CINXE.COM

Search results for: microbial treatment

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: microbial treatment</title> <meta name="description" content="Search results for: microbial treatment"> <meta name="keywords" content="microbial treatment"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="microbial treatment" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="microbial treatment"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8937</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: microbial treatment</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8937</span> Study on the Treatment of Waste Water Containing Nitrogen Heterocyclic Aromatic Hydrocarbons by Phenol-Induced Microbial Communities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhichao%20Li">Zhichao Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This project has treated the waste-water that contains the nitrogen heterocyclic aromatic hydrocarbons, by using the phenol-induced microbial communities. The treatment of nitrogen heterocyclic aromatic hydrocarbons is a difficult problem for coking waste-water treatment. Pyridine, quinoline and indole are three kinds of most common nitrogen heterocyclic compounds in the f, and treating these refractory organics biologically has always been a research focus. The phenol-degrading bacteria can be used in the enhanced biological treatment effectively, and has a good treatment effect. Therefore, using the phenol-induced microbial communities to treat the coking waste-water can remove multiple pollutants concurrently, and improve the treating efficiency of coking waste-water. Experiments have proved that the phenol-induced microbial communities can degrade the nitrogen heterocyclic ring aromatic hydrocarbon efficiently. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phenol" title="phenol">phenol</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20heterocyclic%20aromatic%20hydrocarbons" title=" nitrogen heterocyclic aromatic hydrocarbons"> nitrogen heterocyclic aromatic hydrocarbons</a>, <a href="https://publications.waset.org/abstracts/search?q=phenol-degrading%20bacteria" title=" phenol-degrading bacteria"> phenol-degrading bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20communities" title=" microbial communities"> microbial communities</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20treatment%20technology" title=" biological treatment technology"> biological treatment technology</a> </p> <a href="https://publications.waset.org/abstracts/78438/study-on-the-treatment-of-waste-water-containing-nitrogen-heterocyclic-aromatic-hydrocarbons-by-phenol-induced-microbial-communities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78438.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8936</span> Microbial Fuel Cells in Waste Water Treatment and Electricity Generation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajalaxmi%20N.">Rajalaxmi N.</a>, <a href="https://publications.waset.org/abstracts/search?q=Padma%20Bhat"> Padma Bhat</a>, <a href="https://publications.waset.org/abstracts/search?q=Pooja%20Garag"> Pooja Garag</a>, <a href="https://publications.waset.org/abstracts/search?q=Pooja%20N.%20M."> Pooja N. M.</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20S.%20Hombalimath"> V. S. Hombalimath</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microbial fuel cell (MFC) is the advancement of science that aims at utilizing the oxidizing potential of bacteria for wastewater treatment and production of bio-hydrogen and bio-electricity. Salt-bridge is the economic alternative to highly priced proton-exchange membrane in the construction of a microbial fuel cell. This paper studies the electricity generating capacity of E.coli and Clostridium sporogenes in microbial fuel cells (MFCs). Unlike most of MFC research, this targets the long term goals of renewable energy production and wastewater treatment. In present study the feasibility and potential of bioelectricity production from different wastewater was observed. Different wastewater was primarily treated which were confirmed by the COD tests which showed reduction of COD. We observe that the electricity production of MFCs decreases almost linearly after 120 hrs. The sewage wastewater containing Clostridium sporogenes showed bioelectricity production up to 188mV with COD removal of 60.52%. Sewage wastewater efficiently produces bioelectricity and this also helpful to reduce wastewater pollution load. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microbial%20fuel%20cell" title="microbial fuel cell">microbial fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=bioelectricity" title=" bioelectricity"> bioelectricity</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=salt%20bridge" title=" salt bridge"> salt bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=COD" title=" COD"> COD</a> </p> <a href="https://publications.waset.org/abstracts/23470/microbial-fuel-cells-in-waste-water-treatment-and-electricity-generation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23470.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">537</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8935</span> Performance of Osmotic Microbial Fuel Cell in Wastewater Treatment and Electricity Generation: A Critical Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shubhangi%20R.%20Deshmukh">Shubhangi R. Deshmukh</a>, <a href="https://publications.waset.org/abstracts/search?q=Anupam%20B.%20Soni"> Anupam B. Soni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Clean water and electricity are vital services needed in all communities. Bio-degradation of wastewater contaminants and desalination technologies are the best possible alternatives for the global shortage of fresh water supply. Osmotic microbial fuel cell (OMFC) is a versatile technology that uses microorganism (used for biodegradation of organic waste) and membrane technology (used for water purification) for wastewater treatment and energy generation simultaneously. This technology is the combination of microbial fuel cell (MFC) and forward osmosis (FO) processes. OMFC can give more electricity and clean water than the MFC which has a regular proton exchange membrane. FO gives many improvements such as high contamination removal, lower operating energy, raising high proton flux than other pressure-driven membrane technology. Lower concentration polarization lowers the membrane fouling by giving osmotic water recovery without extra cost. In this review paper, we have discussed the principle, mechanism, limitation, and application of OMFC technology reported to date. Also, we have interpreted the experimental data from various literature on the water recovery and electricity generation assessed by a different component of OMFC. The area of producing electricity using OMFC has further scope for research and seems like a promising route to wastewater treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forward%20osmosis" title="forward osmosis">forward osmosis</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20fuel%20cell" title=" microbial fuel cell"> microbial fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=osmotic%20microbial%20fuel%20cell" title=" osmotic microbial fuel cell"> osmotic microbial fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20treatment" title=" wastewater treatment"> wastewater treatment</a> </p> <a href="https://publications.waset.org/abstracts/107013/performance-of-osmotic-microbial-fuel-cell-in-wastewater-treatment-and-electricity-generation-a-critical-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107013.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8934</span> Biological Treatment of a Mixture of Iodine-Containing Aromatic Compounds from Industrial Wastewaster</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Elain">A. Elain</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Le%20Fellic"> M. Le Fellic</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Le%20Pemp"> A. Le Pemp</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Hachet"> N. Hachet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Iodinated Compounds (IC) are widely detected contaminants in most aquatic environments including sewage treatment plant, surface water, ground water and even drinking water, up to the µg.L-1 range. As IC contribute in the adsorbable organic halides (AOX) level, their removal or dehalogenation is expected. We report here on the biodegradability of a mixture of IC from an industrial effluent using a microbial consortium adapted to grow on IC as well as the native microorganisms. Both aerobic and anaerobic treatments were studied during batch experiments in 500-mL flasks. The degree of mineralization and recovery of iodide were monitored by HPLC-UV, TOC analysis and potentiometric titration. Providing ethanol as an electron acceptor was found to stimulate anaerobic reductive deiodination of IC while sodium chloride even at high concentration (22 g.l-1) had no influence on the degradation rates nor on the microbial viability. Phylogenetic analysis of 16S RNA gene sequence (MicroSeq®) was applied to provide a better understanding of the degradative microbial community. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=iodinated%20compounds" title="iodinated compounds">iodinated compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradability" title=" biodegradability"> biodegradability</a>, <a href="https://publications.waset.org/abstracts/search?q=deiodination" title=" deiodination"> deiodination</a>, <a href="https://publications.waset.org/abstracts/search?q=electron-accepting%20conditions" title=" electron-accepting conditions"> electron-accepting conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20consortium" title=" microbial consortium"> microbial consortium</a> </p> <a href="https://publications.waset.org/abstracts/18611/biological-treatment-of-a-mixture-of-iodine-containing-aromatic-compounds-from-industrial-wastewaster" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18611.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8933</span> Synthesis, Characterization, Validation of Resistant Microbial Strains and Anti Microbrial Activity of Substitted Pyrazoles </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rama%20Devi%20Kyatham">Rama Devi Kyatham</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Ashok"> D. Ashok</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20S.%20K.%20Rao%20Patnaik"> K. S. K. Rao Patnaik</a>, <a href="https://publications.waset.org/abstracts/search?q=Raju%20Bathula"> Raju Bathula</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have shown the importance of pyrazoles as anti-microbial chemical entities. These compounds have generally been considered significant due to their wide range of pharmacological acivities and their discovery motivates new avenues of research.The proposed pyrazoles were synthesized and evaluated for their anti-microbial activities. The Synthesized compounds were analyzed by different spectroscopic methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pyrazoles" title="pyrazoles">pyrazoles</a>, <a href="https://publications.waset.org/abstracts/search?q=validation" title=" validation"> validation</a>, <a href="https://publications.waset.org/abstracts/search?q=resistant%20microbial%20strains" title=" resistant microbial strains"> resistant microbial strains</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-microbial%20activities" title=" anti-microbial activities"> anti-microbial activities</a> </p> <a href="https://publications.waset.org/abstracts/123881/synthesis-characterization-validation-of-resistant-microbial-strains-and-anti-microbrial-activity-of-substitted-pyrazoles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123881.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8932</span> Harnessing of Electricity from Distillery Effluent and Simultaneous Effluent Treatment by Microbial Fuel Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanish%20Mohammed">Hanish Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20H.%20Muthukumar%20Muthuchamy"> C. H. Muthukumar Muthuchamy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The advancement in the science and technology has made it possible to convert electrical energy into any desired form. It has given electrical energy a place of pride in the modern world. The survival of industrial undertakings and our social structure depends primarily upon low cost and uninterrupted supply of electrical energy. Microbial fuel cell (MFC) is a promising and emerging technique for sustainable bioelectricity generation and wastewater treatment. MFCs are devices which are capable of converting organic matter to electricity/hydrogen with help of microorganisms. Different kinds of wastewater could be used in this technique, distillery effluent is one of the most troublesome and complex and strong organic effluent with high chemical oxygen demand of 1,53,846 mg/L. A single cell MFC unit was designed and fabricated for the distillery effluent treatment and to generate electricity. Due to the high COD value of the distillery effluent helped in the production of energy for 74 days. The highest voltage got from the fuel cell is 206 mV on the 30th day. A maximum power density obtained from the MFC was 9.8 mW, treatment efficiency was evaluated in terms of COD removal and other parameters. COD removal efficiencies were around 68.5 % and other parameters such as Total Hardness (81.5%), turbidity (70 %), chloride (66%), phosphate (79.5%), Nitrate (77%) and sulphate (71%). MFC using distillery effluent is a promising new unexplored substrate for the power generation and sustainable treatment technique through harnessing of bioelectricity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microbial%20fuel%20cell%20%28MFC%29" title="microbial fuel cell (MFC)">microbial fuel cell (MFC)</a>, <a href="https://publications.waset.org/abstracts/search?q=bioelectricity" title=" bioelectricity"> bioelectricity</a>, <a href="https://publications.waset.org/abstracts/search?q=distillery%20effluent" title=" distillery effluent"> distillery effluent</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20treatment" title=" wastewater treatment "> wastewater treatment </a> </p> <a href="https://publications.waset.org/abstracts/49484/harnessing-of-electricity-from-distillery-effluent-and-simultaneous-effluent-treatment-by-microbial-fuel-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49484.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8931</span> LIFirr with an Indicator of Microbial Activity in Paraffinic Oil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20P.%20Casiraghi">M. P. Casiraghi</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20M.%20Quintella"> C. M. Quintella</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Almeida"> P. Almeida</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Paraffinic oils were submitted to microbial action. The microorganisms consisted of bacteria of the genera Pseudomonas sp and Bacillus lincheniforms. The alterations in interfacial tension were determined using a tensometer and applying the hanging drop technique at room temperature (299 K ±275 K). The alteration in the constitution of the paraffins was evaluated by means of gas chromatography. The microbial activity was observed to reduce interfacial tension by 54 to 78%, as well as consuming the paraffins C19 to C29 and producing paraffins C36 to C44. The LIFirr technique made it possible to determine the microbial action quickly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=paraffins" title="paraffins">paraffins</a>, <a href="https://publications.waset.org/abstracts/search?q=biosurfactants" title=" biosurfactants"> biosurfactants</a>, <a href="https://publications.waset.org/abstracts/search?q=LIFirr" title=" LIFirr"> LIFirr</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20activity" title=" microbial activity"> microbial activity</a> </p> <a href="https://publications.waset.org/abstracts/20489/lifirr-with-an-indicator-of-microbial-activity-in-paraffinic-oil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20489.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">527</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8930</span> Electricity Production Enhancement in a Constructed Microbial Fuel Cell MFC Using Iron Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaoula%20Bensaida">Khaoula Bensaida</a>, <a href="https://publications.waset.org/abstracts/search?q=Osama%20Eljamal"> Osama Eljamal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The electrical energy generation through Microbial Fuel Cells (MFCs) using microorganisms is a renewable and sustainable approach. It creates truly an efficient technology for power production and wastewater treatment. MFC is an electrochemical device which turns wastewater into electricity. The most important part of MFC is microbes. Nano zero-valent Iron NZVI technique was successfully applied in degrading the chemical pollutants and cleaning wastewater. However, the use of NZVI for enhancing the current production is still not confirmed yet. This study aims to confirm the effect of these particles on the current generation by using MFC. A constructed microbial fuel cell, which utilizes domestic wastewater, has been considered for wastewater treatment and bio-electricity generation. The two electrodes were connected to an external resistor (200 ohms). Experiments were conducted in two steps. First, the MFC was constructed without adding NZVI particles (Control) while at a second step, nanoparticles were added with a concentration of 50mg/L. After 20 hours, the measured voltage increased to 5 and 8mV, respectively. To conclude, the use of zero-valent iron in an MFC system can increase electricity generation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacterial%20growth" title="bacterial growth">bacterial growth</a>, <a href="https://publications.waset.org/abstracts/search?q=electricity%20generation" title=" electricity generation"> electricity generation</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20fuel%20cell%20MFC" title=" microbial fuel cell MFC"> microbial fuel cell MFC</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20zero-valent%20iron%20NZVI." title=" nano zero-valent iron NZVI. "> nano zero-valent iron NZVI. </a> </p> <a href="https://publications.waset.org/abstracts/110268/electricity-production-enhancement-in-a-constructed-microbial-fuel-cell-mfc-using-iron-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110268.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8929</span> An Assessment of the Effects of Microbial Products on the Specific Oxygen Uptake in Submerged Membrane Bioreactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20F.%20R.%20Zuthi">M. F. R. Zuthi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20H.%20Ngo"> H. H. Ngo</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20S.%20Guo"> W. S. Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Chen"> S. S. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20C.%20Nguyen"> N. C. Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20J.%20Deng"> L. J. Deng</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20D.%20C%20Tran">T. D. C Tran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sustaining a desired rate of oxygen transfer for microbial activity is a matter of major concern for Biological Wastewater Treatment (MBR). The study reported in the paper was aimed at assessing the effects of microbial products on the Specific Oxygen Uptake Rate (SOUR) in a Conventional Membrane Bioreactor (CMBR) and that in a Sponge Submerged MBR (SSMBR). The production and progressive accumulation of Soluble Microbial Products (SMP) and Bound-Extracellular Polymeric Substances (BEPS) were found affecting the SOUR of the microorganisms which varied at different stages of operation of the MBR systems depending on the variable concentrations of the SMP/bEPS. The effect of bEPS on the SOUR was stronger in the SSMBR compared to that of the SMP, while relative high concentrations of SMP had adverse effects on the SOUR of the CMBR system. Of the different mathematical correlations analyzed in the study, logarithmic mathematical correlations could be established between SOUR and bEPS in SSMBR, and similar correlations could also be found between SOUR and SMP concentrations in the CMBR. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microbial%20products" title="microbial products">microbial products</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20activity" title=" microbial activity"> microbial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20oxygen%20uptake%20rate" title=" specific oxygen uptake rate"> specific oxygen uptake rate</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20bioreactor" title=" membrane bioreactor"> membrane bioreactor</a> </p> <a href="https://publications.waset.org/abstracts/4403/an-assessment-of-the-effects-of-microbial-products-on-the-specific-oxygen-uptake-in-submerged-membrane-bioreactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4403.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8928</span> Harnessing Microorganism Having Potential for Biotreatment of Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haruna%20Saidu">Haruna Saidu</a>, <a href="https://publications.waset.org/abstracts/search?q=Sulaiman%20Mohammed"> Sulaiman Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulkarim%20Ali%20Deba"> Abdulkarim Ali Deba</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaza%20Eva%20Mohamad"> Shaza Eva Mohamad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Determining the diversity of the indigenous microorganisms in Palm Oil Mill Effluent (POME) could allow their wider application for the treatment of recalcitrant agro-based wastewater discharge into the environment. Many research studies mainly determined the efficiency of microorganism or their co-cultivation with microalgae for enhanced treatment of wastewater, suggesting a limited emphasis on the application of microbial diversity. In this study, the microorganism was cultured in POME for a period of 15 days using microalgae as a source of carbon. Pyrosequencing analysis reveals a diversity of microbial community in 20% (v/v) culture than the control experiment. Most of the bacterial species identified in POME belong to the families of Bacillaceae, Paenibacillaceae, Enterococcaceae, Clostridiaceae, Peptostreptococcaceae, Caulobacteraceae, Enterobacteriaceae, Moraxellaceae, and Pseudomonadaceae. Alpha (α) diversity analysis reveals the high composition of the microbial community of 52 in both samples. Beta (β) diversity index indicated the occurrence of similar species of microorganisms in unweighted uni fra than the weighted uni fra of both samples. It is therefore suggested that bacteria found in these families could have a potential for synergistic treatment of high-strength wastewater generated from the palm oil industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diversity" title="diversity">diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=microorganism" title=" microorganism"> microorganism</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrosequencing" title=" pyrosequencing"> pyrosequencing</a>, <a href="https://publications.waset.org/abstracts/search?q=palm%20oil%20mill%20effluent" title=" palm oil mill effluent"> palm oil mill effluent</a> </p> <a href="https://publications.waset.org/abstracts/187899/harnessing-microorganism-having-potential-for-biotreatment-of-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187899.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">38</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8927</span> Power Generation and Treatment potential of Microbial Fuel Cell (MFC) from Landfill Leachate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Beenish%20Saba">Beenish Saba</a>, <a href="https://publications.waset.org/abstracts/search?q=Ann%20D.%20Christy"> Ann D. Christy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modern day municipal solid waste landfills are operated and controlled to protect the environment from contaminants during the biological stabilization and degradation of the solid waste. They are equipped with liners, caps, gas and leachate collection systems. Landfill gas is passively or actively collected and can be used as bio fuel after necessary purification, but leachate treatment is the more difficult challenge. Leachate, if not recirculated in a bioreactor landfill system, is typically transported to a local wastewater treatment plant for treatment. These plants are designed for sewage treatment, and often charge additional fees for higher strength wastewaters such as leachate if they accept them at all. Different biological, chemical, physical and integrated techniques can be used to treat the leachate. Treating that leachate with simultaneous power production using microbial fuel cells (MFC) technology has been a recent innovation, reported its application in its earliest starting phase. High chemical oxygen demand (COD), ionic strength and salt concentration are some of the characteristics which make leachate an excellent substrate for power production in MFCs. Different materials of electrodes, microbial communities, carbon co-substrates and temperature conditions are some factors that can be optimized to achieve simultaneous power production and treatment. The advantage of the MFC is its dual functionality but lower power production and high costs are the hurdles in its commercialization and more widespread application. The studies so far suggest that landfill leachate MFCs can produce 1.8 mW/m2 with 79% COD removal, while amendment with food leachate or domestic wastewater can increase performance up to 18W/m3 with 90% COD removal. The columbic efficiency is reported to vary between 2-60%. However efforts towards biofilm optimization, efficient electron transport system studies and use of genetic tools can increase the efficiency of the MFC and can determine its future potential in treating landfill leachate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microbial%20fuel%20cell" title="microbial fuel cell">microbial fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=landfill%20leachate" title=" landfill leachate"> landfill leachate</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20generation" title=" power generation"> power generation</a>, <a href="https://publications.waset.org/abstracts/search?q=MFC" title=" MFC"> MFC</a> </p> <a href="https://publications.waset.org/abstracts/14108/power-generation-and-treatment-potential-of-microbial-fuel-cell-mfc-from-landfill-leachate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14108.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8926</span> Bacterio-Algal Microbial Fuel Cells for Sustainable Power Production, Wastewater Treatment, and Desalination</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ann%20D.%20Christy">Ann D. Christy</a>, <a href="https://publications.waset.org/abstracts/search?q=Beenish%20Saba"> Beenish Saba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Microbial fuel Cell (MFC) is a successful integrated technology for power production and wastewater treatment. MFCs are recognized for their dual function, but research in this field is still ongoing to increase efficiency and power output. One such effort is successful integration of phototrophic and autotrophic microorganisms to create bacterio-algal MFCs for sustainable electricity production along with wastewater treatment and algal biomass production. An MFC is typically configured with an anaerobic anodic chamber containing exoelectrogenic microorganisms separated by a cation exchange membrane from an adjacent aerobic cathodic chamber. The two electrodes are connected by an external circuit. This conventional MFC can be converted into a phototrophic MFC by introducing photosynthetic microorganisms into the cathode chamber. This study examines adding a third desalination chamber to a two-chamber bacterio-algal MFC. Successful results have been observed from these three-chamber MFCs demonstrating wastewater treatment in the anodic chamber, phototrophic algal growth in the cathodic chamber, and desalination in the middle chamber. The present article will summarize successful results of the bacterio-algal fuel cells and offer insights about the mechanisms involved. Tables summarizing the input substrate along with optimized operational conditions and output performance in terms of power production and efficiencies of water and wastewater treatment will be presented. The negative impacts and challenges will be discussed, along with possible future research directions. Results suggest that the three chamber bacterio-algal desalination cell has potential as a feasible technology for power production, wastewater treatment and desalination, but it needs further investigation under optimized conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacterio-algal%20MFC" title="bacterio-algal MFC">bacterio-algal MFC</a>, <a href="https://publications.waset.org/abstracts/search?q=three%20chamber" title=" three chamber"> three chamber</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20fuel%20cell" title=" microbial fuel cell"> microbial fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20treatment%20and%20desalination" title=" wastewater treatment and desalination"> wastewater treatment and desalination</a> </p> <a href="https://publications.waset.org/abstracts/14135/bacterio-algal-microbial-fuel-cells-for-sustainable-power-production-wastewater-treatment-and-desalination" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14135.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8925</span> Microbial Fuel Cells and Their Applications in Electricity Generating and Wastewater Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shima%20Fasahat">Shima Fasahat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research is an experimental research which was done about microbial fuel cells in order to study them for electricity generating and wastewater treatment. These days, it is very important to find new, clean and sustainable ways for energy supplying. Because of this reason there are many researchers around the world who are studying about new and sustainable energies. There are different ways to produce these kind of energies like: solar cells, wind turbines, geothermal energy, fuel cells and many other ways. Fuel cells have different types one of these types is microbial fuel cell. In this research, an MFC was built in order to study how it can be used for electricity generating and wastewater treatment. The microbial fuel cell which was used in this research is a reactor that has two tanks with a catalyst solution. The chemical reaction in microbial fuel cells is a redox reaction. The microbial fuel cell in this research is a two chamber MFC. Anode chamber is an anaerobic one (ABR reactor) and the other chamber is a cathode chamber. Anode chamber consists of stabilized sludge which is the source of microorganisms that do redox reaction. The main microorganisms here are: Propionibacterium and Clostridium. The electrodes of anode chamber are graphite pages. Cathode chamber consists of graphite page electrodes and catalysts like: O<sub>2</sub>, KMnO<sub>4</sub> and C<sub>6</sub>N<sub>6</sub>FeK<sub>4</sub>. The membrane which separates the chambers is Nafion117. The reason of choosing this membrane is explained in the complete paper. The main goal of this research is to generate electricity and treating wastewater. It was found that when you use electron receptor compounds like: O<sub>2, </sub>MnO<sub>4</sub>, C<sub>6</sub>N<sub>6</sub>FeK<sub>4</sub> the velocity of electron receiving speeds up and in a less time more current will be achieved. It was found that the best compounds for this purpose are compounds which have iron in their chemical formula. It is also important to pay attention to the amount of nutrients which enters to bacteria chamber. By adding extra nutrients in some cases the result will be reverse. &nbsp;By using ABR the amount of chemical oxidation demand reduces per day till it arrives to a stable amount. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20baffled%20reactor" title="anaerobic baffled reactor">anaerobic baffled reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=bioenergy" title=" bioenergy"> bioenergy</a>, <a href="https://publications.waset.org/abstracts/search?q=electrode" title=" electrode"> electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficient" title=" energy efficient"> energy efficient</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20fuel%20cell" title=" microbial fuel cell"> microbial fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20chemicals" title=" renewable chemicals"> renewable chemicals</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable" title=" sustainable"> sustainable</a> </p> <a href="https://publications.waset.org/abstracts/56843/microbial-fuel-cells-and-their-applications-in-electricity-generating-and-wastewater-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56843.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8924</span> Microbial Electrochemical Remediation System: Integrating Wastewater Treatment with Simultaneous Power Generation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monika%20Sogani">Monika Sogani</a>, <a href="https://publications.waset.org/abstracts/search?q=Zainab%20Syed"> Zainab Syed</a>, <a href="https://publications.waset.org/abstracts/search?q=Adrian%20C.%20Fisher"> Adrian C. Fisher</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pollution of estrogenic compounds has caught the attention of researchers as the slight increase of estrogens in the water bodies has a significant impact on the aquatic system. They belong to a class of endocrine disrupting compounds (EDCs) and are able to mimic hormones or interfere with the action of endogenous hormones. The microbial electrochemical remediation system (MERS) is employed here for exploiting an electrophototrophic bacterium for evaluating the capacity of biodegradation of ethinylestradiol hormone (EE2) under anaerobic conditions with power generation. MERS using electro-phototrophic bacterium offers a tailored solution of wastewater treatment in a developing country like India which has a huge solar potential. It is a clean energy generating technology as they require only sunlight, water, nutrients, and carbon dioxide to operate. Its main feature that makes it superior over other technologies is that the main fuel for this MERS is sunlight which is indefinitely present. When grown in light with organic compounds, these photosynthetic bacteria generate ATP by cyclic photophosphorylation and use carbon compounds to make cell biomass (photoheterotrophic growth). These cells showed EE2 degradation and were able to generate hydrogen as part of the process of nitrogen fixation. The two designs of MERS were studied, and a maximum of 88.45% decrease in EE2 was seen in a total period of 14 days in the better design. This research provides a better insight into microbial electricity generation and self-sustaining wastewater treatment facilities. Such new models of waste treatment aiming waste to energy generation needs to be followed and implemented for building a resource efficient and sustainable economy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=endocrine%20disrupting%20compounds" title="endocrine disrupting compounds">endocrine disrupting compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=ethinylestradiol" title=" ethinylestradiol"> ethinylestradiol</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20electrochemical%20remediation%20systems" title=" microbial electrochemical remediation systems"> microbial electrochemical remediation systems</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20treatment" title=" wastewater treatment"> wastewater treatment</a> </p> <a href="https://publications.waset.org/abstracts/102308/microbial-electrochemical-remediation-system-integrating-wastewater-treatment-with-simultaneous-power-generation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102308.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8923</span> The Impact of Oxytetracycline on the Aquaponic System, Biofilter, and Plants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Alhoujeiri">Hassan Alhoujeiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Angele%20Matrat"> Angele Matrat</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandra%20Beaufort"> Sandra Beaufort</a>, <a href="https://publications.waset.org/abstracts/search?q=Claire%20joaniss%20Cassan"> Claire joaniss Cassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jerome%20Silvester"> Jerome Silvester</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aquaponics is a sustainable food production technology, and its transition to industrial-scale systems has created several challenges that require further investigation in order to make it a robust process. One of the critical concerns is the potential accumulation of compounds from veterinary treatments, phytosanitary agents, fish feed, or simply from contaminated water sources. The accumulation of these substances could negatively impact fish health, microbial biofilters, and plant growth, thereby disrupting the system’s overall balance and functionality. The lack of legislation and knowledge regarding the presence of such compounds in aquaponic systems raises concerns about their potential impact on both system balance and food safety. In this study, we focused on the effects of oxytetracycline (OTC), an antibiotic commonly used in aquaculture, on both the microbial biofilter and plant growth. Although OTC is rarely applied in aquaponics today, the fish compartment may need to be isolated from the system during treatment, as it inhibits specific bacterial populations, which could affect the microbial biofilter's efficiency. However, questions remain about the aquaponic system's tolerance threshold, particularly in cases of treatment or residual OTC traces post-treatment. This study results indicated a decline in microbial biofilter activity to 20% compared to the control, potentially corresponding to treatments of 41 mg/L of OTC. Analysis of microbial populations in the biofilter, using flow cytometry and microscopy (confocal and scanning electron microscopy), revealed an increase in bacterial mortality without disrupting the microbial biofilm. Additionally, OTC exposure led to noticeable changes in plant morphology (e.g., color) and growth, though it did not fully inhibit development. However, no significant effects were observed on seed germination at the tested concentrations despite a measurable impact on subsequent plant growth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aquaponic" title="aquaponic">aquaponic</a>, <a href="https://publications.waset.org/abstracts/search?q=oxytetracycline" title=" oxytetracycline"> oxytetracycline</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrifying%20biofilter" title=" nitrifying biofilter"> nitrifying biofilter</a>, <a href="https://publications.waset.org/abstracts/search?q=plant" title=" plant"> plant</a>, <a href="https://publications.waset.org/abstracts/search?q=micropollutants" title=" micropollutants"> micropollutants</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/192632/the-impact-of-oxytetracycline-on-the-aquaponic-system-biofilter-and-plants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">21</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8922</span> Microbial Activity and Greenhouse Gas (GHG) Emissions in Recovery Process in a Grassland of China </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qiushi%20Ning">Qiushi Ning</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The nitrogen (N) is an important limiting factor of various ecosystems, and the N deposition rate is increasing unprecedentedly due to anthropogenic activities. The N deposition altered the microbial growth and activity, and microbial mediated N cycling through changing soil pH, the availability of N and carbon (C). The CO2, CH4 and N2O are important greenhouse gas which threaten the sustainability and function of the ecosystem. With the prolonged and increasing N enrichment, the soil acidification and C limitation will be aggravated, and the microbial biomass will be further declined. The soil acidification and lack of C induced by N addition are argued as two important factors regulating the microbial activity and growth, and the studies combined soil acidification with lack of C on microbial community are scarce. In order to restore the ecosystem affected by chronic N loading, we determined the responses of microbial activity and GHG emssions to lime and glucose (control, 1‰ lime, 2‰ lime, glucose, 1‰ lime×glucose and 2‰ lime×glucose) addition which was used to alleviate the soil acidification and supply C resource into soils with N addition rates 0-50 g N m–2yr–1. The results showed no significant responses of soil respiration and microbial biomass (MBC and MBN) to lime addition, however, the glucose substantially improved the soil respiration and microbial biomass (MBC and MBN); the cumulative CO2 emission and microbial biomass of lime×glucose treatments were not significantly higher than those of only glucose treatment. The glucose and lime×glucose treatments reduced the net mineralization and nitrification rate, due to inspired microbial growth via C supply incorporating more inorganic N to the biomass, and mineralization of organic N was relatively reduced. The glucose addition also increased the CH4 and N2O emissions, CH4 emissions was regulated mainly by C resource as a substrate for methanogen. However, the N2O emissions were regulated by both C resources and soil pH, the C was important energy and the increased soil pH could benefit the nitrifiers and denitrifiers which were primary producers of N2O. The soil respiration and N2O emissions increased with increasing N addition rates in all glucose treatments, as the external C resource improved microbial N utilization. Compared with alleviated soil acidification, the improved availability of C substantially increased microbial activity, therefore, the C should be the main limiting factor in long-term N loading soils. The most important, when we use the organic C fertilization to improve the production of the ecosystems, the GHG emissions and consequent warming potentials should be carefully considered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acidification%20and%20C%20limitation" title="acidification and C limitation">acidification and C limitation</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20gas%20emission" title=" greenhouse gas emission"> greenhouse gas emission</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20activity" title=" microbial activity"> microbial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=N%20deposition" title=" N deposition"> N deposition</a> </p> <a href="https://publications.waset.org/abstracts/54487/microbial-activity-and-greenhouse-gas-ghg-emissions-in-recovery-process-in-a-grassland-of-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8921</span> Effect of High Pressure Treatment on the Microbial Contamination and on Some Chemical and Physical Properties of Minced Chicken </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siddig%20H.%20Hamad">Siddig H. Hamad</a>, <a href="https://publications.waset.org/abstracts/search?q=Salah%20M.%20Al-Eid"> Salah M. Al-Eid</a>, <a href="https://publications.waset.org/abstracts/search?q=Fahad%20M.%20Al-Jassas"> Fahad M. Al-Jassas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Composite samples of minced chicken were vacuum-packaged and pressure treated at 300, 400, 450 and 500 MPa in a Stansted 'FOOD-LAB' model S-FL-850-9-W high hydrostatic pressure research apparatus (Stansted Fluid Power Ltd., Stansted, UK). Treated and untreated samples were then stored at 3°C, and microbial content as well as some chemical and physical properties monitored. The microbial load of the untreated samples reached the spoilage level of 107 cfu/g in about one week, resulting in bad smell and dark brown color. The pressure treatments reduced total bacterial counts by about 1.8 to 3.2 log10 cycles and reduced counts of Enterobacteriaceae and Salmonella to non-detectable levels. The color of meat was slightly affected, but pH, moisture content and the oxidation products of lipids were not substantially changed. The treatment killed mainly gram negative bacteria but also caused sub-lethal injury to part of the population resulting in prolonged lag phase. The population not killed by the 350 to 450 MPa treatments grew relatively slowly during storage, and its loads reached spoilage level in 4 to 6 weeks, while the load of the population treated at 500 MPa did not reach this level till the end of a storage period of 9 weeks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chicken" title="chicken">chicken</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20storage" title=" cold storage"> cold storage</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20spoilage" title=" microbial spoilage"> microbial spoilage</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20hydrostatic%20pressure" title=" high hydrostatic pressure "> high hydrostatic pressure </a> </p> <a href="https://publications.waset.org/abstracts/53314/effect-of-high-pressure-treatment-on-the-microbial-contamination-and-on-some-chemical-and-physical-properties-of-minced-chicken" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53314.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8920</span> Pre-Treatment of Anodic Inoculum with Nitroethane to Improve Performance of a Microbial Fuel Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20P.P.">Rajesh P.P.</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Tabish%20Noori"> Md. Tabish Noori</a>, <a href="https://publications.waset.org/abstracts/search?q=Makarand%20M.%20Ghangrekar"> Makarand M. Ghangrekar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Methanogenic substrate loss is reported to be a major bottleneck in microbial fuel cell which significantly reduces the power production capacity and coulombic efficiency (CE) of microbial fuel cell (MFC). Nitroethane is found to be a potent inhibitor of hydrogenotrophic methanogens in rumen fermentation process. Influence of nitroethane pre-treated sewage sludge inoculum on suppressing the methanogenic activity and enhancing the electrogenesis in MFC was evaluated. MFC inoculated with nitroethane pre-treated anodic inoculum demonstrated a maximum operating voltage of 541 mV, with coulombic efficiency and sustainable volumetric power density of 39.85 % and 14.63 W/m3 respectively. Linear sweep voltammetry indicated a higher electron discharge on the anode surface due to enhancement of electrogenic activity while suppressing methanogenic activity. A 63 % reduction in specific methanogenic activity was observed in anaerobic sludge pre-treated with nitroethane; emphasizing significance of this pretreatment for suppressing methanogenesis and its utility for enhancing electricity generation in MFC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coulombic%20efficiency" title="coulombic efficiency">coulombic efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=methanogenesis%20inhibition" title=" methanogenesis inhibition"> methanogenesis inhibition</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20fuel%20cell" title=" microbial fuel cell"> microbial fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=nitroethane" title=" nitroethane"> nitroethane</a> </p> <a href="https://publications.waset.org/abstracts/70270/pre-treatment-of-anodic-inoculum-with-nitroethane-to-improve-performance-of-a-microbial-fuel-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70270.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8919</span> Metagenomics Analysis on Microbial Communities of Sewage Sludge from Nyeri-Kangemi Wastewater Treatment Plant, Nyeri County-Kenya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Allan%20Kiptanui%20Kimisto">Allan Kiptanui Kimisto</a>, <a href="https://publications.waset.org/abstracts/search?q=Geoffrey%20Odhiambo%20Ongondo"> Geoffrey Odhiambo Ongondo</a>, <a href="https://publications.waset.org/abstracts/search?q=Anastasia%20Wairimu%20Muia"> Anastasia Wairimu Muia</a>, <a href="https://publications.waset.org/abstracts/search?q=Cyrus%20Ndungu%20Kimani"> Cyrus Ndungu Kimani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The major challenge to proper sewage sludge treatment processes is the poor understanding of sludge microbiome diversities. This study applied the whole-genome. shotgun metagenomics technique to profile the microbial composition of sewage sludge in two active digestion lagoons at the Nyeri-Kangemi Wastewater Treatment Plant in Nyeri County, Kenya. Total microbial community DNA was extracted from samples using the available ZymoBIOMICS™ DNA Miniprep Kit and sequenced using Shotgun metagenomics. Samples were analyzed using MG-RAST software (Project ID: mgp100988), which allowed for comparing taxonomic diversity before β-diversities studies for Bacteria, Archaea and Eukaryotes. The study identified 57 phyla, 145 classes, 301 orders, 506 families, 963 genera, and 1980 species. Bacteria dominated the microbes and comprised 28 species, 51 classes, 110 orders, 243 families, 597 genera, and 1518 species. The Bacteroides(6.77%) were dominant, followed by Acinetobacter(1.44%) belonging to the Gammaproteobacteria and Acidororax (1.36%), Bacillus (1.24%) and Clostridium (1.02%) belonging to Betaproteobacteria. Archaea recorded 5 phyla, 13 classes, 19 orders, 29 families, 60 genera,and87 species, with the dominant genera being Methanospirillum (16.01%), methanosarcina (15.70%), and Methanoregula(14.80%) and Methanosaeta (8.74%), Methanosphaerula(5.48%) and Methanobrevibacter(5.03%) being the subdominant group. The eukaryotes were the least in abundance and comprised 24 phyla, 81 classes, 301 orders, 506 families, 963 genera, and 980 species. Arabidopsis (4.91%) and Caenorhabditis (4.81%) dominated the eukaryotes, while Dityostelium (3.63%) and Drosophila(2.08%) were the subdominant genera. All these microbes play distinct roles in the anaerobic treatment process of sewage sludge. The local sludge microbial composition and abundance variations may be due to age difference differences between the two digestion lagoons in operation at the plant and the different degradation rales played by the taxa. The information presented in this study can help in the genetic manipulation or formulation of optimal microbial ratios to improve their effectiveness in sewage sludge treatment. This study recommends further research on how the different taxa respond to environmental changes over time and space. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shotgun%20metagenomics" title="shotgun metagenomics">shotgun metagenomics</a>, <a href="https://publications.waset.org/abstracts/search?q=sludge" title=" sludge"> sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteria" title=" bacteria"> bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=archaea" title=" archaea"> archaea</a>, <a href="https://publications.waset.org/abstracts/search?q=eukaryotes" title=" eukaryotes"> eukaryotes</a> </p> <a href="https://publications.waset.org/abstracts/157198/metagenomics-analysis-on-microbial-communities-of-sewage-sludge-from-nyeri-kangemi-wastewater-treatment-plant-nyeri-county-kenya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157198.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8918</span> Constructed Wetlands: A Sustainable Approach for Waste Water Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Sehar">S. Sehar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Khan"> S. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Ali"> N. Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Ahmed"> S. Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the last decade, the hunt for cost-effective, eco-friendly and energy sustainable technologies for waste water treatment are gaining much attention due to emerging water crisis and rapidly depleting existing water reservoirs all over the world. In this scenario, constructed wetland being a “green technology” could be a reliable mean for waste water treatment especially in small communities due to cost-effectiveness, ease in management, less energy consumption and sludge production. Therefore, a low cost, lab-scale sub-surface flow hybrid constructed wetland (SS-HCW) was established for domestic waste water treatment.It was observed that not only the presence but also choice of suitable vegetation along with hydraulic retention time (HRT) are key intervening ingredients which directly influence pollutant removals in constructed wetlands. Another important aspect of vegetation is that it may facilitate microbial attachment in rhizosphere, thus promote biofilm formation via microbial interactions. The major factors that influence initial aggregation and subsequent biofilm formation i.e. divalent cations (Ca2+) and extra cellular DNA (eDNA) were also studied in detail. The presence of Ca2+ in constructed wetland demonstrate superior performances in terms of effluent quality, i.e BOD5, COD, TDS, TSS, and PO4- than in absence of Ca2+. Finally, light and scanning electron microscopies coupled with EDS were carried out to get more insights into the mechanics of biofilm formation with or without Ca addition. Therefore, the same strategy can be implemented in other waste water treatment technologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20constructed%20wetland" title="hybrid constructed wetland">hybrid constructed wetland</a>, <a href="https://publications.waset.org/abstracts/search?q=biofilm%20formation" title=" biofilm formation"> biofilm formation</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20water%20treatment" title=" waste water treatment"> waste water treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20water" title=" waste water"> waste water</a> </p> <a href="https://publications.waset.org/abstracts/17083/constructed-wetlands-a-sustainable-approach-for-waste-water-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17083.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8917</span> Characterization of the Microbial Induced Carbonate Precipitation Technique as a Biological Cementing Agent for Sand Deposits </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sameh%20Abu%20El-Soud">Sameh Abu El-Soud</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Zayed"> Zahra Zayed</a>, <a href="https://publications.waset.org/abstracts/search?q=Safwan%20Khedr"> Safwan Khedr</a>, <a href="https://publications.waset.org/abstracts/search?q=Adel%20M.%20Belal"> Adel M. Belal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The population increase in Egypt is urging for horizontal land development which became a demand to allow the benefit of different natural resources and expand from the narrow Nile valley. However, this development is facing challenges preventing land development and agriculture development. Desertification and moving sand dunes in the west sector of Egypt are considered the major obstacle that is blocking the ideal land use and development. In the proposed research, the sandy soil is treated biologically using <em>Bacillus pasteurii</em> bacteria as these bacteria have the ability to bond the sand partials to change its state of loose sand to cemented sand, which reduces the moving ability of the sand dunes. The procedure of implementing the Microbial Induced Carbonate Precipitation Technique (MICP) technique is examined, and the different factors affecting on this process such as the medium of bacteria sample preparation, the optical density (OD600), the reactant concentration, injection rates and intervals are highlighted. Based on the findings of the MICP treatment for sandy soil, conclusions and future recommendations are reached. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20stabilization" title="soil stabilization">soil stabilization</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20treatment" title=" biological treatment"> biological treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20induced%20carbonate%20precipitation%20%28MICP%29" title=" microbial induced carbonate precipitation (MICP)"> microbial induced carbonate precipitation (MICP)</a>, <a href="https://publications.waset.org/abstracts/search?q=sand%20cementation" title=" sand cementation"> sand cementation</a> </p> <a href="https://publications.waset.org/abstracts/71459/characterization-of-the-microbial-induced-carbonate-precipitation-technique-as-a-biological-cementing-agent-for-sand-deposits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71459.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">243</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8916</span> Effects of Ultraviolet Treatment on Microbiological Load and Phenolic Content of Vegetable Juice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kubra%20Dogan">Kubra Dogan</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatih%20Tornuk"> Fatih Tornuk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to increasing consumer demand for the high-quality food products and awareness regarding the health benefits of different nutrients in food minimal processing becomes more popular in modern food preservation. To date, heat treatment is often used for inactivation of spoilage microorganisms in foods. However, it may cause significant changes in the quality and nutritional properties of food. In order to overcome the detrimental effects of heat treatment, several alternatives of non-thermal microbial inactivation processes have been investigated. Ultraviolet (UV) inactivation is a promising and feasible method for better quality and longer shelf life as an alternative to heat treatment, which aims to inhibit spoilage and pathogenic microorganisms and to inactivate the enzymes in vegetable juice production. UV-C is a sub-class of UV treatment which shows the highest microcidal effect between 250-270 nm. The wavelength of 254 nm is used for the surface disinfection of certain liquid food products such as vegetable juice. Effects of UV-C treatment on microbiological load and quality parameter of vegetable juice which is a mix of celery, carrot, lemon and orange was investigated. Our results showed that storing of UV-C applied vegetable juice for three months, reduced the count of TMAB by 3.5 log cfu/g and yeast-mold by 2 log cfu/g compared to control sample. Total phenolic content was found to be 514.3 ± 0.6 mg gallic acid equivalent/L, and there wasn’t a significant difference compared to control. The present work suggests that UV-C treatment is an alternative method for disinfection of vegetable juice since it enables adequate microbial inactivation, longer shelf life and has minimal effect on degradation of quality parameters of vegetable juice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20treatment" title="heat treatment">heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20content" title=" phenolic content"> phenolic content</a>, <a href="https://publications.waset.org/abstracts/search?q=shelf%20life" title=" shelf life"> shelf life</a>, <a href="https://publications.waset.org/abstracts/search?q=ultraviolet%20%28UV-C%29" title=" ultraviolet (UV-C)"> ultraviolet (UV-C)</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetable%20juice" title=" vegetable juice"> vegetable juice</a> </p> <a href="https://publications.waset.org/abstracts/86827/effects-of-ultraviolet-treatment-on-microbiological-load-and-phenolic-content-of-vegetable-juice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8915</span> Rumen Metabolites and Microbial Load in Fattening Yankasa Rams Fed Urea and Lime Treated Groundnut (Arachis Hypogeae) Shell in a Complete Diet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bello%20Muhammad%20Dogon%20Kade">Bello Muhammad Dogon Kade</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study was conducted to determine the effect of a treated groundnut (Arachis hypogaea) shell in a complete diet on blood metabolites and microbial load in fattening Yankasa rams. The study was conducted at the Teaching and Research Farm (Small Ruminants Unit of Animal Science Department, Faculty of Agriculture, Ahmadu Bello University, Zaria. Each kilogram of groundnut shell was treated with 5% urea and 5% lime for treatments 2 (UTGNS) and 3 (LTGNS), respectively. For treatment 4 (ULTGNS), 1 kg of groundnut shell was treated with 2.5% urea and 2.5% lime, but the shell in treatment 1 was not treated (UNTGNS). Sixteen Yankasa rams were used and randomly assigned to the four treatment diets with four animals per treatment in a completely randomized design (CRD). The diet was formulated to have 14% crude protein (CP) content. Rumen fluid was collected from each ram at the end of the experiment at 0 and 4 hours post-feeding. The samples were then put in a 30 ml bottle and acidified with 5 drops of concentrated sulphuric (0.1N H₂SO4) acid to trap ammonia. The results of the blood metabolites showed that the mean values of NH₃-N differed significantly (P<0.05) among the treatment groups, with rams in the ULTGNS diet having the highest significant value (31.96 mg/L). TVFs were significantly (P<0.05) higher in rams fed UNTGNS diet and higher in total nitrogen; the effect of sampling periods revealed that NH3N, TVFs and TP were significantly (P<0.05) higher in rumen fluid collected 4hrs post feeding among the rams across the treatment groups, but rumen fluid pH was significantly (p<0.05) higher in 0-hour post-feeding in all the rams in the treatment diets. In the treatment and sampling period’s interaction effects, animals on the ULTGNS diet had the highest mean values of NH3N in both 0 and 4 hours post-feeding and were significantly (P<0.5) higher compared to rams on the other treatment diets. Rams on the UTGNS diet had the highest bacteria load of 4.96X105/ml, which was significantly (P<0.05) higher than a microbial load of animals fed UNTGNS, LTGNS and ULTGNS diets. However, protozoa counts were significantly (P<0.05) higher in rams fed the UTGNS diet than those followed by the ULTGNS diet. The results showed that there was no significant difference (P>0.05) in the bacteria count of the animals at both 0 and 4 hours post-feeding. But rumen fungi and protozoa load at 0 hours were significantly (P<0.05) higher than at 4 hours post-feeding. The use of untreated ground groundnut shells in the diet of fattening Yankasa ram is therefore recommended. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blood%20metabolites" title="blood metabolites">blood metabolites</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20load" title=" microbial load"> microbial load</a>, <a href="https://publications.waset.org/abstracts/search?q=volatile%20fatty%20acid" title=" volatile fatty acid"> volatile fatty acid</a>, <a href="https://publications.waset.org/abstracts/search?q=ammonia" title=" ammonia"> ammonia</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20protein" title=" total protein"> total protein</a> </p> <a href="https://publications.waset.org/abstracts/184405/rumen-metabolites-and-microbial-load-in-fattening-yankasa-rams-fed-urea-and-lime-treated-groundnut-arachis-hypogeae-shell-in-a-complete-diet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184405.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8914</span> The Ability of Consortium Wastewater Protozoan and Bacterial Species to Remove Chemical Oxygen Demand in the Presence of Nanomaterials under Varying pH Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anza-Vhudziki%20Mboyi">Anza-Vhudziki Mboyi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilunga%20Kamika"> Ilunga Kamika</a>, <a href="https://publications.waset.org/abstracts/search?q=Maggy%20Momba"> Maggy Momba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to ascertain the survival limit and capability of commonly found wastewater protozoan (Aspidisca sp, Trachelophyllum sp, and Peranema sp) and bacterial (Bacillus licheniformis, Brevibacillus laterosporus, and Pseudomonas putida) species to remove COD while exposed to commercial nanomaterials under varying pH conditions. The experimental study was carried out in modified mixed liquor media adjusted to various pH levels (pH 2, 7 and 10), and a comparative study was performed to determine the difference between the cytotoxicity effects of commercial zinc oxide (nZnO) and silver (nAg) nanomaterials (NMs) on the target wastewater microbial communities using standard methods. The selected microbial communities were exposed to lethal concentrations ranging from 0.015 g/L to 40 g/L for nZnO and from 0.015 g/L to 2 g/L for nAg for a period of 5 days of incubation at 30°C (100 r/min). Compared with the absence of NMs in wastewater mixed liquor, the relevant environmental concentration ranging between 10 µg/L and 100 µg/L, for both nZnO and nAg caused no adverse effects, but the presence of 20 g of nZnO/L and 0.65 g of nAg/L significantly inhibited microbial growth. Statistical evidence showed that nAg was significantly more toxic compared to nZnO, but there was an insignificant difference in toxicity between microbial communities and pH variations. A significant decrease in the removal of COD by microbial populations was observed in the presence of NMs with a moderate correlation of r = 0.3 to r = 0.7 at all pH levels. It was evident that there was a physical interaction between commercial NMs and target wastewater microbial communities; although not quantitatively assessed, cell morphology and cell death were observed. Such phenomena suggest the high resilience of the microbial community, but it is the accumulation of NMs that will have adverse effects on the performance in terms of COD removal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacteria" title="bacteria">bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20treatment" title=" biological treatment"> biological treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20oxygen%20demand%20%28COD%29%20and%20nanomaterials" title=" chemical oxygen demand (COD) and nanomaterials"> chemical oxygen demand (COD) and nanomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=consortium" title=" consortium"> consortium</a>, <a href="https://publications.waset.org/abstracts/search?q=pH" title=" pH"> pH</a>, <a href="https://publications.waset.org/abstracts/search?q=protozoan" title=" protozoan"> protozoan</a> </p> <a href="https://publications.waset.org/abstracts/72175/the-ability-of-consortium-wastewater-protozoan-and-bacterial-species-to-remove-chemical-oxygen-demand-in-the-presence-of-nanomaterials-under-varying-ph-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72175.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8913</span> Microbial Contamination of Haemolymph of Honeybee (Apis mellifera intermissa) Parasitized by Varroa Destructor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Messaouda%20Belaid">Messaouda Belaid</a>, <a href="https://publications.waset.org/abstracts/search?q=Salima%20Kebbouche-Gana"> Salima Kebbouche-Gana </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The negative effect of the Varroa bee colony is very important. They cause morphological and physiological changes, causing a decrease in performance of individuals and long-term death of the colony. Indirectly, they weaken the bees become much more sensitive to the different pathogenic organisms naturally present in the colony. This work aims to research secondary infections of microbial origin occurred in the worker bee nurse due to parasitism by Varroa destructor. The feeding behaviour of Varroa may causes damaging host integument. The results show that the microbial contamination enable to be transmitted into honeybee heamocoel are Bacillus sp, Pseudomonas sp, Enterobacter, Aspergillus. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=honeybee" title="honeybee">honeybee</a>, <a href="https://publications.waset.org/abstracts/search?q=Apis%20mellifera%20intermissa" title=" Apis mellifera intermissa"> Apis mellifera intermissa</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20contamination" title=" microbial contamination"> microbial contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=Varroa%20destructor" title=" Varroa destructor "> Varroa destructor </a> </p> <a href="https://publications.waset.org/abstracts/13183/microbial-contamination-of-haemolymph-of-honeybee-apis-mellifera-intermissa-parasitized-by-varroa-destructor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8912</span> Microbial Bioagent Triggered Biochemical Response in Tea (Camellia sinensis) Inducing Resistance against Grey Blight Disease and Yield Enhancement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Popy%20Bora">Popy Bora</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20C.%20Bora"> L. C. Bora</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bhattacharya"> A. Bhattacharya</a>, <a href="https://publications.waset.org/abstracts/search?q=Sehnaz%20S.%20Ahmed"> Sehnaz S. Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microbial bioagents, viz., Pseudomonas fluorescens, Bacillus subtilis, and Trichoderma viride were assessed for their ability to suppress grey blight caused by Pestalotiopsis theae, a major disease of tea crop in Assam. The expression of defense-related phytochemicals due to the application of these bioagents was also evaluated. The individual bioagents, as well as their combinations, were screened for their bioefficacy against P. theae in vitro using nutrient agar (NA) as basal medium. The treatment comprising a combination of the three bioagents, P. fluorescens, B. subtilis, and T. viride showed significantly the highest inhibition against the pathogen. Bioformulation of effective bioagent combinations was further evaluated under field condition, where significantly highest reduction of grey blight (90.30%), as well as the highest increase in the green leaf yield (10.52q/ha), was recorded due to application of the bioformulation containing the three bioagents. The application of the three bioformulation also recorded an enhanced level of caffeine (4.15%) and polyphenols (22.87%). A significant increase in the enzymatic activity of phenylalanine ammonia-lyase, peroxidase and polyphenol oxidase were recorded in the plants treated with the microbial bioformulation of the three bioagents. The present investigation indicates the role of microbial agents in suppressing disease, inducing plant defense response, as well as improving the quality of tea. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20activity" title="enzymatic activity">enzymatic activity</a>, <a href="https://publications.waset.org/abstracts/search?q=grey%20blight" title=" grey blight"> grey blight</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20bioagents" title=" microbial bioagents"> microbial bioagents</a>, <a href="https://publications.waset.org/abstracts/search?q=Pestalotiopsis%20theae" title=" Pestalotiopsis theae"> Pestalotiopsis theae</a>, <a href="https://publications.waset.org/abstracts/search?q=phytochemicals" title=" phytochemicals"> phytochemicals</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20defense" title=" plant defense"> plant defense</a>, <a href="https://publications.waset.org/abstracts/search?q=tea" title=" tea "> tea </a> </p> <a href="https://publications.waset.org/abstracts/113669/microbial-bioagent-triggered-biochemical-response-in-tea-camellia-sinensis-inducing-resistance-against-grey-blight-disease-and-yield-enhancement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113669.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8911</span> Contributions of Microbial Activities to Tomato Growth and Yield under an Organic Production System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20A.%20Babalola">O. A. Babalola</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20F%20Adekunle"> A. F Adekunle</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Oladeji"> F. Oladeji</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20T.%20Osungbade"> A. T. Osungbade</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20A.%20Akinlaja"> O. A. Akinlaja</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Optimizing microbiological activities in an organic crop production system is crucial to the realization of optimum growth and development of the crops. Field and pot experiments were conducted to assess soil microbial activities, growth and yield of tomato varieties in response to 4 rates of composted plant and animal residues. The compost rates were 0, 5, 10 and 20 t ha-1, and improved Ibadan and Ibadan local constituted the varieties. Fungi population, microbial biomass nitrogen, cellulase and proteinase activities were significantly higher (P≤ 0.05) at the rhizosphere of the local variety than that of improved variety. This led to a significantly higher number of branches, plant height, leaf area, number of fruits and less days to maturity in the local variety. Furthermore, compost-amended soil had significantly higher microbial populations, microbial biomass N, P and C, enzyme activities, soil N, P and organic carbon than control, but amendment of 20 t ha-1 gave significantly higher values than other compost rates. Consequently, growth parameters and tissue N significantly increased in all compost treatments while dry matter yield and weight of fruits were significantly higher in soil amended with 20 t ha-1. Correlation analysis showed that microbial activities at 6 weeks after transplanting (6 WAT) were more consistently and highly correlated with growth and yield parameters. It was concluded that microbial activities could be optimized to improve the yield of the two tomato varieties in an organic production system, through the application of compost, particularly at 20 t ha-1. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compost" title="compost">compost</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20activities" title=" microbial activities"> microbial activities</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20contribution" title=" microbial contribution"> microbial contribution</a>, <a href="https://publications.waset.org/abstracts/search?q=tomato%20growth%20and%20yield" title=" tomato growth and yield"> tomato growth and yield</a> </p> <a href="https://publications.waset.org/abstracts/81437/contributions-of-microbial-activities-to-tomato-growth-and-yield-under-an-organic-production-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81437.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8910</span> Microbial Inoculants to Increase the Biomass and Nutrient Uptake of Tithonia Cultivated as Hedgerow Plants to Control Erosion in Ultisols</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nurhajati%20Hakim">Nurhajati Hakim</a>, <a href="https://publications.waset.org/abstracts/search?q=Kiki%20Amalia"> Kiki Amalia</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Agustian"> A. Agustian</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Hermansah"> H. Hermansah</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Yulnafatmawita"> Y. Yulnafatmawita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ultisols require greater amounts of fertilizer application compared to other soils and susceptible to erosion. Unfortunately, the price of synthetic fertilizers has increased over time during the years, making them unaffordable for most Indonesian farmers. While terrace technique to control erosion very costly.Over the last century, efforts to reduce reliance on synthetic agro-chemicals fertilizers and erosion control have recently focused on Tithonia diversifolia as a fertilizer alternative, and as hedgerow plant to control erosion. Generally known by its common name of tree marigold or Mexican sunflower, this plant has attracted considerable attention for its prolific production of green biomass, rich in nitrogen, phosphorous and potassium (NPK). In pot experiments has founded some microbial such as Mycorrhizal, Azotobacter, Azospirillum, phosphate solubilizing bacterial (PSB) and fungi (PSF) are expected to play an important role in biomass production and high nutrient uptake of this plant. This issue of importance was pursued further in the following investigation in field condition. The aim of this study was to determine the type of microbial combination suitable for Tithonia cultivation as hedgerow plants in Ultisols which have higher biomass production and nutrient content, and decline soil erosion. The field experiment was conducted with 6 treatments in a randomized block design (RBD) using 3 replications. The treatments were: Tithonia rhizosphere without microbial inoculated (A); Inokulanted by Mycorrhizal + Azotobacter + Azospirillium (B); Mycorrhizal + PSF (C); Mycorrhizal + PSB(D); Mycorrhizal + PSB + PSF(E);and without hedgerow Tithonia (F).The microbial substrates were inoculated into the Tithonia rhizosphere in the nursery. The young Tithonia plants were then planted as hedgerow on Ultisols in the experimental field for 8 months, and pruned once every 2 months. Soil erosion were collected every rainy time. The differences between treatments were statistically significant by HSD test at the 95% level of probability. The result showed that treatment C (mycorrhizal + PSB) was the most effective, and followed by treatment D (mycorrhizal + PSF) in producing higher Tithonia biomass about 8 t dry matter 2000 m-2 ha-1 y-1 and declined soil erosion 71-75%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hedgerow%20tithonia" title="hedgerow tithonia">hedgerow tithonia</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20inoculants" title=" microbial inoculants"> microbial inoculants</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20fertilizer" title=" organic fertilizer"> organic fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20erosion%20control" title=" soil erosion control"> soil erosion control</a> </p> <a href="https://publications.waset.org/abstracts/24912/microbial-inoculants-to-increase-the-biomass-and-nutrient-uptake-of-tithonia-cultivated-as-hedgerow-plants-to-control-erosion-in-ultisols" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24912.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8909</span> The Effects of Organic or Inorganic Zinc and Microbial Phytase, Alone or in Combination, on the Performance, Biochemical Parameters and Nutrient Utilization of Broilers Fed a Diet Low in Available Phosphorus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Midilli">Mustafa Midilli</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Salman"> Mustafa Salman</a>, <a href="https://publications.waset.org/abstracts/search?q=Omer%20Hakan%20Muglali"> Omer Hakan Muglali</a>, <a href="https://publications.waset.org/abstracts/search?q=T%C3%BClay%20%C3%96gretmen"> Tülay Ögretmen</a>, <a href="https://publications.waset.org/abstracts/search?q=Sena%20Cenesiz"> Sena Cenesiz</a>, <a href="https://publications.waset.org/abstracts/search?q=Neslihan%20Ormanci"> Neslihan Ormanci</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study examined the effects of zinc (Zn) from different sources and microbial phytase on the broiler performance, biochemical parameters and digestibility of nutrients when they were added to broiler diets containing low available phosphorus. A total of 875, 1-day-old male broilers of the Ross 308 strain were randomly separated into two control groups (positive and negative) and five treatment groups each containing 125 birds; each group was divided into 5 replicates of 25 birds. The positive control (PC) group was fed a diet containing adequate concentration (0.45%) of available phosphorus due to mineral premix (except zinc) and feeds. The negative control (NC) group was fed a basal diet including low concentration (0.30%) of available phosphorus due to mineral premix (except zinc) and feeds. The basal diet was supplemented with 0.30% phosphorus and 500 FTU phytase (PH); 0.30% phosphorus and organic zinc (OZ; 75mg/kg of Zn from Zn-proteinate); 0.30% phosphorus and inorganic zinc (IZ; 75 mg/kg of Zn from ZnSO4); 0.30% phosphorus, organic zinc and 500 FTU phytase (OZ + PH); and 0.30% phosphorus, inorganic zinc and 500 FTU phytase (IZ + PH) in the treatment groups 1, 2, 3, 4 and 5, respectively. The lowest value for mean body weight was in the negative control group on a diet containing low available phosphorus. The use of supplementation with organic and inorganic zinc alone or in combination with microbial phytase significantly (P<0.05) increased the digestibility of Zn in the male broilers. Supplementation of those diets with OZ + PH or IZ + PH was very effective for increasing the body weight, body weight gain and the feed conversion ratio. In conclusion, the effects on broilers of diets with low phosphorus levels may be overcome by the addition of inorganic or organic zinc compounds in combination with microbial phytase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=broiler" title="broiler">broiler</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=phytase" title=" phytase"> phytase</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphorus" title=" phosphorus"> phosphorus</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc" title=" zinc"> zinc</a> </p> <a href="https://publications.waset.org/abstracts/6134/the-effects-of-organic-or-inorganic-zinc-and-microbial-phytase-alone-or-in-combination-on-the-performance-biochemical-parameters-and-nutrient-utilization-of-broilers-fed-a-diet-low-in-available-phosphorus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6134.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8908</span> Impact of Environmental Stressors on Microbial Community Dynamics and Ecosystem Functioning: Implications for Bioremediation and Restoration Strategies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nazanin%20Nikanmajd">Nazanin Nikanmajd</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microorganisms are essential for influencing environmental processes, such as nutrient cycling, pollutant breakdown, and ecosystem well-being. Recent developments in high-throughput sequencing technologies and metagenomic methods have given us fresh understandings about the range and capabilities of microorganisms in different settings. This research examines how environmental stressors like climate change, pollution, and habitat degradation affect the composition and roles of microbial communities in soil and water ecosystems. We show that human-caused disruptions change the makeup of microbial communities, causing changes in important metabolic pathways for biogeochemical processes. More precisely, we pinpoint important microbial groups that show resistance or susceptibility to certain stress factors, emphasizing their possible uses in bioremediation and ecosystem rehabilitation. The results highlight the importance of adopting a holistic approach to comprehend microbial changes in evolving environments, impacting sustainable environmental conservation and management strategies. This research helps develop new solutions to reduce the impacts of environmental degradation on microbial ecosystem services by understanding the intricate relationships between microorganisms and their surroundings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environmental%20microbiology" title="environmental microbiology">environmental microbiology</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20communities" title=" microbial communities"> microbial communities</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title=" bioremediation"> bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=metagenomics" title=" metagenomics"> metagenomics</a>, <a href="https://publications.waset.org/abstracts/search?q=ecosystem%20services" title=" ecosystem services"> ecosystem services</a>, <a href="https://publications.waset.org/abstracts/search?q=ecosystem%20restoration" title=" ecosystem restoration"> ecosystem restoration</a> </p> <a href="https://publications.waset.org/abstracts/195037/impact-of-environmental-stressors-on-microbial-community-dynamics-and-ecosystem-functioning-implications-for-bioremediation-and-restoration-strategies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/195037.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">8</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microbial%20treatment&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microbial%20treatment&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microbial%20treatment&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microbial%20treatment&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microbial%20treatment&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microbial%20treatment&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microbial%20treatment&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microbial%20treatment&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microbial%20treatment&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microbial%20treatment&amp;page=297">297</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microbial%20treatment&amp;page=298">298</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microbial%20treatment&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10