CINXE.COM

BG - How to measure the efficiency of bioenergy crops compared to forestation

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <!--[if lt IE 7]> <html xmlns="https://www.w3.org/1999/xhtml" xml:lang="en" lang="en" class="no-js lt-ie9 lt-ie8 lt-ie7 co-ui"> <![endif]--> <!--[if IE 7]> <html xmlns="https://www.w3.org/1999/xhtml" xml:lang="en" lang="en" class="no-js lt-ie9 lt-ie8 co-ui"> <![endif]--> <!--[if IE 8]> <html xmlns="https://www.w3.org/1999/xhtml" xml:lang="en" lang="en" class="no-js lt-ie9 co-ui"> <![endif]--> <!--[if gt IE 8]><!--> <html xmlns="https://www.w3.org/1999/xhtml" xml:lang="en" lang="en" class="no-js co-ui"> <!--<![endif]--> <!-- remove class no-js if js is available --><head> <!-- BEGIN_HEAD --> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <meta name="theme-color" content="#000000" /> <meta name="application-name" content="1" /> <meta name="msapplication-TileColor" content="#FFFFFF" /> <link rel="preconnect" crossorigin="" href="https://contentmanager.copernicus.org/" /><link rel="icon" size="16x16" href="https://www.biogeosciences.net/favicon_copernicus_16x16_.ico" type="image/x-icon" /><link rel="icon" size="24x24" href="https://www.biogeosciences.net/favicon_copernicus_24x24_.ico" type="image/x-icon" /><link rel="icon" size="32x32" href="https://www.biogeosciences.net/favicon_copernicus_32x32_.ico" type="image/x-icon" /><link rel="icon" size="48x48" href="https://www.biogeosciences.net/favicon_copernicus_48x48_.ico" type="image/x-icon" /><link rel="icon" size="64x64" href="https://www.biogeosciences.net/favicon_copernicus_64x64_.ico" type="image/x-icon" /><link rel="icon" size="228x228" href="https://www.biogeosciences.net/favicon_copernicus_228x228_.png" type="image/png-icon" /><link rel="icon" size="195x195" href="https://www.biogeosciences.net/favicon_copernicus_195x195_.png" type="image/png-icon" /><link rel="icon" size="196x196" href="https://www.biogeosciences.net/favicon_copernicus_196x196_.png" type="image/png-icon" /><link rel="icon" size="128x128" href="https://www.biogeosciences.net/favicon_copernicus_128x128_.png" type="image/png-icon" /><link rel="icon" size="96x96" href="https://www.biogeosciences.net/favicon_copernicus_96x96_.png" type="image/png-icon" /><link rel="apple-touch-icon-precomposed" size="180x180" href="https://www.biogeosciences.net/favicon_copernicus_180x180_.png" type="image/png-icon" /><link rel="apple-touch-icon-precomposed" size="120x120" href="https://www.biogeosciences.net/favicon_copernicus_120x120_.png" type="image/png-icon" /><link rel="apple-touch-icon-precomposed" size="152x152" href="https://www.biogeosciences.net/favicon_copernicus_152x152_.png" type="image/png-icon" /><link rel="apple-touch-icon-precomposed" size="76x76" href="https://www.biogeosciences.net/favicon_copernicus_76x76_.png" type="image/png-icon" /><link rel="apple-touch-icon-precomposed" size="57x57" href="https://www.biogeosciences.net/favicon_copernicus_57x57_.ico" type="image/png-icon" /><link rel="apple-touch-icon-precomposed" size="144x144" href="https://www.biogeosciences.net/favicon_copernicus_144x144_.png" type="image/png-icon" /><script type="text/javascript" src="https://cdn.copernicus.org/libraries/mustache/2.3.0/mustache.min.js"></script><script type="text/javascript" src="https://cdn.copernicus.org/libraries/jquery/1.11.1/jquery.min.js"></script><script type="text/javascript" src="https://cdn.copernicus.org/js/copernicus.min.js"></script><script type="text/javascript" src="https://cdn.copernicus.org/apps/htmlgenerator/js/htmlgenerator-v2.js"></script><script type="text/javascript" src="https://cdn.copernicus.org/libraries/photoswipe/4.1/photoswipe.min.js"></script><script type="text/javascript" src="https://cdn.copernicus.org/libraries/photoswipe/4.1/photoswipe-ui-default.min.js"></script><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/libraries/dszparallexer/dzsparallaxer.css" /><script type="text/javascript" src="https://cdn.copernicus.org/libraries/dszparallexer/dzsparallaxer.js"></script><link rel="stylesheet" type="text/css" media="all" id="hasBootstrap" href="https://cdn.copernicus.org/libraries/bootstrap/current/css/bootstrap.min.css" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/libraries/bootstrap/current/css/bootstrap-media.min.css" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/libraries/bootstrap/current/css/bootstrap-grid.min.css" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/libraries/bootstrap/current/css/bootstrap-reboot.min.css" /><script type="text/javascript" src="https://cdn.copernicus.org/libraries/bootstrap/current/js/popper.js"></script><script type="text/javascript" src="https://cdn.copernicus.org/libraries/bootstrap/current/js/bootstrap.min.js"></script><link rel="preconnect" crossorigin="" href="https://cdn.copernicus.org/" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/libraries/unsemantic/unsemantic.min.css" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/libraries/photoswipe/4.1/photoswipe.css" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/libraries/photoswipe/4.1/dark-icon-skin/dark-icon-skin.css" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/css/copernicus-min.css" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/css/fontawesome.css" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/fonts/FontAwesome/5.11.2_and_4.7.0/css/all.font.css" /><link rel="stylesheet" type="text/css" media="projection, handheld, screen, tty, tv, print" href="https://contentmanager.copernicus.org/237997/11/ssl" /><link rel="stylesheet" type="text/css" media="projection, handheld, screen, tty, tv, print" href="https://contentmanager.copernicus.org/2154804/11/ssl" /><link rel="stylesheet" type="text/css" media="print" href="https://contentmanager.copernicus.org/2154805/11/ssl" /><script src="https://contentmanager.copernicus.org/1672/11/ssl" type="text/javascript"> </script><script src="https://contentmanager.copernicus.org/1468/11/ssl" type="text/javascript"> </script><script src="https://contentmanager.copernicus.org/402/11/ssl" type="text/javascript"> </script><script src="https://contentmanager.copernicus.org/2154808/11/ssl" type="text/javascript"> </script><!-- END_HEAD --><meta name="global_projectID" content="11" /><meta name="global_pageID" content="215" /><meta name="global_pageIdentifier" content="home" /><meta name="global_moBaseURL" content="https://meetingorganizer.copernicus.org/" /><meta name="global_projectShortcut" content="BG" /><meta name="global_projectDomain" content="https://www.biogeosciences.net/" /> <title>BG - How to measure the efficiency of bioenergy crops compared to forestation</title> <meta name="data-non-mobile-optimized-message" content="" /><script id="networker"> window.isSafari = /^((?!chrome|android).)*safari/i.test(navigator.userAgent); /** * */ function createToastsFunctionality() { const toastsWrapper = $('<div>') .attr('aria-live', 'polite') .attr('aria-atomic', 'true') .addClass('toasts-notifications-wrapper'); $('body').append(toastsWrapper); } function isOS() { return [ 'iPad Simulator', 'iPhone Simulator', 'iPod Simulator', 'iPad', 'iPhone', 'iPod' ].includes(navigator.platform) || (navigator.userAgent.includes("Mac") && "ontouchend" in document) } /** * * @param notificationContent */ function addToast(notificationContent) { const toast = $('<div>').addClass('toast').attr('role', 'alert').attr('aria-live', 'assertive') .attr('aria-atomic', 'true').attr('data-autohide', 'false'); const toastHeader = $('<div>').addClass('toast-header'); const toastHeaderTitle = $('<strong>').addClass('mr-auto').html(notificationContent.title); const toastHeaderCloseButton = $('<button>').addClass('ml-2').addClass('mb-1').addClass('close').attr('type', 'button') .attr('data-dismiss', 'toast'); const toastHeaderCloseIcon = $('<span>').attr('aria-hidden', 'true').html('&times;'); let url = ''; if (notificationContent.hasOwnProperty('url')) { url = notificationContent.url; } else { url = 'https://networker.copernicus.org/my-network'; } const toastBody = $('<div>').addClass('toast-body').html('<a target="_blank" href="' + url + '">' + notificationContent.text + '</a>'); $(toastHeaderCloseButton).append(toastHeaderCloseIcon); $(toastHeader).append(toastHeaderTitle); $(toastHeader).append(toastHeaderCloseButton); $(toast).append(toastHeader); $(toast).append(toastBody); $('.toasts-notifications-wrapper').append(toast); $('.toast').toast('show'); } function coNetworker_sendUsersLocation(location, userHash, publicLabel, projectID, application) { if (templateHasBootstrap()) { createToastsFunctionality(); } userHash = userHash || 'null'; location = location || 'c_content_manager::getProjectTemplateMobileOpt'; publicLabel = publicLabel || ''; if (publicLabel === ''){ publicLabel = location; } if (userHash !== null && userHash.length > 5) { try { if(typeof window.ws === 'undefined' || window.ws === null || !window.ws) { window.ws = new WebSocket('wss://websockets.copernicus.org:8080'); } else { window.ws.close(1000); window.ws = new WebSocket('wss://websockets.copernicus.org:8080'); } const data = { 'type': 'status', 'action': 'start', 'data': { 'userIdentifier': userHash, 'projectID': projectID, 'coApp': application, 'location': location, 'publicLabel': publicLabel } }; if (window.ws === 1) { window.ws.send(JSON.stringify(data)); } else { window.ws.onopen = function (msg) { window.ws.send(JSON.stringify(data)); dispatchEvent(new CustomEvent('loadCommonNetworker')); }; window.ws.onmessage = function (event) { try { const data = JSON.parse(event.data); switch (data.type) { case 'notification': const pushNotificationData = data.data; if (pushNotificationData.hasOwnProperty('user') && pushNotificationData.user.length > 5 && pushNotificationData.user === userHash) { window.showPushNotification(pushNotificationData); } break; } } catch (e) { console.log(e); } } } } catch (e) { console.error(e); } } } window.showPushNotification = function (notificationContent) { showMessage(notificationContent); function showMessage(notificationContent){ if (templateHasBootstrap()) { showBootstrapModal(notificationContent); } } function showBootstrapModal(notificationContent) { const randomId = getRandomInt(100,999); let modal = $('<div>').addClass('modal').attr('id', 'modal-notification' + randomId); let modalDialog = $('<div>').addClass('modal-dialog'); let modalContent = $('<div>').addClass('modal-content'); let modalBody = $('<div>').addClass('modal-body'); let message = $('<div>').addClass('modal-push-message').html('<h3 class="mb-3">' + notificationContent.title + '</h3><p>' + notificationContent.text + '</p>'); let buttonsWrapper = $('<div>').addClass('row'); let buttonsWrapperCol = $('<div>').addClass('col-12').addClass('text-right'); let buttonCancel = $('<button>').addClass('btn').addClass('btn-danger').addClass('mr-2').html('Cancel') let buttonSuccess = $('<button>').addClass('btn').addClass('btn-success').html('OK') $(buttonsWrapper).append(buttonsWrapperCol); $(buttonsWrapperCol).append(buttonCancel); $(buttonsWrapperCol).append(buttonSuccess); $(modalBody).append(message).append(buttonsWrapper); $(modalContent).append(modalBody); $(modalDialog).append(modalContent); $(modal).append(modalDialog); $(buttonCancel).on('click', (event) => { event.preventDefault(); event.stopPropagation(); event.stopImmediatePropagation(); $(modal).modal('hide'); }); $(buttonSuccess).on('click', (event) => { event.preventDefault(); event.stopPropagation(); event.stopImmediatePropagation(); $(modal).modal('hide'); handleOnclickNotification(notificationContent); }); $(modal).modal('show'); setTimeout(() => { dispatchEvent(new CustomEvent('modalLoaded', {'detail': 'modal-notification' + randomId})); }, 1000); } window.addEventListener('modalLoaded', function (event) { setTimeout(() => { $('#' + event.detail).modal('hide'); }, 9000); }); function handleOnclickNotification(notificationContent) { if (notificationContent.hasOwnProperty('withConnect') && notificationContent.withConnect.length > 0) { acceptContactRequest(notificationContent); } if (notificationContent.hasOwnProperty('url')) { if (window.isSafari && isOS()) { window.location.href = notificationContent.url; } else { window.open(notificationContent.url, '_blank').focus(); } } else { if (window.isSafari && isOS()) { window.open('https://networker.copernicus.org/my-network', '_blank'); } else { window.open('https://networker.copernicus.org/my-network', '_blank').focus(); } } } /** * * @param notificationContent */ function acceptContactRequest(notificationContent) { const formData = new FormData(); formData.append('r', notificationContent.userFrom); formData.append('a', 'a'); $.ajax({ url: 'https://networker.copernicus.org/handle-request-job', type: 'POST', data: formData, processData: false, contentType: false, xhrFields: { withCredentials: true }, beforeSend: function () { $('.splash').fadeIn(); $('.lightbox').fadeIn(); } }) .done(function (dataResponse) { const data = JSON.parse(dataResponse); let text = 'Please consider joining the text chat now.'; window.sendPushNotification({ title: window.userDataCommonNetworker.name + ' aims to chat with you.', text: text, user: data.message.userIdentifier, url: notificationContent.url }); $('.splash').fadeOut(); $('.lightbox').fadeOut(); }) .fail(function (error) { $('.splash').fadeOut(); $('.lightbox').fadeOut(); }); } } function templateHasBootstrap() { const bootstrap = document.getElementById('hasBootstrap'); return bootstrap !== null && typeof bootstrap !== 'undefined'; } coNetworker_sendUsersLocation(); dispatchEvent(new CustomEvent('loadCommonNetworker')); function getRandomInt(min, max) { min = Math.ceil(min); max = Math.floor(max); return Math.floor(Math.random() * (max - min + 1)) + min; } </script> <link rel="stylesheet" type="text/css" href="https://cdn.copernicus.org/libraries/photoswipe/4.1/dark-icon-skin/dark-icon-skin.css"> <base href="/"> <link rel="stylesheet" type="text/css" href="https://cdn.copernicus.org/libraries/unsemantic/unsemantic.min.css"> <link rel="stylesheet" type="text/css" href="https://cdn.copernicus.org/libraries/jquery/1.11.1/ui/jquery-ui.min.css"> <link rel="stylesheet" type="text/css" href="https://cdn.copernicus.org/libraries/jquery/1.11.1/ui/jquery-ui-slider-pips.css"> <link rel="stylesheet" type="text/css" href="https://cdn.copernicus.org/libraries/photoswipe/4.1/photoswipe.css"> <link rel="stylesheet" type="text/css" href="https://cdn.copernicus.org/apps/htmlgenerator/css/htmlgenerator.css?v=1"> <meta name="citation_fulltext_world_readable" content=""> <meta name="citation_publisher" content="Copernicus GmbH"/> <meta name="citation_title" content="How to measure the efficiency of bioenergy crops compared to forestation"/> <meta name="citation_abstract" content="&lt;p&gt;&lt;strong class=&quot;journal-contentHeaderColor&quot;&gt;Abstract.&lt;/strong&gt; The climate mitigation potential of terrestrial carbon dioxide removal (tCDR) methods depends critically on the timing and magnitude of their implementation. In our study, we introduce different measures of efficiency to evaluate the carbon removal potential of afforestation and reforestation (AR) and bioenergy with carbon capture and storage (BECCS) under the low-emission scenario SSP1-2.6 and in the same area. We define efficiency as the potential to sequester carbon in the biosphere in a specific area or store carbon in geological reservoirs or woody products within a certain time. In addition to carbon capture and storage (CCS), we consider the effects of fossil fuel substitution (FFS) through the usage of bioenergy for energy production, which increases the efficiency through avoided CO&lt;span class=&quot;inline-formula&quot;&gt;&lt;sub&gt;2&lt;/sub&gt;&lt;/span&gt; emissions.&lt;/p&gt; &lt;p&gt;These efficiency measures reflect perspectives regarding climate mitigation, carbon sequestration, land availability, spatiotemporal dynamics, and the technological progress in FFS and CCS. We use the land component JSBACH3.2 of the Max Planck Institute Earth System Model (MPI-ESM) to calculate the carbon sequestration potential in the biosphere using an updated representation of second-generation bioenergy plants such as &lt;i&gt;Miscanthus&lt;/i&gt;. Our spatially explicit modeling results reveal that, depending on FFS and CCS levels, BECCS sequesters 24–158 GtC by 2100, whereas AR methods sequester around 53 GtC on a global scale, with BECCS having an advantage in the long term. For our specific setup, BECCS has a higher potential in the South American grasslands and southeast Africa, whereas AR methods are more suitable in southeast China. Our results reveal that the efficiency of BECCS to sequester carbon compared to “nature-based solutions” like AR will depend critically on the upscaling of CCS facilities, replacing fossil fuels with bioenergy in the future, the time frame, and the location of tCDR deployment.&lt;/p&gt;"/> <meta name="citation_publication_date" content="2024/11/14"/> <meta name="citation_online_date" content="2024/11/14"/> <meta name="citation_journal_title" content="Biogeosciences"/> <meta name="citation_volume" content="21"/> <meta name="citation_issue" content="22"/> <meta name="citation_issn" content="1726-4170"/> <meta name="citation_doi" content="https://doi.org/10.5194/bg-21-5005-2024"/> <meta name="citation_firstpage" content="5005"/> <meta name="citation_lastpage" content="5025"/> <meta name="citation_author" content="Egerer, Sabine"/> <meta name="citation_author_institution" content="Department of Geography, Ludwig-Maximilians-Universität in Munich, Munich, Germany"/> <meta name="citation_author_orcid" content="0000-0002-7202-578X"> <meta name="citation_author_email" content="sabine.egerer@lmu.de"> <meta name="citation_author" content="Falk, Stefanie"/> <meta name="citation_author_institution" content="Department of Geography, Ludwig-Maximilians-Universität in Munich, Munich, Germany"/> <meta name="citation_author_orcid" content="0000-0002-4552-5455"> <meta name="citation_author" content="Mayer, Dorothea"/> <meta name="citation_author_institution" content="Kuratorium für Waldarbeit und Forstwirtschaft e.V., Groß-Umstadt, Germany"/> <meta name="citation_author_orcid" content="0009-0004-1272-0555"> <meta name="citation_author" content="Nützel, Tobias"/> <meta name="citation_author_institution" content="Department of Geography, Ludwig-Maximilians-Universität in Munich, Munich, Germany"/> <meta name="citation_author_orcid" content="0000-0002-3603-4283"> <meta name="citation_author" content="Obermeier, Wolfgang A."/> <meta name="citation_author_institution" content="Department of Geography, Ludwig-Maximilians-Universität in Munich, Munich, Germany"/> <meta name="citation_author_orcid" content="0000-0002-7094-8011"> <meta name="citation_author" content="Pongratz, Julia"/> <meta name="citation_author_institution" content="Department of Geography, Ludwig-Maximilians-Universität in Munich, Munich, Germany"/> <meta name="citation_author_institution" content="Max Planck Institute for Meteorology, Hamburg, Germany"/> <meta name="citation_author_orcid" content="0000-0003-0372-3960"> <meta name="citation_reference" content="Anderegg, W. R., Trugman, A. T., Badgley, G., Anderson, C. M., Bartuska, A., Ciais, P., Cullenward, D., Field, C. B., Freeman, J., Goetz, S. J., Hicke, J. A., Huntzinger, D., Jackson, R. B., Nickerson, J., Pacala, S., and Randerson, J. T.: Climate-driven risks to the climate mitigation potential of forests, Science, 368, eaaz7005, https://doi.org/10.1126/science.aaz7005, 2020. a"> <meta name="citation_reference" content="Anderegg, W. R., Chegwidden, O. S., Badgley, G., Trugman, A. T., Cullenward, D., Abatzoglou, J. T., Hicke, J. A., Freeman, J., and Hamman, J. J.: Future climate risks from stress, insects and fire across US forests, Ecol. Lett., 25, 1510–1520, https://doi.org/10.1111/ele.14018, 2022. a, b"> <meta name="citation_reference" content="Awty-Carroll, D., Magenau, E., Al Hassan, M., Martani, E., Kontek, M., van der Pluijm, P., Ashman, C., de Maupeou, E., McCalmont, J., Petrie, G. J., Davey, C., van der Cruijsen, K., Jurišić, V., Amaducci, S., Lamy, I., Shepherd, A., Kam, J., Hoogendam, A., Croci, M., Dolstra, O., Ferrarini, A., Lewandowski, I., Trindade, L. M., Kiesel, A., and Clifton-Brown, J.: Yield performance of 14 novel inter- and intra-species Miscanthus hybrids across Europe, GCB Bioenergy, 15, 399–423, https://doi.org/10.1111/gcbb.13026, 2023. a, b"> <meta name="citation_reference" content="Azar, C., Johansson, D. J., and Mattsson, N.: Meeting global temperature targets – The role of bioenergy with carbon capture and storage, Environ. Res. Lett., 8, 034004, https://doi.org/10.1088/1748-9326/8/3/034004, 2013. a"> <meta name="citation_reference" content="Babin, A., Vaneeckhaute, C., and Iliuta, M. C.: Potential and challenges of bioenergy with carbon capture and storage as a carbon-negative energy source: A review, Biomass Bioenerg., 146, 105968, https://doi.org/10.1016/j.biombioe.2021.105968, 2021. a, b"> <meta name="citation_reference" content="Borchers, M., Förster, J., Thrän, D., Beck, S., Thoni, T., Korte, K., Gawel, E., Markus, T., Schaller, R., Rhoden, I., Chi, Y., Dahmen, N., Dittmeyer, R., Dolch, T., Dold, C., Herbst, M., Heß, D., Kalhori, A., Jakobsen, K. K., Li, Z., Oschlies, A., Reusch, T. B. H., Sachs, T., Hattenberger, C. S., Stevenson, A., Wu, J., Yeates, C., and Mengis, N.: A Comprehensive Assessment of Carbon Dioxide Removal Options for Germany Earth' s Future, Earth's Future, 12, 1–23, https://doi.org/10.1029/2023EF003986, 2024. a"> <meta name="citation_reference" content="Boysen, L. R., Lucht, W., Gerten, D., Heck, V., Lenton, T. M., and Schellnhuber, H. J.: The limits to global-warming mitigation by terrestrial carbon removal, Earth's Future, 5, 463–474, https://doi.org/10.1002/2016EF000469, 2017. a, b"> <meta name="citation_reference" content="Braakhekke, M. C., Doelman, J. C., Baas, P., Müller, C., Schaphoff, S., Stehfest, E., and van Vuuren, D. P.: Modeling forest plantations for carbon uptake with the LPJmL dynamic global vegetation model, Earth Syst. Dynam., 10, 617–630, https://doi.org/10.5194/esd-10-617-2019, 2019. a"> <meta name="citation_reference" content="Budinis, S., Krevor, S., Dowell, N. M., Brandon, N., and Hawkes, A.: An assessment of CCS costs, barriers and potential, Energy Strateg. Rev., 22, 61–81, https://doi.org/10.1016/j.esr.2018.08.003, 2018. a"> <meta name="citation_reference" content="Byers, E., Krey, V., Kriegler, E., Riahi, K., Schaeffer, R., Kikstra, J., Lamboll, R., Nicholls, Z., Sandstad, M., Smith, C., van der Wijst, K., Al-Khourdajie, A., Lecocq, F., Portugal-Pereira, J., Saheb, Y., Stromman, A., Winkler, H., Auer, C., Brutschin, E., Gidden, M., Hackstock, P., Harmsen, M., Huppmann, D., Kolp, P., Lepault, C., Lewis, J., Marangoni, G., Müller-Casseres, E., Skeie, R., Werning, M., Calvin, K., Forster, P., Guivarch, C., Hasegawa, T., Meinshausen, M., Pet&lt;span id=&quot;page5022&quot;/&gt;ers, G., Rogelj, J., Samset, B., Steinberger, J., Tavoni, M., and van Vuuren, D.: AR6 Scenarios Database, Zenodo, https://doi.org/10.5281/zenodo.7197970, 2022. a, b"> <meta name="citation_reference" content="Canadell, J., Monteiro, P., Costa, M., da Cunha, L. C., Cox, P., Eliseev, A., Henson, S., Ishii, M., Jaccard, S., Koven, C., Lohila, A., Patra, P., Piao, S., Rogelj, J., Syampungani, S., Zaehle, S., and Zickfeld, K.: Global Carbon and Other Biogeochemical Cycles and Feedbacks, in: Climate Change 2021 – The Physical Science Basiss. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., 673–816, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, ISBN 9781009157896, https://doi.org/10.1017/9781009157896.007, 2021. a"> <meta name="citation_reference" content="Cannell, M. G.: Carbon sequestration and biomass energy offset: Theoretical, potential and achievable capacities globally, in Europe and the UK, Biomass Bioenerg., 24, 97–116, https://doi.org/10.1016/S0961-9534(02)00103-4, 2003. a"> <meta name="citation_reference" content="Cheng, Y., Huang, M., Chen, M., Guan, K., Bernacchi, C., Peng, B., and Tan, Z.: Parameterizing Perennial Bioenergy Crops in Version 5 of the Community Land Model Based on Site-Level Observations in the Central Midwestern United States, J. Adv. Model. Earth Sy., 12, 1–24, https://doi.org/10.1029/2019MS001719, 2020. a, b"> <meta name="citation_reference" content="Cheng, Y., Huang, M., Lawrence, D. M., Calvin, K., Lombardozzi, D. L., Sinha, E., Pan, M., and He, X.: Future bioenergy expansion could alter carbon sequestration potential and exacerbate water stress in the United States, Sci. Adv., 8, 1–14, https://doi.org/10.1126/sciadv.abm8237, 2022. a, b, c, d"> <meta name="citation_reference" content="Cheng, Y., Lawrence, D. M., Pan, M., Zhang, B., Graham, N. T., Lawrence, P. J., Liu, Z., and He, X.: A bioenergy- focused versus a reforestation- focused mitigation pathway yields disparate carbon storage and climate responses, P. Natl. Acad. Sci. USA, 121, 1–11, https://doi.org/10.1073/pnas, 2024. a, b, c, d, e"> <meta name="citation_reference" content="Christian, D. G., Riche, A. B., and Yates, N. E.: Growth, yield and mineral content of Miscanthus x giganteus grown as a biofuel for 14 successive harvests, Industrial Crops and Products, 28, 320–327, https://doi.org/10.1016/j.indcrop.2008.02.009, 2008. a"> <meta name="citation_reference" content="Chum, H., Faaij, A., Moreira, J., Berndes, G., Dhamija, P., Dong, H., Gabrielle, B., Eng, a. G., Cerutti, O. M., Mcintyre, T., Minowa, T., Pingoud, K., Seyboth, K., Matschoss, P., Kadner, S., Zwickel, T., Eickemeier, P., Hansen, G., and Kingdom, U.: SRREN – Chapter 2 – Bioenergy, in: IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation, edited by: Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Matschoss, P., Kadner, S., Zwickel, T., Eickemeier, P., Hansen, G., Schlömer, S., and von Stechow, C., 209–332, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, ISBN 9781107607101, 2011. a, b"> <meta name="citation_reference" content="Clifton-Brown, J., Renvoize, S., Chiang, Y.-C., Ibaragi, Y., Flavell, R., Greef, J., Huang, L., Hsu, T. W., Kim, D.-S., Hastings, A., Schwarz, K., Stampfl, P., Valentine, J., Yamada, T., Xi, Q., and Donnison, I.: Chapter 15: Developing Miscanthus for Bioenergy, in: Energy Crops, edited by: Halford, N. G. and Karp, A., RSC Publishing, https://doi.org/10.1039/9781849732048-00301, 2010. a"> <meta name="citation_reference" content="Clifton-Brown, J., Hastings, A., Mos, M., McCalmont, J. P., Ashman, C., Awty-Carroll, D., Cerazy, J., Chiang, Y. C., Cosentino, S., Cracroft-Eley, W., Scurlock, J., Donnison, I. S., Glover, C., Goła̧b, I., Greef, J. M., Gwyn, J., Harding, G., Hayes, C., Helios, W., Hsu, T. W., Huang, L. S., Jeżowski, S., Kim, D. S., Kiesel, A., Kotecki, A., Krzyzak, J., Lewandowski, I., Lim, S. H., Liu, J., Loosely, M., Meyer, H., Murphy-Bokern, D., Nelson, W., Pogrzeba, M., Robinson, G., Robson, P., Rogers, C., Scalici, G., Schuele, H., Shafiei, R., Shevchuk, O., Schwarz, K. U., Squance, M., Swaller, T., Thornton, J., Truckses, T., Botnari, V., Vizir, I., Wagner, M., Warren, R., Webster, R., Yamada, T., Youell, S., Xi, Q., Zong, J., and Flavell, R.: Progress in upscaling Miscanthus biomass production for the European bio-economy with seed-based hybrids, GCB Bioenergy, 9, 6–17, https://doi.org/10.1111/gcbb.12357, 2017. a, b"> <meta name="citation_reference" content="Creutzig, F.: Economic and ecological views on climate change mitigation with bioenergy and negative emissions, GCB Bioenergy, 8, 4–10, https://doi.org/10.1111/gcbb.12235, 2016. a, b"> <meta name="citation_reference" content="Doelman, J. C., Stehfest, E., van Vuuren, D. P., Tabeau, A., Hof, A. F., Braakhekke, M. C., Gernaat, D. E., van den Berg, M., van Zeist, W. J., Daioglou, V., van Meijl, H., and Lucas, P. L.: Afforestation for climate change mitigation: Potentials, risks and trade-offs, Glob. Change Biol., 26, 1576–1591, https://doi.org/10.1111/gcb.14887, 2020. a"> <meta name="citation_reference" content="Egerer, S.: Scripts to publication 'How to measure the efficiency of bioenergy crops compared to forestation', Zenodo [code], https://doi.org/10.5281/zenodo.13355458, 2024. a"> <meta name="citation_reference" content="Ercoli, L., Mariotti, M., Masoni, A., and Bonari, E.: Effect of irrigation and nitrogen fertilization on biomass yield and efficiency of energy use in crop production of Miscanthus, Field Crop Res., 63, 3–11, https://doi.org/10.1016/S0378-4290(99)00022-2, 1999. a"> <meta name="citation_reference" content="Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a"> <meta name="citation_reference" content="Fisher, R. A., Koven, C. D., Anderegg, W. R., Christoffersen, B. O., Dietze, M. C., Farrior, C. E., Holm, J. A., Hurtt, G. C., Knox, R. G., Lawrence, P. J., Lichstein, J. W., Longo, M., Matheny, A. M., Medvigy, D., Muller-Landau, H. C., Powell, T. L., Serbin, S. P., Sato, H., Shuman, J. K., Smith, B., Trugman, A. T., Viskari, T., Verbeeck, H., Weng, E., Xu, C., Xu, X., Zhang, T., and Moorcroft, P. R.: Vegetation demographics in Earth System Models: A review of progress and priorities, Glob. Change Biol., 24, 35–54, https://doi.org/10.1111/gcb.13910, 2018. a"> <meta name="citation_reference" content="Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Bakker, D. C. E., Hauck, J., Landschützer, P., Le Quéré, C., Luijkx, I. T., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Anthoni, P., Barbero, L., Bates, N. R., Becker, M., Bellouin, N., Decharme, B., Bopp, L., Brasika, I. B. M., Cadule, P., Chamberlain, M. A., Chandra, N., Chau, T.-T.-T., Chevallier, F., Chini, L. P., Cronin, M., Dou, X., Enyo, K., Evans, W., Falk, S., Feely, R. A., Feng, L., Ford, D. J., Gasser, T., Ghattas, J., Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Heinke, J., Houghton, R. A., Hurtt, G. C., Iida, Y., Ilyina, T., Jacobson, A. R., Jain, A., Jarníková, T., Jersild, A., Jiang, F., &lt;span id=&quot;page5023&quot;/&gt;Jin, Z., Joos, F., Kato, E., Keeling, R. F., Kennedy, D., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Körtzinger, A., Lan, X., Lefèvre, N., Li, H., Liu, J., Liu, Z., Ma, L., Marland, G., Mayot, N., McGuire, P. C., McKinley, G. A., Meyer, G., Morgan, E. J., Munro, D. R., Nakaoka, S.-I., Niwa, Y., O'Brien, K. M., Olsen, A., Omar, A. M., Ono, T., Paulsen, M., Pierrot, D., Pocock, K., Poulter, B., Powis, C. M., Rehder, G., Resplandy, L., Robertson, E., Rödenbeck, C., Rosan, T. M., Schwinger, J., Séférian, R., Smallman, T. L., Smith, S. M., Sospedra-Alfonso, R., Sun, Q., Sutton, A. J., Sweeney, C., Takao, S., Tans, P. P., Tian, H., Tilbrook, B., Tsujino, H., Tubiello, F., van der Werf, G. R., van Ooijen, E., Wanninkhof, R., Watanabe, M., Wimart-Rousseau, C., Yang, D., Yang, X., Yuan, W., Yue, X., Zaehle, S., Zeng, J., and Zheng, B.: Global Carbon Budget 2023, Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, 2023. a"> <meta name="citation_reference" content="Frühwirth, P., Graf, A., Humer, M., Hunger, F., Köppl, H., Liebhard, P., and Thumfart, K.: Miscanthus sinensis, 'Giganteus' – Chinaschilf als nachwachsender Rohstoff, Tech. rep., Landwirtschaftskammer Österreich, ISBN 9783902325020, 2006. a"> <meta name="citation_reference" content="Fuss, S., Canadell, J. G., Peters, G. P., Tavoni, M., Andrew, R. M., Ciais, P., Jackson, R. B., Jones, C. D., Kraxner, F., Nakicenovic, N., Le Quéré, C., Raupach, M. R., Sharifi, A., Smith, P., and Yamagata, Y.: Betting on negative emissions, Nat. Clim. Change, 4, 850–853, https://doi.org/10.1038/nclimate2392, 2014. a"> <meta name="citation_reference" content="Fuss, S., Lamb, W. F., Callaghan, M. W., Hilaire, J., Creutzig, F., Amann, T., Beringer, T., De Oliveira Garcia, W., Hartmann, J., Khanna, T., Luderer, G., Nemet, G. F., Rogelj, J., Smith, P., Vicente, J. V., Wilcox, J., Del Mar Zamora Dominguez, M., and Minx, J. C.: Negative emissions – Part 2: Costs, potentials and side effects, Environ. Res. Lett., 13, 063002, https://doi.org/10.1088/1748-9326/aabf9f, 2018. a"> <meta name="citation_reference" content="Gallagher, E.: The Gallagher review of the indirect effects of biofuels production, Tech. Rep. April, Renewable Fuels Agency, https://www.unido.org/sites/default/files/2009-11/Gallagher_Report_0.pdf (last access: 11 November 2024), 2008. a, b"> <meta name="citation_reference" content="Gholami, R., Raza, A., and Iglauer, S.: Leakage risk assessment of a CO2 storage site: A review, Earth-Sci. Rev., 223, 103849, https://doi.org/10.1016/j.earscirev.2021.103849, 2021. a"> <meta name="citation_reference" content="Goll, D. S., Brovkin, V., Liski, J., Raddatz, T., Thum, T., and Todd-Brown, K. E.: Strong dependence of CO2 emissions from anthropogenic land cover change on initial land cover and soil carbon parametrization, Global Biogeochem. Cy., 29, 1511–1523, https://doi.org/10.1002/2014GB004988, 2015. a"> <meta name="citation_reference" content="Griscom, B. W., Adams, J., Ellis, P. W., Houghton, R. A., Lomax, G., Miteva, D. A., Schlesinger, W. H., Shoch, D., Siikamäki, J. V., Smith, P., Woodbury, P., Zganjar, C., Blackman, A., Campari, J., Conant, R. T., Delgado, C., Gopalakrishna, T., Hamsik, M. R., Herrero, M., Kiesecker, J., Landis, E., Laestadius, L., Leavitt, S. M., Polasky, S., Potapov, P., Putz, F. E., Sanderman, J., Silvius, M., Wollenberg, E., and Fargione, J.: Natural climate solutions, P. Natl. Acad. Sci. USA, 114, 11645–11650, https://doi.org/10.1073/pnas.1710465114, 2017. a"> <meta name="citation_reference" content="Gutjahr, O., Putrasahan, D., Lohmann, K., Jungclaus, J. H., von Storch, J.-S., Brüggemann, N., Haak, H., and Stössel, A.: Max Planck Institute Earth System Model (MPI-ESM1.2) for the High-Resolution Model Intercomparison Project (HighResMIP), Geosci. Model Dev., 12, 3241–3281, https://doi.org/10.5194/gmd-12-3241-2019, 2019. a"> <meta name="citation_reference" content="Hanssen, S. V., Steinmann, Z. J., Daioglou, V., Čengić, M., Van Vuuren, D. P., and Huijbregts, M. A.: Global implications of crop-based bioenergy with carbon capture and storage for terrestrial vertebrate biodiversity, GCB Bioenergy, 14, 307–321, https://doi.org/10.1111/gcbb.12911, 2022. a"> <meta name="citation_reference" content="Harper, A. B., Powell, T., Cox, P. M., House, J., Huntingford, C., Lenton, T. M., Sitch, S., Burke, E., Chadburn, S. E., Collins, W. J., Comyn-Platt, E., Daioglou, V., Doelman, J. C., Hayman, G., Robertson, E., van Vuuren, D., Wiltshire, A., Webber, C. P., Bastos, A., Boysen, L., Ciais, P., Devaraju, N., Jain, A. K., Krause, A., Poulter, B., and Shu, S.: Land-use emissions play a critical role in land-based mitigation for Paris climate targets, Nat. Commun., 9, 2938, https://doi.org/10.1038/s41467-018-05340-z, 2018. a, b, c, d, e, f"> <meta name="citation_reference" content="Hempel, S., Frieler, K., Warszawski, L., Schewe, J., and Piontek, F.: A trend-preserving bias correction – the ISI-MIP approach, Earth Syst. Dynam., 4, 219–236, https://doi.org/10.5194/esd-4-219-2013, 2013. a"> <meta name="citation_reference" content="Humpenöder, F., Popp, A., Bodirsky, B. L., Weindl, I., Biewald, A., Lotze-Campen, H., Dietrich, J. P., Klein, D., Kreidenweis, U., Müller, C., Rolinski, S., and Stevanovic, M.: Large-scale bioenergy production: How to resolve sustainability trade-offs?, Environ. Res. Lett., 13, 024011, https://doi.org/10.1088/1748-9326/aa9e3b, 2018. a, b"> <meta name="citation_reference" content="Hurtt, G. C., Chini, L., Sahajpal, R., Frolking, S., Bodirsky, B. L., Calvin, K., Doelman, J. C., Fisk, J., Fujimori, S., Klein Goldewijk, K., Hasegawa, T., Havlik, P., Heinimann, A., Humpenöder, F., Jungclaus, J., Kaplan, J. O., Kennedy, J., Krisztin, T., Lawrence, D., Lawrence, P., Ma, L., Mertz, O., Pongratz, J., Popp, A., Poulter, B., Riahi, K., Shevliakova, E., Stehfest, E., Thornton, P., Tubiello, F. N., van Vuuren, D. P., and Zhang, X.: Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6, Geosci. Model Dev., 13, 5425–5464, https://doi.org/10.5194/gmd-13-5425-2020, 2020. a, b, c, d, e"> <meta name="citation_reference" content="IPCC Working Group III: Climate change 2022: Mitigation of Climate Change, Full Report, Tech. Rep. 1, Cambridge, UK and New York, NY, US, ISBN 9789291691609, https://doi.org/10.18356/9789210012973c007, 2022a. a, b"> <meta name="citation_reference" content="IPCC Working Group III: Climate Change 2022: Mitigation of Climate Change, Summary for Policymakers, Tech. Rep. 1, Cambridge, United Kingdom and New York, NY, USA, ISBN 9781107415416, 2022b. a, b, c, d"> <meta name="citation_reference" content="IPCC Working Group III: Climate Change 2022 – Mitigation of Climate Change, Technical Summary, Tech. Rep. 1, ISBN 9781107415416, 2022c. a, b, c"> <meta name="citation_reference" content="Jayakrishnan, K. U. and Bala, G.: A comparison of the climate and carbon cycle effects of carbon removal by afforestation and an equivalent reduction in fossil fuel emissions, Biogeosciences, 20, 1863–1877, https://doi.org/10.5194/bg-20-1863-2023, 2023. a"> <meta name="citation_reference" content="Jönsson, J.: Historical perspectives on forestry science and monocultures: Ideas of rationality in Sweden during the early twentieth century, Ambio, 53, 933–940, https://doi.org/10.1007/s13280-024-01987-9, 2024. a"> <meta name="citation_reference" content="Kalt, G., Mayer, A., Theurl, M. C., Lauk, C., Erb, K. H., and Haberl, H.: Natural climate solutions versus bioenergy: Can carbon benefits of natural succession compete with bioenergy from short rotation coppice?, GCB Bioenergy, 11, 1283–1297, https://doi.org/10.1111/gcbb.12626, 2019. a, b, c"> <meta name="citation_reference" content="Klein Goldewijk, K., Dekker, S. C., and van Zanden, J. L.: Per-capita estimations of long-term historical land use and the consequences for global change research, Journal of Land Use Science, 12, 313–337, https://doi.org/10.1080/1747423X.2017.1354938, 2017. a"> <meta name="citation_reference" content="Krause, A., Pugh, T. A. M., Bayer, A. D., Doelman, J. C., Humpenöder, F., Anthoni, P., Olin, S., Bodirsky, B. L., Popp, A., Stehfest, E., and Arneth, A.: Global consequences of afforestation and bioenergy cultivation on ecosystem service indicators, Biogeosciences, 14, 4829–4850, https://doi.org/10.5194/bg-14-4829-2017, 2017. a, b, c"> <meta name="citation_reference" content="Krause, A., Pugh, T. A., Bayer, A. D., Li, W., Leung, F., Bondeau, A., Doelman, J. C., Humpenöder, F., Anthoni, P., Bodirsky, B. L., Ciais, P., Müller, C., Murray-Tortarolo, G., Olin, S., Popp, A., Sitch, S., Stehfest, E., and Arneth, A.: Large uncertainty in carbon uptake potential of land-based climate-change mitigation efforts, Glob. Change Biol., 24, 3025–3038, https://doi.org/10.1111/gcb.14144, 2018. a, b, c, d"> <meta name="citation_reference" content="Lange, S. and Büchner, M.: ISIMIP3b bias-adjusted atmospheric climate input data, ISIMIP Repository [data set], https://doi.org/10.48364/ISIMIP.842396.1, 2021. a, b"> <meta name="citation_reference" content="Lasslop, G., Thonicke, K., and Kloster, S.: Journal of Advances in Modeling Earth Systems, J. Adv. Model. Earth Sy., 6, 740–755, https://doi.org/10.1002/2013MS000284, 2014. a"> <meta name="citation_reference" content="Lawrence, D. M., Hurtt, G. C., Arneth, A., Brovkin, V., Calvin, K. V., Jones, A. D., Jones, C. D., Lawrence, P. J., de Noblet-Ducoudré, N., Pongratz, J., Seneviratne, S. I., and Shevliakova, E.: The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: rationale and experimental design, Geosci. Model Dev., 9, 2973–2998, https://doi.org/10.5194/gmd-9-2973-2016, 2016. a"> <meta name="citation_reference" content="LeBauer, D., Kooper, R., Mulrooney, P., Rohde, S., Wang, D., Long, S. P., and Dietze, M. C.: BETYdb: a yield, trait, and ecosystem service database applied to second-generation bioenergy feedstock production, GCB Bioenergy, 10, 61–71, https://doi.org/10.1111/gcbb.12420, 2018. a, b"> <meta name="citation_reference" content="Li, W., Ciais, P., Makowski, D., and Peng, S.: Data descriptor: A global yield dataset for major lignocellulosic bioenergy crops based on field measurements, Sci. Data, 5, 1–10, https://doi.org/10.1038/sdata.2018.169, 2018a. a, b, c, d, e, f, g, h, i, j"> <meta name="citation_reference" content="Li, W., Yue, C., Ciais, P., Chang, J., Goll, D., Zhu, D., Peng, S., and Jornet-Puig, A.: ORCHIDEE-MICT-BIOENERGY: an attempt to represent the production of lignocellulosic crops for bioenergy in a global vegetation model, Geosci. Model Dev., 11, 2249–2272, https://doi.org/10.5194/gmd-11-2249-2018, 2018b. a, b, c, d"> <meta name="citation_reference" content="Li, W., Ciais, P., Makowski, D., and Peng, S.: A global yield dataset for major lignocellulosic bioenergy crops based on field measurements, Figshare [data set], https://doi.org/10.6084/m9.figshare.c.3951967, 2018c. a, b"> <meta name="citation_reference" content="Li, W., Ciais, P., Han, M., Zhao, Q., Chang, J., Goll, D. S., Zhu, L., and Wang, J.: Bioenergy Crops for Low Warming Targets Require Half of the Present Agricultural Fertilizer Use, Environ. Sci. Technol., 55, 10654–10661, https://doi.org/10.1021/acs.est.1c02238, 2021. a, b"> <meta name="citation_reference" content="Littleton, E. W., Harper, A. B., Vaughan, N. E., Oliver, R. J., Duran-Rojas, M. C., and Lenton, T. M.: JULES-BE: representation of bioenergy crops and harvesting in the Joint UK Land Environment Simulator vn5.1, Geosci. Model Dev., 13, 1123–1136, https://doi.org/10.5194/gmd-13-1123-2020, 2020. a, b, c, d, e, f, g"> <meta name="citation_reference" content="Longato, D., Gaglio, M., Boschetti, M., and Gissi, E.: Bioenergy and ecosystem services trade-offs and synergies in marginal agricultural lands: A remote-sensing-based assessment method, J. Clean. Prod., 237, 117672, https://doi.org/10.1016/j.jclepro.2019.117672, 2019. a"> <meta name="citation_reference" content="Luyssaert, S., Schulze, E. D., Börner, A., Knohl, A., Hessenmöller, D., Law, B. E., Ciais, P., and Grace, J.: Old-growth forests as global carbon sinks, Nature, 455, 213–215, https://doi.org/10.1038/nature07276, 2008. a"> <meta name="citation_reference" content="Luyssaert, S., Schulze, E.-D., Knohl, A., Law, B. E., Grace, P. C., and Grace, J.: Reply to: Old-growth forest carbon sinks overestimated, Nature, 591, E24–E25, https://doi.org/10.1038/s41586-021-03267-y, 2021. a"> <meta name="citation_reference" content="Matthews, H. D., Zickfeld, K., Dickau, M., MacIsaac, A. J., Mathesius, S., Nzotungicimpaye, C. M., and Luers, A.: Temporary nature-based carbon removal can lower peak warming in a well-below 2 °C scenario, Commun. Environ., 3, 1–8, https://doi.org/10.1038/s43247-022-00391-z, 2022. a"> <meta name="citation_reference" content="Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R., Brovkin, V., Claussen, M., Crueger, T., Esch, M., Fast, I., Fiedler, S., Fläschner, D., Gayler, V., Giorgetta, M., Goll, D. S., Haak, H., Hagemann, S., Hedemann, C., Hohenegger, C., Ilyina, T., Jahns, T., Jimenéz-de-la Cuesta, D., Jungclaus, J., Kleinen, T., Kloster, S., Kracher, D., Kinne, S., Kleberg, D., Lasslop, G., Kornblueh, L., Marotzke, J., Matei, D., Meraner, K., Mikolajewicz, U., Modali, K., Möbis, B., Müller, W. A., Nabel, J. E., Nam, C. C., Notz, D., Nyawira, S. S., Paulsen, H., Peters, K., Pincus, R., Pohlmann, H., Pongratz, J., Popp, M., Raddatz, T. J., Rast, S., Redler, R., Reick, C. H., Rohrschneider, T., Schemann, V., Schmidt, H., Schnur, R., Schulzweida, U., Six, K. D., Stein, L., Stemmler, I., Stevens, B., von Storch, J. S., Tian, F., Voigt, A., Vrese, P., Wieners, K. H., Wilkenskjeld, S., Winkler, A., and Roeckner, E.: Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and Its Response to Increasing CO2, J. Adv. Model. Earth Sy., 11, 998–1038, https://doi.org/10.1029/2018MS001400, 2019. a"> <meta name="citation_reference" content="May, M. M. and Rehfeld, K.: Negative Emissions as the New Frontier of Photoelectrochemical CO2 Reduction, Adv. Energy Mater., 12, 1–6, https://doi.org/10.1002/aenm.202103801, 2022. a"> <meta name="citation_reference" content="Mayer, D.: Potentials and side-effects of herbaceous biomass plantations for climate change mitigation, PhD thesis, Universität Hamburg, https://doi.org/10.17617/2.2479582, 2017. a, b, c, d, e, f, g, h, i, j"> <meta name="citation_reference" content="Meehl, G. A., Senior, C. A., Eyring, V., Flato, G., Lamarque, J. F., Stouffer, R. J., Taylor, K. E., and Schlund, M.: Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models, Sci. Adv., 6, 1–10, https://doi.org/10.1126/sciadv.aba1981, 2020. a"> <meta name="citation_reference" content="Meinshausen, M., Nicholls, Z. R. J., Lewis, J., Gidden, M. J., Vogel, E., Freund, M., Beyerle, U., Gessner, C., Nauels, A., Bauer, N., Canadell, J. G., Daniel, J. S., John, A., Krummel, P. B., Luderer, G., Meinshausen, N., Montzka, S. A., Rayner, P. J., Reimann, S., Smith, S. J., van den Berg, M., Velders, G. J. M., Vollmer, M. K., and Wang, R. H. J.: The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500, Geosci. Model Dev., 13, 3571–3605, https://doi.org/10.5194/gmd-13-3571-2020, 2020. a"> <meta name="citation_reference" content="Melnikova, I., Boucher, O., Cadule, P., Tanaka, K., Gasser, T., Hajima, T., Quilcaille, Y., Shiogama, H., Séférian, R., Tachiiri, &lt;span id=&quot;page5025&quot;/&gt;K., Vuichard, N., Yokohata, T., and Ciais, P.: Impact of bioenergy crop expansion on climate–carbon cycle feedbacks in overshoot scenarios, Earth Syst. Dynam., 13, 779–794, https://doi.org/10.5194/esd-13-779-2022, 2022. a, b, c, d"> <meta name="citation_reference" content="Melnikova, I., Ciais, P., Vuichard, N., and Boucher, O.: Relative benefits of allocating land to bioenergy crops and forests vary by region, Commun. Earth Environ., 4, 1–12, https://doi.org/10.1038/s43247-023-00866-7, 2023. a, b, c, d, e"> <meta name="citation_reference" content="Meyer, M. H., Paul, J., and Anderson, N. O.: Competive ability of invasive Miscanthus biotypes with aggressive switchgrass, Biol. Invasions, 12, 3809–3816, https://doi.org/10.1007/s10530-010-9773-0, 2010. a"> <meta name="citation_reference" content="Muri, H.: The role of large – Scale BECCS in the pursuit of the 1.5 °C target: An Earth system model perspective, Environ. Res. Lett., 13, 044010, https://doi.org/10.1088/1748-9326/aab324, 2018. a"> <meta name="citation_reference" content="Nabel, J. E. M. S., Naudts, K., and Pongratz, J.: Accounting for forest age in the tile-based dynamic global vegetation model JSBACH4 (4.20p7; git feature/forests) – a land surface model for the ICON-ESM, Geosci. Model Dev., 13, 185–200, https://doi.org/10.5194/gmd-13-185-2020, 2020. a"> <meta name="citation_reference" content="Naidu, S. L. and Long, S. P.: Potential mechanisms of low-temperature tolerance of C4 photosynthesis in Miscanthus × giganteus: An in vivo analysis, Planta, 220, 145–155, https://doi.org/10.1007/s00425-004-1322-6, 2004. a"> <meta name="citation_reference" content="Nützel, T.: Calculation of parameter values based on observations for the herbaceous biomass plantation PFT representing Miscanthus in JSBACH3.2, Zenodo [data set], https://doi.org/10.5281/zenodo.11193881, 2024. a"> <meta name="citation_reference" content="Obermeier, W. A., Nabel, J. E. M. S., Loughran, T., Hartung, K., Bastos, A., Havermann, F., Anthoni, P., Arneth, A., Goll, D. S., Lienert, S., Lombardozzi, D., Luyssaert, S., McGuire, P. C., Melton, J. R., Poulter, B., Sitch, S., Sullivan, M. O., Tian, H., Walker, A. P., Wiltshire, A. J., Zaehle, S., and Pongratz, J.: Modelled land use and land cover change emissions – a spatio-temporal comparison of different approaches, Earth Syst. Dynam., 12, 635–670, https://doi.org/10.5194/esd-12-635-2021, 2021. a"> <meta name="citation_reference" content="Pongratz, J., Schwingshackl, C., Bultan, S., Obermeier, W., Havermann, F., and Guo, S.: Land Use Effects on Climate: Current State, Recent Progress, and Emerging Topics, Current Climate Change Reports, 7, 99–120, https://doi.org/10.1007/s40641-021-00178-y, 2021. a"> <meta name="citation_reference" content="Pugh, T. A., Lindeskog, M., Smith, B., Poulter, B., Arneth, A., Haverd, V., and Calle, L.: Role of forest regrowth in global carbon sink dynamics, P. Natl. Acad. Sci. USA, 116, 4382–4387, https://doi.org/10.1073/pnas.1810512116, 2019. a"> <meta name="citation_reference" content="Raddatz, T. J., Reick, C. H., Knorr, W., Kattge, J., Roeckner, E., Schnur, R., Schnitzler, K. G., Wetzel, P., and Jungclaus, J.: Will the tropical land biosphere dominate the climate-carbon cycle feedback during the twenty-first century?, Clim. Dynam., 29, 565–574, https://doi.org/10.1007/s00382-007-0247-8, 2007. a"> <meta name="citation_reference" content="Reick, C. H., Raddatz, T., Brovkin, V., and Gayler, V.: Representation of natural and anthropogenic land cover change in MPI-ESM, J. Adv. Model. Earth Sy., 5, 459–482, https://doi.org/10.1002/jame.20022, 2013. a"> <meta name="citation_reference" content="Reick, C. H., Gayler, V., Goll, D., Hagemann, S., Heidkamp, M., Nabel, J. E. M. S., Raddatz, T., Roeckner, E., Schnur, R., and Wilkenskjeld, S.: JSBACH 3 – The land component of the MPI Earth System Model: documentation of version 3.2, Berichte zur Erdsystemforschung, 240, https://doi.org/10.17617/2.3279802, 2021. a"> <meta name="citation_reference" content="Reiner, D. M.: Learning through a portfolio of carbon capture and storage demonstration projects, Nat. Energ., 1, 1–7, https://doi.org/10.1038/nenergy.2015.11, 2016. a"> <meta name="citation_reference" content="Roe, S., Streck, C., Obersteiner, M., Frank, S., Griscom, B., Drouet, L., Fricko, O., Gusti, M., Harris, N., Hasegawa, T., Hausfather, Z., Havlík, P., House, J., Nabuurs, G. J., Popp, A., Sánchez, M. J. S., Sanderman, J., Smith, P., Stehfest, E., and Lawrence, D.: Contribution of the land sector to a 1.5 °C world, Nat. Clim. Change, 9, 817–828, https://doi.org/10.1038/s41558-019-0591-9, 2019. a, b, c, d, e"> <meta name="citation_reference" content="Rose, S. K., Kriegler, E., Bibas, R., Calvin, K., Popp, A., van Vuuren, D. P., and Weyant, J.: Bioenergy in energy transformation and climate management, Climatic Change, 123, 477–493, https://doi.org/10.1007/s10584-013-0965-3, 2014. a"> <meta name="citation_reference" content="Schulzweida, U.: CDO User Guide (2.3.0), Zenodo, Tech. rep., https://doi.org/10.5281/zenodo.10020800, 2023. a"> <meta name="citation_reference" content="Searchinger, T., James, O., Dumas, P., Kastner, T., and Wirsenius, S.: EU climate plan sacrifices carbon storage and biodiversity for bioenergy, Nature, 612, 27–30, https://doi.org/10.1038/d41586-022-04133-1, 2022. a"> <meta name="citation_reference" content="Searchinger, T. D., Wirsenius, S., Beringer, T., and Dumas, P.: Assessing the efficiency of changes in land use for mitigating climate change, Nature, 564, 249–253, https://doi.org/10.1038/s41586-018-0757-z, 2018. a"> <meta name="citation_reference" content="Seidl, R., Thom, D., Kautz, M., Martin-Benito, D., Peltoniemi, M., Vacchiano, G., Wild, J., Ascoli, D., Petr, M., Honkaniemi, J., Lexer, M. J., Trotsiuk, V., Mairota, P., Svoboda, M., Fabrika, M., Nagel, T. A., and Reyer, C. P.: Forest disturbances under climate change, Nat. Clim. Change, 7, 395–402, https://doi.org/10.1038/nclimate3303, 2017. a"> <meta name="citation_reference" content="Seo, B., Brown, C., Lee, H., and Rounsevell, M.: Bioenergy in Europe is unlikely to make a timely contribution to climate change targets, Environ. Res. Lett., 19, 044004, https://doi.org/10.1088/1748-9326/ad2d11, 2024. a, b"> <meta name="citation_reference" content="Sharma, B., Kumar, J., Ganguly, A. R., and Hoffman, F. M.: Carbon cycle extremes accelerate weakening of the land carbon sink in the late 21st century, Biogeosciences, 20, 1829–1841, https://doi.org/10.5194/bg-20-1829-2023, 2023. a"> <meta name="citation_reference" content="Smith, P., Davis, S. J., Creutzig, F., Fuss, S., Minx, J., Gabrielle, B., Kato, E., Jackson, R. B., Cowie, A., Kriegler, E., Van Vuuren, D. P., Rogelj, J., Ciais, P., Milne, J., Canadell, J. G., McCollum, D., Peters, G., Andrew, R., Krey, V., Shrestha, G., Friedlingstein, P., Gasser, T., Grübler, A., Heidug, W. K., Jonas, M., Jones, C. D., Kraxner, F., Littleton, E., Lowe, J., Moreira, J. R., Nakicenovic, N., Obersteiner, M., Patwardhan, A., Rogner, M., Rubin, E., Sharifi, A., Torvanger, A., Yamagata, Y., Edmonds, J., and Yongsung, C.: Biophysical and economic limits to negative CO2 emissions, Nat. Clim. Change, 6, 42–50, https://doi.org/10.1038/nclimate2870, 2016. a, b"> <meta name="citation_reference" content="Smith, S. M., Geden, O., Minx, J. C., and Nemet, G. F.: The State of Carbon Dioxide Removal, 1st Edn., Tech. rep., OSF, ISBN 9781119130536, https://doi.org/10.17605/OSF.IO/W3B4Z, 2023. a, b, c, d, e"> <meta name="citation_reference" content="Smith, S. M., Geden, O., Gidden, M. J., Lamb, W. F., Nemet, G. F., Minx, J. C., Buck, H., Burke, J., Cox, E., Edwards, M. R., Fuss, S., Johnstone, I., Müller-Hansen, F., Pongratz, J., Probst, B. S., Roe, S., Schenuit&lt;span id=&quot;page5026&quot;/&gt;, F., Schulte, I., and Vaughan, N. E. E.: The State of Carbon Dioxide Removal, 2nd Edn., Tech. rep., OSF, https://doi.org/10.17605/OSF.IO/F85QJ, 2024. a"> <meta name="citation_reference" content="Soimakallio, S., Kalliokoski, T., Lehtonen, A., and Salminen, O.: On the trade-offs and synergies between forest carbon sequestration and substitution, Mitig. Adapt. Strat. Gl., 26, 1–17, https://doi.org/10.1007/s11027-021-09942-9, 2021. a"> <meta name="citation_reference" content="Sonntag, S., Pongratz, J., Reick, C. H., and Schmidt, H.: Reforestation in a high-CO2 world – Higher mitigation potential than expected, lower adaptation potential than hoped for, Geophys. Res. Lett., 43, 6546–6553, https://doi.org/10.1002/2016GL068824, 2016. a, b, c"> <meta name="citation_reference" content="Stehfest, E., van Vuuren, D., Kram, T., and Bouwman, L.: Integrated Assessment of Global Environmental Change with IMAGE 3.0: Model description and policy applications, PBL Netherlands Environmental Assessment Agency, ISBN 978-94-91506-71-0, 2014. a"> <meta name="citation_reference" content="Terlouw, T., Bauer, C., Rosa, L., and Mazzotti, M.: Life cycle assessment of carbon dioxide removal technologies: A critical review, Energy and Environmental Science, 14, 1701–1721, https://doi.org/10.1039/d0ee03757e, 2021. a"> <meta name="citation_reference" content="Thonicke, K., Spessa, A., Prentice, I. C., Harrison, S. P., Dong, L., and Carmona-Moreno, C.: The influence of vegetation, fire spread and fire behaviour on biomass burning and trace gas emissions: results from a process-based model, Biogeosciences, 7, 1991–2011, https://doi.org/10.5194/bg-7-1991-2010, 2010. a"> <meta name="citation_reference" content="Tudge, S. J., Purvis, A., and De Palma, A.: The impacts of biofuel crops on local biodiversity: a global synthesis, Biodivers. Conserv., 30, 2863–2883, https://doi.org/10.1007/s10531-021-02232-5, 2021. a"> <meta name="citation_reference" content="van Vuuren, D. P., Stehfest, E., Gernaat, D. E., Doelman, J. C., van den Berg, M., Harmsen, M., de Boer, H. S., Bouwman, L. F., Daioglou, V., Edelenbosch, O. Y., Girod, B., Kram, T., Lassaletta, L., Lucas, P. L., van Meijl, H., Müller, C., van Ruijven, B. J., van der Sluis, S., and Tabeau, A.: Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm, Glob. Environ. Change, 42, 237–250, https://doi.org/10.1016/j.gloenvcha.2016.05.008, 2017. a, b, c, d, e, f, g, h"> <meta name="citation_reference" content="Vaughan, N. E. and Gough, C.: Synthesising existing knowledge on feasibility of BECCS: Workshop Report, Tech. Rep. 1104872, AVOID 2, 2015.  a"> <meta name="citation_reference" content="Veldman, J. W., Overbeck, G. E., Negreiros, D., Mahy, G., Le Stradic, S., Fernandes, G. W., Durigan, G., Buisson, E., Putz, F. E., and Bond, W. J.: Where Tree Planting and Forest Expansion are Bad for Biodiversity and Ecosystem Services, BioScience, 65, 1011–1018, https://doi.org/10.1093/biosci/biv118, 2015. a"> <meta name="citation_reference" content="Wang, J., Ciais, P., Gasser, T., Chang, J., Tian, H., Zhao, Z., Zhu, L., Li, Z., and Li, W.: Temperature Changes Induced by Biogeochemical and Biophysical Effects of Bioenergy Crop Cultivation, Environ. Sci. Technol., 57, 2474–2483, https://doi.org/10.1021/acs.est.2c05253, 2023. a, b"> <meta name="citation_reference" content="Weber, J., King, J. A., Abraham, N. L., Grosvenor, D. P., Smith, C. J., Shin, Y. M., Lawrence, P., Roe, S., Beerling, D. J., and Martin, M. V.: Chemistry-albedo feedbacks offset up to a third of forestation's CO2 removal benefits, Science, 383, 860–864, https://doi.org/10.1126/science.adg6196, 2024. a"> <meta name="citation_reference" content="Weedon, G. P., Balsamo, G., Bellouin, N., Gomes, S., Best, M. J., and Viterbo, P.: Data methodology applied to ERA-Interim reanalysis data, Water Resour. Res., 50, 7505–7514, https://doi.org/10.1002/2014WR015638, 2014. a"> <meta name="citation_reference" content="Wilkenskjeld, S., Kloster, S., Pongratz, J., Raddatz, T., and Reick, C. H.: Comparing the influence of net and gross anthropogenic land-use and land-cover changes on the carbon cycle in the MPI-ESM, Biogeosciences, 11, 4817–4828, https://doi.org/10.5194/bg-11-4817-2014, 2014. a"> <meta name="citation_reference" content="Winckler, J., Lejeune, Q., Reick, C. H., and Pongratz, J.: Nonlocal Effects Dominate the Global Mean Surface Temperature Response to the Biogeophysical Effects of Deforestation, Geophys. Res. Lett., 46, 745–755, https://doi.org/10.1029/2018GL080211, 2019. a"> <meta name="citation_reference" content="Zhao, X., Mignone, B. K., Wise, M. A., and McJeon, H. C.: Trade-offs in land-based carbon removal measures under 1.5 °C and 2 °C futures, Nat. Commun., 15, 2297, https://doi.org/10.1038/s41467-024-46575-3, 2024. a"> <meta name="citation_reference" content="Zhuang, Q., Qin, Z., and Chen, M.: Biofuel, land and water: Maize, switchgrass or Miscanthus?, Environ. Res. Lett., 8, 015020, https://doi.org/10.1088/1748-9326/8/1/015020, 2013. a"> <meta name="citation_funding_source" content="citation_funder=Bundesministerium für Bildung und Forschung;citation_funder_id=501100002347;citation_grant_number=01LS2102A"> <meta name="citation_pdf_url" content="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024.pdf"/> <meta name="citation_xml_url" content="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024.xml"/> <meta name="fulltext_pdf" content="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024.pdf"/> <meta name="citation_language" content="English"/> <meta name="libraryUrl" content="https://bg.copernicus.org/articles/"/> <meta property="og:image" content="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-avatar-web.png"/> <meta property="og:title" content="How to measure the efficiency of bioenergy crops compared to forestation"> <meta property="og:description" content="Abstract. The climate mitigation potential of terrestrial carbon dioxide removal (tCDR) methods depends critically on the timing and magnitude of their implementation. In our study, we introduce different measures of efficiency to evaluate the carbon removal potential of afforestation and reforestation (AR) and bioenergy with carbon capture and storage (BECCS) under the low-emission scenario SSP1-2.6 and in the same area. We define efficiency as the potential to sequester carbon in the biosphere in a specific area or store carbon in geological reservoirs or woody products within a certain time. In addition to carbon capture and storage (CCS), we consider the effects of fossil fuel substitution (FFS) through the usage of bioenergy for energy production, which increases the efficiency through avoided CO2 emissions. These efficiency measures reflect perspectives regarding climate mitigation, carbon sequestration, land availability, spatiotemporal dynamics, and the technological progress in FFS and CCS. We use the land component JSBACH3.2 of the Max Planck Institute Earth System Model (MPI-ESM) to calculate the carbon sequestration potential in the biosphere using an updated representation of second-generation bioenergy plants such as Miscanthus. Our spatially explicit modeling results reveal that, depending on FFS and CCS levels, BECCS sequesters 24–158 GtC by 2100, whereas AR methods sequester around 53 GtC on a global scale, with BECCS having an advantage in the long term. For our specific setup, BECCS has a higher potential in the South American grasslands and southeast Africa, whereas AR methods are more suitable in southeast China. Our results reveal that the efficiency of BECCS to sequester carbon compared to “nature-based solutions” like AR will depend critically on the upscaling of CCS facilities, replacing fossil fuels with bioenergy in the future, the time frame, and the location of tCDR deployment."> <meta property="og:url" content="https://bg.copernicus.org/articles/21/5005/2024/"> <meta property="twitter:image" content="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-avatar-web.png"/> <meta name="twitter:card" content="summary_large_image"> <meta name="twitter:title" content="How to measure the efficiency of bioenergy crops compared to forestation"> <meta name="twitter:description" content="Abstract. The climate mitigation potential of terrestrial carbon dioxide removal (tCDR) methods depends critically on the timing and magnitude of their implementation. In our study, we introduce different measures of efficiency to evaluate the carbon removal potential of afforestation and reforestation (AR) and bioenergy with carbon capture and storage (BECCS) under the low-emission scenario SSP1-2.6 and in the same area. We define efficiency as the potential to sequester carbon in the biosphere in a specific area or store carbon in geological reservoirs or woody products within a certain time. In addition to carbon capture and storage (CCS), we consider the effects of fossil fuel substitution (FFS) through the usage of bioenergy for energy production, which increases the efficiency through avoided CO2 emissions. These efficiency measures reflect perspectives regarding climate mitigation, carbon sequestration, land availability, spatiotemporal dynamics, and the technological progress in FFS and CCS. We use the land component JSBACH3.2 of the Max Planck Institute Earth System Model (MPI-ESM) to calculate the carbon sequestration potential in the biosphere using an updated representation of second-generation bioenergy plants such as Miscanthus. Our spatially explicit modeling results reveal that, depending on FFS and CCS levels, BECCS sequesters 24–158 GtC by 2100, whereas AR methods sequester around 53 GtC on a global scale, with BECCS having an advantage in the long term. For our specific setup, BECCS has a higher potential in the South American grasslands and southeast Africa, whereas AR methods are more suitable in southeast China. Our results reveal that the efficiency of BECCS to sequester carbon compared to “nature-based solutions” like AR will depend critically on the upscaling of CCS facilities, replacing fossil fuels with bioenergy in the future, the time frame, and the location of tCDR deployment."> <link rel="icon" href="https://www.biogeosciences.net/favicon.ico" type="image/x-icon"/> <script type="text/javascript" src="https://cdn.copernicus.org/libraries/jquery/1.11.1/ui/jquery-ui.min.js"></script> <script type="text/javascript" src="https://cdn.copernicus.org/libraries/jquery/1.11.1/ui/jquery-ui-slider-pips.js"></script> <script type="text/javascript" src="https://cdn.copernicus.org/libraries/jquery/1.11.1/ui/template_jquery-ui-touch.min.js"></script> <script type="text/javascript" src="https://cdn.copernicus.org/js/respond.js"></script> <script type="text/javascript" src="https://cdn.copernicus.org/libraries/highstock/2.0.4/highstock.js"></script> <script type="text/javascript" src="https://cdn.copernicus.org/apps/htmlgenerator/js/CoPublisher.js"></script> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ "HTML-CSS": { fonts: ["TeX"] ,linebreaks: { automatic: true, width: "90% container" } } }); </script> <script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=MML_HTMLorMML-full"></script> <script type="text/javascript" src="https://cdn.copernicus.org/libraries/photoswipe/4.1/photoswipe-ui-default.min.js"></script> <script type="text/javascript" src="https://cdn.copernicus.org/libraries/photoswipe/4.1/photoswipe.min.js"></script> <script type="text/javascript"> /* <![CDATA[ */ /* ]]> */ </script> <style type="text/css"> .top_menu { margin-right: 0!important; } </style> </head><body><header id="printheader" class="d-none d-print-block container"> <img src="https://contentmanager.copernicus.org/800952/11/ssl" alt="" style="width: 508px; height: 223px;" /> </header> <header class="d-print-none mb-n3 version-2023"> <div class="container"> <div class="row no-gutters mr-0 ml-0 align-items-center header-wrapper mb-lg-3"> <div class="col-auto pr-3"> <div class="layout__moodboard-logo-year-container"> <a class="layout__moodboard-logo-link" target="_blank" href="http://www.egu.eu"> <div class="layout__moodboard-logo"> <img src="https://contentmanager.copernicus.org/800952/11/ssl" alt="" style="width: 508px; height: 223px;" /> </div> </a> </div> </div> <div class="d-none d-lg-block col text-md-right layout__title-desktop"> <div class="layout__m-location-and-time"> <a class="moodboard-title-link" href="https://www.biogeosciences.net/"> Biogeosciences </a> </div> </div> <div class="d-none d-md-block d-lg-none col text-md-right layout__title-tablet"> <div class="layout__m-location-and-time"> <a class="moodboard-title-link" href="https://www.biogeosciences.net/"> Biogeosciences </a> </div> </div> <div class="col layout__m-location-and-time-mobile d-md-none text-center layout__title-mobile"> <a class="moodboard-title-link" href="https://www.biogeosciences.net/"> BG </a> </div> <!-- End Logo --> <div class="col-auto text-right"> <button class="navbar-toggler light mx-auto mr-sm-0" type="button" data-toggle="collapse" data-target="#navbar_menu" aria-controls="navbar_menu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon light"></span> </button> </div> <!-- Topbar --> <div class="topbar d-print-none"> <!-- <iframe frameborder="0" id="co_auth_check_authiframecontainer" style="width: 179px; height: 57px; margin: 0; margin-bottom: 5px; margin-left: 10px; margin-top: -15px; padding: 0; border: none; overflow: hidden; background-color: transparent; display: none;" src=""></iframe> --> </div> <!-- End Topbar --> </div> </div> <div class="banner-navigation-breadcrumbs-wrapper"> <div id="navigation"> <nav class="container navbar navbar-expand-lg navbar-light"><!-- Logo --> <div class="collapse navbar-collapse CMSCONTAINER" id="navbar_menu"> <div id="cmsbox_125618" class="cmsbox navbar-collapse"><button style="display: none;" class="navbar-toggler navigation-extended-toggle-button" type="button" data-toggle="collapse" data-target="#navbar_menu" aria-controls="navbarSupportedContent" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="navbar-collapse CMSCONTAINER collapse show" id="navbarSupportedContent"> <ul class="navbar-nav mr-auto no-styling"> <li class="nav-item "> <a target="_parent" class="nav-link active " href="https://www.biogeosciences.net/home.html"><i class='fal fa-home fa-lg' title='Home'></i></a> </li> <li class="nav-item megamenu "> <a target="_self" class="nav-link dropdown-toggle " href="#" id="navbarDropdown10815" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">Articles & preprints <span class="caret"></span></a> <div class="dropdown-menu level-1 " aria-labelledby="navbarDropdown10815"> <div class="container"> <div class="row"> <div class="col-md-12 col-lg-4 col-sm-12"> <div class="dropdown-header">Recent</div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://bg.copernicus.org/">Recent papers</a> </div> <div class="dropdown-header">Highlights</div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://bg.copernicus.org/bg_letters.html">BG Letters</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://bg.copernicus.org/editors_choice.html">Editor's choice</a> </div> <div class="dropdown-header">Regular articles</div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://bg.copernicus.org/research_article.html">Research articles</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://bg.copernicus.org/reviews_and_syntheses.html">Reviews and syntheses</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://bg.copernicus.org/technical_note.html">Technical notes</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://bg.copernicus.org/ideas_and_perspectives.html">Ideas and perspectives</a> </div> </div> <div class="col-md-12 col-lg-4 col-sm-12"> <div class="dropdown-header">Special issues</div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://bg.copernicus.org/special_issues.html">Published SIs</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.biogeosciences.net/articles_and_preprints/scheduled_sis.html">Scheduled SIs</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.biogeosciences.net/articles_and_preprints/how_to_apply_for_an_si.html">How to apply for an SI</a> </div> <div class="dropdown-header">EGU Compilations</div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_blank" class="" href="https://egu-letters.net/">EGU Letters</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_blank" class="" href="https://encyclopedia-of-geosciences.net/">Encyclopedia of Geosciences</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_blank" class="" href="https://egusphere.net/">EGUsphere</a> </div> </div> <div class="col-md-12 col-lg-4 col-sm-12"> <div class="dropdown-header">Alerts</div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.biogeosciences.net/articles_and_preprints/subscribe_to_alerts.html">Subscribe to alerts</a> </div> </div> </div> </div> </div> </li> <li class="nav-item "> <a target="_parent" class="nav-link " href="https://www.biogeosciences.net/submission.html">Submission</a> </li> <li class="nav-item dropdown "> <a target="_self" class="nav-link dropdown-toggle " href="#" id="navbarDropdown10819" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">Policies <span class="caret"></span></a> <div class="dropdown-menu level-1 " aria-labelledby="navbarDropdown10819"> <div > <div > <div class="col-md-12 col-lg-12 col-sm-12"> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.biogeosciences.net/policies/licence_and_copyright.html">Licence & copyright</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.biogeosciences.net/policies/general_terms.html">General terms</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.biogeosciences.net/policies/publication_policy.html">Publication policy</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.biogeosciences.net/policies/data_policy.html">Data policy</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.biogeosciences.net/policies/publication_ethics.html">Publication ethics</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.biogeosciences.net/policies/competing_interests_policy.html">Competing interests policy</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.biogeosciences.net/policies/appeals_and_complaints.html">Appeals & complaints</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.biogeosciences.net/policies/proofreading_guidelines.html">Proofreading guidelines</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.biogeosciences.net/policies/obligations_for_authors.html">Obligations for authors</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.biogeosciences.net/policies/obligations_for_editors.html">Obligations for editors</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.biogeosciences.net/policies/obligations_for_referees.html">Obligations for referees</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.biogeosciences.net/policies/author_name_change.html">Inclusive author name-change policy</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.biogeosciences.net/policies/inclusivity_in_global_research.html">Inclusivity in global research</a> </div> </div> </div> </div> </div> </li> <li class="nav-item dropdown "> <a target="_self" class="nav-link dropdown-toggle " href="#" id="navbarDropdown219" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">Peer review <span class="caret"></span></a> <div class="dropdown-menu level-1 " aria-labelledby="navbarDropdown219"> <div > <div > <div class="col-md-12 col-lg-12 col-sm-12"> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.biogeosciences.net/peer_review/interactive_review_process.html">Interactive review process</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.biogeosciences.net/peer_review/finding_an_editor.html">Finding an editor</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.biogeosciences.net/peer_review/review_criteria.html">Review criteria</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a data-non-mobile-optimized="1" target="_parent" class="" href="https://editor.copernicus.org/BG/my_manuscript_overview">Manuscript tracking</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.biogeosciences.net/peer_review/reviewer_recognition.html">Reviewer recognition</a> </div> </div> </div> </div> </div> </li> <li class="nav-item "> <a target="_parent" class="nav-link " href="https://www.biogeosciences.net/editorial_board.html">Editorial board</a> </li> <li class="nav-item dropdown "> <a target="_self" class="nav-link dropdown-toggle " href="#" id="navbarDropdown6095" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">About <span class="caret"></span></a> <div class="dropdown-menu level-1 " aria-labelledby="navbarDropdown6095"> <div > <div > <div class="col-md-12 col-lg-12 col-sm-12"> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.biogeosciences.net/about/aims_and_scope.html">Aims & scope</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.biogeosciences.net/about/subject_areas.html">Subject areas</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.biogeosciences.net/about/manuscript_types.html">Manuscript types</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.biogeosciences.net/about/article_processing_charges.html">Article processing charges</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.biogeosciences.net/about/financial_support.html">Financial support</a> </div> <div class="dropdown dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="dropdown-toggle dropdown-item " href="https://www.biogeosciences.net/about/news_and_press.html" > News & press<span class="caret"></span> </a> <div class="dropdown-menu level-2 " aria-labelledby="navbarDropdown232"> <div > <div > <div class="col-md-12 col-lg-12 col-sm-12"> <div class="dropdown-item level-3 " style="list-style: none"> <a target="_parent" class="" href="https://www.biogeosciences.net/about/news_and_press/2016-06-24_new-if-for-bg.html">New Journal Impact Factor for BG</a> </div> </div> </div> </div> </div> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.biogeosciences.net/about/egu_resources.html">EGU resources</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.biogeosciences.net/about/promote_your_work.html">Promote your work</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.biogeosciences.net/about/journal_statistics.html">Journal statistics</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.biogeosciences.net/about/journal_metrics.html">Journal metrics</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.biogeosciences.net/about/abstracted_and_indexed.html">Abstracted & indexed</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.biogeosciences.net/about/article_level_metrics.html">Article level metrics</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.biogeosciences.net/about/faqs.html">FAQs</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.biogeosciences.net/about/contact.html">Contact</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.biogeosciences.net/about/xml_harvesting_and_oai-pmh.html">XML harvesting & OAI-PMH</a> </div> </div> </div> </div> </div> </li> <li class="nav-item "> <a target="_parent" class="nav-link " href="https://www.biogeosciences.net/egu_publications.html">EGU publications</a> </li> <li class="nav-item "> <a target="_blank" class="nav-link " data-non-mobile-optimized="1" href="https://editor.copernicus.org/BG/"><i class='fal fa-sign-in-alt fa-lg' title='Login'></i></a> </li> <!-- Topbar --> <li class="d-print-none d-lg-none pt-2 topbar-mobile"> <!-- <iframe frameborder="0" id="co_auth_check_authiframecontainer" style="width: 179px; height: 57px; margin: 0; margin-bottom: 5px; margin-left: 10px; margin-top: -15px; padding: 0; border: none; overflow: hidden; background-color: transparent; display: none;" src=""></iframe> --> </li> <!-- End Topbar --> </ul> </div> </div></div> </nav> </div> <section id="banner" class="banner dzsparallaxer use-loading auto-init height-is-based-on-content mode-scroll loaded dzsprx-readyall"> <div class="divimage dzsparallaxer--target layout__moodboard-banner" data-src="" style=""></div> <div id="headers-content-container" class="container CMSCONTAINER"> <div id="cmsbox_125684" class="cmsbox "> <span class="header-small text-uppercase">&nbsp;</span> <h1 class="display-4 header-get-function home-header hide-md-on-version2023"> Article &nbsp; </h1> </div></div> </section> <div id="breadcrumbs" class="breadcrumbs"> <div class="container"> <div class="row align-items-center"> <div class="d-none d-sm-block text-nowrap pageactions"></div> <!-- START_SEARCH --> <!-- END_SEARCH --> <!-- The template part snippet fo breadcrubs is in source code--> <div class="justify-content-between col-auto col-md CMSCONTAINER" id="breadcrumbs_content_container"><div id="cmsbox_1089189" class="cmsbox "><!-- tpl: templates/get_functions/get_breadcrumbs/index --> <!-- START_BREADCRUMBS_CONTAINER --> <ol class="breadcrumb"> <li class="breadcrumb-item"><a href="https://bg.copernicus.org/">Articles</a></li><li class="breadcrumb-item"><a href="https://bg.copernicus.org/articles/21/issue22.html">Volume 21, issue 22</a></li><li class="breadcrumb-item active">BG, 21, 5005&ndash;5025, 2024</li> </ol> <!-- END_BREADCRUMBS_CONTAINER --> </div></div> <div class="col col-md-4 text-right page-search CMSCONTAINER" id="search_content_container"><div id="cmsbox_1089095" class="cmsbox "><!-- v1.31 --> <!-- 1.31: added placeholder for test system sanitizing--> <!-- 1.3: #855 --> <!-- 1.2: #166 --> <!-- CMS ressources/FinderBreadcrumbBox.html --> <!-- START_SITE_SEARCH --> <!-- Root element of PhotoSwipe. Must have class pswp. --> <div class="pswp" tabindex="-1" role="dialog" aria-hidden="true" > <!-- Background of PhotoSwipe. It's a separate element as animating opacity is faster than rgba(). --> <div class="pswp__bg"></div> <!-- Slides wrapper with overflow:hidden. --> <div class="pswp__scroll-wrap"> <!-- Container that holds slides. PhotoSwipe keeps only 3 of them in the DOM to save memory. Don't modify these 3 pswp__item elements, data is added later on. --> <div class="pswp__container"> <div class="pswp__item"></div> <div class="pswp__item"></div> <div class="pswp__item"></div> </div> <!-- Default (PhotoSwipeUI_Default) interface on top of sliding area. Can be changed. --> <div class="pswp__ui pswp__ui--hidden"> <div class="pswp__top-bar"> <!-- Controls are self-explanatory. Order can be changed. --> <div class="pswp__counter"></div> <button class="pswp__button pswp__button--close" title="Close (Esc)"></button> <button class="pswp__button pswp__button--fs" title="Toggle fullscreen"></button> <!-- Preloader demo http://codepen.io/dimsemenov/pen/yyBWoR --> <!-- element will get class pswp__preloader--active when preloader is running --> <div class="pswp__preloader"> <div class="pswp__preloader__icn"> <div class="pswp__preloader__cut"> <div class="pswp__preloader__donut"></div> </div> </div> </div> </div> <div class="pswp__share-modal pswp__share-modal--hidden pswp__single-tap"> <div class="pswp__share-tooltip"></div> </div> <button class="pswp__button pswp__button--arrow--left" title="Previous (arrow left)"> </button> <button class="pswp__button pswp__button--arrow--right" title="Next (arrow right)"> </button> <div class="pswp__caption "> <div class="pswp__caption__center"></div> </div> </div> </div> </div> <div class="row align-items-center no-gutters py-1" id="search-wrapper"> <div class="col-auto pl-0 pr-1"> <a id="templateSearchInfoBtn" role="button" tabindex="99" data-container="body" data-toggle="popover" data-placement="bottom" data-trigger="click"><span class="fal fa-info-circle"></span></a> </div> <div class="col pl-0 pr-1"> <input type="search" placeholder="Search" name="q" class="form-control form-control-sm" id="search_query_solr"/> </div> <div class="col-auto pl-0"> <button title="Start site search" id="start_site_search_solr" class="btn btn-sm btn-success"><span class="co-search"></span></button> </div> </div> <div class="text-left"> <div id="templateSearchInfo" class="d-none"> <div> <p> Multiple terms: term1 term2<br /> <i>red apples</i><br /> returns results with all terms like:<br /> <i>Fructose levels in <strong>red</strong> and <strong>green</strong> apples</i><br /> </p> <p> Precise match in quotes: "term1 term2"<br /> <i>"red apples"</i><br /> returns results matching exactly like:<br /> <i>Anthocyanin biosynthesis in <strong>red apples</strong></i><br /> </p> <p> Exclude a term with -: term1 -term2<br /> <i>apples -red</i><br /> returns results containing <i><strong>apples</strong></i> but not <i><strong>red</strong></i>:<br /> <i>Malic acid in green <strong>apples</strong></i><br /> </p> </div> </div> <div class="modal " id="templateSearchResultModal" role="dialog" aria-labelledby="Search results" aria-hidden="true"> <div class="modal-dialog modal-lg modal-dialog-centered"> <div class="modal-content"> <div class="modal-header modal-header--sticky shadow one-column d-block"> <div class="row no-gutters mx-1"> <div class="col mr-3"> <h1 class="" id="resultsSearchHeader"><span id="templateSearchResultNr"></span> hit<span id="templateSearchResultNrPlural">s</span> for <span id="templateSearchResultTerm"></span></h1> </div> <div class="col-auto"> <a id="scrolltopmodal" href="javascript:void(0)" onclick="scrollModalTop();" style="display: none;"><i class="co-home"></i></a> </div> <div class="col-auto"> <button data-dismiss="modal" aria-label="Close" class="btn btn-danger mt-1">Close</button> </div> </div> </div> <div class="modal-body one-column"> <!-- $$co-sanitizing-slot1$$ --> <div class="grid-container mx-n3"><div class="grid-85 tablet-grid-85"> <button aria-label="Refine" id="refineSearchModal" class="btn btn-primary float-left mt-4">Refine your search</button> <button aria-label="Refine" id="refineSearchModalHide" class="btn btn-danger float-left d-none mt-4">Hide refinement</button> </div></div> <div class="grid-container mx-n3"><div class="grid-100 tablet-grid-100"><div id="templateRefineSearch" class="d-none"></div></div></div> <div id="templateSearchResultContainer" class="searchResultsModal mx-n3"></div> <div class="grid-container mb-0"><div class="grid-100 tablet-grid-100"><div id="templateSearchResultContainerEmpty" class="co-notification d-none">There are no results for your search term.</div></div></div> </div> </div> </div> </div> </div> <!-- feedback network problems --> <div class="modal " id="templateSearchErrorModal1" role="dialog" aria-labelledby="Search results" aria-hidden="true"> <div class="modal-dialog modal-lg modal-dialog-centered"> <div class="modal-content p-3"> <div class="modal-body text-left"> <h1 class="mt-0 pt-0">Network problems</h1> <div class="co-error">We are sorry, but your search could not be completed due to network problems. Please try again later.</div> </div> </div> </div> </div> <!-- feedback server timeout --> <div class="modal " id="templateSearchErrorModal2" role="dialog" aria-labelledby="Search results" aria-hidden="true"> <div class="modal-dialog modal-lg modal-dialog-centered"> <div class="modal-content p-3"> <div class="modal-body text-left"> <h1 class="mt-0 pt-0">Server timeout</h1> <div class="co-error">We are sorry, but your search could not be completed due to server timeouts. Please try again later.</div> </div> </div> </div> </div> <!-- feedback invalid search term --> <div class="modal " id="templateSearchErrorModal3" role="dialog" aria-labelledby="Search results" aria-hidden="true"> <div class="modal-dialog modal-lg modal-dialog-centered"> <div class="modal-content p-3"> <div class="modal-body text-left"> <h1 class="mt-0 pt-0">Empty search term</h1> <div class="co-error">You have applied the search with an empty search term. Please revisit and try again.</div> </div> </div> </div> </div> <!-- feedback too many requests --> <div class="modal " id="templateSearchErrorModal4" role="dialog" aria-labelledby="Search results" aria-hidden="true"> <div class="modal-dialog modal-lg modal-dialog-centered"> <div class="modal-content p-3"> <div class="modal-body text-left"> <h1 class="mt-0 pt-0">Too many requests</h1> <div class="co-error">We are sorry, but we have received too many parallel search requests. Please try again later.</div> </div> </div> </div> </div> <!-- loading --> <div class="modal " id="templateSearchLoadingModal" role="dialog" aria-labelledby="Search results" aria-hidden="true"> <div class="modal-dialog modal-sm modal-dialog-centered"> <div class="modal-content p-3 co_LoadingDotsContainer"> <div class="modal-body"> <div class="text">Searching</div> <div class="dots d-flex justify-content-center"><div class="dot"></div><div class="dot"></div><div class="dot"></div></div></div> </div> </div> </div> </div> <style> /*.modal {*/ /* background: rgba(255, 255, 255, 0.8);*/ /*}*/ .modal-header--sticky { position: sticky; top: 0; background-color: inherit; z-index: 1055; } .grid-container { margin-bottom: 1em; /*padding-left: 0;*/ /*padding-right: 0;*/ } #templateSearchInfo{ display: none; background-color: var(--background-color-primary); margin-top: 1px; z-index: 5; border: 1px solid var(--color-primary); opacity: .8; font-size: .7rem; border-radius: .25rem; } #templateSearchLoadingModal .co_LoadingDotsContainer { z-index: 1000; } #templateSearchLoadingModal .co_LoadingDotsContainer .text { text-align: center; font-weight: bold; padding-bottom: 1rem; } #templateSearchLoadingModal .co_LoadingDotsContainer .dot { background-color: #0072BC; border: 2px solid white; border-radius: 50%; float: left; height: 2rem; width: 2rem; margin: 0 5px; -webkit-transform: scale(0); transform: scale(0); -webkit-animation: animation_dots_breath 1000ms ease infinite 0ms; animation: animation_dots_breath 1000ms ease infinite 0ms; } #templateSearchLoadingModal .co_LoadingDotsContainer .dot:nth-child(2) { -webkit-animation: animation_dots_breath 1000ms ease infinite 300ms; animation: animation_dots_breath 1000ms ease infinite 300ms; } #templateSearchLoadingModal .co_LoadingDotsContainer .dot:nth-child(3) { -webkit-animation: animation_dots_breath 1000ms ease infinite 600ms; animation: animation_dots_breath 1000ms ease infinite 600ms; } #templateSearchResultModal [class*="grid-"] { padding-left: 10px !important; padding-right: 10px !important; } #templateSearchResultTerm { font-weight: bold; } #resultsSearchHeader { display: block !important; } #scrolltopmodal { font-size: 3.0em; margin-top: 0 !important; margin-right: 15px; } @-webkit-keyframes animation_dots_breath { 50% { -webkit-transform: scale(1); transform: scale(1); opacity: 1; } 100% { opacity: 0; } } @keyframes animation_dots_breath { 50% { -webkit-transform: scale(1); transform: scale(1); opacity: 1; } 100% { opacity: 0; } } @media (min-width: 768px) and (max-width: 991px) { #templateSearchResultModal .modal-dialog { max-width: 90%; } } </style> <script> if(document.querySelector('meta[name="global_moBaseURL"]').content == "https://meetingorganizer.copernicus.org/") FINDER_URL = document.querySelector('meta[name="global_moBaseURL"]').content.replace('meetingorganizer', 'finder-app')+"search/library.php"; else FINDER_URL = document.querySelector('meta[name="global_moBaseURL"]').content.replace('meetingorganizer', 'finder')+"search/library.php"; SEARCH_INPUT = document.getElementById('search_query_solr'); SEARCH_INPUT_MODAL = document.getElementById('search_query_modal'); searchRunning = false; offset = 20; INITIAL_OFFSET = 20; var MutationObserver = window.MutationObserver || window.WebKitMutationObserver || window.MozMutationObserver; const targetNodeSearchModal = document.getElementById("templateSearchResultModal"); const configSearchModal = { attributes: true, childList: true, subtree: true }; // Callback function to execute when mutations are observed const callbackSearchModal = (mutationList, observer) => { for (const mutation of mutationList) { if (mutation.type === "childList") { // console.log("A child node has been added or removed."); picturesGallery(); } else if (mutation.type === "attributes") { // console.log(`The ${mutation.attributeName} attribute was modified.`); } } }; // Create an observer instance linked to the callback function const observer = new MutationObserver(callbackSearchModal); // Start observing the target node for configured mutations observer.observe(targetNodeSearchModal, configSearchModal); function _addEventListener() { document.getElementById('search_query_solr').addEventListener('keypress', (e) => { if (e.key === 'Enter') _runSearch(); }); document.getElementById('start_site_search_solr').addEventListener('click', (e) => { _runSearch(); e.stopPropagation(); e.stopImmediatePropagation(); return false; }); $('#templateSearchResultModal').scroll(function() { if ($(this).scrollTop()) { $('#scrolltopmodal:hidden').stop(true, true).fadeIn().css("display","inline-block"); } else { $('#scrolltopmodal').stop(true, true).fadeOut(); } }); } function scrollModalTop() { $('#templateSearchResultModal').animate({ scrollTop: 0 }, 'slow'); // $('#templateSearchResultModal').scrollTop(0); } function picturesGallery() { $('body').off('click', '.paperlist-avatar img'); $('body').off('click', '#templateSearchResultContainer .paperlist-avatar img'); searchPaperListAvatar = []; searchPaperListAvatarThumb = []; search_pswpElement = document.querySelectorAll('.pswp')[0]; if (typeof search_gallery != "undefined") { search_gallery = null; } $('body').on('click', '#templateSearchResultContainer .paperlist-avatar img', function (e) { if(searchPaperListAvatarThumb.length === 0 && searchPaperListAvatar.length === 0) { $('#templateSearchResultContainer .paperlist-avatar img').each(function () { var webversion = $(this).attr('data-web'); var width = $(this).attr('data-width'); var height = $(this).attr('data-height'); var caption = $(this).attr('data-caption'); var figure = { src: webversion, w: width, h: height, title: caption }; searchPaperListAvatarThumb.push($(this)[0]); searchPaperListAvatar.push(figure); }); } var target = $(this); var index = $('#templateSearchResultContainer .paperlist-avatar img').index(target); var options = { showHideOpacity:false, bgOpacity:0.8, index:index, spacing:0.15, history: false, focus:false, getThumbBoundsFn: function(index) { var thumbnail = searchPaperListAvatarThumb[index]; var pageYScroll = window.pageYOffset || document.documentElement.scrollTop; var rect = thumbnail.getBoundingClientRect(); return {x:rect.left, y:rect.top + pageYScroll, w:rect.width}; } }; search_gallery = new PhotoSwipe( search_pswpElement, PhotoSwipeUI_Default,[searchPaperListAvatar[index]],options); search_gallery.init(); }); } function showError(code, msg) { console.error(code, msg); $("#templateSearchLoadingModal").modal("hide"); switch(code) { case -3: // http request fail case -2: // invalid MO response case 4: // CORS case 1: // project $("#templateSearchErrorModal1").modal({}); break; case -1: // timeout $("#templateSearchErrorModal2").modal({}); break; case 2: // empty term $("#templateSearchErrorModal3").modal({}); break; case 3: // DOS $("#templateSearchErrorModal4").modal({}); break; default: $("#templateSearchErrorModal1").modal({}); break; } } function clearForm() { var myFormElement = document.getElementById("library-filters") var elements = myFormElement.elements; $(".form-check-input").prop('checked', false).change().parent().removeClass('active'); for(i=0; i<elements.length; i++) { field_type = elements[i].type.toLowerCase(); switch(field_type) { case "text": case "password": case "textarea": case "hidden": elements[i].value = ""; break; case "radio": case "checkbox": if (elements[i].checked) { elements[i].checked = false; } break; case "select-one": case "select-multi": elements[i].selectedIndex = -1; break; default: break; } } } function generateShowMoreButton(offset, term) { var code = '<button aria-label="ShowMore" id="showMore" class="btn btn-success float-right mr-2" data-offset="' + offset + '">Show more</button>'; return code; } function hideModal(id) { $("#"+id).modal('hide'); } function showModal(id) { $("#"+id).modal({}); } function prepareForPhotoSwipe() { searchPaperListAvatar = []; searchPaperListAvatarThumb = []; search_pswpElement = document.querySelectorAll('.pswp')[0]; } function _sendAjax(projectID, term) { let httpRequest = new XMLHttpRequest(); if(searchRunning) { console.log("Search running"); return; } if (!httpRequest) { console.error("Giving up :( Cannot create an XMLHTTP instance"); showError(-1); return false; } // httpRequest.timeout = 20000; // time in milliseconds httpRequest.withCredentials = false; httpRequest.ontimeout = (e) => { showError(-1, "result timeout"); searchRunning = false; }; httpRequest.onreadystatechange = function() { if (httpRequest.readyState === XMLHttpRequest.DONE) { searchRunning = false; if (httpRequest.status === 200) { let rs = JSON.parse(httpRequest.responseText); if(rs) { if(rs.isError) { showError(rs.errorCode, rs.errorMessage); } else { let html = rs.resultHTMLs; $("#modal_search_query").val(rs.term); $("#templateSearchResultTerm").html(rs.term); $("#templateSearchResultNr").html(rs.resultsNr); $("#templateRefineSearch").html(rs.filter); if(rs.filter == false) { console.log('filter empty'); $("#refineSearchModal").removeClass('d-block').addClass('d-none'); } if(rs.resultsNr==1) $("#templateSearchResultNrPlural").hide(); else $("#templateSearchResultNrPlural").show(); if(rs.resultsNr==0) { hideModal('templateSearchLoadingModal'); $("#templateSearchResultContainer").html(""); $("#templateSearchResultContainerEmpty").removeClass("d-none"); showModal('templateSearchResultModal'); } else { if((rs.resultsNr - offset)>0) { html = html + generateShowMoreButton(offset, term); } $("#templateSearchResultContainerEmpty").addClass("d-none"); if( offset == INITIAL_OFFSET) { hideModal('templateSearchLoadingModal'); $("#templateSearchResultContainer").html(html); showModal('templateSearchResultModal'); } else { $('#showMore').remove(); startHtml = $("#templateSearchResultContainer").html(); $("#templateSearchResultContainer").html(startHtml + html); } // prepareForPhotoSwipe(); } } } else { showError(-2, "invalid result"); } } else { showError(-3, "There was a problem with the request."); } } }; if(offset == INITIAL_OFFSET) { hideModal('templateSearchResultModal'); showModal('templateSearchLoadingModal'); } httpRequest.open("GET", FINDER_URL+"?project="+projectID+"&term="+encodeURI(term)+((offset>INITIAL_OFFSET)?("&offset="+(offset-INITIAL_OFFSET)) : "")); httpRequest.send(); searchRunning = true; } function _runSearch() { var projectID = document.querySelector('meta[name="global_projectID"]').content; var term = _searchTrimInput(SEARCH_INPUT.value); if(term.length > 0) { _sendAjax(projectID, term); } else { showError(2, 'Empty search term') } } function _searchTrimInput(str) { return str.replace(/^\s+|\s+$/gm, ''); } function run() { _addEventListener(); $('#templateSearchInfoBtn, #modalSearchInfoBtn').popover({ sanitize: false, html: true, content: $("#templateSearchInfo").html(), placement: "bottom", template: '<div class="popover" role="tooltip"><div class="arrow"></div><button class="m-1 float-right btn btn-sm btn-danger" id="templateSearchInfoClose"><i class="fas fa-times-circle"></i></button><h3 class="popover-header"></h3><div class="popover-body"></div></div>', title: "Search tips", }); $(document).click(function (e) { let t = $(e.target); let a = t && t.attr("data-toggle")!=="popover" && t.parent().attr("data-toggle")!=="popover"; let b = t && $(".popover").has(t).length===0; if(a && b) { $('#templateSearchInfoBtn').popover('hide'); $('#modalSearchInfoBtn').popover('hide'); } }); $('#templateSearchInfoBtn').on('shown.bs.popover', function () { $("#templateSearchInfoClose").click(function(e){ $('#templateSearchInfoBtn').popover('hide'); e.stopPropagation(); e.stopImmediatePropagation(); return false; }); }) $('#templateSearchResultModal').on('hidden.bs.modal', function(e) { $('body').off('click', '#templateSearchResultContainer .paperlist-avatar img'); var pswpElement = document.querySelectorAll('.pswp')[0]; var gallery = null; var paperListAvatar = []; var paperListAvatarThumb = []; $('.paperlist-avatar img').each(function(){ var webversion = $(this).attr('data-web'); var width = $(this).attr('data-width'); var height = $(this).attr('data-height'); var caption =$(this).attr('data-caption'); var figure = { src:webversion, w:width, h:height, title:caption }; paperListAvatarThumb.push($(this)[0]); paperListAvatar.push(figure); }); $('body').on('click', '.paperlist-avatar img', function (e) { if(paperListAvatarThumb.length === 0 && paperListAvatar.length === 0){ $('.paperlist-avatar img').each(function(){ var webversion = $(this).attr('data-web'); var width = $(this).attr('data-width'); var height = $(this).attr('data-height'); var caption =$(this).attr('data-caption'); var figure = { src:webversion, w:width, h:height, title:caption }; paperListAvatarThumb.push($(this)[0]); paperListAvatar.push(figure); }); } var target = $(this); var index = $('.paperlist-avatar img').index(target); var options = { showHideOpacity:true, bgOpacity:0.8, index:index, spacing:0.15, getThumbBoundsFn: function(index) { var thumbnail = paperListAvatarThumb[index]; var pageYScroll = window.pageYOffset || document.documentElement.scrollTop; var rect = thumbnail.getBoundingClientRect(); return {x:rect.left, y:rect.top + pageYScroll, w:rect.width}; } }; gallery = new PhotoSwipe( pswpElement, PhotoSwipeUI_Default,[paperListAvatar[index]],options); gallery.init(); }); }); $('#templateSearchResultModal').on('hide.bs.modal', function(e) { $("#templateRefineSearch").removeClass('d-block').addClass('d-none'); $("#refineSearchModalHide").removeClass('d-block').addClass('d-none'); $("#refineSearchModal").removeClass('d-none').addClass('d-block'); offset = INITIAL_OFFSET; }) $(document).on("click", "#showMore", function(e){ offset+=INITIAL_OFFSET; runSearchModal() e.stopPropagation(); e.stopImmediatePropagation(); return false; }); $(document).ready(function() { $(document).on("click", "#refineSearchModal", function (e) { $("#templateRefineSearch").removeClass('d-none').addClass('d-block'); $(this).removeClass('d-block').addClass('d-none'); $("#refineSearchModalHide").removeClass('d-none').addClass('d-block'); }); $(document).on("click", "#refineSearchModalHide", function (e) { $("#templateRefineSearch").removeClass('d-block').addClass('d-none'); $(this).removeClass('d-block').addClass('d-none'); $("#refineSearchModal").removeClass('d-none').addClass('d-block'); }); $(document).on("click", "#modal_start_site_search", function (e) { runSearchModal(); e.stopPropagation(); e.stopImmediatePropagation(); return false; }); }); } function runSearchModal() { var projectID = document.querySelector('meta[name="global_projectID"]').content; var queryString = $('#library-filters').serialize(); var term = _searchTrimInput($('#modal_search_query').val()); term+='&'+queryString; if(term.length > 0) { _sendAjax(projectID, term); } else { showError(2, 'Empty search term') } } if(document.getElementById('search_query_solr')) { run(); } </script> <!-- END_SITE_SEARCH --></div></div> </div> </div> </div> </div> </header> <!--=== Content ===--> <main class="one-column version-2023"> <div id="content" class="container"> <div id="page_content_container" class="CMSCONTAINER row"> <div class="col"> <div class="article"> <div id="top"></div> <div class="row no-gutters header-block mb-1 align-items-end"> <div class="col-12 col-xl-5"> <div class="row d-xl-none mb-3"> <div class="col-12" > <div class="d-none d-lg-block articleBackLink"> <a href="https://bg.copernicus.org/">Articles</a> | <a href="https://bg.copernicus.org/articles/21/issue22.html">Volume 21, issue 22</a> </div> <div class="tab co-angel-left d-md-none"></div> <div class="tab co-angel-right d-md-none"></div> <div class="mobile-citation"> <ul class="tab-navigation no-styling"> <li class="tab1.articlf active"><nobr><a href="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024.html">Article</a></nobr></li><li class="tab2.assett"><nobr><a href="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-assets.html">Assets</a></nobr></li><li class="tab3.discussioo"><nobr><a href="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-discussion.html">Peer review</a></nobr></li><li class="tab450.metrict"><nobr><a href="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-metrics.html">Metrics</a></nobr></li><li class="tab500.relationt"><nobr><a href="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-relations.html">Related articles</a></nobr></li> </ul> </div> </div> </div> <div class="d-lg-none"> <span class="articleBackLink"><a href="https://bg.copernicus.org/">Articles</a> | <a href="https://bg.copernicus.org/articles/21/issue22.html">Volume 21, issue 22</a> </span> <div class="citation-header" id="citation-content"> <div class="citation-doi">https://doi.org/10.5194/bg-21-5005-2024</div> <div class="citation-copyright">&copy; Author(s) 2024. This work is distributed under <br class="hide-on-mobile hide-on-tablet" />the Creative Commons Attribution 4.0 License.</div> </div> </div> <div class="hide-on-mobile hide-on-tablet"> <div class="citation-header"> <div class="citation-doi">https://doi.org/10.5194/bg-21-5005-2024</div> <div class="citation-copyright">&copy; Author(s) 2024. This work is distributed under <br class="hide-on-mobile hide-on-tablet" />the Creative Commons Attribution 4.0 License.</div> </div> </div> </div> <div class="col-7 d-none d-xl-block"> <div class="text-right articleBackLink"> <a href="https://bg.copernicus.org/">Articles</a> | <a href="https://bg.copernicus.org/articles/21/issue22.html">Volume 21, issue 22</a> </div> <div class="tab co-angel-left d-md-none"></div> <div class="tab co-angel-right d-md-none"></div> <div class="mobile-citation"> <ul class="tab-navigation no-styling"> <li class="tab1.articlf active"><nobr><a href="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024.html">Article</a></nobr></li><li class="tab2.assett"><nobr><a href="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-assets.html">Assets</a></nobr></li><li class="tab3.discussioo"><nobr><a href="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-discussion.html">Peer review</a></nobr></li><li class="tab450.metrict"><nobr><a href="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-metrics.html">Metrics</a></nobr></li><li class="tab500.relationt"><nobr><a href="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-relations.html">Related articles</a></nobr></li> </ul> </div> </div> </div> <div class="ms-type row no-gutters d-none d-lg-flex mb-1 mt-0 align-items-center"> <div class="col"> <div class="row no-gutters align-items-center"> <div class="col-auto"> Research article </div> <div class="col-auto"> &nbsp;|&nbsp;<strong>Highlight paper</strong> </div> <div class="col"> &nbsp;|&nbsp;<a target="_blank" href="https://creativecommons.org/licenses/by/4.0/" rel="license" class="licence-icon-svg"><img src="https://www.biogeosciences.net/licenceSVG_16.svg"></a> </div> </div> </div> <div class="col-auto text-right">14 Nov 2024</div> </div> <div class="ms-type row no-gutters d-lg-none mb-1 align-items-center"> <div class="col-12"> Research article&nbsp;|&nbsp;<strong>Highlight paper</strong> | <a target="_blank" href="https://creativecommons.org/licenses/by/4.0/" rel="license" class="licence-icon-svg "><img src="https://www.biogeosciences.net/licenceSVG_16.svg"></a>&nbsp;|&nbsp;<span>14 Nov 2024</span> </div> </div> <a class="article-avatar hide-on-mobile hide-on-tablet" href="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-avatar-web.png" target="_blank"> <img border="0" src="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-avatar-thumb150.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-avatar-web.png" data-width="600" data-height="313"> </a> <h1>How to measure the efficiency of bioenergy crops compared to forestation</h1> <div class="auto-fixed-top-forced article-title"> <div class="grid-container show-on-fixed" style="display: none"> <div class="grid-85 mobile-grid-85 tablet-grid-85 grid-parent"> <span class="d-block hide-on-mobile hide-on-tablet journal-contentHeaderColor">How to measure the efficiency of bioenergy crops compared to forestation</span> <span class="d-block hide-on-desktop journal-contentHeaderColor">How to measure the efficiency of bioenergy crops compared to forestation</span> <span>Sabine Egerer et al.</span> </div> <div class="grid-1 mobile-grid-15 tablet-grid-15 grid-parent text-right"> <a id="scrolltop" class="scrollto" href="https://bg.copernicus.org/articles/21/5005/2024/#top"><i class="co-home"></i> </a> </div> </div> </div> <div class="mb-3 authors-with-affiliations"> <nobr><span class="hover-cursor-pointer journal-contentLinkColor hover-underline" data-toggle="modal" data-target=".author909706">Sabine Egerer<a href="mailto:sabine.egerer@lmu.de"><i class="fal fa-envelope ml-1"></i></a></span>,</nobr> <nobr><span class="hover-cursor-pointer journal-contentLinkColor hover-underline" data-toggle="modal" data-target=".author909707">Stefanie Falk</span>,</nobr> <nobr><span class="hover-cursor-pointer journal-contentLinkColor hover-underline" data-toggle="modal" data-target=".author909708">Dorothea Mayer</span>,</nobr> <nobr><span class="hover-cursor-pointer journal-contentLinkColor hover-underline" data-toggle="modal" data-target=".author909709">Tobias Nützel</span>,</nobr> <nobr><span class="hover-cursor-pointer journal-contentLinkColor hover-underline" data-toggle="modal" data-target=".author909710">Wolfgang A. Obermeier</span>,</nobr> <nobr>and <span class="hover-cursor-pointer journal-contentLinkColor hover-underline" data-toggle="modal" data-target=".author909711">Julia Pongratz</span></nobr> </div> <div class="modal fade author909706" tabindex="-1" aria-hidden="true"> <div class="modal-dialog modal-dialog-centered modal-dialog-scrollable"> <div class="modal-content"> <div class="modal-header"> <div class="container-fluid p-0"> <h3 class="modal-title">Sabine Egerer</h3> <div class="row no-gutters"> <div class="col-12">CORRESPONDING AUTHOR</div> <div class="col-12"><a href="mailto:sabine.egerer@lmu.de"><i class="fal fa-envelope mr-2"></i>sabine.egerer@lmu.de</a></div> </div> <div class="row no-gutters"> <div class="col-12"> <a class="orcid-authors-logo" target="_blank" href="https://orcid.org/0000-0002-7202-578X" data-title="https://orcid.org/0000-0002-7202-578X"><svg class="mr-2" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><image xlink:href="https://www.biogeosciences.net/orcid_icon.svg" src="https://www.biogeosciences.net/orcid_icon_128x128.png" width="100%" height="100%"></image></svg>https://orcid.org/0000-0002-7202-578X</a> </div> </div> </div> <button type="button" class="close" data-dismiss="modal" aria-label="Close"> <span aria-hidden="true">&times;</span> </button> </div> <div class="modal-body"> <div class="container-fluid p-0"> <div class="row"> <div class="col-12 mb-3"> Department of Geography, Ludwig-Maximilians-Universität in Munich, Munich, Germany </div> </div> </div> </div> </div> </div> </div> <div class="modal fade author909707" tabindex="-1" aria-hidden="true"> <div class="modal-dialog modal-dialog-centered modal-dialog-scrollable"> <div class="modal-content"> <div class="modal-header"> <div class="container-fluid p-0"> <h3 class="modal-title">Stefanie Falk</h3> <div class="row no-gutters"> <div class="col-12"> <a class="orcid-authors-logo" target="_blank" href="https://orcid.org/0000-0002-4552-5455" data-title="https://orcid.org/0000-0002-4552-5455"><svg class="mr-2" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><image xlink:href="https://www.biogeosciences.net/orcid_icon.svg" src="https://www.biogeosciences.net/orcid_icon_128x128.png" width="100%" height="100%"></image></svg>https://orcid.org/0000-0002-4552-5455</a> </div> </div> </div> <button type="button" class="close" data-dismiss="modal" aria-label="Close"> <span aria-hidden="true">&times;</span> </button> </div> <div class="modal-body"> <div class="container-fluid p-0"> <div class="row"> <div class="col-12 mb-3"> Department of Geography, Ludwig-Maximilians-Universität in Munich, Munich, Germany </div> </div> </div> </div> </div> </div> </div> <div class="modal fade author909708" tabindex="-1" aria-hidden="true"> <div class="modal-dialog modal-dialog-centered modal-dialog-scrollable"> <div class="modal-content"> <div class="modal-header"> <div class="container-fluid p-0"> <h3 class="modal-title">Dorothea Mayer</h3> <div class="row no-gutters"> <div class="col-12"> <a class="orcid-authors-logo" target="_blank" href="https://orcid.org/0009-0004-1272-0555" data-title="https://orcid.org/0009-0004-1272-0555"><svg class="mr-2" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><image xlink:href="https://www.biogeosciences.net/orcid_icon.svg" src="https://www.biogeosciences.net/orcid_icon_128x128.png" width="100%" height="100%"></image></svg>https://orcid.org/0009-0004-1272-0555</a> </div> </div> </div> <button type="button" class="close" data-dismiss="modal" aria-label="Close"> <span aria-hidden="true">&times;</span> </button> </div> <div class="modal-body"> <div class="container-fluid p-0"> <div class="row"> <div class="col-12 mb-3"> Kuratorium für Waldarbeit und Forstwirtschaft e.V., Groß-Umstadt, Germany </div> </div> </div> </div> </div> </div> </div> <div class="modal fade author909709" tabindex="-1" aria-hidden="true"> <div class="modal-dialog modal-dialog-centered modal-dialog-scrollable"> <div class="modal-content"> <div class="modal-header"> <div class="container-fluid p-0"> <h3 class="modal-title">Tobias Nützel</h3> <div class="row no-gutters"> <div class="col-12"> <a class="orcid-authors-logo" target="_blank" href="https://orcid.org/0000-0002-3603-4283" data-title="https://orcid.org/0000-0002-3603-4283"><svg class="mr-2" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><image xlink:href="https://www.biogeosciences.net/orcid_icon.svg" src="https://www.biogeosciences.net/orcid_icon_128x128.png" width="100%" height="100%"></image></svg>https://orcid.org/0000-0002-3603-4283</a> </div> </div> </div> <button type="button" class="close" data-dismiss="modal" aria-label="Close"> <span aria-hidden="true">&times;</span> </button> </div> <div class="modal-body"> <div class="container-fluid p-0"> <div class="row"> <div class="col-12 mb-3"> Department of Geography, Ludwig-Maximilians-Universität in Munich, Munich, Germany </div> </div> </div> </div> </div> </div> </div> <div class="modal fade author909710" tabindex="-1" aria-hidden="true"> <div class="modal-dialog modal-dialog-centered modal-dialog-scrollable"> <div class="modal-content"> <div class="modal-header"> <div class="container-fluid p-0"> <h3 class="modal-title">Wolfgang A. Obermeier</h3> <div class="row no-gutters"> <div class="col-12"> <a class="orcid-authors-logo" target="_blank" href="https://orcid.org/0000-0002-7094-8011" data-title="https://orcid.org/0000-0002-7094-8011"><svg class="mr-2" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><image xlink:href="https://www.biogeosciences.net/orcid_icon.svg" src="https://www.biogeosciences.net/orcid_icon_128x128.png" width="100%" height="100%"></image></svg>https://orcid.org/0000-0002-7094-8011</a> </div> </div> </div> <button type="button" class="close" data-dismiss="modal" aria-label="Close"> <span aria-hidden="true">&times;</span> </button> </div> <div class="modal-body"> <div class="container-fluid p-0"> <div class="row"> <div class="col-12 mb-3"> Department of Geography, Ludwig-Maximilians-Universität in Munich, Munich, Germany </div> </div> </div> </div> </div> </div> </div> <div class="modal fade author909711" tabindex="-1" aria-hidden="true"> <div class="modal-dialog modal-dialog-centered modal-dialog-scrollable"> <div class="modal-content"> <div class="modal-header"> <div class="container-fluid p-0"> <h3 class="modal-title">Julia Pongratz</h3> <div class="row no-gutters"> <div class="col-12"> <a class="orcid-authors-logo" target="_blank" href="https://orcid.org/0000-0003-0372-3960" data-title="https://orcid.org/0000-0003-0372-3960"><svg class="mr-2" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><image xlink:href="https://www.biogeosciences.net/orcid_icon.svg" src="https://www.biogeosciences.net/orcid_icon_128x128.png" width="100%" height="100%"></image></svg>https://orcid.org/0000-0003-0372-3960</a> </div> </div> </div> <button type="button" class="close" data-dismiss="modal" aria-label="Close"> <span aria-hidden="true">&times;</span> </button> </div> <div class="modal-body"> <div class="container-fluid p-0"> <div class="row"> <div class="col-12 mb-3"> Department of Geography, Ludwig-Maximilians-Universität in Munich, Munich, Germany </div> </div> <div class="row"> <div class="col-12 mb-3"> Max Planck Institute for Meteorology, Hamburg, Germany </div> </div> </div> </div> </div> </div> </div> <div class="abstract sec" id="abstract"><div class="grid-container no-margin header-element"><span class="grid-100 mobile-grid-100 tablet-grid-100 grid-parent more-less-mobile" data-show="#abstract .co-arrow-open,.abstract-content" data-hide="#abstract .co-arrow-closed,.abstract-mobile-bottom-border"><div class="h1"><span class="section-number"> </span>Abstract<span class="hide-on-desktop hide-on-tablet triangleWrapper"> <i class="co-arrow-closed" style="display:none"></i><i class="co-arrow-open" style="display:inline-block"></i></span></div></span></div> <div class="abstract-content show-no-js"><p id="d2e142">The climate mitigation potential of terrestrial carbon dioxide removal (tCDR) methods depends critically on the timing and magnitude of their implementation. In our study, we introduce different measures of efficiency to evaluate the carbon removal potential of afforestation and reforestation (AR) and bioenergy with carbon capture and storage (BECCS) under the low-emission scenario SSP1-2.6 and in the same area. We define efficiency as the potential to sequester carbon in the biosphere in a specific area or store carbon in geological reservoirs or woody products within a certain time. In addition to carbon capture and storage (CCS), we consider the effects of fossil fuel substitution (FFS) through the usage of bioenergy for energy production, which increases the efficiency through avoided CO<span class="inline-formula"><sub>2</sub></span> emissions.</p><p id="d2e154">These efficiency measures reflect perspectives regarding climate mitigation, carbon sequestration, land availability, spatiotemporal dynamics, and the technological progress in FFS and CCS. We use the land component JSBACH3.2 of the Max Planck Institute Earth System Model (MPI-ESM) to calculate the carbon sequestration potential in the biosphere using an updated representation of second-generation bioenergy plants such as <i>Miscanthus</i>. Our spatially explicit modeling results reveal that, depending on FFS and CCS levels, BECCS sequesters 24–158 GtC by 2100, whereas AR methods sequester around 53 GtC on a global scale, with BECCS having an advantage in the long term. For our specific setup, BECCS has a higher potential in the South American grasslands and southeast Africa, whereas AR methods are more suitable in southeast China. Our results reveal that the efficiency of BECCS to sequester carbon compared to “nature-based solutions” like AR will depend critically on the upscaling of CCS facilities, replacing fossil fuels with bioenergy in the future, the time frame, and the location of tCDR deployment.</p></div><span class="abstract-mobile-bottom-border mobile-bottom-border hide-on-desktop hide-on-tablet" style="display:none"></span></div> <div id="oldMobileDownloadBox" class="widget dark-border hide-on-desktop download-and-links"> <div class="legend journal-contentLinkColor">Download & links</div> <div class="content"> <ul class="additional_info no-bullets no-styling"> <li> <a class="triangle" data-toggle=".box-notice" data-duration="300" title="PDF Version (8075 KB)" href="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024.pdf" > Article (PDF, 8075 KB) </a> </li> </ul> </div> </div> <div id="downloadBoxOneColumn" class="widget dark-border hide-on-desktop download-and-links"> <div class="legend journal-contentLinkColor">Download & links</div> <div class="content"> <ul class="additional_info no-bullets no-styling"> <li><a class="triangle" title="PDF Version (8075 KB)" href="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024.pdf">Article</a> <nobr>(8075 KB)</nobr> </li> <li> <a class="triangle" title="XML Version" href="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024.xml">Full-text XML</a> </li> <li><a class="triangle" href="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024.bib">BibTeX</a></li> <li><a class="triangle" href="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024.ris">EndNote</a></li> </ul> </div> </div> <div id="share" class="oneColumnShareMobileBox widget dark-border hide-on-desktop"> <div class="legend journal-contentLinkColor">Share</div> <div class="content row m-0 py-1"> <div class="col-auto pl-0"> <a class="share-one-line" href="https://www.mendeley.com/import/?url=https%3A%2F%2Fbg.copernicus.org%2Farticles%2F21%2F5005%2F2024%2F" title="Mendeley" target="_blank"> <img src="https://www.biogeosciences.net/mendeley.png" alt="Mendeley"/> </a> </div> <div class="col-auto"> <a class="share-one-line" href="https://www.reddit.com/submit?url=https%3A%2F%2Fbg.copernicus.org%2Farticles%2F21%2F5005%2F2024%2F" title="Reddit" target="_blank"> <img src="https://www.biogeosciences.net/reddit.png" alt="Reddit"> </a> </div> <div class="col-auto"> <a class="share-one-line last" href="https://twitter.com/intent/tweet?text=How+to+measure+the+efficiency+of+bioenergy+crops++compared+to+forestation https%3A%2F%2Fbg.copernicus.org%2Farticles%2F21%2F5005%2F2024%2F" title="Twitter" target="_blank"> <img src="https://www.biogeosciences.net/twitter.png" alt="Twitter"/> </a> </div> <div class="col-auto"> <a class="share-one-line" href="https://www.facebook.com/share.php?u=https%3A%2F%2Fbg.copernicus.org%2Farticles%2F21%2F5005%2F2024%2F&t=How+to+measure+the+efficiency+of+bioenergy+crops++compared+to+forestation" title="Facebook" target="_blank"> <img src="https://www.biogeosciences.net/facebook.png" alt="Facebook"/> </a> </div> <div class="col-auto pr-0"> <a class="share-one-line last" href="https://www.linkedin.com/shareArticle?mini=true&url=https%3A%2F%2Fbg.copernicus.org%2Farticles%2F21%2F5005%2F2024%2F&title=How+to+measure+the+efficiency+of+bioenergy+crops++compared+to+forestation" title="LinkedIn" target="_blank"> <img src="https://www.biogeosciences.net/linkedin.png" alt="LinkedIn"> </a> </div> <div class="col pr-0 mobile-native-share"> <a href="#" data-title="Biogeosciences" data-text="*How to measure the efficiency of bioenergy crops compared to forestation* Sabine Egerer et al." data-url="https://bg.copernicus.org/articles/21/5005/2024/" class="mobile-native-share share-one-line last"><i class="co-mobile-share display-none"></i></a> </div> </div> </div> <div id="citation-footer" class="sec"> <div class="h1-special journal-contentHeaderColor">How to cite.&nbsp;</div> <div class="citation-footer-content show-no-js"> <p> <div class="citation-footer"> Egerer, S., Falk, S., Mayer, D., Nützel, T., Obermeier, W. A., and Pongratz, J.: How to measure the efficiency of bioenergy crops compared to forestation, Biogeosciences, 21, 5005&ndash;5025, https://doi.org/10.5194/bg-21-5005-2024, 2024. </div> </p> </div> </div> <div id="article-dates" class="sec"> <div class="article-dates dates-content my-3"> <nobr>Received: 15 May 2024</nobr> &ndash; <nobr>Discussion started: 22 May 2024</nobr> &ndash; <nobr>Revised: 17 Sep 2024</nobr> &ndash; <nobr>Accepted: 24 Sep 2024</nobr> &ndash; <nobr>Published: 14 Nov 2024</nobr> </div> </div> <div class="sec intro" id="section1"><div class="grid-container no-margin header-element"><span class="grid-100 mobile-grid-100 tablet-grid-100 grid-parent more-less-mobile" data-hide="#section1 .co-arrow-open,.section1-content" data-show="#section1 .co-arrow-closed,.section1-mobile-bottom-border"><div id="Ch1.S1" class="h1"><span class="label">1</span> Introduction<span class="hide-on-desktop hide-on-tablet triangleWrapper"> <i class="co-arrow-closed"></i><i class="co-arrow-open" style="display:none"></i></span></div></span></div> <div class="section1-content show-no-js hide-on-mobile-soft"><p id="d2e169">Meeting the Paris Agreement's climate targets to limit global warming to well below 2 °C will likely require substantial carbon dioxide removal (CDR) <span class="cit" id="xref_paren.1">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx4" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Azar et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx4" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2013</a>; <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx81" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Roe et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx81" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2019</a>; <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx41" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">IPCC Working Group III</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx41" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2022</a><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx41" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a>)</span>. CDR implies sequestering CO<span class="inline-formula"><sub>2</sub></span> from the atmosphere and storing it for decades to millennia in the biosphere, long-lived products, geological reservoirs, or the ocean <span class="cit" id="xref_paren.2">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx41" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">IPCC Working Group III</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx41" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2022</a><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx41" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a>)</span>. Various CDR methods exist, from conventional methods applied at large scale for decades to centuries such as afforestation and reforestation (AR) to those only being explored in the laboratory such as artificial photosynthesis <span class="cit" id="xref_paren.3">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx63" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">May and Rehfeld</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx63" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2022</a>)</span>. Nearly all currently deployed CDR depends on terrestrial ecosystems that store carbon in the biosphere <span class="cit" id="xref_paren.4">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx90" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Smith et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx90" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2023</a>)</span>. From 2013 to 2022, bookkeeping models aligned with estimates of the Global Carbon Budget suggest between 1.2 to 2.2 GtCO<span class="inline-formula"><sub>2</sub></span> yr<span class="inline-formula"><sup>−1</sup></span> removed from the atmosphere through AR <span class="cit" id="xref_paren.5">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx91" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Smith et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx91" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2024</a>)</span>. An additional 2.3 <span class="inline-formula">×</span> <span class="inline-formula">10<sup>−3</sup></span> GtCO<span class="inline-formula"><sub>2</sub></span> yr<span class="inline-formula"><sup>−1</sup></span> comes from novel CDR <span class="cit" id="xref_paren.6">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx90" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Smith et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx90" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2023</a>)</span> including 1.8 <span class="inline-formula">×</span> <span class="inline-formula">10<sup>−3</sup></span> GtCO<span class="inline-formula"><sub>2</sub></span> yr<span class="inline-formula"><sup>−1</sup></span> from bioenergy with carbon capture and storage (BECCS). Thereby, the CO<span class="inline-formula"><sub>2</sub></span> that is emitted upon the combustion of biomass can be captured in geological reservoirs for thousands of years.</p><p id="d2e316"><span id="page5006"></span>Scenario assessments suggest that terrestrial CDR (tCDR) measures will continue to play a major role. In contrast, projections of less-explored options such as direct air carbon capture and storage (DACCS) are more uncertain <span class="cit" id="xref_paren.7">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx41" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">IPCC Working Group III</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx41" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2022</a><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx41" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a>)</span>. Land-based measures, including tCDR and avoided emissions from the land use, land-use change and forestry (LULUCF) sector, equally have the potential to mitigate approximately 10–15 GtCO<span class="inline-formula"><sub>2</sub></span> eq. yr<span class="inline-formula"><sup>−1</sup></span> by 2050, corresponding to about 20 %–30 % of the mitigation that would be needed to achieve the 1.5 °C temperature target <span class="cit" id="xref_paren.8">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx33" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Griscom et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx33" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2017</a>; <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx81" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Roe et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx81" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2019</a>)</span>. Among the various tCDR approaches used in <span class="cit" id="xref_text.9"><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx81" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Roe et al.</a> (<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx81" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2019</a>)</span>, AR and BECCS are implemented on a large scale with the highest carbon removal. They remain the most commonly applied also in future scenarios <span class="cit" id="xref_paren.10">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx28" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Fuss et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx28" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2014</a>; <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx66" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Meinshausen et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx66" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2020</a>; <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx41" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">IPCC Working Group III</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx41" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2022</a><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx41" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a>)</span>. Across the scenarios that limit the warming to 2 °C or below, agriculture, forestry, and other land use, mainly AR, remove on average about 2.98 (scenario spread of 0.23–6.38) GtCO<span class="inline-formula"><sub>2</sub></span> eq. yr<span class="inline-formula"><sup>−1</sup></span> and BECCS removes on average about 2.75 (scenario spread of 0.52–9.45) GtCO<span class="inline-formula"><sub>2</sub></span> eq. yr<span class="inline-formula"><sup>−1</sup></span> from the atmosphere in 2050 <span class="cit" id="xref_paren.11">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx42" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">IPCC Working Group III</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx42" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2022</a><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx42" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">c</a>)</span>. The large spread in the estimate of BECCS among models and scenarios reflects the high uncertainty regarding carbon capture and storage (CCS) feasibility in the future. Various raw materials, such as energy crops, agricultural and forest residues, and waste fractions, can be used for BECCS (e.g., <span class="cit" id="xref_altparen.12"><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx6" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Borchers et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx6" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2024</a></span>). They include woody and herbaceous crops on agriculturally managed plantations of tall and fast-growing grasses for biomass production. Especially second-generation bioenergy crops will gain relevance in the future <span class="cit" id="xref_paren.13">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx19" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Clifton-Brown et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx19" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2017</a>; <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx3" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Awty-Carroll et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx3" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2023</a>)</span>. The distinguishing characteristics of second-generation biofuels are that they use a non-food feedstock (lignocellulose biomass, field crop residues, forest product residues, or fast-growing dedicated energy crops) compared to first-generation biofuels made from sugar-starch feedstocks (e.g., sugarcane and corn) and edible oil feedstocks (e.g., rapeseed and soybean oil). We will focus here on second-generation herbaceous biomass plantations (HBPs) such as <i>Miscanthus</i>. To compose an efficient and sustainable portfolio of tCDR methods, AR, BECCS, or any other CDR method needs to be carefully evaluated as they differ in risks and side effects.</p><p id="d2e409">Despite the large carbon removal potential of AR and BECCS, uncertainties in carbon sequestration rates are high, and side effects on land use, water use, biodiversity, and equity exist <span class="cit" id="xref_paren.14">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx7" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Boysen et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx7" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2017</a>; <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx29" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Fuss et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx29" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2018</a>; <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx13" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Cheng et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx13" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2020</a>)</span>. For example, pathways that are limiting warming to 1.5 °C show a mean increase in forest cover of about 322 (<span class="inline-formula">−67</span> to 890) Mha and a mean increase in cropland area to supply biomass for BECCS of around 199 (56 to 482) Mha in 2050 <span class="cit" id="xref_paren.15">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx42" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">IPCC Working Group III</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx42" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2022</a><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx42" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">c</a>)</span>. The extended use of land and water for tCDR might provoke conflicts with nature conservation or agriculture and might cause deforestation, biodiversity loss, and higher food prices and put a larger population at risk of hunger and malnutrition <span class="cit" id="xref_paren.16">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx20" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Creutzig</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx20" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2016</a>; <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx89" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Smith et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx89" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2016</a>; <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx38" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Humpenöder et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx38" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2018</a>; <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx81" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Roe et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx81" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2019</a>; <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx21" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Doelman et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx21" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2020</a>)</span>. Thus, not all methods are suitable everywhere globally, and their carbon sequestration potential will evolve differently. Where risks and side effects are not precluding one method or the other, an important question is which method removes CO<span class="inline-formula"><sub>2</sub></span> more efficiently from the atmosphere while optimizing the allocation of financial, land, and other resources. This question is surprisingly hard to answer. The carbon sequestration per square meter of forests and bioenergy crops is highly location-specific since it depends on environmental, climate, and soil conditions and will change in the future (e.g., <span class="cit" id="xref_altparen.17"><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx88" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Sharma et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx88" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2023</a></span>). Thus, locations of tCDR deployment have to be chosen carefully. But even if the CO<span class="inline-formula"><sub>2</sub></span> sequestration per square meter might initially be the same for different tCDR methods, the temporal dynamics differ. BECCS could put similar amounts of carbon into CCS every year if the infrastructure for CCS is available, limited only by the interannual variability in biomass production. By contrast, forests show a distinct evolution of CO<span class="inline-formula"><sub>2</sub></span> sequestration with age, which may be altered by wood harvesting in managed forests. Moreover, plant growth, soil respiration, and natural disturbances are influenced by environmental changes <span class="cit" id="xref_paren.18">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx11" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Canadell et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx11" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2021</a>)</span>. The time BECCS needs to take up and store a similar amount of CO<span class="inline-formula"><sub>2</sub></span> as forests will further depend on how much of the CO<span class="inline-formula"><sub>2</sub></span> is transferred to geological storage or released to the atmosphere beforehand. In addition to CCS, bioenergy crops are typically used for energy production, which enables fossil fuel substitution (FFS), meaning that the energy production from fossil fuels is replaced by bioenergy. However, in practice, biomass production losses and energy conversion reduce the FFS potential of biomass <span class="cit" id="xref_paren.19">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx17" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Chum et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx17" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2011</a>; <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx5" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Babin et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx5" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2021</a>)</span>, e.g., due to transport emissions and indirect land-use change displacing the prior land use to other regions. Such and other emissions along the process chain can be captured by life cycle assessments (LCAs). The goal of LCAs is to quantify the environmental effects, such as energy use, resource depletion, and emissions, across the entire life cycle of a product or service. The processes considered in LCAs, and thus the emissions avoided through substitution, depend on the choice of system boundaries. They have been found to vary across the literature for BECCS <span class="cit" id="xref_paren.20">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx95" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Terlouw et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx95" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2021</a>)</span>, making a crucial difference for carbon removal potential with its immanent purpose of energy production. Further, it must be considered to what extent bioenergy displaces fossil fuels in practice <span class="cit" id="xref_paren.21">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx45" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Kalt et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx45" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2019</a>; <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx14" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Cheng et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx14" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2022</a>)</span>.</p><p id="d2e493"><span id="page5007"></span>These remarks reveal that various aspects need to be considered when assessing a certain tCDR target, either in absolute terms or in comparison to another CDR method. However, these aspects are typically not disentangled in studies that evaluate the future deployment of CDR, which limits our ability to understand the levers to deploy CDR methods efficiently. Several studies have assessed the carbon sequestration and climate mitigation potential of AR <span class="cit" id="xref_paren.22">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx93" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Sonntag et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx93" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2016</a>; <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx61" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Matthews et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx61" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2022</a>)</span>, BECCS <span class="cit" id="xref_paren.23">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx36" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Harper et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx36" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2018</a>; <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx70" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Muri</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx70" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2018</a>)</span>, or both <span class="cit" id="xref_paren.24">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx47" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Krause et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx47" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2017</a>; <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx68" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Melnikova et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx68" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2023</a>; <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx15" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Cheng et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx15" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2024</a>)</span> using earth system models (ESMs) and dynamic global vegetation models (DGVMs). However, a direct comparison of the AR and HBP carbon sequestration potential in the same areas was only conducted by <span class="cit" id="xref_text.25"><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx68" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Melnikova et al.</a> (<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx68" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2023</a>)</span> within a consistent setup. Many studies use abandoned agricultural areas for AR under different climate scenarios <span class="cit" id="xref_paren.26">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx93" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Sonntag et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx93" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2016</a>; <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx43" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Jayakrishnan and Bala</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx43" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2022</a>)</span>. Others build on the output of integrated assessment models (IAMs) to determine the spatial distribution of AR and BECCS in different areas within the same or even different scenarios <span class="cit" id="xref_paren.27">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx47" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Krause et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx47" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2017</a>; <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx36" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Harper et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx36" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2018</a>; <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx14" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Cheng et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx14" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2022</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx15" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2024</a>)</span>. These different assumptions on the land area used for the CDR methods result in significant differences in the estimated tCDR potential across studies <span class="cit" id="xref_paren.28">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx42" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">IPCC Working Group III</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx42" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2022</a><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx42" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">c</a>)</span>. <span class="cit" id="xref_text.29"><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx47" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Krause et al.</a> (<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx47" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2017</a>)</span> find a larger spatial extent needed for avoided deforestation in combination with AR compared to BECCS to reach a similar carbon sequestration potential. However, there is no further exploration of the sensitivity of results concerning the time horizon, the amount of CCS, or the substitution achieved.</p><p id="d2e522">In this study, we propose several measures that reflect biogeochemical mitigation efficiency, defined as the combined carbon sequestration, storage, and substitution potential of a tCDR method (hereafter tCDR potential). These measures include the spatiotemporal dynamics, i.e., the change in the tCDR potential over time and space; the level of FFS and CCS needed to achieve a given tCDR potential; and the area required to achieve a given tCDR potential. This is to our knowledge the first study that compares BECCS to AR in the same location within a consistent setup to evaluate different measures of efficiency. In addition, this is the first study to account for FFS together with CCS by a land surface model. We quantify results for BECCS using HBPs and AR in the same area under different assumptions on FFS and CCS over the 21st century. We use the state-of-the-art land surface model JSBACH3.2 extended by a dedicated representation of HBPs and CCS. We use environmental conditions from the low-emission scenario SSP1-2.6, representing a scenario compatible with the 2 °C target. The SSP1-2.6 land-use scenario, which is based on the IAM IMAGE 3.0 <span class="cit" id="xref_paren.30">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx98" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">van Vuuren et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx98" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2017</a>)</span>, projects a substantial gain in land for second-generation biofuels (up to 330 Mha), which mainly replaces pasture <span class="cit" id="xref_paren.31">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx39" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Hurtt et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx39" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2020</a>)</span>. We use this area for BECCS, and alternatively for AR, to assess the efficiency of both methods within a consistent setup. As the spatial distribution of bioenergy crops from IAMs is not primarily based on climate-related factors but rather on socioeconomic factors <span class="cit" id="xref_paren.32">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx98" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">van Vuuren et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx98" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2017</a>)</span>, forests do not necessarily have a disadvantage in those areas. Evaluating our different proposed measures of efficiency, we provide novel insights into the following research questions:</p><ul> <li> <p id="d2e539">Which of the two tCDR methods, BECCS and AR, has a higher carbon removal potential per area?</p> </li> <li> <p id="d2e545">At which level of FFS and CCS does BECCS become more efficient than AR in removing carbon from the atmosphere?</p> </li> <li> <p id="d2e551">How does the efficiency of the two tCDR methods evolve until the end of the century?</p> </li> <li> <p id="d2e557">How much additional land does BECCS need to reach the efficiency of AR?</p> </li> </ul><p id="d2e562">In this study, we focus on the carbon sequestration and substitution potential of AR and BECCS and do not assess the side effects of tCDR. Socioeconomic considerations, including side effects, are implicitly accounted for in the IAM land-use scenarios. In addition, a comprehensive assessment covering ecological side effects and impacts of governance and societal acceptance would be needed to evaluate the overall suitability of tCDR methods under certain normative targets.</p></div><span class="section1-mobile-bottom-border mobile-bottom-border hide-on-desktop hide-on-tablet"></span></div> <div class="sec" id="section2"><div class="grid-container no-margin header-element"><span class="grid-100 mobile-grid-100 tablet-grid-100 grid-parent more-less-mobile" data-hide="#section2 .co-arrow-open,.section2-content" data-show="#section2 .co-arrow-closed,.section2-mobile-bottom-border"><div id="Ch1.S2" class="h1"><span class="label">2</span> Methods and data<span class="hide-on-desktop hide-on-tablet triangleWrapper"> <i class="co-arrow-closed"></i><i class="co-arrow-open" style="display:none"></i></span></div></span></div> <div class="section2-content show-no-js hide-on-mobile-soft"><div class="sec"><h2 id="Ch1.S2.SS1"><span class="label">2.1</span> Terrestrial carbon dioxide removal (tCDR) methods in JSBACH3.2</h2> <p id="d2e580">We use the land component JSBACH3.2 <span class="cit" id="xref_paren.33">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx77" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Raddatz et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx77" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2007</a>; <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx79" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Reick et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx79" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2021</a>)</span> of the Max Planck Institute Earth System Model (MPI-ESM) <span class="cit" id="xref_paren.34">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx62" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Mauritsen et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx62" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2019</a>)</span>. JSBACH3.2 participated in large international intercomparison studies (e.g., LUMIP; <span class="cit" id="xref_altparen.35"><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx51" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Lawrence et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx51" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2016</a></span>, within the CMIP6 framework; <span class="cit" id="xref_altparen.36"><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx24" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Eyring et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx24" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2016</a></span>), is evaluated against observational data for various ecosystem indicators (e.g., TRENDY; <span class="cit" id="xref_altparen.37"><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx26" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Friedlingstein et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx26" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2023</a></span>), and is state of the art concerning land management implementation. We extend JSBACH3.2 by a new plant functional type (PFT) originally implemented by <span class="cit" id="xref_text.38"><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx64" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Mayer</a> (<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx64" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2017</a>)</span>. This new PFT represents the specific physiology and phenology of highly productive herbaceous biomass plantations (HBPs) such as <i>Miscanthus</i>. We revised several photosynthetic parameters of <span class="cit" id="xref_text.39"><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx64" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Mayer</a> (<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx64" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2017</a>)</span> because more recent and accurate data are available now <span class="cit" id="xref_paren.40">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx53" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Li et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx53" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2018</a><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx53" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>)</span>. The tested parameter values based on observations for the HBP PFT in JSBACH3.2 can be found in <span class="cit" id="xref_text.41"><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx73" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Nützel</a> (<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx73" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2024</a>)</span>. We connected HBPs with the nitrogen cycle and the latest soil model Yasso in JSBACH3.2 <span class="cit" id="xref_paren.42">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx32" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Goll et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx32" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2015</a>)</span>. These perennial C<span class="inline-formula"><sub>4</sub></span> crops grow under most climates and are even frost-tolerant <span class="cit" id="xref_paren.43">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx72" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Naidu and Long</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx72" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2004</a>)</span>. Their stems grow to 3–4 m in height, allowing them to produce more biomass per area than first-generation bioenergy crops. They produce leaves up to a maximum leaf area index (LAI) of 9 m<span class="inline-formula"><sup>2</sup></span> m<span class="inline-formula"><sup>−2</sup></span> <span class="cit" id="xref_paren.44">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx52" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">LeBauer et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx52" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2018</a>)</span>. The dried stems and leaves provide feedstock for coal power plants or pyrolysis for the production of biofuels. Outside the tropics, plants typically remain in the fields throughout the winter to<span id="page5008"></span> dry because they are better suited for burning if the moisture content is low and the later harvest enables nutrient translocation back to the rhizome <span class="cit" id="xref_paren.45">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx18" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Clifton-Brown et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx18" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2010</a>)</span>. They are harvested before the new growing season when a specific heat sum is exceeded <span class="cit" id="xref_paren.46">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx27" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Frühwirth et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx27" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2006</a>)</span>, which allows nutrients such as nitrogen to leach back into the soil reducing the need for fertilization <span class="cit" id="xref_paren.47">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx19" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Clifton-Brown et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx19" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2017</a>)</span>. In particular, under a temperate climate, this reduces soil erosion and soil carbon and nutrient loss compared to conventional cultivation of annual crops usually harvested in autumn. Within the tropics, they are harvested at the beginning of the new year within the model. JSBACH3.2 does not explicitly account for crop management such as irrigation or fertilization. Instead, fertilization is simulated by returning the harvested nitrogen of HBPs to the soil over the year, similar to the default treatment for the harvested nitrogen of crops in JSBACH3.2 <span class="cit" id="xref_paren.48">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx78" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Reick et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx78" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2013</a>)</span>. By doing this, we implicitly represent N fertilization as replenishing nutrients removed by annual harvesting, which has been suggested to otherwise limit bioenergy production (Li et al., 2021). HBPs require generally less management and fertilizer input than annual crops <span class="cit" id="xref_paren.49">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx16" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Christian et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx16" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2008</a>)</span>. By affecting water or nutrient supplies, management can influence how much plants must invest in roots. Especially the water availability influences rooting depth and the extent of root networks <span class="cit" id="xref_paren.50">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx23" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Ercoli et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx23" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">1999</a>)</span>. These root-to-shoot ratios range from 0.4 to 0.8 <span class="cit" id="xref_paren.51">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx69" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Meyer et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx69" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2010</a>)</span>, corresponding to a shoot fraction between 0.55 and 0.71 of the total biomass, meaning that 55 % to 71 % of the total biomass production (above- and belowground) is harvested <span class="cit" id="xref_paren.52">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx64" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Mayer</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx64" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2017</a>)</span>. We take the mean of these values and assume a harvested fraction of 63 % in this study. The previous implementation of HBPs in JSBACH has been evaluated against observational data for yields and water use efficiency with satisfactory results <span class="cit" id="xref_paren.53">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx64" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Mayer</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx64" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2017</a>)</span>. A comparison against observational data of the updated HBP version used in this study is provided in Sect. <a href="https://bg.copernicus.org/articles/21/5005/2024/#Ch1.S2.SS4" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2.4</a> and shown in Fig. <a href="https://bg.copernicus.org/articles/21/5005/2024/#Ch1.F2" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2</a>.</p> <p id="d2e687">We assume that the type of forest chosen for AR reflects the current preferences of existing forests. To represent AR in JSBACH3.2, we increase the fraction of the existing forest PFTs (tropical broadleaf evergreen trees, tropical broadleaf deciduous trees, extratropical evergreen trees, and extratropical deciduous trees) proportionally to their current fraction in each grid cell. Thus, AR is represented as natural regrowth rather than fast-growing wood plantations in the model. To eliminate confounding effects of carbon sequestration through temporary forest regrowth in shifting cultivation, we use net instead of gross land-use transitions in our simulations <span class="cit" id="xref_paren.54">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx104" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Wilkenskjeld et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx104" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2014</a>)</span>. In the underlying land-use scenario (see Sect. <a href="https://bg.copernicus.org/articles/21/5005/2024/#Ch1.S2.SS2" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2.2</a>), the areas used for AR and HBPs increase monotonously over time, and shifting cultivation plays a minor role. We assume that the forests grow in the same areas as HBPs. While the climate, soil, and ecological conditions might not be favorable for forests in these regions, this setup is adequate for the aim of our study, which is a comparison of CDR methods at the same location since our focus is on comparing the different measures of efficiency. The low CDR potential of the forest due to unsuitable conditions would be captured by our model and thereby could find its way into subsequent decision-making processes.</p> </div><div class="sec"><h2 id="Ch1.S2.SS2"><span class="label">2.2</span> Land use and climate forcing</h2> <p id="d2e703">The land surface is prescribed by spatial maps of land-use and land cover classes derived from the Land-use Harmonization Project version 2 (LUH2) <span class="cit" id="xref_paren.55">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx39" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Hurtt et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx39" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2020</a>)</span>. LUH2 includes a harmonized set of land-use scenarios that smoothly connects historical reconstructions of land use from HYDE 3.2 and estimates of historical global wood harvest for 850–2015 <span class="cit" id="xref_paren.56">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx46" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Klein Goldewijk et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx46" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2017</a>)</span> with multiple future scenarios provided by IAMs as spatiotemporal global maps. The future spatial extent of second-generation biofuels of LUH2 is given as a fraction of cropland for every grid cell and year. In the SSP1-2.6 land-use scenario from IMAGE 3.0 <span class="cit" id="xref_paren.57">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx94" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Stehfest et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx94" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2014</a>; <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx98" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">van Vuuren et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx98" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2017</a>)</span>, the plantation of second-generation biofuels begins in 2015. They expand mainly on former pasture land to a global area of 330 Mha by 2095, which decreases slightly afterward until 2100 (Fig. <a href="https://bg.copernicus.org/articles/21/5005/2024/#Ch1.F1" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">1</a>b). While second-generation biofuels in IMAGE 3.0 include dedicated herbaceous and woody energy crops <span class="cit" id="xref_paren.58">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx98" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">van Vuuren et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx98" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2017</a>)</span>, LUH2 does not differentiate between herbaceous and woody bioenergy. Thus, we consider only HBPs in JSBACH3.2. To assure a consistent comparison, the same areas occupied by HBPs are used for the establishment of new forests in our counterfactual AR simulation.</p> <div class="fig" id="Ch1.F1"><a target="_blank" class="figure-link" href="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-f01-web.png"><img alt="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-f01" data-webversion="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-f01-web.png" src="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-f01-thumb.png" data-width="2067" data-height="2216"></a><div class="caption"><p id="d2e722"><strong class="caption-number">Figure 1</strong><strong>(a)</strong> Fraction of grid cell that is covered by a tCDR method (HBPs or AR) in 2100 and <strong>(b)</strong> change in global land area [Mha] covered by HBPs or AR as compared to 2015 according to the implementation of the LUH2 SSP1-2.6 land-use scenario in JSBACH3.2.</p></div><p class="downloads"></p></div> <p id="d2e736">We use bias-corrected downscaled climate forcing of MPI-ESM1.2-HR <span class="cit" id="xref_paren.59">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx34" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Gutjahr et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx34" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2019</a>)</span> for SSP1-2.6 from the Inter-Sectoral Impact Model Intercomparison Project <span class="cit" id="xref_paren.60">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx37" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Hempel et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx37" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2013</a>)</span>. MPI-ESM1.2-HR represents a climate model with low climate sensitivity <span class="cit" id="xref_paren.61">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx65" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Meehl et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx65" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2020</a>)</span>. The Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) climate forcing is provided daily at 0.5° spatial resolution. The climate data are remapped conservatively to T63 resolution using the climate data operators (CDOs; <span class="cit" id="xref_altparen.62"><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx83" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Schulzweida</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx83" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2023</a></span>). The daily climate data are transformed into sub-daily information needed in JSBACH3.2 through an internal weather generator. Climate data from 2015 to 2100 are available in <span class="cit" id="xref_text.63"><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx49" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Lange and Büchner</a> (<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx49" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2021</a>)</span>. We plot spatial changes in mean temperature and precipitation between 2005–2024 and 2080–2099 in Fig. <a href="https://bg.copernicus.org/articles/21/5005/2024/#App1.Ch1.S1.F10" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">A1</a> in Appendix A.</p> </div><div class="sec"><h2 id="Ch1.S2.SS3"><span class="label">2.3</span> Simulation setup</h2> <p id="d2e765">We simulate the carbon sequestration potential of AR and HBPs using JSBACH3.2 in its low-resolution configuration with a T63 global grid (corresponding to 1.875° <span class="inline-formula">×</span> 1.875° at the Equator). We perform a spinup of 5000 years to equilibrate the carbon and nitrogen pools followed by a historical run from 1700 to 1850 with cyclic climate forcing<span id="page5009"></span> (1850–1870) and historical land-use change from LUH2 (see Sect. <a href="https://bg.copernicus.org/articles/21/5005/2024/#Ch1.S2.SS2" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2.2</a>) <span class="cit" id="xref_paren.64">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx39" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Hurtt et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx39" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2020</a>)</span>. The historical period continues from 1850 to 2015 with transient climate and CO<span class="inline-formula"><sub>2</sub></span> forcing and land-use change. Future projections start in 2015 and run until 2100 using LUH2 SSP1-2.6 land use and SSP1-2.6 climate forcing. The simulations include disturbances of forests by wildfires and wind throw <span class="cit" id="xref_paren.65">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx96" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Thonicke et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx96" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2010</a>; <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx50" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Lasslop et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx50" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2014</a>)</span> and wood harvest from 1700 onward. We use the default product pool fractions from wood harvest in JSBACH3.2, which are PFT-specific and constant over time. In the HBPs simulation (C1HBP), the future spatial extent of HBPs is derived from the LUH2 layer that indicates the fraction of cropland used for second-generation biofuels in every grid cell and year. We compare the carbon sequestration potential of the newly implemented HBPs and AR by replacing the area occupied by HBPs in C1HBP with forests in the AR simulation (C1AR). Figure <a href="https://bg.copernicus.org/articles/21/5005/2024/#Ch1.F1" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">1</a>a shows the spatial extent of second-generation biofuels in 2100 based on the SSP1-2.6 scenario of LUH2 as implemented in JSBACH3.2 <span class="cit" id="xref_paren.66">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx39" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Hurtt et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx39" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2020</a>)</span>.</p> <div class="sec"><h3 id="Ch1.S2.SS3.SSSx1">Additional wood harvest in the afforestation and reforestation scenario</h3> <p id="d2e804">The wood harvest used in JSBACH3.2 is calculated by IAMs based on regional demands for wood products and harmonized by LUH2 <span class="cit" id="xref_paren.67">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx39" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Hurtt et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx39" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2020</a>)</span>. However, LUH2 does not provide a demand-based estimate of additional future carbon removal due to wood harvest in C1AR. Hence, we keep the absolute amount of wood harvest equal in all simulations following LUH2 SSP1-2.6.</p> <p id="d2e810">We give a rough supply-driven estimate of carbon that might be stored in woody products or used for energy generation due to wood harvest. We did not find any dataset that projects how far a new forest is managed or left to natural regrowth. Thus, we assume that the new forest is managed similarly to the existing forest in the same grid cell. We implement this by increasing the absolute amount of wood harvest following LUH2 SSP1-2.6 by a ratio that reflects the additional vegetation carbon that AR areas provide. We assume that all additional bioenergy from the wood harvest is produced without CCS and FFS. We acknowledge this is just a first-order estimate, ignoring that the carbon balance of wood harvest is time-dependent and impacted by many factors, including the forest age, its use for energy or products, and regional climate and environmental conditions. Future studies could apply our framework to investigate different assumptions on wood harvest in AR areas.</p> <div class="disp-formula" content-type="numbered" id="Ch1.E1"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M31" display="block" overflow="scroll" dspmath="mathml"><mtable><mlabeledtr><mtd><mtext>(1)</mtext></mtd><mtd><mrow> <msub> <mi mathvariant="normal">wh</mi> <mi mathvariant="normal">AR</mi> </msub> <mo>(</mo> <mi>y</mi> <mo>)</mo> <mo>=</mo> <msub> <mi mathvariant="normal">wh</mi> <mrow> <mi mathvariant="normal">LUH</mi> <mn mathvariant="normal">2</mn> </mrow> </msub> <mo>(</mo> <mi>y</mi> <mo>)</mo> <mo>⋅</mo> <mstyle displaystyle="true"> <mfrac style="display"> <mrow> <msub> <mi mathvariant="normal">Ctree</mi> <mrow> <mi mathvariant="normal">C</mi> <mn mathvariant="normal">1</mn> <mi mathvariant="normal">AR</mi> </mrow> </msub> <mo>(</mo> <mi>y</mi> <mo>)</mo> <mo>-</mo> <msub> <mi mathvariant="normal">Ctree</mi> <mrow> <mi mathvariant="normal">C</mi> <mn mathvariant="normal">1</mn> <mi mathvariant="normal">HBP</mi> </mrow> </msub> <mo>(</mo> <mi>y</mi> <mo>)</mo> </mrow> <mrow> <msub> <mi mathvariant="normal">Ctree</mi> <mrow> <mi mathvariant="normal">C</mi> <mn mathvariant="normal">1</mn> <mi mathvariant="normal">HBP</mi> </mrow> </msub> <mo>(</mo> <mi>y</mi> <mo>)</mo> </mrow> </mfrac> </mstyle> <mo>,</mo> </mrow></mtd></mlabeledtr></mtable></math><div><svg xmlns:svg="http://www.w3.org/2000/svg" width="416pt" height="29pt" class="hide-js svg-formula" dspmath="mathimg" md5hash="eb8155f3ad7bcf7ef2748f6a24bf8902"><image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-e_1.svg" width="100%" height="29pt" src="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-e_1.png"></image></svg></div></div><p id="d2e813-2"> where <span class="inline-formula">wh<sub>AR</sub></span> is the global additional wood harvest of AR [kg], <span class="inline-formula">wh<sub>LUH2</sub></span> is the global demand-based wood harvest of LUH2 [kg], <span class="inline-formula"><i>y</i></span> is year, and <span class="inline-formula">Ctree</span> is the global tree vegetation carbon in the C1AR or C1HBP scenario [GtC].</p> </div> </div><div class="sec"><h2 id="Ch1.S2.SS4"><span class="label">2.4</span> Model evaluation with observational yield data</h2> <p id="d2e957">We evaluate the HBP yields of our revised model version against a recent comprehensive global dataset of bioenergy crop yields compiled from scientific literature <span class="cit" id="xref_paren.68">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx53" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Li et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx53" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2018</a><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx53" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>)</span>. It includes 990 observations of <i>Miscanthus</i> yields with and without irrigation and fertilizer amendment. Note that the observational sites are concentrated in the eastern USA and Europe, and no observations in the tropics exist. For the comparison, we use all available <i>Miscanthus</i> yields, regardless of whether fertilizer or irrigation was applied because the yields do not differ significantly from untreated yields <span class="cit" id="xref_paren.69">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx53" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Li et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx53" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2018</a><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx53" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>; <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx57" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Littleton et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx57" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2020</a>)</span>. We run simulations from 1980 to 2010 forced by WATCH–ERA-Interim climate data <span class="cit" id="xref_paren.70">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx103" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Weedon et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx103" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2014</a>)</span> mapped to T63 spatial resolution using conservative remapping. In our setup, 10 % of the vegetated area in each grid cell is covered with HBPs to account for a more realistic scenario than fully covering the whole grid cell with HBPs. We apply a carbon-to-dry-matter<span id="page5010"></span> ratio of 0.5 such that 1 t of dry biomass could substitute 0.5 t of carbon <span class="cit" id="xref_paren.71">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx12" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Cannell</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx12" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2003</a>)</span>. We compare the modeled HBP yields in the grid cell of the specific site to observed <i>Miscanthus</i> yields compiled in <span class="cit" id="xref_text.72"><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx53" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Li et al.</a> (<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx53" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2018</a><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx53" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>)</span> for the respective year or years if multiple (compare Figs. <a href="https://bg.copernicus.org/articles/21/5005/2024/#Ch1.F2" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2</a> and <a href="https://bg.copernicus.org/articles/21/5005/2024/#Ch1.F3" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">3</a>).</p> <p id="d2e989">We find an observed mean HBP yield of 12.7 t (dry matter) DM ha<span class="inline-formula"><sup>−1</sup></span> yr<span class="inline-formula"><sup>−1</sup></span> and median of 11.5 t DM ha<span class="inline-formula"><sup>−1</sup></span> yr<span class="inline-formula"><sup>−1</sup></span> for all sites and a modeled yield mean of 12.1 t DM ha<span class="inline-formula"><sup>−1</sup></span> yr<span class="inline-formula"><sup>−1</sup></span> and median of 12.7 t DM ha<span class="inline-formula"><sup>−1</sup></span> yr<span class="inline-formula"><sup>−1</sup></span> across all respective grid cells and respective years. The maximal observed yield is 52.2 t DM ha<span class="inline-formula"><sup>−1</sup></span> yr<span class="inline-formula"><sup>−1</sup></span> and the maximal modeled yield is 22.3 t DM ha<span class="inline-formula"><sup>−1</sup></span> yr<span class="inline-formula"><sup>−1</sup></span> (Table <a href="https://bg.copernicus.org/articles/21/5005/2024/#Ch1.T1" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">1</a>). Low yields of less than 4 t DM ha<span class="inline-formula"><sup>−1</sup></span> yr<span class="inline-formula"><sup>−1</sup></span> are much more common in the observations (Fig. <a href="https://bg.copernicus.org/articles/21/5005/2024/#Ch1.F3" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">3</a>) <span class="cit" id="xref_paren.73">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx53" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Li et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx53" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2018</a><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx53" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>)</span>. Lower maximal and higher minimal modeled yields as compared to observations might be caused by the averaging effect within the large extent of the modeled grid cells, which might include other areas with sparse plant growth compared to the observation sites. Higher diversity in observed yields emerges due to different local conditions (soil, micro-climate), different management techniques (irrigation, fertilization) <span class="cit" id="xref_paren.74">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx64" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Mayer</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx64" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2017</a>)</span>, or different cultivars of <i>Miscanthus</i> <span class="cit" id="xref_paren.75">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx57" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Littleton et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx57" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2020</a>; <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx3" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Awty-Carroll et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx3" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2023</a>)</span>. Therefore, we also show the spatiotemporal median values of the observations for every grid cell (Fig. <a href="https://bg.copernicus.org/articles/21/5005/2024/#Ch1.F3" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">3</a>b). Low and high values are thereby ruled out, and the frequency distribution agrees better with the one of modeled yields.</p> <p id="d2e1181">Compared to other modeling studies <span class="cit" id="xref_paren.76">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx54" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Li et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx54" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2018</a><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx54" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a>; <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx57" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Littleton et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx57" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2020</a>)</span>, HBP productivity in JSBACH3.2 is similar in the middle and high latitudes but lower in the tropics, where no observations exist. Hence, our estimate of HBP efficiency is rather conservative in the tropics. We find smaller maximal yields compared to other modeling studies (Table <a href="https://bg.copernicus.org/articles/21/5005/2024/#Ch1.T1" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">1</a>) that could be due to their higher spatial resolution (0.5° <span class="inline-formula">×</span> 0.5°) and generally higher yields in the tropics (<span class="cit" id="xref_altparen.77"><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx57" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Littleton et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx57" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2020</a>; <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx54" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Li et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx54" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2018</a><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx54" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a></span>). While the global mean of the modeled yields agrees well with the observations, there are large regional differences for the single sites (Fig. <a href="https://bg.copernicus.org/articles/21/5005/2024/#Ch1.F3" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">3</a>), similar to <span class="cit" id="xref_text.78"><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx57" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Littleton et al.</a> (<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx57" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2020</a>)</span> and <span class="cit" id="xref_text.79"><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx54" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Li et al.</a> (<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx54" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2018</a><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx54" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a>)</span> due to the low spatial resolution of models.</p> <div class="fig" id="Ch1.F2"><a target="_blank" class="figure-link" href="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-f02-web.png"><img alt="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-f02" data-webversion="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-f02-web.png" src="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-f02-thumb.png" data-width="2067" data-height="1308"></a><div class="caption"><p id="d2e1211"><strong class="caption-number">Figure 2</strong>Modeled HBP yields in JSBACH3.2 and observed yield between 1984 and 2006 from <span class="cit" id="xref_text.80"><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx53" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Li et al.</a> (<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx53" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2018</a><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx53" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>)</span> (circles). We use the respective year of observed yields, or years if multiple, for evaluation. The lower panels show the zoom-in maps of <strong>(a)</strong> North America, <strong>(b)</strong> Europe, and <strong>(c)</strong> East Asia.</p></div><p class="downloads"></p></div> <div class="fig" id="Ch1.F3"><a target="_blank" class="figure-link" href="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-f03-web.png"><img alt="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-f03" data-webversion="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-f03-web.png" src="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-f03-thumb.png" data-width="2067" data-height="878"></a><div class="caption"><p id="d2e1234"><strong class="caption-number">Figure 3</strong>Modeled yields with harvest fraction 63 % compared to observed yields of <i>Miscanthus</i> from <span class="cit" id="xref_text.81"><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx53" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Li et al.</a> (<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx53" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2018</a><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx53" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>)</span>. In <strong>(a)</strong>, the observed range (horizontal error bars) accounts for variation between sites and fertilizer or irrigation treatment if different sites exist within a grid cell; the modeled range (vertical error bars) reflects interannual variability if several observed yields in different years correspond to the same grid cell. The dashed line represents the 1 : 1 line. In <strong>(b)</strong>, the relative frequencies of observed values, observed median values for every grid cell, and modeled values are shown. This figure is similar to Fig. 3e–f in <span class="cit" id="xref_text.82"><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx54" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Li et al.</a> (<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx54" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2018</a><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx54" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a>)</span> and Fig. 5 in <span class="cit" id="xref_text.83"><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx57" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Littleton et al.</a> (<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx57" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2020</a>)</span>.</p></div><p class="downloads"></p></div> <span class="tableCitations"><span class="cit" id="xref_text.84"><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx53" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Li et al.</a> (<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx53" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2018</a><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx53" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>)</span><span class="cit" id="xref_text.85"><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx53" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Li et al.</a> (<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx53" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2018</a><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx53" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>)</span><span class="cit" id="xref_text.86"><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx57" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Littleton et al.</a> (<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx57" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2020</a>)</span></span><div class="table-wrap" id="Ch1.T1"><div class="caption"><p id="d2e1265"><strong class="caption-number">Table 1</strong>Spatiotemporal mean, median, and maximum yields [DM ha<span class="inline-formula"><sup>−1</sup></span> yr<span class="inline-formula"><sup>−1</sup></span>] at the observed sites.</p></div><a class="table-link" href="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-t01.png" target="_blank"><img src="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-t01-thumb.png" target="_blank" data-webversion="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-t01-web.png" data-width="2067" data-height="937" data-printversion="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-t01.png" data-csvversion="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-t01.xlsx"></a><p class="downloads"><a class="triangle journal-contentLinkColor table-download" href="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-t01.png" target="_blank">Download Print Version</a><span class="hide-on-mobile download-separator"> | </span><a class="triangle journal-contentLinkColor table-download" href="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-t01.xlsx" target="_blank">Download XLSX</a></p></div> </div><div class="sec"><h2 id="Ch1.S2.SS5"><span class="label">2.5</span> Measures of efficiency</h2> <p id="d2e1436">We define the efficiency of a tCDR method for a certain year as the sum of the annual mean carbon sequestered in the biosphere, the emitted carbon avoided by FFS, and the carbon stored in products and geological reservoirs (CCS) since the start year <span class="inline-formula"><i>y</i><sub>0</sub></span> <span class="cit" id="xref_paren.87">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx64" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Mayer</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx64" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2017</a>)</span>. The carbon sequestered in the biosphere is the change in carbon density in the vegetation, soil, and litter times the spatial extent of the tCDR method. Carbon removal from the atmosphere is achieved by increasing the carbon density; extending the area of AR and HBPs; or increasing the share of FFS, CCS, or carbon storage in long-lived products of harvested biomass. Since we compare AR and HBPs in the same areas, differences in the CDR potential are due to the environmental, climate, and CO<span class="inline-formula"><sub>2</sub></span> impact on carbon densities and the level of FFS (<span class="inline-formula"><i>f</i><sub>FFS</sub></span>) and CCS (<span class="inline-formula"><i>f</i><sub>CCS</sub></span>) in this study. For our main analysis, we use a default value of 50 % for <span class="inline-formula"><i>f</i><sub>FFS</sub></span>, which is the mean provided by <span class="cit" id="xref_text.88"><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx30" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Gallagher</a> (<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx30" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2008</a>)</span>. <span class="inline-formula"><i>f</i><sub>CCS</sub></span> is based on a decadal time series of primary energy production from biomass with and without CCS from the CMIP6 AR6 database <span class="cit" id="xref_paren.89">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx10" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Byers et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx10" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2022</a>)</span> for the SSP1-2.6 scenario calculated with IMAGE 3.0 (Fig. <a href="https://bg.copernicus.org/articles/21/5005/2024/#Ch1.F4" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">4</a> and Eq. <a href="https://bg.copernicus.org/articles/21/5005/2024/#Ch1.E2" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2</a>; <span class="cit" id="xref_altparen.90"><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx98" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">van Vuuren et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx98" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2017</a></span>; later on referred to as SSP1-2.6 CCS rates).</p> <div class="disp-formula" content-type="numbered" id="Ch1.E2"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M61" display="block" overflow="scroll" dspmath="mathml"><mtable><mlabeledtr><mtd><mtext>(2)</mtext></mtd><mtd><mrow> <msub> <mi>f</mi> <mi mathvariant="normal">CCS</mi> </msub> <mo>=</mo> <mstyle displaystyle="true"> <mfrac style="display"> <mtext>primary energy|biomass|modern|w/ CCS</mtext> <mrow> <mfenced open="(" close=")"> <mstyle scriptlevel="+1"> <mtable class="substack"> <mtr> <mtd> <mtext mathvariant="normal">primary energy|biomass|modern|w/ CCS</mtext> </mtd> </mtr> <mtr> <mtd> <mo>+</mo> <mtext>primary energy|biomass|modern|w/o CCS</mtext> </mtd> </mtr> </mtable> </mstyle> </mfenced> </mrow> </mfrac> </mstyle> </mrow></mtd></mlabeledtr></mtable></math><div><svg xmlns:svg="http://www.w3.org/2000/svg" width="416pt" height="38pt" class="hide-js svg-formula" dspmath="mathimg" md5hash="4a874788d38685b262a651d4f4af1b39"><image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-e_2.svg" width="100%" height="38pt" src="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-e_2.png"></image></svg></div></div><p id="d2e1521-2"> Note that biomass here includes by definition purpose-grown bioenergy crops, crop and forestry residue bioenergy, municipal solid waste bioenergy, and traditional biomass. However, we assume that <span class="inline-formula"><i>f</i><sub>CCS</sub></span> is similar for biomass from second-generation bioenergy. In this scenario, 20 % of primary energy from biomass is produced with CCS in 2050 and around 58 % in 2100. We assume that the share of primary energy production for biomass with and without CCS is equivalent to the share of HBPs with and without CCS and interpolate the time series linearly over time.</p> <div class="fig" id="Ch1.F4"><a target="_blank" class="figure-link" href="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-f04-web.png"><img alt="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-f04" data-webversion="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-f04-web.png" src="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-f04-thumb.png" data-printversion="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-f04-high-res.pdf" data-width="2067" data-height="1085"></a><div class="caption"><p id="d2e1571"><strong class="caption-number">Figure 4</strong>Fraction of primary energy from biomass with CCS on primary energy from biomass provided by the CMIP6 AR6 database <span class="cit" id="xref_paren.91">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx10" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Byers et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx10" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2022</a>)</span> for the SSP1-2.6 scenario calculated with IMAGE 3.0 for every decade and interpolated in between.</p></div><p class="downloads"><a class="triangle journal-contentLinkColor figure-download" href="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-f04-high-res.pdf" target="_blank">Download</a></p></div> <p id="d2e1584"><span id="page5011"></span>The spatial carbon removal potential of AR and HBPs is calculated by the following equations: </p><span id="Ch1.E3" class="equationLink"></span><span id="Ch1.E4" class="equationLink"></span><div class="disp-formula" content-type="numbered" specific-use="gather"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M63" display="block" overflow="scroll" dspmath="mathml"><mtable displaystyle="true"><mlabeledtr><mtd><mtext>(3)</mtext></mtd><mtd><mrow><mstyle class="stylechange" displaystyle="true"></mstyle><mtable class="split" rowspacing="0.2ex" displaystyle="true" columnalign="right left"><mtr><mtd><mrow><msub><mi>C</mi><mi mathvariant="normal">AR</mi></msub><mo>(</mo><mi>y</mi><mo>)</mo></mrow></mtd><mtd><mrow><mo>=</mo><msub><mi>C</mi><mrow><mi mathvariant="normal">L</mi><mo>,</mo><mi mathvariant="normal">AR</mi></mrow></msub><mo>(</mo><mi>y</mi><mo>)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow><mo>=</mo><mover accent="true"><mrow><mi mathvariant="normal">Δ</mi><msub><mi mathvariant="italic">ρ</mi><mi mathvariant="normal">AR</mi></msub><mo>(</mo><mi>y</mi><mo>)</mo></mrow><mo mathvariant="normal">‾</mo></mover><mo>⋅</mo><msub><mi>A</mi><mi mathvariant="normal">AR</mi></msub><mo>(</mo><mi>y</mi><mo>)</mo><mo>,</mo></mrow></mtd></mtr></mtable></mrow></mtd></mlabeledtr><mlabeledtr><mtd><mtext>(4)</mtext></mtd><mtd><mrow><mstyle displaystyle="true" class="stylechange"></mstyle><mtable class="split" rowspacing="0.2ex" displaystyle="true" columnalign="right left"><mtr><mtd><mrow><msub><mi>C</mi><mi mathvariant="normal">HBPs</mi></msub><mo>(</mo><mi>y</mi><mo>)</mo></mrow></mtd><mtd><mrow><mo>=</mo><msub><mi>C</mi><mrow><mi mathvariant="normal">L</mi><mo>,</mo><mi mathvariant="normal">HBPs</mi></mrow></msub><mo>(</mo><mi>y</mi><mo>)</mo><mo>+</mo><munderover><mo movablelimits="false">∑</mo><mrow><mi>t</mi><mo>=</mo><msub><mi>y</mi><mn mathvariant="normal">0</mn></msub></mrow><mrow><mi>y</mi><mo>-</mo><mn mathvariant="normal">1</mn></mrow></munderover><msub><mi>H</mi><mi mathvariant="normal">HBPs</mi></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>⋅</mo><mo>(</mo><msub><mi>f</mi><mi mathvariant="normal">FFS</mi></msub><mo>+</mo><msub><mi>f</mi><mi mathvariant="normal">CCS</mi></msub><mo>)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow><mo>=</mo><mover accent="true"><mrow><mi mathvariant="normal">Δ</mi><msub><mi mathvariant="italic">ρ</mi><mi mathvariant="normal">HBPs</mi></msub><mo>(</mo><mi>y</mi><mo>)</mo></mrow><mo mathvariant="normal">‾</mo></mover><mo>⋅</mo><msub><mi>A</mi><mi mathvariant="normal">HBPs</mi></msub><mo>(</mo><mi>y</mi><mo>)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow><mo>+</mo><munderover><mo movablelimits="false">∑</mo><mrow><mi>t</mi><mo>=</mo><msub><mi>y</mi><mn mathvariant="normal">0</mn></msub></mrow><mrow><mi>y</mi><mo>-</mo><mn mathvariant="normal">1</mn></mrow></munderover><msub><mi>H</mi><mi mathvariant="normal">HBPs</mi></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>⋅</mo><mo>(</mo><msub><mi>f</mi><mi mathvariant="normal">FFS</mi></msub><mo>+</mo><msub><mi>f</mi><mi mathvariant="normal">CCS</mi></msub><mo>)</mo><mo>,</mo></mrow></mtd></mtr></mtable></mrow></mtd></mlabeledtr></mtable></math><div><svg xmlns:svg="http://www.w3.org/2000/svg" width="416pt" height="138pt" class="hide-js svg-formula" dspmath="mathimg" md5hash="1c7f3bb153876746247b368e767811fa"><image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-e_3_4.svg" width="100%" height="138pt" src="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-e_3_4.png"></image></svg></div></div><p id="d2e1584-3"> where <span class="inline-formula"><i>C</i></span> is the total carbon captured by AR or HBPs [kg], <span class="inline-formula"><i>C</i><sub>L</sub></span> is land carbon (vegetation, soil, and litter) of AR or HBPs [kg], <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M66" display="inline" overflow="scroll" dspmath="mathml"><mover accent="true"><mrow><mi mathvariant="normal">Δ</mi><mi mathvariant="italic">ρ</mi></mrow><mo mathvariant="normal">‾</mo></mover></math><span><svg xmlns:svg="http://www.w3.org/2000/svg" width="17pt" height="15pt" class="hide-js svg-formula" dspmath="mathimg" md5hash="61bd81bb6057e97b44206b77993635d7"><image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-ie00001.svg" width="100%" height="15pt" src="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-ie00001.png"></image></svg></span></span> is the annual mean change in carbon density of AR or HBPs compared to the start year [kg m<span class="inline-formula"><sup>−2</sup></span> (vegetation)], <span class="inline-formula"><i>A</i></span> is the area of AR or HBPs [m<span class="inline-formula"><sup>2</sup></span> (vegetation per grid cell)], <span class="inline-formula"><i>H</i><sub>HBPs</sub></span> is the harvested carbon of HBPs [kg], <span class="inline-formula"><i>f</i><sub>FFS</sub></span> is the efficiency of fossil fuel substitution (FFS) [%], <span class="inline-formula"><i>f</i><sub>CCS</sub></span> is the efficiency of carbon capture and storage (CCS) [%], <span class="inline-formula"><i>y</i></span> is year, and <span class="inline-formula"><i>y</i><sub>0</sub></span> is the start year.</p> <p id="d2e1973">Since the levels of FFS and CCS are additive, we can use them simultaneously to analyze their effect on the area-wise CDR potential for AR and HBPs. Overall, we identify the following three measures for CDR efficiency: </p><ol><li> <p id="d2e1978">the level of FFS or CCS needed for HBPs to exceed the efficiency of AR in 2100, which is calculated as</p><div class="disp-formula" content-type="numbered" id="Ch1.E5"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M75" display="block" overflow="scroll" dspmath="mathml"><mtable><mlabeledtr><mtd><mtext>(5)</mtext></mtd><mtd><mtable class="split" rowspacing="0.2ex" displaystyle="true" columnalign="right left"> <mtr> <mtd></mtd> <mtd> <mrow> <msub> <mi>L</mi> <mrow> <mi mathvariant="normal">FFS</mi> <mo>/</mo> <mi mathvariant="normal">CCS</mi> </mrow> </msub> <mo>(</mo> <mi>y</mi> <mo>)</mo> <mo>=</mo> </mrow> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mrow> <mspace linebreak="nobreak" width="1em"></mspace> <mo>(</mo> <msub> <mi>C</mi> <mi mathvariant="normal">AR</mi> </msub> <mo>(</mo> <mi>y</mi> <mo>)</mo> <mo>-</mo> <msub> <mi>C</mi> <mrow> <mi mathvariant="normal">L</mi> <mo>,</mo> <mi mathvariant="normal">HBPs</mi> </mrow> </msub> <mo>(</mo> <mi>y</mi> <mo>)</mo> <mo>)</mo> <mo>/</mo> <munderover> <mo movablelimits="false">∑</mo> <mrow> <mi>t</mi> <mo>=</mo> <mn mathvariant="normal">1</mn> </mrow> <mrow> <mi>y</mi> <mo>-</mo> <mn mathvariant="normal">1</mn> </mrow> </munderover> <msub> <mi>H</mi> <mi mathvariant="normal">HBPs</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>,</mo> </mrow> </mtd> </mtr> </mtable></mtd></mlabeledtr></mtable></math><div><svg xmlns:svg="http://www.w3.org/2000/svg" width="416pt" height="55pt" class="hide-js svg-formula" dspmath="mathimg" md5hash="f3338a7097e35622e84b94a5d18eeec7"><image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-e_5.svg" width="100%" height="55pt" src="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-e_5.png"></image></svg></div></div></li><li> <p id="d2e2080"><span id="page5012"></span>the year in which the 5-year running mean of carbon sequestrated by HBPs exceeds the one of AR for the first time, which is calculated as</p><div class="disp-formula" content-type="numbered" id="Ch1.E6"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M76" display="block" overflow="scroll" dspmath="mathml"><mtable><mlabeledtr><mtd><mtext>(6)</mtext></mtd><mtd><mrow> <mover accent="true"> <mi>y</mi> <mo mathvariant="normal" stretchy="false">̃</mo> </mover> <mo>=</mo> <mo movablelimits="false">min</mo> <mo mathvariant="italic">{</mo> <mi>y</mi> <mo>|</mo> <munderover> <mo movablelimits="false">∑</mo> <mrow> <mi>t</mi> <mo>=</mo> <mi>y</mi> <mo>-</mo> <mn mathvariant="normal">5</mn> </mrow> <mi>y</mi> </munderover> <mo>(</mo> <msub> <mi>C</mi> <mi mathvariant="normal">HBPs</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>&gt;</mo> <msub> <mi>C</mi> <mi mathvariant="normal">AR</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>⋅</mo> <mo>(</mo> <mn mathvariant="normal">1</mn> <mo>+</mo> <mn mathvariant="normal">1</mn> <mi>e</mi> <mo>-</mo> <mn mathvariant="normal">4</mn> <mo>)</mo> <mo mathvariant="italic">}</mo> <mo>,</mo> </mrow></mtd></mlabeledtr></mtable></math><div><svg xmlns:svg="http://www.w3.org/2000/svg" width="416pt" height="35pt" class="hide-js svg-formula" dspmath="mathimg" md5hash="56ff2e4aaedf8d02a96a10e0256316cf"><image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-e_6.svg" width="100%" height="35pt" src="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-e_6.png"></image></svg></div></div></li><li> <p id="d2e2172">the additional area needed per grid cell for HBPs to reach the efficiency of AR, which is calculated as</p><div class="disp-formula" content-type="numbered" id="Ch1.E7"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M77" display="block" overflow="scroll" dspmath="mathml"><mtable><mlabeledtr><mtd><mtext>(7)</mtext></mtd><mtd><mtable rowspacing="0.2ex" class="split" displaystyle="true" columnalign="right left"> <mtr> <mtd></mtd> <mtd> <mrow> <msub> <mi>a</mi> <mi mathvariant="normal">HBPs</mi> </msub> <mo>(</mo> <mi>y</mi> <mo>)</mo> <mo>=</mo> </mrow> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mrow> <mspace width="1em" linebreak="nobreak"></mspace> <msub> <mi>C</mi> <mi mathvariant="normal">AR</mi> </msub> <mo>(</mo> <mi>y</mi> <mo>)</mo> <mo>⋅</mo> <msub> <mi>A</mi> <mi mathvariant="normal">HBPs</mi> </msub> <mo>/</mo> <mo>(</mo> <msub> <mi>C</mi> <mi mathvariant="normal">HBPs</mi> </msub> <mo>(</mo> <mi>y</mi> <mo>)</mo> <mo>)</mo> <mo>-</mo> <msub> <mi>A</mi> <mi mathvariant="normal">HBPs</mi> </msub> <mo>,</mo> </mrow> </mtd> </mtr> </mtable></mtd></mlabeledtr></mtable></math><div><svg xmlns:svg="http://www.w3.org/2000/svg" width="416pt" height="31pt" class="hide-js svg-formula" dspmath="mathimg" md5hash="3b077f0de9fb25d87709df5d9293a110"><image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-e_7.svg" width="100%" height="31pt" src="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-e_7.png"></image></svg></div></div></li></ol><p id="d2e1973-3"> where <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M78" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><mi>L</mi><mrow><mi mathvariant="normal">FFS</mi><mo>/</mo><mi mathvariant="normal">CCS</mi></mrow></msub></mrow></math><span><svg xmlns:svg="http://www.w3.org/2000/svg" width="45pt" height="14pt" class="hide-js svg-formula" dspmath="mathimg" md5hash="36ccb00d379107221cbb8ca53bae827f"><image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-ie00002.svg" width="100%" height="14pt" src="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-ie00002.png"></image></svg></span></span> is the combined level of fossil fuel substitution and carbon capture and storage, and <span class="inline-formula"><i>a</i><sub>HBPs</sub></span> is the area of HBPs needed to reach a similar efficiency as AR [m<span class="inline-formula"><sup>2</sup></span>].</p> <p id="d2e2284">All grid cells for which the HBP fraction is smaller than 0.1 % are neglected to avoid numerical artifacts.</p> </div></div><span class="section2-mobile-bottom-border mobile-bottom-border hide-on-desktop hide-on-tablet"></span></div> <div class="sec" id="section3"><div class="grid-container no-margin header-element"><span class="grid-100 mobile-grid-100 tablet-grid-100 grid-parent more-less-mobile" data-hide="#section3 .co-arrow-open,.section3-content" data-show="#section3 .co-arrow-closed,.section3-mobile-bottom-border"><div id="Ch1.S3" class="h1"><span class="label">3</span> Results<span class="hide-on-desktop hide-on-tablet triangleWrapper"> <i class="co-arrow-closed"></i><i class="co-arrow-open" style="display:none"></i></span></div></span></div> <div class="section3-content show-no-js hide-on-mobile-soft"><p id="d2e2296">In this section, we at first assess the efficiency of carbon removal from the atmosphere by the two tCDR methods in an SSP1-2.6 land-use and climate scenario, which includes carbon sequestration in vegetation, litter, soil, and the proportion of harvested HBP yield used for FFS and CCS. We further evaluate the different measures of efficiency described in Sect. <a href="https://bg.copernicus.org/articles/21/5005/2024/#Ch1.S2.SS5" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2.5</a>, i.e., the level of FFS, the temporal dynamics, and the area of cultivation comparing AR and HBPs. We differentiate between HBPs with CCS (equivalent to BECCS) and without CCS.</p><div class="sec"><h2 id="Ch1.S3.SS1"><span class="label">3.1</span> Efficiency of AR and HBPs</h2> <p id="d2e2308">The amount of CDR realized by HBPs and AR in the same areas in 2100 differs substantially. The key factors determining differences between both are assumptions on levels of CCS and FFS for BECCS (Fig. <a href="https://bg.copernicus.org/articles/21/5005/2024/#Ch1.F5" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">5</a>a). For 50 % FFS and SSP1-2.6 CCS rates (Fig. <a href="https://bg.copernicus.org/articles/21/5005/2024/#Ch1.F4" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">4</a>), the carbon potential of HBPs outpaces the one of AR after 2071 and is about twice as high towards the end of the century. HBPs become even more efficient in storing carbon than AR in the 100 % FFS and 100 % CCS case (a factor of 3). In contrast, if theoretically no FFS and no CCS are assumed for HBPs – i.e., all bioenergy is used in addition to fossil-fuel-based energy – AR is more efficient towards the end of the 21st century, storing about twice as much carbon as HBPs. Depending on FFS and CCS levels, HBPs sequester 24–158 GtC by 2100, whereas AR methods sequester around 53 GtC. The accumulated harvested HBP yield by 2100 is 67 GtC, reaching levels of about 2.5 GtC harvested per year towards the end of the century (Fig. <a href="https://bg.copernicus.org/articles/21/5005/2024/#Ch1.F5" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">5</a>b). The amount of CCS accumulates to 34 GtC by 2100 assuming SSP1-2.6 CCS rates. The difference in tCDR potential only becomes substantial after around 2070, when the land conversion to tCDR increases rapidly in the SSP1-2.6 land-use scenario (Fig. <a href="https://bg.copernicus.org/articles/21/5005/2024/#Ch1.F1" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">1</a>). The cumulative global wood harvest of forests without AR estimated by the LUH2 data (<span class="inline-formula">wh<sub>LUH2</sub>(2100)</span>) between 2015 and 2100 is 91.6 GtC. Since this is similar in both simulations, it does not impact our results. Our estimate based on Sect. 2.3 reveals an additional cumulative wood harvest of AR <span class="inline-formula">wh<sub>AR</sub></span> of 1.29 GtC between 2015 and 2100. We argue that wood harvesting has a relatively small effect on the carbon cycle compared to the cumulative amount of 53 GtC sequestered by AR (Fig. <a href="https://bg.copernicus.org/articles/21/5005/2024/#Ch1.F5" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">5</a>). Hence, we do not further consider it in our global estimates.</p> <div class="fig" id="Ch1.F5"><a target="_blank" class="figure-link" href="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-f05-web.png"><img alt="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-f05" data-webversion="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-f05-web.png" src="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-f05-thumb.png" data-printversion="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-f05-high-res.pdf" data-width="2067" data-height="2180"></a><div class="caption"><p id="d2e2355"><strong class="caption-number">Figure 5</strong><strong>(a)</strong> tCDR potential of AR and HBPs assuming 50 % FFS and SSP1-2.6 CCS rates from 2015 to 2100 (Fig. <a href="https://bg.copernicus.org/articles/21/5005/2024/#Ch1.F4" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">4</a>). The shaded areas indicate the range of tCDR potential without FFS and CCS to 100 % FFS and 100 % CCS. <strong>(b)</strong> Annual harvest of HBPs [GtC].</p></div><p class="downloads"><a class="triangle journal-contentLinkColor figure-download" href="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-f05-high-res.pdf" target="_blank">Download</a></p></div> <p id="d2e2371">The spatial difference in CDR potential in 2100 between C1HBP with 50 % FFS and SSP1-2.6 CCS rates and C1AR is shown in Fig. <a href="https://bg.copernicus.org/articles/21/5005/2024/#Ch1.F6" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">6</a>a. The CDR potential of HBPs is almost everywhere higher compared to AR, especially in South American grasslands and southeast Africa. The only exception is southeast China, where even for 50 % FFS and with CCS, AR stores slightly more carbon. Without FFS and CCS for HBPs (Fig. <a href="https://bg.copernicus.org/articles/21/5005/2024/#Ch1.F6" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">6</a>b), the potential of AR is higher everywhere, especially in southeast China and the eastern USA. The difference in carbon stored stems mainly from the vegetation pool with its high carbon storage in trees in the AR scenario (Fig. <a href="https://bg.copernicus.org/articles/21/5005/2024/#App1.Ch1.S1.F11" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">A2</a>a). By contrast, the soil and litter carbon pools show substantially fewer changes between the two CDR methods (Fig. <a href="https://bg.copernicus.org/articles/21/5005/2024/#App1.Ch1.S1.F11" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">A2</a>b, c).</p> <div class="fig" id="Ch1.F6"><a target="_blank" class="figure-link" href="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-f06-web.png"><img alt="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-f06" data-webversion="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-f06-web.png" src="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-f06-thumb.png" data-width="2067" data-height="2002"></a><div class="caption"><p id="d2e2385"><strong class="caption-number">Figure 6</strong>Difference in tCDR potential per area [kg m<span class="inline-formula"><sup>−2</sup></span> tCDR] in 2100 between HBPs and AR <strong>(a)</strong> for 50 % FFS and SSP1-2.6 CCS rates and <strong>(b)</strong> without FFS and CCS. Positive values indicate that HBPs store more carbon than AR.</p></div><p class="downloads"></p></div> </div><div class="sec"><h2 id="Ch1.S3.SS2"><span class="label">3.2</span> Level of fossil fuel substitution (FFS)</h2> <p id="d2e2420"><span id="page5013"></span>Given that for 0 % FFS, HBPs are less efficient in sequestering carbon until 2100 as compared to AR, while for 100 % FFS, HBPs exceed the CDR potential of AR in most regions, there must be an FFS level where the efficiency of HBPs and AR is similar. The lower the level of FFS needed for HBPs to reach a similar efficiency as AR, the more potential the cultivation of HBPs to remove carbon in a region has. We find that, as previously noted, even for 100 % FFS but without CCS, HBPs do not reach the CDR levels of AR in southeast China until 2100, which is one of the hotspots of tCDR deployment in SSP1.2-6 (Fig. <a href="https://bg.copernicus.org/articles/21/5005/2024/#Ch1.F1" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">1</a>). The higher CDR efficiency of AR in southeast China is partially due to the late onset of tCDR in this area (Fig. <a href="https://bg.copernicus.org/articles/21/5005/2024/#Ch1.F8" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">8</a>). However, compared to areas with a similarly late onset (e.g., the Sahel), there is a much higher level of FFS needed for HBPs, and climate and soil conditions are more favorable for AR. For example, forests benefit more strongly from the precipitation increase in southeast China towards the end of the century (Fig. <a href="https://bg.copernicus.org/articles/21/5005/2024/#App1.Ch1.S1.F10" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">A1</a>), whereas dryer conditions in the Sahel are likely more favorable for HBPs. In some areas of Eurasia, the east coast of the USA, and South America, the level of FFS without CCS needed for HBPs to exceed the efficiency of AR in 2100 is very high (<span class="inline-formula">&gt;</span> 80 %) (Fig. <a href="https://bg.copernicus.org/articles/21/5005/2024/#Ch1.F7" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">7</a>a). The FFS level needed for HBPs to exceed the efficiency in AR is at a medium level, between 50 % and 80 %, in Europe, the Congo basin, South American grasslands, and the eastern USA. For areas with a late tCDR onset (eastern USA, Europe), climate and soil conditions are most likely more favorable for HBPs. For sub-Saharan Africa, the Australian coast, and Argentina the FFS level needed is the lowest (<span class="inline-formula">&lt;</span> 50 %). Despite the late onset of tCDR, the FFS level in the Sahel is low, showing that dryer climate and soil conditions are more favorable for HBPs compared to forests. With SSP1-2.6 CCS rates, HBPs become more efficient in 2100 than AR even without additional FFS (Fig. <a href="https://bg.copernicus.org/articles/21/5005/2024/#Ch1.F7" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">7</a>b). Even in regions where AR is more efficient without CCS and with a late onset of tCDR, such as Eurasia, the east coast of the USA, and southeast China, HBPs become more efficient with CCS and around 50 % FFS.</p> <div class="fig" id="Ch1.F7"><a target="_blank" class="figure-link" href="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-f07-web.png"><img alt="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-f07" data-webversion="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-f07-web.png" src="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-f07-thumb.png" data-width="2067" data-height="1995"></a><div class="caption"><p id="d2e2450"><strong class="caption-number">Figure 7</strong>Level of FFS [%] needed for HBPs to exceed the efficiency of AR in 2100 <strong>(a)</strong> without carbon capture and storage (CCS) and <strong>(b)</strong> for SSP1-2.6 CCS rates. The black color indicates that HBPs do not exceed the effectiveness of AR even with 100 % FFS, while the red color indicates grid cells where HBPs exceed the efficiency of AR without FFS.</p></div><p class="downloads"></p></div> </div><span id="page5014"></span><div class="sec"><h2 id="Ch1.S3.SS3"><span class="label">3.3</span> Temporal dynamics in the SSP1-2.6 scenario</h2> <p id="d2e2473">In our simulations, bioenergy plants store more carbon in the soil than AR in the vegetation in Eurasia and the eastern USA. In contrast, forests can sequester more carbon in the vegetation and litter over long periods (Fig. <a href="https://bg.copernicus.org/articles/21/5005/2024/#App1.Ch1.S1.F11" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">A2</a>). If the harvested carbon from HBPs is used for FFS or stored (CCS), HBPs might become more efficient in removing carbon from the atmosphere over time because they regrow quickly and are harvested annually. Additionally, forests tend to absorb less carbon with increasing age <span class="cit" id="xref_paren.92">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx76" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Pugh et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx76" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2019</a>)</span>, compensating/fostering effects of rising/falling CO<span class="inline-formula"><sub>2</sub></span> levels, which enhance/reduce net ecosystem productivity even in old-growth forests <span class="cit" id="xref_paren.93">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx59" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Luyssaert et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx59" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2008</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx60" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2021</a>)</span>. However, forest age is not represented explicitly in JSBACH3.2. Instead, the impact of forest age on plant productivity is only implicitly represented through structural limits. Assuming 50 % FFS and SSP1-2.6 CCS rates, HBPs become on average more efficient around 2070 (Fig. <a href="https://bg.copernicus.org/articles/21/5005/2024/#Ch1.F5" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">5</a>).</p> <p id="d2e2495">We evaluate the time between the onset of tCDR and the year in which the carbon harvested and stored through HBPs will exceed that of forests spatially if 50 % FFS of HBPs is assumed. The year of tCDR onset is defined as the year when the respective tCDR method covers more than 0.1 % of the grid cell. We find that in southeast China and some areas of the eastern USA and Eurasia, HBPs do not reach the potential of AR without CCS until 2100 (Fig. <a href="https://bg.copernicus.org/articles/21/5005/2024/#Ch1.F8" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">8</a>a). Note that in these areas the tCDR onset happens late in the century, between 2060 and 2070 (Fig. <a href="https://bg.copernicus.org/articles/21/5005/2024/#Ch1.F8" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">8</a>c). Especially in eastern Europe, HBPs become already more efficient than AR shortly after their plantation, whereas in the South American grasslands HBPs need between 20 and 50 years to become more efficient despite in both regions the planting starting in the first half of the 21st century. With CCS (Fig. <a href="https://bg.copernicus.org/articles/21/5005/2024/#Ch1.F8" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">8</a>b), the period for HBPs to become more efficient is shorter. Even in those regions with lower efficiency without CCS (eastern USA, Eurasia, southeast China) and where the tCDR onset is late, HBPs become more efficient with CCS within this century.</p> <p id="d2e2504">In this specific SSP1-2.6 land-use and climate scenario, the time until HBPs become more efficient than AR depends very much on the regional climate and soil conditions. For example, although the tCDR onsets in southeast China and the Sahel appear after 2060, the time until HBPs become more efficient is much shorter in the Sahel compared to southeast China due to a drying trend in the former and a wetting trend in the later region (Fig. <a href="https://bg.copernicus.org/articles/21/5005/2024/#App1.Ch1.S1.F10" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">A1</a>). The additional implementation of CCS will shorten this time or even enable HBPs to become more efficient within the century. The potential of AR to store additional carbon in aboveground biomass decreases over time, whereas the cumulative harvest of HBPs increases steadily. Thus, HBPs have an advantage over time in most regions, especially with CCS in addition to FFS.</p> <p id="d2e2509">In Fig. <a href="https://bg.copernicus.org/articles/21/5005/2024/#App1.Ch1.S1.F12" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">A3</a>, we show the relative tCDR potential from HBPs compared to AR globally as a function of different levels of FFS for various years. We find that, without CCS, HBPs only become more efficient than AR at a level of FFS above 50 % and never before 2060. With CCS, HBPs become more efficient at any level of FFS by 2100 but also in this case never before 2060. This confirms our finding that HBPs only exceed the efficiency of AR over long periods, independently of the level of FFS and assuming plausible CCS.</p> <div class="fig" id="Ch1.F8"><a target="_blank" class="figure-link" href="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-f08-web.png"><img alt="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-f08" data-webversion="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-f08-web.png" src="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-f08-thumb.png" data-width="2067" data-height="2962"></a><div class="caption"><p id="d2e2517"><strong class="caption-number">Figure 8</strong>Years after the onset of the CDR method when HBPs become more efficient than AR per grid cell assuming 50 % FFS <strong>(a)</strong> without CCS and <strong>(b)</strong> with CCS. Panel <strong>(c)</strong> shows the year of tCDR onset (<span class="inline-formula">&gt;</span> 0.1 % of grid cell). The black color indicates grid cells where HBPs are less effective until 2100.</p></div><p class="downloads"></p></div> </div><div class="sec"><h2 id="Ch1.S3.SS4"><span class="label">3.4</span> HBP area needed to reach efficiency of forests</h2> <p id="d2e2551">The area needed to reach a specific carbon removal target is an important measure of a tCDR method because land-use conflicts with, e.g., agriculture and nature conservation, emerge from the tCDR implementation. Thus, decision-makers need to know how much area is necessary to fulfill a specific carbon sequestration target. We find that more than 4000 km<span class="inline-formula"><sup>2</sup></span> per grid cell of bioenergy plantations is necessary in southeast China when no CCS is assumed (Fig. <a href="https://bg.copernicus.org/articles/21/5005/2024/#Ch1.F9" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">9</a>a), as compared to AR in our SSP1-2.6 scenario. This area corresponds to roughly 12 % of the land given the size of a grid cell is up to 43 000 km<span class="inline-formula"><sup>2</sup></span> in the tropics and about 20 000 km<span class="inline-formula"><sup>2</sup></span><span id="page5015"></span> in the higher latitudes (62.5° N). In Russia, the east coast of the USA, and southeast China a larger area is needed for HBPs than for AR to reach the same efficiency. In contrast, in Europe, sub-Saharan Africa, the Australian coast, and the eastern USA less area is needed for HBPs compared to AR. In the South American grasslands and southeast Africa, much less area of HBPs is needed to be as efficient as AR. With CCS (Fig. <a href="https://bg.copernicus.org/articles/21/5005/2024/#Ch1.F9" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">9</a>b), HBPs need less area to be as efficient as AR in almost all regions, except for southeast China. In the South American grasslands, more than 4000 km<span class="inline-formula"><sup>2</sup></span> of additional area is needed for AR to reach the efficiency of HBPs.</p> <div class="fig" id="Ch1.F9"><a target="_blank" class="figure-link" href="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-f09-web.png"><img alt="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-f09" data-webversion="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-f09-web.png" src="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-f09-thumb.png" data-width="2067" data-height="1891"></a><div class="caption"><p id="d2e2597"><strong class="caption-number">Figure 9</strong>Additional HBP area [km<span class="inline-formula"><sup>2</sup></span>] that is needed per grid cell to reach the efficiency of AR in 2100 assuming 50 % FFS <strong>(a)</strong> without CCS and <strong>(b)</strong> with CCS. The red color indicates grid cells where the implementation of HBPs could spare more than 4000 km<span class="inline-formula"><sup>2</sup></span> of land area to reach a similar efficiency as AR.</p></div><p class="downloads"></p></div> </div></div><span class="section3-mobile-bottom-border mobile-bottom-border hide-on-desktop hide-on-tablet"></span></div> <div class="sec" id="section4"><div class="grid-container no-margin header-element"><span class="grid-100 mobile-grid-100 tablet-grid-100 grid-parent more-less-mobile" data-hide="#section4 .co-arrow-open,.section4-content" data-show="#section4 .co-arrow-closed,.section4-mobile-bottom-border"><div id="Ch1.S4" class="h1"><span class="label">4</span> Discussion<span class="hide-on-desktop hide-on-tablet triangleWrapper"> <i class="co-arrow-closed"></i><i class="co-arrow-open" style="display:none"></i></span></div></span></div> <div class="section4-content show-no-js hide-on-mobile-soft"><p id="d2e2639">Due to the annual HBP harvest and the saturation of carbon sequestration in forests, HBPs have an advantage over forests in the long term. Without FFS and CCS, HBPs sequester less carbon than AR globally by 2100. In the case of 50 % FFS and SSP1-2.6 CCS rates (Fig. <a href="https://bg.copernicus.org/articles/21/5005/2024/#Ch1.F4" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">4</a>), the efficiency of HBPs is higher in most regions compared to AR by the end of the century. There are substantial regional differences in CDR potential in the SSP1-2.6 scenario. In southeast China, the east coast of the USA, and parts of Eurasia, AR is more efficient than cultivating HBPs. In these regions, HBPs reach the efficiency of AR later, at a higher FFS level, or if more area is available. However, the onset of tCDR in these regions happens mostly after 2050 in the SSP1-2.6 scenario, and thus, they have less time to become established. In contrast, in the South American grasslands and southeast Africa, where the onset of tCDR happens before 2050, HBPs have an advantage over AR in that the efficiency is reached earlier and at lower levels of FFS or less area is needed. In other regions, such as the eastern USA, Europe, sub-Saharan Africa, and Central America, it depends mainly on the level of CCS and FFS at which the measure of tCDR is more efficient. Under climate change, forests and bioenergy plants likely take up more carbon from the atmosphere due to the elevated CO<span class="inline-formula"><sub>2</sub></span>. The CO<span class="inline-formula"><sub>2</sub></span> fertilization is usually higher for trees than for the C<span class="inline-formula"><sub>4</sub></span> bioenergy plants. This effect strengthens under high-emission scenarios.</p><div class="sec"><h2 id="Ch1.S4.SS1"><span class="label">4.1</span> Comparison with previous studies</h2> <p id="d2e2678"><span id="page5016"></span>Table <a href="https://bg.copernicus.org/articles/21/5005/2024/#Ch1.T2" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2</a> shows the results of earlier DGVM and ESM studies on future tCDR potential. The mean tCDR potential of BECCS per area in our study agrees well with these studies for a similar climate scenario, while the uncertainty is very high. The high uncertainty in BECCS potentials stems from the various CCS and FFS fractions among the studies. Most studies do not consider FFS, while <span class="cit" id="xref_text.94"><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx15" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Cheng et al.</a> (<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx15" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2024</a>)</span> show a very high uncertainty in FFS due to different technological and economic scenario assumptions. Several studies assume a fixed level of CCS higher than 50 %, whereas others do not consider CCS. The studies with a higher-emission climate scenario <span class="cit" id="xref_paren.95">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx64" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Mayer</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx64" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2017</a>; <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx67" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Melnikova et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx67" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2022</a>)</span> project a higher tCDR potential per area. BECCS exceeds the climate mitigation potential of AR globally in a fully coupled SSP5-3.4-OS overshoot scenario <span class="cit" id="xref_paren.96">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx68" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Melnikova et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx68" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2023</a>)</span>. In their research, the efficiency varies regionally and temporally and depends critically on the CCS conversion efficiency of bioenergy crops. Although they use a different future scenario and a different model, they also found that BECCS is more efficient on longer timescales compared to AR, similar to <span class="cit" id="xref_text.97"><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx106" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Zhao et al.</a> (<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx106" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2024</a>)</span>. Most ESMs in CMIP6 do not distinguish second-generation bioenergy crops from others yet <span class="cit" id="xref_paren.98">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx48" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Krause et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx48" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2018</a>; <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx36" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Harper et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx36" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2018</a>; <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx67" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Melnikova et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx67" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2022</a>)</span>. This may be a key reason why <span class="cit" id="xref_text.99"><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx36" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Harper et al.</a> (<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx36" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2018</a>)</span> find a potential of only 20 to 35 GtC by 2100 to meet the 1.5 °C temperature target compared to 67 GtC in our study using the SSP1-2.6 scenario. However, the area used for bioenergy crops is higher in their study (up to 550 Mha) than in our study (up to 330 Mha). <span class="cit" id="xref_text.100"><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx64" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Mayer</a> (<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx64" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2017</a>)</span> uses a previous version of JSBACH and finds a HBP harvest of 293 GtC (mean of 55 % and 71 % HBP harvest) in 560 Mha for RCP4.5. The lower productivity in our model version can be explained by the larger area, later cultivation of HBPs in the SSP1-2.6 land-use scenario, a different climate forcing, the inclusion of nitrogen limitation in our study, and the use of prescribed maps instead of land-use transitions. <span class="cit" id="xref_text.101"><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx36" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Harper et al.</a> (<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx36" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2018</a>)</span> identify the land cover transition of bioenergy plants as a critical factor. If bioenergy plants replace high-carbon-content ecosystems, e.g., forests, forest-based mitigation could be more efficient for atmospheric CO<span class="inline-formula"><sub>2</sub></span> removal than BECCS <span class="cit" id="xref_paren.102">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx85" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Searchinger et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx85" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2018</a>; <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx87" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Seo et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx87" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2024</a>)</span>. In our SSP1-2.6 land-use scenario, HBPs mainly replace pasture. The net forest area increases in the future, limiting the danger of deforestation due to HBPs in our scenario. The tCDR potential of AR in our study is lower than in all other studies except <span class="cit" id="xref_text.103"><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx48" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Krause et al.</a> (<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx48" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2018</a>)</span>. Most of these studies use a higher-emission scenario – a larger area where AR is applied earlier.</p> <p id="d2e2724">Further studies are needed for a robust quantification of CDR potentials for BECCS and AR in all regions of the world, including specific local implementations, and under various future climate projections. Extensively testing the sensitivity of our results to assumptions concerning model implementation or specific characteristics of how a method is implemented with regard to, e.g., biomass usage (see also limitations discussed in Sect. 4.5) is beyond the scope of our study. However, our estimates of tCDR potentials are plausible in comparison to other studies and thus allow us to use them to illustrate the value of applying various measures of efficiency to compare CDR methods to each other.</p> <span class="tableCitations"><span class="cit" id="xref_text.104"><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx15" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Cheng et al.</a> (<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx15" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2024</a>)</span><span class="cit" id="xref_text.105"><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx36" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Harper et al.</a> (<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx36" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2018</a>)</span><span class="cit" id="xref_text.106"><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx48" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Krause et al.</a> (<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx48" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2018</a>)</span><span class="cit" id="xref_text.107"><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx68" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Melnikova et al.</a> (<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx68" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2023</a>)</span><span class="cit" id="xref_text.108"><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx64" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Mayer</a> (<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx64" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2017</a>)</span><span class="cit" id="xref_text.109"><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx101" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Wang et al.</a> (<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx101" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2023</a>)</span><span class="cit" id="xref_text.110"><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx101" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Wang et al.</a> (<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx101" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2023</a>)</span><span class="cit" id="xref_text.111"><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx15" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Cheng et al.</a> (<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx15" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2024</a>)</span><span class="cit" id="xref_text.112"><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx48" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Krause et al.</a> (<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx48" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2018</a>)</span><span class="cit" id="xref_text.113"><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx64" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Mayer</a> (<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx64" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2017</a>)</span><span class="cit" id="xref_text.114"><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx68" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Melnikova et al.</a> (<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx68" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2023</a>)</span><span class="cit" id="xref_text.115"><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx93" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Sonntag et al.</a> (<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx93" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2016</a>)</span></span><div class="table-wrap" id="Ch1.T2"><div class="caption"><p id="d2e2730"><strong class="caption-number">Table 2</strong>Comparison of tCDR efficiency with previous global model studies. Note that the timing and the temporal evolution of tCDR cultivation differ between the studies.</p></div><a class="table-link" href="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-t02.png" target="_blank"><img src="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-t02-thumb.png" target="_blank" data-webversion="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-t02-web.png" data-width="2067" data-height="782" data-printversion="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-t02.png" data-csvversion="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-t02.xlsx"></a><p class="downloads"><a class="triangle journal-contentLinkColor table-download" href="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-t02.png" target="_blank">Download Print Version</a><span class="hide-on-mobile download-separator"> | </span><a class="triangle journal-contentLinkColor table-download" href="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-t02.xlsx" target="_blank">Download XLSX</a></p></div> </div><div class="sec"><h2 id="Ch1.S4.SS2"><span class="label">4.2</span> Fossil fuel substitution</h2> <p id="d2e3426">The future substitution of fossil fuels with bioenergy depends on several factors: (1) the energy conversion between bioenergy and fossil fuels (i.e., how much of each is needed to produce the same amount of energy) and the type of biofuel and displaced fuels, (2) the carbon content of the bioenergy and the fossil fuel, and (3) to what extent bioenergy is displacing fossil fuels. In addition, the FFS potential of bioenergy reduces through production and transport losses along the process chain <span class="cit" id="xref_paren.116">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx5" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Babin et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx5" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2021</a>)</span>. We do not perform an LCA in our study but include additional emissions through production losses implicitly in the FFS fraction. <span class="cit" id="xref_text.117"><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx14" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Cheng et al.</a> (<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx14" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2022</a>)</span> prescribe a conversion factor of up to 234 % assuming that bioenergy is fully displacing fossil fuels and assuming maximal inefficient fossil-fuel-to-energy conversion. As these assumptions are unlikely, we used a more plausible level of FFS between 0 % and 100 % with a default of 50 %, as in <span class="cit" id="xref_text.118"><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx30" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Gallagher</a> (<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx30" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2008</a>)</span> (FFS 30 %–70 %) and similar to the assumptions of <span class="cit" id="xref_text.119"><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx45" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Kalt et al.</a> (<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx45" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2019</a>)</span>. They consider different scenarios, including one with an FFS factor between 0 % and 90 % depending on the energy conversion and type of displaced fuel and one with a dynamic FFS assuming a declining FFS factor over time from 55 %–70 % in 2020 to 25 %–40 % in 2100 due to the upscaling of renewable energy sources. In our simulations, we chose a constant level of FFS because we assume that bioenergy and other renewables replace fossil fuels in a similar way <span class="cit" id="xref_paren.120">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx98" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">van Vuuren et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx98" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2017</a>)</span>. In addition, we investigate the impact of different levels of FFS in Fig. <a href="https://bg.copernicus.org/articles/21/5005/2024/#App1.Ch1.S1.F12" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">A3</a>. The IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation provides FFS factors between <span class="inline-formula">−9</span> % for diesel and 78 % for coal from several local studies <span class="cit" id="xref_paren.121">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx17" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Chum et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx17" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2011</a>)</span>. Because the FFS factor can vary in space and time, we support our study with a sensitivity analysis, where we determine the tCDR potential of HBPs relative to AR over time in an SSP1-2.6 scenario and as a function of the level of FFS (Fig. <a href="https://bg.copernicus.org/articles/21/5005/2024/#App1.Ch1.S1.F12" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">A3</a>), inspired by <span class="cit" id="xref_text.122"><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx45" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Kalt et al.</a> (<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx45" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2019</a>)</span>. We find that an increasing level of FFS reduces the time until HBPs become more efficient than AR, but this happens in no case before 2060.</p> </div><div class="sec"><h2 id="Ch1.S4.SS3"><span class="label">4.3</span> Carbon capture and storage</h2> <p id="d2e3473">The latest IPCC assessment report estimates about 8.7–211 (median 90.3) GtC (1.5 °C temperature target) and 47–177 (median 78.6) GtC (2 °C temperature target) captured from BECCS (<span class="cit" id="xref_altparen.123"><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx40" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">IPCC Working Group III</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx40" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2022</a><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx40" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span>, Table 3.5). The large spread reflects the high uncertainty of BECCS deployment in the future among the IAM scenarios. The amount of captured carbon through BECCS in our study (34 GtC) is below average compared with the amount projected in the IPCC. Compared to other studies, our assumptions on CCS are rather conservative. While we assume a consecutive rise in CCS of up to 58 % following the CMIP6 scenario database for SSP1-2.6 <span class="cit" id="xref_paren.124">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx98" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">van Vuuren et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx98" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2017</a>)</span>, <span class="cit" id="xref_text.125"><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx82" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Rose et al.</a> (<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx82" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2014</a>)</span> assume between 50 % and 97 % in 2050 and between 86 % and 100 % in 2100 for different IAMs. However, only a tiny fraction of current CDR results from novel CDR methods, including BECCS <span class="cit" id="xref_paren.126">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx90" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Smith et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx90" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2023</a>)</span>, and future projections of CCS are very uncertain (<span class="cit" id="xref_altparen.127"><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx40" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">IPCC Working Group III</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx40" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2022</a><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx40" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span>, Table 3.5). Therefore, our assumptions on CCS deployment are rather conservative. Barriers to the upscaling of CCS facilities include the current lack of infrastructure for large-scale power generation from biomass with subsequent CCS, the currently high costs <span class="cit" id="xref_paren.128">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx9" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Budinis et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx9" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2018</a>)</span>, the need for governance and monitoring of CCS facilities, legal constraints, and public perception of geologic storage of CO<span class="inline-formula"><sub>2</sub></span> <span class="cit" id="xref_paren.129">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx99" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Vaughan and Gough</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx99" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2015</a>; <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx90" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Smith et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx90" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2023</a>)</span>. While the CDR potential is very sensitive to CCS and FFS, the assumptions for either of them are highly uncertain in the literature. Thus, the underlying values should be transparent, and a sensitivity analysis should be provided in future studies.</p> </div><div class="sec"><h2 id="Ch1.S4.SS4"><span class="label">4.4</span> Side effects and caveats of tCDR</h2> <p id="d2e3516"><span id="page5018"></span>Several trade-offs and side effects occur in connection with tCDR and might limit their efficiency. Previous studies found that the land, water, and fertilizer, especially for first-generation bioenergy plants, required by BECCS could exacerbate water stress and pose a risk to food security <span class="cit" id="xref_paren.130">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx20" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Creutzig</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx20" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2016</a>; <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx89" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Smith et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx89" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2016</a>; <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx7" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Boysen et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx7" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2017</a>; <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx38" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Humpenöder et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx38" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2018</a>; <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx81" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Roe et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx81" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2019</a>; <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx14" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Cheng et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx14" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2022</a>)</span>. These negative side effects can be alleviated by, e.g., using crop residues for bioenergy production. In addition, increased bioenergy crop production is likely to cause substantial deforestation due to the displacement of food production from other areas <span class="cit" id="xref_paren.131">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx87" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Seo et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx87" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2024</a>)</span>. Furthermore, the extensive cultivation of bioenergy plants, wood plantations, and forest monocultures may harm biodiversity <span class="cit" id="xref_paren.132">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx100" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Veldman et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx100" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2015</a>; <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx35" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Hanssen et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx35" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2022</a>; <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx84" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Searchinger et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx84" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2022</a>)</span>, and this has been subjected to societal debates over decades <span class="cit" id="xref_paren.133">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx44" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Jönsson</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx44" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2024</a>)</span>. Second-generation biofuels had smaller but still significant negative effects on species richness and abundance <span class="cit" id="xref_paren.134">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx97" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Tudge et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx97" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2021</a>)</span>. In our simulation setup, the agricultural production of the LUH2 land use satisfies food demand, and forest area increases in the baseline scenario. Crop yields, irrigation efficiency, and efficiency of livestock production are improved to increase food supply and protect biodiversity, thus limiting side effects <span class="cit" id="xref_paren.135">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx98" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">van Vuuren et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx98" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2017</a>)</span>. Replacing first-generation bioenergy fuels, for example, by <i>Miscanthus</i> might save half of the land and one-third of the water use <span class="cit" id="xref_paren.136">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx107" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Zhuang et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx107" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2013</a>)</span> and may increase soil organic carbon content <span class="cit" id="xref_paren.137">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx58" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Longato et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx58" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2019</a>; <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx67" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Melnikova et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx67" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2022</a>)</span>. Further, CCS is still at an early technological development stage, it has not been employed on large scales <span class="cit" id="xref_paren.138">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx80" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Reiner</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx80" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2016</a>)</span>, and legal constraints on CCS still exist in many countries <span class="cit" id="xref_paren.139">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx67" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Melnikova et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx67" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2022</a>; <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx90" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Smith et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx90" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2023</a>)</span>.</p> </div><div class="sec"><h2 id="Ch1.S4.SS5"><span class="label">4.5</span> Limitations</h2> <p id="d2e3561">While the main purpose of our study is to demonstrate various ways of how to measure the efficiency of CDR methods, we have also provided new estimates of the CDR potential for BECCS and AR. Unlike the different measures of efficiency per se, which are independent of the exact model implementation, our results of CDR potentials come with several caveats. We did not perform coupled simulations with a global circulation model. Thus, we can not evaluate the climate feedback of tCDR methods. Those include biogeochemical effects through altering the atmospheric CO<span class="inline-formula"><sub>2</sub></span> due to land-use change and biogeophysical effects due to changes in surface properties such as albedo and roughness length <span class="cit" id="xref_paren.140">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx105" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Winckler et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx105" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2019</a>; <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx75" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Pongratz et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx75" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2021</a>)</span>. These biogeophysical effects could counteract up to one-third of the climate effect of carbon emissions due to deforestation <span class="cit" id="xref_paren.141">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx102" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Weber et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx102" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2024</a>)</span>.</p> <p id="d2e3579">Theoretically, CCS can store carbon permanently. However, studies on carbon leakage of CCS are still inconclusive, mainly because they rely on laboratory experiments that are not comparable with the field observations <span class="cit" id="xref_paren.142">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx31" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Gholami et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx31" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2021</a>)</span>. Also, the durability of the carbon sequestration of AR is uncertain. Carbon is either stored in woody products or released back into the atmosphere after trees die or short-lived products decay. In addition, the risk of disturbances from fires, wind throw, droughts, and parasites increases with climate change and might limit the permanent storage of CO<span class="inline-formula"><sub>2</sub></span> in trees but also biocrops <span class="cit" id="xref_paren.143">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx86" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Seidl et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx86" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2017</a>; <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx1" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Anderegg et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx1" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2020</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx2" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2022</a>)</span>. These effects are not yet represented well in state-of-the-art land surface models used in CMIP6 projections <span class="cit" id="xref_paren.144">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx25" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Fisher et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx25" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2018</a>; <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx2" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Anderegg et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx2" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2022</a>)</span>. Hence, the durability of forests is likely overestimated in our study. The current version of the model does not account for forest age. These were implemented in a more recent version of the model <span class="cit" id="xref_paren.145">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx71" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Nabel et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx71" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2019</a>)</span>, showing improved consistency to observation-based products for gross primary production, leaf area index, and aboveground biomass.</p> <p id="d2e3603">We do not assess the sensitivity of our results towards different types of crop management, such as irrigation or fertilization. Instead, the harvested nitrogen is applied as a fertilizer to the soil, which is the standard procedure for crops in JSBACH3.2. However, second-generation bioenergy crops require less fertilizer than first-generation bioenergy crops <span class="cit" id="xref_paren.146">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx53" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Li et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx53" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2018</a><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx53" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>; <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx13" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Cheng et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx13" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2020</a>)</span>, and their productivity increases only slightly when using nitrogen fertilization <span class="cit" id="xref_paren.147">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx52" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">LeBauer et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx52" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2018</a>)</span>. Still, <span class="cit" id="xref_text.148"><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx56" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Li et al.</a> (<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx56" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2021</a>)</span> find that annual harvesting of aboveground biomass of HBPs leads to a loss of nutrients and lower plant productivity if not compensated for by fertilization. We implicitly represent fertilization in the model by adding the harvested nitrogen to the soil. Although fertilizer application likely increases the carbon uptake of bioenergy plants, their use results in additional costs and greenhouse gas emissions, thereby lowering the efficiency <span class="cit" id="xref_paren.149">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx56" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Li et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx56" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2021</a>)</span>. IAMs include agricultural and forest residues and waste fraction for BECCS in addition to HBPs, which we did not consider in our study. Including these additional biomass sources for energy production would likely increase the potential of BECCS.</p> <p id="d2e3618">The study does not account for additional wood harvest in the AR scenario. Even when assuming AR is used for wood harvest in the same intensity as the other, typically older forest in the grid cell, additional global wood harvest from our AR scenario yields a relatively small amount of cumulative sequestered carbon of 1.3 GtC between 2015 and 2100, which does not substantially alter our results (Sect. 2.3). Further, the benefits of storing carbon in woody long-lived products or using wood for bioenergy might be outweighed by decreased carbon sequestration in the forest after harvest and before the re-establishment of the new trees and the increased CO<span class="inline-formula"><sub>2</sub></span> emissions to the atmosphere if used for bioenergy <span class="cit" id="xref_paren.150">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx74" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Obermeier et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx74" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2021</a>; <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx92" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Soimakallio et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx92" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2021</a>)</span>. Note that AR in JSBACH3.2 represents natural forest regrowth rather than fast-growing wood plantations. Implementing forest plantations in the Lund–Potsdam–Jena managed Land (LPJmL) model increases the total carbon uptake by up to 30 % globally by 2100 compared to natural regrowth <span class="cit" id="xref_paren.151">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx8" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Braakhekke et al.</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx8" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2019</a>)</span>.</p> </div></div><span class="section4-mobile-bottom-border mobile-bottom-border hide-on-desktop hide-on-tablet"></span></div> <div class="sec conclusions" id="section5"><div class="grid-container no-margin header-element"><span class="grid-100 mobile-grid-100 tablet-grid-100 grid-parent more-less-mobile" data-hide="#section5 .co-arrow-open,.section5-content" data-show="#section5 .co-arrow-closed,.section5-mobile-bottom-border"><div id="Ch1.S5" class="h1"><span class="label">5</span> Conclusions<span class="hide-on-desktop hide-on-tablet triangleWrapper"> <i class="co-arrow-closed"></i><i class="co-arrow-open" style="display:none"></i></span></div></span></div> <div class="section5-content show-no-js hide-on-mobile-soft"><p id="d2e3646">This study highlights the different measures of efficiency affecting the biogeochemical climate mitigation potential of bioenergy with carbon capture and storage (BECCS) and afforestation and reforestation (AR): the location and spatial extent of the plantations, the level of fossil fuel substitution (FFS) through bioenergy plants, the share of bioenergy that is captured and stored in long-lived products or geological reservoirs (CCS), and the temporal dynamics. While we<span id="page5019"></span> focus on BECCS and AR in this study, the measures of efficiency are applicable to other, area-based tCDR methods, including soil carbon sequestration, agroforestry, and biochar. Depending on the research question or the climate mitigation target set, different measures for the efficiency of tCDR are meaningful: for reaching our near-term climate goals, the time horizon is key, while for biodiversity and spatial planning, the additional area measure is meaningful and the level of FFS and CCS is a question of technical feasibility.</p><p id="d2e3649">In our study, the benefit of BECCS to remove carbon only becomes substantial after around 2070, when the areas converted to either AR or HBPs increase rapidly in the SSP1-2.6 land-use scenario. Thus, BECCS has a higher carbon removal potential over longer periods than AR, especially in the South American grasslands and southeast Africa, but will not contribute substantially to reaching short-term climate mitigation targets. However, the temporal dynamics of tCDR methods are scenario-specific. An idealized setup where all tCDR is applied simultaneously and everywhere would help when comparing the CDR efficiency across time and space more precisely. Further, the efficiency of BECCS as compared to “nature-based solutions” like AR will depend critically on the upscaling of CCS facilities; replacing fossil fuels with bioenergy in the future; and the planting of bioenergy crops in suitable locations that do not harm biodiversity, affect water retention, or risk food security. We show, for the first time, how these different measures can be considered simultaneously within a consistent setup as a base for a sensible balancing of land-use interests concerning climate mitigation, food production, and nature conservation.</p></div><span class="section5-mobile-bottom-border mobile-bottom-border hide-on-desktop hide-on-tablet"></span></div> <div class="app sec" id="section6"> <div class="grid-container no-margin header-element"><span class="grid-100 mobile-grid-100 tablet-grid-100 grid-parent more-less-mobile" data-hide="#section6 .co-arrow-open,.section6-content" data-show="#section6 .co-arrow-closed,.section6-mobile-bottom-border"><div id="App1.Ch1.S1" class="h1"><span class="section-number"></span>Appendix A<span class="hide-on-desktop hide-on-tablet triangleWrapper"> <i class="co-arrow-closed"></i><i class="co-arrow-open" style="display:none"></i></span></div></span></div> <div class="section6-content show-no-js hide-on-mobile-soft"><div class="fig" id="App1.Ch1.S1.F10"><a target="_blank" class="figure-link" href="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-f10-web.png"><img alt="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-f10" data-webversion="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-f10-web.png" src="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-f10-thumb.png" data-width="2067" data-height="2050"></a><div class="caption"><p id="d2e3664"><strong class="caption-number">Figure A1</strong>Spatial changes between 2005–2024 and 2080–2099 mean temperature and precipitation of bias-corrected downscaled climate forcing of MPI-ESM1.2-HR for SSP1-2.6 mapped to T63 resolution.</p></div><p class="downloads"></p></div><div class="fig" id="App1.Ch1.S1.F11"><a target="_blank" class="figure-link" href="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-f11-web.png"><img alt="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-f11" data-webversion="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-f11-web.png" src="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-f11-thumb.png" data-width="2067" data-height="2592"></a><div class="caption"><p id="d2e3675"><strong class="caption-number">Figure A2</strong>Difference in vegetation <strong>(a)</strong>, soil <strong>(b)</strong>, and litter <strong>(c)</strong> carbon [kg m<span class="inline-formula"><sup>−2</sup></span> tCDR] between HBPs and AR in 2100. Note that the scales differ. The red color indicates grid cells with values lower than the minimum value of the scale. Positive values indicate that HBPs store more carbon than AR. Note that this excludes carbon removal through CCS and FFS.</p></div><p class="downloads"></p></div><div class="fig" id="App1.Ch1.S1.F12"><a target="_blank" class="figure-link" href="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-f12-web.png"><img alt="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-f12" data-webversion="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-f12-web.png" src="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-f12-thumb.png" data-printversion="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-f12-high-res.pdf" data-width="2067" data-height="2122"></a><div class="caption"><p id="d2e3708"><strong class="caption-number">Figure A3</strong>Relative tCDR potential of HBPs in contrast to AR (i.e., value for HBPs divided by that for AR) depending on different levels of FFS and years <strong>(a)</strong> without and <strong>(b)</strong> with CCS in the SSP1-2.6 scenario.</p></div><p class="downloads"><a class="triangle journal-contentLinkColor figure-download" href="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024-f12-high-res.pdf" target="_blank">Download</a></p></div></div><span class="section6-mobile-bottom-border mobile-bottom-border hide-on-desktop hide-on-tablet"></span></div> <div id="section7" class="sec"><div class="grid-container no-margin header-element"><span class="grid-100 mobile-grid-100 tablet-grid-100 grid-parent more-less-mobile" data-hide="#section7 .co-arrow-open,.section7-content" data-show="#section7 .co-arrow-closed,.section7-mobile-bottom-border"><div class="h1"><span class="section-number"> </span>Code availability<span class="hide-on-desktop hide-on-tablet triangleWrapper"> <i class="co-arrow-closed"></i><i class="co-arrow-open" style="display:none"></i></span></div></span></div> <div class="section7-content show-no-js hide-on-mobile-soft"><p id="d2e3729">Preprocessing and postprocessing scripts are available at <span class="uri"><a href="https://doi.org/10.5281/zenodo.13355458" target="_blank">https://doi.org/10.5281/zenodo.13355458</a></span> <span class="cit" id="xref_paren.152">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx22" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Egerer</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx22" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2024</a>)</span>.</p></div><span class="section7-mobile-bottom-border mobile-bottom-border hide-on-desktop hide-on-tablet"></span></div> <div id="section8" class="sec"><div class="grid-container no-margin header-element"><span class="grid-100 mobile-grid-100 tablet-grid-100 grid-parent more-less-mobile" data-hide="#section8 .co-arrow-open,.section8-content" data-show="#section8 .co-arrow-closed,.section8-mobile-bottom-border"><div class="h1"><span class="section-number"> </span>Data availability<span class="hide-on-desktop hide-on-tablet triangleWrapper"> <i class="co-arrow-closed"></i><i class="co-arrow-open" style="display:none"></i></span></div></span></div> <div class="section8-content show-no-js hide-on-mobile-soft"><p id="d2e3741">ISIMIP climate forcing data can be accessed under <span class="uri"><a href="https://doi.org/10.48364/ISIMIP.842396.1" target="_blank">https://doi.org/10.48364/ISIMIP.842396.1</a></span> <span class="cit" id="xref_paren.153">(<a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx49" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Lange and Büchner</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx49" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2021</a>)</span>. Miscanthus yield data can be found in <span class="cit" id="xref_author.154"><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx55" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Li et al.</a></span> (<span class="cit" id="xref_year.155"><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx55" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2018</a><a href="https://bg.copernicus.org/articles/21/5005/2024/#bib1.bibx55" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">c</a></span>, <span class="uri"><a href="https://doi.org/10.6084/m9.figshare.c.3951967" target="_blank">https://doi.org/10.6084/m9.figshare.c.3951967</a></span>).</p></div><span class="section8-mobile-bottom-border mobile-bottom-border hide-on-desktop hide-on-tablet"></span></div> <div id="section9" class="sec"><div class="grid-container no-margin header-element"><span class="grid-100 mobile-grid-100 tablet-grid-100 grid-parent more-less-mobile" data-hide="#section9 .co-arrow-open,.section9-content" data-show="#section9 .co-arrow-closed,.section9-mobile-bottom-border"><div class="h1"><span class="section-number"> </span>Author contributions<span class="hide-on-desktop hide-on-tablet triangleWrapper"> <i class="co-arrow-closed"></i><i class="co-arrow-open" style="display:none"></i></span></div></span></div> <div class="section9-content show-no-js hide-on-mobile-soft"><p id="d2e3762">JP initialized the project and provided the research idea. SE designed, performed, and analyzed the simulations and wrote the manuscript. DM implemented HBPs in JSBACH in a previous model version. SF, TN, and SE ported and adapted the code to JSBACH3.2 and connected the HBP implementation with the N cycle. TN revised the HBP parameter values. SE and TN evaluated the revised HBP version against observational data. WAO supported shaping the manuscript and engaged actively in discussions, especially on wood harvest. All co-authors proofread and provided input to the model design and the manuscript.</p></div><span class="section9-mobile-bottom-border mobile-bottom-border hide-on-desktop hide-on-tablet"></span></div> <div id="section10" class="sec"><div class="grid-container no-margin header-element"><span class="grid-100 mobile-grid-100 tablet-grid-100 grid-parent more-less-mobile" data-hide="#section10 .co-arrow-open,.section10-content" data-show="#section10 .co-arrow-closed,.section10-mobile-bottom-border"><div class="h1"><span class="section-number"> </span>Competing interests<span class="hide-on-desktop hide-on-tablet triangleWrapper"> <i class="co-arrow-closed"></i><i class="co-arrow-open" style="display:none"></i></span></div></span></div> <div class="section10-content show-no-js hide-on-mobile-soft"><p id="d2e3768">The contact author has declared that none of the authors has any competing interests.</p></div><span class="section10-mobile-bottom-border mobile-bottom-border hide-on-desktop hide-on-tablet"></span></div> <div id="section11" class="sec"><div class="grid-container no-margin header-element"><span class="grid-100 mobile-grid-100 tablet-grid-100 grid-parent more-less-mobile" data-hide="#section11 .co-arrow-open,.section11-content" data-show="#section11 .co-arrow-closed,.section11-mobile-bottom-border"><div class="h1"><span class="section-number"> </span>Disclaimer<span class="hide-on-desktop hide-on-tablet triangleWrapper"> <i class="co-arrow-closed"></i><i class="co-arrow-open" style="display:none"></i></span></div></span></div> <div class="section11-content show-no-js hide-on-mobile-soft"><p id="d2e3774">Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this paper. While Copernicus Publications makes every effort to include appropriate place names, the final responsibility lies with the authors.</p></div><span class="section11-mobile-bottom-border mobile-bottom-border hide-on-desktop hide-on-tablet"></span></div> <div class="ack sec" id="section12"> <div class="grid-container no-margin header-element"><span class="grid-100 mobile-grid-100 tablet-grid-100 grid-parent more-less-mobile" data-hide="#section12 .co-arrow-open,.section12-content" data-show="#section12 .co-arrow-closed,.section12-mobile-bottom-border"><div class="h1"><span class="section-number"> </span>Acknowledgements<span class="hide-on-desktop hide-on-tablet triangleWrapper"> <i class="co-arrow-closed"></i><i class="co-arrow-open" style="display:none"></i></span></div></span></div> <div class="section12-content show-no-js hide-on-mobile-soft"><p id="d2e3780">We thank Christian Reick, Mohammad Sadr, Andreas Krause, Wei Li, and Irina Melnikova for valuable discussions and reviews. This work used resources of the Deutsches Klimarechenzentrum (DKRZ) granted by its Scientific Steering Committee (WLA) under project ID bm1241. Sabine Egerer and Tobias Nützel were supported by the German Federal Ministry for Research and Education (BMBF) through the research project STEPSEC (grant number: 01LS2102A).</p></div><span class="section12-mobile-bottom-border mobile-bottom-border hide-on-desktop hide-on-tablet"></span></div> <div id="section13" class="sec"><div class="grid-container no-margin header-element"><span class="grid-100 mobile-grid-100 tablet-grid-100 grid-parent more-less-mobile" data-hide="#section13 .co-arrow-open,.section13-content" data-show="#section13 .co-arrow-closed,.section13-mobile-bottom-border"><div class="h1"><span class="section-number"> </span>Financial support<span class="hide-on-desktop hide-on-tablet triangleWrapper"> <i class="co-arrow-closed"></i><i class="co-arrow-open" style="display:none"></i></span></div></span></div> <div class="section13-content show-no-js hide-on-mobile-soft"><p id="d2e3785">This research has been supported by the German Federal Ministry for Research and Education (grant no. 01LS2102A).</p></div><span class="section13-mobile-bottom-border mobile-bottom-border hide-on-desktop hide-on-tablet"></span></div> <div id="section14" class="sec"><div class="grid-container no-margin header-element"><span class="grid-100 mobile-grid-100 tablet-grid-100 grid-parent more-less-mobile" data-hide="#section14 .co-arrow-open,.section14-content" data-show="#section14 .co-arrow-closed,.section14-mobile-bottom-border"><div class="h1"><span class="section-number"> </span>Review statement<span class="hide-on-desktop hide-on-tablet triangleWrapper"> <i class="co-arrow-closed"></i><i class="co-arrow-open" style="display:none"></i></span></div></span></div> <div class="section14-content show-no-js hide-on-mobile-soft"><p id="d2e3791">This paper was edited by Bertrand Guenet and reviewed by Wei Li and Irina Melnikova.</p></div><span class="section14-mobile-bottom-border mobile-bottom-border hide-on-desktop hide-on-tablet"></span></div> <div class="ref-list sec" id="section15"> <div class="grid-container no-margin header-element"><span class="grid-100 mobile-grid-100 tablet-grid-100 grid-parent more-less-mobile" data-hide="#section15 .co-arrow-open,.section15-content" data-show="#section15 .co-arrow-closed,.section15-mobile-bottom-border"><div class="h1"><span class="section-number"> </span>References<span class="hide-on-desktop hide-on-tablet triangleWrapper"> <i class="co-arrow-closed"></i><i class="co-arrow-open" style="display:none"></i></span></div></span></div> <div class="section15-content show-no-js hide-on-mobile-soft"><p class="ref" id="bib1.bibx1"><span class="mixed-citation">Anderegg, W. R., Trugman, A. T., Badgley, G., Anderson, C. M., Bartuska, A., Ciais, P., Cullenward, D., Field, C. B., Freeman, J., Goetz, S. J., Hicke, J. A., Huntzinger, D., Jackson, R. B., Nickerson, J., Pacala, S., and Randerson, J. T.: Climate-driven risks to the climate mitigation potential of forests, Science, 368, eaaz7005, <a href="https://doi.org/10.1126/science.aaz7005">https://doi.org/10.1126/science.aaz7005</a>, 2020. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.143" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx2"><span class="mixed-citation">Anderegg, W. R., Chegwidden, O. S., Badgley, G., Trugman, A. T., Cullenward, D., Abatzoglou, J. T., Hicke, J. A., Freeman, J., and Hamman, J. J.: Future climate risks from stress, insects and fire across US forests, Ecol. Lett., 25, 1510–1520, <a href="https://doi.org/10.1111/ele.14018">https://doi.org/10.1111/ele.14018</a>, 2022. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.143" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.144" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a></span></p><p class="ref" id="bib1.bibx3"><span class="mixed-citation">Awty-Carroll, D., Magenau, E., Al Hassan, M., Martani, E., Kontek, M., van der Pluijm, P., Ashman, C., de Maupeou, E., McCalmont, J., Petrie, G. J., Davey, C., van der Cruijsen, K., Jurišić, V., Amaducci, S., Lamy, I., Shepherd, A., Kam, J., Hoogendam, A., Croci, M., Dolstra, O., Ferrarini, A., Lewandowski, I., Trindade, L. M., Kiesel, A., and Clifton-Brown, J.: Yield performance of 14 novel inter- and intra-species Miscanthus hybrids across Europe, GCB Bioenergy, 15, 399–423, <a href="https://doi.org/10.1111/gcbb.13026">https://doi.org/10.1111/gcbb.13026</a>, 2023. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.13" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.75" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a></span></p><p class="ref" id="bib1.bibx4"><span class="mixed-citation">Azar, C., Johansson, D. J., and Mattsson, N.: Meeting global temperature targets – The role of bioenergy with carbon capture and storage, Environ. Res. Lett., 8, 034004, <a href="https://doi.org/10.1088/1748-9326/8/3/034004">https://doi.org/10.1088/1748-9326/8/3/034004</a>, 2013. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.1" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx5"><span class="mixed-citation">Babin, A., Vaneeckhaute, C., and Iliuta, M. C.: Potential and challenges of bioenergy with carbon capture and storage as a carbon-negative energy source: A review, Biomass Bioenerg., 146, 105968, <a href="https://doi.org/10.1016/j.biombioe.2021.105968">https://doi.org/10.1016/j.biombioe.2021.105968</a>, 2021. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.19" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.116" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a></span></p><p class="ref" id="bib1.bibx6"><span class="mixed-citation">Borchers, M., Förster, J., Thrän, D., Beck, S., Thoni, T., Korte, K., Gawel, E., Markus, T., Schaller, R., Rhoden, I., Chi, Y., Dahmen, N., Dittmeyer, R., Dolch, T., Dold, C., Herbst, M., Heß, D., Kalhori, A., Jakobsen, K. K., Li, Z., Oschlies, A., Reusch, T. B. H., Sachs, T., Hattenberger, C. S., Stevenson, A., Wu, J., Yeates, C., and Mengis, N.: A Comprehensive Assessment of Carbon Dioxide Removal Options for Germany Earth' s Future, Earth's Future, 12, 1–23, <a href="https://doi.org/10.1029/2023EF003986">https://doi.org/10.1029/2023EF003986</a>, 2024. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_altparen.12" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx7"><span class="mixed-citation">Boysen, L. R., Lucht, W., Gerten, D., Heck, V., Lenton, T. M., and Schellnhuber, H. J.: The limits to global-warming mitigation by terrestrial carbon removal, Earth's Future, 5, 463–474, <a href="https://doi.org/10.1002/2016EF000469">https://doi.org/10.1002/2016EF000469</a>, 2017. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.14" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.130" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a></span></p><p class="ref" id="bib1.bibx8"><span class="mixed-citation">Braakhekke, M. C., Doelman, J. C., Baas, P., Müller, C., Schaphoff, S., Stehfest, E., and van Vuuren, D. P.: Modeling forest plantations for carbon uptake with the LPJmL dynamic global vegetation model, Earth Syst. Dynam., 10, 617–630, <a href="https://doi.org/10.5194/esd-10-617-2019">https://doi.org/10.5194/esd-10-617-2019</a>, 2019. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.151" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx9"><span class="mixed-citation">Budinis, S., Krevor, S., Dowell, N. M., Brandon, N., and Hawkes, A.: An assessment of CCS costs, barriers and potential, Energy Strateg. Rev., 22, 61–81, <a href="https://doi.org/10.1016/j.esr.2018.08.003">https://doi.org/10.1016/j.esr.2018.08.003</a>, 2018. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.128" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx10"><span class="mixed-citation">Byers, E., Krey, V., Kriegler, E., Riahi, K., Schaeffer, R., Kikstra, J., Lamboll, R., Nicholls, Z., Sandstad, M., Smith, C., van der Wijst, K., Al-Khourdajie, A., Lecocq, F., Portugal-Pereira, J., Saheb, Y., Stromman, A., Winkler, H., Auer, C., Brutschin, E., Gidden, M., Hackstock, P., Harmsen, M., Huppmann, D., Kolp, P., Lepault, C., Lewis, J., Marangoni, G., Müller-Casseres, E., Skeie, R., Werning, M., Calvin, K., Forster, P., Guivarch, C., Hasegawa, T., Meinshausen, M., Pet<span id="page5022"></span>ers, G., Rogelj, J., Samset, B., Steinberger, J., Tavoni, M., and van Vuuren, D.: AR6 Scenarios Database, Zenodo, <a href="https://doi.org/10.5281/zenodo.7197970">https://doi.org/10.5281/zenodo.7197970</a>, 2022. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.89" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.91" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a></span></p><p class="ref" id="bib1.bibx11"><span class="mixed-citation">Canadell, J., Monteiro, P., Costa, M., da Cunha, L. C., Cox, P., Eliseev, A., Henson, S., Ishii, M., Jaccard, S., Koven, C., Lohila, A., Patra, P., Piao, S., Rogelj, J., Syampungani, S., Zaehle, S., and Zickfeld, K.: Global Carbon and Other Biogeochemical Cycles and Feedbacks, in: Climate Change 2021 – The Physical Science Basiss. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., 673–816, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, ISBN 9781009157896, <a href="https://doi.org/10.1017/9781009157896.007">https://doi.org/10.1017/9781009157896.007</a>, 2021. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.18" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx12"><span class="mixed-citation">Cannell, M. G.: Carbon sequestration and biomass energy offset: Theoretical, potential and achievable capacities globally, in Europe and the UK, Biomass Bioenerg., 24, 97–116, <a href="https://doi.org/10.1016/S0961-9534(02)00103-4">https://doi.org/10.1016/S0961-9534(02)00103-4</a>, 2003. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.71" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx13"><span class="mixed-citation">Cheng, Y., Huang, M., Chen, M., Guan, K., Bernacchi, C., Peng, B., and Tan, Z.: Parameterizing Perennial Bioenergy Crops in Version 5 of the Community Land Model Based on Site-Level Observations in the Central Midwestern United States, J. Adv. Model. Earth Sy., 12, 1–24, <a href="https://doi.org/10.1029/2019MS001719">https://doi.org/10.1029/2019MS001719</a>, 2020. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.14" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.146" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a></span></p><p class="ref" id="bib1.bibx14"><span class="mixed-citation">Cheng, Y., Huang, M., Lawrence, D. M., Calvin, K., Lombardozzi, D. L., Sinha, E., Pan, M., and He, X.: Future bioenergy expansion could alter carbon sequestration potential and exacerbate water stress in the United States, Sci. Adv., 8, 1–14, <a href="https://doi.org/10.1126/sciadv.abm8237">https://doi.org/10.1126/sciadv.abm8237</a>, 2022. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.21" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.27" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_text.117" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">c</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.130" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">d</a></span></p><p class="ref" id="bib1.bibx15"><span class="mixed-citation">Cheng, Y., Lawrence, D. M., Pan, M., Zhang, B., Graham, N. T., Lawrence, P. J., Liu, Z., and He, X.: A bioenergy- focused versus a reforestation- focused mitigation pathway yields disparate carbon storage and climate responses, P. Natl. Acad. Sci. USA, 121, 1–11, <a href="https://doi.org/10.1073/pnas">https://doi.org/10.1073/pnas</a>, 2024. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.24" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.27" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_text.94" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">c</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_text.104" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">d</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_text.111" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">e</a></span></p><p class="ref" id="bib1.bibx16"><span class="mixed-citation">Christian, D. G., Riche, A. B., and Yates, N. E.: Growth, yield and mineral content of Miscanthus x giganteus grown as a biofuel for 14 successive harvests, Industrial Crops and Products, 28, 320–327, <a href="https://doi.org/10.1016/j.indcrop.2008.02.009">https://doi.org/10.1016/j.indcrop.2008.02.009</a>, 2008. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.49" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx17"><span class="mixed-citation"> Chum, H., Faaij, A., Moreira, J., Berndes, G., Dhamija, P., Dong, H., Gabrielle, B., Eng, a. G., Cerutti, O. M., Mcintyre, T., Minowa, T., Pingoud, K., Seyboth, K., Matschoss, P., Kadner, S., Zwickel, T., Eickemeier, P., Hansen, G., and Kingdom, U.: SRREN – Chapter 2 – Bioenergy, in: IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation, edited by: Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Matschoss, P., Kadner, S., Zwickel, T., Eickemeier, P., Hansen, G., Schlömer, S., and von Stechow, C., 209–332, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, ISBN 9781107607101, 2011. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.19" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.121" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a></span></p><p class="ref" id="bib1.bibx18"><span class="mixed-citation">Clifton-Brown, J., Renvoize, S., Chiang, Y.-C., Ibaragi, Y., Flavell, R., Greef, J., Huang, L., Hsu, T. W., Kim, D.-S., Hastings, A., Schwarz, K., Stampfl, P., Valentine, J., Yamada, T., Xi, Q., and Donnison, I.: Chapter 15: Developing Miscanthus for Bioenergy, in: Energy Crops, edited by: Halford, N. G. and Karp, A., RSC Publishing, <a href="https://doi.org/10.1039/9781849732048-00301">https://doi.org/10.1039/9781849732048-00301</a>, 2010. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.45" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx19"><span class="mixed-citation">Clifton-Brown, J., Hastings, A., Mos, M., McCalmont, J. P., Ashman, C., Awty-Carroll, D., Cerazy, J., Chiang, Y. C., Cosentino, S., Cracroft-Eley, W., Scurlock, J., Donnison, I. S., Glover, C., Goła̧b, I., Greef, J. M., Gwyn, J., Harding, G., Hayes, C., Helios, W., Hsu, T. W., Huang, L. S., Jeżowski, S., Kim, D. S., Kiesel, A., Kotecki, A., Krzyzak, J., Lewandowski, I., Lim, S. H., Liu, J., Loosely, M., Meyer, H., Murphy-Bokern, D., Nelson, W., Pogrzeba, M., Robinson, G., Robson, P., Rogers, C., Scalici, G., Schuele, H., Shafiei, R., Shevchuk, O., Schwarz, K. U., Squance, M., Swaller, T., Thornton, J., Truckses, T., Botnari, V., Vizir, I., Wagner, M., Warren, R., Webster, R., Yamada, T., Youell, S., Xi, Q., Zong, J., and Flavell, R.: Progress in upscaling Miscanthus biomass production for the European bio-economy with seed-based hybrids, GCB Bioenergy, 9, 6–17, <a href="https://doi.org/10.1111/gcbb.12357">https://doi.org/10.1111/gcbb.12357</a>, 2017. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.13" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.47" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a></span></p><p class="ref" id="bib1.bibx20"><span class="mixed-citation">Creutzig, F.: Economic and ecological views on climate change mitigation with bioenergy and negative emissions, GCB Bioenergy, 8, 4–10, <a href="https://doi.org/10.1111/gcbb.12235">https://doi.org/10.1111/gcbb.12235</a>, 2016. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.16" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.130" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a></span></p><p class="ref" id="bib1.bibx21"><span class="mixed-citation">Doelman, J. C., Stehfest, E., van Vuuren, D. P., Tabeau, A., Hof, A. F., Braakhekke, M. C., Gernaat, D. E., van den Berg, M., van Zeist, W. J., Daioglou, V., van Meijl, H., and Lucas, P. L.: Afforestation for climate change mitigation: Potentials, risks and trade-offs, Glob. Change Biol., 26, 1576–1591, <a href="https://doi.org/10.1111/gcb.14887">https://doi.org/10.1111/gcb.14887</a>, 2020. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.16" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx22"><span class="mixed-citation">Egerer, S.: Scripts to publication 'How to measure the efficiency of bioenergy crops compared to forestation', Zenodo [code], <a href="https://doi.org/10.5281/zenodo.13355458">https://doi.org/10.5281/zenodo.13355458</a>, 2024. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.152" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx23"><span class="mixed-citation">Ercoli, L., Mariotti, M., Masoni, A., and Bonari, E.: Effect of irrigation and nitrogen fertilization on biomass yield and efficiency of energy use in crop production of Miscanthus, Field Crop Res., 63, 3–11, <a href="https://doi.org/10.1016/S0378-4290(99)00022-2">https://doi.org/10.1016/S0378-4290(99)00022-2</a>, 1999. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.50" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx24"><span class="mixed-citation">Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, <a href="https://doi.org/10.5194/gmd-9-1937-2016">https://doi.org/10.5194/gmd-9-1937-2016</a>, 2016. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_altparen.36" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx25"><span class="mixed-citation">Fisher, R. A., Koven, C. D., Anderegg, W. R., Christoffersen, B. O., Dietze, M. C., Farrior, C. E., Holm, J. A., Hurtt, G. C., Knox, R. G., Lawrence, P. J., Lichstein, J. W., Longo, M., Matheny, A. M., Medvigy, D., Muller-Landau, H. C., Powell, T. L., Serbin, S. P., Sato, H., Shuman, J. K., Smith, B., Trugman, A. T., Viskari, T., Verbeeck, H., Weng, E., Xu, C., Xu, X., Zhang, T., and Moorcroft, P. R.: Vegetation demographics in Earth System Models: A review of progress and priorities, Glob. Change Biol., 24, 35–54, <a href="https://doi.org/10.1111/gcb.13910">https://doi.org/10.1111/gcb.13910</a>, 2018. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.144" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx26"><span class="mixed-citation">Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Bakker, D. C. E., Hauck, J., Landschützer, P., Le Quéré, C., Luijkx, I. T., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Anthoni, P., Barbero, L., Bates, N. R., Becker, M., Bellouin, N., Decharme, B., Bopp, L., Brasika, I. B. M., Cadule, P., Chamberlain, M. A., Chandra, N., Chau, T.-T.-T., Chevallier, F., Chini, L. P., Cronin, M., Dou, X., Enyo, K., Evans, W., Falk, S., Feely, R. A., Feng, L., Ford, D. J., Gasser, T., Ghattas, J., Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Heinke, J., Houghton, R. A., Hurtt, G. C., Iida, Y., Ilyina, T., Jacobson, A. R., Jain, A., Jarníková, T., Jersild, A., Jiang, F., <span id="page5023"></span>Jin, Z., Joos, F., Kato, E., Keeling, R. F., Kennedy, D., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Körtzinger, A., Lan, X., Lefèvre, N., Li, H., Liu, J., Liu, Z., Ma, L., Marland, G., Mayot, N., McGuire, P. C., McKinley, G. A., Meyer, G., Morgan, E. J., Munro, D. R., Nakaoka, S.-I., Niwa, Y., O'Brien, K. M., Olsen, A., Omar, A. M., Ono, T., Paulsen, M., Pierrot, D., Pocock, K., Poulter, B., Powis, C. M., Rehder, G., Resplandy, L., Robertson, E., Rödenbeck, C., Rosan, T. M., Schwinger, J., Séférian, R., Smallman, T. L., Smith, S. M., Sospedra-Alfonso, R., Sun, Q., Sutton, A. J., Sweeney, C., Takao, S., Tans, P. P., Tian, H., Tilbrook, B., Tsujino, H., Tubiello, F., van der Werf, G. R., van Ooijen, E., Wanninkhof, R., Watanabe, M., Wimart-Rousseau, C., Yang, D., Yang, X., Yuan, W., Yue, X., Zaehle, S., Zeng, J., and Zheng, B.: Global Carbon Budget 2023, Earth Syst. Sci. Data, 15, 5301–5369, <a href="https://doi.org/10.5194/essd-15-5301-2023">https://doi.org/10.5194/essd-15-5301-2023</a>, 2023. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_altparen.37" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx27"><span class="mixed-citation"> Frühwirth, P., Graf, A., Humer, M., Hunger, F., Köppl, H., Liebhard, P., and Thumfart, K.: Miscanthus sinensis, 'Giganteus' – Chinaschilf als nachwachsender Rohstoff, Tech. rep., Landwirtschaftskammer Österreich, ISBN 9783902325020, 2006. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.46" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx28"><span class="mixed-citation">Fuss, S., Canadell, J. G., Peters, G. P., Tavoni, M., Andrew, R. M., Ciais, P., Jackson, R. B., Jones, C. D., Kraxner, F., Nakicenovic, N., Le Quéré, C., Raupach, M. R., Sharifi, A., Smith, P., and Yamagata, Y.: Betting on negative emissions, Nat. Clim. Change, 4, 850–853, <a href="https://doi.org/10.1038/nclimate2392">https://doi.org/10.1038/nclimate2392</a>, 2014. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.10" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx29"><span class="mixed-citation">Fuss, S., Lamb, W. F., Callaghan, M. W., Hilaire, J., Creutzig, F., Amann, T., Beringer, T., De Oliveira Garcia, W., Hartmann, J., Khanna, T., Luderer, G., Nemet, G. F., Rogelj, J., Smith, P., Vicente, J. V., Wilcox, J., Del Mar Zamora Dominguez, M., and Minx, J. C.: Negative emissions – Part 2: Costs, potentials and side effects, Environ. Res. Lett., 13, 063002, <a href="https://doi.org/10.1088/1748-9326/aabf9f">https://doi.org/10.1088/1748-9326/aabf9f</a>, 2018. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.14" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx30"><span class="mixed-citation">Gallagher, E.: The Gallagher review of the indirect effects of biofuels production, Tech. Rep. April, Renewable Fuels Agency, <span class="uri"><a href="https://www.unido.org/sites/default/files/2009-11/Gallagher_Report_0.pdf" target="_blank">https://www.unido.org/sites/default/files/2009-11/Gallagher_Report_0.pdf</a></span> (last access: 11 November 2024), 2008. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_text.88" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_text.118" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a></span></p><p class="ref" id="bib1.bibx31"><span class="mixed-citation">Gholami, R., Raza, A., and Iglauer, S.: Leakage risk assessment of a CO<span class="inline-formula"><sub>2</sub></span> storage site: A review, Earth-Sci. Rev., 223, 103849, <a href="https://doi.org/10.1016/j.earscirev.2021.103849">https://doi.org/10.1016/j.earscirev.2021.103849</a>, 2021. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.142" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx32"><span class="mixed-citation">Goll, D. S., Brovkin, V., Liski, J., Raddatz, T., Thum, T., and Todd-Brown, K. E.: Strong dependence of CO<span class="inline-formula"><sub>2</sub></span> emissions from anthropogenic land cover change on initial land cover and soil carbon parametrization, Global Biogeochem. Cy., 29, 1511–1523, <a href="https://doi.org/10.1002/2014GB004988">https://doi.org/10.1002/2014GB004988</a>, 2015. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.42" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx33"><span class="mixed-citation">Griscom, B. W., Adams, J., Ellis, P. W., Houghton, R. A., Lomax, G., Miteva, D. A., Schlesinger, W. H., Shoch, D., Siikamäki, J. V., Smith, P., Woodbury, P., Zganjar, C., Blackman, A., Campari, J., Conant, R. T., Delgado, C., Gopalakrishna, T., Hamsik, M. R., Herrero, M., Kiesecker, J., Landis, E., Laestadius, L., Leavitt, S. M., Polasky, S., Potapov, P., Putz, F. E., Sanderman, J., Silvius, M., Wollenberg, E., and Fargione, J.: Natural climate solutions, P. Natl. Acad. Sci. USA, 114, 11645–11650, <a href="https://doi.org/10.1073/pnas.1710465114">https://doi.org/10.1073/pnas.1710465114</a>, 2017. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.8" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx34"><span class="mixed-citation">Gutjahr, O., Putrasahan, D., Lohmann, K., Jungclaus, J. H., von Storch, J.-S., Brüggemann, N., Haak, H., and Stössel, A.: Max Planck Institute Earth System Model (MPI-ESM1.2) for the High-Resolution Model Intercomparison Project (HighResMIP), Geosci. Model Dev., 12, 3241–3281, <a href="https://doi.org/10.5194/gmd-12-3241-2019">https://doi.org/10.5194/gmd-12-3241-2019</a>, 2019. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.59" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx35"><span class="mixed-citation">Hanssen, S. V., Steinmann, Z. J., Daioglou, V., Čengić, M., Van Vuuren, D. P., and Huijbregts, M. A.: Global implications of crop-based bioenergy with carbon capture and storage for terrestrial vertebrate biodiversity, GCB Bioenergy, 14, 307–321, <a href="https://doi.org/10.1111/gcbb.12911">https://doi.org/10.1111/gcbb.12911</a>, 2022. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.132" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx36"><span class="mixed-citation">Harper, A. B., Powell, T., Cox, P. M., House, J., Huntingford, C., Lenton, T. M., Sitch, S., Burke, E., Chadburn, S. E., Collins, W. J., Comyn-Platt, E., Daioglou, V., Doelman, J. C., Hayman, G., Robertson, E., van Vuuren, D., Wiltshire, A., Webber, C. P., Bastos, A., Boysen, L., Ciais, P., Devaraju, N., Jain, A. K., Krause, A., Poulter, B., and Shu, S.: Land-use emissions play a critical role in land-based mitigation for Paris climate targets, Nat. Commun., 9, 2938, <a href="https://doi.org/10.1038/s41467-018-05340-z">https://doi.org/10.1038/s41467-018-05340-z</a>, 2018. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.23" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.27" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.98" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">c</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_text.99" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">d</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_text.101" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">e</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_text.105" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">f</a></span></p><p class="ref" id="bib1.bibx37"><span class="mixed-citation">Hempel, S., Frieler, K., Warszawski, L., Schewe, J., and Piontek, F.: A trend-preserving bias correction – the ISI-MIP approach, Earth Syst. Dynam., 4, 219–236, <a href="https://doi.org/10.5194/esd-4-219-2013">https://doi.org/10.5194/esd-4-219-2013</a>, 2013. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.60" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx38"><span class="mixed-citation">Humpenöder, F., Popp, A., Bodirsky, B. L., Weindl, I., Biewald, A., Lotze-Campen, H., Dietrich, J. P., Klein, D., Kreidenweis, U., Müller, C., Rolinski, S., and Stevanovic, M.: Large-scale bioenergy production: How to resolve sustainability trade-offs?, Environ. Res. Lett., 13, 024011, <a href="https://doi.org/10.1088/1748-9326/aa9e3b">https://doi.org/10.1088/1748-9326/aa9e3b</a>, 2018. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.16" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.130" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a></span></p><p class="ref" id="bib1.bibx39"><span class="mixed-citation">Hurtt, G. C., Chini, L., Sahajpal, R., Frolking, S., Bodirsky, B. L., Calvin, K., Doelman, J. C., Fisk, J., Fujimori, S., Klein Goldewijk, K., Hasegawa, T., Havlik, P., Heinimann, A., Humpenöder, F., Jungclaus, J., Kaplan, J. O., Kennedy, J., Krisztin, T., Lawrence, D., Lawrence, P., Ma, L., Mertz, O., Pongratz, J., Popp, A., Poulter, B., Riahi, K., Shevliakova, E., Stehfest, E., Thornton, P., Tubiello, F. N., van Vuuren, D. P., and Zhang, X.: Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6, Geosci. Model Dev., 13, 5425–5464, <a href="https://doi.org/10.5194/gmd-13-5425-2020">https://doi.org/10.5194/gmd-13-5425-2020</a>, 2020. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.31" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.55" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.64" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">c</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.66" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">d</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.67" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">e</a></span></p><p class="ref" id="bib1.bibx40"><span class="mixed-citation">IPCC Working Group III: Climate change 2022: Mitigation of Climate Change, Full Report, Tech. Rep. 1, Cambridge, UK and New York, NY, US, ISBN 9789291691609, <a href="https://doi.org/10.18356/9789210012973c007">https://doi.org/10.18356/9789210012973c007</a>, 2022a. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_altparen.123" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_altparen.127" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a></span></p><p class="ref" id="bib1.bibx41"><span class="mixed-citation"> IPCC Working Group III: Climate Change 2022: Mitigation of Climate Change, Summary for Policymakers, Tech. Rep. 1, Cambridge, United Kingdom and New York, NY, USA, ISBN 9781107415416, 2022b. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.1" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.2" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.7" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">c</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.10" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">d</a></span></p><p class="ref" id="bib1.bibx42"><span class="mixed-citation"> IPCC Working Group III: Climate Change 2022 – Mitigation of Climate Change, Technical Summary, Tech. Rep. 1, ISBN 9781107415416, 2022c. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.11" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.15" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.28" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">c</a></span></p><p class="ref" id="bib1.bibx43"><span class="mixed-citation">Jayakrishnan, K. U. and Bala, G.: A comparison of the climate and carbon cycle effects of carbon removal by afforestation and an equivalent reduction in fossil fuel emissions, Biogeosciences, 20, 1863–1877, <a href="https://doi.org/10.5194/bg-20-1863-2023">https://doi.org/10.5194/bg-20-1863-2023</a>, 2023. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.26" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx44"><span class="mixed-citation">Jönsson, J.: Historical perspectives on forestry science and monocultures: Ideas of rationality in Sweden during the early twentieth century, Ambio, 53, 933–940, <a href="https://doi.org/10.1007/s13280-024-01987-9">https://doi.org/10.1007/s13280-024-01987-9</a>, 2024. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.133" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx45"><span class="mixed-citation">Kalt, G., Mayer, A., Theurl, M. C., Lauk, C., Erb, K. H., and Haberl, H.: Natural climate solutions versus bioenergy: Can carbon benefits of natural succession compete with bioenergy from short rotation coppice?, GCB Bioenergy, 11, 1283–1297, <a href="https://doi.org/10.1111/gcbb.12626">https://doi.org/10.1111/gcbb.12626</a>, 2019. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.21" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_text.119" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_text.122" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">c</a></span></p><span id="page5024"></span><p class="ref" id="bib1.bibx46"><span class="mixed-citation">Klein Goldewijk, K., Dekker, S. C., and van Zanden, J. L.: Per-capita estimations of long-term historical land use and the consequences for global change research, Journal of Land Use Science, 12, 313–337, <a href="https://doi.org/10.1080/1747423X.2017.1354938">https://doi.org/10.1080/1747423X.2017.1354938</a>, 2017. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.56" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx47"><span class="mixed-citation">Krause, A., Pugh, T. A. M., Bayer, A. D., Doelman, J. C., Humpenöder, F., Anthoni, P., Olin, S., Bodirsky, B. L., Popp, A., Stehfest, E., and Arneth, A.: Global consequences of afforestation and bioenergy cultivation on ecosystem service indicators, Biogeosciences, 14, 4829–4850, <a href="https://doi.org/10.5194/bg-14-4829-2017">https://doi.org/10.5194/bg-14-4829-2017</a>, 2017. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.24" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.27" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_text.29" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">c</a></span></p><p class="ref" id="bib1.bibx48"><span class="mixed-citation">Krause, A., Pugh, T. A., Bayer, A. D., Li, W., Leung, F., Bondeau, A., Doelman, J. C., Humpenöder, F., Anthoni, P., Bodirsky, B. L., Ciais, P., Müller, C., Murray-Tortarolo, G., Olin, S., Popp, A., Sitch, S., Stehfest, E., and Arneth, A.: Large uncertainty in carbon uptake potential of land-based climate-change mitigation efforts, Glob. Change Biol., 24, 3025–3038, <a href="https://doi.org/10.1111/gcb.14144">https://doi.org/10.1111/gcb.14144</a>, 2018. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.98" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_text.103" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_text.106" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">c</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_text.112" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">d</a></span></p><p class="ref" id="bib1.bibx49"><span class="mixed-citation">Lange, S. and Büchner, M.: ISIMIP3b bias-adjusted atmospheric climate input data, ISIMIP Repository [data set], <a href="https://doi.org/10.48364/ISIMIP.842396.1">https://doi.org/10.48364/ISIMIP.842396.1</a>, 2021. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_text.63" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.153" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a></span></p><p class="ref" id="bib1.bibx50"><span class="mixed-citation">Lasslop, G., Thonicke, K., and Kloster, S.: Journal of Advances in Modeling Earth Systems, J. Adv. Model. Earth Sy., 6, 740–755, <a href="https://doi.org/10.1002/2013MS000284">https://doi.org/10.1002/2013MS000284</a>, 2014. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.65" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx51"><span class="mixed-citation">Lawrence, D. M., Hurtt, G. C., Arneth, A., Brovkin, V., Calvin, K. V., Jones, A. D., Jones, C. D., Lawrence, P. J., de Noblet-Ducoudré, N., Pongratz, J., Seneviratne, S. I., and Shevliakova, E.: The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: rationale and experimental design, Geosci. Model Dev., 9, 2973–2998, <a href="https://doi.org/10.5194/gmd-9-2973-2016">https://doi.org/10.5194/gmd-9-2973-2016</a>, 2016. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_altparen.35" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx52"><span class="mixed-citation">LeBauer, D., Kooper, R., Mulrooney, P., Rohde, S., Wang, D., Long, S. P., and Dietze, M. C.: BETYdb: a yield, trait, and ecosystem service database applied to second-generation bioenergy feedstock production, GCB Bioenergy, 10, 61–71, <a href="https://doi.org/10.1111/gcbb.12420">https://doi.org/10.1111/gcbb.12420</a>, 2018. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.44" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.147" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a></span></p><p class="ref" id="bib1.bibx53"><span class="mixed-citation">Li, W., Ciais, P., Makowski, D., and Peng, S.: Data descriptor: A global yield dataset for major lignocellulosic bioenergy crops based on field measurements, Sci. Data, 5, 1–10, <a href="https://doi.org/10.1038/sdata.2018.169">https://doi.org/10.1038/sdata.2018.169</a>, 2018a. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.40" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.68" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.69" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">c</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_text.72" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">d</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.73" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">e</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_text.80" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">f</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_text.81" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">g</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_text.84" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">h</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_text.85" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">i</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.146" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">j</a></span></p><p class="ref" id="bib1.bibx54"><span class="mixed-citation">Li, W., Yue, C., Ciais, P., Chang, J., Goll, D., Zhu, D., Peng, S., and Jornet-Puig, A.: ORCHIDEE-MICT-BIOENERGY: an attempt to represent the production of lignocellulosic crops for bioenergy in a global vegetation model, Geosci. Model Dev., 11, 2249–2272, <a href="https://doi.org/10.5194/gmd-11-2249-2018">https://doi.org/10.5194/gmd-11-2249-2018</a>, 2018b. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.76" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_altparen.77" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_text.79" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">c</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_text.82" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">d</a></span></p><p class="ref" id="bib1.bibx55"><span class="mixed-citation">Li, W., Ciais, P., Makowski, D., and Peng, S.: A global yield dataset for major lignocellulosic bioenergy crops based on field measurements, Figshare [data set], <a href="https://doi.org/10.6084/m9.figshare.c.3951967">https://doi.org/10.6084/m9.figshare.c.3951967</a>, 2018c. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_author.154" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_year.155" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a></span></p><p class="ref" id="bib1.bibx56"><span class="mixed-citation">Li, W., Ciais, P., Han, M., Zhao, Q., Chang, J., Goll, D. S., Zhu, L., and Wang, J.: Bioenergy Crops for Low Warming Targets Require Half of the Present Agricultural Fertilizer Use, Environ. Sci. Technol., 55, 10654–10661, <a href="https://doi.org/10.1021/acs.est.1c02238">https://doi.org/10.1021/acs.est.1c02238</a>, 2021. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_text.148" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.149" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a></span></p><p class="ref" id="bib1.bibx57"><span class="mixed-citation">Littleton, E. W., Harper, A. B., Vaughan, N. E., Oliver, R. J., Duran-Rojas, M. C., and Lenton, T. M.: JULES-BE: representation of bioenergy crops and harvesting in the Joint UK Land Environment Simulator vn5.1, Geosci. Model Dev., 13, 1123–1136, <a href="https://doi.org/10.5194/gmd-13-1123-2020">https://doi.org/10.5194/gmd-13-1123-2020</a>, 2020. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.69" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.75" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.76" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">c</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_altparen.77" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">d</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_text.78" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">e</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_text.83" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">f</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_text.86" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">g</a></span></p><p class="ref" id="bib1.bibx58"><span class="mixed-citation">Longato, D., Gaglio, M., Boschetti, M., and Gissi, E.: Bioenergy and ecosystem services trade-offs and synergies in marginal agricultural lands: A remote-sensing-based assessment method, J. Clean. Prod., 237, 117672, <a href="https://doi.org/10.1016/j.jclepro.2019.117672">https://doi.org/10.1016/j.jclepro.2019.117672</a>, 2019. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.137" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx59"><span class="mixed-citation">Luyssaert, S., Schulze, E. D., Börner, A., Knohl, A., Hessenmöller, D., Law, B. E., Ciais, P., and Grace, J.: Old-growth forests as global carbon sinks, Nature, 455, 213–215, <a href="https://doi.org/10.1038/nature07276">https://doi.org/10.1038/nature07276</a>, 2008. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.93" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx60"><span class="mixed-citation">Luyssaert, S., Schulze, E.-D., Knohl, A., Law, B. E., Grace, P. C., and Grace, J.: Reply to: Old-growth forest carbon sinks overestimated, Nature, 591, E24–E25, <a href="https://doi.org/10.1038/s41586-021-03267-y">https://doi.org/10.1038/s41586-021-03267-y</a>, 2021. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.93" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx61"><span class="mixed-citation">Matthews, H. D., Zickfeld, K., Dickau, M., MacIsaac, A. J., Mathesius, S., Nzotungicimpaye, C. M., and Luers, A.: Temporary nature-based carbon removal can lower peak warming in a well-below 2 °C scenario, Commun. Environ., 3, 1–8, <a href="https://doi.org/10.1038/s43247-022-00391-z">https://doi.org/10.1038/s43247-022-00391-z</a>, 2022. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.22" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx62"><span class="mixed-citation">Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R., Brovkin, V., Claussen, M., Crueger, T., Esch, M., Fast, I., Fiedler, S., Fläschner, D., Gayler, V., Giorgetta, M., Goll, D. S., Haak, H., Hagemann, S., Hedemann, C., Hohenegger, C., Ilyina, T., Jahns, T., Jimenéz-de-la Cuesta, D., Jungclaus, J., Kleinen, T., Kloster, S., Kracher, D., Kinne, S., Kleberg, D., Lasslop, G., Kornblueh, L., Marotzke, J., Matei, D., Meraner, K., Mikolajewicz, U., Modali, K., Möbis, B., Müller, W. A., Nabel, J. E., Nam, C. C., Notz, D., Nyawira, S. S., Paulsen, H., Peters, K., Pincus, R., Pohlmann, H., Pongratz, J., Popp, M., Raddatz, T. J., Rast, S., Redler, R., Reick, C. H., Rohrschneider, T., Schemann, V., Schmidt, H., Schnur, R., Schulzweida, U., Six, K. D., Stein, L., Stemmler, I., Stevens, B., von Storch, J. S., Tian, F., Voigt, A., Vrese, P., Wieners, K. H., Wilkenskjeld, S., Winkler, A., and Roeckner, E.: Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and Its Response to Increasing CO<span class="inline-formula"><sub>2</sub></span>, J. Adv. Model. Earth Sy., 11, 998–1038, <a href="https://doi.org/10.1029/2018MS001400">https://doi.org/10.1029/2018MS001400</a>, 2019. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.34" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx63"><span class="mixed-citation">May, M. M. and Rehfeld, K.: Negative Emissions as the New Frontier of Photoelectrochemical CO<span class="inline-formula"><sub>2</sub></span> Reduction, Adv. Energy Mater., 12, 1–6, <a href="https://doi.org/10.1002/aenm.202103801">https://doi.org/10.1002/aenm.202103801</a>, 2022. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.3" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx64"><span class="mixed-citation">Mayer, D.: Potentials and side-effects of herbaceous biomass plantations for climate change mitigation, PhD thesis, Universität Hamburg, <a href="https://doi.org/10.17617/2.2479582">https://doi.org/10.17617/2.2479582</a>, 2017. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_text.38" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_text.39" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.52" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">c</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.53" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">d</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.74" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">e</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.87" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">f</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.95" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">g</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_text.100" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">h</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_text.108" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">i</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_text.113" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">j</a></span></p><p class="ref" id="bib1.bibx65"><span class="mixed-citation">Meehl, G. A., Senior, C. A., Eyring, V., Flato, G., Lamarque, J. F., Stouffer, R. J., Taylor, K. E., and Schlund, M.: Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models, Sci. Adv., 6, 1–10, <a href="https://doi.org/10.1126/sciadv.aba1981">https://doi.org/10.1126/sciadv.aba1981</a>, 2020. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.61" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx66"><span class="mixed-citation">Meinshausen, M., Nicholls, Z. R. J., Lewis, J., Gidden, M. J., Vogel, E., Freund, M., Beyerle, U., Gessner, C., Nauels, A., Bauer, N., Canadell, J. G., Daniel, J. S., John, A., Krummel, P. B., Luderer, G., Meinshausen, N., Montzka, S. A., Rayner, P. J., Reimann, S., Smith, S. J., van den Berg, M., Velders, G. J. M., Vollmer, M. K., and Wang, R. H. J.: The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500, Geosci. Model Dev., 13, 3571–3605, <a href="https://doi.org/10.5194/gmd-13-3571-2020">https://doi.org/10.5194/gmd-13-3571-2020</a>, 2020. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.10" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx67"><span class="mixed-citation">Melnikova, I., Boucher, O., Cadule, P., Tanaka, K., Gasser, T., Hajima, T., Quilcaille, Y., Shiogama, H., Séférian, R., Tachiiri, <span id="page5025"></span>K., Vuichard, N., Yokohata, T., and Ciais, P.: Impact of bioenergy crop expansion on climate–carbon cycle feedbacks in overshoot scenarios, Earth Syst. Dynam., 13, 779–794, <a href="https://doi.org/10.5194/esd-13-779-2022">https://doi.org/10.5194/esd-13-779-2022</a>, 2022. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.95" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.98" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.137" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">c</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.139" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">d</a></span></p><p class="ref" id="bib1.bibx68"><span class="mixed-citation">Melnikova, I., Ciais, P., Vuichard, N., and Boucher, O.: Relative benefits of allocating land to bioenergy crops and forests vary by region, Commun. Earth Environ., 4, 1–12, <a href="https://doi.org/10.1038/s43247-023-00866-7">https://doi.org/10.1038/s43247-023-00866-7</a>, 2023. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.24" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_text.25" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.96" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">c</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_text.107" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">d</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_text.114" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">e</a></span></p><p class="ref" id="bib1.bibx69"><span class="mixed-citation">Meyer, M. H., Paul, J., and Anderson, N. O.: Competive ability of invasive Miscanthus biotypes with aggressive switchgrass, Biol. Invasions, 12, 3809–3816, <a href="https://doi.org/10.1007/s10530-010-9773-0">https://doi.org/10.1007/s10530-010-9773-0</a>, 2010. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.51" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx70"><span class="mixed-citation">Muri, H.: The role of large – Scale BECCS in the pursuit of the 1.5 °C target: An Earth system model perspective, Environ. Res. Lett., 13, 044010, <a href="https://doi.org/10.1088/1748-9326/aab324">https://doi.org/10.1088/1748-9326/aab324</a>, 2018. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.23" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx71"><span class="mixed-citation">Nabel, J. E. M. S., Naudts, K., and Pongratz, J.: Accounting for forest age in the tile-based dynamic global vegetation model JSBACH4 (4.20p7; git feature/forests) – a land surface model for the ICON-ESM, Geosci. Model Dev., 13, 185–200, <a href="https://doi.org/10.5194/gmd-13-185-2020">https://doi.org/10.5194/gmd-13-185-2020</a>, 2020. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.145" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx72"><span class="mixed-citation">Naidu, S. L. and Long, S. P.: Potential mechanisms of low-temperature tolerance of C<span class="inline-formula"><sub>4</sub></span> photosynthesis in Miscanthus <span class="inline-formula">×</span> giganteus: An in vivo analysis, Planta, 220, 145–155, <a href="https://doi.org/10.1007/s00425-004-1322-6">https://doi.org/10.1007/s00425-004-1322-6</a>, 2004. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.43" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx73"><span class="mixed-citation">Nützel, T.: Calculation of parameter values based on observations for the herbaceous biomass plantation PFT representing Miscanthus in JSBACH3.2, Zenodo [data set], <a href="https://doi.org/10.5281/zenodo.11193881">https://doi.org/10.5281/zenodo.11193881</a>, 2024. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_text.41" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx74"><span class="mixed-citation">Obermeier, W. A., Nabel, J. E. M. S., Loughran, T., Hartung, K., Bastos, A., Havermann, F., Anthoni, P., Arneth, A., Goll, D. S., Lienert, S., Lombardozzi, D., Luyssaert, S., McGuire, P. C., Melton, J. R., Poulter, B., Sitch, S., Sullivan, M. O., Tian, H., Walker, A. P., Wiltshire, A. J., Zaehle, S., and Pongratz, J.: Modelled land use and land cover change emissions – a spatio-temporal comparison of different approaches, Earth Syst. Dynam., 12, 635–670, <a href="https://doi.org/10.5194/esd-12-635-2021">https://doi.org/10.5194/esd-12-635-2021</a>, 2021. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.150" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx75"><span class="mixed-citation">Pongratz, J., Schwingshackl, C., Bultan, S., Obermeier, W., Havermann, F., and Guo, S.: Land Use Effects on Climate: Current State, Recent Progress, and Emerging Topics, Current Climate Change Reports, 7, 99–120, <a href="https://doi.org/10.1007/s40641-021-00178-y">https://doi.org/10.1007/s40641-021-00178-y</a>, 2021. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.140" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx76"><span class="mixed-citation">Pugh, T. A., Lindeskog, M., Smith, B., Poulter, B., Arneth, A., Haverd, V., and Calle, L.: Role of forest regrowth in global carbon sink dynamics, P. Natl. Acad. Sci. USA, 116, 4382–4387, <a href="https://doi.org/10.1073/pnas.1810512116">https://doi.org/10.1073/pnas.1810512116</a>, 2019. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.92" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx77"><span class="mixed-citation">Raddatz, T. J., Reick, C. H., Knorr, W., Kattge, J., Roeckner, E., Schnur, R., Schnitzler, K. G., Wetzel, P., and Jungclaus, J.: Will the tropical land biosphere dominate the climate-carbon cycle feedback during the twenty-first century?, Clim. Dynam., 29, 565–574, <a href="https://doi.org/10.1007/s00382-007-0247-8">https://doi.org/10.1007/s00382-007-0247-8</a>, 2007. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.33" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx78"><span class="mixed-citation">Reick, C. H., Raddatz, T., Brovkin, V., and Gayler, V.: Representation of natural and anthropogenic land cover change in MPI-ESM, J. Adv. Model. Earth Sy., 5, 459–482, <a href="https://doi.org/10.1002/jame.20022">https://doi.org/10.1002/jame.20022</a>, 2013. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.48" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx79"><span class="mixed-citation">Reick, C. H., Gayler, V., Goll, D., Hagemann, S., Heidkamp, M., Nabel, J. E. M. S., Raddatz, T., Roeckner, E., Schnur, R., and Wilkenskjeld, S.: JSBACH 3 – The land component of the MPI Earth System Model: documentation of version 3.2, Berichte zur Erdsystemforschung, 240, <a href="https://doi.org/10.17617/2.3279802">https://doi.org/10.17617/2.3279802</a>, 2021. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.33" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx80"><span class="mixed-citation">Reiner, D. M.: Learning through a portfolio of carbon capture and storage demonstration projects, Nat. Energ., 1, 1–7, <a href="https://doi.org/10.1038/nenergy.2015.11">https://doi.org/10.1038/nenergy.2015.11</a>, 2016. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.138" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx81"><span class="mixed-citation">Roe, S., Streck, C., Obersteiner, M., Frank, S., Griscom, B., Drouet, L., Fricko, O., Gusti, M., Harris, N., Hasegawa, T., Hausfather, Z., Havlík, P., House, J., Nabuurs, G. J., Popp, A., Sánchez, M. J. S., Sanderman, J., Smith, P., Stehfest, E., and Lawrence, D.: Contribution of the land sector to a 1.5 °C world, Nat. Clim. Change, 9, 817–828, <a href="https://doi.org/10.1038/s41558-019-0591-9">https://doi.org/10.1038/s41558-019-0591-9</a>, 2019. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.1" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.8" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_text.9" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">c</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.16" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">d</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.130" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">e</a></span></p><p class="ref" id="bib1.bibx82"><span class="mixed-citation">Rose, S. K., Kriegler, E., Bibas, R., Calvin, K., Popp, A., van Vuuren, D. P., and Weyant, J.: Bioenergy in energy transformation and climate management, Climatic Change, 123, 477–493, <a href="https://doi.org/10.1007/s10584-013-0965-3">https://doi.org/10.1007/s10584-013-0965-3</a>, 2014. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_text.125" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx83"><span class="mixed-citation">Schulzweida, U.: CDO User Guide (2.3.0), Zenodo, Tech. rep., <a href="https://doi.org/10.5281/zenodo.10020800">https://doi.org/10.5281/zenodo.10020800</a>, 2023. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_altparen.62" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx84"><span class="mixed-citation">Searchinger, T., James, O., Dumas, P., Kastner, T., and Wirsenius, S.: EU climate plan sacrifices carbon storage and biodiversity for bioenergy, Nature, 612, 27–30, <a href="https://doi.org/10.1038/d41586-022-04133-1">https://doi.org/10.1038/d41586-022-04133-1</a>, 2022. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.132" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx85"><span class="mixed-citation">Searchinger, T. D., Wirsenius, S., Beringer, T., and Dumas, P.: Assessing the efficiency of changes in land use for mitigating climate change, Nature, 564, 249–253, <a href="https://doi.org/10.1038/s41586-018-0757-z">https://doi.org/10.1038/s41586-018-0757-z</a>, 2018. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.102" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx86"><span class="mixed-citation">Seidl, R., Thom, D., Kautz, M., Martin-Benito, D., Peltoniemi, M., Vacchiano, G., Wild, J., Ascoli, D., Petr, M., Honkaniemi, J., Lexer, M. J., Trotsiuk, V., Mairota, P., Svoboda, M., Fabrika, M., Nagel, T. A., and Reyer, C. P.: Forest disturbances under climate change, Nat. Clim. Change, 7, 395–402, <a href="https://doi.org/10.1038/nclimate3303">https://doi.org/10.1038/nclimate3303</a>, 2017. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.143" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx87"><span class="mixed-citation">Seo, B., Brown, C., Lee, H., and Rounsevell, M.: Bioenergy in Europe is unlikely to make a timely contribution to climate change targets, Environ. Res. Lett., 19, 044004, <a href="https://doi.org/10.1088/1748-9326/ad2d11">https://doi.org/10.1088/1748-9326/ad2d11</a>, 2024. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.102" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.131" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a></span></p><p class="ref" id="bib1.bibx88"><span class="mixed-citation">Sharma, B., Kumar, J., Ganguly, A. R., and Hoffman, F. M.: Carbon cycle extremes accelerate weakening of the land carbon sink in the late 21st century, Biogeosciences, 20, 1829–1841, <a href="https://doi.org/10.5194/bg-20-1829-2023">https://doi.org/10.5194/bg-20-1829-2023</a>, 2023. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_altparen.17" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx89"><span class="mixed-citation">Smith, P., Davis, S. J., Creutzig, F., Fuss, S., Minx, J., Gabrielle, B., Kato, E., Jackson, R. B., Cowie, A., Kriegler, E., Van Vuuren, D. P., Rogelj, J., Ciais, P., Milne, J., Canadell, J. G., McCollum, D., Peters, G., Andrew, R., Krey, V., Shrestha, G., Friedlingstein, P., Gasser, T., Grübler, A., Heidug, W. K., Jonas, M., Jones, C. D., Kraxner, F., Littleton, E., Lowe, J., Moreira, J. R., Nakicenovic, N., Obersteiner, M., Patwardhan, A., Rogner, M., Rubin, E., Sharifi, A., Torvanger, A., Yamagata, Y., Edmonds, J., and Yongsung, C.: Biophysical and economic limits to negative CO<span class="inline-formula"><sub>2</sub></span> emissions, Nat. Clim. Change, 6, 42–50, <a href="https://doi.org/10.1038/nclimate2870">https://doi.org/10.1038/nclimate2870</a>, 2016. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.16" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.130" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a></span></p><p class="ref" id="bib1.bibx90"><span class="mixed-citation">Smith, S. M., Geden, O., Minx, J. C., and Nemet, G. F.: The State of Carbon Dioxide Removal, 1st Edn., Tech. rep., OSF, ISBN 9781119130536, <a href="https://doi.org/10.17605/OSF.IO/W3B4Z">https://doi.org/10.17605/OSF.IO/W3B4Z</a>, 2023. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.4" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.6" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.126" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">c</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.129" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">d</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.139" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">e</a></span></p><p class="ref" id="bib1.bibx91"><span class="mixed-citation">Smith, S. M., Geden, O., Gidden, M. J., Lamb, W. F., Nemet, G. F., Minx, J. C., Buck, H., Burke, J., Cox, E., Edwards, M. R., Fuss, S., Johnstone, I., Müller-Hansen, F., Pongratz, J., Probst, B. S., Roe, S., Schenuit<span id="page5026"></span>, F., Schulte, I., and Vaughan, N. E. E.: The State of Carbon Dioxide Removal, 2nd Edn., Tech. rep., OSF, <a href="https://doi.org/10.17605/OSF.IO/F85QJ">https://doi.org/10.17605/OSF.IO/F85QJ</a>, 2024. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.5" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx92"><span class="mixed-citation">Soimakallio, S., Kalliokoski, T., Lehtonen, A., and Salminen, O.: On the trade-offs and synergies between forest carbon sequestration and substitution, Mitig. Adapt. Strat. Gl., 26, 1–17, <a href="https://doi.org/10.1007/s11027-021-09942-9">https://doi.org/10.1007/s11027-021-09942-9</a>, 2021. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.150" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx93"><span class="mixed-citation">Sonntag, S., Pongratz, J., Reick, C. H., and Schmidt, H.: Reforestation in a high-CO<span class="inline-formula"><sub>2</sub></span> world – Higher mitigation potential than expected, lower adaptation potential than hoped for, Geophys. Res. Lett., 43, 6546–6553, <a href="https://doi.org/10.1002/2016GL068824">https://doi.org/10.1002/2016GL068824</a>, 2016. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.22" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.26" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_text.115" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">c</a></span></p><p class="ref" id="bib1.bibx94"><span class="mixed-citation"> Stehfest, E., van Vuuren, D., Kram, T., and Bouwman, L.: Integrated Assessment of Global Environmental Change with IMAGE 3.0: Model description and policy applications, PBL Netherlands Environmental Assessment Agency, ISBN 978-94-91506-71-0, 2014. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.57" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx95"><span class="mixed-citation">Terlouw, T., Bauer, C., Rosa, L., and Mazzotti, M.: Life cycle assessment of carbon dioxide removal technologies: A critical review, Energy and Environmental Science, 14, 1701–1721, <a href="https://doi.org/10.1039/d0ee03757e">https://doi.org/10.1039/d0ee03757e</a>, 2021. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.20" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx96"><span class="mixed-citation">Thonicke, K., Spessa, A., Prentice, I. C., Harrison, S. P., Dong, L., and Carmona-Moreno, C.: The influence of vegetation, fire spread and fire behaviour on biomass burning and trace gas emissions: results from a process-based model, Biogeosciences, 7, 1991–2011, <a href="https://doi.org/10.5194/bg-7-1991-2010">https://doi.org/10.5194/bg-7-1991-2010</a>, 2010. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.65" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx97"><span class="mixed-citation">Tudge, S. J., Purvis, A., and De Palma, A.: The impacts of biofuel crops on local biodiversity: a global synthesis, Biodivers. Conserv., 30, 2863–2883, <a href="https://doi.org/10.1007/s10531-021-02232-5">https://doi.org/10.1007/s10531-021-02232-5</a>, 2021. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.134" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx98"><span class="mixed-citation">van Vuuren, D. P., Stehfest, E., Gernaat, D. E., Doelman, J. C., van den Berg, M., Harmsen, M., de Boer, H. S., Bouwman, L. F., Daioglou, V., Edelenbosch, O. Y., Girod, B., Kram, T., Lassaletta, L., Lucas, P. L., van Meijl, H., Müller, C., van Ruijven, B. J., van der Sluis, S., and Tabeau, A.: Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm, Glob. Environ. Change, 42, 237–250, <a href="https://doi.org/10.1016/j.gloenvcha.2016.05.008">https://doi.org/10.1016/j.gloenvcha.2016.05.008</a>, 2017. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.30" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.32" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.57" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">c</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.58" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">d</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_altparen.90" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">e</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.120" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">f</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.124" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">g</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.135" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">h</a></span></p><p class="ref" id="bib1.bibx99"><span class="mixed-citation">Vaughan, N. E. and Gough, C.: Synthesising existing knowledge on feasibility of BECCS: Workshop Report, Tech. Rep. 1104872, AVOID 2, 2015.  <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.129" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx100"><span class="mixed-citation">Veldman, J. W., Overbeck, G. E., Negreiros, D., Mahy, G., Le Stradic, S., Fernandes, G. W., Durigan, G., Buisson, E., Putz, F. E., and Bond, W. J.: Where Tree Planting and Forest Expansion are Bad for Biodiversity and Ecosystem Services, BioScience, 65, 1011–1018, <a href="https://doi.org/10.1093/biosci/biv118">https://doi.org/10.1093/biosci/biv118</a>, 2015. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.132" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx101"><span class="mixed-citation">Wang, J., Ciais, P., Gasser, T., Chang, J., Tian, H., Zhao, Z., Zhu, L., Li, Z., and Li, W.: Temperature Changes Induced by Biogeochemical and Biophysical Effects of Bioenergy Crop Cultivation, Environ. Sci. Technol., 57, 2474–2483, <a href="https://doi.org/10.1021/acs.est.2c05253">https://doi.org/10.1021/acs.est.2c05253</a>, 2023. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_text.109" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_text.110" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a></span></p><p class="ref" id="bib1.bibx102"><span class="mixed-citation">Weber, J., King, J. A., Abraham, N. L., Grosvenor, D. P., Smith, C. J., Shin, Y. M., Lawrence, P., Roe, S., Beerling, D. J., and Martin, M. V.: Chemistry-albedo feedbacks offset up to a third of forestation's CO<span class="inline-formula"><sub>2</sub></span> removal benefits, Science, 383, 860–864, <a href="https://doi.org/10.1126/science.adg6196">https://doi.org/10.1126/science.adg6196</a>, 2024. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.141" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx103"><span class="mixed-citation">Weedon, G. P., Balsamo, G., Bellouin, N., Gomes, S., Best, M. J., and Viterbo, P.: Data methodology applied to ERA-Interim reanalysis data, Water Resour. Res., 50, 7505–7514, <a href="https://doi.org/10.1002/2014WR015638">https://doi.org/10.1002/2014WR015638</a>, 2014. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.70" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx104"><span class="mixed-citation">Wilkenskjeld, S., Kloster, S., Pongratz, J., Raddatz, T., and Reick, C. H.: Comparing the influence of net and gross anthropogenic land-use and land-cover changes on the carbon cycle in the MPI-ESM, Biogeosciences, 11, 4817–4828, <a href="https://doi.org/10.5194/bg-11-4817-2014">https://doi.org/10.5194/bg-11-4817-2014</a>, 2014. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.54" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx105"><span class="mixed-citation">Winckler, J., Lejeune, Q., Reick, C. H., and Pongratz, J.: Nonlocal Effects Dominate the Global Mean Surface Temperature Response to the Biogeophysical Effects of Deforestation, Geophys. Res. Lett., 46, 745–755, <a href="https://doi.org/10.1029/2018GL080211">https://doi.org/10.1029/2018GL080211</a>, 2019. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.140" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx106"><span class="mixed-citation">Zhao, X., Mignone, B. K., Wise, M. A., and McJeon, H. C.: Trade-offs in land-based carbon removal measures under 1.5 °C and 2 °C futures, Nat. Commun., 15, 2297, <a href="https://doi.org/10.1038/s41467-024-46575-3">https://doi.org/10.1038/s41467-024-46575-3</a>, 2024. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_text.97" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx107"><span class="mixed-citation">Zhuang, Q., Qin, Z., and Chen, M.: Biofuel, land and water: Maize, switchgrass or Miscanthus?, Environ. Res. Lett., 8, 015020, <a href="https://doi.org/10.1088/1748-9326/8/1/015020">https://doi.org/10.1088/1748-9326/8/1/015020</a>, 2013. <a href="https://bg.copernicus.org/articles/21/5005/2024/#xref_paren.136" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p></div><span class="section15-mobile-bottom-border mobile-bottom-border hide-on-desktop hide-on-tablet"></span></div> </div> <!-- Root element of PhotoSwipe. Must have class pswp. --> <div class="pswp" tabindex="-1" role="dialog" aria-hidden="true" > <!-- Background of PhotoSwipe. It's a separate element as animating opacity is faster than rgba(). --> <div class="pswp__bg"></div> <!-- Slides wrapper with overflow:hidden. --> <div class="pswp__scroll-wrap"> <!-- Container that holds slides. PhotoSwipe keeps only 3 of them in the DOM to save memory. Don't modify these 3 pswp__item elements, data is added later on. --> <div class="pswp__container"> <div class="pswp__item"></div> <div class="pswp__item"></div> <div class="pswp__item"></div> </div> <!-- Default (PhotoSwipeUI_Default) interface on top of sliding area. Can be changed. --> <div class="pswp__ui pswp__ui--hidden"> <div class="pswp__top-bar"> <!-- Controls are self-explanatory. Order can be changed. --> <div class="pswp__counter"></div> <button class="pswp__button pswp__button--close" title="Close (Esc)"></button> <button class="pswp__button pswp__button--fs" title="Toggle fullscreen"></button> <!-- Preloader demo http://codepen.io/dimsemenov/pen/yyBWoR --> <!-- element will get class pswp__preloader--active when preloader is running --> <div class="pswp__preloader"> <div class="pswp__preloader__icn"> <div class="pswp__preloader__cut"> <div class="pswp__preloader__donut"></div> </div> </div> </div> </div> <div class="pswp__share-modal pswp__share-modal--hidden pswp__single-tap"> <div class="pswp__share-tooltip"></div> </div> <button class="pswp__button pswp__button--arrow--left" title="Previous (arrow left)"> </button> <button class="pswp__button pswp__button--arrow--right" title="Next (arrow right)"> </button> <div class="pswp__caption "> <div class="pswp__caption__center"></div> </div> </div> </div> </div></div> <!-- CO c_contentmanager_services::callProjectTemplate::899 14.11.2024 01:15:30, memcached, 0.0011839866638184secs --> <div id="page_colum_left_container" class="CMSCONTAINER w-sidebar col-auto d-none d-lg-block"> <div class="auto-fixed-top no-shadow old-articleNavigation"> <div id="quicklaunch_buttons" class="cmsbox jo_quicklaunch-bar"> <a href="https://bg.copernicus.org/" class="article-button journal-contentLinkColor journal-contentBorderColor">Articles </a> </div> <div id="main-navigation" class="cmsbox j-navigation"> <ul class="co_function_get_navigation menu_level1"> <li class="menuitem_level1 co_function_get_navigation_is_parent co_function_get_navigation_is_closed" id="co_getnavigation_page_about"> <a href="https://bg.copernicus.org/articles/21/5005/2024/#abstract" class="link_level1 scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Abstract</a></li> <li class="menuitem_level1 co_function_get_navigation_is_parent co_function_get_navigation_is_closed" id="co_getnavigation_page_about"> <a href="https://bg.copernicus.org/articles/21/5005/2024/#section1" class="link_level1 scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Introduction</a></li> <li class="menuitem_level1 co_function_get_navigation_is_parent co_function_get_navigation_is_closed" id="co_getnavigation_page_about"> <a href="https://bg.copernicus.org/articles/21/5005/2024/#section2" class="link_level1 scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Methods and data</a></li> <li class="menuitem_level1 co_function_get_navigation_is_parent co_function_get_navigation_is_closed" id="co_getnavigation_page_about"> <a href="https://bg.copernicus.org/articles/21/5005/2024/#section3" class="link_level1 scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Results</a></li> <li class="menuitem_level1 co_function_get_navigation_is_parent co_function_get_navigation_is_closed" id="co_getnavigation_page_about"> <a href="https://bg.copernicus.org/articles/21/5005/2024/#section4" class="link_level1 scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Discussion</a></li> <li class="menuitem_level1 co_function_get_navigation_is_parent co_function_get_navigation_is_closed" id="co_getnavigation_page_about"> <a href="https://bg.copernicus.org/articles/21/5005/2024/#section5" class="link_level1 scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Conclusions</a></li> <li class="menuitem_level1 co_function_get_navigation_is_parent co_function_get_navigation_is_closed" id="co_getnavigation_page_about"> <a href="https://bg.copernicus.org/articles/21/5005/2024/#section6" class="link_level1 scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Appendix A</a></li> <li class="menuitem_level1 co_function_get_navigation_is_parent co_function_get_navigation_is_closed" id="co_getnavigation_page_about"> <a href="https://bg.copernicus.org/articles/21/5005/2024/#section7" class="link_level1 scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Code availability</a></li> <li class="menuitem_level1 co_function_get_navigation_is_parent co_function_get_navigation_is_closed" id="co_getnavigation_page_about"> <a href="https://bg.copernicus.org/articles/21/5005/2024/#section8" class="link_level1 scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Data availability</a></li> <li class="menuitem_level1 co_function_get_navigation_is_parent co_function_get_navigation_is_closed" id="co_getnavigation_page_about"> <a href="https://bg.copernicus.org/articles/21/5005/2024/#section9" class="link_level1 scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Author contributions</a></li> <li class="menuitem_level1 co_function_get_navigation_is_parent co_function_get_navigation_is_closed" id="co_getnavigation_page_about"> <a href="https://bg.copernicus.org/articles/21/5005/2024/#section10" class="link_level1 scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Competing interests</a></li> <li class="menuitem_level1 co_function_get_navigation_is_parent co_function_get_navigation_is_closed" id="co_getnavigation_page_about"> <a href="https://bg.copernicus.org/articles/21/5005/2024/#section11" class="link_level1 scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Disclaimer</a></li> <li class="menuitem_level1 co_function_get_navigation_is_parent co_function_get_navigation_is_closed" id="co_getnavigation_page_about"> <a href="https://bg.copernicus.org/articles/21/5005/2024/#section12" class="link_level1 scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Acknowledgements</a></li> <li class="menuitem_level1 co_function_get_navigation_is_parent co_function_get_navigation_is_closed" id="co_getnavigation_page_about"> <a href="https://bg.copernicus.org/articles/21/5005/2024/#section13" class="link_level1 scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Financial support</a></li> <li class="menuitem_level1 co_function_get_navigation_is_parent co_function_get_navigation_is_closed" id="co_getnavigation_page_about"> <a href="https://bg.copernicus.org/articles/21/5005/2024/#section14" class="link_level1 scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Review statement</a></li> <li class="menuitem_level1 co_function_get_navigation_is_parent co_function_get_navigation_is_closed" id="co_getnavigation_page_about"> <a href="https://bg.copernicus.org/articles/21/5005/2024/#section15" class="link_level1 scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">References</a></li> </ul> </div> </div> <div id="leftColumnExtras" class="CMSCONTAINER w-sidebar col-auto d-none d-lg-block pt-2"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Download</div> <div class="content"> <ul class="additional_info no-bullets no-styling"> <li><a class="triangle" title="PDF Version (8075 KB)" href="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024.pdf">Article</a> <nobr>(8075 KB)</nobr> </li> <li> <a class="triangle" title="XML Version" href="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024.xml">Full-text XML</a> </li> </ul> </div> <div class="content"> <ul class="additional_info no-bullets no-styling"> <li><a class="triangle" href="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024.bib">BibTeX</a></li> <li><a class="triangle" href="https://bg.copernicus.org/articles/21/5005/2024/bg-21-5005-2024.ris">EndNote</a></li> </ul> </div> </div> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Co-editor-in-chief</div> <div class="content hide-js shortSummaryFullOnHighlihgt">The use of carbon dioxide removal (CDR) techniques is essential to achieving the objectives of the Paris agreements. In order to achieve this, it is necessary to introduce negative emission technologies as soon as possible. Among these technologies, CDRs, and more particularly CDRs applied to land surfaces, seem to be good candidates. However, until now, the methodologies used to estimate the efficiency of CDRs have taken very little account of certain parameters such as the turnover time of biomass products. This article proposes an innovative methodology for this purpose and applies it to estimate the storage potential of various CDRs. Results suggest, for example, that afforestation/reforestation (AR) appears to be more effective in China, while bioenergy with carbon capture and storage (BECCS) is more effective in South America and Africa. Nevertheless, the authors also highlight the importance of considering the evolution of the efficiency of fossil fuel substitution (FFS) techniques in parallel to refine the estimate of the potential of CDRs, thus stressing the complexity of such a task.</div> <div style="display: none" class="content show-js shortSummaryShortenOnHighlihgt">The use of carbon dioxide removal (CDR) techniques is essential to achieving the objectives of...</div> <div class="content"> <a href="#" class="more-less show-js triangle" data-hide=".shortSummaryFullOnHighlihgt" data-show=".shortSummaryShortenOnHighlihgt" data-toggleCaption='Hide'>Read more</a> </div> </div> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content hide-js shortSummaryFull">Using a state-of-the-art land model, we find that bioenergy plants can store carbon more efficiently than forests over long periods in the soil, in geological reservoirs, or by substituting fossil-fuel-based energy. Planting forests is more suitable for reaching climate targets by 2050. The carbon removal potential depends also on local environmental conditions. These considerations have important implications for climate policy, spatial planning, nature conservation, and agriculture.</div> <div style="display: none" class="content show-js shortSummaryShorten">Using a state-of-the-art land model, we find that bioenergy plants can store carbon more...</div> <div class="content"> <a href="#" class="more-less show-js triangle" data-hide=".shortSummaryFull" data-show=".shortSummaryShorten" data-toggleCaption='Hide'>Read more</a> </div> </div> <div class="widget dark-border hide-on-mobile hide-on-tablet p-0" id="share"> <div class="legend journal-contentLinkColor">Share</div> <div class="row p-0"> <div class="col-auto pl-0"> <a class="share-one-line" href="https://www.mendeley.com/import/?url=https%3A%2F%2Fbg.copernicus.org%2Farticles%2F21%2F5005%2F2024%2F" title="Mendeley" target="_blank"> <img src="https://www.biogeosciences.net/mendeley.png" alt="Mendeley"/> </a> </div> <div class="col-auto"> <a class="share-one-line" href="https://www.reddit.com/submit?url=https%3A%2F%2Fbg.copernicus.org%2Farticles%2F21%2F5005%2F2024%2F" title="Reddit" target="_blank"> <img src="https://www.biogeosciences.net/reddit.png" alt="Reddit"> </a> </div> <div class="col-auto"> <a class="share-one-line last" href="https://twitter.com/intent/tweet?text=How+to+measure+the+efficiency+of+bioenergy+crops++compared+to+forestation https%3A%2F%2Fbg.copernicus.org%2Farticles%2F21%2F5005%2F2024%2F" title="Twitter" target="_blank"> <img src="https://www.biogeosciences.net/twitter.png" alt="Twitter"/> </a> </div> <div class="col-auto"> <a class="share-one-line" href="https://www.facebook.com/share.php?u=https%3A%2F%2Fbg.copernicus.org%2Farticles%2F21%2F5005%2F2024%2F&t=How+to+measure+the+efficiency+of+bioenergy+crops++compared+to+forestation" title="Facebook" target="_blank"> <img src="https://www.biogeosciences.net/facebook.png" alt="Facebook"/> </a> </div> <div class="col-auto pr-0"> <a class="share-one-line last" href="https://www.linkedin.com/shareArticle?mini=true&url=https%3A%2F%2Fbg.copernicus.org%2Farticles%2F21%2F5005%2F2024%2F&title=How+to+measure+the+efficiency+of+bioenergy+crops++compared+to+forestation" title="LinkedIn" target="_blank"> <img src="https://www.biogeosciences.net/linkedin.png" alt="LinkedIn"> </a> </div> <div class="col pr-0 mobile-native-share"> <a href="#" data-title="Biogeosciences" data-text="*How to measure the efficiency of bioenergy crops compared to forestation* Sabine Egerer et al." data-url="https://bg.copernicus.org/articles/21/5005/2024/" class="mobile-native-share share-one-line last"><i class="co-mobile-share display-none"></i></a> </div> </div> </div> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Altmetrics</div> <div class="wrapper"> <div class="content text-center"> Final-revised paper </div> <div class="content text-center"> <div class="altmetric-embed" data-link-target="_blank" data-hide-less-than="1" data-no-score data-badge-type="medium-donut" data-doi="10.5194/bg-21-5005-2024"></div> </div> </div> <div class="wrapper"> <div class="content text-center"> Preprint </div> <div class="content text-center"> <div class="altmetric-embed" data-link-target="_blank" data-hide-less-than="1" data-no-score data-badge-type="medium-donut" data-doi="10.5194/egusphere-2024-1451"></div> </div> </div> </div> <script type="text/javascript"> !function (e, t, n) { var d = "createElement", c = "getElementsByTagName", m = "setAttribute", n = document.getElementById(e); return n && n.parentNode && n.parentNode.removeChild(n), n = document[d + "NS"] && document.documentElement.namespaceURI, n = n ? document[d + "NS"](n, "script") : document[d]("script"), n[m]("id", e), n[m]("src", t), (document[c]("head")[0] || document[c]("body")[0]).appendChild(n), n = new Image, void n[m]("src", "https://www.biogeosciences.net/altmetric_donut.png") }("altmetric-embed-js", "https://www.biogeosciences.net/altmetric_badges.min.js"); $(function () { $('div.altmetric-embed').on('altmetric:hide', function () { if($(this).closest('.widget').find('.altmetric-embed:not(.altmetric-hidden)').length === 0) { $(this).closest('.widget').hide(); } $(this).closest('.wrapper').hide(); }); }); </script> <div class="ajax-content" data-src="https://editor.copernicus.org/similarArticles.php?article=120281&journal=11&isSecondStage=1&ajax=true"> </div> </div> <div class="auto-fixed-top px-1 mb-3 articleNavigation" data-fixet-top-target="#section1"> <button class="btn btn-success mb-3 btn-block" id="mathjax-turn"><i class="fal fa-function"></i> Turn MathJax on</button> <div class="widget dark-border m-0"> <div class="legend journal-contentLinkColor">Sections</div> <div class="content"> <ul class="toc-styling p-0"> <li> <a href="https://bg.copernicus.org/articles/21/5005/2024/#abstract" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Abstract</a> </li> <li> <a href="https://bg.copernicus.org/articles/21/5005/2024/#section1" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Introduction</a> </li> <li> <a href="https://bg.copernicus.org/articles/21/5005/2024/#section2" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Methods and data</a> </li> <li> <a href="https://bg.copernicus.org/articles/21/5005/2024/#section3" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Results</a> </li> <li> <a href="https://bg.copernicus.org/articles/21/5005/2024/#section4" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Discussion</a> </li> <li> <a href="https://bg.copernicus.org/articles/21/5005/2024/#section5" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Conclusions</a> </li> <li> <a href="https://bg.copernicus.org/articles/21/5005/2024/#section6" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Appendix A</a> </li> <li> <a href="https://bg.copernicus.org/articles/21/5005/2024/#section7" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Code availability</a> </li> <li> <a href="https://bg.copernicus.org/articles/21/5005/2024/#section8" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Data availability</a> </li> <li> <a href="https://bg.copernicus.org/articles/21/5005/2024/#section9" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Author contributions</a> </li> <li> <a href="https://bg.copernicus.org/articles/21/5005/2024/#section10" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Competing interests</a> </li> <li> <a href="https://bg.copernicus.org/articles/21/5005/2024/#section11" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Disclaimer</a> </li> <li> <a href="https://bg.copernicus.org/articles/21/5005/2024/#section12" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Acknowledgements</a> </li> <li> <a href="https://bg.copernicus.org/articles/21/5005/2024/#section13" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Financial support</a> </li> <li> <a href="https://bg.copernicus.org/articles/21/5005/2024/#section14" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Review statement</a> </li> <li> <a href="https://bg.copernicus.org/articles/21/5005/2024/#section15" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">References</a> </li> </ul> </div> </div> </div> </div> </div> </div> </main> <!--=== End Content ===--> <footer class="d-print-none version-2023"> <div class="footer"> <div class="container"> <div class="row align-items-center mb-3"> <div class="col-12 col-lg-auto text-center text-md-left title-wrapper"> <div id="j-header-footer" class="text-center text-md-left"> <div class="h1 text-center text-md-left"> Biogeosciences </div> <p>An interactive open-access journal of the European Geosciences Union</p> </div> </div> <div class="col-12 col-lg-auto text-center text-md-left pt-lg-2"> <div class="row align-items-center"> <div class="col-12 col-sm col-md-auto text-center text-md-left mb-3 mb-sm-0"> <span class="egu-logo"><a href="http://www.egu.eu/" target="_blank"><img src="https://contentmanager.copernicus.org/319373/11/ssl" alt="" style="width: 410px; height: 325px;" /></a></span> </div> <div class="col-12 col-sm text-center text-md-left"> <span class="copernicus-logo"><a href="https://publications.copernicus.org/" target="_blank"><img src="https://contentmanager.copernicus.org/319376/11/ssl" alt="" style="width: 1784px; height: 330px;" /></a></span> </div> </div> </div> </div> </div> </div> <div class="links pb-4 pt-4"> <div class="container"> <div class="row align-items-center"> <div class="col-12 col-xl-auto mt-3"> <div class="row align-items-start align-items-lg-center"> <div class="col-12 mb-3 mb-md-0 pl-md-0 text-center text-md-left"><a href="https://creativecommons.org/licenses/by/4.0/" target="_blank"><i class="fab fa-creative-commons fa-lg mr-1"></i><i class="fab fa-creative-commons-by fa-lg"></i></a> All site content, except where otherwise noted, is licensed under the <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank">Creative Commons Attribution 4.0 License</a>.</div> </div> </div> <div class="col-12 text-center text-md-left col-lg-auto mt-3"> <div class="row align-items-center"> <div class="col d-md-none px-0"></div> <div class="col-auto pr-1"><a href="https://www.biogeosciences.net/about/contact.html">Contact</a></div> <div class="col-auto px-1">|</div> <div class="col-auto px-1"><a href="https://www.biogeosciences.net/imprint.html">Imprint</a></div> <div class="col-auto px-1">|</div> <div class="col-auto px-1"><a href="https://www.copernicus.org/data_protection.html" target="_blank">Data protection</a></div> <div class="col-auto pl-2"><a class="twitter-follow-button" target="_blank" href="https://twitter.com/EGU_BioGeo"><i class="fab fa-square-x-twitter fa-2x"></i></a></div> <div class="col d-md-none px-0"></div> </div> </div> </div> </div> </div> </footer> <!-- --></body> <!--CMS get_project_template.php::126 14.11.2024 01:15:30, CMS generated: 2.2362430095673sec --></html>

Pages: 1 2 3 4 5 6 7 8 9 10