CINXE.COM

Search results for: cotton/polyester

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: cotton/polyester</title> <meta name="description" content="Search results for: cotton/polyester"> <meta name="keywords" content="cotton/polyester"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="cotton/polyester" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="cotton/polyester"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 395</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: cotton/polyester</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">395</span> Dyeing of Polyester/Cotton Blends with Reverse-Micelle Encapsulated High Energy Disperse/Reactive Dye Mixture </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chi-Wai%20Kan">Chi-Wai Kan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yanming%20%20Wang"> Yanming Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Alan%20Yiu-Lun%20%20Tang"> Alan Yiu-Lun Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng-Hao%20Lee%20%20Lee"> Cheng-Hao Lee Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dyeing of polyester/cotton blend fabrics in various polyester/cotton percentages (32/68, 40/60 and 65/35) was investigated using (poly(ethylene glycol), PEG) based reverse-micelle. High energy disperse dyes and warm type reactive dyes were encapsulated and applied on polyester/cotton blend fabrics in a one bath one step dyeing process. Comparison of reverse micellar-based and aqueous-based (water-based) dyeing was conducted in terms of colour reflectance. Experimental findings revealed that the colour shade of the dyed fabrics in reverse micellar non-aqueous dyeing system at a lower dyeing temperature of 98°C is slightly lighter than that of conventional aqueous dyeing system in two-step process (130oC for disperse dyeing and 70°C for reactive dyeing). The exhaustion of dye in polyester-cotton blend fabrics, in terms of colour reflectance, were found to be highly fluctuated at dyeing temperature of 98°C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=one-bath%20dyeing" title="one-bath dyeing">one-bath dyeing</a>, <a href="https://publications.waset.org/abstracts/search?q=polyester%2Fcotton%20blends" title=" polyester/cotton blends"> polyester/cotton blends</a>, <a href="https://publications.waset.org/abstracts/search?q=disperse%2Freactive%20dyes" title=" disperse/reactive dyes"> disperse/reactive dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=reverse%20micelle" title=" reverse micelle"> reverse micelle</a> </p> <a href="https://publications.waset.org/abstracts/138130/dyeing-of-polyestercotton-blends-with-reverse-micelle-encapsulated-high-energy-dispersereactive-dye-mixture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138130.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">394</span> Sustainable Dyeing of Cotton and Polyester Blend Fabric without Reduction Clearing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Tofayel%20Ahmed">Mohammad Tofayel Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Seung%20Kook%20An"> Seung Kook An</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In contemporary research world, focus is more set on sustainable products and innovative processes. The global textile industries are putting tremendous effort to achieve a balance between economic development and ecological protection concurrently. The conservation of water sources and environment have become immensely significant issue in textile dyeing production. Accordingly, an attempt has been taken in this study to develop a process to dye polyester blend cotton without reduction clearing process and any extra wash off chemical by simple modification aiming at cost reduction and sustainability. A widely used combination of 60/40 cotton/polyester (c/p) single jersey knitted fabric of 30’s, 180 g/m² was considered for study. Traditionally, pretreatment is done followed by polyester part dyeing, reduction clearing and cotton part dyeing for c/p blend dyeing. But in this study, polyester part is dyed right away followed by pretreatment process and cotton part dyeing by skipping the reduction clearing process diametrically. The dyed samples of both traditional and modified samples were scrutinized by various color fastness tests, dyeing parameters and by consumption of water, steam, power, process time and total batch cost. The modified process in this study showed no necessity of reduction clearing process for polyester blend cotton dyeing. The key issue contributing to avoid the reduction clearing after polyester part dyeing has been the multifunctional effect of NaOH and H₂O₂ while pretreatment of cotton after polyester part dyeing. The results also revealed that the modified process could reduce the consumption of water, steam, power, time and cost remarkably. The bulk trial of modified process demonstrated the well exploitability to dye polyester blend cotton substrate ensuring all fastness and dyeing properties regardless of dyes category, blend ratio, color, and shade percentage thus making the process sustainable, eco-friendly and economical. Furthermore, the proposed method could be applicable to any cellulosic blend with polyester. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cotton" title="cotton">cotton</a>, <a href="https://publications.waset.org/abstracts/search?q=dyeing" title=" dyeing"> dyeing</a>, <a href="https://publications.waset.org/abstracts/search?q=economical" title=" economical"> economical</a>, <a href="https://publications.waset.org/abstracts/search?q=polyester" title=" polyester"> polyester</a> </p> <a href="https://publications.waset.org/abstracts/101251/sustainable-dyeing-of-cotton-and-polyester-blend-fabric-without-reduction-clearing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101251.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">393</span> Effect of Dyeing on the Cotton/Polyester Blended Fabric Treated by Tetra Carboxylic Acid (BTCA) and Nano TiO2</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aryan%20Azad">Aryan Azad</a>, <a href="https://publications.waset.org/abstracts/search?q=Sun%20Jae%20Kim"> Sun Jae Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cotton fabric is particularly prone to wrinkling. BTCA has been confirmed as the most effective reagent with sodium hypophosphite (SHP) as catalyst for decreasing the wrinkle issue. Using nano TiO2 as aco-catalyst could improve the catalytic reaction of the BTCA as well. In this study, the effect of dying process using reactive/disperse on the cotton/polyester blended fabric (65/35%) which is previously treated by nano TiO2 and BTCA, were investigated. Results were compared by samples which were not treated by nano TiO2 and BTCA by scanning electronic microscopy (SEM). Results showed, samples which were treated by mixing nano TiO2 and BTCA have not absorbed dye as much as untreated samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cotton%2Fpolyester" title="cotton/polyester">cotton/polyester</a>, <a href="https://publications.waset.org/abstracts/search?q=dyeing%20process" title=" dyeing process"> dyeing process</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20titanium%20dioxide%20%28TiO2%29" title=" nano titanium dioxide (TiO2)"> nano titanium dioxide (TiO2)</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20hypophosphite%20%28SHP%29" title=" sodium hypophosphite (SHP)"> sodium hypophosphite (SHP)</a>, <a href="https://publications.waset.org/abstracts/search?q=Tetra%20carboxylic%20acid%20%28BTCA%29" title=" Tetra carboxylic acid (BTCA)"> Tetra carboxylic acid (BTCA)</a> </p> <a href="https://publications.waset.org/abstracts/57849/effect-of-dyeing-on-the-cottonpolyester-blended-fabric-treated-by-tetra-carboxylic-acid-btca-and-nano-tio2" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57849.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">392</span> Optical Whitening of Textiles: Teaching and Learning Materials </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20W.%20Kan">C. W. Kan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study examines the results of optical whitening process of different textiles such as cotton, wool and polyester. The optical whitening agents used are commercially available products, and the optical whitening agents were applied to the textiles with manufacturers’ suggested methods. The aim of this study is to illustrate the proper application methods of optical whitening agent to different textiles and hence to provide guidance note to the students in learning this topic. Acknowledgment: Authors would like to thank the financial support from the Hong Kong Polytechnic University for this work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=learning%20materials" title="learning materials">learning materials</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20whitening%20agent" title=" optical whitening agent"> optical whitening agent</a>, <a href="https://publications.waset.org/abstracts/search?q=wool" title=" wool"> wool</a>, <a href="https://publications.waset.org/abstracts/search?q=cotton" title=" cotton"> cotton</a>, <a href="https://publications.waset.org/abstracts/search?q=polyester" title=" polyester"> polyester</a> </p> <a href="https://publications.waset.org/abstracts/60216/optical-whitening-of-textiles-teaching-and-learning-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60216.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">391</span> Parametrical Analysis of Stain Removal Performance of a Washing Machine: A Case Study of Sebum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ozcan%20B.">Ozcan B.</a>, <a href="https://publications.waset.org/abstracts/search?q=Koca%20B."> Koca B.</a>, <a href="https://publications.waset.org/abstracts/search?q=Tuzcuoglu%20E."> Tuzcuoglu E.</a>, <a href="https://publications.waset.org/abstracts/search?q=Cavusoglu%20S."> Cavusoglu S.</a>, <a href="https://publications.waset.org/abstracts/search?q=Efe%20A."> Efe A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Bayraktar%20S."> Bayraktar S.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A washing machine is mainly used for removing any types of dirt and stains and also eliminating malodorous substances from textile surfaces. Stains originate from various sources from the human body to environmental contamination. Therefore, there are various methods for removing them. They are roughly classified into four different groups: oily (greasy) stains, particulate stains, enzymatic stains and bleachable (oxidizable) stains. Oily stains on clothes surfaces are a common result of being in contact with organic substances of the human body (e.g. perspiration, skin shedding and sebum) or by being exposed to an oily environmental pollutant (e.g. oily foods). Studies showed that human sebum is major component of oily soil found on the garments, and if it is aged under the several environmental conditions, it can generate obstacle yellow stains on the textile surface. In this study, a parametric study was carried out to investigate the key factors affecting the cleaning performance (specifically sebum removal performance) of a washing machine. These parameters are mechanical agitation percentage of tumble, consumed water and total washing period. A full factorial design of the experiment is used to capture all the possible parametric interactions using Minitab 2021 statistical program. Tests are carried out with commercial liquid detergent and 2 different types of sebum-soiled cotton and cotton + polyester fabrics. Parametric results revealed that for both test samples, increasing the washing time and the mechanical agitation could lead to a much better removal result of sebum. However, for each sample, the water amount had different outcomes. Increasing the water amount decreases the performance of cotton + polyester fabrics, while it is favorable for cotton fabric. Besides this, it was also discovered that the type of textile can greatly affect the sebum removal performance. Results showed that cotton + polyester fabrics are much easier to clean compared to cotton fabric <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laundry" title="laundry">laundry</a>, <a href="https://publications.waset.org/abstracts/search?q=washing%20machine" title=" washing machine"> washing machine</a>, <a href="https://publications.waset.org/abstracts/search?q=low-temperature%20washing" title=" low-temperature washing"> low-temperature washing</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20wash" title=" cold wash"> cold wash</a>, <a href="https://publications.waset.org/abstracts/search?q=washing%20efficiency%20index" title=" washing efficiency index"> washing efficiency index</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=cleaning%20performance" title=" cleaning performance"> cleaning performance</a>, <a href="https://publications.waset.org/abstracts/search?q=stain%20removal" title=" stain removal"> stain removal</a>, <a href="https://publications.waset.org/abstracts/search?q=oily%20soil" title=" oily soil"> oily soil</a>, <a href="https://publications.waset.org/abstracts/search?q=sebum" title=" sebum"> sebum</a>, <a href="https://publications.waset.org/abstracts/search?q=yellowing" title=" yellowing"> yellowing</a> </p> <a href="https://publications.waset.org/abstracts/154900/parametrical-analysis-of-stain-removal-performance-of-a-washing-machine-a-case-study-of-sebum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">390</span> A FR Fire-Off with Polysilicic Acid for Pes/Co Blends</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raziye%20Atakan">Raziye Atakan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ebru%20Celebi"> Ebru Celebi</a>, <a href="https://publications.waset.org/abstracts/search?q=Gulay%20Ozcan"> Gulay Ozcan</a>, <a href="https://publications.waset.org/abstracts/search?q=Neda%20Soydan"> Neda Soydan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sezai%20Sarac"> A. Sezai Sarac</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a novel polymeric flame retardant chemical with phosphorous-nitrogen synergism was synthesized by polyvinyl alcohol (PVA), hydrophilic polyester resin (PR), phosphoric acid and dicyandiamide (DCDA). Polyester/Cotton (Pes/Co) blend fabrics were treated via pad-dry-cure process with this synthesized chemical. PVA (PR)-P-DCDA has shown that it is an effective flame retardant on the fabrics. In order to improve durable flame retardancy for cotton part of the blend, polysilicic acid and citric acid monohydrate auxiliaries were added in FR finishing bath at different concentrations. Flammability and characteristic properties of the sample were tested according to relevant ISO standard and procedures. To do so, ISO 6940 vertical flammability test, TGA, DTA, LOI and FTIR analysis have been performed. The obtained results showed that this new finishing formulation is a good char-forming agent for the PES/CO blends and polysilicic acid could be used for cellulosic blends with PVA (PR)-P-DCDA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flame%20retardancy" title="flame retardancy">flame retardancy</a>, <a href="https://publications.waset.org/abstracts/search?q=flammability" title=" flammability"> flammability</a>, <a href="https://publications.waset.org/abstracts/search?q=Pes%2FCo%20blends" title=" Pes/Co blends"> Pes/Co blends</a>, <a href="https://publications.waset.org/abstracts/search?q=polysilicic%20acid" title=" polysilicic acid"> polysilicic acid</a> </p> <a href="https://publications.waset.org/abstracts/43483/a-fr-fire-off-with-polysilicic-acid-for-pesco-blends" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43483.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">389</span> Bacterial Decontamination of Nurses&#039; White Coats by Application of Antimicrobial Finish</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Priyanka%20Gupta">Priyanka Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Nilanjana%20Bairagi"> Nilanjana Bairagi</a>, <a href="https://publications.waset.org/abstracts/search?q=Deepti%20Gupta"> Deepti Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> New pathogenic strains of microbes are continually emerging and resistance of bacteria to antibiotics is growing. Hospitals in India have a high burden of infections in their intensive care units and general wards. Rising incidence of hospital infections is a matter of great concern in India. This growth is often attributed to the absence of effective infection control strategies in healthcare facilities. Government, therefore, is looking for cost effective strategies that are effective against HAIs. One possible method is by application of an antimicrobial finish on the uniform. But there are limited studies to show the effect of antimicrobial activity of antimicrobial finish treated nurses’ uniforms in a real hospital set up. This paper proposes a prospective non-destructive sampling technique, based on the use of a detachable fabric patch, to assess the effectiveness of silver based antimicrobial agent across five wards in a tertiary care government hospital in Delhi, India. Fabrics like polyester and polyester cotton blend fabric which are more prevalent for making coats were selected for the study. Polyester and polyester cotton blend fabric was treated with silver based antimicrobial (AM) finish. At the beginning of shift, a composite patch of untreated and treated fabric respectively was stitched on the abdominal region on the left and right side of the washed white coat of participating nurse. At the end of the shift, the patch was removed and taken for bacterial sampling on Brain Heart Infusion (BHI) plates. Microbial contamination on polyester and blend fabrics after 6 hours shift was compared in Brain Heart Infusion broth (BHI). All patches treated with silver based antimicrobial agent showed decreased bacterial counts. Percent reduction in the bacterial colonies after the antimicrobial treatment in both fabrics was 81.0 %. Antimicrobial finish was equally effective in reducing microbial adhesion on both fabric types. White coats of nurses become progressively contaminated during clinical care. Type of fabric used to make the coat can affect the extent of contamination which is higher on polyester cotton blend as compared to 100% polyester. The study highlights the importance of silver based antimicrobial finish in the area of uniform hygiene. Bacterial load can be reduced by using antimicrobial finish on hospital uniforms. Hospital staff uniforms endowed with antimicrobial properties may be of great help in reducing the occurrence and spread of infections. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20finish" title="antimicrobial finish">antimicrobial finish</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteria" title=" bacteria"> bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=infection%20control" title=" infection control"> infection control</a>, <a href="https://publications.waset.org/abstracts/search?q=silver" title=" silver"> silver</a>, <a href="https://publications.waset.org/abstracts/search?q=white%20coat" title=" white coat"> white coat</a> </p> <a href="https://publications.waset.org/abstracts/79300/bacterial-decontamination-of-nurses-white-coats-by-application-of-antimicrobial-finish" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79300.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">388</span> Surface Coating of Polyester Fabrics by Sol Gel Synthesized ZnO Particles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Merve%20K%C3%BC%C3%A7%C3%BCk">Merve Küçük</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20L%C3%BCtfi%20%C3%96ve%C3%A7o%C4%9Flu"> M. Lütfi Öveçoğlu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zinc oxide particles were synthesized using the sol-gel method and dip coated on polyester fabric. X-ray diffraction (XRD) analysis revealed a single crystal phase of ZnO particles. Chemical characteristics of the polyester fabric surface were investigated using attenuated total reflection-Fourier transform infrared (ATR-FTIR) measurements. Morphology of ZnO coated fabric was analyzed using field emission scanning electron microscopy (FESEM). After particle analysis, the aqueous ZnO solution resulted in a narrow size distribution at submicron levels. The deposit of ZnO on polyester fabrics yielded a homogeneous spread of spherical particles. Energy dispersive X-ray spectroscopy (EDX) results also affirmed the presence of ZnO particles on the polyester fabrics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dip%20coating" title="dip coating">dip coating</a>, <a href="https://publications.waset.org/abstracts/search?q=polyester%20fabrics" title=" polyester fabrics"> polyester fabrics</a>, <a href="https://publications.waset.org/abstracts/search?q=sol%20gel" title=" sol gel"> sol gel</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc%20oxide" title=" zinc oxide"> zinc oxide</a> </p> <a href="https://publications.waset.org/abstracts/54523/surface-coating-of-polyester-fabrics-by-sol-gel-synthesized-zno-particles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54523.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">387</span> Microwave Sanitization of Polyester Fabrics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Haggag">K. Haggag</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Salama"> M. Salama</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20El-Sayed"> H. El-Sayed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polyester fabrics were sanitized by exposing them to vaporized water under the influence of conventional heating or microwave irradiation. Hydrogen peroxide was added the humid sanitizing environment as a disinfectant. The said sanitization process was found to be effective towards two types of bacteria, namely Escherichia coli ATCC 2666 (G –ve) and Staphylococcus aureus ATCC 6538 (G +ve). The effect of the sanitization process on some of the inherent properties of polyester fabrics was monitored. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polyester" title="polyester">polyester</a>, <a href="https://publications.waset.org/abstracts/search?q=fabric" title=" fabric"> fabric</a>, <a href="https://publications.waset.org/abstracts/search?q=sanitization" title=" sanitization"> sanitization</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave" title=" microwave"> microwave</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteria" title=" bacteria"> bacteria</a> </p> <a href="https://publications.waset.org/abstracts/13030/microwave-sanitization-of-polyester-fabrics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13030.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">386</span> Investigation of Antibacterial Property of Bamboo In-Terms of Percentage on Comparing with ZnO Treated Cotton Fabric</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arjun%20Dakuri">Arjun Dakuri</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Hayavadana"> J. Hayavadana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study includes selection of 100 % bamboo fabric and cotton fabric for the study. The 100% bamboo fabrics were of 127 g/m², and 112 g/m² and 100% cotton grey fabric were of 104 g/m². The cotton fabric was desized, scoured, bleached and then treated with ZnO (as antimicrobial agent) with 1%, 2% and 3% using pad-dry cure method, whereas the bamboo fabrics were only desized. The antimicrobial activity of bamboo and ZnO treated cotton fabrics were evaluated and compared against E. coli and S. aureus as per the standard AATCC - 147. Moisture management properties of selected fabrics were also analyzed. Further, the selected fabric samples were tested for comfort properties like bending length, tearing strength, drape-ability, and specific handle force and air permeability. It was observed that bamboo fabrics show significant antibacterial activity and the same was shown by 3% ZnO treated cotton fabric. Both cotton and bamboo fabrics show improved moisture management properties than the cotton fabric. The comfort properties of bamboo fabrics are found to be superior to cotton fabrics making it more suitable for applications in place of cotton. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title="antimicrobial activity">antimicrobial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=bamboo" title=" bamboo"> bamboo</a>, <a href="https://publications.waset.org/abstracts/search?q=cotton" title=" cotton"> cotton</a>, <a href="https://publications.waset.org/abstracts/search?q=comfort%20properties" title=" comfort properties"> comfort properties</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20management" title=" moisture management"> moisture management</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc%20oxide" title=" zinc oxide"> zinc oxide</a> </p> <a href="https://publications.waset.org/abstracts/76755/investigation-of-antibacterial-property-of-bamboo-in-terms-of-percentage-on-comparing-with-zno-treated-cotton-fabric" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76755.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">385</span> Investigation of Boll Properties on Cotton Picker Machine Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahram%20Nowrouzieh">Shahram Nowrouzieh</a>, <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Rezaei%20Asl"> Abbas Rezaei Asl</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Ali%20Jafari"> Mohamad Ali Jafari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cotton, as a strategic crop, plays an important role in providing human food and clothing need, because of its oil, protein, and fiber. Iran has been one of the largest cotton producers in the world in the past, but unfortunately, for economic reasons, its production is reduced now. One of the ways to reduce the cost of cotton production is to expand the mechanization of cotton harvesting. Iranian farmers do not accept the function of cotton harvesters. One reason for this lack of acceptance of cotton harvesting machines is the number of field losses on these machines. So, the majority of cotton fields are harvested by hand. Although the correct setting of the harvesting machine is very important in the cotton losses, the morphological properties of the cotton plant also affect the performance of cotton harvesters. In this study, the effect of some cotton morphological properties such as the height of the cotton plant, number, and length of sympodial and monopodial branches, boll dimensions, boll weight, number of carpels and bracts angle were evaluated on the performance of cotton picker. In this research, the efficiency of John Deere 9920 spindle Cotton picker is investigated on five different Iranian cotton cultivars. The results indicate that there was a significant difference between the five cultivars in terms of machine harvest efficiency. Golestan cultivar showed the best cotton harvester performance with an average of 87.6% of total harvestable seed cotton and Khorshid cultivar had the least cotton harvester performance. The principal component analysis showed that, at 50.76% probability, the cotton picker efficiency is affected by the bracts angle positively and by boll dimensions, the number of carpels and the height of cotton plants negatively. The seed cotton remains (in the plant and on the ground) after harvester in PCA scatter plot were in the same zone with boll dimensions and several carpels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cotton" title="cotton">cotton</a>, <a href="https://publications.waset.org/abstracts/search?q=bract" title=" bract"> bract</a>, <a href="https://publications.waset.org/abstracts/search?q=harvester" title=" harvester"> harvester</a>, <a href="https://publications.waset.org/abstracts/search?q=carpel" title=" carpel "> carpel </a> </p> <a href="https://publications.waset.org/abstracts/114605/investigation-of-boll-properties-on-cotton-picker-machine-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114605.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">384</span> Investigation of Moisture Management Properties of Cotton and Blended Knitted Fabrics </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20S.%20Achour">N. S. Achour</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hamdaoui"> M. Hamdaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Ben%20Nasrallah"> S. Ben Nasrallah</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Perwuelz"> A. Perwuelz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main idea of this work is to investigate the effect of knitted fabrics characteristics on moisture management properties. Wetting and transport properties of single jersey, Rib 1&1 and English Rib fabrics made out of cotton and blended Cotton/Polyester yarns were studied. The dynamic water sorption of fabrics was investigated under same isothermal and terrestrial conditions at 20±2°C-65±2% by using the Moisture Management Tester (MMT) which can be used to quantitatively measure liquid moisture transfer in one step in a fabric in multi directions: Absorption rate, moisture absorbing time of the fabric's inner and outer surfaces, one-way transportation capability, the spreading/drying rate, the speed of liquid moisture spreading on fabric's inner and outer surfaces are measured, recorded and discussed. The results show that fabric’s composition and knit’s structure have a significant influence on those phenomena. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=knitted%20fabrics%20characteristics" title="knitted fabrics characteristics">knitted fabrics characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20management%20properties" title=" moisture management properties"> moisture management properties</a>, <a href="https://publications.waset.org/abstracts/search?q=multi%20directions" title=" multi directions"> multi directions</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20moisture%20management%20tester" title=" the moisture management tester"> the moisture management tester</a> </p> <a href="https://publications.waset.org/abstracts/27281/investigation-of-moisture-management-properties-of-cotton-and-blended-knitted-fabrics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27281.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">383</span> Conductive and Stretchable Graphene Nanoribbon Coated Textiles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lu%20Gan">Lu Gan</a>, <a href="https://publications.waset.org/abstracts/search?q=Songmin%20Shang"> Songmin Shang</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcus%20Chun%20Wah%20Yuen"> Marcus Chun Wah Yuen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A conductive and stretchable cotton fabric was prepared in this study through coating the graphene nanoribbon onto the cotton fabric. The mechanical and electrical properties of the prepared cotton fabric were then investigated. As shown in the results, the graphene nanoribbon coated cotton fabric had an improvement in both mechanical strength and electrical conductivity. Moreover, the resistance of the cotton fabric had a linear dependence on the strain applied to it. The prepared graphene nanoribbon coated cotton fabric has great application potentials in smart textile industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conductive%20fabric" title="conductive fabric">conductive fabric</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20nanoribbon" title=" graphene nanoribbon"> graphene nanoribbon</a>, <a href="https://publications.waset.org/abstracts/search?q=coating" title=" coating"> coating</a>, <a href="https://publications.waset.org/abstracts/search?q=enhanced%20properties" title=" enhanced properties"> enhanced properties</a> </p> <a href="https://publications.waset.org/abstracts/32101/conductive-and-stretchable-graphene-nanoribbon-coated-textiles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32101.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">382</span> Resin Finishing of Cotton: Teaching and Learning Materials </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20W.%20Kan">C. W. Kan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cotton is the most commonly used material for apparel purpose because of its durability, good perspiration absorption characteristics, comfort during wear and dyeability. However, proneness to creasing and wrinkling give cotton garments a poor rating during actual wear. Resin finishing is a process to bring out crease or wrinkle free/resistant effect to cotton fabric. Thus, the aim of this study is to illustrate the proper application of resin finishing to cotton fabric, and the results could provide guidance note to the students in learning this topic. Acknowledgment: Authors would like to thank the financial support from the Hong Kong Polytechnic University for this work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=learning%20materials" title="learning materials">learning materials</a>, <a href="https://publications.waset.org/abstracts/search?q=resin" title=" resin"> resin</a>, <a href="https://publications.waset.org/abstracts/search?q=textiles" title=" textiles"> textiles</a>, <a href="https://publications.waset.org/abstracts/search?q=wrinkle" title=" wrinkle"> wrinkle</a> </p> <a href="https://publications.waset.org/abstracts/60219/resin-finishing-of-cotton-teaching-and-learning-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60219.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">381</span> Mechanical Properties of Kenaf Reinforced Composite with Different Fiber Orientation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20C.%20Ching">Y. C. Ching</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20H.%20Chong"> K. H. Chong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increasing of environmental awareness has led to grow interest in the expansion of materials with eco-friendly attributes. In this study, a 3 ply sandwich layer of kenaf fiber reinforced unsaturated polyester with various fiber orientations was developed. The effect of the fiber orientation on mechanical and thermal stability properties of polyester was studied. Unsaturated polyester as a face sheets and kenaf fibers as a core was fabricated with combination of hand lay-up process and cold compression method. Tested result parameters like tensile, flexural, impact strength, melting point, and crystallization point were compared and recorded based on different fiber orientation. The failure mechanism and property changes associated with directional change of fiber to polyester composite were discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=kenaf%20fiber" title="kenaf fiber">kenaf fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=polyester" title=" polyester"> polyester</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile" title=" tensile"> tensile</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20stability" title=" thermal stability"> thermal stability</a> </p> <a href="https://publications.waset.org/abstracts/11798/mechanical-properties-of-kenaf-reinforced-composite-with-different-fiber-orientation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11798.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">380</span> A Comparative Study on Indian and Greek Cotton Fiber Properties Correlations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Nakib%20Ul%20Hasan">Md. Nakib Ul Hasan</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Ariful%20Islam"> Md. Ariful Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Sumon%20Miah"> Md. Sumon Miah</a>, <a href="https://publications.waset.org/abstracts/search?q=Misbah%20Ul%20Hoque"> Misbah Ul Hoque</a>, <a href="https://publications.waset.org/abstracts/search?q=Bulbul%20Ahmed"> Bulbul Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The variability of cotton fiber characteristics has always been influenced by origin, weather conditions, method of culturing, and harvesting. Spinners work tirelessly to ensure consistent yarn quality by using the different origins of fibers to maximizes the profit margin. Spinners often fail to select desired raw materials of various origins to achieve an appropriate mixing plan due to the lack of knowledge on the interrelationship among fiber properties. The purpose of this research is to investigate the correlations among dominating fiber properties such as micronaire, strength, breaking elongation, upper half mean length, length uniformity index, short fiber index, maturity, reflectance, and yellowness. For this purpose, fiber samples from 500 Indian cotton bales and 350 Greek cotton bales were collected and tested using the high volume instrument (HVI). The fiber properties dataset was then compiled and analyzed using python 3.7 to determine the correlations matrix. Results show that Indian cotton fiber have highest correlation between strength-mat = 0.84, followed by SFI-Unf =-0.83, and Neps-Unf = -0.72. Greek cotton fiber, in contrast, have highest correlation between SFI-Unf =-0.98, followed by SFI-Mat = 0.89, +b-Len = 0.84, and Str-Mat = 0.74. Overall, the Greek cotton fiber showed a higher correlational matrix than compared to that of Indian cotton fiber. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cotton%20fiber" title="cotton fiber">cotton fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20properties%20correlation" title=" fiber properties correlation"> fiber properties correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=Greek%20cotton" title=" Greek cotton"> Greek cotton</a>, <a href="https://publications.waset.org/abstracts/search?q=HVI" title=" HVI"> HVI</a>, <a href="https://publications.waset.org/abstracts/search?q=Indian%20cotton" title=" Indian cotton"> Indian cotton</a>, <a href="https://publications.waset.org/abstracts/search?q=spinning" title=" spinning"> spinning</a> </p> <a href="https://publications.waset.org/abstracts/130187/a-comparative-study-on-indian-and-greek-cotton-fiber-properties-correlations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130187.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">379</span> Major Variables Influencing Marketed Surplus of Seed Cotton in District Khanewal, Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manan%20Aslam">Manan Aslam</a>, <a href="https://publications.waset.org/abstracts/search?q=Shafqat%20Rasool"> Shafqat Rasool</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper attempts to examine impact of major factors affecting marketed surplus of seed cotton in district Khanewal (Punjab) using primary source of data. A representative sample of 40 cotton farmers was selected using stratified random sampling technique. The impact of major factors on marketed surplus of seed cotton growers was estimated by employing double log form of regression analysis. The value of adjusted R2 was 0.64 whereas the F-value was 10.81. The findings of analysis revealed that experience of farmers, education of farmers, area under cotton crop and distance from wholesale market were the significant variables affecting marketed surplus of cotton whereas the variables (marketing cost and sale price) showed insignificant impact. The study suggests improving prevalent marketing practices to increase volume of marketed surplus of cotton in district Khanewal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seed%20cotton" title="seed cotton">seed cotton</a>, <a href="https://publications.waset.org/abstracts/search?q=marketed%20surplus" title=" marketed surplus"> marketed surplus</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20log%20regression%20analysis" title=" double log regression analysis"> double log regression analysis</a> </p> <a href="https://publications.waset.org/abstracts/18696/major-variables-influencing-marketed-surplus-of-seed-cotton-in-district-khanewal-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18696.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">378</span> Surface Modification of Cotton Using Slaughterhouse Wastes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Granch%20Berhe%20Tseghai">Granch Berhe Tseghai</a>, <a href="https://publications.waset.org/abstracts/search?q=Lodrick%20Wangatia%20Makokha"> Lodrick Wangatia Makokha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cotton dyeing using reactive dyes is one of the major water polluter; this is due to large amount of dye and salt remaining in effluent. Recent adverse climate change and its associated effect to human life have lead to search for more sustainable industrial production. Cationization of cotton to improve its affinity for reactive dye has been earmarked as a major solution for dyeing of cotton with no or less salt. Synthetic cationizing agents of ammonium salt have already been commercialized. However, in nature there are proteinous products which are rich in amino and ammonium salts which can be carefully harnessed to be used as cationizing agent for cotton. The hoofs and horns have successfully been used to cationize cotton so as to improve cotton affinity to the dye. The cationization action of the hoof and horn extract on cotton was confirmed by dyeing the pretreated fabric without salt and comparing it with conventionally dyed and untreated salt free dyed fabric. UV-VIS absorption results showed better dye absorption (62.5% and 50% dye bath exhaustion percentage for cationized and untreated respectively) while K/S values of treated samples were similar to conventional sample. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cationization" title="cationization">cationization</a>, <a href="https://publications.waset.org/abstracts/search?q=cotton" title=" cotton"> cotton</a>, <a href="https://publications.waset.org/abstracts/search?q=proteinous%20products" title=" proteinous products"> proteinous products</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20dyes" title=" reactive dyes"> reactive dyes</a> </p> <a href="https://publications.waset.org/abstracts/23903/surface-modification-of-cotton-using-slaughterhouse-wastes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23903.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">377</span> Heat Setting of Polyester: Teaching and Learning Materials </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20W.%20Kan">C. W. Kan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heat setting is a commonly used technique in textile industry for treating synthetic fibers. In this study, we examined the effect of heat-setting process on the dyeing properties of polyester fabric. The heat setting conditions were varied, and these conditions would affect the dyeing results. The aim of this study is to illustrate the proper application method of heat setting process to polyester fabric, and the results could provide guidance note to the students in learning this topic. Acknowledgment: Authors would like to thank the financial support from the Hong Kong Polytechnic University for this work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=learning%20materials" title="learning materials">learning materials</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20setting" title=" heat setting"> heat setting</a>, <a href="https://publications.waset.org/abstracts/search?q=polyester" title=" polyester"> polyester</a>, <a href="https://publications.waset.org/abstracts/search?q=dyeing" title=" dyeing"> dyeing</a> </p> <a href="https://publications.waset.org/abstracts/60217/heat-setting-of-polyester-teaching-and-learning-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60217.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">376</span> RNA Antisense Coat Protein Showing Promising Effects against Cotton Leaf Curl Disease in Pakistani Cotton</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zunnu%20Raen%20Akhtar">Zunnu Raen Akhtar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cotton Leaf Curl Disease (CLCuD) is from Gemini virus and is transmitted through whiteflies in cotton. Transgenic cotton containing Antisense Coat Protein (ACP) has been found to show better results against CLCuD in cotton. In current research, Antisense Coat Protein was inserted in cotton plants to observe resistance developed in the cotton plants against CLCuD. T1 generation of plants were observed for its expression in plants. Tests were carried out to observe the expression of Antisense Coat Protein using Polymerase Chain Reaction (PCR) technique and by southern blotting. Whiteflies showing positive Cotton Leaf Curl Virus (CLCV) were reared and released in bioassay on ACP expressing cotton plants under laboratory as well as confined semi-field conditions. Results confirmed the expression of AC protein in PCR and southern blotting. Further laboratory results showed that cotton plants expressing AC protein showed rare incidence of CLCuD infection as compared to control. In the confined semi-field, similar results were observed in AC protein expressing cotton as compared to control. These results explicitly show that ACP can help to tackle the CLCuD issue in the future and further studies on biochemical processes involved in these plants and effects of ACP induction on non-target organisms should also be studied for eco-system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cotton" title="cotton">cotton</a>, <a href="https://publications.waset.org/abstracts/search?q=white%20flies" title=" white flies"> white flies</a>, <a href="https://publications.waset.org/abstracts/search?q=antisense%20coat%20protein" title=" antisense coat protein"> antisense coat protein</a>, <a href="https://publications.waset.org/abstracts/search?q=CLCV" title=" CLCV"> CLCV</a> </p> <a href="https://publications.waset.org/abstracts/75702/rna-antisense-coat-protein-showing-promising-effects-against-cotton-leaf-curl-disease-in-pakistani-cotton" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75702.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">375</span> Influence of Annealing on the Mechanical Properties of Polyester-Cotton Friction Spun Yarn</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sujit%20Kumar%20Sinha">Sujit Kumar Sinha</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Chattopadhyay"> R. Chattopadhyay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the course of processing phases and use, fibres, yarns, or fabrics are subjected to a variety of stresses and strains, which cause the development of internal stresses. Given an opportunity, these inherent stresses try to bring back the structure to the original state. As an example, a twisted yarn always shows a tendency to untwist whenever its one end is made free. If the yarn is not held under tension, it may form snarls due to the presence of excessive torque. The running performance of such yarn or thread may, therefore, get negatively affected by it, as a snarl may not pass through the knitting or sewing needle smoothly, leading to an end break. A fabric shows a tendency to form wrinkles whenever squeezed. It may also shrink when brought to a relaxed state. In order to improve performance (i.e., dimensional stability or appearance), stabilization of the structure is needed. The stabilization can be attained through the release of internal stresses, which can be brought about by the process of annealing and/or other finishing treatments. When a fabric is subjected to heat, a change in the properties of the fibers, yarns, and fabric is expected. The degree to which the properties are affected would depend upon the condition of heat treatment and on the properties & structure of fibres, yarns, and fabric. In the present study, an attempt has been made to investigate the effect of annealing treatment on the properties of polyester cotton yarns with varying sheath structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=friction%20spun%20yarn" title="friction spun yarn">friction spun yarn</a>, <a href="https://publications.waset.org/abstracts/search?q=annealing" title=" annealing"> annealing</a>, <a href="https://publications.waset.org/abstracts/search?q=tenacity" title=" tenacity"> tenacity</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20integrity" title=" structural integrity"> structural integrity</a>, <a href="https://publications.waset.org/abstracts/search?q=decay" title=" decay"> decay</a> </p> <a href="https://publications.waset.org/abstracts/183509/influence-of-annealing-on-the-mechanical-properties-of-polyester-cotton-friction-spun-yarn" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183509.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">374</span> Bioefficacy of Novel Insecticide Flupyradifurone Sl 200 against Leaf Hoppers, Aphids and Whitefly in Cotton</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20V.%20V.%20S.%20D.%20Prasad">N. V. V. S. D. Prasad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Field experiments were conducted at Regional Agricultural Research Station, Lam, Guntur, Andhra Pradesh, India for two seasons during 2011-13 to evaluate the efficacy of flupyradifurone SL 200 a new class of insecticide in butenolide group against leaf hoppers, aphids and whitefly in Cotton. The test insecticide flupyradifurone 200 was evaluated at three doses @ 150, 200 and 250 g ai/ha ha along with imidacloprid 200 SL @ 20g ai/ha, acetamiprid 20 SP @ 20g ai/ha, thiamethoxam 25 WG @ 25g ai/ha and monocrotophos 36 SL @ 360 g ai/ha as standards. Flupyradifurone SL 200 even at lower dose of 150g ai/ha exhibited superior efficacy against cotton leafhopper, Amrasca devastans than the neonicotinoids which are widely used for control of sucking pests in cotton. Against cotton aphids, Aphis gossypii. Flupyradifurone SL 200 @ 200 and 250 g ai/ha ha was proved to be effective and the lower dose @ 150g ai/ha performed better than some of the neonicotinoids. The effect of flupyradifurone SL 200 on cotton against whitefly, Bemisia tabaci was evident at higher doses of 200 and 250 g ai/ha and superior to all standard treatments, however, the lower dose is at par with neonicotinoids. The seed cotton yield of flupyradifurone 200 SL at all the doses tested was superior than imidacloprid 200 SL @ 20g ai/ha and acetamiprid 20 SP @ 20g ai/ha. There is no significant difference among the insecticidal treatments with regards to natural enemies. The results clearly suggest that flupyradifurone is a new tool to combat sucking pest problems in cotton and can well fit in IRM strategies in light of wide spread insecticide resistance in cotton sucking pests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cotton" title="cotton">cotton</a>, <a href="https://publications.waset.org/abstracts/search?q=flupyradifurone" title=" flupyradifurone"> flupyradifurone</a>, <a href="https://publications.waset.org/abstracts/search?q=neonicotinoids" title=" neonicotinoids"> neonicotinoids</a>, <a href="https://publications.waset.org/abstracts/search?q=sucking%20pests" title=" sucking pests"> sucking pests</a> </p> <a href="https://publications.waset.org/abstracts/77184/bioefficacy-of-novel-insecticide-flupyradifurone-sl-200-against-leaf-hoppers-aphids-and-whitefly-in-cotton" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77184.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">373</span> Yield, Economics and ICBR of Different IPM Modules in Bt Cotton in Maharashtra</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20K.%20Bhute">N. K. Bhute</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20B.%20Bhosle"> B. B. Bhosle</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20G.%20More"> D. G. More</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20V.%20Bhede"> B. V. Bhede</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The field experiments were conducted during kharif season of the year 2007-08 at the experimental farm of the Department of Agricultural Entomology, Vasantrao Naik Marathwada Krishi Vidyapeeth, Studies on evaluation of different IPM modules for Bt cotton in relation to yield economics and ICBR revealed that MAU and CICR IPM modules proved superior. It was, however, on par with chemical control. Considering the ICBR and safety to natural enemies, an inference can be drawn that Bt cotton with IPM module is the most ideal combination. Besides reduction in insecticide use, it is also expected to ensure favourable ecological and economic returns in contrast to the adverse effects due to conventional insecticides. The IPM approach, which takes care of varying pest situation, appears to be essential for gaining higher advantage from Bt cotton. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=yield" title="yield">yield</a>, <a href="https://publications.waset.org/abstracts/search?q=economics" title=" economics"> economics</a>, <a href="https://publications.waset.org/abstracts/search?q=ICBR" title=" ICBR"> ICBR</a>, <a href="https://publications.waset.org/abstracts/search?q=IPM%20Modules" title=" IPM Modules"> IPM Modules</a>, <a href="https://publications.waset.org/abstracts/search?q=Bt%20cotton" title=" Bt cotton "> Bt cotton </a> </p> <a href="https://publications.waset.org/abstracts/24376/yield-economics-and-icbr-of-different-ipm-modules-in-bt-cotton-in-maharashtra" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24376.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">372</span> Cotton Transplantation as a Practice to Escape Infection with Some Soil-Borne Pathogens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20M.%20H.%20Maggie">E. M. H. Maggie</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20A.%20Nazmey"> M. N. A. Nazmey</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Abdel-Sattar"> M. A. Abdel-Sattar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Saied"> S. A. Saied</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A successful trial of transplanting cotton is reported. Seeds grown in trays for 4-5 weeks in an easily prepared supporting medium such as peat moss or similar plant waste are tried. Careful transplanting of seedlings, with root system as intact as possible, is being made in the permanent field. The practice reduced damping-off incidence rate and allowed full winter crop revenues. Further work is needed to evaluate certain parameters such as growth curve, flowering curve, and yield at economic bases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cotton" title="cotton">cotton</a>, <a href="https://publications.waset.org/abstracts/search?q=transplanting%20cotton" title=" transplanting cotton"> transplanting cotton</a>, <a href="https://publications.waset.org/abstracts/search?q=damping-off%20diseases" title=" damping-off diseases"> damping-off diseases</a>, <a href="https://publications.waset.org/abstracts/search?q=environment%20sciences" title=" environment sciences"> environment sciences</a> </p> <a href="https://publications.waset.org/abstracts/3698/cotton-transplantation-as-a-practice-to-escape-infection-with-some-soil-borne-pathogens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3698.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">371</span> Comparative study of the technical efficiency of the cotton farms in the towns of Banikoara and Savalou</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boukari%20Abdou%20Wakilou">Boukari Abdou Wakilou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Benin is one of West Africa's major cotton-producing countries. Cotton is the country's main source of foreign currency and employment. But it is also one of the sources of soil degradation. The search for good agricultural practices is therefore, a constant preoccupation. The aim of this study is to measure the technical efficiency of cotton growers by comparing those who constantly grow cotton on the same land with those who practice crop rotation. The one-step estimation approach of the stochastic production frontier, including determinants of technical inefficiency, was applied to a stratified random sample of 261 cotton producers. Overall, the growers had a high average technical efficiency level of 90%. However, there was no significant difference in the level of technical efficiency between the two groups of growers studied. All the factors linked to compliance with the technical production itinerary had a positive influence on the growers' level of efficiency. It is, therefore, important to continue raising awareness of the importance of respecting the technical production itinerary and of integrated soil fertility management techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=technical%20efficiency" title="technical efficiency">technical efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20fertility" title=" soil fertility"> soil fertility</a>, <a href="https://publications.waset.org/abstracts/search?q=cotton" title=" cotton"> cotton</a>, <a href="https://publications.waset.org/abstracts/search?q=crop%20rotation" title=" crop rotation"> crop rotation</a>, <a href="https://publications.waset.org/abstracts/search?q=benin" title=" benin"> benin</a> </p> <a href="https://publications.waset.org/abstracts/178298/comparative-study-of-the-technical-efficiency-of-the-cotton-farms-in-the-towns-of-banikoara-and-savalou" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178298.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">370</span> Learning Materials of Atmospheric Pressure Plasma Process: Application in Wrinkle-Resistant Finishing of Cotton Fabric</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20W.%20Kan">C. W. Kan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cotton fibre is a commonly-used natural fibre because of its good fibre strength, high moisture absorption behaviour and minimal static problems. However, one of the main drawbacks of cotton fibre is wrinkling after washing, which is recently overcome by wrinkle-resistant treatment. 1,2,3,4-butanetetracarboxylic acid (BTCA) could improve the wrinkle-resistant properties of cotton fibre. Although the BTCA process is an effective method for wrinkle resistant application of cotton fabrics, reduced fabric strength was observed after treatment. Therefore, this paper would explore the use of atmospheric pressure plasma treatment under different discharge powers as a pretreatment process to enhance the application of BTCA process on cotton fabric without generating adverse effect. The aim of this study is to provide learning information to the users to know how the atmospheric pressure plasma treatment can be incorporated in textile finishing process with positive impact. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=learning%20materials" title="learning materials">learning materials</a>, <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20pressure%20plasma%20treatment" title=" atmospheric pressure plasma treatment"> atmospheric pressure plasma treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=cotton" title=" cotton"> cotton</a>, <a href="https://publications.waset.org/abstracts/search?q=wrinkle-resistant" title=" wrinkle-resistant"> wrinkle-resistant</a>, <a href="https://publications.waset.org/abstracts/search?q=BTCA" title=" BTCA"> BTCA</a> </p> <a href="https://publications.waset.org/abstracts/49532/learning-materials-of-atmospheric-pressure-plasma-process-application-in-wrinkle-resistant-finishing-of-cotton-fabric" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">369</span> Effect of Abiotic Factors on Population of Red Cotton Bug Dysdercus Koenigii F. (Heteroptera: Pyrrhocoridae) and Its Impact on Cotton Boll Disease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haider%20Karar">Haider Karar</a>, <a href="https://publications.waset.org/abstracts/search?q=Saghir%20Ahmad"> Saghir Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Amjad%20Ali"> Amjad Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrar%20Ul%20Haq"> Ibrar Ul Haq</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The experiment was conducted at Cotton Research Station, Multan to study the impact of weather factors and red cotton bug (RCB) on cotton boll disease yielded yellowish lint during 2012. The population on RCB along with abiotic factors was recorded during three consecutive years i.e. 2012, 2013, and 2014. Along with population of RCB and abiotic factors, the number of unopened/opened cotton bolls (UOB), percent yellowish lint (YL) and whitish lint (WL) were also recorded. The data revealed that the population per plant of RCB remain 0.50 and 0.34 during years 2012, 2013 but increased during 2014 i.e. 3.21 per plant. The number of UOB were more i.e. 13.43% in 2012 with YL 76.30 and WL 23.70% when average maximum temperature 34.73◦C, minimum temperature 22.83◦C, RH 77.43% and 11.08 mm rainfall. Similarly in 2013 the number of UOB were less i.e. 0.34 per plant with YL 1.48 and WL 99.53 per plant when average maximum temperature 34.60◦C, minimum temperature 23.37◦C, RH 73.01% and 9.95 mm rainfall. During 2014 RCB population per plant was 3.22 with no UOB and YL was 0.00% and WL was 100% when average maximum temperature 23.70◦C, minimum temperature 23.18◦C, RH 71.67% and 4.55 mm rainfall. So it is concluded that the cotton bolls disease was more during 2012 due to more rainfall and more percent RH. The RCB may be the carrier of boll rot disease pathogen during more rainfall. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=red%20cotton%20bug" title="red cotton bug">red cotton bug</a>, <a href="https://publications.waset.org/abstracts/search?q=cotton" title=" cotton"> cotton</a>, <a href="https://publications.waset.org/abstracts/search?q=weather%20factors" title=" weather factors"> weather factors</a>, <a href="https://publications.waset.org/abstracts/search?q=years" title=" years"> years</a> </p> <a href="https://publications.waset.org/abstracts/27283/effect-of-abiotic-factors-on-population-of-red-cotton-bug-dysdercus-koenigii-f-heteroptera-pyrrhocoridae-and-its-impact-on-cotton-boll-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27283.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">368</span> Water Repellent Finishing of Cotton: Teaching and Learning Materials </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20W.%20Kan">C. W. Kan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fabrics can be treated to equip them with certain functional properties in which water repellency is one of the important functional effects. In this study, commercial water repellent agent was used under different application conditions to cotton fabric. Finally, the water repellent effect was evaluated by standard testing method. Thus, the aim of this study is to illustrate the proper application of water repellent finishing to cotton fabric and the results could provide guidance note to the students in learning this topic. Acknowledgment: Authors would like to thank the financial support from the Hong Kong Polytechnic University for this work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=learning%20materials" title="learning materials">learning materials</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20repellent" title=" water repellent"> water repellent</a>, <a href="https://publications.waset.org/abstracts/search?q=textiles" title=" textiles"> textiles</a>, <a href="https://publications.waset.org/abstracts/search?q=cotton" title=" cotton"> cotton</a> </p> <a href="https://publications.waset.org/abstracts/60220/water-repellent-finishing-of-cotton-teaching-and-learning-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60220.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">367</span> Application of Natural Dyes on Polyester and Polyester-Cellulosic Blended Fabrics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deepali%20Rastogi">Deepali Rastogi</a>, <a href="https://publications.waset.org/abstracts/search?q=Akanksha%20Rastogi"> Akanksha Rastogi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Comfort and safety are two essential factors in a newborn’s clothing. Natural dyes are considered safe for infant clothes because they are non-toxic and have medicinal properties. Natural dyes are sensitive to pH and may show changes in hue under different pH conditions. Infant garments face treatments different than adult clothing, for instance, exposure to infant’s saliva, milk, and urine. The present study was designed to study the suitability of natural dyes for infant clothes. Cotton fabric was dyed using fifteen natural dyes and two mordants, alum, and ferrous sulphate. The dyed samples were assessed for colour fastness to washing, rubbing, perspiration and light. In addition, fastness to milk, saliva, and urine was also tested. Simulated solutions of saliva and urine were prepared for the study. For milk, one of the commercial formulations for infants was taken and used as per the directions. A wide gamut of colours was obtained after dyeing the cotton with different natural dyes and mordants. The colour strength of all the dyed samples was determined in terms of K/S values. Most of the ferrous sulphate mordanted dyes gave higher K/S values than alum mordanted samples. The wash fastness of dyed cotton fabrics ranged from 3/4 -5. Perspiration fastness test for the samples was done in both acidic and alkaline mediums. The ratings ranged from 3-5, with most of the dyes falling in the range of 4-5. The rubbing fastness of the dyed samples was tested in dry and wet conditions. The results showed excellent rub fastness ranging between 4-5. Light fastness was found to be good to moderate. The main food for infants is milk, and this becomes one of the main agents to spot infants' garments. All dyes showed excellent fastness properties against milk with a grey scale rating of 4-5. Fastness against saliva is recommended by various eco-labels, standards, and organizations for fabrics of infants or babies. The fastness of most of the dyes was found to be satisfactory against saliva. Infant garments get frequently soiled with urine. Most of the natural dyes on cotton fabric had good to excellent fastness to simulated urine. The grey scale ratings ranged from 3/4 – 5. Thus, it can be concluded that most of the natural dyes can be successfully used for infant wear and accessories and are fast to various liquids to which infant wear are exposed. Therefore, we can surround little ones with beautiful hues from nature's garden and clothe them in natural fibres dyed with natural dyes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fastness%20properties" title="fastness properties">fastness properties</a>, <a href="https://publications.waset.org/abstracts/search?q=infant%20wear" title=" infant wear"> infant wear</a>, <a href="https://publications.waset.org/abstracts/search?q=mordants" title=" mordants"> mordants</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20dyes" title=" natural dyes"> natural dyes</a> </p> <a href="https://publications.waset.org/abstracts/124915/application-of-natural-dyes-on-polyester-and-polyester-cellulosic-blended-fabrics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124915.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">366</span> Solvent-Free Synthesis of Sorbents for Removal of Oil Spills</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20H.%20Al-Sayah">Mohammad H. Al-Sayah</a>, <a href="https://publications.waset.org/abstracts/search?q=Khalid%20Jarrah"> Khalid Jarrah</a>, <a href="https://publications.waset.org/abstracts/search?q=Soleiman%20Hisaindee"> Soleiman Hisaindee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrophobic sorbents are usually used to remove oil spills from water surfaces. In this study, the hydrophilic fibers of natural cotton were chemically modified with a solvent-free process to modify them into hydrophobic fibers that can remove oil from water surfaces. The cellulose-based fibers of cotton were reacted with trichlorosilanes through gas-solid reaction in a dry chamber. Cotton fibers were exposed to vapors of four different chloroalkylsilanes at room temperature for 24 hours. The chlorosilanes were namely trichloromethylsilane, dichlorodimethyl silane, butyltrichlorosilane, and trichloro (3,3,3-trifluoropropyl) silane. The modified cotton fibers were characterized by IR-spectroscopy, thermogravimetric analysis (TGA) and Scanning Electron Microscopy/Energy Dispersive X-Ray Spectroscopy (SEM-EDS). The degree of substitution for each of the grafted alkyl groups was in the range between 0.1 and 0.3 per glucose residue. As a result of sialylation, the cotton fibers became hydrophobic; this was reflected by water contact-angle measurements of the fibers which increased from zero for the unmodified cotton to above 100 degrees for the modified fibers. In addition, the adsorption capacity of the fibers for oil from water surfaces increased by about five times that of the unmodified cotton reaching 18 g oil/g of cotton modified by dimethyl substituted silyl ethers. The optimal fiber-oil contact time and temperature for adsorption were 10 mins at 25°C, respectively. Therefore, the efficacy of cotton fibers to remove oil spills from contaminated water surfaces was significantly enhanced by using a simple solvent-free and environment-friendly process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas-solid%20silyl%20reaction" title="gas-solid silyl reaction">gas-solid silyl reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20cellulose" title=" modified cellulose"> modified cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=solvent-free" title=" solvent-free"> solvent-free</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20pollution" title=" oil pollution"> oil pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=cotton" title=" cotton"> cotton</a> </p> <a href="https://publications.waset.org/abstracts/97481/solvent-free-synthesis-of-sorbents-for-removal-of-oil-spills" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97481.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cotton%2Fpolyester&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cotton%2Fpolyester&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cotton%2Fpolyester&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cotton%2Fpolyester&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cotton%2Fpolyester&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cotton%2Fpolyester&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cotton%2Fpolyester&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cotton%2Fpolyester&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cotton%2Fpolyester&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cotton%2Fpolyester&amp;page=13">13</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cotton%2Fpolyester&amp;page=14">14</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cotton%2Fpolyester&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10