CINXE.COM
Search results for: palm oil mill effluent
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: palm oil mill effluent</title> <meta name="description" content="Search results for: palm oil mill effluent"> <meta name="keywords" content="palm oil mill effluent"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="palm oil mill effluent" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="palm oil mill effluent"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 859</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: palm oil mill effluent</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">859</span> Decolorization and Phenol Removal of Palm Oil Mill Effluent by Termite-Associated Yeast</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Chaijak">P. Chaijak</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Lertworapreecha"> M. Lertworapreecha</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Sukkasem"> C. Sukkasem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A huge of dark color palm oil mill effluent (POME) cannot pass the discharge standard. It has been identified as the major contributor to the pollution load into ground water. Here, lignin-degrading yeast isolated from a termite nest was tested to treat the POME. Its lignin-degrading and decolorizing ability was determined. The result illustrated that <em>Galactomyces </em>sp. was successfully grown in POME. The decolorizing test demonstrated that 40% of <em>Galactomyces </em>sp. could reduce the color of POME (50% v/v) about 74-75% in 5 days without nutrient supplement. The result suggested that <em>G. reessii </em>has a potential to apply for decolorizing the dark wastewater like POME and other industrial wastewaters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=decolorization" title="decolorization">decolorization</a>, <a href="https://publications.waset.org/abstracts/search?q=palm%20oil%20mill%20effluent" title=" palm oil mill effluent"> palm oil mill effluent</a>, <a href="https://publications.waset.org/abstracts/search?q=termite" title=" termite"> termite</a>, <a href="https://publications.waset.org/abstracts/search?q=yeast" title=" yeast"> yeast</a> </p> <a href="https://publications.waset.org/abstracts/64437/decolorization-and-phenol-removal-of-palm-oil-mill-effluent-by-termite-associated-yeast" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64437.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">858</span> The Effect of Immobilization Conditions on Hydrogen Production from Palm Oil Mill Effluent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20W.%20Zularisam">A. W. Zularisam</a>, <a href="https://publications.waset.org/abstracts/search?q=Lakhveer%20Singh"> Lakhveer Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mimi%20Sakinah%20Abdul%20Munaim"> Mimi Sakinah Abdul Munaim </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the optimization of hydrogen production using polyethylene glycol (PEG) immobilized sludge was investigated in batch tests. Palm oil mill effluent (POME) is used as a substrate that can act as a carbon source. Experiment focus on the effect of some important affecting factors on fermentative hydrogen production. Results showed that immobilized sludge demonstrated the maximum hydrogen production rate of 340 mL/L-POME/h under follow optimal condition: amount of biomass 10 mg VSS/ g bead, PEG concentration 10%, and cell age 24 h or 40 h. More importantly, immobilized sludge not only enhanced hydrogen production but can also tolerate the harsh environment and produce hydrogen at the wide ranges of pH. The present results indicate the potential of PEG-immobilized sludge for large-scale operations as well; these factors play an important role in stable and continuous hydrogen production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioydrogen" title="bioydrogen">bioydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=immobilization" title=" immobilization"> immobilization</a>, <a href="https://publications.waset.org/abstracts/search?q=polyethylene%20glycol" title=" polyethylene glycol"> polyethylene glycol</a>, <a href="https://publications.waset.org/abstracts/search?q=palm%20oil%20mill%20effluent" title=" palm oil mill effluent"> palm oil mill effluent</a>, <a href="https://publications.waset.org/abstracts/search?q=dark%20fermentation" title=" dark fermentation "> dark fermentation </a> </p> <a href="https://publications.waset.org/abstracts/39206/the-effect-of-immobilization-conditions-on-hydrogen-production-from-palm-oil-mill-effluent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39206.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">857</span> The Effectiveness of Sulfate Reducing Bacteria in Minimizing Methane and Sludge Production from Palm Oil Mill Effluent (POME)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Abdul%20Halim">K. Abdul Halim</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20L.%20Yong"> E. L. Yong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Palm oil industry is a major revenue earner in Malaysia, despite the growth of the industry is synonymous with a massive production of agro-industrial wastewater. Through the oil extraction processes, palm oil mill effluent (POME) contributes to the largest liquid wastes generated. Due to the high amount of organic compound, POME can cause inland water pollution if discharged untreated into the water course as well as affect the aquatic ecosystem. For more than 20 years, Malaysia adopted the conventional biological treatment known as lagoon system that apply biological treatment. Besides having difficulties in complying with the standard, a large build up area is needed and retention time is higher. Although anaerobic digester is more favorable, this process comes along with enormous volumes of sludge and methane gas, demanding attention from the mill operators. In order to reduce the sludge production, denitrifiers are to be removed first. Sulfate reducing bacteria has shown the capability to inhibit the growth of methanogens. This is expected to substantially reduce both the sludge and methane production in anaerobic digesters. In this paper, the effectiveness of sulfate reducing bacteria in minimizing sludge and methane will be examined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=methane%20reduction" title="methane reduction">methane reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=palm%20oil%20mill%20effluent" title=" palm oil mill effluent"> palm oil mill effluent</a>, <a href="https://publications.waset.org/abstracts/search?q=sludge%20minimization" title=" sludge minimization"> sludge minimization</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfate%20reducing%20bacteria" title=" sulfate reducing bacteria"> sulfate reducing bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfate%20reduction" title=" sulfate reduction"> sulfate reduction</a> </p> <a href="https://publications.waset.org/abstracts/21565/the-effectiveness-of-sulfate-reducing-bacteria-in-minimizing-methane-and-sludge-production-from-palm-oil-mill-effluent-pome" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21565.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">856</span> Effect of Palm Oil Mill Effluent on Microbial Composition in Soil Samples in Isiala Mbano Lga</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eze%20Catherine%20Chinwe">Eze Catherine Chinwe</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20D.%20Njoku"> J. D. Njoku </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Palm oil mill effluent is the voluminous liquid waste that comes from the sterilization and clarification sections of the oil palm milling process. The raw effluent contains 90-95% water and includes residual oil, soil particles, and suspended solids. Palm oil mill effluent is a highly polluting material and much research has been dedicated to means of alleviating its threat to the environment. Objectives: 1. To compare Physico-chemical and microbiological analysis of soil samples from POME and non-POME sites. 2. To make recommendations on how best to handle POME in the study area. Methods: Quadrant approach was adopted for sampling POME (A) and Non POME (B) locations. Qualities were determined using standard analytical procedures. Conclusions: Results of the analysis were obtained in the following range; pH (3.940 –7.435), dissolved oxygen (DO) (1.582–6.234mg/l), biological oxygen demand (BOD) (50–5463mg/l etc. For the various locations, the population of total heterotrophic bacteria (THB) ranged from 1.36x106–2.42x106 cfu/ml, the total heterotrophic fungi (THF) ranged from 1.22–3.05 x 104 cfu/ml. The frequency of occurrence revealed the microbial isolates Pseudomonas sp., Bacillus sp., Staphylococcus, as the most frequently occurring isolates. Analysis of variance showed that there were significant differences (P<0.05) in microbial populations among locations. The discharge of industrial effluents into the soil in Nigeria invariably results in the presence of high concentrations of pollutant in the soil environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=effluents" title="effluents">effluents</a>, <a href="https://publications.waset.org/abstracts/search?q=mirobial%20composition" title=" mirobial composition"> mirobial composition</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20samples" title=" soil samples"> soil samples</a>, <a href="https://publications.waset.org/abstracts/search?q=isiala%20mbano" title=" isiala mbano"> isiala mbano</a> </p> <a href="https://publications.waset.org/abstracts/24756/effect-of-palm-oil-mill-effluent-on-microbial-composition-in-soil-samples-in-isiala-mbano-lga" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24756.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">855</span> Effect of Sugar Mill Effluent on Growth, Yield and Soil Properties of Ratoon Cane in Cauvery Command Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20K.%20Madhu">G. K. Madhu</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bhaskar"> S. Bhaskar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Dinesh"> M. S. Dinesh</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Manii"> R. Manii</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20A.%20Srinivasamurthy"> C. A. Srinivasamurthy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A field experiment was conducted in the premises of M/s Sri Chamundeshwari Sugars Ltd., Bharathinagar, Mandya District Pvt. Ltd., during 2014 to study the effect of sugar mill effluent (SME) on growth, yield and soil properties of ratoon cane with eight treatments replicated thrice using RCBD design. Significantly higher growth parameters like cane height (249.77 cm) and number of tillers per clump (12.22) were recorded in treatment which received cycle of 3 irrigations with freshwater + 1 irrigation with sugar mill effluent + RDF as compared to other treatments. Significantly lower growth attributes were recorded in treatment which received irrigation with sugar mill effluent alone. Significantly higher cane yield (104. 93 t -1) was recorded in treatment which received cycle of 3 irrigations with freshwater + 1 irrigation with sugar mill effluent + RDF as compared to other treatments. Significantly lower cane yield (87.40 t ha-1) was observed in treatment which received irrigation with sugar mill effluent alone. Soil properties like pH (7.84) was higher in treatment receiving Alternate irrigation with freshwater and sugar mill effluent + RDF. But EC was significantly higher in treatment which received Cycle of1 irrigation with freshwater + 2 irrigations with sugar mill effluent + RDF as compared to other treatments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sugar%20mill%20effluent" title="sugar mill effluent">sugar mill effluent</a>, <a href="https://publications.waset.org/abstracts/search?q=sugarcane" title=" sugarcane"> sugarcane</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation" title=" irrigation"> irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=cane%20yield" title=" cane yield"> cane yield</a> </p> <a href="https://publications.waset.org/abstracts/37275/effect-of-sugar-mill-effluent-on-growth-yield-and-soil-properties-of-ratoon-cane-in-cauvery-command-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37275.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">854</span> Coagulation-Flocculation of Palm Oil Mill Effluent from Pertubuhan Peladang Negeri Johor, Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20H.%20Jagaba">A. H. Jagaba</a>, <a href="https://publications.waset.org/abstracts/search?q=Musa%20Babayo"> Musa Babayo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ab%20Aziz%20Abdul%20Latiff"> Ab Aziz Abdul Latiff</a>, <a href="https://publications.waset.org/abstracts/search?q=Sule%20Abubakar"> Sule Abubakar</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20M.%20Lawal"> I. M. Lawal</a>, <a href="https://publications.waset.org/abstracts/search?q=Isa%20Zubairu"> Isa Zubairu</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Nasara"> M. A. Nasara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wastewater containing heavy metals is of extreme importance globally because of its potential threat to both the aquatic ecosystem and the soil environment. Heavy metal is hazardous even at low concentration and thereby causing various forms of diseases. One method which has been tested and found to be effective for heavy metals removal is coagulation-flocculation. For the coagulation process of POME obtained from Pertubuhan Peladang Negeri Johor (PPNJ), Oil Palm Mill Company located in Kahang area of Kluang, Johor Darul Takzim, Malaysia, diffèrent coagulants would be used to absorb and then separate the metals from wastewater. The determination of heavy metals concentration in POME was carried out using an inductively coupled plasma (ICP) and an Atomic Absorption Spectrometer (AAS). Results of the study showed that alum coagulant was successful in effectively reducing Cu, Cd, and Mn from 0.840 mg/l, 0.00509 mg/l and 8.191 mg/l to as low as 0.107 mg/l, 0.000270 mg/l and 0.612 mg/l respectively. All were obtained at a dose of 1000 mg/l. 1000 mg/l dose of ferric chloride reduced Pb concentration from 0.0248 mg/l to 0.00151 mg/l. Chitosan was best at reducing Fe and Zn from 62.91 mg/l and 3.616 mg/l to 6.003 mg/l and 0.595 mg/l all at a dose of 400 mg/l. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=palm%20oil%20mill%20effluent" title="palm oil mill effluent">palm oil mill effluent</a>, <a href="https://publications.waset.org/abstracts/search?q=coagulation" title=" coagulation"> coagulation</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=Pertubuhan%20Peladang%20Negeri%20Johor" title=" Pertubuhan Peladang Negeri Johor"> Pertubuhan Peladang Negeri Johor</a>, <a href="https://publications.waset.org/abstracts/search?q=Malaysia" title=" Malaysia"> Malaysia</a> </p> <a href="https://publications.waset.org/abstracts/110233/coagulation-flocculation-of-palm-oil-mill-effluent-from-pertubuhan-peladang-negeri-johor-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110233.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">853</span> Enhance Biogas Production by Enzymatic Pre-Treatment from Palm Oil Mill Effluent (POME)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Tajul%20Islam">M. S. Tajul Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Zahangir%20Alam"> Md. Zahangir Alam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To enhance biogas production through anaerobic digestion, the application of various type of pre-treatment method has some limitations in terms of sustainable environmental management. Many studies on pretreatments especially chemical and physical processes are carried out to evaluate the anaerobic digestion for enhanced biogas production. Among the pretreatment methods acid and alkali pre-treatments gained the highest importance. Previous studies have showed that although acid and alkali pretreatment has significant effect on degradation of biomass, these methods have some negative impact on environment due to their hazard in nature while enzymatic pre-treatment is environmentally friendly. One of the constrains to use of enzyme in pretreatment process for biogas production is high cost which is currently focused to reduce cost through fermentation of waste-based media. As such palm oil mill effluent (POME) as an abundant resource generated during palm oil processing at mill is being used a potential fermentation media for enzyme production. This low cost of enzyme could be an alternative to biogas pretreatment process. This review is to focus direct application of enzyme as enzymatic pre-treatment on POME to enhanced production of biogas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=POME" title="POME">POME</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20pre-treatment" title=" enzymatic pre-treatment"> enzymatic pre-treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=biogas" title=" biogas"> biogas</a>, <a href="https://publications.waset.org/abstracts/search?q=lignocellulosic%20biomass" title=" lignocellulosic biomass"> lignocellulosic biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digestion" title=" anaerobic digestion"> anaerobic digestion</a> </p> <a href="https://publications.waset.org/abstracts/21350/enhance-biogas-production-by-enzymatic-pre-treatment-from-palm-oil-mill-effluent-pome" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21350.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">550</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">852</span> The Optimization of Immobilization Conditions for Biohydrogen Production from Palm Industry Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20W.%20Zularisam">A. W. Zularisam</a>, <a href="https://publications.waset.org/abstracts/search?q=Sveta%20Thakur"> Sveta Thakur</a>, <a href="https://publications.waset.org/abstracts/search?q=Lakhveer%20Singh"> Lakhveer Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mimi%20Sakinah%20Abdul%20Munaim"> Mimi Sakinah Abdul Munaim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Clostridium sp. LS2 was immobilised by entrapment in polyethylene glycol (PEG) gel beads to improve the biohydrogen production rate from palm oil mill effluent (POME). We sought to explore and optimise the hydrogen production capability of the immobilised cells by studying the conditions for cell immobilisation, including PEG concentration, cell loading and curing times, as well as the effects of temperature and K2HPO4 (500–2000 mg/L), NiCl2 (0.1–5.0 mg/L), FeCl2 (100–400 mg/L) MgSO4 (50–200 mg/L) concentrations on hydrogen production rate. The results showed that by optimising the PEG concentration (10% w/v), initial biomass (2.2 g dry weight), curing time (80 min) and temperature (37 °C), as well as the concentrations of K2HPO4 (2000 mg/L), NiCl2 (1 mg/L), FeCl2 (300 mg/L) and MgSO4 (100 mg/L), a maximum hydrogen production rate of 7.3 L/L-POME/day and a yield of 0.31 L H2/g chemical oxygen demand were obtained during continuous operation. We believe that this process may be potentially expanded for sustained and large-scale hydrogen production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title="hydrogen">hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=polyethylene%20glycol" title=" polyethylene glycol"> polyethylene glycol</a>, <a href="https://publications.waset.org/abstracts/search?q=immobilised%20cell" title=" immobilised cell"> immobilised cell</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=palm%20oil%20mill%20effluent" title=" palm oil mill effluent"> palm oil mill effluent</a> </p> <a href="https://publications.waset.org/abstracts/45960/the-optimization-of-immobilization-conditions-for-biohydrogen-production-from-palm-industry-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45960.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">851</span> Harnessing Microorganism Having Potential for Biotreatment of Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haruna%20Saidu">Haruna Saidu</a>, <a href="https://publications.waset.org/abstracts/search?q=Sulaiman%20Mohammed"> Sulaiman Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulkarim%20Ali%20Deba"> Abdulkarim Ali Deba</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaza%20Eva%20Mohamad"> Shaza Eva Mohamad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Determining the diversity of the indigenous microorganisms in Palm Oil Mill Effluent (POME) could allow their wider application for the treatment of recalcitrant agro-based wastewater discharge into the environment. Many research studies mainly determined the efficiency of microorganism or their co-cultivation with microalgae for enhanced treatment of wastewater, suggesting a limited emphasis on the application of microbial diversity. In this study, the microorganism was cultured in POME for a period of 15 days using microalgae as a source of carbon. Pyrosequencing analysis reveals a diversity of microbial community in 20% (v/v) culture than the control experiment. Most of the bacterial species identified in POME belong to the families of Bacillaceae, Paenibacillaceae, Enterococcaceae, Clostridiaceae, Peptostreptococcaceae, Caulobacteraceae, Enterobacteriaceae, Moraxellaceae, and Pseudomonadaceae. Alpha (α) diversity analysis reveals the high composition of the microbial community of 52 in both samples. Beta (β) diversity index indicated the occurrence of similar species of microorganisms in unweighted uni fra than the weighted uni fra of both samples. It is therefore suggested that bacteria found in these families could have a potential for synergistic treatment of high-strength wastewater generated from the palm oil industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diversity" title="diversity">diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=microorganism" title=" microorganism"> microorganism</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrosequencing" title=" pyrosequencing"> pyrosequencing</a>, <a href="https://publications.waset.org/abstracts/search?q=palm%20oil%20mill%20effluent" title=" palm oil mill effluent"> palm oil mill effluent</a> </p> <a href="https://publications.waset.org/abstracts/187899/harnessing-microorganism-having-potential-for-biotreatment-of-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187899.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">37</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">850</span> Study on Total Chlorine in Crude Palm Oil from Various Palm Oil Mill Operation Units</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Norliza%20Saparin">Norliza Saparin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmadilfitri%20Noor"> Ahmadilfitri Noor</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Suria%20Affandi%20Yusoff"> Mohd Suria Affandi Yusoff</a>, <a href="https://publications.waset.org/abstracts/search?q=Shawaluddin%20Tahiruddin"> Shawaluddin Tahiruddin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A palm oil mill produces crude palm oil (CPO) and has many operation units that comprises of sterilization, stripping, digestion and pressing, clarification, purification, drying and storage. This study investigated the total chlorine in palm fruit and CPO after each operating units. The total chlorine were determined by Mitsubishi NSX-2100 H, Trace Elemental Analyzer. The trace elemental analyzer is a furnace system with a micro-coulometric detector that was used for measuring and detecting total chlorine whether in organic or inorganic form. This determination is important as the chlorine is a direct precursor for 3-MCPD ester. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chlorine" title="chlorine">chlorine</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-coulometric" title=" micro-coulometric"> micro-coulometric</a>, <a href="https://publications.waset.org/abstracts/search?q=palm%20oil" title=" palm oil"> palm oil</a>, <a href="https://publications.waset.org/abstracts/search?q=3-MCPD" title=" 3-MCPD"> 3-MCPD</a> </p> <a href="https://publications.waset.org/abstracts/26844/study-on-total-chlorine-in-crude-palm-oil-from-various-palm-oil-mill-operation-units" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26844.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">674</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">849</span> Preparation and Characterization of Nanostructured FeN Electrocatalyst for Air Cathode Microbial Fuel Cell (MFC)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Maksudur%20Rahman%20Khan">Md. Maksudur Rahman Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Chee%20Wai%20Woon"> Chee Wai Woon</a>, <a href="https://publications.waset.org/abstracts/search?q=Huei%20Ruey%20Ong"> Huei Ruey Ong</a>, <a href="https://publications.waset.org/abstracts/search?q=Vignes%20Rasiah"> Vignes Rasiah</a>, <a href="https://publications.waset.org/abstracts/search?q=Chin%20Kui%20Cheng"> Chin Kui Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Kar%20Min%20Chan"> Kar Min Chan</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Baranitharan"> E. Baranitharan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work represents a preparation of non-precious iron-based electrocatalyst (FeN) for ORR in air-cathode microbial fuel cell by pyrolysis treatment. Iron oxalate which recovered from the industrial wastewater and Phenanthroline (Phen) were used as the iron and nitrogen precursors, respectively in preparing FeN catalyst. The performance of as prepared catalyst (FeN) was investigated in a single chambered air cathode MFC in which anaerobic sludge was used as inoculum and palm oil mill effluent as substrate. The maximum open circuit potential (OCV) and the highest power density recorded were 0.543 V and 4.9 mW/m2, respectively. Physical characterization of FeN was elucidated by using Brunauner Emmett Teller (BET), X-Ray Diffraction (XRD) analysis and Field Emission Scanning Electron Microscopy (FESEM) while the electrochemical properties were characterized by cyclic voltammetry (CV) analysis. The presence of biofilm on anode surface was examined using FESEM and confirmed using Infrared Spectroscopy and Thermogravimetric Analysis. The findings of this study demonstrated that FeN is electrochemically active and further modification is needed to increase the ORR catalytic activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=iron%20based%20catalyst" title="iron based catalyst">iron based catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20fuel%20cells" title=" microbial fuel cells"> microbial fuel cells</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen%20reduction%20reaction" title=" oxygen reduction reaction"> oxygen reduction reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=palm%20oil%20mill%20effluent" title=" palm oil mill effluent"> palm oil mill effluent</a> </p> <a href="https://publications.waset.org/abstracts/43519/preparation-and-characterization-of-nanostructured-fen-electrocatalyst-for-air-cathode-microbial-fuel-cell-mfc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43519.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">848</span> Application of Hydrogen Peroxide and Polialuminum Chloride to Treat Palm Oil Mill Wastewater by Electrocoagulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Nasrullah">M. Nasrullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Siti%20Norsita"> Siti Norsita</a>, <a href="https://publications.waset.org/abstracts/search?q=Lakhveer%20Singh"> Lakhveer Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20W.%20Zulrisam"> A. W. Zulrisam</a>, <a href="https://publications.waset.org/abstracts/search?q=Mimi%20Sakinah"> Mimi Sakinah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purposes of this study were to investigate the effects of polyaluminum chloride (PAC) and hydrogen peroxide on COD removal by electrocoagulation. The current density was varied between 30-80 mA cm−2, polyaluminum chloride (1-3 g L-1) as coagulant aid and 1 and 2 percent of hydrogen peroxide as an oxidizing agent. It has been shown that 86.67% of COD was removed by the iron electrode in 180 min while 81.11% of COD was removed by the aluminum electrode in 210 min which indicate that iron was more effective than aluminum. As much as 88.25% COD was removed by using 80 mA cm−2 as compared to 72.86% by using 30 mA cm−2 in 240 min. When PAC and H2O2 increased, the percent of COD removal was increasing as well. The highest removal efficiency of 95.08% was achieved by adding 2% of H2O2 in addition of 3 g L−1 PAC. The general results demonstrate that electrocoagulation is very efficient and able to achieve more than 70% COD removal in 180 min at current density 30-80 mAcm-2 depending on the concentration of H2O2 and coagulant aid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrocaogulation" title="electrocaogulation">electrocaogulation</a>, <a href="https://publications.waset.org/abstracts/search?q=palm%20oil%20mill%20effluent" title=" palm oil mill effluent"> palm oil mill effluent</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20peroxide" title=" hydrogen peroxide"> hydrogen peroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=polialuminum%20chloride" title=" polialuminum chloride"> polialuminum chloride</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20oxygen%20demand" title=" chemical oxygen demand"> chemical oxygen demand</a> </p> <a href="https://publications.waset.org/abstracts/39820/application-of-hydrogen-peroxide-and-polialuminum-chloride-to-treat-palm-oil-mill-wastewater-by-electrocoagulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39820.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">847</span> Supply Chain Management Practices in Thailand Palm Oil Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Athirat%20Intajorn">Athirat Intajorn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> According to the ASEAN free trade areas (AFTA), Thailand has applied the AFTA agreement for reducing tariffs and reflecting changes in business processes. The reflection of changes in agribusiness processes, in particular, has accumulated as production costs for producers. Palm Oil industry has become an important industry to Thailand economic. Thailand currently ranks the 3rd in the world for Crude Palm Oil CPO. Therefore, the scope of this paper presents a research framework to investigate the supply chain management practices in Thailand palm oil industry. This research is limit to literature review. And the proposed framework identifies the criteria of supply chain management for Thailand palm oil industry in order for linkage among entities within logistics management involving plantation, mill, collection port, refinery and cookie from the data utilization. The Supply Chain Management Practices in Thailand Palm Oil Industry framework has a somewhat different view due to the high complexity of agribusiness logistics management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20management" title="supply chain management">supply chain management</a>, <a href="https://publications.waset.org/abstracts/search?q=practice" title=" practice"> practice</a>, <a href="https://publications.waset.org/abstracts/search?q=palm%20oil%20industry" title=" palm oil industry"> palm oil industry</a>, <a href="https://publications.waset.org/abstracts/search?q=Thailand%20palm%20oil%20industry" title=" Thailand palm oil industry"> Thailand palm oil industry</a> </p> <a href="https://publications.waset.org/abstracts/74374/supply-chain-management-practices-in-thailand-palm-oil-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74374.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">846</span> A Comparative Analysis of the Performances of Four Different In-Ground Lagoons Anaerobic Digesters in the Treatment of Palm Oil Mill Effluent (POME)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Amran">Mohd Amran</a>, <a href="https://publications.waset.org/abstracts/search?q=Chan%20Yi%20Jing"> Chan Yi Jing</a>, <a href="https://publications.waset.org/abstracts/search?q=Chong%20Chien%20Hwa"> Chong Chien Hwa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Production of biogas from POME requires anaerobic digestion (AD), thus, anaerobic digester performance in biogas plants is crucial. As POME from different sources have varying characteristics due to different process flows in mills, there is no ideal treatment parameters for POME. Hence, different treatment plants alter different parameters in anaerobic digestion to achieve desired biogas production levels and to meet POME waste discharge limits. The objective of this study is to evaluate the performance of mesophilic anaerobic digestion in four different biogas plants in Malaysia. Aspects of POME pre-treatment efficiency, analysis of treated POME and AD’s bottom sludge characteristics, including several parameters like chemical oxygen demand (COD), biological oxygen demand (BOD), total solid (TS) removal in the effluent, pH and temperature changes, total biogas produced, the composition of biogas including methane (CH₄), carbon dioxide (CO₂), hydrogen sulfide (H₂S) and oxygen (O₂) were investigated. The effect of organic loading rate (OLR) and hydraulic retention time (HRT) on anaerobic digester performance is also evaluated. In pre-treatment, it is observed that BGP B has the lowest average outlet temperature of 40.41°C. All BGP shows a high-temperature fluctuation (36 to 49 0C) and good pH readings (minimum 6.7), leaving the pre-treatment facility before entering the AD.COD removal of POME is considered good, with an average of 78% and maximum removal of 85%. BGP C has the lowest average COD and TS content in treated POME, 13,313 mg/L, and 12,048 mg/L, respectively. However, it is observed that the treated POME leaving all ADs, still contains high-quality organic substances (COD between 12,000 to 19,000 mg/L) that might be able to digest further to produce more biogas. The biogas produced in all four BGPs varies due to different COD loads. BGP B has the highest amount of biogas produced, 378,874.7 Nm³/month, while BGP D has the lowest biogas production of 272,378.5 Nm³/month. Furthermore, the composition of biogas produced in all plants is well within literature values (CH4 between 55 to 65% and CO₂ between 32 to 36%). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=palm%20oil%20mill%20effluent" title="palm oil mill effluent">palm oil mill effluent</a>, <a href="https://publications.waset.org/abstracts/search?q=in-ground%20lagoon%20anaerobic%20digester" title=" in-ground lagoon anaerobic digester"> in-ground lagoon anaerobic digester</a>, <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digestion" title=" anaerobic digestion"> anaerobic digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=biogas" title=" biogas"> biogas</a> </p> <a href="https://publications.waset.org/abstracts/156202/a-comparative-analysis-of-the-performances-of-four-different-in-ground-lagoons-anaerobic-digesters-in-the-treatment-of-palm-oil-mill-effluent-pome" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156202.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">845</span> Water Footprint for the Palm Oil Industry in Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vijaya%20Subramaniam">Vijaya Subramaniam</a>, <a href="https://publications.waset.org/abstracts/search?q=Loh%20Soh%20Kheang"> Loh Soh Kheang</a>, <a href="https://publications.waset.org/abstracts/search?q=Astimar%20Abdul%20Aziz"> Astimar Abdul Aziz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water footprint (WFP) has gained importance due to the increase in water scarcity in the world. This study analyses the WFP for an agriculture sector, i.e., the oil palm supply chain, which produces oil palm fresh fruit bunch (FFB), crude palm oil, palm kernel, and crude palm kernel oil. The water accounting and vulnerability evaluation (WAVE) method was used. This method analyses the water depletion index (WDI) based on the local blue water scarcity. The main contribution towards the WFP at the plantation was the production of FFB from the crop itself at 0.23m³/tonne FFB. At the mill, the burden shifts to the water added during the process, which consists of the boiler and process water, which accounted for 6.91m³/tonne crude palm oil. There was a 33% reduction in the WFP when there was no dilution or water addition after the screw press at the mill. When allocation was performed, the WFP reduced by 42% as the burden was shared with the palm kernel and palm kernel shell. At the kernel crushing plant (KCP), the main contributor towards the WFP 4.96 m³/tonne crude palm kernel oil which came from the palm kernel which carried the burden from upstream followed by electricity, 0.33 m³/tonne crude palm kernel oil used for the process and 0.08 m³/tonne crude palm kernel oil for transportation of the palm kernel. A comparison was carried out for mills with biogas capture versus no biogas capture, and the WFP had no difference for both scenarios. The comparison when the KCPs operate in the proximity of mills as compared to those operating in the proximity of ports only gave a reduction of 6% for the WFP. Both these scenarios showed no difference and insignificant difference, which differed from previous life cycle assessment studies on the carbon footprint, which showed significant differences. This shows that findings change when only certain impact categories are focused on. It can be concluded that the impact from the water used by the oil palm tree is low due to the practice of no irrigation at the plantations and the high availability of water from rainfall in Malaysia. This reiterates the importance of planting oil palm trees in regions with high rainfall all year long, like the tropics. The milling stage had the most significant impact on the WFP. Mills should avoid dilution to reduce this impact. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title="life cycle assessment">life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20footprint" title=" water footprint"> water footprint</a>, <a href="https://publications.waset.org/abstracts/search?q=crude%20palm%20oil" title=" crude palm oil"> crude palm oil</a>, <a href="https://publications.waset.org/abstracts/search?q=crude%20palm%20kernel%20oil" title=" crude palm kernel oil"> crude palm kernel oil</a>, <a href="https://publications.waset.org/abstracts/search?q=WAVE%20method" title=" WAVE method"> WAVE method</a> </p> <a href="https://publications.waset.org/abstracts/118478/water-footprint-for-the-palm-oil-industry-in-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118478.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">844</span> Potential of Palm Oil Mill Effluent in Algae Cultivation for Biodiesel Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nur%20Azreena%20Idris">Nur Azreena Idris</a>, <a href="https://publications.waset.org/abstracts/search?q=Soh%20Kheang%20Loh"> Soh Kheang Loh</a>, <a href="https://publications.waset.org/abstracts/search?q=Harrison%20Lau%20Lik%20Nang"> Harrison Lau Lik Nang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuen%20May%20Choo"> Yuen May Choo</a>, <a href="https://publications.waset.org/abstracts/search?q=Eminour%20Muzalina%20Mustafa"> Eminour Muzalina Mustafa</a>, <a href="https://publications.waset.org/abstracts/search?q=Vijaysri%20Vello"> Vijaysri Vello</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng%20Yau%20Tan"> Cheng Yau Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=Siew%20Moi%20Phang"> Siew Moi Phang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is estimated that about 0.65-0.67 m3 of palm oil mill effluent (POME) is generated when one tonne of fresh fruit bunches is processed. Owning to the high content of nutrients in POME, it has high potential as a medium for microalgae growth. This study attempted determining the growth rate, biomass productivity and biochemical composition of microalgae (Chlorella sp.) grown in different POME concentrations i.e. 6.25%, 12.5%, 25% and 50% at outdoor conditions using a 200-mL capacity high rate algae pond (HRAP) and 2 closed photobioreactors (PBRs) i.e. annular and flat panel. The strain, Chlorella sp. grown on 12.5% of POME in flat panel PBR exhibited the highest specific growth rate of 0.32/day and biomass productivity (27.1 mg/L/day) followed by those in HRAP and annular PBR. It further showed that a good growth of Chlorella sp. in 12.5% of POME could sufficiently reduce the nutrients of POME such as phosphate (PO4), nitrate (NO3), nitrite (NO2) and chemical oxygen demand (COD). The extracted algal oil from POME culture showed that the saturated fatty acids decreased while polyunsaturated fatty acids increased compared to those cultured in standard culture medium (Bold’s Basal medium). The biochemical compositions of the algae grown in flat panel PBR were the highest with lipid, protein and carbohydrate productivity of 17.91 mg/L/day, 34.65 mg/L/day and 21.44 mg/L/day, respectively. The microalgae cultivation in diluted POME had not only shown potential as biodiesel feedstock based on the fatty acids profile but also the ability to reduce pollutants e.g. PO4, NO3, NO2 and COD in biological wastewater treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wastewater%20treatment" title="wastewater treatment">wastewater treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=photobioreactors" title=" photobioreactors"> photobioreactors</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass%20productivity" title=" biomass productivity"> biomass productivity</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20growth%20rate" title=" specific growth rate"> specific growth rate</a> </p> <a href="https://publications.waset.org/abstracts/53085/potential-of-palm-oil-mill-effluent-in-algae-cultivation-for-biodiesel-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53085.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">843</span> Bioremediation of Paper Mill Effluent by Microbial Consortium Comprising Bacterial and Fungal Strain and Optimizing the Effect of Carbon Source</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Priya%20Tomar">Priya Tomar</a>, <a href="https://publications.waset.org/abstracts/search?q=Pallavi%20Mittal"> Pallavi Mittal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bioremediation has been recognized as an environment friendly and less expensive method which involves the natural processes resulting in the efficient conversion of hazardous compounds into innocuous products. The pulp and paper mill effluent is one of the high polluting effluents amongst the effluents obtained from polluting industries. The colouring body present in the wastewater from pulp and paper mill is organic in nature and is comprised of wood extractives, tannin, resins, synthetic dyes, lignin, and its degradation products formed by the action of chlorine on lignin which imparts an offensive colour to the water. These mills use different chemical process for paper manufacturing due to which lignified chemicals are released into the environment. Therefore, the chemical oxygen demand (COD) of the emanating stream is quite high. For solving the above problem we present this paper with some new techniques that were developed for the efficiency of paper mill effluents. In the present study we utilized the consortia of fungal and bacterial strain and the treatment named as C1, C2, and C3 for the decolourization of paper mill effluent. During the study, role of carbon source i.e. glucose was studied for decolourization. From the results it was observed that a maximum colour reduction of 66.9%, COD reduction of 51.8%, TSS reduction of 0.34%, TDS reduction of 0.29% and pH changes of 4.2 is achieved by consortia of Aspergillus niger with Pseudomonas aeruginosa. Data indicated that consortia of Aspergillus niger with Pseudomonas aeruginosa is giving better result with glucose. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title="bioremediation">bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=decolourization" title=" decolourization"> decolourization</a>, <a href="https://publications.waset.org/abstracts/search?q=black%20liquor" title=" black liquor"> black liquor</a>, <a href="https://publications.waset.org/abstracts/search?q=mycoremediation" title=" mycoremediation"> mycoremediation</a> </p> <a href="https://publications.waset.org/abstracts/33152/bioremediation-of-paper-mill-effluent-by-microbial-consortium-comprising-bacterial-and-fungal-strain-and-optimizing-the-effect-of-carbon-source" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33152.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">842</span> Waste Water Treatment and Emerging Waste Water Contaminants in Developing Countries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Opata%20Obinna%20Johnpaul">Opata Obinna Johnpaul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wastewater is one of the day-to–day concerns of humans and the environment, in general, due to its importance to the environment. This is because of the presence of various contaminants that are involved in waste water. Wastewater treatment can be defined as the proportion of wastewater that is treated, in order to reduce pollutants before being discharged to the environment, by the level of treatment. This work discusses wastewater treatment, its contaminants, as well as the technologies, involved.The major focus is to analyze Okomu Oil Palm Company Plc, their effluent treatment facility. Okomu Oil Palm Company is based in Nigeria, which is one of the developing countries of the world. Okomu Oil Palm Company uses aquatic treatment technology for their effluent treatment and applies the physio-chemical level of advanced chemical treatment of wastewater treatment process. This work will discuss the outcome of the laboratory sample taken on the 30th January, 2015 and analyzed between 30th January- 4th February 2015. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wastewater%20treatment" title="wastewater treatment">wastewater treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=contaminants" title=" contaminants"> contaminants</a>, <a href="https://publications.waset.org/abstracts/search?q=physio-chemical%20process" title=" physio-chemical process"> physio-chemical process</a>, <a href="https://publications.waset.org/abstracts/search?q=Okomu%20oil%20palm" title=" Okomu oil palm"> Okomu oil palm</a> </p> <a href="https://publications.waset.org/abstracts/32195/waste-water-treatment-and-emerging-waste-water-contaminants-in-developing-countries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32195.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">841</span> Estimation and Removal of Chlorophenolic Compounds from Paper Mill Waste Water by Electrochemical Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Sharma">R. Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Kumar"> S. Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Sharma"> C. Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A number of toxic chlorophenolic compounds are formed during pulp bleaching. The nature and concentration of these chlorophenolic compounds largely depends upon the amount and nature of bleaching chemicals used. These compounds are highly recalcitrant and difficult to remove but are partially removed by the biochemical treatment processes adopted by the paper industry. Identification and estimation of these chlorophenolic compounds has been carried out in the primary and secondary clarified effluents from the paper mill by GCMS. Twenty-six chorophenolic compounds have been identified and estimated in paper mill waste waters. Electrochemical treatment is an efficient method for oxidation of pollutants and has successfully been used to treat textile and oil waste water. Electrochemical treatment using less expensive anode material, stainless steel electrodes has been tried to study their removal. The electrochemical assembly comprised a DC power supply, a magnetic stirrer and stainless steel (316 L) electrode. The optimization of operating conditions has been carried out and treatment has been performed under optimized treatment conditions. Results indicate that 68.7% and 83.8% of cholorphenolic compounds are removed during 2 h of electrochemical treatment from primary and secondary clarified effluent respectively. Further, there is a reduction of 65.1, 60 and 92.6% of COD, AOX and color, respectively for primary clarified and 83.8%, 75.9% and 96.8% of COD, AOX and color, respectively for secondary clarified effluent. EC treatment has also been found to increase significantly the biodegradability index of wastewater because of conversion of non- biodegradable fraction into biodegradable fraction. Thus, electrochemical treatment is an efficient method for the degradation of cholorophenolic compounds, removal of color, AOX and other recalcitrant organic matter present in paper mill waste water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chlorophenolics" title="chlorophenolics">chlorophenolics</a>, <a href="https://publications.waset.org/abstracts/search?q=effluent" title=" effluent"> effluent</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20treatment" title=" electrochemical treatment"> electrochemical treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/38459/estimation-and-removal-of-chlorophenolic-compounds-from-paper-mill-waste-water-by-electrochemical-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38459.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">840</span> Economic Loss due to Ganoderma Disease in Oil Palm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Assis">K. Assis</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20P.%20Chong"> K. P. Chong</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Idris"> A. S. Idris</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20M.%20Ho"> C. M. Ho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oil palm or Elaeis guineensis is considered as the golden crop in Malaysia. But oil palm industry in this country is now facing with the most devastating disease called as Ganoderma Basal Stem Rot disease. The objective of this paper is to analyze the economic loss due to this disease. There were three commercial oil palm sites selected for collecting the required data for economic analysis. Yield parameter used to measure the loss was the total weight of fresh fruit bunch in six months. The predictors include disease severity, change in disease severity, number of infected neighbor palms, age of palm, planting generation, topography, and first order interaction variables. The estimation model of yield loss was identified by using backward elimination based regression method. Diagnostic checking was conducted on the residual of the best yield loss model. The value of mean absolute percentage error (MAPE) was used to measure the forecast performance of the model. The best yield loss model was then used to estimate the economic loss by using the current monthly price of fresh fruit bunch at mill gate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ganoderma" title="ganoderma">ganoderma</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20palm" title=" oil palm"> oil palm</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20model" title=" regression model"> regression model</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20loss" title=" yield loss"> yield loss</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20loss" title=" economic loss"> economic loss</a> </p> <a href="https://publications.waset.org/abstracts/42978/economic-loss-due-to-ganoderma-disease-in-oil-palm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42978.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">839</span> Evaluation of Paper Effluent with Two Bacterial Strain and Their Consortia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Priya%20Tomar">Priya Tomar</a>, <a href="https://publications.waset.org/abstracts/search?q=Pallavi%20Mittal"> Pallavi Mittal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As industrialization is inevitable and progress with rapid acceleration, the need for innovative ways to get rid of waste has increased. Recent advancement in bioresource technology paves novel ideas for recycling of factory waste that has been polluting the agro-industry, soil and water bodies. Paper industries in India are in a considerable number, where molasses and impure alcohol are still being used as raw materials for manufacturing of paper. Paper mills based on nonconventional agro residues are being encouraged due to increased demand of paper and acute shortage of forest-based raw materials. The colouring body present in the wastewater from pulp and paper mill is organic in nature and is comprised of wood extractives, tannin, resins, synthetic dyes, lignin and its degradation products formed by the action of chlorine on lignin which imparts an offensive colour to the water. These mills use different chemical process for paper manufacturing due to which lignified chemicals are released into the environment. Therefore, the chemical oxygen demand (COD) of the emanating stream is quite high. This paper presents some new techniques that were developed for the efficiency of bioremediation on paper industry. A short introduction to paper industry and a variety of presently available methods of bioremediation on paper industry and different strategies are also discussed here. For solving the above problem, two bacterial strains (Pseudomonas aeruginosa and Bacillus subtilis) and their consortia (Pseudomonas aeruginosa and Bacillus subtilis) were utilized for the pulp and paper mill effluent. Pseudomonas aeruginosa and Bacillus subtilis named as T–1, T–2, T–3, T–4, T–5, T–6, for the decolourisation of paper industry effluent. The results indicated that a maximum colour reduction is (60.5%) achieved by Pseudomonas aeruginosa and COD reduction is (88.8%) achieved by Bacillus subtilis, maximum pH changes is (4.23) achieved by Pseudomonas aeruginosa, TSS reduction is (2.09 %) achieved by Bacillus subtilis, and TDS reduction is (0.95 %) achieved by Bacillus subtilis. When the wastewater was supplemented with carbon (glucose) and nitrogen (yeast extract) source and data revealed the efficiency of Bacillus subtilis, having more with glucose than Pseudomonas aeruginosa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title="bioremediation">bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=paper%20and%20pulp%20mill%20effluent" title=" paper and pulp mill effluent"> paper and pulp mill effluent</a>, <a href="https://publications.waset.org/abstracts/search?q=treated%20effluent" title=" treated effluent"> treated effluent</a>, <a href="https://publications.waset.org/abstracts/search?q=lignin" title=" lignin"> lignin</a> </p> <a href="https://publications.waset.org/abstracts/8372/evaluation-of-paper-effluent-with-two-bacterial-strain-and-their-consortia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">838</span> Application of Phenol Degrading Microorganisms for the Treatment of Olive Mill Waste (OMW)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20El-Khateeb">M. A. El-Khateeb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The growth of the olive oil production in Saudi Arabia peculiarly in Al Jouf region in recent years has been accompanied by an increase in the discharge of associated processing waste. Olive mill waste is produced throughout the extraction of oil from the olive fruit using the traditional mill and press process. Deterioration of the environment due to olive mill disposal wastes is a serious problem. When olive mill waste disposed into the soil, it affects soil quality, soil micro flora, and also toxic to plants. The aim of this work is to isolate microorganism (bacterial or fungal strains) from OMW capable of degrading phenols. Olive mill wastewater, olive mill waste and soil (beside oil production mill) contaminated with olive waste were used for isolation of phenol tolerant microorganisms. Four strains (two fungal and two bacterial) were isolated from olive mill waste. The isolated strains were Candida tropicalis and Phanerochaete chrysosporium (fungal strains) and Bacillus sp. and Rhodococcus sp. (bacterial strains). These strains were able to degrade phenols and could be used for bioremediation of olive mill waste. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title="bioremediation">bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteria" title=" bacteria"> bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=fungi" title=" fungi"> fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sakaka" title=" Sakaka"> Sakaka</a> </p> <a href="https://publications.waset.org/abstracts/15825/application-of-phenol-degrading-microorganisms-for-the-treatment-of-olive-mill-waste-omw" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15825.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">837</span> Antimicrobial Activity of Olive Mill Wastewater Fractions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chahinez%20Ait%20Si%20Said">Chahinez Ait Si Said</a>, <a href="https://publications.waset.org/abstracts/search?q=Ouassila%20Touafek"> Ouassila Touafek</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Reda%20Zahi"> Mohamed Reda Zahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Smain%20Sabour"> Smain Sabour</a>, <a href="https://publications.waset.org/abstracts/search?q=%E2%80%8EMohamed%20El%20Hattab%20%E2%80%8E"> Mohamed El Hattab </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oil mill wastewater (OMW) is a major effluent of the olive industry resulting from olive oil extraction which is a great source for the development of new drugs. The present study aimed to evaluate the antimicrobial activity of seven different fractions separated from OMW extract. The sample was recovered from an oil mill in the Blida region (Algeria). A crude ethyl acetate extract was prepared from OMW according to a well-established protocol; the yield of the extract obtained was 4%. From the extract, different fractions were prepared by fractionating the total extract with an open column chromatography. The obtained fractions were submitted to antimicrobial activity screening in a comparative purpose. All the fractions obtained show great antimicrobial potential. Phytochemical study of the different fractions was assessed by evaluating the total phenolic compounds for all fractions studied as the main compounds found in OMW were phenols like hydroxytyrosol, tyrosol, phenolic acids like caffeic, quinic and ferulic acids which show great therapeutic activities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=olive%20mill%20wastewater" title="olive mill wastewater">olive mill wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=fractionation" title=" fractionation"> fractionation</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20phenolic%20compound" title=" total phenolic compound"> total phenolic compound</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title=" antimicrobial activity"> antimicrobial activity</a> </p> <a href="https://publications.waset.org/abstracts/167613/antimicrobial-activity-of-olive-mill-wastewater-fractions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167613.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">836</span> Value Chain Analysis and Enhancement Added Value in Palm Oil Supply Chain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juliza%20Hidayati">Juliza Hidayati</a>, <a href="https://publications.waset.org/abstracts/search?q=Sawarni%20Hasibuan"> Sawarni Hasibuan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> PT. XYZ is a manufacturing company that produces Crude Palm Oil (CPO). The fierce competition in the global markets not only between companies but also a competition between supply chains. This research aims to analyze the supply chain and value chain of Crude Palm Oil (CPO) in the company. Data analysis method used is qualitative analysis and quantitative analysis. The qualitative analysis describes supply chain and value chain, while the quantitative analysis is used to find out value added and the establishment of the value chain. Based on the analysis, the value chain of crude palm oil (CPO) in the company consists of four main actors that are suppliers of raw materials, processing, distributor, and customer. The value chain analysis consists of two actors; those are palm oil plantation and palm oil processing plant. The palm oil plantation activities include nurseries, planting, plant maintenance, harvesting, and shipping. The palm oil processing plant activities include reception, sterilizing, thressing, pressing, and oil classification. The value added of palm oil plantations was 72.42% and the palm oil processing plant was 10.13%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=palm%20oil" title="palm oil">palm oil</a>, <a href="https://publications.waset.org/abstracts/search?q=value%20chain" title=" value chain"> value chain</a>, <a href="https://publications.waset.org/abstracts/search?q=value%20added" title=" value added"> value added</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain" title=" supply chain"> supply chain</a> </p> <a href="https://publications.waset.org/abstracts/82837/value-chain-analysis-and-enhancement-added-value-in-palm-oil-supply-chain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82837.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">835</span> Modeling and Benchmarking the Thermal Energy Performance of Palm Oil Production Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mathias%20B.%20Michael">Mathias B. Michael</a>, <a href="https://publications.waset.org/abstracts/search?q=Esther%20T.%20Akinlabi"> Esther T. Akinlabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tien-Chien%20Jen"> Tien-Chien Jen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermal energy consumption in palm oil production plant comprises mainly of steam, hot water and hot air. In most efficient plants, hot water and air are generated from the steam supply system. Research has shown that thermal energy utilize in palm oil production plants is about 70 percent of the total energy consumption of the plant. In order to manage the plants’ energy efficiently, the energy systems are modelled and optimized. This paper aimed to present the model of steam supply systems of a typical palm oil production plant in Ghana. The models include exergy and energy models of steam boiler, steam turbine and the palm oil mill. The paper further simulates the virtual plant model to obtain the thermal energy performance of the plant under study. The simulation results show that, under normal operating condition, the boiler energy performance is considerably below the expected level as a result of several factors including intermittent biomass fuel supply, significant moisture content of the biomass fuel and significant heat losses. The total thermal energy performance of the virtual plant is set as a baseline. The study finally recommends number of energy efficiency measures to improve the plant’s energy performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=palm%20biomass" title="palm biomass">palm biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=steam%20supply" title=" steam supply"> steam supply</a>, <a href="https://publications.waset.org/abstracts/search?q=exergy%20and%20energy%20models" title=" exergy and energy models"> exergy and energy models</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20performance%20benchmark" title=" energy performance benchmark"> energy performance benchmark</a> </p> <a href="https://publications.waset.org/abstracts/78554/modeling-and-benchmarking-the-thermal-energy-performance-of-palm-oil-production-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78554.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">834</span> Expanding Chance of Palm Oil Market into ASEAN Community: Case Study of Choomporn Palm Oil Cooperative</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pichamon%20Chansuchai">Pichamon Chansuchai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper studied the expanding market opportunity palm oil ASEAN community: case study of Choomporn Palm Oil Cooperative as qualitative research. The purpose is to study and analyze expanding and linking the liberalization of trade in palm oil products under the terms of cooperation and ASEAN countries. Collection data were collected using participatory observation, in-depth interviews, focus groups, government officials, palm oil cooperative, entrepreneurs and farmers to exchange opinions. The study found that of major competitors is Indonesia and Malaysia which as ASEAM members countries has the potential to produce over Thailand. Thailand government must have a policy to increase the competitiveness of the palm oil Thailand. Using grants from the Free Trade Area fund should add value to agricultural products, palm oil and the development of standard products to meet the needs of the member countries. And creating a learning center of the palm oil sector can transfer knowledge, development of palm species, solution process from planting to harvest care privatization process. And the development of palm oil in order to expand market opportunities for Thailand's palm oil has the potential to be competitive in the neighboring countries and the region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=palm%20oil" title="palm oil">palm oil</a>, <a href="https://publications.waset.org/abstracts/search?q=market" title=" market"> market</a>, <a href="https://publications.waset.org/abstracts/search?q=cooperative" title=" cooperative"> cooperative</a>, <a href="https://publications.waset.org/abstracts/search?q=ASEAN" title=" ASEAN"> ASEAN</a> </p> <a href="https://publications.waset.org/abstracts/53212/expanding-chance-of-palm-oil-market-into-asean-community-case-study-of-choomporn-palm-oil-cooperative" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53212.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">500</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">833</span> Fluorescence Sensing as a Tool to Estimate Palm Oil Quality and Yield</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Norul%20Husna%20A.%20Kasim">Norul Husna A. Kasim</a>, <a href="https://publications.waset.org/abstracts/search?q=Siva%20K.%20Balasundram"> Siva K. Balasundram </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The gap between ‘actual yield’ and ‘potential yield’ has remained a problem in the Malaysian oil palm industry. Ineffective maturity assessment and untimely harvesting have compounded this problem. Typically, the traditional method of palm oil quality and yield assessment is destructive, costly and laborious. Fluorescence-sensing offers a new means of assessing palm oil quality and yield non-destructively. This work describes the estimation of palm oil quality and yield using a multi-parametric fluorescence sensor (Multiplex®) to quantify the concentration of secondary metabolites, such as anthocyanin and flavonoid, in fresh fruit bunches across three different palm ages (6, 9, and 12 years-old). Results show that fluorescence sensing is an effective means of assessing FFB maturity, in terms of palm oil quality and yield quantifications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anthocyanin" title="anthocyanin">anthocyanin</a>, <a href="https://publications.waset.org/abstracts/search?q=flavonoid%20fluorescence%20sensor" title=" flavonoid fluorescence sensor"> flavonoid fluorescence sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=palm%20oil%20yield%20and%20quality" title=" palm oil yield and quality"> palm oil yield and quality</a> </p> <a href="https://publications.waset.org/abstracts/18494/fluorescence-sensing-as-a-tool-to-estimate-palm-oil-quality-and-yield" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18494.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">809</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">832</span> Mass Pheromone Trapping on Red Palm Weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae) in Oil Palm Plantations of Terengganu</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wahizatul%20Afzan%20Azmi">Wahizatul Afzan Azmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nur%20Ain%20Farhah%20Ros%20Saidon%20Khudri"> Nur Ain Farhah Ros Saidon Khudri</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Haris%20Hussain"> Mohamad Haris Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=Tse%20Seng%20Chuah"> Tse Seng Chuah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Malaysia houses a broad range of palm trees species and some of these palm trees are very crucial for the country’s social and economic development, especially the oil palm trees. However, the destructive pest of the various palms species, Rhynchophorus ferrugineus (Coleoptera: Curculionidae) or known as Red Palm Weevil (RPW) was first detected in Terengganu in 2007. Recently, the pattern of infestation has move from coastal lines toward inland areas. After the coconut plantations, it is presumed that the RPW will be a serious threat to the oil palm plantations in Malaysia. Thus, this study was carried out to detect the presence and distribution of Red Palm Weevil (RPW) in selected oil palm plantations of Terengganu. A total of 42 traps were installed in the three oil palm plantations in Terengganu and were inspected every week for two months. Oil palm plantation A collected significantly higher adults RPW compared to the other locations. Generally, females of RPW were significantly higher than male individuals. Females were collected more as the synthetic aggregation pheromone used, ferrugineol was synthesized from the male aggregation pheromone of adult RPW. Oil palm plantation A collected the highest number of RPW might be due to the abundance of soft part in the host plant as the oil palm trees age ranged between 6 to 10 years old. As a conclusion, RPW presence was detected in some oil palm plantations of Terengganu and immediate action is crucially needed before it is too late. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=red%20palm%20weevil" title="red palm weevil">red palm weevil</a>, <a href="https://publications.waset.org/abstracts/search?q=pest" title=" pest"> pest</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20palm" title=" oil palm"> oil palm</a>, <a href="https://publications.waset.org/abstracts/search?q=pheromone" title=" pheromone"> pheromone</a> </p> <a href="https://publications.waset.org/abstracts/98093/mass-pheromone-trapping-on-red-palm-weevil-rhynchophorus-ferrugineus-coleoptera-curculionidae-in-oil-palm-plantations-of-terengganu" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98093.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">831</span> Nanostructured Pt/MnO2 Catalysts and Their Performance for Oxygen Reduction Reaction in Air Cathode Microbial Fuel Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maksudur%20Rahman%20Khan">Maksudur Rahman Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kar%20Min%20Chan"> Kar Min Chan</a>, <a href="https://publications.waset.org/abstracts/search?q=Huei%20Ruey%20Ong"> Huei Ruey Ong</a>, <a href="https://publications.waset.org/abstracts/search?q=Chin%20Kui%20Cheng"> Chin Kui Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Wasikur%20Rahman"> Wasikur Rahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microbial fuel cells (MFCs) represent a promising technology for simultaneous bioelectricity generation and wastewater treatment. Catalysts are significant portions of the cost of microbial fuel cell cathodes. Many materials have been tested as aqueous cathodes, but air-cathodes are needed to avoid energy demands for water aeration. The sluggish oxygen reduction reaction (ORR) rate at air cathode necessitates efficient electrocatalyst such as carbon supported platinum catalyst (Pt/C) which is very costly. Manganese oxide (MnO2) was a representative metal oxide which has been studied as a promising alternative electrocatalyst for ORR and has been tested in air-cathode MFCs. However, the single MnO2 has poor electric conductivity and low stability. In the present work, the MnO2 catalyst has been modified by doping Pt nanoparticle. The goal of the work was to improve the performance of the MFC with minimum Pt loading. MnO2 and Pt nanoparticles were prepared by hydrothermal and sol-gel methods, respectively. Wet impregnation method was used to synthesize Pt/MnO2 catalyst. The catalysts were further used as cathode catalysts in air-cathode cubic MFCs, in which anaerobic sludge was inoculated as biocatalysts and palm oil mill effluent (POME) was used as the substrate in the anode chamber. The as-prepared Pt/MnO2 was characterized comprehensively through field emission scanning electron microscope (FESEM), X-Ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV) where its surface morphology, crystallinity, oxidation state and electrochemical activity were examined, respectively. XPS revealed Mn (IV) oxidation state and Pt (0) nanoparticle metal, indicating the presence of MnO2 and Pt. Morphology of Pt/MnO2 observed from FESEM shows that the doping of Pt did not cause change in needle-like shape of MnO2 which provides large contacting surface area. The electrochemical active area of the Pt/MnO2 catalysts has been increased from 276 to 617 m2/g with the increase in Pt loading from 0.2 to 0.8 wt%. The CV results in O2 saturated neutral Na2SO4 solution showed that MnO2 and Pt/MnO2 catalysts could catalyze ORR with different catalytic activities. MFC with Pt/MnO2 (0.4 wt% Pt) as air cathode catalyst generates a maximum power density of 165 mW/m3, which is higher than that of MFC with MnO2 catalyst (95 mW/m3). The open circuit voltage (OCV) of the MFC operated with MnO2 cathode gradually decreased during 14 days of operation, whereas the MFC with Pt/MnO2 cathode remained almost constant throughout the operation suggesting the higher stability of the Pt/MnO2 catalyst. Therefore, Pt/MnO2 with 0.4 wt% Pt successfully demonstrated as an efficient and low cost electrocatalyst for ORR in air cathode MFC with higher electrochemical activity, stability and hence enhanced performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microbial%20fuel%20cell" title="microbial fuel cell">microbial fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen%20reduction%20reaction" title=" oxygen reduction reaction"> oxygen reduction reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=Pt%2FMnO2" title=" Pt/MnO2"> Pt/MnO2</a>, <a href="https://publications.waset.org/abstracts/search?q=palm%20oil%20mill%20effluent" title=" palm oil mill effluent"> palm oil mill effluent</a>, <a href="https://publications.waset.org/abstracts/search?q=polarization%20curve" title=" polarization curve"> polarization curve</a> </p> <a href="https://publications.waset.org/abstracts/19318/nanostructured-ptmno2-catalysts-and-their-performance-for-oxygen-reduction-reaction-in-air-cathode-microbial-fuel-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19318.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">557</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">830</span> Modeling the Moment of Resistance Generated by an Ore-Grinding Mill</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marinka%20Baghdasaryan">Marinka Baghdasaryan</a>, <a href="https://publications.waset.org/abstracts/search?q=Tigran%20Mnoyan"> Tigran Mnoyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The pertinence of modeling the moment of resistance generated by the ore-grinding mill is substantiated. Based on the ranking of technological indices obtained in the result of the survey among the specialists of several beneficiating plants, the factors determining the level of the moment of resistance generated by the mill are revealed. A priori diagram of the ranks is obtained in which the factors are arranged in the descending order of the impact degree on the level of the moment. The obtained model of the moment of resistance shows the technological character of the operation modes of the ore-grinding mill and can be used for improving the operation modes of the system motor-mill and preventing the abnormal mode of the drive synchronous motor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=model" title="model">model</a>, <a href="https://publications.waset.org/abstracts/search?q=abnormal%20mode" title=" abnormal mode"> abnormal mode</a>, <a href="https://publications.waset.org/abstracts/search?q=mill" title=" mill"> mill</a>, <a href="https://publications.waset.org/abstracts/search?q=correlation" title=" correlation"> correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=moment%20of%20resistance" title=" moment of resistance"> moment of resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=rotational%20speed" title=" rotational speed"> rotational speed</a> </p> <a href="https://publications.waset.org/abstracts/47772/modeling-the-moment-of-resistance-generated-by-an-ore-grinding-mill" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=palm%20oil%20mill%20effluent&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=palm%20oil%20mill%20effluent&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=palm%20oil%20mill%20effluent&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=palm%20oil%20mill%20effluent&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=palm%20oil%20mill%20effluent&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=palm%20oil%20mill%20effluent&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=palm%20oil%20mill%20effluent&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=palm%20oil%20mill%20effluent&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=palm%20oil%20mill%20effluent&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=palm%20oil%20mill%20effluent&page=28">28</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=palm%20oil%20mill%20effluent&page=29">29</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=palm%20oil%20mill%20effluent&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>