical arrangement uses the FSSR-1D scheme [10].","downloadable_attachments":[{"id":35704300,"asset_id":7041527,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":4078142,"first_name":"Paolo","last_name":"Di Lazzaro","domain_name":"enea","page_name":"PaoloDiLazzaro","display_name":"Paolo Di Lazzaro","profile_url":"https://enea.academia.edu/PaoloDiLazzaro?f_ri=20949","photo":"https://0.academia-photos.com/4078142/1877033/31450696/s65_paolo.di_lazzaro.jpg"}],"research_interests":[{"id":15064,"name":"Atomic processes - recombination of positive ions, electron detachment, atom-ion collisions - beams and plasma spectroscopy","url":"https://www.academia.edu/Documents/in/Atomic_processes_-_recombination_of_positive_ions_electron_detachment_atom-ion_collisions_-_beams_?f_ri=20949","nofollow":true},{"id":19568,"name":"Atomic Spectroscopy","url":"https://www.academia.edu/Documents/in/Atomic_Spectroscopy?f_ri=20949","nofollow":true},{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true},{"id":41877,"name":"Laser produced plasma","url":"https://www.academia.edu/Documents/in/Laser_produced_plasma?f_ri=20949","nofollow":true},{"id":55591,"name":"Plasma Characterization and Diagnostics","url":"https://www.academia.edu/Documents/in/Plasma_Characterization_and_Diagnostics?f_ri=20949"},{"id":112075,"name":"Optical diagnostic of plasma","url":"https://www.academia.edu/Documents/in/Optical_diagnostic_of_plasma?f_ri=20949"},{"id":476328,"name":"Laser Induced Plasma","url":"https://www.academia.edu/Documents/in/Laser_Induced_Plasma?f_ri=20949"},{"id":542433,"name":"Laser Plasmas","url":"https://www.academia.edu/Documents/in/Laser_Plasmas?f_ri=20949"},{"id":589935,"name":"Numerical modelling of high-power laser-plasma interactions","url":"https://www.academia.edu/Documents/in/Numerical_modelling_of_high-power_laser-plasma_interactions?f_ri=20949"},{"id":729676,"name":"Study of Laser Produced Plasma","url":"https://www.academia.edu/Documents/in/Study_of_Laser_Produced_Plasma?f_ri=20949"},{"id":1169361,"name":"Plasma Emission Spectroscopy","url":"https://www.academia.edu/Documents/in/Plasma_Emission_Spectroscopy?f_ri=20949"},{"id":1349474,"name":"Plasma Diagnostics","url":"https://www.academia.edu/Documents/in/Plasma_Diagnostics?f_ri=20949"},{"id":1386262,"name":"Electron Temperature","url":"https://www.academia.edu/Documents/in/Electron_Temperature?f_ri=20949"},{"id":1753694,"name":"Plasma Diagnostic","url":"https://www.academia.edu/Documents/in/Plasma_Diagnostic?f_ri=20949"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_5778100" data-work_id="5778100" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/5778100/Soft_X_ray_plasma_source_for_atmospheric_pressure_microscopy_radiobiology_and_other_applications">Soft X-ray plasma source for atmospheric pressure microscopy, radiobiology and other applications</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">A large-volume non-conventional XeCl excimer laser (Hercules) emitting long pulses (from 10 ns up to 120 ns at a wavelength of 308 nm) has been used to drive a soft X-ray plasma source. The X-rays pulse duration and the energy conversion... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_5778100" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">A large-volume non-conventional XeCl excimer laser (Hercules) emitting long pulses (from 10 ns up to 120 ns at a wavelength of 308 nm) has been used to drive a soft X-ray plasma source. The X-rays pulse duration and the energy conversion efficiency in different spectral regions have been measured; X-rays emission lasting up to 100 ns has been obtained in the 70 eV region. The dependence of X-ray pulse duration on the size of the laser spot is discussed. The X-ray source can be operated both in vacuum and in helium at atmospheric pressure. This allows irradiating over a large area both for contact microscopy of living specimens (up to 1 mm^2 windows) and for radiobiology (up to few cm^2 windows). The experimental results obtained for these two applications as well as for radiographic images of living insects are discussed.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/5778100" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="18c8b14df40a697191a32bf24a91a940" rel="nofollow" data-download="{"attachment_id":41409882,"asset_id":5778100,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/41409882/download_file?st=MTc0MDI1MjMxNiw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="4078142" href="https://enea.academia.edu/PaoloDiLazzaro">Paolo Di Lazzaro</a><script data-card-contents-for-user="4078142" type="text/json">{"id":4078142,"first_name":"Paolo","last_name":"Di Lazzaro","domain_name":"enea","page_name":"PaoloDiLazzaro","display_name":"Paolo Di Lazzaro","profile_url":"https://enea.academia.edu/PaoloDiLazzaro?f_ri=20949","photo":"https://0.academia-photos.com/4078142/1877033/31450696/s65_paolo.di_lazzaro.jpg"}</script></span></span></li><li class="js-paper-rank-work_5778100 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="5778100"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 5778100, container: ".js-paper-rank-work_5778100", }); });</script></li><li class="js-percentile-work_5778100 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 5778100; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_5778100"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_5778100 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="5778100"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 5778100; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=5778100]").text(description); $(".js-view-count-work_5778100").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_5778100").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="5778100"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">17</a> </div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="18325" rel="nofollow" href="https://www.academia.edu/Documents/in/Radiobiology_of_Ionizing_Radiation">Radiobiology of Ionizing Radiation</a>, <script data-card-contents-for-ri="18325" type="text/json">{"id":18325,"name":"Radiobiology of Ionizing Radiation","url":"https://www.academia.edu/Documents/in/Radiobiology_of_Ionizing_Radiation?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="20949" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_Plasma_Interactions">Laser Plasma Interactions</a>, <script data-card-contents-for-ri="20949" type="text/json">{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="41877" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_produced_plasma">Laser produced plasma</a>, <script data-card-contents-for-ri="41877" type="text/json">{"id":41877,"name":"Laser produced plasma","url":"https://www.academia.edu/Documents/in/Laser_produced_plasma?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="45583" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_Ablation_-_Inductively_Coupled_Plasma_-_Mass_Spectrometry">Laser Ablation - Inductively Coupled Plasma - Mass Spectrometry</a><script data-card-contents-for-ri="45583" type="text/json">{"id":45583,"name":"Laser Ablation - Inductively Coupled Plasma - Mass Spectrometry","url":"https://www.academia.edu/Documents/in/Laser_Ablation_-_Inductively_Coupled_Plasma_-_Mass_Spectrometry?f_ri=20949","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=5778100]'), work: {"id":5778100,"title":"Soft X-ray plasma source for atmospheric pressure microscopy, radiobiology and other applications","created_at":"2014-01-20T02:07:30.208-08:00","url":"https://www.academia.edu/5778100/Soft_X_ray_plasma_source_for_atmospheric_pressure_microscopy_radiobiology_and_other_applications?f_ri=20949","dom_id":"work_5778100","summary":"A large-volume non-conventional XeCl excimer laser (Hercules) emitting long pulses (from 10 ns up to 120 ns at a wavelength of 308 nm) has been used to drive a soft X-ray plasma source. The X-rays pulse duration and the energy conversion efficiency in different spectral regions have been measured; X-rays emission lasting up to 100 ns has been obtained in the 70 eV region. The dependence of X-ray pulse duration on the size of the laser spot is discussed. The X-ray source can be operated both in vacuum and in helium at atmospheric pressure. This allows irradiating over a large area both for contact microscopy of living specimens (up to 1 mm^2 windows) and for radiobiology (up to few cm^2 windows). The experimental results obtained for these two applications as well as for radiographic images of living insects are discussed.","downloadable_attachments":[{"id":41409882,"asset_id":5778100,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":4078142,"first_name":"Paolo","last_name":"Di Lazzaro","domain_name":"enea","page_name":"PaoloDiLazzaro","display_name":"Paolo Di Lazzaro","profile_url":"https://enea.academia.edu/PaoloDiLazzaro?f_ri=20949","photo":"https://0.academia-photos.com/4078142/1877033/31450696/s65_paolo.di_lazzaro.jpg"}],"research_interests":[{"id":18325,"name":"Radiobiology of Ionizing Radiation","url":"https://www.academia.edu/Documents/in/Radiobiology_of_Ionizing_Radiation?f_ri=20949","nofollow":true},{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true},{"id":41877,"name":"Laser produced plasma","url":"https://www.academia.edu/Documents/in/Laser_produced_plasma?f_ri=20949","nofollow":true},{"id":45583,"name":"Laser Ablation - Inductively Coupled Plasma - Mass Spectrometry","url":"https://www.academia.edu/Documents/in/Laser_Ablation_-_Inductively_Coupled_Plasma_-_Mass_Spectrometry?f_ri=20949","nofollow":true},{"id":82998,"name":"Laser driven ion acceleration, high-power laser plasma interactions","url":"https://www.academia.edu/Documents/in/Laser_driven_ion_acceleration_high-power_laser_plasma_interactions?f_ri=20949"},{"id":132620,"name":"Radiobiology","url":"https://www.academia.edu/Documents/in/Radiobiology?f_ri=20949"},{"id":142876,"name":"Laser matter and plasma interactions, and related subjects","url":"https://www.academia.edu/Documents/in/Laser_matter_and_plasma_interactions_and_related_subjects?f_ri=20949"},{"id":189685,"name":"In Vivo Imaging","url":"https://www.academia.edu/Documents/in/In_Vivo_Imaging?f_ri=20949"},{"id":351506,"name":"Soft X-rays","url":"https://www.academia.edu/Documents/in/Soft_X-rays?f_ri=20949"},{"id":398660,"name":"Plasma and Laser","url":"https://www.academia.edu/Documents/in/Plasma_and_Laser?f_ri=20949"},{"id":476328,"name":"Laser Induced Plasma","url":"https://www.academia.edu/Documents/in/Laser_Induced_Plasma?f_ri=20949"},{"id":542433,"name":"Laser Plasmas","url":"https://www.academia.edu/Documents/in/Laser_Plasmas?f_ri=20949"},{"id":729676,"name":"Study of Laser Produced Plasma","url":"https://www.academia.edu/Documents/in/Study_of_Laser_Produced_Plasma?f_ri=20949"},{"id":838674,"name":"Excimer Laser","url":"https://www.academia.edu/Documents/in/Excimer_Laser?f_ri=20949"},{"id":890444,"name":"Soft X-ray Contact Microscopy","url":"https://www.academia.edu/Documents/in/Soft_X-ray_Contact_Microscopy?f_ri=20949"},{"id":1435578,"name":"Physics of Laser Plasma","url":"https://www.academia.edu/Documents/in/Physics_of_Laser_Plasma?f_ri=20949"},{"id":2840404,"name":"water window","url":"https://www.academia.edu/Documents/in/water_window?f_ri=20949"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_4294484" data-work_id="4294484" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/4294484/Discussion_for_plasma_evolution_on_laser_target">Discussion for plasma evolution on laser target</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Starting from the experimental results of generation of ions from plasmas driven by the laser-facilityHercules at ENEA Frascati, we present some basic equations that account for the main physical phenomena occurring during the plasma... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_4294484" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Starting from the experimental results of generation of ions from plasmas driven by the laser-facilityHercules at ENEA Frascati, we present some basic equations that account for the main physical phenomena occurring during the plasma expansion from the laser target, including the cluster expansion dynamics.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/4294484" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="0387ffdf7607888c9634a86f1b38d72c" rel="nofollow" data-download="{"attachment_id":31902052,"asset_id":4294484,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/31902052/download_file?st=MTc0MDI1MjMxNiw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="4078142" href="https://enea.academia.edu/PaoloDiLazzaro">Paolo Di Lazzaro</a><script data-card-contents-for-user="4078142" type="text/json">{"id":4078142,"first_name":"Paolo","last_name":"Di Lazzaro","domain_name":"enea","page_name":"PaoloDiLazzaro","display_name":"Paolo Di Lazzaro","profile_url":"https://enea.academia.edu/PaoloDiLazzaro?f_ri=20949","photo":"https://0.academia-photos.com/4078142/1877033/31450696/s65_paolo.di_lazzaro.jpg"}</script></span></span></li><li class="js-paper-rank-work_4294484 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="4294484"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 4294484, container: ".js-paper-rank-work_4294484", }); });</script></li><li class="js-percentile-work_4294484 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 4294484; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_4294484"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_4294484 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="4294484"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 4294484; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=4294484]").text(description); $(".js-view-count-work_4294484").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_4294484").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="4294484"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">12</a> </div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="15064" rel="nofollow" href="https://www.academia.edu/Documents/in/Atomic_processes_-_recombination_of_positive_ions_electron_detachment_atom-ion_collisions_-_beams_">Atomic processes - recombination of positive ions, electron detachment, atom-ion collisions - beams and plasma spectroscopy</a>, <script data-card-contents-for-ri="15064" type="text/json">{"id":15064,"name":"Atomic processes - recombination of positive ions, electron detachment, atom-ion collisions - beams and plasma spectroscopy","url":"https://www.academia.edu/Documents/in/Atomic_processes_-_recombination_of_positive_ions_electron_detachment_atom-ion_collisions_-_beams_?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="20949" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_Plasma_Interactions">Laser Plasma Interactions</a>, <script data-card-contents-for-ri="20949" type="text/json">{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="32021" rel="nofollow" href="https://www.academia.edu/Documents/in/Ion_Beam_Analysis">Ion Beam Analysis</a>, <script data-card-contents-for-ri="32021" type="text/json">{"id":32021,"name":"Ion Beam Analysis","url":"https://www.academia.edu/Documents/in/Ion_Beam_Analysis?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="41877" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_produced_plasma">Laser produced plasma</a><script data-card-contents-for-ri="41877" type="text/json">{"id":41877,"name":"Laser produced plasma","url":"https://www.academia.edu/Documents/in/Laser_produced_plasma?f_ri=20949","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=4294484]'), work: {"id":4294484,"title":"Discussion for plasma evolution on laser target","created_at":"2013-08-21T18:17:40.316-07:00","url":"https://www.academia.edu/4294484/Discussion_for_plasma_evolution_on_laser_target?f_ri=20949","dom_id":"work_4294484","summary":"Starting from the experimental results of generation of ions from plasmas driven by the laser-facilityHercules at ENEA Frascati, we present some basic equations that account for the main physical phenomena occurring during the plasma expansion from the laser target, including the cluster expansion dynamics.","downloadable_attachments":[{"id":31902052,"asset_id":4294484,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":4078142,"first_name":"Paolo","last_name":"Di Lazzaro","domain_name":"enea","page_name":"PaoloDiLazzaro","display_name":"Paolo Di Lazzaro","profile_url":"https://enea.academia.edu/PaoloDiLazzaro?f_ri=20949","photo":"https://0.academia-photos.com/4078142/1877033/31450696/s65_paolo.di_lazzaro.jpg"}],"research_interests":[{"id":15064,"name":"Atomic processes - recombination of positive ions, electron detachment, atom-ion collisions - beams and plasma spectroscopy","url":"https://www.academia.edu/Documents/in/Atomic_processes_-_recombination_of_positive_ions_electron_detachment_atom-ion_collisions_-_beams_?f_ri=20949","nofollow":true},{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true},{"id":32021,"name":"Ion Beam Analysis","url":"https://www.academia.edu/Documents/in/Ion_Beam_Analysis?f_ri=20949","nofollow":true},{"id":41877,"name":"Laser produced plasma","url":"https://www.academia.edu/Documents/in/Laser_produced_plasma?f_ri=20949","nofollow":true},{"id":82998,"name":"Laser driven ion acceleration, high-power laser plasma interactions","url":"https://www.academia.edu/Documents/in/Laser_driven_ion_acceleration_high-power_laser_plasma_interactions?f_ri=20949"},{"id":142876,"name":"Laser matter and plasma interactions, and related subjects","url":"https://www.academia.edu/Documents/in/Laser_matter_and_plasma_interactions_and_related_subjects?f_ri=20949"},{"id":398660,"name":"Plasma and Laser","url":"https://www.academia.edu/Documents/in/Plasma_and_Laser?f_ri=20949"},{"id":476328,"name":"Laser Induced Plasma","url":"https://www.academia.edu/Documents/in/Laser_Induced_Plasma?f_ri=20949"},{"id":542433,"name":"Laser Plasmas","url":"https://www.academia.edu/Documents/in/Laser_Plasmas?f_ri=20949"},{"id":729676,"name":"Study of Laser Produced Plasma","url":"https://www.academia.edu/Documents/in/Study_of_Laser_Produced_Plasma?f_ri=20949"},{"id":1290330,"name":"Laser Plasma","url":"https://www.academia.edu/Documents/in/Laser_Plasma?f_ri=20949"},{"id":1435578,"name":"Physics of Laser Plasma","url":"https://www.academia.edu/Documents/in/Physics_of_Laser_Plasma?f_ri=20949"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_75450537" data-work_id="75450537" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/75450537/Hydrodynamic_Instabilities_in_Inertial_Confinement_Fusion">Hydrodynamic Instabilities in Inertial Confinement Fusion</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Portions of this document may be illegible in electronic image products. images are produced from the best available original document. Foreword This paper was prepared as a contribution to the Proceedings of the 45th Scottish... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_75450537" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Portions of this document may be illegible in electronic image products. images are produced from the best available original document. Foreword This paper was prepared as a contribution to the Proceedings of the 45th Scottish Universities Summer School in Physics, held at the University of St. Andrews in August 1994. The School dealt with a range of topics in laser-plasma interactions, and was attended by about sixty graduate students and researchers from Europe and the United States. The paper was the basis for two lectures on the subject of hydrodynamic instabilities given at the School. The focus of the paper is on buoyancy-driven instabilities of the Rayleigh-Taylor type, which are commonly regarded as the most important kind of hydrodynamic instability in inertial-confinement-fusion implosions. The paper is intended to be pedagogical rather than research-oriented, and so is by no means a comprehensive review of work in this field. Rather, it is hoped that the student will find here a foundation on which to build an understanding of current research, and the experienced researcher will find a compilation of useful results. The aim of the paper is to discuss the evolution of a single Rayleigh-Taylor-unstable mode, from its linear phase to its late-stage constant-velocity bubble growth, with a brief consideration of the saturation of linear growth. The influence of other modes is invoked only in the short-range sense (in wavenumber space) of the Haan saturation model. Owing to limitations of time in the lectures and of space in the Proceedings, the treatment of other instabilities such as Richtmyer-Meshkov and Kelvin-Helmholtz is necessarily very brief, and entirely inadequate as an introductory discussion. Likewise, there is no reference to the effect of convergent geometry, to long-range mode coupling, or to shape effects in threedimensional growth. Furthermore, there is no reference to the large body of experimental research related to hydrodynamic instabilities. I would like to thank Chuck Cranfill, Steve Haan, and Brad Beck for their kindness in reviewing and commenting on preliminary drafts of the paper.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/75450537" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="e766d27a035d8242ed5f8c63c8a1d462" rel="nofollow" data-download="{"attachment_id":83214154,"asset_id":75450537,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/83214154/download_file?st=MTc0MDI1MjMxNiw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="32598345" href="https://lanl.academia.edu/NelsonHoffman">Nelson Hoffman</a><script data-card-contents-for-user="32598345" type="text/json">{"id":32598345,"first_name":"Nelson","last_name":"Hoffman","domain_name":"lanl","page_name":"NelsonHoffman","display_name":"Nelson Hoffman","profile_url":"https://lanl.academia.edu/NelsonHoffman?f_ri=20949","photo":"https://0.academia-photos.com/32598345/11441143/12761531/s65_nelson.hoffman.jpg"}</script></span></span></li><li class="js-paper-rank-work_75450537 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="75450537"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 75450537, container: ".js-paper-rank-work_75450537", }); });</script></li><li class="js-percentile-work_75450537 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75450537; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_75450537"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_75450537 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="75450537"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75450537; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75450537]").text(description); $(".js-view-count-work_75450537").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_75450537").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="75450537"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">13</a> </div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="498" rel="nofollow" href="https://www.academia.edu/Documents/in/Physics">Physics</a>, <script data-card-contents-for-ri="498" type="text/json">{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="512" rel="nofollow" href="https://www.academia.edu/Documents/in/Mechanics">Mechanics</a>, <script data-card-contents-for-ri="512" type="text/json">{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="721" rel="nofollow" href="https://www.academia.edu/Documents/in/Magnetohydrodynamics">Magnetohydrodynamics</a>, <script data-card-contents-for-ri="721" type="text/json">{"id":721,"name":"Magnetohydrodynamics","url":"https://www.academia.edu/Documents/in/Magnetohydrodynamics?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="2298" rel="nofollow" href="https://www.academia.edu/Documents/in/Computational_Fluid_Dynamics">Computational Fluid Dynamics</a><script data-card-contents-for-ri="2298" type="text/json">{"id":2298,"name":"Computational Fluid Dynamics","url":"https://www.academia.edu/Documents/in/Computational_Fluid_Dynamics?f_ri=20949","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=75450537]'), work: {"id":75450537,"title":"Hydrodynamic Instabilities in Inertial Confinement Fusion","created_at":"2022-04-04T11:34:30.663-07:00","url":"https://www.academia.edu/75450537/Hydrodynamic_Instabilities_in_Inertial_Confinement_Fusion?f_ri=20949","dom_id":"work_75450537","summary":"Portions of this document may be illegible in electronic image products. images are produced from the best available original document. Foreword This paper was prepared as a contribution to the Proceedings of the 45th Scottish Universities Summer School in Physics, held at the University of St. Andrews in August 1994. The School dealt with a range of topics in laser-plasma interactions, and was attended by about sixty graduate students and researchers from Europe and the United States. The paper was the basis for two lectures on the subject of hydrodynamic instabilities given at the School. The focus of the paper is on buoyancy-driven instabilities of the Rayleigh-Taylor type, which are commonly regarded as the most important kind of hydrodynamic instability in inertial-confinement-fusion implosions. The paper is intended to be pedagogical rather than research-oriented, and so is by no means a comprehensive review of work in this field. Rather, it is hoped that the student will find here a foundation on which to build an understanding of current research, and the experienced researcher will find a compilation of useful results. The aim of the paper is to discuss the evolution of a single Rayleigh-Taylor-unstable mode, from its linear phase to its late-stage constant-velocity bubble growth, with a brief consideration of the saturation of linear growth. The influence of other modes is invoked only in the short-range sense (in wavenumber space) of the Haan saturation model. Owing to limitations of time in the lectures and of space in the Proceedings, the treatment of other instabilities such as Richtmyer-Meshkov and Kelvin-Helmholtz is necessarily very brief, and entirely inadequate as an introductory discussion. Likewise, there is no reference to the effect of convergent geometry, to long-range mode coupling, or to shape effects in threedimensional growth. Furthermore, there is no reference to the large body of experimental research related to hydrodynamic instabilities. I would like to thank Chuck Cranfill, Steve Haan, and Brad Beck for their kindness in reviewing and commenting on preliminary drafts of the paper.","downloadable_attachments":[{"id":83214154,"asset_id":75450537,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":32598345,"first_name":"Nelson","last_name":"Hoffman","domain_name":"lanl","page_name":"NelsonHoffman","display_name":"Nelson Hoffman","profile_url":"https://lanl.academia.edu/NelsonHoffman?f_ri=20949","photo":"https://0.academia-photos.com/32598345/11441143/12761531/s65_nelson.hoffman.jpg"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics?f_ri=20949","nofollow":true},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics?f_ri=20949","nofollow":true},{"id":721,"name":"Magnetohydrodynamics","url":"https://www.academia.edu/Documents/in/Magnetohydrodynamics?f_ri=20949","nofollow":true},{"id":2298,"name":"Computational Fluid Dynamics","url":"https://www.academia.edu/Documents/in/Computational_Fluid_Dynamics?f_ri=20949","nofollow":true},{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949"},{"id":30561,"name":"Experimental Research","url":"https://www.academia.edu/Documents/in/Experimental_Research?f_ri=20949"},{"id":504035,"name":"Three Dimensional","url":"https://www.academia.edu/Documents/in/Three_Dimensional?f_ri=20949"},{"id":776554,"name":"Inertial Confinement Fusion","url":"https://www.academia.edu/Documents/in/Inertial_Confinement_Fusion?f_ri=20949"},{"id":913398,"name":"Linear Phase","url":"https://www.academia.edu/Documents/in/Linear_Phase?f_ri=20949"},{"id":920313,"name":"Electron Beam","url":"https://www.academia.edu/Documents/in/Electron_Beam?f_ri=20949"},{"id":1489860,"name":"Rayleigh Taylor Instability","url":"https://www.academia.edu/Documents/in/Rayleigh_Taylor_Instability?f_ri=20949"},{"id":1968842,"name":"Nonlinear Equations","url":"https://www.academia.edu/Documents/in/Nonlinear_Equations?f_ri=20949"},{"id":4044434,"name":"nonlinear equation","url":"https://www.academia.edu/Documents/in/nonlinear_equation?f_ri=20949"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_44042396" data-work_id="44042396" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/44042396/A_simple_finite_element_model_to_study_the_effect_of_plasma_plume_expansion_on_the_nanosecond_pulsed_laser_ablation_of_aluminum">A simple finite element model to study the effect of plasma plume expansion on the nanosecond pulsed laser ablation of aluminum</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">In this paper, a simple model was proposed using finite element analysis (FEA) with a commercial FEA software ABAQUS to simulate the two-dimensional (2-D) laser heat transfer in an aluminum material. Without relying on the conventional... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_44042396" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">In this paper, a simple model was proposed using finite element analysis (FEA) with a commercial FEA software ABAQUS to simulate the two-dimensional (2-D) laser heat transfer in an aluminum material. Without relying on the conventional hydrodynamic model, the proposed model not only predicts the evolutions of the temperature field and ablation profiles in the target material, but also provides an estimation on the evolutions of electron density, plasma temperature, and plasma absorption coefficient. The assumptions used in the model include the local thermal equilibrium and additional assumptions regarding the average plasma temperature and vapor density. The assumptions allowed the laser heat transfer equation to be solved together with the Saha-Eggert equation and conservation equations of matter and charge. When compared to the existing hydrodynamic models, the proposed model solves a less number of nonlinear equations and hence is computationally more efficient. The proposed FE model was employed to study the plasma-shielding effect on PLA produced by a 193 nm Excimer laser and a 266 nm Nd:YAG laser. The predictions of ablation depths, electron density, and plasma temperature agree well with the experimental data. Moreover, effects of the laser intensity and the average plasma temperature on the efficiency of the plasma shielding during PLA were also investigated and discussed in this study.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/44042396" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="40dc5de58c8c824c8255906d82baa932" rel="nofollow" data-download="{"attachment_id":64382382,"asset_id":44042396,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/64382382/download_file?st=MTc0MDI1MjMxNiw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="75362463" href="https://syr.academia.edu/YeqingWang">Yeqing Wang</a><script data-card-contents-for-user="75362463" type="text/json">{"id":75362463,"first_name":"Yeqing","last_name":"Wang","domain_name":"syr","page_name":"YeqingWang","display_name":"Yeqing Wang","profile_url":"https://syr.academia.edu/YeqingWang?f_ri=20949","photo":"https://0.academia-photos.com/75362463/18888326/36239325/s65_yeqing.wang.jpg"}</script></span></span></li><li class="js-paper-rank-work_44042396 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="44042396"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 44042396, container: ".js-paper-rank-work_44042396", }); });</script></li><li class="js-percentile-work_44042396 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 44042396; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_44042396"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_44042396 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="44042396"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 44042396; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=44042396]").text(description); $(".js-view-count-work_44042396").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_44042396").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="44042396"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">9</a> </div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="1430" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_Spectroscopy">Laser Spectroscopy</a>, <script data-card-contents-for-ri="1430" type="text/json">{"id":1430,"name":"Laser Spectroscopy","url":"https://www.academia.edu/Documents/in/Laser_Spectroscopy?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="2620" rel="nofollow" href="https://www.academia.edu/Documents/in/Composite_Materials_and_Structures">Composite Materials and Structures</a>, <script data-card-contents-for-ri="2620" type="text/json">{"id":2620,"name":"Composite Materials and Structures","url":"https://www.academia.edu/Documents/in/Composite_Materials_and_Structures?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="4135" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser">Laser</a>, <script data-card-contents-for-ri="4135" type="text/json">{"id":4135,"name":"Laser","url":"https://www.academia.edu/Documents/in/Laser?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="6287" rel="nofollow" href="https://www.academia.edu/Documents/in/Finite_Element_Analysis_Engineering_">Finite Element Analysis (Engineering)</a><script data-card-contents-for-ri="6287" type="text/json">{"id":6287,"name":"Finite Element Analysis (Engineering)","url":"https://www.academia.edu/Documents/in/Finite_Element_Analysis_Engineering_?f_ri=20949","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=44042396]'), work: {"id":44042396,"title":"A simple finite element model to study the effect of plasma plume expansion on the nanosecond pulsed laser ablation of aluminum","created_at":"2020-09-08T06:35:33.322-07:00","url":"https://www.academia.edu/44042396/A_simple_finite_element_model_to_study_the_effect_of_plasma_plume_expansion_on_the_nanosecond_pulsed_laser_ablation_of_aluminum?f_ri=20949","dom_id":"work_44042396","summary":"In this paper, a simple model was proposed using finite element analysis (FEA) with a commercial FEA software ABAQUS to simulate the two-dimensional (2-D) laser heat transfer in an aluminum material. Without relying on the conventional hydrodynamic model, the proposed model not only predicts the evolutions of the temperature field and ablation profiles in the target material, but also provides an estimation on the evolutions of electron density, plasma temperature, and plasma absorption coefficient. The assumptions used in the model include the local thermal equilibrium and additional assumptions regarding the average plasma temperature and vapor density. The assumptions allowed the laser heat transfer equation to be solved together with the Saha-Eggert equation and conservation equations of matter and charge. When compared to the existing hydrodynamic models, the proposed model solves a less number of nonlinear equations and hence is computationally more efficient. The proposed FE model was employed to study the plasma-shielding effect on PLA produced by a 193 nm Excimer laser and a 266 nm Nd:YAG laser. The predictions of ablation depths, electron density, and plasma temperature agree well with the experimental data. Moreover, effects of the laser intensity and the average plasma temperature on the efficiency of the plasma shielding during PLA were also investigated and discussed in this study.","downloadable_attachments":[{"id":64382382,"asset_id":44042396,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":75362463,"first_name":"Yeqing","last_name":"Wang","domain_name":"syr","page_name":"YeqingWang","display_name":"Yeqing Wang","profile_url":"https://syr.academia.edu/YeqingWang?f_ri=20949","photo":"https://0.academia-photos.com/75362463/18888326/36239325/s65_yeqing.wang.jpg"}],"research_interests":[{"id":1430,"name":"Laser Spectroscopy","url":"https://www.academia.edu/Documents/in/Laser_Spectroscopy?f_ri=20949","nofollow":true},{"id":2620,"name":"Composite Materials and Structures","url":"https://www.academia.edu/Documents/in/Composite_Materials_and_Structures?f_ri=20949","nofollow":true},{"id":4135,"name":"Laser","url":"https://www.academia.edu/Documents/in/Laser?f_ri=20949","nofollow":true},{"id":6287,"name":"Finite Element Analysis (Engineering)","url":"https://www.academia.edu/Documents/in/Finite_Element_Analysis_Engineering_?f_ri=20949","nofollow":true},{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949"},{"id":61857,"name":"Reduced order modeling","url":"https://www.academia.edu/Documents/in/Reduced_order_modeling?f_ri=20949"},{"id":91045,"name":"Polymer Composites","url":"https://www.academia.edu/Documents/in/Polymer_Composites?f_ri=20949"},{"id":159153,"name":"Laser Ablation","url":"https://www.academia.edu/Documents/in/Laser_Ablation?f_ri=20949"},{"id":476328,"name":"Laser Induced Plasma","url":"https://www.academia.edu/Documents/in/Laser_Induced_Plasma?f_ri=20949"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_38088726" data-work_id="38088726" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/38088726/SPIE_Proceedings_Volume_11042_XXII_INTERNATIONAL_SYMPOSIUM_ON_HIGH_POWER_LASER_SYSTEMS_AND_APPLICATIONS_9_12_October_2018_Editor_Paolo_Di_Lazzaro">SPIE Proceedings Volume 11042, XXII INTERNATIONAL SYMPOSIUM ON HIGH POWER LASER SYSTEMS AND APPLICATIONS | 9-12 October 2018. Editor: Paolo Di Lazzaro</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest">Front matter of the<br />XXII INTERNATIONAL SYMPOSIUM ON HIGH POWER LASER SYSTEMS AND APPLICATIONS<br />9-12 October 2018<br />Frascati, Italy</div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/38088726" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="d3b686fd7e26087884a3d07b18876856" rel="nofollow" data-download="{"attachment_id":58115929,"asset_id":38088726,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/58115929/download_file?st=MTc0MDI1MjMxNiw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="4078142" href="https://enea.academia.edu/PaoloDiLazzaro">Paolo Di Lazzaro</a><script data-card-contents-for-user="4078142" type="text/json">{"id":4078142,"first_name":"Paolo","last_name":"Di Lazzaro","domain_name":"enea","page_name":"PaoloDiLazzaro","display_name":"Paolo Di Lazzaro","profile_url":"https://enea.academia.edu/PaoloDiLazzaro?f_ri=20949","photo":"https://0.academia-photos.com/4078142/1877033/31450696/s65_paolo.di_lazzaro.jpg"}</script></span></span></li><li class="js-paper-rank-work_38088726 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="38088726"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 38088726, container: ".js-paper-rank-work_38088726", }); });</script></li><li class="js-percentile-work_38088726 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 38088726; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_38088726"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_38088726 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="38088726"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 38088726; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=38088726]").text(description); $(".js-view-count-work_38088726").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_38088726").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="38088726"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">13</a> </div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="1430" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_Spectroscopy">Laser Spectroscopy</a>, <script data-card-contents-for-ri="1430" type="text/json">{"id":1430,"name":"Laser Spectroscopy","url":"https://www.academia.edu/Documents/in/Laser_Spectroscopy?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="2415" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_Physics">Laser Physics</a>, <script data-card-contents-for-ri="2415" type="text/json">{"id":2415,"name":"Laser Physics","url":"https://www.academia.edu/Documents/in/Laser_Physics?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="4135" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser">Laser</a>, <script data-card-contents-for-ri="4135" type="text/json">{"id":4135,"name":"Laser","url":"https://www.academia.edu/Documents/in/Laser?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="4655" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser-Matter_interactions">Laser-Matter interactions</a><script data-card-contents-for-ri="4655" type="text/json">{"id":4655,"name":"Laser-Matter interactions","url":"https://www.academia.edu/Documents/in/Laser-Matter_interactions?f_ri=20949","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=38088726]'), work: {"id":38088726,"title":"SPIE Proceedings Volume 11042, XXII INTERNATIONAL SYMPOSIUM ON HIGH POWER LASER SYSTEMS AND APPLICATIONS | 9-12 October 2018. Editor: Paolo Di Lazzaro","created_at":"2019-01-04T10:52:42.937-08:00","url":"https://www.academia.edu/38088726/SPIE_Proceedings_Volume_11042_XXII_INTERNATIONAL_SYMPOSIUM_ON_HIGH_POWER_LASER_SYSTEMS_AND_APPLICATIONS_9_12_October_2018_Editor_Paolo_Di_Lazzaro?f_ri=20949","dom_id":"work_38088726","summary":"Front matter of the\nXXII INTERNATIONAL SYMPOSIUM ON HIGH POWER LASER SYSTEMS AND APPLICATIONS\n9-12 October 2018\nFrascati, Italy","downloadable_attachments":[{"id":58115929,"asset_id":38088726,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":4078142,"first_name":"Paolo","last_name":"Di Lazzaro","domain_name":"enea","page_name":"PaoloDiLazzaro","display_name":"Paolo Di Lazzaro","profile_url":"https://enea.academia.edu/PaoloDiLazzaro?f_ri=20949","photo":"https://0.academia-photos.com/4078142/1877033/31450696/s65_paolo.di_lazzaro.jpg"}],"research_interests":[{"id":1430,"name":"Laser Spectroscopy","url":"https://www.academia.edu/Documents/in/Laser_Spectroscopy?f_ri=20949","nofollow":true},{"id":2415,"name":"Laser Physics","url":"https://www.academia.edu/Documents/in/Laser_Physics?f_ri=20949","nofollow":true},{"id":4135,"name":"Laser","url":"https://www.academia.edu/Documents/in/Laser?f_ri=20949","nofollow":true},{"id":4655,"name":"Laser-Matter interactions","url":"https://www.academia.edu/Documents/in/Laser-Matter_interactions?f_ri=20949","nofollow":true},{"id":11367,"name":"Laser Materials Processings - Photonic devices - Nonlinear optics","url":"https://www.academia.edu/Documents/in/Laser_Materials_Processings_-_Photonic_devices_-_Nonlinear_optics?f_ri=20949"},{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949"},{"id":34046,"name":"Laser Material Processing","url":"https://www.academia.edu/Documents/in/Laser_Material_Processing?f_ri=20949"},{"id":70361,"name":"Conferences","url":"https://www.academia.edu/Documents/in/Conferences?f_ri=20949"},{"id":75396,"name":"Conferences and Seminars","url":"https://www.academia.edu/Documents/in/Conferences_and_Seminars?f_ri=20949"},{"id":80221,"name":"Lasers","url":"https://www.academia.edu/Documents/in/Lasers?f_ri=20949"},{"id":179931,"name":"Conference Proceedings","url":"https://www.academia.edu/Documents/in/Conference_Proceedings?f_ri=20949"},{"id":571121,"name":"Conferences \u0026 Publications","url":"https://www.academia.edu/Documents/in/Conferences_and_Publications?f_ri=20949"},{"id":591158,"name":"Laser Induced Breakdown Spectroscopy","url":"https://www.academia.edu/Documents/in/Laser_Induced_Breakdown_Spectroscopy?f_ri=20949"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_37480783" data-work_id="37480783" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/37480783/Draft_PROGRAM_of_the_XXII_International_Symposium_on_High_Power_Laser_Systems_and_Applications">Draft PROGRAM of the XXII International Symposium on High Power Laser Systems and Applications.</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest">Detailed program of the HPLS&A conference, <a href="http://www.hplsa2018.com" rel="nofollow">www.hplsa2018.com</a> <br />Proceedings will be published by SPIE</div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/37480783" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="21fc46d7270518ececb05ce417364bec" rel="nofollow" data-download="{"attachment_id":57451836,"asset_id":37480783,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/57451836/download_file?st=MTc0MDI1MjMxNiw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="4078142" href="https://enea.academia.edu/PaoloDiLazzaro">Paolo Di Lazzaro</a><script data-card-contents-for-user="4078142" type="text/json">{"id":4078142,"first_name":"Paolo","last_name":"Di Lazzaro","domain_name":"enea","page_name":"PaoloDiLazzaro","display_name":"Paolo Di Lazzaro","profile_url":"https://enea.academia.edu/PaoloDiLazzaro?f_ri=20949","photo":"https://0.academia-photos.com/4078142/1877033/31450696/s65_paolo.di_lazzaro.jpg"}</script></span></span></li><li class="js-paper-rank-work_37480783 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="37480783"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 37480783, container: ".js-paper-rank-work_37480783", }); });</script></li><li class="js-percentile-work_37480783 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 37480783; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_37480783"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_37480783 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="37480783"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 37480783; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=37480783]").text(description); $(".js-view-count-work_37480783").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_37480783").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="37480783"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">19</a> </div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="1430" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_Spectroscopy">Laser Spectroscopy</a>, <script data-card-contents-for-ri="1430" type="text/json">{"id":1430,"name":"Laser Spectroscopy","url":"https://www.academia.edu/Documents/in/Laser_Spectroscopy?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="2415" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_Physics">Laser Physics</a>, <script data-card-contents-for-ri="2415" type="text/json">{"id":2415,"name":"Laser Physics","url":"https://www.academia.edu/Documents/in/Laser_Physics?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="2416" rel="nofollow" href="https://www.academia.edu/Documents/in/Free_Electron_Lasers">Free Electron Lasers</a>, <script data-card-contents-for-ri="2416" type="text/json">{"id":2416,"name":"Free Electron Lasers","url":"https://www.academia.edu/Documents/in/Free_Electron_Lasers?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="4135" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser">Laser</a><script data-card-contents-for-ri="4135" type="text/json">{"id":4135,"name":"Laser","url":"https://www.academia.edu/Documents/in/Laser?f_ri=20949","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=37480783]'), work: {"id":37480783,"title":"Draft PROGRAM of the XXII International Symposium on High Power Laser Systems and Applications.","created_at":"2018-09-26T01:04:12.073-07:00","url":"https://www.academia.edu/37480783/Draft_PROGRAM_of_the_XXII_International_Symposium_on_High_Power_Laser_Systems_and_Applications?f_ri=20949","dom_id":"work_37480783","summary":"Detailed program of the HPLS\u0026A conference, www.hplsa2018.com \nProceedings will be published by SPIE","downloadable_attachments":[{"id":57451836,"asset_id":37480783,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":4078142,"first_name":"Paolo","last_name":"Di Lazzaro","domain_name":"enea","page_name":"PaoloDiLazzaro","display_name":"Paolo Di Lazzaro","profile_url":"https://enea.academia.edu/PaoloDiLazzaro?f_ri=20949","photo":"https://0.academia-photos.com/4078142/1877033/31450696/s65_paolo.di_lazzaro.jpg"}],"research_interests":[{"id":1430,"name":"Laser Spectroscopy","url":"https://www.academia.edu/Documents/in/Laser_Spectroscopy?f_ri=20949","nofollow":true},{"id":2415,"name":"Laser Physics","url":"https://www.academia.edu/Documents/in/Laser_Physics?f_ri=20949","nofollow":true},{"id":2416,"name":"Free Electron Lasers","url":"https://www.academia.edu/Documents/in/Free_Electron_Lasers?f_ri=20949","nofollow":true},{"id":4135,"name":"Laser","url":"https://www.academia.edu/Documents/in/Laser?f_ri=20949","nofollow":true},{"id":4655,"name":"Laser-Matter interactions","url":"https://www.academia.edu/Documents/in/Laser-Matter_interactions?f_ri=20949"},{"id":11367,"name":"Laser Materials Processings - Photonic devices - Nonlinear optics","url":"https://www.academia.edu/Documents/in/Laser_Materials_Processings_-_Photonic_devices_-_Nonlinear_optics?f_ri=20949"},{"id":15600,"name":"Femtosecond Laser","url":"https://www.academia.edu/Documents/in/Femtosecond_Laser?f_ri=20949"},{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949"},{"id":34046,"name":"Laser Material Processing","url":"https://www.academia.edu/Documents/in/Laser_Material_Processing?f_ri=20949"},{"id":47865,"name":"Laser Welding","url":"https://www.academia.edu/Documents/in/Laser_Welding?f_ri=20949"},{"id":70361,"name":"Conferences","url":"https://www.academia.edu/Documents/in/Conferences?f_ri=20949"},{"id":71790,"name":"Laser Application in Conservation of Artworks","url":"https://www.academia.edu/Documents/in/Laser_Application_in_Conservation_of_Artworks?f_ri=20949"},{"id":80221,"name":"Lasers","url":"https://www.academia.edu/Documents/in/Lasers?f_ri=20949"},{"id":99750,"name":"Lasers and their applications in Photochemistry and photobiology","url":"https://www.academia.edu/Documents/in/Lasers_and_their_applications_in_Photochemistry_and_photobiology?f_ri=20949"},{"id":120856,"name":"Semiconductor Lasers","url":"https://www.academia.edu/Documents/in/Semiconductor_Lasers?f_ri=20949"},{"id":149213,"name":"Conference","url":"https://www.academia.edu/Documents/in/Conference?f_ri=20949"},{"id":159153,"name":"Laser Ablation","url":"https://www.academia.edu/Documents/in/Laser_Ablation?f_ri=20949"},{"id":255630,"name":"Laser Science and Applications","url":"https://www.academia.edu/Documents/in/Laser_Science_and_Applications?f_ri=20949"},{"id":591158,"name":"Laser Induced Breakdown Spectroscopy","url":"https://www.academia.edu/Documents/in/Laser_Induced_Breakdown_Spectroscopy?f_ri=20949"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_5412794 coauthored" data-work_id="5412794" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/5412794/Applications_des_plasmas_produits_par_le_laser_%C3%A0_excim%C3%A8res_HERCULES_L_du_recuit_du_silicium_%C3%A0_la_lithographie_par_rayons_X">Applications des plasmas produits par le laser à excimères HERCULES-L: du recuit du silicium à la lithographie par rayons X</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Un laser à excimères de grand volume, HERCULES-L, a été développé dans le cadre d’un programme européen pour des applications industrielles concernant le traitement de surface du silicium et la génération de plasmas par laser. Les... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_5412794" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Un laser à excimères de grand volume, HERCULES-L, a été développé dans le cadre d’un programme européen pour des applications industrielles concernant le traitement de surface du silicium et la génération de plasmas par laser. Les performances de ce laser sont particulièrement adaptées pour le traitement de grandes surfaces et pour la création de photons EUV (~ 100 eV) par plasma assisté par laser.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/5412794" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="1a7c33a661e285c6b44165acc45cefaf" rel="nofollow" data-download="{"attachment_id":32545512,"asset_id":5412794,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/32545512/download_file?st=MTc0MDI1MjMxNiw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="4078142" href="https://enea.academia.edu/PaoloDiLazzaro">Paolo Di Lazzaro</a><script data-card-contents-for-user="4078142" type="text/json">{"id":4078142,"first_name":"Paolo","last_name":"Di Lazzaro","domain_name":"enea","page_name":"PaoloDiLazzaro","display_name":"Paolo Di Lazzaro","profile_url":"https://enea.academia.edu/PaoloDiLazzaro?f_ri=20949","photo":"https://0.academia-photos.com/4078142/1877033/31450696/s65_paolo.di_lazzaro.jpg"}</script></span></span><span class="u-displayInlineBlock InlineList-item-text"> and <span class="u-textDecorationUnderline u-clickable InlineList-item-text js-work-more-authors-5412794">+1</span><div class="hidden js-additional-users-5412794"><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://enea.academia.edu/DanieleMurra">Daniele Murra</a></span></div></div></span><script>(function(){ var popoverSettings = { el: $('.js-work-more-authors-5412794'), placement: 'bottom', hide_delay: 200, html: true, content: function(){ return $('.js-additional-users-5412794').html(); } } new HoverPopover(popoverSettings); })();</script></li><li class="js-paper-rank-work_5412794 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="5412794"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 5412794, container: ".js-paper-rank-work_5412794", }); });</script></li><li class="js-percentile-work_5412794 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 5412794; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_5412794"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_5412794 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="5412794"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 5412794; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=5412794]").text(description); $(".js-view-count-work_5412794").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_5412794").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="5412794"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">5</a> </div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="20949" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_Plasma_Interactions">Laser Plasma Interactions</a>, <script data-card-contents-for-ri="20949" type="text/json">{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="99750" rel="nofollow" href="https://www.academia.edu/Documents/in/Lasers_and_their_applications_in_Photochemistry_and_photobiology">Lasers and their applications in Photochemistry and photobiology</a>, <script data-card-contents-for-ri="99750" type="text/json">{"id":99750,"name":"Lasers and their applications in Photochemistry and photobiology","url":"https://www.academia.edu/Documents/in/Lasers_and_their_applications_in_Photochemistry_and_photobiology?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="302316" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_and_Its_Applications">Laser and Its Applications</a>, <script data-card-contents-for-ri="302316" type="text/json">{"id":302316,"name":"Laser and Its Applications","url":"https://www.academia.edu/Documents/in/Laser_and_Its_Applications?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="431281" rel="nofollow" href="https://www.academia.edu/Documents/in/Material_Science_and_Laser_Applications">Material Science & Laser Applications</a><script data-card-contents-for-ri="431281" type="text/json">{"id":431281,"name":"Material Science \u0026 Laser Applications","url":"https://www.academia.edu/Documents/in/Material_Science_and_Laser_Applications?f_ri=20949","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=5412794]'), work: {"id":5412794,"title":"Applications des plasmas produits par le laser à excimères HERCULES-L: du recuit du silicium à la lithographie par rayons X","created_at":"2013-12-13T00:52:37.076-08:00","url":"https://www.academia.edu/5412794/Applications_des_plasmas_produits_par_le_laser_%C3%A0_excim%C3%A8res_HERCULES_L_du_recuit_du_silicium_%C3%A0_la_lithographie_par_rayons_X?f_ri=20949","dom_id":"work_5412794","summary":"Un laser à excimères de grand volume, HERCULES-L, a été développé dans le cadre d’un programme européen pour des applications industrielles concernant le traitement de surface du silicium et la génération de plasmas par laser. Les performances de ce laser sont particulièrement adaptées pour le traitement de grandes surfaces et pour la création de photons EUV (~ 100 eV) par plasma assisté par laser.","downloadable_attachments":[{"id":32545512,"asset_id":5412794,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":4078142,"first_name":"Paolo","last_name":"Di Lazzaro","domain_name":"enea","page_name":"PaoloDiLazzaro","display_name":"Paolo Di Lazzaro","profile_url":"https://enea.academia.edu/PaoloDiLazzaro?f_ri=20949","photo":"https://0.academia-photos.com/4078142/1877033/31450696/s65_paolo.di_lazzaro.jpg"},{"id":37616270,"first_name":"Daniele","last_name":"Murra","domain_name":"enea","page_name":"DanieleMurra","display_name":"Daniele Murra","profile_url":"https://enea.academia.edu/DanieleMurra?f_ri=20949","photo":"https://0.academia-photos.com/37616270/10661705/11902300/s65_daniele.murra.jpg"}],"research_interests":[{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true},{"id":99750,"name":"Lasers and their applications in Photochemistry and photobiology","url":"https://www.academia.edu/Documents/in/Lasers_and_their_applications_in_Photochemistry_and_photobiology?f_ri=20949","nofollow":true},{"id":302316,"name":"Laser and Its Applications","url":"https://www.academia.edu/Documents/in/Laser_and_Its_Applications?f_ri=20949","nofollow":true},{"id":431281,"name":"Material Science \u0026 Laser Applications","url":"https://www.academia.edu/Documents/in/Material_Science_and_Laser_Applications?f_ri=20949","nofollow":true},{"id":838674,"name":"Excimer Laser","url":"https://www.academia.edu/Documents/in/Excimer_Laser?f_ri=20949"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_1706326" data-work_id="1706326" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/1706326/Propagation_Effects_on_THz_Generation_from_Ionizing_Two_Color_Laser_Pulses">Propagation Effects on THz Generation from Ionizing Two Color Laser Pulses</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Coherent mixing of an ultrashort laser pulse and its second harmonic in a gas cell produces THz radiation due to the nonlinear dependence of the ionization rate on field strength [1]. As this is a coherent process, propagation effects,... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_1706326" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Coherent mixing of an ultrashort laser pulse and its second harmonic in a gas cell produces THz radiation due to the nonlinear dependence of the ionization rate on field strength [1]. As this is a coherent process, propagation effects, including self-phase modulation, dispersion, and diffraction are important in determining the THz yield and are considered in this work. The laser pulses modeled have wavelengths of 800nm and 400nm, pulse widths of 50fs, and intensities of 10^14 W/cm^2.The laser pulse propagation is modeled using the split-step Fourier method [2] to solve a first order differential equation for the forward (+z direction) propagating spectral components. Further, we have used ADK ionization to describe the ionization of N_2. The ionization current evolution is determined by solving a microscopic model where the free electrons are driven by the laser fields. To date, a 1D code with transverse fields and currents has been demonstrated. Future work includes extending the model to include diffraction and refraction. <br /> <br />[1] K. Y. Kim, ``Generation of coherent terahertz radiation in ultrafast laser-gas interactions,'' Physics of Plasmas, vol. 16, 2009, p. 056706. <br />[2] M. Kolesik and J. Moloney, ``Nonlinear optical pulse propagation simulation: From Maxwell's to unidirectional equations,'' Physical Review E, vol. 70, Sep. 2004, p. 036604."</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/1706326" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="9fe381cebe11ddecf1936bf240e350bb" rel="nofollow" data-download="{"attachment_id":32369395,"asset_id":1706326,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/32369395/download_file?st=MTc0MDI1MjMxNiw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="433035" href="https://umd.academia.edu/LukeJohnson">Luke Johnson</a><script data-card-contents-for-user="433035" type="text/json">{"id":433035,"first_name":"Luke","last_name":"Johnson","domain_name":"umd","page_name":"LukeJohnson","display_name":"Luke Johnson","profile_url":"https://umd.academia.edu/LukeJohnson?f_ri=20949","photo":"https://0.academia-photos.com/433035/107172/427442/s65_luke.johnson.jpg"}</script></span></span></li><li class="js-paper-rank-work_1706326 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="1706326"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 1706326, container: ".js-paper-rank-work_1706326", }); });</script></li><li class="js-percentile-work_1706326 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 1706326; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_1706326"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_1706326 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="1706326"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 1706326; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=1706326]").text(description); $(".js-view-count-work_1706326").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_1706326").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="1706326"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">5</a> </div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="4317" rel="nofollow" href="https://www.academia.edu/Documents/in/Nonlinear_Optics">Nonlinear Optics</a>, <script data-card-contents-for-ri="4317" type="text/json">{"id":4317,"name":"Nonlinear Optics","url":"https://www.academia.edu/Documents/in/Nonlinear_Optics?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="15902" rel="nofollow" href="https://www.academia.edu/Documents/in/Photoionization">Photoionization</a>, <script data-card-contents-for-ri="15902" type="text/json">{"id":15902,"name":"Photoionization","url":"https://www.academia.edu/Documents/in/Photoionization?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="20949" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_Plasma_Interactions">Laser Plasma Interactions</a>, <script data-card-contents-for-ri="20949" type="text/json">{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="896188" rel="nofollow" href="https://www.academia.edu/Documents/in/Ultrashort_Lasers">Ultrashort Lasers</a><script data-card-contents-for-ri="896188" type="text/json">{"id":896188,"name":"Ultrashort Lasers","url":"https://www.academia.edu/Documents/in/Ultrashort_Lasers?f_ri=20949","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=1706326]'), work: {"id":1706326,"title":"Propagation Effects on THz Generation from Ionizing Two Color Laser Pulses","created_at":"2011-11-29T14:10:36.280-08:00","url":"https://www.academia.edu/1706326/Propagation_Effects_on_THz_Generation_from_Ionizing_Two_Color_Laser_Pulses?f_ri=20949","dom_id":"work_1706326","summary":"Coherent mixing of an ultrashort laser pulse and its second harmonic in a gas cell produces THz radiation due to the nonlinear dependence of the ionization rate on field strength [1]. As this is a coherent process, propagation effects, including self-phase modulation, dispersion, and diffraction are important in determining the THz yield and are considered in this work. The laser pulses modeled have wavelengths of 800nm and 400nm, pulse widths of 50fs, and intensities of 10^14 W/cm^2.The laser pulse propagation is modeled using the split-step Fourier method [2] to solve a first order differential equation for the forward (+z direction) propagating spectral components. Further, we have used ADK ionization to describe the ionization of N_2. The ionization current evolution is determined by solving a microscopic model where the free electrons are driven by the laser fields. To date, a 1D code with transverse fields and currents has been demonstrated. Future work includes extending the model to include diffraction and refraction.\r\n\r\n[1] K. Y. Kim, ``Generation of coherent terahertz radiation in ultrafast laser-gas interactions,'' Physics of Plasmas, vol. 16, 2009, p. 056706. \r\n[2] M. Kolesik and J. Moloney, ``Nonlinear optical pulse propagation simulation: From Maxwell's to unidirectional equations,'' Physical Review E, vol. 70, Sep. 2004, p. 036604.\"","downloadable_attachments":[{"id":32369395,"asset_id":1706326,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":433035,"first_name":"Luke","last_name":"Johnson","domain_name":"umd","page_name":"LukeJohnson","display_name":"Luke Johnson","profile_url":"https://umd.academia.edu/LukeJohnson?f_ri=20949","photo":"https://0.academia-photos.com/433035/107172/427442/s65_luke.johnson.jpg"}],"research_interests":[{"id":4317,"name":"Nonlinear Optics","url":"https://www.academia.edu/Documents/in/Nonlinear_Optics?f_ri=20949","nofollow":true},{"id":15902,"name":"Photoionization","url":"https://www.academia.edu/Documents/in/Photoionization?f_ri=20949","nofollow":true},{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true},{"id":896188,"name":"Ultrashort Lasers","url":"https://www.academia.edu/Documents/in/Ultrashort_Lasers?f_ri=20949","nofollow":true},{"id":1194010,"name":"THz Generation","url":"https://www.academia.edu/Documents/in/THz_Generation?f_ri=20949"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_73791395" data-work_id="73791395" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/73791395/The_first_Italian_micro_exposure_tool_for_EUV_lithography_design_guidelines_and_experimental_results">The first Italian micro exposure tool for EUV lithography: design guidelines and experimental results</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">The first Italian Micro Exposure Tool (MET) for EUV lithography has been developed at the ENEA Research Laboratories in Frascati. This tool (named MET-EGERIA) is based on a laser-plasma EUV source (named EGERIA), a couple of twin... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_73791395" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">The first Italian Micro Exposure Tool (MET) for EUV lithography has been developed at the ENEA Research Laboratories in Frascati. This tool (named MET-EGERIA) is based on a laser-plasma EUV source (named EGERIA), a couple of twin grazing-incidence collectors and a nonconventional Schwarzschild optics. In spite of the very low cost of the Schwarzschild optics, the specific design of the low vibration board and the innovative alignment technique (a modified Foucault technique) applied to the Schwarzschild optics allowed the achievement of a resolution better than 100 nm on a wafer coated with a PMMA photoresist. The MET-EGERIA is also suitable for the coloration of lithium fluoride to be used in photonics, and is also a promising tool for nanobiotechnological research.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/73791395" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="059a75051913b2695e1d42e33f766665" rel="nofollow" data-download="{"attachment_id":82175598,"asset_id":73791395,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/82175598/download_file?st=MTc0MDI1MjMxNiw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="123202302" href="https://independent.academia.edu/LucaMezi">Luca Mezi</a><script data-card-contents-for-user="123202302" type="text/json">{"id":123202302,"first_name":"Luca","last_name":"Mezi","domain_name":"independent","page_name":"LucaMezi","display_name":"Luca Mezi","profile_url":"https://independent.academia.edu/LucaMezi?f_ri=20949","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_73791395 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="73791395"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 73791395, container: ".js-paper-rank-work_73791395", }); });</script></li><li class="js-percentile-work_73791395 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73791395; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_73791395"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_73791395 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="73791395"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73791395; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73791395]").text(description); $(".js-view-count-work_73791395").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_73791395").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="73791395"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">11</a> </div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="48" rel="nofollow" href="https://www.academia.edu/Documents/in/Engineering">Engineering</a>, <script data-card-contents-for-ri="48" type="text/json">{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="20949" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_Plasma_Interactions">Laser Plasma Interactions</a>, <script data-card-contents-for-ri="20949" type="text/json">{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="41877" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_produced_plasma">Laser produced plasma</a>, <script data-card-contents-for-ri="41877" type="text/json">{"id":41877,"name":"Laser produced plasma","url":"https://www.academia.edu/Documents/in/Laser_produced_plasma?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="123286" rel="nofollow" href="https://www.academia.edu/Documents/in/EUV_Optics">EUV Optics</a><script data-card-contents-for-ri="123286" type="text/json">{"id":123286,"name":"EUV Optics","url":"https://www.academia.edu/Documents/in/EUV_Optics?f_ri=20949","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=73791395]'), work: {"id":73791395,"title":"The first Italian micro exposure tool for EUV lithography: design guidelines and experimental results","created_at":"2022-03-14T23:36:34.605-07:00","url":"https://www.academia.edu/73791395/The_first_Italian_micro_exposure_tool_for_EUV_lithography_design_guidelines_and_experimental_results?f_ri=20949","dom_id":"work_73791395","summary":"The first Italian Micro Exposure Tool (MET) for EUV lithography has been developed at the ENEA Research Laboratories in Frascati. This tool (named MET-EGERIA) is based on a laser-plasma EUV source (named EGERIA), a couple of twin grazing-incidence collectors and a nonconventional Schwarzschild optics. In spite of the very low cost of the Schwarzschild optics, the specific design of the low vibration board and the innovative alignment technique (a modified Foucault technique) applied to the Schwarzschild optics allowed the achievement of a resolution better than 100 nm on a wafer coated with a PMMA photoresist. The MET-EGERIA is also suitable for the coloration of lithium fluoride to be used in photonics, and is also a promising tool for nanobiotechnological research.","downloadable_attachments":[{"id":82175598,"asset_id":73791395,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":123202302,"first_name":"Luca","last_name":"Mezi","domain_name":"independent","page_name":"LucaMezi","display_name":"Luca Mezi","profile_url":"https://independent.academia.edu/LucaMezi?f_ri=20949","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering?f_ri=20949","nofollow":true},{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true},{"id":41877,"name":"Laser produced plasma","url":"https://www.academia.edu/Documents/in/Laser_produced_plasma?f_ri=20949","nofollow":true},{"id":123286,"name":"EUV Optics","url":"https://www.academia.edu/Documents/in/EUV_Optics?f_ri=20949","nofollow":true},{"id":343506,"name":"EUV","url":"https://www.academia.edu/Documents/in/EUV?f_ri=20949"},{"id":459797,"name":"Schwarzschild","url":"https://www.academia.edu/Documents/in/Schwarzschild?f_ri=20949"},{"id":604200,"name":"Spatial resolution","url":"https://www.academia.edu/Documents/in/Spatial_resolution?f_ri=20949"},{"id":729676,"name":"Study of Laser Produced Plasma","url":"https://www.academia.edu/Documents/in/Study_of_Laser_Produced_Plasma?f_ri=20949"},{"id":856110,"name":"Optical Lithography","url":"https://www.academia.edu/Documents/in/Optical_Lithography?f_ri=20949"},{"id":907776,"name":"EUV Lithography","url":"https://www.academia.edu/Documents/in/EUV_Lithography?f_ri=20949"},{"id":908523,"name":"Schwarzschild Objective","url":"https://www.academia.edu/Documents/in/Schwarzschild_Objective?f_ri=20949"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_43322364" data-work_id="43322364" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" rel="nofollow" href="https://www.academia.edu/43322364/Laser_Plasma_Accelerator">Laser Plasma Accelerator</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">The work will offer unique capabilities for a variety of new applications in photonuclear reactions, light-matter interactions, and as gamma-ray colliders. [14] The interaction of high-power laser light sources with matter has given rise... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_43322364" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">The work will offer unique capabilities for a variety of new applications in photonuclear reactions, light-matter interactions, and as gamma-ray colliders. [14] The interaction of high-power laser light sources with matter has given rise to numerous applications including; fast ion acceleration; intense X-ray, gamma-ray, positron and neutron generation; and fast-ignition-based laser fusion. [13]</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/43322364" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="07cf0c5141dbb51268cc8642a6102d76" rel="nofollow" data-download="{"attachment_id":63604758,"asset_id":43322364,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/63604758/download_file?st=MTc0MDI1MjMxNiw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="4716086" rel="nofollow" href="https://independent.academia.edu/GeorgeRajna">George Rajna</a><script data-card-contents-for-user="4716086" type="text/json">{"id":4716086,"first_name":"George","last_name":"Rajna","domain_name":"independent","page_name":"GeorgeRajna","display_name":"George Rajna","profile_url":"https://independent.academia.edu/GeorgeRajna?f_ri=20949","photo":"https://0.academia-photos.com/4716086/1992312/2351930/s65_george.rajna.jpg"}</script></span></span></li><li class="js-paper-rank-work_43322364 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="43322364"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 43322364, container: ".js-paper-rank-work_43322364", }); });</script></li><li class="js-percentile-work_43322364 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 43322364; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_43322364"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_43322364 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="43322364"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 43322364; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=43322364]").text(description); $(".js-view-count-work_43322364").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_43322364").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="43322364"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i></div><span class="InlineList-item-text u-textTruncate u-pl6x"><a class="InlineList-item-text" data-has-card-for-ri="20949" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_Plasma_Interactions">Laser Plasma Interactions</a><script data-card-contents-for-ri="20949" type="text/json">{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true}</script></span></li><script>(function(){ if (false) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=43322364]'), work: {"id":43322364,"title":"Laser Plasma Accelerator","created_at":"2020-06-12T00:13:52.462-07:00","url":"https://www.academia.edu/43322364/Laser_Plasma_Accelerator?f_ri=20949","dom_id":"work_43322364","summary":"The work will offer unique capabilities for a variety of new applications in photonuclear reactions, light-matter interactions, and as gamma-ray colliders. [14] The interaction of high-power laser light sources with matter has given rise to numerous applications including; fast ion acceleration; intense X-ray, gamma-ray, positron and neutron generation; and fast-ignition-based laser fusion. [13]","downloadable_attachments":[{"id":63604758,"asset_id":43322364,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":4716086,"first_name":"George","last_name":"Rajna","domain_name":"independent","page_name":"GeorgeRajna","display_name":"George Rajna","profile_url":"https://independent.academia.edu/GeorgeRajna?f_ri=20949","photo":"https://0.academia-photos.com/4716086/1992312/2351930/s65_george.rajna.jpg"}],"research_interests":[{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_42130675" data-work_id="42130675" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" rel="nofollow" href="https://www.academia.edu/42130675/Formation_of_electron_holes_in_the_long_time_evolution_of_the_bump_on_tail_instability">Formation of electron holes in the long-time evolution of the bump-on-tail instability</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">An Eulerian Vlasov code is applied for the numerical solution of the one-dimensional Vlasov-Poisson system of equations for electrons, and with ions forming an immobile background. We study the non-linear evolution of the bump-on-tail... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_42130675" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">An Eulerian Vlasov code is applied for the numerical solution of the one-dimensional Vlasov-Poisson system of equations for electrons, and with ions forming an immobile background. We study the non-linear evolution of the bump-on-tail instability in the case when the system length L is greater than the wavelength λ of the unstable mode, with a beam density of 10% of the total density, n b = 0.1. We follow the growth and the saturation of an initially unstable wave perturbation, and the formation of a traveling Bernstein-Greene-Kruskal (BGK) mode, which evolves out of the instability. This first stage is followed by sidebands growing from round-off errors which develop and disrupt the BGK equilibrium. In the excited spectrum, mode coupling is mediated by the oscillating resonant particles and results in the electric energy of the system flowing to the longest wavelengths (inverse cascade), and reaching in the asymptotic state a steady state with constant amplitude oscillation modulated by the persistent oscillation of the trapped particles. Coherent phase-space electron holes are formed, which are localized phase-space regions of reduced density on trapped electron orbits, where the electron density is lower than the surrounding plasma electron density. The distribution function evolves to a shape with stationary inflection points of zero slope, at the phase velocities of the excited waves. The longest wavelengths show oscillations at frequencies below the plasma frequency, with phase velocities higher than that of the injected beam, which can accelerate electrons to energies in excess of the initial beam energy. The present work makes a connection between the formation of electron holes, the existence of inflection points of zero slopes in the electron distribution function at the phase velocities of the dominant waves, and at frequencies below the plasma frequency. A fine resolution grid is used in the Eulerian Vlasov code in the phase space and time to allow an accurate calculation of the time history of the system and of the dynamic and oscillation of the trapped particles in the low-density regions of the phase space, and of those particles at the separatrix regions of the vortex structures which evolve periodically between trapping and untrapping states and which can only be accurately studied using a fine-resolution phase-space grid.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/42130675" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="3ff87f4ab2fb41d8b6da631e19ce269e" rel="nofollow" data-download="{"attachment_id":62265719,"asset_id":42130675,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/62265719/download_file?st=MTc0MDI1MjMxNiw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="148188507" rel="nofollow" href="https://independent.academia.edu/MagdiShoucri">Magdi Shoucri</a><script data-card-contents-for-user="148188507" type="text/json">{"id":148188507,"first_name":"Magdi","last_name":"Shoucri","domain_name":"independent","page_name":"MagdiShoucri","display_name":"Magdi Shoucri","profile_url":"https://independent.academia.edu/MagdiShoucri?f_ri=20949","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_42130675 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="42130675"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 42130675, container: ".js-paper-rank-work_42130675", }); });</script></li><li class="js-percentile-work_42130675 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 42130675; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_42130675"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_42130675 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="42130675"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 42130675; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=42130675]").text(description); $(".js-view-count-work_42130675").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_42130675").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="42130675"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">6</a> </div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="517" rel="nofollow" href="https://www.academia.edu/Documents/in/Plasma_Physics">Plasma Physics</a>, <script data-card-contents-for-ri="517" type="text/json">{"id":517,"name":"Plasma Physics","url":"https://www.academia.edu/Documents/in/Plasma_Physics?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="20949" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_Plasma_Interactions">Laser Plasma Interactions</a>, <script data-card-contents-for-ri="20949" type="text/json">{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="64244" rel="nofollow" href="https://www.academia.edu/Documents/in/Computational_Plasma_Physics">Computational Plasma Physics</a>, <script data-card-contents-for-ri="64244" type="text/json">{"id":64244,"name":"Computational Plasma Physics","url":"https://www.academia.edu/Documents/in/Computational_Plasma_Physics?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="348422" rel="nofollow" href="https://www.academia.edu/Documents/in/Plasma_Physics_Electromagnetism_Physics_of_Fluids">Plasma Physics, Electromagnetism, Physics of Fluids</a><script data-card-contents-for-ri="348422" type="text/json">{"id":348422,"name":"Plasma Physics, Electromagnetism, Physics of Fluids","url":"https://www.academia.edu/Documents/in/Plasma_Physics_Electromagnetism_Physics_of_Fluids?f_ri=20949","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=42130675]'), work: {"id":42130675,"title":"Formation of electron holes in the long-time evolution of the bump-on-tail instability","created_at":"2020-03-03T16:18:25.443-08:00","url":"https://www.academia.edu/42130675/Formation_of_electron_holes_in_the_long_time_evolution_of_the_bump_on_tail_instability?f_ri=20949","dom_id":"work_42130675","summary":"An Eulerian Vlasov code is applied for the numerical solution of the one-dimensional Vlasov-Poisson system of equations for electrons, and with ions forming an immobile background. We study the non-linear evolution of the bump-on-tail instability in the case when the system length L is greater than the wavelength λ of the unstable mode, with a beam density of 10% of the total density, n b = 0.1. We follow the growth and the saturation of an initially unstable wave perturbation, and the formation of a traveling Bernstein-Greene-Kruskal (BGK) mode, which evolves out of the instability. This first stage is followed by sidebands growing from round-off errors which develop and disrupt the BGK equilibrium. In the excited spectrum, mode coupling is mediated by the oscillating resonant particles and results in the electric energy of the system flowing to the longest wavelengths (inverse cascade), and reaching in the asymptotic state a steady state with constant amplitude oscillation modulated by the persistent oscillation of the trapped particles. Coherent phase-space electron holes are formed, which are localized phase-space regions of reduced density on trapped electron orbits, where the electron density is lower than the surrounding plasma electron density. The distribution function evolves to a shape with stationary inflection points of zero slope, at the phase velocities of the excited waves. The longest wavelengths show oscillations at frequencies below the plasma frequency, with phase velocities higher than that of the injected beam, which can accelerate electrons to energies in excess of the initial beam energy. The present work makes a connection between the formation of electron holes, the existence of inflection points of zero slopes in the electron distribution function at the phase velocities of the dominant waves, and at frequencies below the plasma frequency. A fine resolution grid is used in the Eulerian Vlasov code in the phase space and time to allow an accurate calculation of the time history of the system and of the dynamic and oscillation of the trapped particles in the low-density regions of the phase space, and of those particles at the separatrix regions of the vortex structures which evolve periodically between trapping and untrapping states and which can only be accurately studied using a fine-resolution phase-space grid.","downloadable_attachments":[{"id":62265719,"asset_id":42130675,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":148188507,"first_name":"Magdi","last_name":"Shoucri","domain_name":"independent","page_name":"MagdiShoucri","display_name":"Magdi Shoucri","profile_url":"https://independent.academia.edu/MagdiShoucri?f_ri=20949","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":517,"name":"Plasma Physics","url":"https://www.academia.edu/Documents/in/Plasma_Physics?f_ri=20949","nofollow":true},{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true},{"id":64244,"name":"Computational Plasma Physics","url":"https://www.academia.edu/Documents/in/Computational_Plasma_Physics?f_ri=20949","nofollow":true},{"id":348422,"name":"Plasma Physics, Electromagnetism, Physics of Fluids","url":"https://www.academia.edu/Documents/in/Plasma_Physics_Electromagnetism_Physics_of_Fluids?f_ri=20949","nofollow":true},{"id":589934,"name":"Theoretical plasma physics","url":"https://www.academia.edu/Documents/in/Theoretical_plasma_physics?f_ri=20949"},{"id":830063,"name":"Plasma Physics and Controlled Fusion","url":"https://www.academia.edu/Documents/in/Plasma_Physics_and_Controlled_Fusion?f_ri=20949"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_40654933 coauthored" data-work_id="40654933" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/40654933/ANALYSIS_OF_THE_MAIN_MECHANISMS_AND_REGULARITIES_OF_THE_SYNERGISTIC_EFFECT_IN_HYBRID_LASER_ARC_PROCESSES">ANALYSIS OF THE MAIN MECHANISMS AND REGULARITIES OF THE SYNERGISTIC EFFECT IN HYBRID LASER-ARC PROCESSES</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">The article is devoted to the analysis of the main mechanisms and regularities of the synergetic effect that occurs when combining laser and arc energy sources in a hybrid processing (welding). It is shown that this effect is expressed in... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_40654933" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">The article is devoted to the analysis of the main mechanisms and regularities of the synergetic effect that occurs when combining laser and arc energy sources in a hybrid processing (welding). It is shown that this effect is expressed in the violation of the additivity of the thermal effect of these two sources on the processed (welded) metal, so that the energy used to melt the metal in the hybrid process can be more than twice the amount of the corresponding energies in the processing (welding) of each individual heat source.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/40654933" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="e2a97411d6d0e2f99dcee1aadad564bb" rel="nofollow" data-download="{"attachment_id":60937798,"asset_id":40654933,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/60937798/download_file?st=MTc0MDI1MjMxNiw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="25713392" href="https://independent.academia.edu/VladKhaskin">Vlad Khaskin</a><script data-card-contents-for-user="25713392" type="text/json">{"id":25713392,"first_name":"Vlad","last_name":"Khaskin","domain_name":"independent","page_name":"VladKhaskin","display_name":"Vlad Khaskin","profile_url":"https://independent.academia.edu/VladKhaskin?f_ri=20949","photo":"https://0.academia-photos.com/25713392/14009709/15043444/s65_vlad.khaskin.jpg"}</script></span></span><span class="u-displayInlineBlock InlineList-item-text"> and <span class="u-textDecorationUnderline u-clickable InlineList-item-text js-work-more-authors-40654933">+1</span><div class="hidden js-additional-users-40654933"><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://independent.academia.edu/IllyashenkoEvgenyi">Illyashenko Evgenyi</a></span></div></div></span><script>(function(){ var popoverSettings = { el: $('.js-work-more-authors-40654933'), placement: 'bottom', hide_delay: 200, html: true, content: function(){ return $('.js-additional-users-40654933').html(); } } new HoverPopover(popoverSettings); })();</script></li><li class="js-paper-rank-work_40654933 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="40654933"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 40654933, container: ".js-paper-rank-work_40654933", }); });</script></li><li class="js-percentile-work_40654933 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 40654933; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_40654933"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_40654933 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="40654933"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 40654933; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=40654933]").text(description); $(".js-view-count-work_40654933").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_40654933").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="40654933"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">4</a> </div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="4222" rel="nofollow" href="https://www.academia.edu/Documents/in/Hybrid_Systems">Hybrid Systems</a>, <script data-card-contents-for-ri="4222" type="text/json">{"id":4222,"name":"Hybrid Systems","url":"https://www.academia.edu/Documents/in/Hybrid_Systems?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="20949" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_Plasma_Interactions">Laser Plasma Interactions</a>, <script data-card-contents-for-ri="20949" type="text/json">{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="113870" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_beam_shaping">Laser beam shaping</a>, <script data-card-contents-for-ri="113870" type="text/json">{"id":113870,"name":"Laser beam shaping","url":"https://www.academia.edu/Documents/in/Laser_beam_shaping?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="116856" rel="nofollow" href="https://www.academia.edu/Documents/in/Welding_Metallurgy">Welding Metallurgy</a><script data-card-contents-for-ri="116856" type="text/json">{"id":116856,"name":"Welding Metallurgy","url":"https://www.academia.edu/Documents/in/Welding_Metallurgy?f_ri=20949","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=40654933]'), work: {"id":40654933,"title":"ANALYSIS OF THE MAIN MECHANISMS AND REGULARITIES OF THE SYNERGISTIC EFFECT IN HYBRID LASER-ARC PROCESSES","created_at":"2019-10-17T18:29:26.048-07:00","url":"https://www.academia.edu/40654933/ANALYSIS_OF_THE_MAIN_MECHANISMS_AND_REGULARITIES_OF_THE_SYNERGISTIC_EFFECT_IN_HYBRID_LASER_ARC_PROCESSES?f_ri=20949","dom_id":"work_40654933","summary":"The article is devoted to the analysis of the main mechanisms and regularities of the synergetic effect that occurs when combining laser and arc energy sources in a hybrid processing (welding). It is shown that this effect is expressed in the violation of the additivity of the thermal effect of these two sources on the processed (welded) metal, so that the energy used to melt the metal in the hybrid process can be more than twice the amount of the corresponding energies in the processing (welding) of each individual heat source.","downloadable_attachments":[{"id":60937798,"asset_id":40654933,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":25713392,"first_name":"Vlad","last_name":"Khaskin","domain_name":"independent","page_name":"VladKhaskin","display_name":"Vlad Khaskin","profile_url":"https://independent.academia.edu/VladKhaskin?f_ri=20949","photo":"https://0.academia-photos.com/25713392/14009709/15043444/s65_vlad.khaskin.jpg"},{"id":133117510,"first_name":"Illyashenko","last_name":"Evgenyi","domain_name":"independent","page_name":"IllyashenkoEvgenyi","display_name":"Illyashenko Evgenyi","profile_url":"https://independent.academia.edu/IllyashenkoEvgenyi?f_ri=20949","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":4222,"name":"Hybrid Systems","url":"https://www.academia.edu/Documents/in/Hybrid_Systems?f_ri=20949","nofollow":true},{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true},{"id":113870,"name":"Laser beam shaping","url":"https://www.academia.edu/Documents/in/Laser_beam_shaping?f_ri=20949","nofollow":true},{"id":116856,"name":"Welding Metallurgy","url":"https://www.academia.edu/Documents/in/Welding_Metallurgy?f_ri=20949","nofollow":true}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_32757258" data-work_id="32757258" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/32757258/Laser_plasma_acceleration_with_a_negatively_chirped_pulse_all_optical_control_over_dark_current_in_the_blowout_regime">Laser plasma acceleration with a negatively chirped pulse: all-optical control over dark current in the blowout regime</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest">Please note that terms and conditions apply.</div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/32757258" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="d6a9fc3cd5bd53308824c23e400a51bd" rel="nofollow" data-download="{"attachment_id":52914496,"asset_id":32757258,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/52914496/download_file?st=MTc0MDI1MjMxNiw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="63727544" href="https://polytechnique.academia.edu/ArnaudBeck">Arnaud Beck</a><script data-card-contents-for-user="63727544" type="text/json">{"id":63727544,"first_name":"Arnaud","last_name":"Beck","domain_name":"polytechnique","page_name":"ArnaudBeck","display_name":"Arnaud Beck","profile_url":"https://polytechnique.academia.edu/ArnaudBeck?f_ri=20949","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_32757258 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="32757258"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 32757258, container: ".js-paper-rank-work_32757258", }); });</script></li><li class="js-percentile-work_32757258 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 32757258; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_32757258"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_32757258 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="32757258"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 32757258; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=32757258]").text(description); $(".js-view-count-work_32757258").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_32757258").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="32757258"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">5</a> </div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="16131" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_Wakefield_Acceleration">Laser Wakefield Acceleration</a>, <script data-card-contents-for-ri="16131" type="text/json">{"id":16131,"name":"Laser Wakefield Acceleration","url":"https://www.academia.edu/Documents/in/Laser_Wakefield_Acceleration?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="20949" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_Plasma_Interactions">Laser Plasma Interactions</a>, <script data-card-contents-for-ri="20949" type="text/json">{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="118582" rel="nofollow" href="https://www.academia.edu/Documents/in/Physical_sciences">Physical sciences</a>, <script data-card-contents-for-ri="118582" type="text/json">{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="477341" rel="nofollow" href="https://www.academia.edu/Documents/in/Relativistic_nonlinear_optics">Relativistic nonlinear optics</a><script data-card-contents-for-ri="477341" type="text/json">{"id":477341,"name":"Relativistic nonlinear optics","url":"https://www.academia.edu/Documents/in/Relativistic_nonlinear_optics?f_ri=20949","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=32757258]'), work: {"id":32757258,"title":"Laser plasma acceleration with a negatively chirped pulse: all-optical control over dark current in the blowout regime","created_at":"2017-05-01T15:35:27.713-07:00","url":"https://www.academia.edu/32757258/Laser_plasma_acceleration_with_a_negatively_chirped_pulse_all_optical_control_over_dark_current_in_the_blowout_regime?f_ri=20949","dom_id":"work_32757258","summary":"Please note that terms and conditions apply.","downloadable_attachments":[{"id":52914496,"asset_id":32757258,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":63727544,"first_name":"Arnaud","last_name":"Beck","domain_name":"polytechnique","page_name":"ArnaudBeck","display_name":"Arnaud Beck","profile_url":"https://polytechnique.academia.edu/ArnaudBeck?f_ri=20949","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":16131,"name":"Laser Wakefield Acceleration","url":"https://www.academia.edu/Documents/in/Laser_Wakefield_Acceleration?f_ri=20949","nofollow":true},{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences?f_ri=20949","nofollow":true},{"id":477341,"name":"Relativistic nonlinear optics","url":"https://www.academia.edu/Documents/in/Relativistic_nonlinear_optics?f_ri=20949","nofollow":true},{"id":701253,"name":"New Physics","url":"https://www.academia.edu/Documents/in/New_Physics?f_ri=20949"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_32757247" data-work_id="32757247" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/32757247/Computationally_efficient_methods_for_modelling_laser_wakefield_acceleration_in_the_blowout_regime">Computationally efficient methods for modelling laser wakefield acceleration in the blowout regime</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Electron self-injection and acceleration until dephasing in the blowout regime is studied for a set of initial conditions typical of recent experiments with 100 terawatt-class lasers. Two different approaches to computationally efficient,... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_32757247" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Electron self-injection and acceleration until dephasing in the blowout regime is studied for a set of initial conditions typical of recent experiments with 100 terawatt-class lasers. Two different approaches to computationally efficient, fully explicit, three-dimensional particle-in-cell modelling are examined. First, the Cartesian code vorpal (Nieter & Cary 2004) using a perfect-dispersion electromagnetic solver precisely describes the laser pulse and bubble dynamics, taking advantage of coarser resolution in the propagation direction, with a proportionally larger time step. Using third-order splines for macroparticles helps suppress the sampling noise while keeping the usage of computational resources modest. The second way to reduce the simulation load is using reduced-geometry codes. In our case, the quasi-cylindrical code calder-circ (Lifschitz et al. 2009) uses decomposition of fields and currents into a set of poloidal modes, while the macroparticles move in the Cartesian 3D space. Cylindrically symmetry of the interaction allow using just two modes, reducing the computational load to roughly that of a planar Cartesian simulation while preserving the 3D nature of the interaction. This significant economy of resources allows using fine resolution in the direction of propagation and a small time step, making numerical dispersion vanishingly small, together with a large number of particles per cell, enabling good particle statistics. Quantitative agreement of the two simulations indicates that they are free of numerical artefacts. Both approaches thus retrieve physically correct evolution of the plasma bubble, recovering the intrinsic connection of electron self-injection to the nonlinear optical evolution of the driver. †</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/32757247" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="379b0c2ec2369987e617b1a6dbcc3e2d" rel="nofollow" data-download="{"attachment_id":52914481,"asset_id":32757247,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/52914481/download_file?st=MTc0MDI1MjMxNiw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="63727544" href="https://polytechnique.academia.edu/ArnaudBeck">Arnaud Beck</a><script data-card-contents-for-user="63727544" type="text/json">{"id":63727544,"first_name":"Arnaud","last_name":"Beck","domain_name":"polytechnique","page_name":"ArnaudBeck","display_name":"Arnaud Beck","profile_url":"https://polytechnique.academia.edu/ArnaudBeck?f_ri=20949","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_32757247 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="32757247"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 32757247, container: ".js-paper-rank-work_32757247", }); });</script></li><li class="js-percentile-work_32757247 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 32757247; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_32757247"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_32757247 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="32757247"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 32757247; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=32757247]").text(description); $(".js-view-count-work_32757247").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_32757247").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="32757247"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">5</a> </div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="517" rel="nofollow" href="https://www.academia.edu/Documents/in/Plasma_Physics">Plasma Physics</a>, <script data-card-contents-for-ri="517" type="text/json">{"id":517,"name":"Plasma Physics","url":"https://www.academia.edu/Documents/in/Plasma_Physics?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="16131" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_Wakefield_Acceleration">Laser Wakefield Acceleration</a>, <script data-card-contents-for-ri="16131" type="text/json">{"id":16131,"name":"Laser Wakefield Acceleration","url":"https://www.academia.edu/Documents/in/Laser_Wakefield_Acceleration?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="20949" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_Plasma_Interactions">Laser Plasma Interactions</a>, <script data-card-contents-for-ri="20949" type="text/json">{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="477341" rel="nofollow" href="https://www.academia.edu/Documents/in/Relativistic_nonlinear_optics">Relativistic nonlinear optics</a><script data-card-contents-for-ri="477341" type="text/json">{"id":477341,"name":"Relativistic nonlinear optics","url":"https://www.academia.edu/Documents/in/Relativistic_nonlinear_optics?f_ri=20949","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=32757247]'), work: {"id":32757247,"title":"Computationally efficient methods for modelling laser wakefield acceleration in the blowout regime","created_at":"2017-05-01T15:35:26.437-07:00","url":"https://www.academia.edu/32757247/Computationally_efficient_methods_for_modelling_laser_wakefield_acceleration_in_the_blowout_regime?f_ri=20949","dom_id":"work_32757247","summary":"Electron self-injection and acceleration until dephasing in the blowout regime is studied for a set of initial conditions typical of recent experiments with 100 terawatt-class lasers. Two different approaches to computationally efficient, fully explicit, three-dimensional particle-in-cell modelling are examined. First, the Cartesian code vorpal (Nieter \u0026 Cary 2004) using a perfect-dispersion electromagnetic solver precisely describes the laser pulse and bubble dynamics, taking advantage of coarser resolution in the propagation direction, with a proportionally larger time step. Using third-order splines for macroparticles helps suppress the sampling noise while keeping the usage of computational resources modest. The second way to reduce the simulation load is using reduced-geometry codes. In our case, the quasi-cylindrical code calder-circ (Lifschitz et al. 2009) uses decomposition of fields and currents into a set of poloidal modes, while the macroparticles move in the Cartesian 3D space. Cylindrically symmetry of the interaction allow using just two modes, reducing the computational load to roughly that of a planar Cartesian simulation while preserving the 3D nature of the interaction. This significant economy of resources allows using fine resolution in the direction of propagation and a small time step, making numerical dispersion vanishingly small, together with a large number of particles per cell, enabling good particle statistics. Quantitative agreement of the two simulations indicates that they are free of numerical artefacts. Both approaches thus retrieve physically correct evolution of the plasma bubble, recovering the intrinsic connection of electron self-injection to the nonlinear optical evolution of the driver. †","downloadable_attachments":[{"id":52914481,"asset_id":32757247,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":63727544,"first_name":"Arnaud","last_name":"Beck","domain_name":"polytechnique","page_name":"ArnaudBeck","display_name":"Arnaud Beck","profile_url":"https://polytechnique.academia.edu/ArnaudBeck?f_ri=20949","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":517,"name":"Plasma Physics","url":"https://www.academia.edu/Documents/in/Plasma_Physics?f_ri=20949","nofollow":true},{"id":16131,"name":"Laser Wakefield Acceleration","url":"https://www.academia.edu/Documents/in/Laser_Wakefield_Acceleration?f_ri=20949","nofollow":true},{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true},{"id":477341,"name":"Relativistic nonlinear optics","url":"https://www.academia.edu/Documents/in/Relativistic_nonlinear_optics?f_ri=20949","nofollow":true},{"id":672468,"name":"Particle in Cell Simulation","url":"https://www.academia.edu/Documents/in/Particle_in_Cell_Simulation?f_ri=20949"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_10195573" data-work_id="10195573" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/10195573/Excimer_Laser_Driven_EUV_Plasma_Source_for_Single_Shot_Projection_Lithography">Excimer-Laser-Driven EUV Plasma Source for Single-Shot Projection Lithography</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">We present a low-cost microexposure tool for projection lithography at 14.4 nm we have designed and operated at the ENEA Research Centre, Frascati. It is a laboratory-scale system based on a Schwarzschild-type projection optics which uses... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_10195573" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">We present a low-cost microexposure tool for projection lithography at 14.4 nm we have designed and operated at the ENEA Research Centre, Frascati. It is a laboratory-scale system based on a Schwarzschild-type projection optics which uses a laser-plasma soft X-ray source, equipped with a patented debris mitigation system in order to preserve the collector optics. As a preliminary result, we achieved a 90-nm optical resolution patterning on commercial resist. A sharp improvement in resolution size is expected when operating this tool by a large-output energy excimer laser in order to obtain a single-shot patterning.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/10195573" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="4846157de25e6186d4887ea0fd8e2df3" rel="nofollow" data-download="{"attachment_id":47488466,"asset_id":10195573,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/47488466/download_file?st=MTc0MDI1MjMxNiw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="24916622" href="https://independent.academia.edu/amaliatorres">amalia torres</a><script data-card-contents-for-user="24916622" type="text/json">{"id":24916622,"first_name":"amalia","last_name":"torres","domain_name":"independent","page_name":"amaliatorres","display_name":"amalia torres","profile_url":"https://independent.academia.edu/amaliatorres?f_ri=20949","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_10195573 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="10195573"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 10195573, container: ".js-paper-rank-work_10195573", }); });</script></li><li class="js-percentile-work_10195573 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 10195573; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_10195573"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_10195573 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="10195573"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 10195573; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=10195573]").text(description); $(".js-view-count-work_10195573").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_10195573").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="10195573"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">15</a> </div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="516" rel="nofollow" href="https://www.academia.edu/Documents/in/Optics">Optics</a>, <script data-card-contents-for-ri="516" type="text/json">{"id":516,"name":"Optics","url":"https://www.academia.edu/Documents/in/Optics?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="20949" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_Plasma_Interactions">Laser Plasma Interactions</a>, <script data-card-contents-for-ri="20949" type="text/json">{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="41877" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_produced_plasma">Laser produced plasma</a>, <script data-card-contents-for-ri="41877" type="text/json">{"id":41877,"name":"Laser produced plasma","url":"https://www.academia.edu/Documents/in/Laser_produced_plasma?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="123286" rel="nofollow" href="https://www.academia.edu/Documents/in/EUV_Optics">EUV Optics</a><script data-card-contents-for-ri="123286" type="text/json">{"id":123286,"name":"EUV Optics","url":"https://www.academia.edu/Documents/in/EUV_Optics?f_ri=20949","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=10195573]'), work: {"id":10195573,"title":"Excimer-Laser-Driven EUV Plasma Source for Single-Shot Projection Lithography","created_at":"2015-01-16T09:59:52.918-08:00","url":"https://www.academia.edu/10195573/Excimer_Laser_Driven_EUV_Plasma_Source_for_Single_Shot_Projection_Lithography?f_ri=20949","dom_id":"work_10195573","summary":"We present a low-cost microexposure tool for projection lithography at 14.4 nm we have designed and operated at the ENEA Research Centre, Frascati. It is a laboratory-scale system based on a Schwarzschild-type projection optics which uses a laser-plasma soft X-ray source, equipped with a patented debris mitigation system in order to preserve the collector optics. As a preliminary result, we achieved a 90-nm optical resolution patterning on commercial resist. A sharp improvement in resolution size is expected when operating this tool by a large-output energy excimer laser in order to obtain a single-shot patterning.","downloadable_attachments":[{"id":47488466,"asset_id":10195573,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":24916622,"first_name":"amalia","last_name":"torres","domain_name":"independent","page_name":"amaliatorres","display_name":"amalia torres","profile_url":"https://independent.academia.edu/amaliatorres?f_ri=20949","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":516,"name":"Optics","url":"https://www.academia.edu/Documents/in/Optics?f_ri=20949","nofollow":true},{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true},{"id":41877,"name":"Laser produced plasma","url":"https://www.academia.edu/Documents/in/Laser_produced_plasma?f_ri=20949","nofollow":true},{"id":123286,"name":"EUV Optics","url":"https://www.academia.edu/Documents/in/EUV_Optics?f_ri=20949","nofollow":true},{"id":476328,"name":"Laser Induced Plasma","url":"https://www.academia.edu/Documents/in/Laser_Induced_Plasma?f_ri=20949"},{"id":506413,"name":"Laser Matter Interactions","url":"https://www.academia.edu/Documents/in/Laser_Matter_Interactions?f_ri=20949"},{"id":542433,"name":"Laser Plasmas","url":"https://www.academia.edu/Documents/in/Laser_Plasmas?f_ri=20949"},{"id":683623,"name":"Soft X Ray","url":"https://www.academia.edu/Documents/in/Soft_X_Ray?f_ri=20949"},{"id":729676,"name":"Study of Laser Produced Plasma","url":"https://www.academia.edu/Documents/in/Study_of_Laser_Produced_Plasma?f_ri=20949"},{"id":838674,"name":"Excimer Laser","url":"https://www.academia.edu/Documents/in/Excimer_Laser?f_ri=20949"},{"id":843860,"name":"Microlithography","url":"https://www.academia.edu/Documents/in/Microlithography?f_ri=20949"},{"id":907776,"name":"EUV Lithography","url":"https://www.academia.edu/Documents/in/EUV_Lithography?f_ri=20949"},{"id":907783,"name":"Micro Exposure Tool","url":"https://www.academia.edu/Documents/in/Micro_Exposure_Tool?f_ri=20949"},{"id":1222061,"name":"Extreme Ultraviolet","url":"https://www.academia.edu/Documents/in/Extreme_Ultraviolet?f_ri=20949"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering?f_ri=20949"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_19055648 coauthored" data-work_id="19055648" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/19055648/Proton_radiography_of_laser_driven_imploding_target_in_cylindrical_geometry">Proton radiography of laser-driven imploding target in cylindrical geometry</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">An experiment was done at the Rutherford Appleton Laboratory ͑Vulcan laser petawatt laser͒ to study fast electron propagation in cylindrically compressed targets, a subject of interest for fast ignition. This was performed in the... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_19055648" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">An experiment was done at the Rutherford Appleton Laboratory ͑Vulcan laser petawatt laser͒ to study fast electron propagation in cylindrically compressed targets, a subject of interest for fast ignition. This was performed in the framework of the experimental road map of HiPER ͑the European high power laser energy research facility project͒. In the experiment, protons accelerated by a picosecond-laser pulse were used to radiograph a 220 m diameter cylinder ͑20 m wall, filled with low density foam͒, imploded with ϳ200 J of green laser light in four symmetrically incident beams of pulse length 1 ns. Point projection proton backlighting was used to get the compression history and the stagnation time. Results are also compared to those from hard x-ray radiography. Detailed comparison with two-dimensional numerical hydrosimulations has been done using a Monte Carlo code adapted to describe multiple scattering and plasma effects. Finally we develop a simple analytical model to estimate the performance of proton radiography for given implosion conditions.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/19055648" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="16ac3f4e507d4125e05941a9ede1804b" rel="nofollow" data-download="{"attachment_id":40405853,"asset_id":19055648,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/40405853/download_file?st=MTc0MDI1MjMxNiw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="39226703" href="https://independent.academia.edu/VolpeL">L. Volpe</a><script data-card-contents-for-user="39226703" type="text/json">{"id":39226703,"first_name":"L.","last_name":"Volpe","domain_name":"independent","page_name":"VolpeL","display_name":"L. Volpe","profile_url":"https://independent.academia.edu/VolpeL?f_ri=20949","photo":"/images/s65_no_pic.png"}</script></span></span><span class="u-displayInlineBlock InlineList-item-text"> and <span class="u-textDecorationUnderline u-clickable InlineList-item-text js-work-more-authors-19055648">+2</span><div class="hidden js-additional-users-19055648"><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://independent.academia.edu/GalimbertiM">M. Galimberti</a></span></div><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://independent.academia.edu/BegF">F. Beg</a></span></div></div></span><script>(function(){ var popoverSettings = { el: $('.js-work-more-authors-19055648'), placement: 'bottom', hide_delay: 200, html: true, content: function(){ return $('.js-additional-users-19055648').html(); } } new HoverPopover(popoverSettings); })();</script></li><li class="js-paper-rank-work_19055648 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="19055648"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 19055648, container: ".js-paper-rank-work_19055648", }); });</script></li><li class="js-percentile-work_19055648 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 19055648; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_19055648"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_19055648 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="19055648"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 19055648; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=19055648]").text(description); $(".js-view-count-work_19055648").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_19055648").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="19055648"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">12</a> </div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="6974" rel="nofollow" href="https://www.academia.edu/Documents/in/Monte_Carlo">Monte Carlo</a>, <script data-card-contents-for-ri="6974" type="text/json">{"id":6974,"name":"Monte Carlo","url":"https://www.academia.edu/Documents/in/Monte_Carlo?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="16012" rel="nofollow" href="https://www.academia.edu/Documents/in/High_Energy_Density_Physics">High Energy Density Physics</a>, <script data-card-contents-for-ri="16012" type="text/json">{"id":16012,"name":"High Energy Density Physics","url":"https://www.academia.edu/Documents/in/High_Energy_Density_Physics?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="20949" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_Plasma_Interactions">Laser Plasma Interactions</a>, <script data-card-contents-for-ri="20949" type="text/json">{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="33315" rel="nofollow" href="https://www.academia.edu/Documents/in/Inertial_Fusion_Energy">Inertial Fusion Energy</a><script data-card-contents-for-ri="33315" type="text/json">{"id":33315,"name":"Inertial Fusion Energy","url":"https://www.academia.edu/Documents/in/Inertial_Fusion_Energy?f_ri=20949","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=19055648]'), work: {"id":19055648,"title":"Proton radiography of laser-driven imploding target in cylindrical geometry","created_at":"2015-11-26T10:43:59.414-08:00","url":"https://www.academia.edu/19055648/Proton_radiography_of_laser_driven_imploding_target_in_cylindrical_geometry?f_ri=20949","dom_id":"work_19055648","summary":"An experiment was done at the Rutherford Appleton Laboratory ͑Vulcan laser petawatt laser͒ to study fast electron propagation in cylindrically compressed targets, a subject of interest for fast ignition. This was performed in the framework of the experimental road map of HiPER ͑the European high power laser energy research facility project͒. In the experiment, protons accelerated by a picosecond-laser pulse were used to radiograph a 220 m diameter cylinder ͑20 m wall, filled with low density foam͒, imploded with ϳ200 J of green laser light in four symmetrically incident beams of pulse length 1 ns. Point projection proton backlighting was used to get the compression history and the stagnation time. Results are also compared to those from hard x-ray radiography. Detailed comparison with two-dimensional numerical hydrosimulations has been done using a Monte Carlo code adapted to describe multiple scattering and plasma effects. Finally we develop a simple analytical model to estimate the performance of proton radiography for given implosion conditions.","downloadable_attachments":[{"id":40405853,"asset_id":19055648,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":39226703,"first_name":"L.","last_name":"Volpe","domain_name":"independent","page_name":"VolpeL","display_name":"L. Volpe","profile_url":"https://independent.academia.edu/VolpeL?f_ri=20949","photo":"/images/s65_no_pic.png"},{"id":39602021,"first_name":"M.","last_name":"Galimberti","domain_name":"independent","page_name":"GalimbertiM","display_name":"M. Galimberti","profile_url":"https://independent.academia.edu/GalimbertiM?f_ri=20949","photo":"https://0.academia-photos.com/39602021/101983302/91145368/s65_m..galimberti.png"},{"id":39245915,"first_name":"F.","last_name":"Beg","domain_name":"independent","page_name":"BegF","display_name":"F. Beg","profile_url":"https://independent.academia.edu/BegF?f_ri=20949","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":6974,"name":"Monte Carlo","url":"https://www.academia.edu/Documents/in/Monte_Carlo?f_ri=20949","nofollow":true},{"id":16012,"name":"High Energy Density Physics","url":"https://www.academia.edu/Documents/in/High_Energy_Density_Physics?f_ri=20949","nofollow":true},{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true},{"id":33315,"name":"Inertial Fusion Energy","url":"https://www.academia.edu/Documents/in/Inertial_Fusion_Energy?f_ri=20949","nofollow":true},{"id":80799,"name":"Classical Physics","url":"https://www.academia.edu/Documents/in/Classical_Physics?f_ri=20949"},{"id":241527,"name":"Multiple Scattering","url":"https://www.academia.edu/Documents/in/Multiple_Scattering?f_ri=20949"},{"id":323552,"name":"High Power","url":"https://www.academia.edu/Documents/in/High_Power?f_ri=20949"},{"id":413300,"name":"Analytical Model","url":"https://www.academia.edu/Documents/in/Analytical_Model?f_ri=20949"},{"id":506413,"name":"Laser Matter Interactions","url":"https://www.academia.edu/Documents/in/Laser_Matter_Interactions?f_ri=20949"},{"id":882075,"name":"Light Propagation","url":"https://www.academia.edu/Documents/in/Light_Propagation?f_ri=20949"},{"id":1333436,"name":"Monte Carlo Method","url":"https://www.academia.edu/Documents/in/Monte_Carlo_Method?f_ri=20949"},{"id":1753694,"name":"Plasma Diagnostic","url":"https://www.academia.edu/Documents/in/Plasma_Diagnostic?f_ri=20949"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_15621750" data-work_id="15621750" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/15621750/A_Puzzle_on_Classical_Pulsed_Doppler_Beating">A Puzzle on Classical Pulsed Doppler Beating</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Ming-Chiang Li The puzzle is that the classical theory based on pulse movement can not support the presence of pulsed Doppler beating in optical coherence tomography. Theoretical efforts are needed to resolve the puzzle*. This is a... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_15621750" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Ming-Chiang Li<br />The puzzle is that the classical theory based on pulse movement can not support the presence of pulsed Doppler beating in optical coherence tomography. Theoretical efforts are needed to resolve the puzzle*. This is a fundamental puzzle with respect to classical and quantum coherence.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/15621750" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="0149aa75af8347ffbfbb9c27d82259dc" rel="nofollow" data-download="{"attachment_id":38743444,"asset_id":15621750,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/38743444/download_file?st=MTc0MDI1MjMxNiw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="10710109" href="https://independent.academia.edu/LiMingChiang">Li Ming-Chiang</a><script data-card-contents-for-user="10710109" type="text/json">{"id":10710109,"first_name":"Li","last_name":"Ming-Chiang","domain_name":"independent","page_name":"LiMingChiang","display_name":"Li Ming-Chiang","profile_url":"https://independent.academia.edu/LiMingChiang?f_ri=20949","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_15621750 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="15621750"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 15621750, container: ".js-paper-rank-work_15621750", }); });</script></li><li class="js-percentile-work_15621750 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 15621750; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_15621750"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_15621750 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="15621750"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 15621750; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=15621750]").text(description); $(".js-view-count-work_15621750").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_15621750").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="15621750"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">7</a> </div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="517" rel="nofollow" href="https://www.academia.edu/Documents/in/Plasma_Physics">Plasma Physics</a>, <script data-card-contents-for-ri="517" type="text/json">{"id":517,"name":"Plasma Physics","url":"https://www.academia.edu/Documents/in/Plasma_Physics?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="20949" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_Plasma_Interactions">Laser Plasma Interactions</a>, <script data-card-contents-for-ri="20949" type="text/json">{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="29025" rel="nofollow" href="https://www.academia.edu/Documents/in/Optical_Coherence_Tomography_Physics_">Optical Coherence Tomography (Physics)</a>, <script data-card-contents-for-ri="29025" type="text/json">{"id":29025,"name":"Optical Coherence Tomography (Physics)","url":"https://www.academia.edu/Documents/in/Optical_Coherence_Tomography_Physics_?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="57086" rel="nofollow" href="https://www.academia.edu/Documents/in/Turbulence_modeling">Turbulence modeling</a><script data-card-contents-for-ri="57086" type="text/json">{"id":57086,"name":"Turbulence modeling","url":"https://www.academia.edu/Documents/in/Turbulence_modeling?f_ri=20949","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=15621750]'), work: {"id":15621750,"title":"A Puzzle on Classical Pulsed Doppler Beating","created_at":"2015-09-12T01:52:10.697-07:00","url":"https://www.academia.edu/15621750/A_Puzzle_on_Classical_Pulsed_Doppler_Beating?f_ri=20949","dom_id":"work_15621750","summary":"Ming-Chiang Li\nThe puzzle is that the classical theory based on pulse movement can not support the presence of pulsed Doppler beating in optical coherence tomography. Theoretical efforts are needed to resolve the puzzle*. This is a fundamental puzzle with respect to classical and quantum coherence.\n","downloadable_attachments":[{"id":38743444,"asset_id":15621750,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":10710109,"first_name":"Li","last_name":"Ming-Chiang","domain_name":"independent","page_name":"LiMingChiang","display_name":"Li Ming-Chiang","profile_url":"https://independent.academia.edu/LiMingChiang?f_ri=20949","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":517,"name":"Plasma Physics","url":"https://www.academia.edu/Documents/in/Plasma_Physics?f_ri=20949","nofollow":true},{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true},{"id":29025,"name":"Optical Coherence Tomography (Physics)","url":"https://www.academia.edu/Documents/in/Optical_Coherence_Tomography_Physics_?f_ri=20949","nofollow":true},{"id":57086,"name":"Turbulence modeling","url":"https://www.academia.edu/Documents/in/Turbulence_modeling?f_ri=20949","nofollow":true},{"id":62562,"name":"Quantum Coherence","url":"https://www.academia.edu/Documents/in/Quantum_Coherence?f_ri=20949"},{"id":903798,"name":"Thermonuclear Fusion","url":"https://www.academia.edu/Documents/in/Thermonuclear_Fusion?f_ri=20949"},{"id":1349474,"name":"Plasma Diagnostics","url":"https://www.academia.edu/Documents/in/Plasma_Diagnostics?f_ri=20949"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_14895825" data-work_id="14895825" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/14895825/Ponderomotive_self_focusing_of_a_short_laser_pulse_under_a_plasma_density_ramp">Ponderomotive self-focusing of a short laser pulse under a plasma density ramp</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">The ponderomotive self-focusing of a short laser pulse in an underdense plasma under a plasma density ramp is analyzed. The pulse may acquire a minimum spot size due to the ponderomotive self-focusing. Beyond the focus, the nonlinear... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_14895825" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">The ponderomotive self-focusing of a short laser pulse in an underdense plasma under a plasma density ramp is analyzed. The pulse may acquire a minimum spot size due to the ponderomotive self-focusing. Beyond the focus, the nonlinear refraction starts weakening, and the spot size of the laser pulse increases, resulting in an oscillatory self-focusing and defocusing behavior of the beam with the propagation distance. In order to minimize the defocusing, we introduce a localized upward plasma density ramp. Due to the upward plasma density ramp, the laser beam retains a minimum spot size. Self-focusing becomes stronger with a mild ripple as the propagation distance increases. The conditions for the ponderomotive self-focusing for suitable parameters of the laser beam and the plasma are determined. The plasma density ramp of the considered type may be observed in gas jet plasma experiments.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/14895825" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="9e5cd52cf53a6282d699271a10fd9038" rel="nofollow" data-download="{"attachment_id":38464035,"asset_id":14895825,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/38464035/download_file?st=MTc0MDI1MjMxNiw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="31179609" href="https://allduniv.academia.edu/NitiKant">Niti Kant</a><script data-card-contents-for-user="31179609" type="text/json">{"id":31179609,"first_name":"Niti","last_name":"Kant","domain_name":"allduniv","page_name":"NitiKant","display_name":"Niti Kant","profile_url":"https://allduniv.academia.edu/NitiKant?f_ri=20949","photo":"https://0.academia-photos.com/31179609/9658074/77615836/s65_niti.kant.jpeg"}</script></span></span></li><li class="js-paper-rank-work_14895825 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="14895825"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 14895825, container: ".js-paper-rank-work_14895825", }); });</script></li><li class="js-percentile-work_14895825 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 14895825; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_14895825"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_14895825 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="14895825"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 14895825; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=14895825]").text(description); $(".js-view-count-work_14895825").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_14895825").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="14895825"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i></div><span class="InlineList-item-text u-textTruncate u-pl6x"><a class="InlineList-item-text" data-has-card-for-ri="20949" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_Plasma_Interactions">Laser Plasma Interactions</a><script data-card-contents-for-ri="20949" type="text/json">{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true}</script></span></li><script>(function(){ if (false) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=14895825]'), work: {"id":14895825,"title":"Ponderomotive self-focusing of a short laser pulse under a plasma density ramp","created_at":"2015-08-13T04:19:23.076-07:00","url":"https://www.academia.edu/14895825/Ponderomotive_self_focusing_of_a_short_laser_pulse_under_a_plasma_density_ramp?f_ri=20949","dom_id":"work_14895825","summary":"The ponderomotive self-focusing of a short laser pulse in an underdense plasma under a plasma density ramp is analyzed. The pulse may acquire a minimum spot size due to the ponderomotive self-focusing. Beyond the focus, the nonlinear refraction starts weakening, and the spot size of the laser pulse increases, resulting in an oscillatory self-focusing and defocusing behavior of the beam with the propagation distance. In order to minimize the defocusing, we introduce a localized upward plasma density ramp. Due to the upward plasma density ramp, the laser beam retains a minimum spot size. Self-focusing becomes stronger with a mild ripple as the propagation distance increases. The conditions for the ponderomotive self-focusing for suitable parameters of the laser beam and the plasma are determined. The plasma density ramp of the considered type may be observed in gas jet plasma experiments. ","downloadable_attachments":[{"id":38464035,"asset_id":14895825,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":31179609,"first_name":"Niti","last_name":"Kant","domain_name":"allduniv","page_name":"NitiKant","display_name":"Niti Kant","profile_url":"https://allduniv.academia.edu/NitiKant?f_ri=20949","photo":"https://0.academia-photos.com/31179609/9658074/77615836/s65_niti.kant.jpeg"}],"research_interests":[{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_12433058" data-work_id="12433058" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/12433058/Accordion_effect_in_plasma_channels_Generation_of_tunable_comb_like_electron_beams">Accordion effect in plasma channels: Generation of tunable comb-like electron beams.</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Propagating a short, relativistically intense laser pulse in a plasma channel makes it possible to generate comb-like electron beams for advanced radiation sources. The ponderomotive force of the leading edge of the pulse expels all... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_12433058" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Propagating a short, relativistically intense laser pulse in a plasma channel makes it possible to generate comb-like electron beams for advanced radiation sources. The ponderomotive force of the leading edge of the pulse expels all electrons facing the pulse. The bare ions attract the ambient plasma electrons, forming a closed bubble of electron density confining the pulse tail. The cavity of electron density evolves slowly, in lock-step with the optical driver, and readily traps background electrons. The combination of a bubble (a self-consistently maintained, “soft” hollow channel) and a preformed channel forces transverse flapping of the laser pulse tail, causing oscillations in the bubble size. The resulting periodic injection produces a sequence of background-free, quasi-monoenergetic bunches of femtosecond duration. The number of these spectral components, their charge, energy, and energy separation is sensitive to the channel radius and pulse length. Accumulation of noise (continuously injected charge) can be prevented using a negatively chirped drive pulse with a bandwidth close to a one-half of the carrier wavelength. As a result of dispersion compensation, self-steepening of the pulse is reduced, and continuous injection almost completely suppressed. This level of control on a femtosecond time scale is hard to achieve with conventional accelerator techniques. These comb-like beams can drive high-brightness, tunable, multi-color gamma-ray sources.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/12433058" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="64800fc1288a923c31f5841c37c13b07" rel="nofollow" data-download="{"attachment_id":37663086,"asset_id":12433058,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/37663086/download_file?st=MTc0MDI1MjMxNiw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="665665" href="https://leidos.academia.edu/SergeYouriKalmykov">Serge Youri Kalmykov</a><script data-card-contents-for-user="665665" type="text/json">{"id":665665,"first_name":"Serge Youri","last_name":"Kalmykov","domain_name":"leidos","page_name":"SergeYouriKalmykov","display_name":"Serge Youri Kalmykov","profile_url":"https://leidos.academia.edu/SergeYouriKalmykov?f_ri=20949","photo":"https://0.academia-photos.com/665665/586468/1570803/s65_serguei.kalmykov.png"}</script></span></span></li><li class="js-paper-rank-work_12433058 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="12433058"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 12433058, container: ".js-paper-rank-work_12433058", }); });</script></li><li class="js-percentile-work_12433058 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 12433058; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_12433058"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_12433058 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="12433058"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 12433058; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=12433058]").text(description); $(".js-view-count-work_12433058").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_12433058").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="12433058"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">6</a> </div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="16131" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_Wakefield_Acceleration">Laser Wakefield Acceleration</a>, <script data-card-contents-for-ri="16131" type="text/json">{"id":16131,"name":"Laser Wakefield Acceleration","url":"https://www.academia.edu/Documents/in/Laser_Wakefield_Acceleration?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="20949" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_Plasma_Interactions">Laser Plasma Interactions</a>, <script data-card-contents-for-ri="20949" type="text/json">{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="20950" rel="nofollow" href="https://www.academia.edu/Documents/in/Short_Pulse_Laser_Propagation_in_Non-Linear_Optical_Media">Short Pulse Laser Propagation in Non-Linear Optical Media</a>, <script data-card-contents-for-ri="20950" type="text/json">{"id":20950,"name":"Short Pulse Laser Propagation in Non-Linear Optical Media","url":"https://www.academia.edu/Documents/in/Short_Pulse_Laser_Propagation_in_Non-Linear_Optical_Media?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="82998" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_driven_ion_acceleration_high-power_laser_plasma_interactions">Laser driven ion acceleration, high-power laser plasma interactions</a><script data-card-contents-for-ri="82998" type="text/json">{"id":82998,"name":"Laser driven ion acceleration, high-power laser plasma interactions","url":"https://www.academia.edu/Documents/in/Laser_driven_ion_acceleration_high-power_laser_plasma_interactions?f_ri=20949","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=12433058]'), work: {"id":12433058,"title":"Accordion effect in plasma channels: Generation of tunable comb-like electron beams.","created_at":"2015-05-17T23:21:03.050-07:00","url":"https://www.academia.edu/12433058/Accordion_effect_in_plasma_channels_Generation_of_tunable_comb_like_electron_beams?f_ri=20949","dom_id":"work_12433058","summary":"Propagating a short, relativistically intense laser pulse in a plasma channel makes it possible to generate comb-like electron beams for advanced radiation sources. The ponderomotive force of the leading edge of the pulse expels all electrons facing the pulse. The bare ions attract the ambient plasma electrons, forming a closed bubble of electron density confining the pulse tail. The cavity of electron density evolves slowly, in lock-step with the optical driver, and readily traps background electrons. The combination of a bubble (a self-consistently maintained, “soft” hollow channel) and a preformed channel forces transverse flapping of the laser pulse tail, causing oscillations in the bubble size. The resulting periodic injection produces a sequence of background-free, quasi-monoenergetic bunches of femtosecond duration. The number of these spectral components, their charge, energy, and energy separation is sensitive to the channel radius and pulse length. Accumulation of noise (continuously injected charge) can be prevented using a negatively chirped drive pulse with a bandwidth close to a one-half of the carrier wavelength. As a result of dispersion compensation, self-steepening of the pulse is reduced, and continuous injection almost completely suppressed. This level of control on a femtosecond time scale is hard to achieve with conventional accelerator techniques. These comb-like beams can drive high-brightness, tunable, multi-color gamma-ray sources.","downloadable_attachments":[{"id":37663086,"asset_id":12433058,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":665665,"first_name":"Serge Youri","last_name":"Kalmykov","domain_name":"leidos","page_name":"SergeYouriKalmykov","display_name":"Serge Youri Kalmykov","profile_url":"https://leidos.academia.edu/SergeYouriKalmykov?f_ri=20949","photo":"https://0.academia-photos.com/665665/586468/1570803/s65_serguei.kalmykov.png"}],"research_interests":[{"id":16131,"name":"Laser Wakefield Acceleration","url":"https://www.academia.edu/Documents/in/Laser_Wakefield_Acceleration?f_ri=20949","nofollow":true},{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true},{"id":20950,"name":"Short Pulse Laser Propagation in Non-Linear Optical Media","url":"https://www.academia.edu/Documents/in/Short_Pulse_Laser_Propagation_in_Non-Linear_Optical_Media?f_ri=20949","nofollow":true},{"id":82998,"name":"Laser driven ion acceleration, high-power laser plasma interactions","url":"https://www.academia.edu/Documents/in/Laser_driven_ion_acceleration_high-power_laser_plasma_interactions?f_ri=20949","nofollow":true},{"id":192214,"name":"Plasma channel","url":"https://www.academia.edu/Documents/in/Plasma_channel?f_ri=20949"},{"id":477270,"name":"Self-injection in the blowout regime","url":"https://www.academia.edu/Documents/in/Self-injection_in_the_blowout_regime?f_ri=20949"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_12432998" data-work_id="12432998" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/12432998/Optical_control_of_electron_phase_space_in_plasma_accelerators_with_incoherently_stacked_laser_pulses">Optical control of electron phase space in plasma accelerators with incoherently stacked laser pulses.</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">It is demonstrated that synthesizing an ultrahigh-bandwidth, negatively chirped laser pulse by incoherently stacking pulses of different wavelengths makes it possible to optimize the process of electron self-injection in a dense, highly... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_12432998" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">It is demonstrated that synthesizing an ultrahigh-bandwidth, negatively chirped laser pulse by incoherently stacking pulses of different wavelengths makes it possible to optimize the process of electron self-injection in a dense, highly dispersive plasma. Avoiding transformation of the driving pulse into a relativistic optical shock maintains a quasi-monoenergetic electron spectrum through electron dephasing and boosts electron energy far beyond the limits suggested by existing scaling laws. In addition, evolution of the accelerating bucket in a plasma channel is shown to produce a background-free, tunable train of femtosecond-duration, 35–100 kA, time-synchronized quasi-monoenergetic electron bunches. The combination of the negative chirp and the channel permits acceleration of electrons beyond 1 GeV in a 3mm plasma with 1.4 J of laser pulse energy, thus offering the opportunity of high-repetition-rate operation at manageable average laser power.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/12432998" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="a8c8cdcbdae8993ba3f295523b7df35f" rel="nofollow" data-download="{"attachment_id":37663050,"asset_id":12432998,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/37663050/download_file?st=MTc0MDI1MjMxNiw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="665665" href="https://leidos.academia.edu/SergeYouriKalmykov">Serge Youri Kalmykov</a><script data-card-contents-for-user="665665" type="text/json">{"id":665665,"first_name":"Serge Youri","last_name":"Kalmykov","domain_name":"leidos","page_name":"SergeYouriKalmykov","display_name":"Serge Youri Kalmykov","profile_url":"https://leidos.academia.edu/SergeYouriKalmykov?f_ri=20949","photo":"https://0.academia-photos.com/665665/586468/1570803/s65_serguei.kalmykov.png"}</script></span></span></li><li class="js-paper-rank-work_12432998 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="12432998"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 12432998, container: ".js-paper-rank-work_12432998", }); });</script></li><li class="js-percentile-work_12432998 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 12432998; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_12432998"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_12432998 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="12432998"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 12432998; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=12432998]").text(description); $(".js-view-count-work_12432998").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_12432998").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="12432998"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">5</a> </div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="16131" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_Wakefield_Acceleration">Laser Wakefield Acceleration</a>, <script data-card-contents-for-ri="16131" type="text/json">{"id":16131,"name":"Laser Wakefield Acceleration","url":"https://www.academia.edu/Documents/in/Laser_Wakefield_Acceleration?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="20949" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_Plasma_Interactions">Laser Plasma Interactions</a>, <script data-card-contents-for-ri="20949" type="text/json">{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="20950" rel="nofollow" href="https://www.academia.edu/Documents/in/Short_Pulse_Laser_Propagation_in_Non-Linear_Optical_Media">Short Pulse Laser Propagation in Non-Linear Optical Media</a>, <script data-card-contents-for-ri="20950" type="text/json">{"id":20950,"name":"Short Pulse Laser Propagation in Non-Linear Optical Media","url":"https://www.academia.edu/Documents/in/Short_Pulse_Laser_Propagation_in_Non-Linear_Optical_Media?f_ri=20949","nofollow":true}</script><a class="InlineList-item-text" data-has-card-for-ri="477270" rel="nofollow" href="https://www.academia.edu/Documents/in/Self-injection_in_the_blowout_regime">Self-injection in the blowout regime</a><script data-card-contents-for-ri="477270" type="text/json">{"id":477270,"name":"Self-injection in the blowout regime","url":"https://www.academia.edu/Documents/in/Self-injection_in_the_blowout_regime?f_ri=20949","nofollow":true}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=12432998]'), work: {"id":12432998,"title":"Optical control of electron phase space in plasma accelerators with incoherently stacked laser pulses.","created_at":"2015-05-17T23:14:33.059-07:00","url":"https://www.academia.edu/12432998/Optical_control_of_electron_phase_space_in_plasma_accelerators_with_incoherently_stacked_laser_pulses?f_ri=20949","dom_id":"work_12432998","summary":"It is demonstrated that synthesizing an ultrahigh-bandwidth, negatively chirped laser pulse by incoherently stacking pulses of different wavelengths makes it possible to optimize the process of electron self-injection in a dense, highly dispersive plasma. Avoiding transformation of the driving pulse into a relativistic optical shock maintains a quasi-monoenergetic electron spectrum through electron dephasing and boosts electron energy far beyond the limits suggested by existing scaling laws. In addition, evolution of the accelerating bucket in a plasma channel is shown to produce a background-free, tunable train of femtosecond-duration, 35–100 kA, time-synchronized quasi-monoenergetic electron bunches. The combination of the negative chirp and the channel permits acceleration of electrons beyond 1 GeV in a 3mm plasma with 1.4 J of laser pulse energy, thus offering the opportunity of high-repetition-rate operation at manageable average laser power.","downloadable_attachments":[{"id":37663050,"asset_id":12432998,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":665665,"first_name":"Serge Youri","last_name":"Kalmykov","domain_name":"leidos","page_name":"SergeYouriKalmykov","display_name":"Serge Youri Kalmykov","profile_url":"https://leidos.academia.edu/SergeYouriKalmykov?f_ri=20949","photo":"https://0.academia-photos.com/665665/586468/1570803/s65_serguei.kalmykov.png"}],"research_interests":[{"id":16131,"name":"Laser Wakefield Acceleration","url":"https://www.academia.edu/Documents/in/Laser_Wakefield_Acceleration?f_ri=20949","nofollow":true},{"id":20949,"name":"Laser Plasma Interactions","url":"https://www.academia.edu/Documents/in/Laser_Plasma_Interactions?f_ri=20949","nofollow":true},{"id":20950,"name":"Short Pulse Laser Propagation in Non-Linear Optical Media","url":"https://www.academia.edu/Documents/in/Short_Pulse_Laser_Propagation_in_Non-Linear_Optical_Media?f_ri=20949","nofollow":true},{"id":477270,"name":"Self-injection in the blowout regime","url":"https://www.academia.edu/Documents/in/Self-injection_in_the_blowout_regime?f_ri=20949","nofollow":true},{"id":589935,"name":"Numerical modelling of high-power laser-plasma interactions","url":"https://www.academia.edu/Documents/in/Numerical_modelling_of_high-power_laser-plasma_interactions?f_ri=20949"}]}, }) } })();</script></ul></li></ul></div></div></div><div class="u-taCenter Pagination"><ul class="pagination"><li class="next_page"><a href="/Documents/in/Laser_Plasma_Interactions?after=50%2C12432998" rel="next">Next</a></li><li class="last next"><a href="/Documents/in/Laser_Plasma_Interactions?page=last">Last »</a></li></ul></div></div><div class="hidden-xs hidden-sm"><div class="u-pl6x"><div style="width: 300px;"><div class="panel panel-flat u-mt7x"><div class="panel-heading u-p5x"><div class="u-tcGrayDark u-taCenter u-fw700 u-textUppercase">Related Topics</div></div><ul class="list-group"><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" rel="nofollow" href="https://www.academia.edu/Documents/in/Plasma_Physics">Plasma Physics</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="517">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="517">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser-Matter_interactions">Laser-Matter interactions</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="4655">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="4655">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" rel="nofollow" href="https://www.academia.edu/Documents/in/Classical_Physics">Classical Physics</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="80799">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="80799">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_Physics">Laser Physics</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="2415">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="2415">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" rel="nofollow" href="https://www.academia.edu/Documents/in/Space_Plasma_Physics">Space Plasma Physics</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="4337">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="4337">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_Ablation">Laser Ablation</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="159153">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="159153">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" rel="nofollow" href="https://www.academia.edu/Documents/in/Superconductors">Superconductors</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="125513">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="125513">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" rel="nofollow" href="https://www.academia.edu/Documents/in/Plasma_based_particle_acceleration">Plasma based particle acceleration</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="28978">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="28978">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" rel="nofollow" href="https://www.academia.edu/Documents/in/Interstellar_Medium">Interstellar Medium</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="716">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="716">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" rel="nofollow" href="https://www.academia.edu/Documents/in/Laser_Spectroscopy">Laser Spectroscopy</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="1430">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="1430">Following</a></div></li></ul></div></div></div></div></div></div><script>// MIT License // Copyright © 2011 Sebastian Tschan, https://blueimp.net // Permission is hereby granted, free of charge, to any person obtaining a copy of // this software and associated documentation files (the "Software"), to deal in // the Software without restriction, including without limitation the rights to // use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of // the Software, and to permit persons to whom the Software is furnished to do so, // subject to the following conditions: // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS // FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR // COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER // IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN // CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. !function(n){"use strict";function d(n,t){var r=(65535&n)+(65535&t);return(n>>16)+(t>>16)+(r>>16)<<16|65535&r}function f(n,t,r,e,o,u){return d((c=d(d(t,n),d(e,u)))<<(f=o)|c>>>32-f,r);var c,f}function l(n,t,r,e,o,u,c){return f(t&r|~t&e,n,t,o,u,c)}function v(n,t,r,e,o,u,c){return f(t&e|r&~e,n,t,o,u,c)}function g(n,t,r,e,o,u,c){return f(t^r^e,n,t,o,u,c)}function m(n,t,r,e,o,u,c){return f(r^(t|~e),n,t,o,u,c)}function i(n,t){var r,e,o,u;n[t>>5]|=128<<t%32,n[14+(t+64>>>9<<4)]=t;for(var c=1732584193,f=-271733879,i=-1732584194,a=271733878,h=0;h<n.length;h+=16)c=l(r=c,e=f,o=i,u=a,n[h],7,-680876936),a=l(a,c,f,i,n[h+1],12,-389564586),i=l(i,a,c,f,n[h+2],17,606105819),f=l(f,i,a,c,n[h+3],22,-1044525330),c=l(c,f,i,a,n[h+4],7,-176418897),a=l(a,c,f,i,n[h+5],12,1200080426),i=l(i,a,c,f,n[h+6],17,-1473231341),f=l(f,i,a,c,n[h+7],22,-45705983),c=l(c,f,i,a,n[h+8],7,1770035416),a=l(a,c,f,i,n[h+9],12,-1958414417),i=l(i,a,c,f,n[h+10],17,-42063),f=l(f,i,a,c,n[h+11],22,-1990404162),c=l(c,f,i,a,n[h+12],7,1804603682),a=l(a,c,f,i,n[h+13],12,-40341101),i=l(i,a,c,f,n[h+14],17,-1502002290),c=v(c,f=l(f,i,a,c,n[h+15],22,1236535329),i,a,n[h+1],5,-165796510),a=v(a,c,f,i,n[h+6],9,-1069501632),i=v(i,a,c,f,n[h+11],14,643717713),f=v(f,i,a,c,n[h],20,-373897302),c=v(c,f,i,a,n[h+5],5,-701558691),a=v(a,c,f,i,n[h+10],9,38016083),i=v(i,a,c,f,n[h+15],14,-660478335),f=v(f,i,a,c,n[h+4],20,-405537848),c=v(c,f,i,a,n[h+9],5,568446438),a=v(a,c,f,i,n[h+14],9,-1019803690),i=v(i,a,c,f,n[h+3],14,-187363961),f=v(f,i,a,c,n[h+8],20,1163531501),c=v(c,f,i,a,n[h+13],5,-1444681467),a=v(a,c,f,i,n[h+2],9,-51403784),i=v(i,a,c,f,n[h+7],14,1735328473),c=g(c,f=v(f,i,a,c,n[h+12],20,-1926607734),i,a,n[h+5],4,-378558),a=g(a,c,f,i,n[h+8],11,-2022574463),i=g(i,a,c,f,n[h+11],16,1839030562),f=g(f,i,a,c,n[h+14],23,-35309556),c=g(c,f,i,a,n[h+1],4,-1530992060),a=g(a,c,f,i,n[h+4],11,1272893353),i=g(i,a,c,f,n[h+7],16,-155497632),f=g(f,i,a,c,n[h+10],23,-1094730640),c=g(c,f,i,a,n[h+13],4,681279174),a=g(a,c,f,i,n[h],11,-358537222),i=g(i,a,c,f,n[h+3],16,-722521979),f=g(f,i,a,c,n[h+6],23,76029189),c=g(c,f,i,a,n[h+9],4,-640364487),a=g(a,c,f,i,n[h+12],11,-421815835),i=g(i,a,c,f,n[h+15],16,530742520),c=m(c,f=g(f,i,a,c,n[h+2],23,-995338651),i,a,n[h],6,-198630844),a=m(a,c,f,i,n[h+7],10,1126891415),i=m(i,a,c,f,n[h+14],15,-1416354905),f=m(f,i,a,c,n[h+5],21,-57434055),c=m(c,f,i,a,n[h+12],6,1700485571),a=m(a,c,f,i,n[h+3],10,-1894986606),i=m(i,a,c,f,n[h+10],15,-1051523),f=m(f,i,a,c,n[h+1],21,-2054922799),c=m(c,f,i,a,n[h+8],6,1873313359),a=m(a,c,f,i,n[h+15],10,-30611744),i=m(i,a,c,f,n[h+6],15,-1560198380),f=m(f,i,a,c,n[h+13],21,1309151649),c=m(c,f,i,a,n[h+4],6,-145523070),a=m(a,c,f,i,n[h+11],10,-1120210379),i=m(i,a,c,f,n[h+2],15,718787259),f=m(f,i,a,c,n[h+9],21,-343485551),c=d(c,r),f=d(f,e),i=d(i,o),a=d(a,u);return[c,f,i,a]}function a(n){for(var t="",r=32*n.length,e=0;e<r;e+=8)t+=String.fromCharCode(n[e>>5]>>>e%32&255);return t}function h(n){var t=[];for(t[(n.length>>2)-1]=void 0,e=0;e<t.length;e+=1)t[e]=0;for(var r=8*n.length,e=0;e<r;e+=8)t[e>>5]|=(255&n.charCodeAt(e/8))<<e%32;return t}function e(n){for(var t,r="0123456789abcdef",e="",o=0;o<n.length;o+=1)t=n.charCodeAt(o),e+=r.charAt(t>>>4&15)+r.charAt(15&t);return e}function r(n){return unescape(encodeURIComponent(n))}function o(n){return a(i(h(t=r(n)),8*t.length));var t}function u(n,t){return function(n,t){var r,e,o=h(n),u=[],c=[];for(u[15]=c[15]=void 0,16<o.length&&(o=i(o,8*n.length)),r=0;r<16;r+=1)u[r]=909522486^o[r],c[r]=1549556828^o[r];return e=i(u.concat(h(t)),512+8*t.length),a(i(c.concat(e),640))}(r(n),r(t))}function t(n,t,r){return t?r?u(t,n):e(u(t,n)):r?o(n):e(o(n))}"function"==typeof define&&define.amd?define(function(){return t}):"object"==typeof module&&module.exports?module.exports=t:n.md5=t}(this);</script><script>window.AbTest = (function() { return { 'ab_test': (uniqueId, test_name, buckets) => { let override = new URLSearchParams(window.location.search).get(`ab_test[${test_name}]`); if ( override ) { return override; } const bucketNames = buckets.map((bucket) => { return typeof bucket === 'string' ? bucket : Object.keys(bucket)[0]; }); const weights = buckets.map((bucket) => { return typeof bucket === 'string' ? 1 : Object.values(bucket)[0]; }); const total = weights.reduce((sum, weight) => sum + weight); const hash = md5(`${uniqueId}${test_name}`); const hashNum = parseInt(hash.slice(-12), 16); let bucketPoint = total * (hashNum % 100000) / 100000; const bucket = bucketNames.find((_, i) => { if (weights[i] > bucketPoint) { return true; } bucketPoint -= weights[i]; return false; }); return bucket; } }; })();</script><div data-auto_select="false" data-client_id="331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b" data-landing_url="https://www.academia.edu/Documents/in/Laser_Plasma_Interactions" data-login_uri="https://www.academia.edu/registrations/google_one_tap" data-moment_callback="onGoogleOneTapEvent" id="g_id_onload"></div><script>function onGoogleOneTapEvent(event) { var momentType = event.getMomentType(); var momentReason = null; if (event.isNotDisplayed()) { momentReason = event.getNotDisplayedReason(); } else if (event.isSkippedMoment()) { momentReason = event.getSkippedReason(); } else if (event.isDismissedMoment()) { momentReason = event.getDismissedReason(); } Aedu.arbitraryEvents.write('GoogleOneTapEvent', { moment_type: momentType, moment_reason: momentReason, }); }</script><script>(function() { var auvid = unescape( document.cookie .split(/; ?/) .find((s) => s.startsWith('auvid')) .substring(6)); var bucket = AbTest.ab_test(auvid, 'lo_ri_one_tap_google_sign_on', ['control', 'one_tap_google_sign_on']); if (bucket === 'control') return; var oneTapTag = document.createElement('script') oneTapTag.async = true oneTapTag.defer = true oneTapTag.src = 'https://accounts.google.com/gsi/client' document.body.appendChild(oneTapTag) })();</script></div></div></div> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; } .sign-in-with-apple-button > div { margin: 0 auto; / This centers the Apple-rendered button horizontally }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "71f5a3c093f128a01b1190dc73ae8f389f558a396700c25447af3050fd5b8c1f", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="_fpoMX8dCamR8enn1KtYnB7_86Id4NBkWBDWAr9vH_gh-UHXG5DerTVdZ4ubbU5zJOqj-OJ5aM0zPr3GzgJlaw" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://www.academia.edu/Documents/in/Laser_Plasma_Interactions" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="L5FwxICpOHG5pGt0qBa7LurYPEYQRZQjFLFrTRsJyGrzklki5CTvdR0I5Rjn0K3B0M1sHO_cLIp_nwCJamSy-Q" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2025</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>