CINXE.COM

Search results for: high strength geogrids

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: high strength geogrids</title> <meta name="description" content="Search results for: high strength geogrids"> <meta name="keywords" content="high strength geogrids"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="high strength geogrids" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="high strength geogrids"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 22412</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: high strength geogrids</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22412</span> Ground Improvement with Basal Reinforcement with High Strength Geogrids and PVDs for Embankment over Soft Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ratnakar%20Mahajan">Ratnakar Mahajan</a>, <a href="https://publications.waset.org/abstracts/search?q=Matteo%20Lelli"> Matteo Lelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Kinjal%20Parmar"> Kinjal Parmar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ground improvement is a very important aspect of infrastructure development, especially when it comes to deep-ground improvement. The use of various geosynthetic applications is very common these days for ground improvement. This paper presents a case study where the combination of two geosynthetic applications was used in order to optimize the design as well as to control the settlements through uniform load distribution. The Agartala-Akaura rail project was made to help increase railway connectivity between India and Bangladesh. Both countries have started the construction of the same. The project requires high railway embankments to be built for the rail link. However, the challenge was to design a proper ground improvement solution as the entire area comprises very soft soil for an average depth of 15m. After due diligence, a combination of two methods was worked out by Maccaferri. PVDs were provided for the consolidation, and on top of that, a layer of high-strength geogrids (Paralink) was proposed as a basal reinforcement. The design approach was followed as described in Indian standards as well as British standards. By introducing a basal reinforcement, the spacing of PVDs could be increased, which allowed quick installation and less material consumption while keeping the consolidation time within the project duration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ground%20improvement" title="ground improvement">ground improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=basal%20reinforcement" title=" basal reinforcement"> basal reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=PVDs" title=" PVDs"> PVDs</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20strength%20geogrids" title=" high strength geogrids"> high strength geogrids</a>, <a href="https://publications.waset.org/abstracts/search?q=Paralink" title=" Paralink"> Paralink</a> </p> <a href="https://publications.waset.org/abstracts/181433/ground-improvement-with-basal-reinforcement-with-high-strength-geogrids-and-pvds-for-embankment-over-soft-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181433.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22411</span> Behaviour of Model Square Footing Resting on Three Dimensional Geogrid Reinforced Sand Bed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Femy%20M.%20Makkar">Femy M. Makkar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Chandrakaran"> S. Chandrakaran</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Sankar"> N. Sankar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The concept of reinforced earth has been used in the field of geotechnical engineering since 1960s, for many applications such as, construction of road and rail embankments, pavements, retaining walls, shallow foundations, soft ground improvement and so on. Conventionally, planar geosynthetic materials such as geotextiles and geogrids were used as the reinforcing elements. Recently, the use of three dimensional reinforcements becomes one of the emerging trends in this field. So, in the present investigation, three dimensional geogrid is proposed as a reinforcing material. Laboratory scaled plate load tests are conducted on a model square footing resting on 3D geogrid reinforced sand bed. The performance of 3D geogrids in triangular and square pattern was compared with conventional geogrids and the improvement in bearing capacity and reduction in settlement and heave are evaluated. When single layer of reinforcement was placed at an optimum depth of 0.25B from the bottom of the footing, the bearing capacity of conventional geogrid reinforced soil improved by 1.85 times compared to unreinforced soil, where as 3D geogrid reinforced soil with triangular pattern and square pattern shows 2.69 and 3.05 times improvement respectively compared to unreinforced soil. Also, 3D geogrids performs better than conventional geogrids in reducing the settlement and heave of sand bed around the model footing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20reinforcing%20elements" title="3D reinforcing elements">3D reinforcing elements</a>, <a href="https://publications.waset.org/abstracts/search?q=bearing%20capacity" title=" bearing capacity"> bearing capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy" title=" heavy"> heavy</a>, <a href="https://publications.waset.org/abstracts/search?q=settlement" title=" settlement"> settlement</a> </p> <a href="https://publications.waset.org/abstracts/53538/behaviour-of-model-square-footing-resting-on-three-dimensional-geogrid-reinforced-sand-bed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22410</span> Numerical Modeling of a Retaining Wall in Soil Reinforced by Layers of Geogrids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Mellas">M. Mellas</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Baaziz"> S. Baaziz</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mabrouki"> A. Mabrouki</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Benmeddour"> D. Benmeddour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The reinforcement of massifs of backfill with horizontal layers of geosynthetics is an interesting economic solution, which ensures the stability of retaining walls. The mechanical behavior of reinforced soil by geosynthetic is complex, and requires studies and research to understand the mechanisms of rupture. The behavior of reinforcements in the soil and the behavior of the main elements of the system: reinforcement-wall-soil. The present study is interested in numerical modeling of a retaining wall in soil reinforced by horizontal layers of geogrids. This modeling makes use of the software FLAC3D. This work aims to analyze the effect of the length of the geogrid "L" where the soil massif is supporting a uniformly distributed surcharge "Q", taking into account the fixing elements rather than the layers of geogrids to the wall. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=retaining%20wall" title="retaining wall">retaining wall</a>, <a href="https://publications.waset.org/abstracts/search?q=geogrid" title=" geogrid"> geogrid</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20soil" title=" reinforced soil"> reinforced soil</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20modeling" title=" numerical modeling"> numerical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=FLAC3D" title=" FLAC3D"> FLAC3D</a> </p> <a href="https://publications.waset.org/abstracts/1335/numerical-modeling-of-a-retaining-wall-in-soil-reinforced-by-layers-of-geogrids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">484</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22409</span> Design and Construction Demeanor of a Very High Embankment Using Geosynthetics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mariya%20Dayana">Mariya Dayana</a>, <a href="https://publications.waset.org/abstracts/search?q=Budhmal%20Jain"> Budhmal Jain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kannur International Airport Ltd. (KIAL) is a new Greenfield airport project with airside development on an undulating terrain with an average height of 90m above Mean Sea Level (MSL) and a maximum height of 142m. To accommodate the desired Runway length and Runway End Safety Area (RESA) at both the ends along the proposed alignment, it resulted in 45.5 million cubic meters in cutting and filling. The insufficient availability of land for the construction of free slope embankment at RESA 07 end resulted in the design and construction of Reinforced Soil Slope (RSS) with a maximum slope of 65 degrees. An embankment fill of average 70m height with steep slopes located in high rainfall area is a unique feature of this project. The design and construction was challenging being asymmetrical with curves and bends. The fill was reinforced with high strength Uniaxial geogrids laid perpendicular to the slope. Weld mesh wrapped with coir mat acted as the facia units to protect it against surface failure. Face anchorage were also provided by wrapping the geogrids along the facia units where the slope angle was steeper than 45 degrees. Considering high rainfall received on this table top airport site, extensive drainage system was designed for the high embankment fill. Gabion wall up to 10m height were also designed and constructed along the boundary to accommodate the toe of the RSS fill beside the jeepable track at the base level. The design of RSS fill was done using ReSSA software and verified in PLAXIS 2D modeling. Both slip surface failure and wedge failure cases were considered in static and seismic analysis for local and global failure cases. The site won excavated laterite soil was used as the fill material for the construction. Extensive field and laboratory tests were conducted during the construction of RSS system for quality assurance. This paper represents a case study detailing the design and construction of a very high embankment using geosynthetics for the provision of Runway length and RESA area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airport" title="airport">airport</a>, <a href="https://publications.waset.org/abstracts/search?q=embankment" title=" embankment"> embankment</a>, <a href="https://publications.waset.org/abstracts/search?q=gabion" title=" gabion"> gabion</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20strength%20uniaxial%20geogrid" title=" high strength uniaxial geogrid"> high strength uniaxial geogrid</a>, <a href="https://publications.waset.org/abstracts/search?q=kial" title=" kial"> kial</a>, <a href="https://publications.waset.org/abstracts/search?q=laterite%20soil" title=" laterite soil"> laterite soil</a>, <a href="https://publications.waset.org/abstracts/search?q=plaxis%202d" title=" plaxis 2d"> plaxis 2d</a> </p> <a href="https://publications.waset.org/abstracts/104286/design-and-construction-demeanor-of-a-very-high-embankment-using-geosynthetics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104286.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22408</span> Evaluation of Applicability of High Strength Stirrup for Prestressed Concrete Members </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.-Y.%20Lee">J.-Y. Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=H.-S.%20Lim"> H.-S. Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=S.-E.%20Kim"> S.-E. Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, the use of high-strength materials is increasing as the construction of large structures and high-rise structures increases. This paper presents an analysis of the shear behavior of prestressed concrete members with various types of materials by simulating a finite element (FE) analysis. The analytical results indicated that the shear strength and shear failure mode were strongly influenced by not only the shear reinforcement ratio but also the yield strength of shear reinforcement and the compressive strength of concrete. Though the yield strength of shear reinforcement increased the shear strength of prestressed concrete members, there was a limit to the increase in strength because of the change of shear failure modes. According to the results of FE analysis on various parameters, the maximum yield strength of the steel stirrup that can be applied to prestressed concrete members was about 860 MPa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=prestressed%20concrete%20members" title="prestressed concrete members">prestressed concrete members</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20strength%20reinforcing%20bars" title=" high strength reinforcing bars"> high strength reinforcing bars</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20strength%20concrete" title=" high strength concrete"> high strength concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20behavior" title=" shear behavior"> shear behavior</a> </p> <a href="https://publications.waset.org/abstracts/65500/evaluation-of-applicability-of-high-strength-stirrup-for-prestressed-concrete-members" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65500.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22407</span> Laboratory Evaluation of Geogrids Used for Stabilizing Soft Subgrades</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Magdi%20M.%20E.%20Zumrawi">Magdi M. E. Zumrawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nehla%20Mansour"> Nehla Mansour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to assess the efficiency of using geogrid reinforcement for subgrade stabilization. The literature of applying geogrid reinforcement technique for pavements built on soft subgrades and the previous experiences were reviewed. Laboratory tests were conducted on soil reinforced with geogrids in one or several layers. The soil specimens were compacted in four layers with or without geogrid sheets. The California Bearing Ratio (CBR) test, in soaking condition, was performed on natural soil and soil-geogrid specimens. The test results revealed that the CBR value is much affected by the geogrid sheet location and the number of sheets used in the soil specimen. When a geogrid sheet was placed at the 1<sup>st</sup> layer of the soil, there was an increment of 26% in the CBR value. Moreover, the CBR value was significantly increased by 62% when geogrid sheets were placed at all four layers. The high CBR value is attributed to interface friction and interlock involved in the geogrid/ soil interactions. It could be concluded that geogrid reinforcement is successful and more economical technique. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geogrid" title="geogrid">geogrid</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforcement" title=" reinforcement"> reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=stabilization" title=" stabilization"> stabilization</a>, <a href="https://publications.waset.org/abstracts/search?q=subgrade" title=" subgrade"> subgrade</a> </p> <a href="https://publications.waset.org/abstracts/49821/laboratory-evaluation-of-geogrids-used-for-stabilizing-soft-subgrades" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49821.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22406</span> Effect of Rice Husk Ash on Strength and Durability of High Strength High Performance Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20B.%20Mahmud">H. B. Mahmud</a>, <a href="https://publications.waset.org/abstracts/search?q=Syamsul%20Bahri"> Syamsul Bahri</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20W.%20Yee"> Y. W. Yee</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20T.%20Yeap"> Y. T. Yeap </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reports the strength and durability properties of high strength high performance concrete incorporating rice husk ash (RHA) having high silica, low carbon content and appropriate fineness. In this study concrete containing 10%, 15% and 20% RHA as cement replacement and water to binder ratio of 0.25 were investigated. The results show that increasing amount of RHA increases the dosage of superplasticizer to maintain similar workability. Partial replacement of cement with RHA did not increase the early age compressive strength of concrete. However, concrete containing RHA showed higher compressive strength at later ages. The results showed that compressive strength of concrete in the 90-115 MPa range can be obtained at 28 curing days and the durability properties of RHA concrete performed better than that of control concrete. The water absorption of concrete incorporating 15% RHA exhibited the lowest value. The porosity of concrete is consistent with water absorption whereby higher replacement of RHA decreased the porosity of concrete. There is a positive correlation between reducing porosity and increasing compressive strength of high strength high performance concrete. The results also indicate that up to 20% of RHA incorporation could be advantageously blended with cement without adversely affecting the strength and durability properties of concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title="compressive strength">compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=durability" title=" durability"> durability</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20performance%20concrete" title=" high performance concrete"> high performance concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20husk%20ash" title=" rice husk ash"> rice husk ash</a> </p> <a href="https://publications.waset.org/abstracts/47128/effect-of-rice-husk-ash-on-strength-and-durability-of-high-strength-high-performance-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47128.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22405</span> Diagonal Crack Width of RC Members with High Strength Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Y.%20Lee">J. Y. Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20S.%20Lim"> H. S. Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20H.%20Yoon"> S. H. Yoon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an analysis of the diagonal crack widths of RC members with various types of materials by simulating a compatibility-aided truss model. The analytical results indicated that the diagonal crack width was influenced by not only the shear reinforcement ratio but also the yield strength of shear reinforcement and the compressive strength of concrete. The yield strength of shear reinforcement and the compressive strength of concrete decreased the diagonal shear crack width of RC members for the same shear force because of the change of shear failure modes. However, regarding the maximum shear crack width at shear failure, the shear crack width of the beam with high strength materials was greater than that of the beam with normal strength materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diagonal%20crack%20width" title="diagonal crack width">diagonal crack width</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20strength%20stirrups" title=" high strength stirrups"> high strength stirrups</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20strength%20concrete" title=" high strength concrete"> high strength concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20members" title=" RC members"> RC members</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20behavior" title=" shear behavior"> shear behavior</a> </p> <a href="https://publications.waset.org/abstracts/46565/diagonal-crack-width-of-rc-members-with-high-strength-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46565.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22404</span> Effect of Steel Fibers on Flexural Behavior of Normal and High Strength Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20M.%20Aldossari">K. M. Aldossari</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20A.%20Elsaigh"> W. A. Elsaigh</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20J.%20Shannag"> M. J. Shannag</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experimental study was conducted to investigate the effect of hooked-end steel fibers on the flexural behavior of normal and high strength concrete matrices. The fiber content appropriate for the concrete matrices investigated was also determined based on flexural tests on standard prisms. Parameters investigated include: Matrix compressive strength ranging from 45 MPa to 70 MPa, corresponding to normal and high strength concrete matrices respectively; Fiber volume fraction including 0, 0.5%, 0.76%, and 1%, equivalent to 0, 40, 60, and 80 kg/m3 of hooked-end steel fibers respectively. Test results indicated that flexural strength and toughness of normal and high strength concrete matrices were significantly improved with the increase in the fiber content added; Whereas a slight improvement in compressive strength was observed for the same matrices. Furthermore, the test results indicated that the effect of increasing the fiber content was more pronounced on increasing the flexural strength of high strength concrete than that of normal concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete" title="concrete">concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20strength" title=" flexural strength"> flexural strength</a>, <a href="https://publications.waset.org/abstracts/search?q=toughness" title=" toughness"> toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20fibers" title=" steel fibers"> steel fibers</a> </p> <a href="https://publications.waset.org/abstracts/2834/effect-of-steel-fibers-on-flexural-behavior-of-normal-and-high-strength-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2834.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">496</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22403</span> Waterproofing Agent in Concrete for Tensile Improvement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhamad%20Azani%20Yahya">Muhamad Azani Yahya</a>, <a href="https://publications.waset.org/abstracts/search?q=Umi%20Nadiah%20Nor%20Ali"> Umi Nadiah Nor Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Alias%20Yusof"> Mohammed Alias Yusof</a>, <a href="https://publications.waset.org/abstracts/search?q=Norazman%20Mohamad%20Nor"> Norazman Mohamad Nor</a>, <a href="https://publications.waset.org/abstracts/search?q=Vikneswaran%20Munikanan"> Vikneswaran Munikanan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In construction, concrete is one of the materials that can commonly be used as for structural elements. Concrete consists of cement, sand, aggregate and water. Concrete can be added with admixture in the wet condition to suit the design purpose such as to prolong the setting time to improve workability. For strength improvement, concrete is being added with other hybrid materials to increase strength; this is because the tensile strength of concrete is very low in comparison to the compressive strength. This paper shows the usage of a waterproofing agent in concrete to enhance the tensile strength. High tensile concrete is expensive because the concrete mix needs fiber and also high cement content to be incorporated in the mix. High tensile concrete being used for structures that are being imposed by high impact dynamic load such as blast loading that hit the structure. High tensile concrete can be defined as a concrete mix design that achieved 30%-40% tensile strength compared to its compression strength. This research evaluates the usage of a waterproofing agent in a concrete mix as an element of reinforcement to enhance the tensile strength. According to the compression and tensile test, it shows that the concrete mix with a waterproofing agent enhanced the mechanical properties of the concrete. It is also show that the composite concrete with waterproofing is a high tensile concrete; this is because of the tensile is between 30% and 40% of the compression strength. This mix is economical because it can produce high tensile concrete with low cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20tensile%20concrete" title="high tensile concrete">high tensile concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=waterproofing%20agent" title=" waterproofing agent"> waterproofing agent</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=rheology" title=" rheology"> rheology</a> </p> <a href="https://publications.waset.org/abstracts/58331/waterproofing-agent-in-concrete-for-tensile-improvement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58331.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22402</span> Effect of Fire on Structural Behavior of Normal and High Strength Concrete Beams </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alaa%20I.%20Arafa">Alaa I. Arafa</a>, <a href="https://publications.waset.org/abstracts/search?q=Hemdan%20O.%20A.%20Said.%20Marwa%20A.%20M.%20Ali"> Hemdan O. A. Said. Marwa A. M. Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates and evaluates experimentally the structural behavior of high strength concrete (HSC) beams under fire and compares it with that of Normal strength concrete (NSC) beams. The main investigated parameters are: concrete compressive strength (300 or 600 kg/cm<sup>2</sup>); the concrete cover thickness (3 or 5 cm); the degree of temperature (room temperature or 600 <sup>o</sup>C); the type of cooling (air or water); and the fire exposure time (3 or 5 hours). Test results showed that the concrete compressive strength decreases significantly as the exposure time to fire increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=experimental" title="experimental">experimental</a>, <a href="https://publications.waset.org/abstracts/search?q=fire" title=" fire"> fire</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20strength%20concrete%20beams" title=" high strength concrete beams"> high strength concrete beams</a>, <a href="https://publications.waset.org/abstracts/search?q=monotonic%20loading" title=" monotonic loading"> monotonic loading</a> </p> <a href="https://publications.waset.org/abstracts/54480/effect-of-fire-on-structural-behavior-of-normal-and-high-strength-concrete-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54480.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22401</span> Shear Behavior of Ultra High Strength Concrete Beams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghada%20Diaa">Ghada Diaa</a>, <a href="https://publications.waset.org/abstracts/search?q=Enas%20A.%20Khattab"> Enas A. Khattab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ultra High Strength Concrete (UHSC) is a new advanced concrete that is being transferred from laboratory researches to practicable applications. In addition to its excellent durability properties, UHSC has high compressive and tensile strengths, and high modulus of elasticity. Despite of this low degree of hydration, ultra high strength values can be achieved by controlling the mixture proportions. In this research, an experimental program was carried out to investigate the shear behavior of ultra high strength concrete beams. A total of nine beams were tested to determine the effect of different parameters on the shear behavior of UHSC beams. The parameters include concrete strength, steel fiber volume, shear span to depth ratio, and web reinforcement ratio. The results demonstrated that nominal shear stress at cracking load and at ultimate load increased with the increase of concrete strength or the decrease in shear span-depth ratio. Using steel fibers or shear reinforcement increases the ultimate shear strength and makes the shear behavior more ductile. In this study, a simplified analytical model to calculate the shear strength of UHSC beams is introduced. Shear strength estimated according to the proposed method in this research is in good agreement with the experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultra%20high%20strength" title="ultra high strength">ultra high strength</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strength" title=" shear strength"> shear strength</a>, <a href="https://publications.waset.org/abstracts/search?q=diagonal" title=" diagonal"> diagonal</a>, <a href="https://publications.waset.org/abstracts/search?q=cracking" title=" cracking"> cracking</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20fibers" title=" steel fibers"> steel fibers</a> </p> <a href="https://publications.waset.org/abstracts/22302/shear-behavior-of-ultra-high-strength-concrete-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22302.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">618</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22400</span> Experimental Studies on Reactive Powder Concrete Containing Fly Ash and Steel Fibre</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20J.%20Shah">A. J. Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=Neeraj%20Kumar%20Sahu"> Neeraj Kumar Sahu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reactive powder concrete (RPC) is high performance and high strength concrete which composes of very fine powdered materials like cement, sand, silica fume and quartz powder. It also constitutes steel fibre (optional) and super-plasticizer. The present study investigates the performance of reactive powder concrete with fly ash as a replacement of cement under hot water and normal water curing conditions. The replacement of cement with fly ash is done at 10%, 20%, 30% and 40%. To compare the results of cement replaced RPC and traditional RPC, the performance of various mixes is evaluated by compressive strength, flexural strength, split tensile strength and durability. The results show that with increasing percentage of fly ash, improvement in durability is observed and a slight decrease in compressive strength and flexural strength is also observed. It is observed that specimen under hot water curing showed 15 to 20 % more strength than specimens under normal water curing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20strength%20concrete" title="high strength concrete">high strength concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20flexural%20strength%20of%20RPC" title=" the flexural strength of RPC"> the flexural strength of RPC</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength%20of%20RPC" title=" compressive strength of RPC"> compressive strength of RPC</a>, <a href="https://publications.waset.org/abstracts/search?q=durability" title=" durability"> durability</a> </p> <a href="https://publications.waset.org/abstracts/96189/experimental-studies-on-reactive-powder-concrete-containing-fly-ash-and-steel-fibre" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96189.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22399</span> A Study on Behaviour of Normal Strength Concrete and High Strength Concrete Subjected to Elevated Temperatures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Butchi%20Kameswara%20Rao%20Chittem">Butchi Kameswara Rao Chittem</a>, <a href="https://publications.waset.org/abstracts/search?q=Rooban%20Kumar"> Rooban Kumar </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cement concrete is a complex mixture of different materials. Concrete is believed to have a good fire resistance. Behaviour of concrete depends on its mix proportions and its constituent materials when it is subjected to elevated temperatures. Loss in compressive strength, loss in weight or mass, change in colour and spall of concrete are reported in literature as effects of elevated temperature on concrete. In this paper results are reported on the behaviour of normal strength concrete and high strength concrete subjected to temperatures 200°C, 400°C, 600°C, and 800°C and different cooling regimes viz. air cooling, water quenching. Rebound hammer test was also conducted to study the changes in surface hardness of concrete specimens subjected to elevated temperatures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=normal%20strength%20concrete" title="normal strength concrete">normal strength concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=high-strength%20concrete" title=" high-strength concrete"> high-strength concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=NDT" title=" NDT"> NDT</a> </p> <a href="https://publications.waset.org/abstracts/19201/a-study-on-behaviour-of-normal-strength-concrete-and-high-strength-concrete-subjected-to-elevated-temperatures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19201.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22398</span> The Influence of High Temperatures on HVFA Concrete Columns by NDT Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Jagath%20Kumari">D. Jagath Kumari</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Srinivasa%20Rao"> K. Srinivasa Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quality assurance of the structures subjected to high temperatures is now enforcing measure for the Structural Engineers. The existing relations between strength and nondestructive measurements have been established under normal conditions are not suitable to concretes that have been exposed to high temperatures. The scope of the work is to investigate the influence of high temperatures of short durations on the residual properties of reinforced HVFA concrete columns that affect the strength by non-destructive tests (NDT). Fly ash concrete is increasingly used in the design of normal strength, high strength and high performance concretes. In this paper, the authors revealed the influence of high temperatures on HVFA concrete columns. These columns are heated from 100oC to 800oC with increments of 100oC and allowed to cool to room temperature by two methods one is air cooling method and the other immediate water quenching method. All the specimens were tested identically, before heating and after heating for compressive strength and material integrity by rebound hammer and ultrasonic pulse velocity (UPV) meter respectively. HVFA concrete retained more residual strength by water quenching method than air-cooling method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HVFA%20concrete" title="HVFA concrete">HVFA concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=NDT%20methods" title=" NDT methods"> NDT methods</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20strength" title=" residual strength"> residual strength</a>, <a href="https://publications.waset.org/abstracts/search?q=non-destructive%20tests" title=" non-destructive tests "> non-destructive tests </a> </p> <a href="https://publications.waset.org/abstracts/28751/the-influence-of-high-temperatures-on-hvfa-concrete-columns-by-ndt-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28751.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22397</span> The Mechanical Strength and Durability of High Performance Concrete Using Local Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Guemidi">I. Guemidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Abdelaziz"> Y. Abdelaziz</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Rikioui"> T. Rikioui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, an experimental investigation was carried out to evaluate the mechanical and durability properties of high performance concretes (HPC) containing local southwest Algerian materials. The mechanical properties were assessed from the compressive strength and the flexural strength, whilst the durability characteristics were investigated in terms of sulphate attack. The results obtained allow us to conclude that it is possible to make a high performance concrete (HPC) based on existing materials in the local market, if these are carefully selected and properly mixed in such away to optimize grain size distribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=durability" title="durability">durability</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20performance%20concrete" title=" high performance concrete"> high performance concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20%20strength" title=" high strength"> high strength</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20materials" title=" local materials"> local materials</a>, <a href="https://publications.waset.org/abstracts/search?q=Southwest%20Algerian" title=" Southwest Algerian"> Southwest Algerian</a>, <a href="https://publications.waset.org/abstracts/search?q=sulphate%20attack" title=" sulphate attack"> sulphate attack</a> </p> <a href="https://publications.waset.org/abstracts/36786/the-mechanical-strength-and-durability-of-high-performance-concrete-using-local-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36786.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22396</span> Three-Dimensional Finite Element Analysis of Geogrid-Reinforced Piled Embankments on Soft Clay</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Y.%20Shokry">Mahmoud Y. Shokry</a>, <a href="https://publications.waset.org/abstracts/search?q=Rami%20M.%20El-Sherbiny"> Rami M. El-Sherbiny</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to highlight the role of some parameters that may be of a noticeable impact on numerical analysis/design of embankments. It presents the results of a three-dimensional (3-D) finite element analysis of a monitored earth embankment that was constructed on soft clay formation stabilized by cast in-situ piles using software PLAXIS 3D. A comparison between the predicted and the monitored responses is presented to assess the adequacy of the adopted numerical model. The model was used in the targeted parametric study. Moreover, a comparison was performed between the results of the 3-D analyses and the analytical solutions. This paper concluded that the effect of using mono pile caps led to decrease both the total and differential settlement and increased the efficiency of the piled embankment system. The study of using geogrids revealed that it can contribute in decreasing the settlement and maximizing the part of the embankment load transferred to piles. Moreover, it was found that increasing the stiffness of the geogrids provides higher values of tensile forces and hence has more effective influence on embankment load carried by piles rather than using multi-number of layers with low values of geogrid stiffness. The efficiency of the piled embankments system was also found to be greater when higher embankments are used rather than the low height embankments. The comparison between the numerical 3-D model and the theoretical design methods revealed that many analytical solutions are conservative and non-accurate rather than the 3-D finite element numerical models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=efficiency" title="efficiency">efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=embankment" title=" embankment"> embankment</a>, <a href="https://publications.waset.org/abstracts/search?q=geogrids" title=" geogrids"> geogrids</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20clay" title=" soft clay"> soft clay</a> </p> <a href="https://publications.waset.org/abstracts/45303/three-dimensional-finite-element-analysis-of-geogrid-reinforced-piled-embankments-on-soft-clay" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45303.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22395</span> Predictive Models for Compressive Strength of High Performance Fly Ash Cement Concrete for Pavements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Gupta">S. M. Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Vanita%20Aggarwal"> Vanita Aggarwal</a>, <a href="https://publications.waset.org/abstracts/search?q=Som%20Nath%20Sachdeva"> Som Nath Sachdeva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The work reported through this paper is an experimental work conducted on High Performance Concrete (HPC) with super plasticizer with the aim to develop some models suitable for prediction of compressive strength of HPC mixes. In this study, the effect of varying proportions of fly ash (0% to 50% at 10% increment) on compressive strength of high performance concrete has been evaluated. The mix designs studied were M30, M40 and M50 to compare the effect of fly ash addition on the properties of these concrete mixes. In all eighteen concrete mixes have been designed, three as conventional concretes for three grades under discussion and fifteen as HPC with fly ash with varying percentages of fly ash. The concrete mix designing has been done in accordance with Indian standard recommended guidelines i.e. IS: 10262. All the concrete mixes have been studied in terms of compressive strength at 7 days, 28 days, 90 days and 365 days. All the materials used have been kept same throughout the study to get a perfect comparison of values of results. The models for compressive strength prediction have been developed using Linear Regression method (LR), Artificial Neural Network (ANN) and Leave One Out Validation (LOOV) methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20performance%20concrete" title="high performance concrete">high performance concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title=" fly ash"> fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20mixes" title=" concrete mixes"> concrete mixes</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=strength%20prediction%20models" title=" strength prediction models"> strength prediction models</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20regression" title=" linear regression"> linear regression</a>, <a href="https://publications.waset.org/abstracts/search?q=ANN" title=" ANN"> ANN</a> </p> <a href="https://publications.waset.org/abstracts/6644/predictive-models-for-compressive-strength-of-high-performance-fly-ash-cement-concrete-for-pavements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6644.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">445</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22394</span> Effect of Concrete Strength and Aspect Ratio on Strength and Ductility of Concrete Columns</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20A.%20Shanan">Mohamed A. Shanan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashraf%20H.%20El-Zanaty"> Ashraf H. El-Zanaty</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamal%20G.%20Metwally"> Kamal G. Metwally</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the effect of concrete compressive strength and rectangularity ratio on strength and ductility of normal and high strength reinforced concrete columns confined with transverse steel under axial compressive loading. Nineteen normal strength concrete rectangular columns with different variables tested in this research were used to study the effect of concrete compressive strength and rectangularity ratio on strength and ductility of columns. The paper also presents a nonlinear finite element analysis for these specimens and another twenty high strength concrete square columns tested by other researchers using ANSYS 15 finite element software. The results indicate that the axial force &ndash; axial strain relationship obtained from the analytical model using ANSYS are in good agreement with the experimental data. The comparison shows that the ANSYS is capable of modeling and predicting the actual nonlinear behavior of confined normal and high-strength concrete columns under concentric loading. The maximum applied load and the maximum strain have also been confirmed to be satisfactory. Depending on this agreement between the experimental and analytical results, a parametric numerical study was conducted by ANSYS 15 to clarify and evaluate the effect of each variable on strength and ductility of the columns. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ANSYS" title="ANSYS">ANSYS</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20compressive%20strength%20effect" title=" concrete compressive strength effect"> concrete compressive strength effect</a>, <a href="https://publications.waset.org/abstracts/search?q=ductility" title=" ductility"> ductility</a>, <a href="https://publications.waset.org/abstracts/search?q=rectangularity%20ratio" title=" rectangularity ratio"> rectangularity ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=strength" title=" strength"> strength</a> </p> <a href="https://publications.waset.org/abstracts/51557/effect-of-concrete-strength-and-aspect-ratio-on-strength-and-ductility-of-concrete-columns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51557.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">510</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22393</span> Development of the Accelerator Applied to an Early Stage High-Strength Shotcrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayanori%20Sugiyama">Ayanori Sugiyama</a>, <a href="https://publications.waset.org/abstracts/search?q=Takahisa%20Hanei"> Takahisa Hanei</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasuhide%20Higo"> Yasuhide Higo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Domestic demand for the construction of tunnels has been increasing in recent years in Japan. To meet this demand, various construction materials and construction methods have been developed to attain higher strength, reduction of negative impact on the environment and improvement for working conditions. In this report, we would like to introduce the newly developed shotcrete with superior hardening properties which were tested through the actual machine scale and its workability and strength development were evaluated. As a result, this new tunnel construction method was found to achieve higher workability and quicker strength development in only a couple of minutes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accelerator" title="accelerator">accelerator</a>, <a href="https://publications.waset.org/abstracts/search?q=shotcrete" title=" shotcrete"> shotcrete</a>, <a href="https://publications.waset.org/abstracts/search?q=tunnel" title=" tunnel"> tunnel</a>, <a href="https://publications.waset.org/abstracts/search?q=high-strength" title=" high-strength"> high-strength</a> </p> <a href="https://publications.waset.org/abstracts/81877/development-of-the-accelerator-applied-to-an-early-stage-high-strength-shotcrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81877.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22392</span> Case Study: Hybrid Mechanically Stabilized Earth Wall System Built on Basal Reinforced Raft</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Kaymak%C3%A7%C4%B1">S. Kaymakçı</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20G%C3%BCndo%C4%9Fdu"> D. Gündoğdu</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20%C3%96z%C3%A7elik"> H. Özçelik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The truck park of a warehouse for a chain of supermarket was going to be constructed on a poor ground. Rather than using a piled foundation, the client was convinced that a ground improvement using a reinforced foundation raft also known as “basal reinforcement” shall work. The retaining structures supporting the truck park area were designed using a hybrid structure made up of the Terramesh® Wall System and MacGrid™ high strength geogrids. The total wall surface area is nearly 2740 sq.m , reaching a maximum height of 13.00 meters. The area is located in the first degree seismic zone of Turkey and the design seismic acceleration is high. The design of walls has been carried out using pseudo-static method (limit equilibrium) taking into consideration different loading conditions using Eurocode 7. For each standard approach stability analysis in seismic condition were performed. The paper presents the detailed design of the reinforced soil structure, basal reinforcement and the construction methods; advantages of using such system for the project are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=basal%20reinforcement" title="basal reinforcement">basal reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=geogrid" title=" geogrid"> geogrid</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20soil%20raft" title=" reinforced soil raft"> reinforced soil raft</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20soil%20wall" title=" reinforced soil wall"> reinforced soil wall</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20reinforcement" title=" soil reinforcement"> soil reinforcement</a> </p> <a href="https://publications.waset.org/abstracts/57282/case-study-hybrid-mechanically-stabilized-earth-wall-system-built-on-basal-reinforced-raft" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57282.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22391</span> Use of Geosynthetics as Reinforcement Elements in Unpaved Tertiary Roads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vivian%20A.%20Galindo">Vivian A. Galindo</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20C.%20Galvis"> Maria C. Galvis</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaime%20R.%20Obando"> Jaime R. Obando</a>, <a href="https://publications.waset.org/abstracts/search?q=Alvaro%20Guarin"> Alvaro Guarin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Colombia, most of the roads of the national tertiary road network are unpaved roads with granular rolling surface. These are very important ways of guaranteeing the mobility of people, products, and inputs from the agricultural sector from the most remote areas to urban centers; however, it has not paid much attention to the search for alternatives to avoid the occurrence of deteriorations that occur shortly after its commissioning. In recent years, geosynthetics have been used satisfactorily to reinforce unpaved roads on soft soils, with geotextiles and geogrids being the most widely used. The interaction of the geogrid and the aggregate minimizes the lateral movement of the aggregate particles and increases the load capacity of the material, which leads to a better distribution of the vertical stresses, consequently reducing the vertical deformations in the subgrade. Taking into account the above, the research aimed at the mechanical behavior of the granular material, used in unpaved roads with and without the presence of geogrids, from the development of laboratory tests through the loaded wheel tester (LWT). For comparison purposes, the reinforced conditions and traffic conditions to which this type of material can be accessed in practice were simulated. In total four types of geogrids, were tested with granular material; this means that five test sets, the reinforced material and the non-reinforced control sample were evaluated. The results of the numbers of load cycles and depth rutting supported by each test body showed the influence of the properties of the reinforcement on the mechanical behavior of the assembly and the significant increases in the number of load cycles of the reinforced specimens in relation to those without reinforcement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geosynthetics" title="geosynthetics">geosynthetics</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20wheel%20tester%20LWT" title=" load wheel tester LWT"> load wheel tester LWT</a>, <a href="https://publications.waset.org/abstracts/search?q=tertiary%20roads" title=" tertiary roads"> tertiary roads</a>, <a href="https://publications.waset.org/abstracts/search?q=unpaved%20road" title=" unpaved road"> unpaved road</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20deformation" title=" vertical deformation"> vertical deformation</a> </p> <a href="https://publications.waset.org/abstracts/82535/use-of-geosynthetics-as-reinforcement-elements-in-unpaved-tertiary-roads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82535.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22390</span> Influence of the Reliability Index on the Safety Factor of the Concrete Contribution to Shear Strength of HSC Beams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Sagiroglu">Ali Sagiroglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Sema%20Noyan%20Alacali"> Sema Noyan Alacali</a>, <a href="https://publications.waset.org/abstracts/search?q=Guray%20Arslan"> Guray Arslan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a study on the influence of the safety factor in the concrete contribution to shear strength of high-strength concrete (HSC) beams according to TS500. In TS500, the contribution of concrete to shear strength is obtained by reducing diagonal cracking strength with a safety factor of 0.8. It was investigated that the coefficient of 0.8 considered in determining the contribution of concrete to the shear strength corresponds to which value of failure probability. Also, the changes in the reduction factor depending on different coefficients of variation of concrete were examined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete" title="reinforced concrete">reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=beam" title=" beam"> beam</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strength" title=" shear strength"> shear strength</a>, <a href="https://publications.waset.org/abstracts/search?q=failure%20probability" title=" failure probability"> failure probability</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20factor" title=" safety factor"> safety factor</a> </p> <a href="https://publications.waset.org/abstracts/22211/influence-of-the-reliability-index-on-the-safety-factor-of-the-concrete-contribution-to-shear-strength-of-hsc-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22211.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">830</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22389</span> Kinematic Behavior of Geogrid Reinforcements during Earthquakes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Hosny%20Abdel-Rahman">Ahmed Hosny Abdel-Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Abdel-Moneim"> Mohamed Abdel-Moneim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reinforced earth structures are generally subjected to cyclic loading generated from earthquakes. This paper presents a summary of the results and analyses of a testing program carried out in a large-scale multi-function geosynthetic testing apparatus that accommodates soil samples up to 1.0 m3. This apparatus performs different shear and pullout tests under both static and cyclic loading. The testing program was carried out to investigate the controlling factors affecting soil/geogrid interaction under cyclic loading. The extensibility of the geogrids, the applied normal stresses, the characteristics of the cyclic loading (frequency, and amplitude), and initial static load within the geogrid sheet were considered in the testing program. Based on the findings of the testing program, the effect of these parameters on the pullout resistance of geogrids, as well as the displacement mobility under cyclic loading were evaluated. Conclusions and recommendations for the design of reinforced earth walls under cyclic loading are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geogrid" title="geogrid">geogrid</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=interface" title=" interface"> interface</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20loading" title=" cyclic loading"> cyclic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=pullout" title=" pullout"> pullout</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20scale%20testing" title=" large scale testing"> large scale testing</a> </p> <a href="https://publications.waset.org/abstracts/30799/kinematic-behavior-of-geogrid-reinforcements-during-earthquakes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30799.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">622</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22388</span> The Effect of Surface Modifiers on the Mechanical and Morphological Properties of Waste Silicon Carbide Filled High-Density Polyethylene </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Dangtungee">R. Dangtungee</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Rattanapan"> A. Rattanapan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Siengchin"> S. Siengchin </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Waste silicon carbide (waste SiC) filled high-density polyethylene (HDPE) with and without surface modifiers were studied. Two types of surface modifiers namely; high-density polyethylene-grafted-maleic anhydride (HDPE-g-MA) and 3-aminopropyltriethoxysilane have been used in this study. The composites were produced using a two roll mill, extruder and shaped in a hydraulic compression molding machine. The mechanical properties of polymer composites such as flexural strength and modulus, impact strength, tensile strength, stiffness and hardness were investigated over a range of compositions. It was found that, flexural strength and modulus, tensile modulus and hardness increased, whereas impact strength and tensile strength decreased with the increasing in filler contents, compared to the neat HDPE. At similar filler content, the effect of both surface modifiers increased flexural modulus, impact strength, tensile strength and stiffness but reduced the flexural strength. Morphological investigation using SEM revealed that the improvement in mechanical properties was due to enhancement of the interfacial adhesion between waste SiC and HDPE. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high-density%20polyethylene" title="high-density polyethylene">high-density polyethylene</a>, <a href="https://publications.waset.org/abstracts/search?q=HDPE-g-MA" title=" HDPE-g-MA"> HDPE-g-MA</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=morphological%20properties" title=" morphological properties"> morphological properties</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20carbide" title=" silicon carbide"> silicon carbide</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20silicon%20carbide" title=" waste silicon carbide"> waste silicon carbide</a> </p> <a href="https://publications.waset.org/abstracts/17302/the-effect-of-surface-modifiers-on-the-mechanical-and-morphological-properties-of-waste-silicon-carbide-filled-high-density-polyethylene" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17302.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22387</span> Real-Time Compressive Strength Monitoring for NPP Concrete Construction Using an Embedded Piezoelectric Self-Sensing Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Junkyeong%20Kim">Junkyeong Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Seunghee%20Park"> Seunghee Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Ju-Won%20Kim"> Ju-Won Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Myung-Sug%20Cho"> Myung-Sug Cho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, demands for the construction of Nuclear Power Plants (NPP) using high strength concrete (HSC) has been increased. However, HSC might be susceptible to brittle fracture if the curing process is inadequate. To prevent unexpected collapse during and after the construction of HSC structures, it is essential to confirm the strength development of HSC during the curing process. However, several traditional strength-measuring methods are not effective and practical. In this study, a novel method to estimate the strength development of HSC based on electromechanical impedance (EMI) measurements using an embedded piezoelectric sensor is proposed. The EMI of NPP concrete specimen was tracked to monitor the strength development. In addition, cross-correlation coefficient was applied in sequence to examine the trend of the impedance variations more quantitatively. The results confirmed that the proposed technique can be applied successfully monitoring of the strength development during the curing process of HSC structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20curing" title="concrete curing">concrete curing</a>, <a href="https://publications.waset.org/abstracts/search?q=embedded%20piezoelectric%20sensor" title=" embedded piezoelectric sensor"> embedded piezoelectric sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20strength%20concrete" title=" high strength concrete"> high strength concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20power%20plant" title=" nuclear power plant"> nuclear power plant</a>, <a href="https://publications.waset.org/abstracts/search?q=self-sensing%20impedance" title=" self-sensing impedance "> self-sensing impedance </a> </p> <a href="https://publications.waset.org/abstracts/2720/real-time-compressive-strength-monitoring-for-npp-concrete-construction-using-an-embedded-piezoelectric-self-sensing-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2720.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">516</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22386</span> Convergence Analysis of a Gibbs Sampling Based Mix Design Optimization Approach for High Compressive Strength Pervious Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiaqi%20Huang">Jiaqi Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Lu%20Jin"> Lu Jin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pervious concrete features with high water permeability rate. However, due to the lack of fine aggregates, the compressive strength is usually lower than other conventional concrete products. Optimization of pervious concrete mix design has long been recognized as an effective mechanism to achieve high compressive strength while maintaining desired permeability rate. In this paper, a Gibbs Sampling based algorithm is proposed to approximate the optimal mix design to achieve a high compressive strength of pervious concrete. We prove that the proposed algorithm efficiently converges to the set of global optimal solutions. The convergence rate and accuracy depend on a control parameter employed in the proposed algorithm. The simulation results show that, by using the proposed approach, the system converges to the optimal solution quickly and the derived optimal mix design achieves the maximum compressive strength while maintaining the desired permeability rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convergence" title="convergence">convergence</a>, <a href="https://publications.waset.org/abstracts/search?q=Gibbs%20Sampling" title=" Gibbs Sampling"> Gibbs Sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20compressive%20strength" title=" high compressive strength"> high compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20mix%20design" title=" optimal mix design"> optimal mix design</a>, <a href="https://publications.waset.org/abstracts/search?q=pervious%20concrete" title=" pervious concrete"> pervious concrete</a> </p> <a href="https://publications.waset.org/abstracts/88245/convergence-analysis-of-a-gibbs-sampling-based-mix-design-optimization-approach-for-high-compressive-strength-pervious-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88245.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22385</span> High Arousal and Athletic Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Turki%20Mohammed%20Al%20Mohaid">Turki Mohammed Al Mohaid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High arousal may lead to inhibited athletic performance, or high positive arousal may enhance performance is controversial. To evaluate and review this issue, 31 athletes (all male) were induced into high pre-determined goal arousal and high arousal without pre-determined goal motivational states and tested on a standard grip strength task. Paced breathing was used to change psychological and physiological arousal. It was noted that significant increases in grip strength performance occurred when arousal was high and experienced as delighted, happy, and pleasant excitement in those with no pre-determined goal motivational states. Blood pressure, heart rate, and other indicators of physiological activity were not found to mediate between psychological arousal and performance. In a situation where athletic performance necessitates maximal motor strength over a short period, performance benefits of high arousal may be enhanced by designing a specific motivational state. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20arousal" title="high arousal">high arousal</a>, <a href="https://publications.waset.org/abstracts/search?q=athletic" title=" athletic"> athletic</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=physiological" title=" physiological"> physiological</a> </p> <a href="https://publications.waset.org/abstracts/149436/high-arousal-and-athletic-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22384</span> Artificial Intelligence in the Design of High-Strength Recycled Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hadi%20Rouhi%20Belvirdi">Hadi Rouhi Belvirdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Davoud%20Beheshtizadeh"> Davoud Beheshtizadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increasing demand for sustainable construction materials has led to a growing interest in high-strength recycled concrete (HSRC). Utilizing recycled materials not only reduces waste but also minimizes the depletion of natural resources. This study explores the application of artificial intelligence (AI) techniques to model and predict the properties of HSRC. In the past two decades, the production levels in various industries and, consequently, the amount of waste have increased significantly. Continuing this trend will undoubtedly cause irreparable damage to the environment. For this reason, engineers have been constantly seeking practical solutions for recycling industrial waste in recent years. This research utilized the results of the compressive strength of 90-day high-strength recycled concrete. The method for creating recycled concrete involved replacing sand with crushed glass and using glass powder instead of cement. Subsequently, a feedforward artificial neural network was employed to model the compressive strength results for 90 days. The regression and error values obtained indicate that this network is suitable for modeling the compressive strength data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high-strength%20recycled%20concrete" title="high-strength recycled concrete">high-strength recycled concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=feedforward%20artificial%20neural%20network" title=" feedforward artificial neural network"> feedforward artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=regression" title=" regression"> regression</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20materials" title=" construction materials"> construction materials</a> </p> <a href="https://publications.waset.org/abstracts/193212/artificial-intelligence-in-the-design-of-high-strength-recycled-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193212.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">13</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22383</span> Physical and Thermo-Physical Properties of High Strength Concrete Containing Raw Rice Husk after High Temperature Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Akturk">B. Akturk</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Yuzer"> N. Yuzer</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Kabay"> N. Kabay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High temperature is one of the most detrimental effects that cause important changes in concrete’s mechanical, physical, and thermo-physical properties. As a result of these changes, especially high strength concrete (HSC), may exhibit damages such as cracks and spallings. To overcome this problem, incorporating polymer fibers such as polypropylene (PP) in concrete is a very well-known method. In this study, using RRH as a sustainable material instead of PP fiber in HSC to prevent spallings and improve physical and thermo-physical properties were investigated. Therefore, seven HSC mixtures with 0.25 water to binder ratio were prepared, incorporating silica fume and blast furnace slag. PP and RRH were used at 0.2-0.5% and 0.5-3% by weight of cement, respectively. All specimens were subjected to high temperatures (20 (control), 300, 600 and 900˚C) with a heating rate of 2.5˚C/min and after cooling, residual physical and thermo-physical properties were determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20temperature" title="high temperature">high temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20strength%20concrete" title=" high strength concrete"> high strength concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=polypropylene%20fiber" title=" polypropylene fiber"> polypropylene fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=raw%20rice%20husk" title=" raw rice husk"> raw rice husk</a>, <a href="https://publications.waset.org/abstracts/search?q=thermo-physical%20properties" title=" thermo-physical properties"> thermo-physical properties</a> </p> <a href="https://publications.waset.org/abstracts/6212/physical-and-thermo-physical-properties-of-high-strength-concrete-containing-raw-rice-husk-after-high-temperature-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6212.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high%20strength%20geogrids&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high%20strength%20geogrids&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high%20strength%20geogrids&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high%20strength%20geogrids&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high%20strength%20geogrids&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high%20strength%20geogrids&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high%20strength%20geogrids&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high%20strength%20geogrids&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high%20strength%20geogrids&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high%20strength%20geogrids&amp;page=747">747</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high%20strength%20geogrids&amp;page=748">748</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high%20strength%20geogrids&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10