CINXE.COM
Search results for: lignocellulosic raw materials
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: lignocellulosic raw materials</title> <meta name="description" content="Search results for: lignocellulosic raw materials"> <meta name="keywords" content="lignocellulosic raw materials"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="lignocellulosic raw materials" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="lignocellulosic raw materials"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 6942</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: lignocellulosic raw materials</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6942</span> Paenibacillus illinoisensis CX11: A Cellulase- and Xylanase-Producing Bacteria for Saccharification of Lignocellulosic Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abeer%20A.%20Q.%20Ahmed">Abeer A. Q. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Tracey%20McKay"> Tracey McKay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biomass can provide a sustainable source for the production of high valued chemicals. Under the uncertain availability of fossil resources biomass could be the only available source for chemicals in future. Cellulose and hemicellulose can be hydrolyzed into their building blocks (hexsoses and pentoses) which can be converted later to the desired high valued chemicals. A cellulase- and xylanase- producing bacterial strain identified as Paenibacillus illinoisensis CX11 by 16S rRNA gene sequencing and phylogenetic analysis was found to have the ability to saccharify different lignocellulosic materials. Cellulase and xylanase activities were evaluated by 3,5-dinitro-salicylic acid (DNS) method using CMC and xylan as substrates. Results showed that P. illinoisensis CX11 have cellulase (2.63± 0.09 mg/ml) and xylanase (3.25 ± 0.2 mg/ml) activities. The ability of P. illinoisensis CX11 to saccharify lignocellulosic materials was tested using wheat straw (WS), wheat bran (WB), saw dust (SD), and corn stover (CS). DNS method was used to determine the amount of reducing sugars that were released from lignocellulosic materials. P. illinoisensis CX11 showed to have the ability to saccharify lignocellulosic materials and producing total reducing sugars as 2.34 ± 0.12, 2.51 ± 0.37, 1.86 ± 0.16, and 3.29 ± 0.20 mg/l from WS, WB, SD, and CS respectively. According to the author's knowledge, current findings are the first to report P. illinoisensis CX11 as a cellulase and xylanase producing species and that it has the ability to saccharify different lignocellulosic materials. This study presents P. illinoisensis CX11 that can be good source for cellulase and xylanase enzymes which could be introduced into lignocellulose bioconversion processes to produce high valued chemicals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellulase" title="cellulase">cellulase</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20valued%20chemicals" title=" high valued chemicals"> high valued chemicals</a>, <a href="https://publications.waset.org/abstracts/search?q=lignocellulosic%20materials" title=" lignocellulosic materials"> lignocellulosic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=Paenibacillus%20illinoisensis%20CX11" title=" Paenibacillus illinoisensis CX11"> Paenibacillus illinoisensis CX11</a>, <a href="https://publications.waset.org/abstracts/search?q=Xylanase" title=" Xylanase"> Xylanase</a> </p> <a href="https://publications.waset.org/abstracts/57976/paenibacillus-illinoisensis-cx11-a-cellulase-and-xylanase-producing-bacteria-for-saccharification-of-lignocellulosic-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57976.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6941</span> PLA Production from Multi Supply Lignocellulosic Biomass Residues: A Pathway for Agrifood Sector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S%C3%B3nia%20Ribeiro">Sónia Ribeiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Diana%20Farinha"> Diana Farinha</a>, <a href="https://publications.waset.org/abstracts/search?q=H%C3%A9lia%20Sales"> Hélia Sales</a>, <a href="https://publications.waset.org/abstracts/search?q=Rita%20Pontes"> Rita Pontes</a>, <a href="https://publications.waset.org/abstracts/search?q=Jo%C3%A3o%20Nunes"> João Nunes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The demand and commitment to sustainability in the agrifood sector introduce news opportunities for new composite materials. Composite materials are emerging as a vital entity for the sustainable development. Polylactic acid (PLA) has been recognized as a potential polymer with attractive characteristics for agrifood sector applications. PLA that can be beneficial for the development of composites, biocomposites, films, porous gels, and so on. The production of PLA from lignocellulosic biomass residues matrix is a key option towards a sustainable and circular bioeconomy and a non-competitive application with feed and food sector. The Flui and BeirInov projects presents news developments in the production of PLA composites to value the Portuguese forest ecosystem, with high amount of lignocellulosic biomass residues and available. A performance production of lactic acid from lignocellulosic biomass undergoes a process of autohydrolysis, saccharification and fermentation, originating a lactic acid fermentation medium with a 72.27g.L-1 was obtained and a final purification of 72%. The high purification PLA from multi lignocellulosic residues representing one economic expensive process, and a new materials and application for the polymers and a combination with others types of composites matrix characteristic is the drive-up for this green market. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polylactic%20acid" title="polylactic acid">polylactic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=lignocellulosic%20biomass" title=" lignocellulosic biomass"> lignocellulosic biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=agrifood" title=" agrifood"> agrifood</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20materials" title=" composite materials"> composite materials</a> </p> <a href="https://publications.waset.org/abstracts/167173/pla-production-from-multi-supply-lignocellulosic-biomass-residues-a-pathway-for-agrifood-sector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6940</span> Improve of Biomass Properties through Torrefaction Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malgorzata%20Walkowiak">Malgorzata Walkowiak</a>, <a href="https://publications.waset.org/abstracts/search?q=Magdalena%20Witczak"> Magdalena Witczak</a>, <a href="https://publications.waset.org/abstracts/search?q=Wojciech%20Cichy"> Wojciech Cichy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biomass is an important renewable energy source in Poland. As a biofuel, it has many advantages like renewable in noticeable time and relatively high energy potential. But disadvantages of biomass like high moisture content and hygroscopic nature causes that gaining, transport, storage and preparation for combustion become troublesome and uneconomic. Thermal modification of biomass can improve hydrophobic properties, increase its calorific value and natural resistance. This form of thermal processing is known as torrefaction. The aim of the study was to investigate the effect of the pre-heat treatment of wood and plant lignocellulosic raw materials on the properties of solid biofuels. The preliminary studies included pine, beech and willow wood and other lignocellulosic raw materials: mustard, hemp, grass stems, tobacco stalks, sunflower husks, Miscanthus straw, rape straw, cereal straw, Virginia Mallow straw, rapeseed meal. Torrefaction was carried out using variable temperatures and time of the process, depending on the material used. It was specified the weight loss and the ash content and calorific value was determined. It was found that the thermal treatment of the tested lignocellulosic raw materials is able to provide solid biofuel with improved properties. In the woody materials, the increase of the lower heating value was in the range of 0,3 MJ/kg (pine and beech) to 1,1 MJ/kg (willow), in non-woody materials – from 0,5 MJ/kg (tobacco stalks, Miscanthus) to 3,5 MJ/kg (rapeseed meal). The obtained results indicate for further research needs, particularly in terms of conditions of the torrefaction process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass" title="biomass">biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=lignocellulosic%20materials" title=" lignocellulosic materials"> lignocellulosic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20biofuels" title=" solid biofuels"> solid biofuels</a>, <a href="https://publications.waset.org/abstracts/search?q=torrefaction" title=" torrefaction"> torrefaction</a> </p> <a href="https://publications.waset.org/abstracts/53382/improve-of-biomass-properties-through-torrefaction-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53382.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6939</span> Impact of Syngenetic Elements on the Physico-Chemical Properties of Lignocellulosic Biochar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Edita%20Baltr%C4%97nait%C4%97">Edita Baltrėnaitė</a>, <a href="https://publications.waset.org/abstracts/search?q=Pranas%20Baltr%C4%97nas"> Pranas Baltrėnas</a>, <a href="https://publications.waset.org/abstracts/search?q=Egl%C4%97%20Mar%C4%8DIulaitien%C4%97"> Eglė MarčIulaitienė</a>, <a href="https://publications.waset.org/abstracts/search?q=Mantas%20Pranskevi%C4%8DIus"> Mantas PranskevičIus</a>, <a href="https://publications.waset.org/abstracts/search?q=Valeriia%20Chemerys"> Valeriia Chemerys</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The growing demand for organic products in the market promotes their use in various fields. One of such products is biochar. Among the innovative environmental applications, biochar has the potential as an adsorbent for retaining contaminants in environmental engineering and agrotechnical systems. Artificial modification of biochar can improve its adsorption capacity. However, indirect/natural change of biochar composition (e.g., contaminated biomass) based on syngenetic elements provides prospects for new applications of biochar as well as decreases the modification costs. Natural lignocellulosic and biochar composition variations would lead to a new field of application of biochar and reduce resources for biochar modifications. The aim of this study was to determine the influence of syngenetic elements of biochar’s feedstock on the physicochemical properties of lignocellulosic biochar. Syngenetic elements (e.g., Zn, Cu, Ni, Pb, Mg) and other intrinsic properties (e.g., lignin, COHN, moisture, ash) of indifferent types of lignocellulosic feedstock on the physicochemical characteristics of biochar are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=lignocellulosic%20biochar" title=" lignocellulosic biochar"> lignocellulosic biochar</a>, <a href="https://publications.waset.org/abstracts/search?q=instrinsic%20properties" title=" instrinsic properties"> instrinsic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=syngenetic%20elements" title=" syngenetic elements"> syngenetic elements</a> </p> <a href="https://publications.waset.org/abstracts/78760/impact-of-syngenetic-elements-on-the-physico-chemical-properties-of-lignocellulosic-biochar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78760.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6938</span> Particleboard Production from Atmospheric Plasma Treated Wheat Straw Particles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C5%A0t%C4%9Bp%C3%A1n%20H%C3%BDsek">Štěpán Hýsek</a>, <a href="https://publications.waset.org/abstracts/search?q=Milan%20Podlena"> Milan Podlena</a>, <a href="https://publications.waset.org/abstracts/search?q=Milo%C5%A1%20Pavelek"> Miloš Pavelek</a>, <a href="https://publications.waset.org/abstracts/search?q=Mat%C4%9Bj%20Hodou%C5%A1ek"> Matěj Hodoušek</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20B%C3%B6hm"> Martin Böhm</a>, <a href="https://publications.waset.org/abstracts/search?q=Petra%20Gajda%C4%8Dov%C3%A1"> Petra Gajdačová</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Particle boards have being used in the civil engineering as a decking for load bearing and non-load bearing vertical walls and horizontal panels (e. g. floors, ceiling, roofs) in a large scale. When the straw is used as non-wood material for manufacturing of lignocellulosic panels, problems with wax layer on the surface of the material can occur. Higher percentage of silica and wax cause the problems with the adhesion of the adhesive and this is the reason why it is necessary to break the surface layer for the better bonding effect. Surface treatment of the particles cause better mechanical properties, physical properties and the overall better results of the composite material are reached. Plasma application is one possibility how to modify the surface layer. The aim of this research is to modify the surface of straw particles by using cold plasma treatment. Surface properties of lignocellulosic materials were observed before and after cold plasma treatment. Cold plasma does not cause any structural changes deeply in the material. There are only changes in surface layers, which are required. Results proved that the plasma application influenced the properties of surface layers and the properties of composite material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite" title="composite">composite</a>, <a href="https://publications.waset.org/abstracts/search?q=lignocellulosic%20materials" title=" lignocellulosic materials"> lignocellulosic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=straw" title=" straw"> straw</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20plasma" title=" cold plasma"> cold plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20treatment" title=" surface treatment"> surface treatment</a> </p> <a href="https://publications.waset.org/abstracts/72455/particleboard-production-from-atmospheric-plasma-treated-wheat-straw-particles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72455.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6937</span> Ecotoxicological Safety of Wastewater Treated with Lignocellulosic Adsorbents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lu%C3%ADsa%20P.%20Cruz-Lopes">Luísa P. Cruz-Lopes</a>, <a href="https://publications.waset.org/abstracts/search?q=Artur%20Figueirinha"> Artur Figueirinha</a>, <a href="https://publications.waset.org/abstracts/search?q=Isabel%20Br%C3%A1s"> Isabel Brás</a>, <a href="https://publications.waset.org/abstracts/search?q=Bruno%20Esteves"> Bruno Esteves</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Portugal is an important wine and olive oil producer, activities which generate a high quantity of residues commonly called grape stalks and olive cake, respectively. In this work grape stalks and olive cake were used as lignocellulosic adsorbents for wastewater containing lead treatment. To attain a better knowledge of the factors that could influence the quality of the treated wastewater, a chemical characterization of the materials used in the treatment was done. To access the ecotoxicological safety of the treated wastewater, several tests were performed. The results of the toxicity test show that the samples leachate has a mild effect on the living models tested. The tests performed in lemna and bacteria were the most sensible to toxicity effects of the samples. The results obtained in this work evidenced the importance of use of simple and fast toxicity tests to predict impacts in the environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20composition" title="chemical composition">chemical composition</a>, <a href="https://publications.waset.org/abstracts/search?q=lignocellulosic%20residues" title=" lignocellulosic residues"> lignocellulosic residues</a>, <a href="https://publications.waset.org/abstracts/search?q=ecotoxicological%20safety" title=" ecotoxicological safety"> ecotoxicological safety</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/7640/ecotoxicological-safety-of-wastewater-treated-with-lignocellulosic-adsorbents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7640.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6936</span> Recycled Cellulosic Fibers and Lignocellulosic Aggregates for Sustainable Building Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Stevulova">N. Stevulova</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Schwarzova"> I. Schwarzova</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Hospodarova"> V. Hospodarova</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Junak"> J. Junak</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Briancin"> J. Briancin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sustainability is becoming a priority for developers and the use of environmentally friendly materials is increasing. Nowadays, the application of raw materials from renewable sources to building materials has gained a significant interest in this research area. Lignocellulosic aggregates and cellulosic fibers are coming from many different sources such as wood, plants and waste. They are promising alternative materials to replace synthetic, glass and asbestos fibers as reinforcement in inorganic matrix of composites. Natural fibers are renewable resources so their cost is relatively low in comparison to synthetic fibers. With the consideration of environmental consciousness, natural fibers are biodegradable so their using can reduce CO<sub>2</sub> emissions in the building materials production. The use of cellulosic fibers in cementitious matrices have gained importance because they make the composites lighter at high fiber content, they have comparable cost - performance ratios to similar building materials and they could be processed from waste paper, thus expanding the opportunities for waste utilization in cementitious materials. The main objective of this work is to find out the possibility of using different wastes: hemp hurds as waste of hemp stem processing and recycled fibers obtained from waste paper for making cement composite products such as mortars based on cellulose fibers. This material was made of cement mortar containing organic filler based on hemp hurds and recycled waste paper. In addition, the effects of fibers and their contents on some selected physical and mechanical properties of the fiber-cement plaster composites have been investigated. In this research organic material have used to mortars as 2.0, 5.0 and 10.0 % replacement of cement weight. Reference sample is made for comparison of physical and mechanical properties of cement composites based on recycled cellulosic fibers and lignocellulosic aggregates. The prepared specimens were tested after 28 days of curing in order to investigate density, compressive strength and water absorbability. Scanning Electron Microscopy examination was also carried out. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hemp%20hurds" title="Hemp hurds">Hemp hurds</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20filler" title=" organic filler"> organic filler</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20paper" title=" recycled paper"> recycled paper</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20building%20materials" title=" sustainable building materials"> sustainable building materials</a> </p> <a href="https://publications.waset.org/abstracts/46914/recycled-cellulosic-fibers-and-lignocellulosic-aggregates-for-sustainable-building-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46914.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6935</span> Production and Purification of Monosaccharides by Hydrolysis of Sugar Cane Bagasse in an Ionic Liquid Medium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20R.%20Bandara">T. R. Bandara</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Jaelani"> H. Jaelani</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20J.%20Griffin"> G. J. Griffin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The conversion of lignocellulosic waste materials, such as sugar cane bagasse, to biofuels such as ethanol has attracted significant interest as a potential element for transforming transport fuel supplies to totally renewable sources. However, the refractory nature of the cellulosic structure of lignocellulosic materials has impeded progress on developing an economic process, whereby the cellulose component may be effectively broken down to glucose monosaccharides and then purified to allow downstream fermentation. Ionic liquid (IL) treatment of lignocellulosic biomass has been shown to disrupt the crystalline structure of cellulose thus potentially enabling the cellulose to be more readily hydrolysed to monosaccharides. Furthermore, conventional hydrolysis of lignocellulosic materials yields byproducts that are inhibitors for efficient fermentation of the monosaccharides. However, selective extraction of monosaccharides from an aqueous/IL phase into an organic phase utilizing a combination of boronic acids and quaternary amines has shown promise as a purification process. Hydrolysis of sugar cane bagasse immersed in an aqueous solution with IL (1-ethyl-3-methylimidazolium acetate) was conducted at different pH and temperature below 100 ºC. It was found that the use of a high concentration of hydrochloric acid to acidify the solution inhibited the hydrolysis of bagasse. At high pH (i.e. basic conditions), using sodium hydroxide, catalyst yields were reduced for total reducing sugars (TRS) due to the rapid degradation of the sugars formed. For purification trials, a supported liquid membrane (SLM) apparatus was constructed, whereby a synthetic solution containing xylose and glucose in an aqueous IL phase was transported across a membrane impregnated with phenyl boronic acid/Aliquat 336 to an aqueous phase. The transport rate of xylose was generally higher than that of glucose indicating that a SLM scheme may not only be useful for purifying sugars from undesirable toxic compounds, but also for fractionating sugars to improve fermentation efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass" title="biomass">biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=bagasse" title=" bagasse"> bagasse</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrolysis" title=" hydrolysis"> hydrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=monosaccharide" title=" monosaccharide"> monosaccharide</a>, <a href="https://publications.waset.org/abstracts/search?q=supported%20liquid%20membrane" title=" supported liquid membrane"> supported liquid membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=purification" title=" purification"> purification</a> </p> <a href="https://publications.waset.org/abstracts/53430/production-and-purification-of-monosaccharides-by-hydrolysis-of-sugar-cane-bagasse-in-an-ionic-liquid-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53430.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6934</span> Conditions of the Anaerobic Digestion of Biomass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Boontian">N. Boontian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biological conversion of biomass to methane has received increasing attention in recent years. Grasses have been explored for their potential anaerobic digestion to methane. In this review, extensive literature data have been tabulated and classified. The influences of several parameters on the potential of these feedstocks to produce methane are presented. Lignocellulosic biomass represents a mostly unused source for biogas and ethanol production. Many factors, including lignin content, crystallinity of cellulose, and particle size, limit the digestibility of the hemicellulose and cellulose present in the lignocellulosic biomass. Pretreatments have used to improve the digestibility of the lignocellulosic biomass. Each pretreatment has its own effects on cellulose, hemicellulose and lignin, the three main components of lignocellulosic biomass. Solid-state anaerobic digestion (SS-AD) generally occurs at solid concentrations higher than 15%. In contrast, liquid anaerobic digestion (AD) handles feedstocks with solid concentrations between 0.5% and 15%. Animal manure, sewage sludge, and food waste are generally treated by liquid AD, while organic fractions of municipal solid waste (OFMSW) and lignocellulosic biomass such as crop residues and energy crops can be processed through SS-AD. An increase in operating temperature can improve both the biogas yield and the production efficiency, other practices such as using AD digestate or leachate as an inoculant or decreasing the solid content may increase biogas yield but have negative impact on production efficiency. Focus is placed on substrate pretreatment in anaerobic digestion (AD) as a means of increasing biogas yields using today’s diversified substrate sources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digestion" title="anaerobic digestion">anaerobic digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=lignocellulosic%20biomass" title=" lignocellulosic biomass"> lignocellulosic biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=methane%20production" title=" methane production"> methane production</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=pretreatment" title=" pretreatment"> pretreatment</a> </p> <a href="https://publications.waset.org/abstracts/14410/conditions-of-the-anaerobic-digestion-of-biomass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14410.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6933</span> Optimization of Adsorption Performance of Lignocellulosic Waste Pretreatment and Chemical Modification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bendjelloul%20Meriem">Bendjelloul Meriem</a>, <a href="https://publications.waset.org/abstracts/search?q=Elandaloussi%20El%20Hadj"> Elandaloussi El Hadj </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we studied the effectiveness of a lignocellulosic waste (wood sawdust) for the removal of cadmium Cd (II) in aqueous solution. The adsorbent material SBO-CH2-CO2Na has been prepared by alkaline pretreatment of wood sawdust followed by a chemical modification with sodium salt of chloroacetic acid. The characterization of the as-prepared material by FTIR has proven that the grafting of acetate spacer took actually place in the lignocellulosic backbone by the appearance of characteristic band of carboxylic groups in the IR spectrum. The removal study of Cd2+ by SBO-CH2-CO2Na material at the solid-liquid interface was carried out by kinetics, sorption isotherms, effect of temperature and thermodynamic parameters were evaluated. The last part of this work was dedicated to assess the regenerability of the adsorbent material after three reuse cycles. The results indicate that SBO-CH2-CO2Na matrix possesses a high effectiveness in removing Cd (II) with an adsorption capacity of 222.22 mg/g, yet a better value that those of many low-cost adsorbents so far reported in the literature. The results found in the course of this study suggest that ionic exchange is the most appropriate mechanism involved in the removal of cadmium ions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=cadmium" title=" cadmium"> cadmium</a>, <a href="https://publications.waset.org/abstracts/search?q=isotherms" title=" isotherms"> isotherms</a>, <a href="https://publications.waset.org/abstracts/search?q=lignocellulosic" title=" lignocellulosic"> lignocellulosic</a>, <a href="https://publications.waset.org/abstracts/search?q=regenerability" title=" regenerability "> regenerability </a> </p> <a href="https://publications.waset.org/abstracts/23220/optimization-of-adsorption-performance-of-lignocellulosic-waste-pretreatment-and-chemical-modification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23220.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6932</span> Thermochemical and Biological Pretreatment Study for Efficient Sugar Release from Lignocellulosic Biomass (Deodar and Sal Wood Residues)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neelu%20Raina">Neelu Raina</a>, <a href="https://publications.waset.org/abstracts/search?q=Parvez%20Singh%20Slathia"> Parvez Singh Slathia</a>, <a href="https://publications.waset.org/abstracts/search?q=Deepali%20Bhagat"> Deepali Bhagat</a>, <a href="https://publications.waset.org/abstracts/search?q=Preeti%20Sharma"> Preeti Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pretreatment of lignocellulosic biomass for generating suitable substrates (starch/ sugars) for conversion to bioethanol is the most crucial step. In present study waste from furniture industry i.e sawdust from softwood Cedrus deodara (deodar) and hardwood Shorea robusta (sal) was used as lignocellulosic biomass. Thermochemical pretreatment was given by autoclaving at 121°C temperature and 15 psi pressure. Acids (H2SO4,HCl,HNO3,H3PO4), alkali (NaOH,NH4OH,KOH,Ca(OH)2) and organic acids (C6H8O7,C2H2O4,C4H4O4) were used at 0.1%, 0.5% and 1% concentration without giving any residence time. 1% HCl gave maximum sugar yield of 3.6587g/L in deodar and 6.1539 g/L in sal. For biological pretreatment a fungi isolated from decaying wood was used , sawdust from deodar tree species was used as a lignocellulosic substrate and before thermochemical pretreatment sawdust was treated with fungal culture at 37°C under submerged conditions with a residence time of one week followed by a thermochemical pretreatment methodology. Higher sugar yields were obtained with sal tree species followed by deodar tree species, i.e., 6.0334g/L in deodar and 8.3605g/L in sal was obtained by a combined biological and thermochemical pretreatment. Use of acids along with biological pretreatment is a favourable factor for breaking the lignin seal and thus increasing the sugar yield. Sugar estimation was done using Dinitrosalicyclic assay method. Result validation is being done by statistical analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lignocellulosic%20biomass" title="lignocellulosic biomass">lignocellulosic biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=bioethanol" title=" bioethanol"> bioethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=pretreatment" title=" pretreatment"> pretreatment</a>, <a href="https://publications.waset.org/abstracts/search?q=sawdust" title=" sawdust"> sawdust</a> </p> <a href="https://publications.waset.org/abstracts/61752/thermochemical-and-biological-pretreatment-study-for-efficient-sugar-release-from-lignocellulosic-biomass-deodar-and-sal-wood-residues" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61752.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6931</span> Ceiba Speciosa Nanocellulose Obtained from a Sustainable Method as a Potential Reinforcement for Polymeric Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Heloise%20Sasso%20Teixeira">Heloise Sasso Teixeira</a>, <a href="https://publications.waset.org/abstracts/search?q=Talita%20Szlapak%20Franco"> Talita Szlapak Franco</a>, <a href="https://publications.waset.org/abstracts/search?q=Thais%20Helena%20Sydenstricker%20Flores-Sahagun"> Thais Helena Sydenstricker Flores-Sahagun</a>, <a href="https://publications.waset.org/abstracts/search?q=Milton%20Vazquez%20Lepe"> Milton Vazquez Lepe</a>, <a href="https://publications.waset.org/abstracts/search?q=Graciela%20Bolzon%20Mu%C3%B1iz"> Graciela Bolzon Muñiz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the need to reduce the consumption of materials produced from non-renewable sources, the search for new raw materials of natural origin is growing. In this regard, lignocellulosic fibers have great potential. Ceiba sp fibers are found in the fruit of the tree of the same name and have characteristics that differ from other natural fibers. Ceiba fibers are very light, have a high cellulose content, and are hydrophobic due to the presence of waxes on their surface. In this study, Ceiba fiber was used as raw material to obtain cellulose nanofibers (CNF), with the potential to be used in polymeric matrices. Due to the characteristics of this fiber, no chemical pretreatment was necessary before the mechanical defibrilation process in a colloidal mill, obtaining sustainable nanocellulose. The CNFs were characterized by Fourier infrared (FTIR), differential scanning calorimetry (DSC), analysis of the rmogravimetic (TGA), scanning electron microscopy (SEM), transmission electron microscopy, and X-ray photoelectron spectroscopy (XPS). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellulose%20nanofibers" title="cellulose nanofibers">cellulose nanofibers</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocellulose" title=" nanocellulose"> nanocellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=fibers" title=" fibers"> fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=Brazilian%20fIbers" title=" Brazilian fIbers"> Brazilian fIbers</a>, <a href="https://publications.waset.org/abstracts/search?q=lignocellulosic" title=" lignocellulosic"> lignocellulosic</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a> </p> <a href="https://publications.waset.org/abstracts/143152/ceiba-speciosa-nanocellulose-obtained-from-a-sustainable-method-as-a-potential-reinforcement-for-polymeric-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143152.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6930</span> Assessment of cellulase and xylanase Production by chryseobacterium sp. Isolated from Decaying Biomass in Alice, Eastern Cape, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Nkohla">A. Nkohla</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20Nwodo"> U. Nwodo</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20V.%20Mabinya"> L. V. Mabinya</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20I.%20Okoh"> A. I. Okoh </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A potential source for low-cost production of value added products is the utilization of lignocellulosic materials. However, the huddle needing breaching would be the dismantlement of the complex lignocellulosic structure as to free sugar base therein. the current lignocellosic material treatment process is expensive and not eco-friendly hence, the advocacy for enzyme based technique which is both cheap and eco-friendly is highly imperative. Consequently, this study aimed at the screening of cellulose and xylan degrading bacterial strain isolated from decaying sawdust samples. This isolate showed high activity for cellulase and xylanase when grown on carboxymethyl cellulose and birtchwood xylan as the sole carbon source respectively. The 16S rDNA nucleotide sequence of the isolate showed 98% similarity with that of Chryseobacterium taichungense thus, it was identified as a Chryseobacterium sp. Optimum culture conditions for cellulase and xylanase production were medium pH 6, incubation temperature of 25 °C at 50 rpm and medium pH 6, incubation temperature of 25 °C at 150 rpm respectively. The high enzyme activity obtained from this bacterial strain portends it as a good candidate for industrial use in the degradation of complex biomass for value added products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lignocellulosic%20material" title="lignocellulosic material">lignocellulosic material</a>, <a href="https://publications.waset.org/abstracts/search?q=chryseobacterium%20sp." title=" chryseobacterium sp."> chryseobacterium sp.</a>, <a href="https://publications.waset.org/abstracts/search?q=submerged%20fermentation" title=" submerged fermentation"> submerged fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulase" title=" cellulase"> cellulase</a>, <a href="https://publications.waset.org/abstracts/search?q=xylanase" title=" xylanase"> xylanase</a> </p> <a href="https://publications.waset.org/abstracts/37911/assessment-of-cellulase-and-xylanase-production-by-chryseobacterium-sp-isolated-from-decaying-biomass-in-alice-eastern-cape-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37911.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6929</span> Bulk-Density and Lignocellulose Composition: Influence of Changing Lignocellulosic Composition on Bulk-Density during Anaerobic Digestion and Implication of Compacted Lignocellulose Bed on Mass Transfer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aastha%20Paliwal">Aastha Paliwal</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20N.%20Chanakya"> H. N. Chanakya</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Dasappa"> S. Dasappa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lignocellulose, as an alternate feedstock for biogas production, has been an active area of research. However, lignocellulose poses a lot of operational difficulties- widespread variation in the structural organization of lignocellulosic matrix, amenability to degradation, low bulk density, to name a few. Amongst these, the low bulk density of the lignocellulosic feedstock is crucial to the process operation and optimization. Low bulk densities render the feedstock floating in conventional liquid/wet digesters. Low bulk densities also restrict the maximum achievable organic loading rate in the reactor, decreasing the power density of the reactor. However, during digestion, lignocellulose undergoes very high compaction (up to 26 times feeding density). This first reduces the achievable OLR (because of low feeding density) and compaction during digestion, then renders the reactor space underutilized and also imposes significant mass transfer limitations. The objective of this paper was to understand the effects of compacting lignocellulose on mass transfer and the influence of loss of different components on the bulk density and hence structural integrity of the digesting lignocellulosic feedstock. 10 different lignocellulosic feedstocks (monocots and dicots) were digested anaerobically in a fed-batch, leach bed reactor -solid-state stratified bed reactor (SSBR). Percolation rates of the recycled bio-digester liquid (BDL) were also measured during the reactor run period to understand the implication of compaction on mass transfer. After 95 ds, in a destructive sampling, lignocellulosic feedstocks digested at different SRT were investigated to quantitate the weekly changes in bulk density and lignocellulosic composition. Further, percolation rate data was also compared to bulk density data. Results from the study indicate loss of hemicellulose (r²=0.76), hot water extractives (r²=0.68), and oxalate extractives (r²=0.64) had dominant influence on changing the structural integrity of the studied lignocellulose during anaerobic digestion. Further, feeding bulk density of the lignocellulose can be maintained between 300-400kg/m³ to achieve higher OLR, and bulk density of 440-500kg/m³ incurs significant mass transfer limitation for high compacting beds of dicots. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digestion" title="anaerobic digestion">anaerobic digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=bulk%20density" title=" bulk density"> bulk density</a>, <a href="https://publications.waset.org/abstracts/search?q=feed%20compaction" title=" feed compaction"> feed compaction</a>, <a href="https://publications.waset.org/abstracts/search?q=lignocellulose" title=" lignocellulose"> lignocellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=lignocellulosic%20matrix" title=" lignocellulosic matrix"> lignocellulosic matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulose" title=" cellulose"> cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=hemicellulose" title=" hemicellulose"> hemicellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=lignin" title=" lignin"> lignin</a>, <a href="https://publications.waset.org/abstracts/search?q=extractives" title=" extractives"> extractives</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20transfer" title=" mass transfer"> mass transfer</a> </p> <a href="https://publications.waset.org/abstracts/144830/bulk-density-and-lignocellulose-composition-influence-of-changing-lignocellulosic-composition-on-bulk-density-during-anaerobic-digestion-and-implication-of-compacted-lignocellulose-bed-on-mass-transfer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6928</span> Development of Microwave-Assisted Alkalic Salt Pretreatment Regimes for Enhanced Sugar Recovery from Corn Cobs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yeshona%20Sewsynker">Yeshona Sewsynker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents three microwave-assisted alkalic salt pretreatments to enhance delignification and enzymatic saccharification of corn cobs. The effects of process parameters of salt concentration (0-15%), microwave power intensity (0-800 W) and pretreatment time (2-8 min) on reducing sugar yield from corn cobs were investigated. Pretreatment models were developed with the high coefficient of determination values (R2>0.85). Optimization gave a maximum reducing sugar yield of 0.76 g/g. Scanning electron microscopy (SEM) and Fourier Transform Infrared analysis (FTIR) showed major changes in the lignocellulosic structure after pretreatment. A 7-fold increase in the sugar yield was observed compared to previous reports on the same substrate. The developed pretreatment strategy was effective for enhancing enzymatic saccharification from lignocellulosic wastes for microbial biofuel production processes and value-added products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pretreatment" title="pretreatment">pretreatment</a>, <a href="https://publications.waset.org/abstracts/search?q=lignocellulosic%20biomass" title=" lignocellulosic biomass"> lignocellulosic biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20hydrolysis" title=" enzymatic hydrolysis"> enzymatic hydrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=delignification" title=" delignification"> delignification</a> </p> <a href="https://publications.waset.org/abstracts/70547/development-of-microwave-assisted-alkalic-salt-pretreatment-regimes-for-enhanced-sugar-recovery-from-corn-cobs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70547.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">500</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6927</span> Production of Lignocellulosic Enzymes by Bacillus safensis LCX Using Agro-Food Wastes in Solid State Fermentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abeer%20A.%20Q.%20Ahmed">Abeer A. Q. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Tracey%20McKay"> Tracey McKay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increasing demand for renewable fuels and chemicals is pressuring manufacturing industry toward finding more sustainable cost-effective resources. Lignocellulose, such as agro-food wastes, is a suitable equivalent to petroleum for fine chemicals and fuels production. The complex structure of lignocellulose, however, requires a variety of enzymes in order to degrade its components into their respective building blocks that can be used further for the production of various value added products. This study aimed to isolate bacterial strain with the ability to produce a variety of lignocellulosic enzymes. One bacterial isolate was identified by 16S rRNA gene sequencing and phylogenetic analysis as Bacillus safensis LCX found to have CMCase, xylanase, manganese peroxidase, lignin peroxidase, and laccase activities. The enzymes production was induced by growing Bacillus safensis LCX in solid state fermentation using wheat straw, wheat bran, and corn stover. The activities of enzymes were determined by specific colorimetric assays. This study presents Bacillus safensis LCX as a promising source for lignocellulosic enzymes. These findings can extend the knowledge on agro-food wastes valorization strategies toward a sustainable production of fuels and chemicals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bacillus%20safensis%20LCX" title="Bacillus safensis LCX">Bacillus safensis LCX</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20valued%20chemicals" title=" high valued chemicals"> high valued chemicals</a>, <a href="https://publications.waset.org/abstracts/search?q=lignocellulosic%20enzymes" title=" lignocellulosic enzymes"> lignocellulosic enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20state%20fermentation" title=" solid state fermentation"> solid state fermentation</a> </p> <a href="https://publications.waset.org/abstracts/64985/production-of-lignocellulosic-enzymes-by-bacillus-safensis-lcx-using-agro-food-wastes-in-solid-state-fermentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64985.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6926</span> Evaluation of Cellulase and Xylanase Production by Micrococcus Sp. Isolated from Decaying Lignocellulosic Biomass Obtained from Alice Environment in the Eastern Cape of South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Mmango">Z. Mmango</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20Nwodo"> U. Nwodo</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20V.%20Mabinya"> L. V. Mabinya</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20I.%20Okoh"> A. I. Okoh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cellulose and hemicellulose account for a large portion of the world‘s plant biomass. In nature, these polysaccharides are intertwined forming complex materials that requires multiple and expensive treatment processes to free up the raw materials trapped in the matrix. Enzymatic degradation remains as the preferred technique as it is inexpensive and eco-friendly. However, the insufficiencies of enzyme battery systems in the degradation of lignocellulosic complex motivate the search for effective degrading enzymes from bacterial isolates from uncommon environment. The study aimed at the evaluation of actinomycetes isolated from saw dust samples collected from wood factory under bed. Cellulase and xylanase production was screened through organism culture on carboxyl methyl cellulose agar and Birchwood xylan. Halo zone indicating lignocellose utilization was shown by an isolate identified through 16S rRNA gene as Micrococcus luteus. The optimum condition for the production of cellulase and xylanase were incubation temperature of 25 °C, fermentation medium pH 5 and 10, agitation speed of 50 and 200 (rpm) and fermentation incubation time of 96 and 84 (h) respectively. The high cellulose and xylanase activity obtained from this isolate portends industrial relevance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carboxyl%20methyl%20cellulose" title="carboxyl methyl cellulose">carboxyl methyl cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=birchwood%20xylan" title=" birchwood xylan"> birchwood xylan</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulase" title=" cellulase"> cellulase</a>, <a href="https://publications.waset.org/abstracts/search?q=xylanase" title=" xylanase"> xylanase</a>, <a href="https://publications.waset.org/abstracts/search?q=micrococcus" title=" micrococcus"> micrococcus</a>, <a href="https://publications.waset.org/abstracts/search?q=DNS%20method" title=" DNS method"> DNS method</a> </p> <a href="https://publications.waset.org/abstracts/37709/evaluation-of-cellulase-and-xylanase-production-by-micrococcus-sp-isolated-from-decaying-lignocellulosic-biomass-obtained-from-alice-environment-in-the-eastern-cape-of-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6925</span> Second Generation Biofuels: A Futuristic Green Deal for Lignocellulosic Waste</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nivedita%20Sharma">Nivedita Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The global demand for fossil fuels is very high, but their use is not sustainable since its reserves are declining. Additionally, fossil fuels are responsible for the accumulation of greenhouse gases. The emission of greenhouse gases from the transport sector can be reduced by substituting fossil fuels by biofuels. Thus, renewable fuels capable of sequestering carbon dioxide are in high demand. Second‐generation biofuels, which require lignocellulosic biomass as a substrate and ultimately producing ethanol, fall largely in this category. Bioethanol is a favorable and near carbon-neutral renewable biofuel leading to reduction in tailpipe pollutant emission and improving the ambient air quality. Lignocellulose consists of three main components: cellulose, hemicellulose and lignin which can be converted to ethanol with the help of microbial enzymes. Enzymatic hydrolysis of lignocellulosic biomass in 1st step is considered as the most efficient and least polluting methods for generating fermentable hexose and pentose sugars which subsequently are fermented to power alcohol by yeasts in 2nd step of the process. In the present technology, a complete bioconversion process i.e. potential hydrolytic enzymes i.e. cellulase and xylanase producing microorganisms have been isolated from different niches, screened for enzyme production, identified using phenotyping and genotyping, enzyme production, purification and application of enzymes for saccharification of different lignocellulosic biomass followed by fermentation of hydrolysate to ethanol with high yield is to be presented in detail. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellulase" title="cellulase">cellulase</a>, <a href="https://publications.waset.org/abstracts/search?q=xylanase" title=" xylanase"> xylanase</a>, <a href="https://publications.waset.org/abstracts/search?q=lignocellulose" title=" lignocellulose"> lignocellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=bioethanol" title=" bioethanol"> bioethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20enzymes" title=" microbial enzymes"> microbial enzymes</a> </p> <a href="https://publications.waset.org/abstracts/161810/second-generation-biofuels-a-futuristic-green-deal-for-lignocellulosic-waste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161810.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6924</span> Screening and Optimization of Pretreatments for Rice Straw and Their Utilization for Bioethanol Production Using Developed Yeast Strain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ganesh%20Dattatraya%20Saratale">Ganesh Dattatraya Saratale</a>, <a href="https://publications.waset.org/abstracts/search?q=Min%20Kyu%20Oh"> Min Kyu Oh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rice straw is one of the most abundant lignocellulosic waste materials and its annual production is about 731 Mt in the world. This study treats the subject of effective utilization of this waste biomass for biofuels production. We have showed a comparative assessment of numerous pretreatment strategies for rice straw, comprising of major physical, chemical and physicochemical methods. Among the different methods employed for pretreatment alkaline pretreatment in combination with sodium chlorite/acetic acid delignification found efficient pretreatment with significant improvement in the enzymatic digestibility of rice straw. A cellulase dose of 20 filter paper units (FPU) released a maximum 63.21 g/L of reducing sugar with 94.45% hydrolysis yield and 64.64% glucose yield from rice straw, respectively. The effects of different pretreatment methods on biomass structure and complexity were investigated by FTIR, XRD and SEM analytical techniques. Finally the enzymatic hydrolysate of rice straw was used for ethanol production using developed Saccharomyces cerevisiae SR8. The developed yeast strain enabled efficient fermentation of xylose and glucose and produced higher ethanol production. Thus development of bioethanol production from lignocellulosic waste biomass is generic, applicable methodology and have great implication for using ‘green raw materials’ and producing ‘green products’ much needed today. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rice%20straw" title="rice straw">rice straw</a>, <a href="https://publications.waset.org/abstracts/search?q=pretreatment" title=" pretreatment"> pretreatment</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20hydrolysis" title=" enzymatic hydrolysis"> enzymatic hydrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=FPU" title=" FPU"> FPU</a>, <a href="https://publications.waset.org/abstracts/search?q=Saccharomyces%20cerevisiae%20SR8" title=" Saccharomyces cerevisiae SR8"> Saccharomyces cerevisiae SR8</a>, <a href="https://publications.waset.org/abstracts/search?q=ethanol%20fermentation" title=" ethanol fermentation"> ethanol fermentation</a> </p> <a href="https://publications.waset.org/abstracts/24154/screening-and-optimization-of-pretreatments-for-rice-straw-and-their-utilization-for-bioethanol-production-using-developed-yeast-strain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24154.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">538</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6923</span> Advanced Bio-Composite Materials Based on Biopolymer Blends and Cellulose Nanocrystals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zineb%20Kassab">Zineb Kassab</a>, <a href="https://publications.waset.org/abstracts/search?q=Nassima%20El%20Miri"> Nassima El Miri</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Aboulkas"> A. Aboulkas</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdellatif%20Barakat"> Abdellatif Barakat</a>, <a href="https://publications.waset.org/abstracts/search?q=Mounir%20El%20Achaby"> Mounir El Achaby</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, more attention has been given to biopolymers with a focus on sustainable development and environmental preservation. Following this tendency, the attempt has been made to replace polymers derived from petroleum with superior biodegradable polymers (biopolymers). In this context, biopolymers are considered potential replacements for conventional plastic materials. However, some of their properties must be improved for better competitiveness, especially regarding their mechanical, thermal and barrier properties. Bio-nanocomposite technology using nanofillers has already been proven as an effective way to produce new materials with specific properties and high performances. With the emergence of nanostructured bio-composite materials, incorporating elongated rod-like cellulose nanocrystals (CNC) has attracted more and more attention in the field of nanotechnology. This study is aimed to develop bio-composite films of biopolymer matrices [Carboxymethyle cellulose (CMC), Starch (ST), Chitosan (CS) and Polyvinyl alcohol (PVA)] reinforced with cellulose nanocrystals (CNC) using the solution casting method. The CNC were extracted at a nanometric scale from lignocellulosic fibers via sulfuric acid hydrolysis and then characterized using X-ray diffraction (XRD), thermogravimetric analysis (TGA), confocal microscopy, infrared spectroscopy (IR), atomic force and transmission electron microscopies (AFM and TEM) techniques. The as extracted CNC were used as a reinforcing phase to produce a variety of bio-composite films at different CNC loading (0.5-10 wt %) with specific properties. The rheological properties of film-forming solutions (FFS) of bio-composites were studied, and their relation to the casting process was evaluated. Then, the structural, optical transparency, water vapor permeability, thermal stability and mechanical properties of all prepared bio-composite films were evaluated and studied in this report. The high performances of these bio-composite films are expected to have potential in biomaterials or packaging applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biopolymer%20composites" title="biopolymer composites">biopolymer composites</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulose%20nanocrystals" title=" cellulose nanocrystals"> cellulose nanocrystals</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20packaging" title=" food packaging"> food packaging</a>, <a href="https://publications.waset.org/abstracts/search?q=lignocellulosic%20fibers" title=" lignocellulosic fibers"> lignocellulosic fibers</a> </p> <a href="https://publications.waset.org/abstracts/72734/advanced-bio-composite-materials-based-on-biopolymer-blends-and-cellulose-nanocrystals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72734.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6922</span> Analysis Influence Variation Frequency on Characterization of Nano-Particles in Preteatment Bioetanol Oil Palm Stem (Elaeis guineensis JACQ) Use Sonication Method with Alkaline Peroxide Activators on Improvement of Celullose</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luristya%20Nur%20Mahfut">Luristya Nur Mahfut</a>, <a href="https://publications.waset.org/abstracts/search?q=Nada%20Mawarda%20Rilek"> Nada Mawarda Rilek</a>, <a href="https://publications.waset.org/abstracts/search?q=Ameiga%20Cautsarina%20Putri"> Ameiga Cautsarina Putri</a>, <a href="https://publications.waset.org/abstracts/search?q=Mujaroh%20Khotimah"> Mujaroh Khotimah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of bioetanol from lignocellulosic material has begone to be developed. In Indonesia the most abundant lignocellulosic material is stem of palm which contain 32.22% of cellulose. Indonesia produces approximatelly 300.375.000 tons of stem of palm each year. To produce bioetanol from lignocellulosic material, the first process is pretreatment. But, until now the method of lignocellulosic pretretament is uneffective. This is related to the particle size and the method of pretreatment of less than optimal so that led to an overhaul of the lignin insufficient, consequently increased levels of cellulose was not significant resulting in low yield of bioetanol. To solve the problem, this research was implemented by using the process of pretreatment method ultasonifikasi in order to produce higher pulp with nano-sized particles that will obtain higher of yield ethanol from stem of palm. Research methods used in this research is the RAK that is composed of one factor which is the frequency ultrasonic waves with three varians, they are 30 kHz, 40 kHz, 50 kHz, and use constant variable is concentration of NaOH. The analysis conducted in this research is the influence of the frequency of the wave to increase levels of cellulose and change size on the scale of nanometers on pretreatment process by using the PSA methods (Particle Size Analyzer), and a Cheason. For the analysis of the results, data, and best treatment using ANOVA and test BNT with confidence interval 5%. The best treatment was obtained by combination X3 (frequency of sonication 50 kHz) and lignin (19,6%) cellulose (59,49%) and hemicellulose (11,8%) with particle size 385,2nm (18,8%). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioethanol" title="bioethanol">bioethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=pretreatment" title=" pretreatment"> pretreatment</a>, <a href="https://publications.waset.org/abstracts/search?q=stem%20of%20palm" title=" stem of palm"> stem of palm</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulosa" title=" cellulosa"> cellulosa</a> </p> <a href="https://publications.waset.org/abstracts/31564/analysis-influence-variation-frequency-on-characterization-of-nano-particles-in-preteatment-bioetanol-oil-palm-stem-elaeis-guineensis-jacq-use-sonication-method-with-alkaline-peroxide-activators-on-improvement-of-celullose" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31564.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6921</span> Evaluation of Hollocelulase Production for Lignocellulosic Biomass Degradation by Penicillium polonicum </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Takematsu">H. M. Takematsu</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20R.%20De%20Camargo"> B. R. De Camargo</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20F.%20%20Noronha"> E. F. Noronha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of hydrolyzing enzymes for degradation of lignocellulosic biomass is of great concern for the production of second generation ethanol. Although many hollocelulases have already been described in the literature, much more has to be discovered. Therefore, the aim of this study to evaluate hollocelulase production of P. polonicum grown in liquid media containing sugarcane bagasse as the carbon source. From a collection of twenty fungi isolated from Cerrado biome soil, P. polonicum was molecular identified by sequencing of ITS4, βtubulin and Calmodulin genes, and has been chosen to be further investigated regarding its potential production of hydrolyzing enzymes. Spore suspension (1x10-6 ml-1) solution was inoculated in sterilized minimal liquid medium containing 0,5%(w/v) of non-pretreated sugarcane bagasse as the carbon source, and incubated in shaker incubator at 28°C and 120 rpm. The supernatant obtained, was subjected to enzymatic assays to analyze xylanase, mannanase, pectinase and endoglucanase activities. Xylanase activity showed better results (67,36 UI/mg). Xylanases bands were indicated by zymogram and SDS-PAGE, and one of them was partially purified and characterized. It showed maximum activity at 50 °C, was thermostable for 72h at 40°C, and pH5.0 was the optimum observed. This study presents P. polonicum as an interesting source of hollocelulases, especially xylanase, for lignocellulose bio-conversion processes with commercial use. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sugarcane%20bagasse" title="sugarcane bagasse">sugarcane bagasse</a>, <a href="https://publications.waset.org/abstracts/search?q=Cerrado%20biome" title=" Cerrado biome "> Cerrado biome </a>, <a href="https://publications.waset.org/abstracts/search?q=hollocelulase" title=" hollocelulase"> hollocelulase</a>, <a href="https://publications.waset.org/abstracts/search?q=lignocellulosic%20biomass" title=" lignocellulosic biomass "> lignocellulosic biomass </a> </p> <a href="https://publications.waset.org/abstracts/79253/evaluation-of-hollocelulase-production-for-lignocellulosic-biomass-degradation-by-penicillium-polonicum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79253.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6920</span> Preparation and Chemical Characterization of Eco-Friendly Activated Carbon Produced from Apricot Stones</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sabol%C4%8D%20Pap">Sabolč Pap</a>, <a href="https://publications.waset.org/abstracts/search?q=Sr%C4%91ana%20Kolakovi%C4%87"> Srđana Kolaković</a>, <a href="https://publications.waset.org/abstracts/search?q=Jelena%20Radoni%C4%87"> Jelena Radonić</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivana%20Mihajlovi%C4%87"> Ivana Mihajlović</a>, <a href="https://publications.waset.org/abstracts/search?q=Dragan%20Adamovi%C4%87"> Dragan Adamović</a>, <a href="https://publications.waset.org/abstracts/search?q=Mirjana%20Vojinovi%C4%87%20Miloradov"> Mirjana Vojinović Miloradov</a>, <a href="https://publications.waset.org/abstracts/search?q=Maja%20Turk%20Sekuli%C4%87"> Maja Turk Sekulić</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Activated carbon is one of the most used and tested adsorbents in the removal of industrial organic compounds, heavy metals, pharmaceuticals and dyes. Different types of lignocellulosic materials were used as potential precursors in the production of low cost activated carbon. There are, two different processes for the preparation and production of activated carbon: physical and chemical. Chemical activation includes impregnating the lignocellulosic raw materials with chemical agents (H3PO4, HNO3, H2SO4 and NaOH). After impregnation, the materials are carbonized and washed to eliminate the residues. The chemical activation, which was used in this study, has two important advantages when compared to the physical activation. The first advantage is the lower temperature at which the process is conducted, and the second is that the yield (mass efficiency of activation) of the chemical activation tends to be greater. Preparation of activated carbon included the following steps: apricot stones were crushed in a mill and washed with distilled water. Later, the fruit stones were impregnated with a solution of 50% H3PO4. After impregnation, the solution was filtered to remove the residual acid. Subsequently impregnated samples were air dried at room temperature. The samples were placed in a furnace and heated (10 °C/min) to the final carbonization temperature of 500 °C for 2 h without the use of nitrogen. After cooling, the adsorbent was washed with distilled water to achieve acid free conditions and its pH was monitored until the filtrate pH value exceeded 4. Chemical characterizations of the prepared activated carbon were analyzed by FTIR spectroscopy. FTIR spectra were recorded with a (Thermo Nicolet Nexus 670 FTIR) spectrometer, from 400 to 4000 cm-1 wavenumbers, identifying the functional groups on the surface of the activated carbon. The FTIR spectra of adsorbent showed a broad band at 3405.91 cm-1 due to O–H stretching vibration and a peak at 489.00 cm-1 due to O–H bending vibration. Peaks between the range of 3700 and 3200 cm−1 represent the overlapping peaks of stretching vibrations of O–H and N–H groups. The distinct absorption peaks at 2919.86 cm−1 and 2848.24 cm−1 could be assigned to -CH stretching vibrations of –CH2 and –CH3 functional groups. The adsorption peak at 1566.38 cm−1 could be characterized by primary and secondary amide bands. The sharp bond within 1164.76 – 987.86 cm−1 is attributed to the C–O groups, which confirms the lignin structure of the activated carbon. The present study has shown that the activated carbons prepared from apricot stone have a functional group on their surface, which can positively affect the adsorption characteristics with this material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title="activated carbon">activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=FTIR" title=" FTIR"> FTIR</a>, <a href="https://publications.waset.org/abstracts/search?q=H3PO4" title=" H3PO4"> H3PO4</a>, <a href="https://publications.waset.org/abstracts/search?q=lignocellulosic%20raw%20materials" title=" lignocellulosic raw materials"> lignocellulosic raw materials</a> </p> <a href="https://publications.waset.org/abstracts/41962/preparation-and-chemical-characterization-of-eco-friendly-activated-carbon-produced-from-apricot-stones" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41962.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6919</span> Effect of Lignocellulose-Degrading Bacteria Isolated from Termite Gut on the Nutritive Value of Wheat Straw as Ruminant Feed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayoub%20Azizi-Shotorkhoft">Ayoub Azizi-Shotorkhoft</a>, <a href="https://publications.waset.org/abstracts/search?q=Tahereh%20Mohammadabadi"> Tahereh Mohammadabadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hosein%20Motamedi"> Hosein Motamedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Chaji"> Morteza Chaji</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Fazaeli"> Hasan Fazaeli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was conducted to investigate nutritive value of wheat straw processed with termite gut symbiotic bacteria with lignocellulosic-degrading potential including Bacillus licheniformis, Ochrobactrum intermedium and Microbacterium paludicola in vitro. These bacteria were isolated by culturing termite guts contents in different culture media containing different lignin and lignocellulosic materials that had been prepared from water-extracted sawdust and wheat straw. Results showed that incubating wheat straw with all of three isolated bacteria increased (P<0.05) acid-precipitable polymeric lignin (APPL) compared to control, and highest amount of APPL observed following treatment with B. licheniformis. Highest and lowest (P<0.05) in vitro gas production and ruminal organic matter digestibility were obtained when treating wheat straw with B. licheniformis and control, respectively. However, other fermentation parameters such as b (i.e., gas production from the insoluble fermentable fractions at 144h), c (i.e., rate of gas production during incubation), ruminal dry matter digestibility, metabolizable energy, partitioning factor, pH and ammonia nitrogen concentration were similar between experimental treatments (P>0.05). It is concluded that processing wheat straw with isolated bacteria improved its nutritive value as ruminants feed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=termite%20gut%20bacteria" title="termite gut bacteria">termite gut bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat%20straw" title=" wheat straw"> wheat straw</a>, <a href="https://publications.waset.org/abstracts/search?q=nutritive%20value" title=" nutritive value"> nutritive value</a>, <a href="https://publications.waset.org/abstracts/search?q=ruminant" title=" ruminant"> ruminant</a> </p> <a href="https://publications.waset.org/abstracts/46880/effect-of-lignocellulose-degrading-bacteria-isolated-from-termite-gut-on-the-nutritive-value-of-wheat-straw-as-ruminant-feed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46880.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6918</span> Hydrodeoxygenation of Furfural over RU Sub-Nano Particles Supported on Al₂O₃-SIO₂ Mixed Oxides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chaima%20Zoulikha%20Tabet%20Zatla">Chaima Zoulikha Tabet Zatla</a>, <a href="https://publications.waset.org/abstracts/search?q=Nihel%20Dib"> Nihel Dib</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumeya%20Bedrane"> Sumeya Bedrane</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20Carlos%20Hernandez%20Garrido"> Juan Carlos Hernandez Garrido</a>, <a href="https://publications.waset.org/abstracts/search?q=Redouane%20Bachir"> Redouane Bachir</a>, <a href="https://publications.waset.org/abstracts/search?q=Miguel%20Angel%20Cauqui"> Miguel Angel Cauqui</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20Juan%20Calvino%20Gamez"> Jose Juan Calvino Gamez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> These last year's our planet has witnessed global warming, which is a serious threat to our lives; it has many causes, such as the CO₂ excess in the atmosphere that results from our activity, for the purpose of living in a neater and better environment, working and improving an eco-responsible energy system is a must. Valorization of biomass to produce biofuels is among the most compelling routes to decrease air pollution without considerable modification in current vehicle technology. Effective transformation of lignocellulosic biomass-derived compounds into liquid fuels and value-added chemicals is an economically viable solution. Presently, very competitive technics for the conversion of lignocellulosic biomass into platform chemicals, such as furfural and Hydroxymethylfurfural (HMF), are used. Furfural (C₅H₄O₂) is a major hemi cellulosic biomass-derived platform molecule. In our work, we focus on the valorization of lignocellulosic biomass derivative furfural that is transformed into biofuel through a hydrodeoxygenation reaction in general and involving a catalytic process. In order to get to this point, we are synthesizing and characterizing a series of catalysts with different amounts of Ru (0.5%, 1% and 2%) supported on alumina-silica mixed oxides with various molar ratios (Si/Al = 2.5; 5; 7; 10; 15). These catalysts will be characterized by numerous technics such as N₂ adsorption/desorption, Pyridine adsorption (acidity measure), FTIR, X-rays diffraction, AAS, TEM and SEM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=furfural" title="furfural">furfural</a>, <a href="https://publications.waset.org/abstracts/search?q=ruthenium" title=" ruthenium"> ruthenium</a>, <a href="https://publications.waset.org/abstracts/search?q=silica-alumina" title=" silica-alumina"> silica-alumina</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=biofuel" title=" biofuel"> biofuel</a> </p> <a href="https://publications.waset.org/abstracts/163321/hydrodeoxygenation-of-furfural-over-ru-sub-nano-particles-supported-on-al2o3-sio2-mixed-oxides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6917</span> Characteristics of Wood Plastics Nano-Composites Made of Agricultural Residues and Urban Recycled Polymer Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Nourbakhsh%20Habibabadi">Amir Nourbakhsh Habibabadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Ashori"> Alireza Ashori</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Context: The growing concern over the management of plastic waste and the high demand for wood-based products have led to the development of wood-plastic composites. Agricultural residues, which are abundantly available, can be used as a source of lignocellulosic fibers in the production of these composites. The use of recycled polymers and nanomaterials is also a promising approach to enhance the mechanical and physical properties of the composites. Research Aim: The aim of this study was to investigate the feasibility of using recycled high-density polyethylene (rHDPE), polypropylene (rPP), and agricultural residues fibers for manufacturing wood-plastic nano-composites. The effects of these materials on the mechanical properties of the composites, specifically tensile and flexural strength, were studied. Methodology: The study utilized an experimental approach where extruders and hot presses were used to fabricate the composites. Five types of cellulosic residues fibers (bagasse, corn stalk, rice straw, sunflower, and canola stem), three levels of nanomaterials (carbon nanotubes, nano silica, and nanoclay), and coupling agent were used to chemically bind the wood/polymer fibers, chemicals, and reinforcement. The mechanical properties of the composites were then analyzed. Findings: The study found that composites made with rHDPE provided moderately superior tensile and flexural properties compared to rPP samples. The addition of agricultural residues in several types of wood-plastic nano-composites significantly improved their bending and tensile properties, with bagasse having the most significant advantage over other lignocellulosic materials. The use of recycled polymers, agricultural residues, and nano-silica resulted in composites with the best strength properties. Theoretical Importance: The study's findings suggest that using agricultural fiber residues as reinforcement in wood/plastic nanocomposites is a viable approach to improve the mechanical properties of the composites. Additionally, the study highlights the potential of using recycled polymers in the development of value-added products without compromising the product's properties. Data Collection and Analysis Procedures: The study collected data on the mechanical properties of the composites using tensile and flexural tests. Statistical analyses were performed to determine the significant effects of the various materials used. Question addressed: Can agricultural residues and recycled polymers be used to manufacture wood-plastic nano-composites with enhanced mechanical properties? Conclusion: The study demonstrates the feasibility of using agricultural residues and recycled polymers in the production of wood-plastic nano-composites. The addition of these materials significantly improved the mechanical properties of the composites, with bagasse being the most effective agricultural residue. The study's findings suggest that composites made from recycled materials can offer value-added products without sacrificing performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymer" title="polymer">polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=composites" title=" composites"> composites</a>, <a href="https://publications.waset.org/abstracts/search?q=wood" title=" wood"> wood</a>, <a href="https://publications.waset.org/abstracts/search?q=nano" title=" nano"> nano</a> </p> <a href="https://publications.waset.org/abstracts/168702/characteristics-of-wood-plastics-nano-composites-made-of-agricultural-residues-and-urban-recycled-polymer-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168702.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6916</span> Bioethanol Production from Wild Sorghum (Sorghum arundinacieum) and Spear Grass (Heteropogon contortus)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adeyinka%20Adesanya">Adeyinka Adesanya</a>, <a href="https://publications.waset.org/abstracts/search?q=Isaac%20Bamgboye"> Isaac Bamgboye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is a growing need to develop the processes to produce renewable fuels and chemicals due to the economic, political, and environmental concerns associated with fossil fuels. Lignocellulosic biomass is an excellent renewable feedstock because it is both abundant and inexpensive. This project aims at producing bioethanol from lignocellulosic plants (Sorghum Arundinacieum and Heteropogon Contortus) by biochemical means, computing the energy audit of the process and determining the fuel properties of the produced ethanol. Acid pretreatment (0.5% H2SO4 solution) and enzymatic hydrolysis (using malted barley as enzyme source) were employed. The ethanol yield of wild sorghum was found to be 20% while that of spear grass was 15%. The fuel properties of the bioethanol from wild sorghum are 1.227 centipoise for viscosity, 1.10 g/cm3 for density, 0.90 for specific gravity, 78 °C for boiling point and the cloud point was found to be below -30 °C. That of spear grass was 1.206 centipoise for viscosity, 0.93 g/cm3 for density 1.08 specific gravity, 78 °C for boiling point and the cloud point was also found to be below -30 °C. The energy audit shows that about 64 % of the total energy was used up during pretreatment, while product recovery which was done manually demanded about 31 % of the total energy. Enzymatic hydrolysis, fermentation, and distillation total energy input were 1.95 %, 1.49 % and 1.04 % respectively, the alcoholometric strength of bioethanol from wild sorghum was found to be 47 % and the alcoholometric strength of bioethanol from spear grass was 72 %. Also, the energy efficiency of the bioethanol production for both grasses was 3.85 %. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lignocellulosic%20biomass" title="lignocellulosic biomass">lignocellulosic biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=wild%20sorghum" title=" wild sorghum"> wild sorghum</a>, <a href="https://publications.waset.org/abstracts/search?q=spear%20grass" title=" spear grass"> spear grass</a>, <a href="https://publications.waset.org/abstracts/search?q=biochemical%20conversion" title=" biochemical conversion"> biochemical conversion</a> </p> <a href="https://publications.waset.org/abstracts/67839/bioethanol-production-from-wild-sorghum-sorghum-arundinacieum-and-spear-grass-heteropogon-contortus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67839.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6915</span> Utilization and Characterizations of Olive Oil Industry By-Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sawsan%20Dacrory">Sawsan Dacrory</a>, <a href="https://publications.waset.org/abstracts/search?q=Hussein%20Abou-Yousef"> Hussein Abou-Yousef</a>, <a href="https://publications.waset.org/abstracts/search?q=Samir%20Kamel"> Samir Kamel</a>, <a href="https://publications.waset.org/abstracts/search?q=Ragab%20E.%20Abou-Zeid"> Ragab E. Abou-Zeid</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20S.%20Abdel-Aziz"> Mohamed S. Abdel-Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Elbadry"> Mohamed Elbadry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A considerable amount of lignocellulosic by-product could be obtained from olive pulp during olive oil extraction industry. The major constituents of the olive pulp are husks and seeds. The separation of each portion of olive pulp (seeds and husks) was carried out by water flotation where seeds were sediment in the bottom. Both seeds and husks were dignified by 15% NaOH followed by complete lignin removal by using sodium chlorite in acidic medium. The isolated holocellulose, α-cellulose, hydrogel and CMC which prepared from cellulose of both seeds and husk fractions were characterized by FTIR and SEM. The present study focused on the investigation of the chemical components of the lignocellulosic fraction of olive pulp. Biofunctionlization of hydrogel was achieved through loading of silver nanoparticles AgNPs in to the prepared hydrogel. The antimicrobial activity of the loaded silver hydrogel against G-ve, and G+ve, and candida was demonstrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellulose" title="cellulose">cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=carboxymethyle%20cellulose" title=" carboxymethyle cellulose"> carboxymethyle cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20pulp" title=" olive pulp"> olive pulp</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogel" title=" hydrogel"> hydrogel</a> </p> <a href="https://publications.waset.org/abstracts/40837/utilization-and-characterizations-of-olive-oil-industry-by-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40837.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6914</span> Development of a Steam or Microwave-Assisted Sequential Salt-Alkali Pretreatment for Sugarcane Leaf Waste</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Preshanthan%20Moodley">Preshanthan Moodley</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study compares two different pretreatments for sugarcane leaf waste (SLW): steam salt-alkali (SSA) and microwave salt-alkali (MSA). The two pretreatment types were modelled, optimized, and validated with R² > 0.97. Reducing sugar yields of 1.21g/g were obtained with optimized SSA pretreatment using 1.73M ZnCl₂, 1.36M NaOH and 9.69% solid loading, and 1.17g/g with optimized MSA pretreatment using 1.67M ZnCl₂, 1.52M NaOH at 400W for 10min. A lower pretreatment time (10min) was required for the MSA model (83% lower). The structure of pretreated SLW was assessed using scanning electron microscopy (SEM) and Fourier Transform Infrared analysis (FTIR). The optimized SSA and MSA models showed lignin removal of 80.5 and 73% respectively. The MSA pretreatment was further examined on sorghum leaves and Napier grass and showed yield improvements of 1.9- and 2.8-fold compared to recent reports. The developed pretreatment methods demonstrated high efficiency at enhancing enzymatic hydrolysis on various lignocellulosic substrates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lignocellulosic%20biomass" title="lignocellulosic biomass">lignocellulosic biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=pretreatment" title=" pretreatment"> pretreatment</a>, <a href="https://publications.waset.org/abstracts/search?q=salt" title=" salt"> salt</a>, <a href="https://publications.waset.org/abstracts/search?q=sugarcane%20leaves" title=" sugarcane leaves"> sugarcane leaves</a> </p> <a href="https://publications.waset.org/abstracts/110989/development-of-a-steam-or-microwave-assisted-sequential-salt-alkali-pretreatment-for-sugarcane-leaf-waste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110989.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6913</span> Chromium Adsorption by Modified Wood</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Domingos">I. Domingos</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Esteves"> B. Esteves</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Figueirinha"> A. Figueirinha</a>, <a href="https://publications.waset.org/abstracts/search?q=Lu%C3%ADsa%20P.%20Cruz-Lopes"> Luísa P. Cruz-Lopes</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Ferreira"> J. Ferreira</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Pereira"> H. Pereira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chromium is one of the most common heavy metals which exist in very high concentrations in wastewater. The removal is very expensive due to the high cost of normal adsorbents. Lignocellulosic materials and mainly treated materials have proven to be a good solution for this problem. Adsorption tests were performed at different pH, different times and with varying concentrations. Results show that is at pH 3 that treated wood absorbs more chromium ranging from 70% (2h treatment) to almost 100% (12 h treatment) much more than untreated wood with less than 40%. Most of the adsorption is made in the first 2-3 hours for untreated and heat treated wood. Modified wood adsorbs more chromium throughout the time. For all the samples, adsorption fitted relatively well the Langmuir model with correlation coefficient ranging from 0.85 to 0.97. The results show that heat treated wood is a good adsorbent ant that this might be a good utilization for sawdust from treating companies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=chromium" title=" chromium"> chromium</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20treatment" title=" heat treatment"> heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20modification" title=" wood modification"> wood modification</a> </p> <a href="https://publications.waset.org/abstracts/11132/chromium-adsorption-by-modified-wood" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">499</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lignocellulosic%20raw%20materials&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lignocellulosic%20raw%20materials&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lignocellulosic%20raw%20materials&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lignocellulosic%20raw%20materials&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lignocellulosic%20raw%20materials&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lignocellulosic%20raw%20materials&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lignocellulosic%20raw%20materials&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lignocellulosic%20raw%20materials&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lignocellulosic%20raw%20materials&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lignocellulosic%20raw%20materials&page=231">231</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lignocellulosic%20raw%20materials&page=232">232</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lignocellulosic%20raw%20materials&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>