CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 100 results for author: <span class="mathjax">Bulava, J</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/hep-lat" aria-role="search"> Searching in archive <strong>hep-lat</strong>. <a href="/search/?searchtype=author&amp;query=Bulava%2C+J">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Bulava, J"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Bulava%2C+J&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Bulava, J"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Bulava%2C+J&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Bulava%2C+J&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Bulava%2C+J&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Bulava%2C+J&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.00754">arXiv:2403.00754</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.00754">pdf</a>, <a href="https://arxiv.org/format/2403.00754">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> The quark-mass dependence of the potential energy between static colour sources in the QCD vacuum with light and strange quarks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bulava%2C+J">John Bulava</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Knechtli%2C+F">Francesco Knechtli</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koch%2C+V">Vanessa Koch</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Morningstar%2C+C">Colin Morningstar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Peardon%2C+M">Michael Peardon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.00754v2-abstract-short" style="display: inline;"> The low-lying energy spectrum of the static-colour-source-anti-source system in a vacuum containing light and strange quarks is computed using lattice QCD for a range of different light quark masses. The resulting levels are described using a simple model Hamiltonian and the parameters in this model are extrapolated to the physical light-quark masses. In this framework, the QCD string tension is f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00754v2-abstract-full').style.display = 'inline'; document.getElementById('2403.00754v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.00754v2-abstract-full" style="display: none;"> The low-lying energy spectrum of the static-colour-source-anti-source system in a vacuum containing light and strange quarks is computed using lattice QCD for a range of different light quark masses. The resulting levels are described using a simple model Hamiltonian and the parameters in this model are extrapolated to the physical light-quark masses. In this framework, the QCD string tension is found to be $\sqrt蟽=445(3)_{\rm stat}(6)_{\rm sys}$ MeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00754v2-abstract-full').style.display = 'none'; document.getElementById('2403.00754v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 9 figures, small changes to match published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> WUB/24-00 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.00443">arXiv:2402.00443</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.00443">pdf</a>, <a href="https://arxiv.org/format/2402.00443">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Hadron Spectroscopy with lattice QCD: challenges and opportunities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bulava%2C+J">John Bulava</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.00443v1-abstract-short" style="display: inline;"> Ongoing challenges in computing the spectrum of hadronic resonances and shallow bound-states from lattice QCD are reviewed. Since such states are identified as poles in the scattering matrix, nearby non-analyticities must be treated to analytically continue to complex center-of-mass energies. Significant lattice spacing effects have also been observed in some channels, necessitating a continuum li&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.00443v1-abstract-full').style.display = 'inline'; document.getElementById('2402.00443v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.00443v1-abstract-full" style="display: none;"> Ongoing challenges in computing the spectrum of hadronic resonances and shallow bound-states from lattice QCD are reviewed. Since such states are identified as poles in the scattering matrix, nearby non-analyticities must be treated to analytically continue to complex center-of-mass energies. Significant lattice spacing effects have also been observed in some channels, necessitating a continuum limit. Recent achievements are also highlighted, including lattice investigations of states in the charm region, baryon-baryon scattering, and the first coupled channel meson-baryon amplitude in the $螞(1405)$ channel. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.00443v1-abstract-full').style.display = 'none'; document.getElementById('2402.00443v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures, proceedings from talk at MENU 2023</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.10184">arXiv:2312.10184</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.10184">pdf</a>, <a href="https://arxiv.org/format/2312.10184">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Lattice QCD studies of the $螖$ baryon resonance and the $K_0^\ast(700)$ and $a_0(980)$ meson resonances: the role of exotic operators in determining the finite-volume spectrum </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bulava%2C+J">John Bulava</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Darvish%2C+D">Danny Darvish</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hanlon%2C+A+D">Andrew D. Hanlon</a>, <a href="/search/hep-lat?searchtype=author&amp;query=H%C3%B6rz%2C+B">Ben H枚rz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Morningstar%2C+C">Colin Morningstar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Nicholson%2C+A">Amy Nicholson</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Romero-L%C3%B3pez%2C+F">Fernando Romero-L贸pez</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Skinner%2C+S">Sarah Skinner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">Pavlos Vranas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Walker-Loud%2C+A">Andr茅 Walker-Loud</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.10184v1-abstract-short" style="display: inline;"> Studies of the $螖$ baryon resonance and the $K_0^\ast(700)$ and $a_0(980)$ meson resonances using $N_f=2+1$ lattice QCD for pion masses near 200 MeV are presented. The $s$-wave scattering lengths for both the $I=1/2$ $N 蟺$ and $I=3/2$ $N 蟺$ channels and properties of the $螖$ resonance are identified from the finite-volume energy levels of the lattice simulation. The importance of a three-quark&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.10184v1-abstract-full').style.display = 'inline'; document.getElementById('2312.10184v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.10184v1-abstract-full" style="display: none;"> Studies of the $螖$ baryon resonance and the $K_0^\ast(700)$ and $a_0(980)$ meson resonances using $N_f=2+1$ lattice QCD for pion masses near 200 MeV are presented. The $s$-wave scattering lengths for both the $I=1/2$ $N 蟺$ and $I=3/2$ $N 蟺$ channels and properties of the $螖$ resonance are identified from the finite-volume energy levels of the lattice simulation. The importance of a three-quark $螖$-operator in the $N蟺$ system and tetraquark operators in the mesonic systems is investigated. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.10184v1-abstract-full').style.display = 'none'; document.getElementById('2312.10184v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures, 3 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.05154">arXiv:2312.05154</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.05154">pdf</a>, <a href="https://arxiv.org/format/2312.05154">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.22323/1.453.0131">10.22323/1.453.0131 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The $螞(1405)$ from Lattice QCD: Determining the Finite-volume Spectra </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bulava%2C+J">John Bulava</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cid-Mora%2C+B">B谩rbara Cid-Mora</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hanlon%2C+A+D">Andrew D. Hanlon</a>, <a href="/search/hep-lat?searchtype=author&amp;query=H%C3%B6rz%2C+B">Ben H枚rz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mohler%2C+D">Daniel Mohler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Morningstar%2C+C">Colin Morningstar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Moscoso%2C+J">Joseph Moscoso</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Nicholson%2C+A">Amy Nicholson</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Romero-L%C3%B3pez%2C+F">Fernando Romero-L贸pez</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Skinner%2C+S">Sarah Skinner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Walker-Loud%2C+A">Andr茅 Walker-Loud</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.05154v2-abstract-short" style="display: inline;"> This work presents technical details of determining the finite-volume energy spectra for the scattering amplitude of the coupled-channel $蟺危- \bar{K}N$ from lattice QCD data. The importance of reliably extracting such spectra lies in the crucial dependence of the hadronic scattering amplitudes analysis on the energy spectrum when using L眉scher&#39;s formalism. Results of the methods used are presented&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.05154v2-abstract-full').style.display = 'inline'; document.getElementById('2312.05154v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.05154v2-abstract-full" style="display: none;"> This work presents technical details of determining the finite-volume energy spectra for the scattering amplitude of the coupled-channel $蟺危- \bar{K}N$ from lattice QCD data. The importance of reliably extracting such spectra lies in the crucial dependence of the hadronic scattering amplitudes analysis on the energy spectrum when using L眉scher&#39;s formalism. Results of the methods used are presented and the final finite-volume spectra are shown. The analysis of the scattering amplitude based on these results, exhibits a two-pole structure for the $螞(1405)$, a virtual bound state below the $蟺危$ threshold and a resonance pole right below the $\bar{K}N$ threshold. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.05154v2-abstract-full').style.display = 'none'; document.getElementById('2312.05154v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS LATTICE2023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.06027">arXiv:2311.06027</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.06027">pdf</a>, <a href="https://arxiv.org/format/2311.06027">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Spectral reconstruction of Euclidean correlator moments in lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bulava%2C+J">John Bulava</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.06027v1-abstract-short" style="display: inline;"> A novel application of lattice QCD spectral reconstruction is presented, in which euclidean correlation function data in a fixed time range are used to infer values outside the range, enabling a model-independent investigation of the asymptotic large-time behavior. Moments of the correlator are also determined, and reconstructed correlation matrices between different moments are included in a vari&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.06027v1-abstract-full').style.display = 'inline'; document.getElementById('2311.06027v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.06027v1-abstract-full" style="display: none;"> A novel application of lattice QCD spectral reconstruction is presented, in which euclidean correlation function data in a fixed time range are used to infer values outside the range, enabling a model-independent investigation of the asymptotic large-time behavior. Moments of the correlator are also determined, and reconstructed correlation matrices between different moments are included in a variational optimization similar to the standard Generalized Eigenvalue Problem (GEVP). These ideas are illustrated using a single-nucleon correlation function determined on an $N_{\rm}=2+1$ ensemble of gauge configurations at $m_蟺 = 200{\rm MeV}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.06027v1-abstract-full').style.display = 'none'; document.getElementById('2311.06027v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures, proceedings from the HADRON2023 conference</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.08375">arXiv:2310.08375</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.08375">pdf</a>, <a href="https://arxiv.org/format/2310.08375">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Low-lying baryon resonances from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bulava%2C+J">John Bulava</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cid-Mora%2C+B">Barbara Cid-Mora</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hanlon%2C+A+D">Andrew D. Hanlon</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hoerz%2C+B">Ben Hoerz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mohler%2C+D">Daniel Mohler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Morningstar%2C+C">Colin Morningstar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Moscoso%2C+J">Joseph Moscoso</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Nicholson%2C+A">Amy Nicholson</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Romero-Lopez%2C+F">Fernando Romero-Lopez</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Skinner%2C+S">Sarah Skinner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Walker-Loud%2C+A">Andre Walker-Loud</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.08375v1-abstract-short" style="display: inline;"> Recent results studying the masses and widths of low-lying baryon resonances in lattice QCD are presented. The $S$-wave $N蟺$ scattering lengths for both total isospins $I = 1/2$ and $I = 3/2$ are inferred from the finite-volume spectrum below the inelastic threshold together with the $I = 3/2$ $P$-wave containing the $螖(1232)$ resonance. A lattice QCD computation employing a combined basis of thre&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.08375v1-abstract-full').style.display = 'inline'; document.getElementById('2310.08375v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.08375v1-abstract-full" style="display: none;"> Recent results studying the masses and widths of low-lying baryon resonances in lattice QCD are presented. The $S$-wave $N蟺$ scattering lengths for both total isospins $I = 1/2$ and $I = 3/2$ are inferred from the finite-volume spectrum below the inelastic threshold together with the $I = 3/2$ $P$-wave containing the $螖(1232)$ resonance. A lattice QCD computation employing a combined basis of three-quark and meson-baryon interpolating operators with definite momentum to determine the coupled channel $危蟺$-$N\overline{K}$ scattering amplitude in the $螞(1405)$ region is also presented. Our results support the picture of a two-pole structure suggested by theoretical approaches based on $SU(3)$ chiral symmetry and unitarity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.08375v1-abstract-full').style.display = 'none'; document.getElementById('2310.08375v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures, talk presented at the 20th International Conference on Hadron Spectroscopy and Structure (HADRON 2023) in Genova, Italy, June 5th to 9th 2023</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.13471">arXiv:2307.13471</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.13471">pdf</a>, <a href="https://arxiv.org/format/2307.13471">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Lattice QCD study of $蟺危-\bar{K}N$ scattering and the $螞(1405)$ resonance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bulava%2C+J">John Bulava</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cid-Mora%2C+B">B谩rbara Cid-Mora</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hanlon%2C+A+D">Andrew D. Hanlon</a>, <a href="/search/hep-lat?searchtype=author&amp;query=H%C3%B6rz%2C+B">Ben H枚rz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mohler%2C+D">Daniel Mohler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Morningstar%2C+C">Colin Morningstar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Moscoso%2C+J">Joseph Moscoso</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Nicholson%2C+A">Amy Nicholson</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Romero-L%C3%B3pez%2C+F">Fernando Romero-L贸pez</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Skinner%2C+S">Sarah Skinner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Walker-Loud%2C+A">Andr茅 Walker-Loud</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.13471v3-abstract-short" style="display: inline;"> A lattice QCD computation of the coupled channel $蟺危-\bar{K}N$ scattering amplitudes in the $螞(1405)$ region is detailed. Results are obtained using a single ensemble of gauge field configurations with $N_{\rm f} = 2+1$ dynamical quark flavors and $m_蟺 \approx 200$ MeV and $m_K\approx487$ MeV. Hermitian correlation matrices using both single baryon and meson-baryon interpolating operators for a va&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.13471v3-abstract-full').style.display = 'inline'; document.getElementById('2307.13471v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.13471v3-abstract-full" style="display: none;"> A lattice QCD computation of the coupled channel $蟺危-\bar{K}N$ scattering amplitudes in the $螞(1405)$ region is detailed. Results are obtained using a single ensemble of gauge field configurations with $N_{\rm f} = 2+1$ dynamical quark flavors and $m_蟺 \approx 200$ MeV and $m_K\approx487$ MeV. Hermitian correlation matrices using both single baryon and meson-baryon interpolating operators for a variety of different total momenta and irreducible representations are used. Several parametrizations of the two-channel scattering $K$-matrix are utilized to obtain the scattering amplitudes from the finite-volume spectrum. The amplitudes, continued to the complex energy plane, exhibit a virtual bound state below the $蟺危$ threshold and a resonance pole just below the $\bar{K}N$ threshold. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.13471v3-abstract-full').style.display = 'none'; document.getElementById('2307.13471v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 11 figures, 14 tables. Final version accepted for publication in PRD with post-publication corrections</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5580 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.10413">arXiv:2307.10413</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.10413">pdf</a>, <a href="https://arxiv.org/format/2307.10413">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Two-pole nature of the $螞(1405)$ from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bulava%2C+J">John Bulava</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cid-Mora%2C+B">B谩rbara Cid-Mora</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hanlon%2C+A+D">Andrew D. Hanlon</a>, <a href="/search/hep-lat?searchtype=author&amp;query=H%C3%B6rz%2C+B">Ben H枚rz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mohler%2C+D">Daniel Mohler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Morningstar%2C+C">Colin Morningstar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Moscoso%2C+J">Joseph Moscoso</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Nicholson%2C+A">Amy Nicholson</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Romero-L%C3%B3pez%2C+F">Fernando Romero-L贸pez</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Skinner%2C+S">Sarah Skinner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Walker-Loud%2C+A">Andr茅 Walker-Loud</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.10413v4-abstract-short" style="display: inline;"> This letter presents the first lattice QCD computation of the coupled channel $蟺危-\bar{K}N$ scattering amplitudes at energies near $1405\,{\rm MeV}$. These amplitudes contain the resonance $螞(1405)$ with strangeness $S=-1$ and isospin, spin, and parity quantum numbers $I(J^P)=0(1/2^-)$. However, whether there is a single resonance or two nearby resonance poles in this region is controversial theor&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.10413v4-abstract-full').style.display = 'inline'; document.getElementById('2307.10413v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.10413v4-abstract-full" style="display: none;"> This letter presents the first lattice QCD computation of the coupled channel $蟺危-\bar{K}N$ scattering amplitudes at energies near $1405\,{\rm MeV}$. These amplitudes contain the resonance $螞(1405)$ with strangeness $S=-1$ and isospin, spin, and parity quantum numbers $I(J^P)=0(1/2^-)$. However, whether there is a single resonance or two nearby resonance poles in this region is controversial theoretically and experimentally. Using single-baryon and meson-baryon operators to extract the finite-volume stationary-state energies to obtain the scattering amplitudes at slightly unphysical quark masses corresponding to $m_蟺\approx200$ MeV and $m_K\approx487$ MeV, this study finds the amplitudes exhibit a virtual bound state below the $蟺危$ threshold in addition to the established resonance pole just below the $\bar{K}N$ threshold. Several parametrizations of the two-channel $K$-matrix are employed to fit the lattice QCD results, all of which support the two-pole picture suggested by $SU(3)$ chiral symmetry and unitarity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.10413v4-abstract-full').style.display = 'none'; document.getElementById('2307.10413v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures, and 1 table. Includes various corrections made during the last stages before publication</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5579 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.05156">arXiv:2301.05156</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.05156">pdf</a>, <a href="https://arxiv.org/format/2301.05156">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.22323/1.430.0052">10.22323/1.430.0052 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hadronic observables from master-field simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=C%C3%A8%2C+M">Marco C猫</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bruno%2C+M">Mattia Bruno</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bulava%2C+J">John Bulava</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Francis%2C+A">Anthony Francis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fritzsch%2C+P">Patrick Fritzsch</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Green%2C+J+R">Jeremy R. Green</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hansen%2C+M+T">Maxwell T. Hansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rago%2C+A">Antonio Rago</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.05156v1-abstract-short" style="display: inline;"> Substantial progress has been made recently in the generation of master-field ensembles. This has to be paired with efficient techniques to compute observables on gauge field configurations with a large volume. Here we present the results of the computation of hadronic observables, including hadron masses and meson decay constants, on large-volume and master-field ensembles with physical volumes o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.05156v1-abstract-full').style.display = 'inline'; document.getElementById('2301.05156v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.05156v1-abstract-full" style="display: none;"> Substantial progress has been made recently in the generation of master-field ensembles. This has to be paired with efficient techniques to compute observables on gauge field configurations with a large volume. Here we present the results of the computation of hadronic observables, including hadron masses and meson decay constants, on large-volume and master-field ensembles with physical volumes of up to $(18\,\mathrm{fm})^4$ and $m_蟺L$ up to $25$, simulated using $N_{\mathrm{f}}=2+1$ stabilized Wilson fermions. We obtain sub-percent determinations from single gauge configurations with the combined use of position-space techniques, volume averages and master-field error estimation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.05156v1-abstract-full').style.display = 'none'; document.getElementById('2301.05156v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures, 2 tables, talk presented at The 39th International Symposium on Lattice Field Theory, 8th-13th August, 2022, Rheinische Friedrich-Wilhelms-Universit盲t Bonn, Bonn, Germany</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY-22-207, CERN-TH-2022-215 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS(LATTICE2022)052 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.04072">arXiv:2301.04072</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.04072">pdf</a>, <a href="https://arxiv.org/format/2301.04072">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> The spectral reconstruction of inclusive rates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bulava%2C+J">John Bulava</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.04072v1-abstract-short" style="display: inline;"> A recently re-discovered variant of the Backus-Gilbert algorithm for spectral reconstruction enables the controlled determination of smeared spectral densities from lattice field theory correlation functions. A particular advantage of this approach is the \emph{a priori} specification of the kernel with which the underlying spectral density is smeared, allowing for variation of its peak position,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.04072v1-abstract-full').style.display = 'inline'; document.getElementById('2301.04072v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.04072v1-abstract-full" style="display: none;"> A recently re-discovered variant of the Backus-Gilbert algorithm for spectral reconstruction enables the controlled determination of smeared spectral densities from lattice field theory correlation functions. A particular advantage of this approach is the \emph{a priori} specification of the kernel with which the underlying spectral density is smeared, allowing for variation of its peak position, smearing width, and functional form. If the unsmeared spectral density is sufficiently smooth in the neighborhood of a particular energy, it can be obtained from an extrapolation to zero smearing-kernel width at fixed peak position. A natural application for this approach is scattering processes summed over all hadronic final states. As a proof-of-principle test, an inclusive rate is computed in the two-dimensional O(3) sigma model from a two-point correlation function of conserved currents. The results at finite and zero smearing radius are in good agreement with the known analytic form up to energies at which 40-particle states contribute, and are sensitive to the 4-particle contribution to the inclusive rate. The straight-forward adaptation to compute the $R$-ratio in lattice QCD from two-point functions of the electromagnetic current is briefly discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.04072v1-abstract-full').style.display = 'none'; document.getElementById('2301.04072v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 10 figures, proceedings from the Lattice 2022 conference</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.03867">arXiv:2208.03867</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.03867">pdf</a>, <a href="https://arxiv.org/format/2208.03867">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysb.2023.116105">10.1016/j.nuclphysb.2023.116105 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Elastic nucleon-pion scattering at $m_蟺 = 200~{\rm MeV}$ from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bulava%2C+J">John Bulava</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hanlon%2C+A+D">Andrew D. Hanlon</a>, <a href="/search/hep-lat?searchtype=author&amp;query=H%C3%B6rz%2C+B">Ben H枚rz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Morningstar%2C+C">Colin Morningstar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Nicholson%2C+A">Amy Nicholson</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Romero-L%C3%B3pez%2C+F">Fernando Romero-L贸pez</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Skinner%2C+S">Sarah Skinner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">Pavlos Vranas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Walker-Loud%2C+A">Andr茅 Walker-Loud</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.03867v3-abstract-short" style="display: inline;"> Elastic nucleon-pion scattering amplitudes are computed using lattice QCD on a single ensemble of gauge field configurations with $N_{\rm f} = 2+1$ dynamical quark flavors and $m_蟺 = 200~{\rm MeV}$. The $s$-wave scattering lengths with both total isospins $I=1/2$ and $I=3/2$ are inferred from the finite-volume spectrum below the inelastic threshold together with the $I=3/2$ $p$-wave containing the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.03867v3-abstract-full').style.display = 'inline'; document.getElementById('2208.03867v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.03867v3-abstract-full" style="display: none;"> Elastic nucleon-pion scattering amplitudes are computed using lattice QCD on a single ensemble of gauge field configurations with $N_{\rm f} = 2+1$ dynamical quark flavors and $m_蟺 = 200~{\rm MeV}$. The $s$-wave scattering lengths with both total isospins $I=1/2$ and $I=3/2$ are inferred from the finite-volume spectrum below the inelastic threshold together with the $I=3/2$ $p$-wave containing the $螖(1232)$ resonance. The amplitudes are well-described by the effective range expansion with parameters constrained by fits to the finite-volume energy levels enabling a determination of the $I=3/2$ scattering length with statistical errors below $5\%$, while the $I = 1/2$ is somewhat less precise. Systematic errors due to excited states and the influence of higher partial waves are controlled, providing a pathway for future computations down to the physical light quark masses with multiple lattice spacings and physical volumes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.03867v3-abstract-full').style.display = 'none'; document.getElementById('2208.03867v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages, 16 figures; version accepted for publication</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.03230">arXiv:2203.03230</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.03230">pdf</a>, <a href="https://arxiv.org/ps/2203.03230">ps</a>, <a href="https://arxiv.org/format/2203.03230">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Hadron Spectroscopy with Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bulava%2C+J">John Bulava</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brice%C3%B1o%2C+R">Ra煤l Brice帽o</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=D%C3%B6ring%2C+M">Michael D枚ring</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Edwards%2C+R+G">Robert G. Edwards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Francis%2C+A">Anthony Francis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Knechtli%2C+F">Francesco Knechtli</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lewis%2C+R">Randy Lewis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Prelovsek%2C+S">Sasa Prelovsek</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ryan%2C+S+M">Sin茅ad M. Ryan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rusetsky%2C+A">Akaki Rusetsky</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sharpe%2C+S+R">Stephen R. Sharpe</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Szczepaniak%2C+A">Adam Szczepaniak</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Thomas%2C+C+E">Christopher E. Thomas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wagman%2C+M+L">Michael L. Wagman</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wagner%2C+M">Marc Wagner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.03230v2-abstract-short" style="display: inline;"> The status and prospects for investigations of exotic and conventional hadrons with lattice QCD are discussed. The majority of hadrons decay strongly via one or multiple decay-channels, including most of the experimentally discovered exotic hadrons. Despite this difficult challenge, the properties of several hadronic resonances have been determined within lattice QCD. To further discern the spectr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.03230v2-abstract-full').style.display = 'inline'; document.getElementById('2203.03230v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.03230v2-abstract-full" style="display: none;"> The status and prospects for investigations of exotic and conventional hadrons with lattice QCD are discussed. The majority of hadrons decay strongly via one or multiple decay-channels, including most of the experimentally discovered exotic hadrons. Despite this difficult challenge, the properties of several hadronic resonances have been determined within lattice QCD. To further discern the spectroscopic properties of various hadrons and to help resolve their nature we present our suggestions for future analytic and lattice studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.03230v2-abstract-full').style.display = 'none'; document.getElementById('2203.03230v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages + references, Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021); v2: few references added</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.04569">arXiv:2112.04569</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.04569">pdf</a>, <a href="https://arxiv.org/format/2112.04569">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Toward a resolution of the NN controversy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Nicholson%2C+A">Amy Nicholson</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Berkowitz%2C+E">Evan Berkowitz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bulava%2C+J">John Bulava</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chang%2C+C+C">Chia Cheng Chang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Clark%2C+M+A">M. A. Clark</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hanlon%2C+A+D">Andrew D. Hanlon</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Horz%2C+B">Ben Horz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Howarth%2C+D">Dean Howarth</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Korber%2C+C">Christopher Korber</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+W+T">Wayne Tai Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Meyer%2C+A+S">Aaron S. Meyer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Monge-Camacho%2C+H">Henry Monge-Camacho</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Morningstar%2C+C">Colin Morningstar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rinaldi%2C+E">Enrico Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranasc%2C+P">Pavlos Vranasc</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Walker-Loud%2C+A">Andre Walker-Loud</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.04569v1-abstract-short" style="display: inline;"> Lattice QCD calculations of two-nucleon interactions have been underway for about a decade, but still haven&#39;t reached the pion mass regime necessary for matching onto effective field theories and extrapolating to the physical point. Furthermore, results from different methods, including the use of the Luscher formalism with different types of operators, as well as the HALQCD potential method, do n&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.04569v1-abstract-full').style.display = 'inline'; document.getElementById('2112.04569v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.04569v1-abstract-full" style="display: none;"> Lattice QCD calculations of two-nucleon interactions have been underway for about a decade, but still haven&#39;t reached the pion mass regime necessary for matching onto effective field theories and extrapolating to the physical point. Furthermore, results from different methods, including the use of the Luscher formalism with different types of operators, as well as the HALQCD potential method, do not agree even qualitatively at very heavy pion mass. We investigate the role that different operators employed in the literature may play on the extraction of spectra for use within the Luscher method. We first explore expectations from Effective Field Theory solved within a finite volume, for which the exact spectrum may be computed given different physical scenarios. We then present preliminary lattice QCD results for two-nucleon spectra calculated using different operators on a common lattice ensemble. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.04569v1-abstract-full').style.display = 'none'; document.getElementById('2112.04569v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 7 figures, proceeding for The 38th International Symposium on Lattice Field Theory, LATTICE2021, 26th-30th July, 2021, Zoom/Gather@Massachusetts Institute of Technology</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RIKEN-iTHEMS-Report-21 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.12774">arXiv:2111.12774</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.12774">pdf</a>, <a href="https://arxiv.org/format/2111.12774">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Inclusive rates from smeared spectral densities in the two-dimensional O(3) non-linear $蟽$-model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bulava%2C+J">John Bulava</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hansen%2C+M+T">Maxwell T. Hansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hansen%2C+M+W">Michael W. Hansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Patella%2C+A">Agostino Patella</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tantalo%2C+N">Nazario Tantalo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.12774v1-abstract-short" style="display: inline;"> This work employs the spectral reconstruction approach of Ref. [1] to determine an inclusive rate in the $1+1$ dimensional O(3) non-linear $蟽$-model, analogous to the QCD part of ${e}^+{e}^- \rightarrow \rm {hadrons}$. The Euclidean two-point correlation function of the conserved current $j$ is computed using Monte Carlo lattice field theory simulations for a variety of spacetime volumes and latti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.12774v1-abstract-full').style.display = 'inline'; document.getElementById('2111.12774v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.12774v1-abstract-full" style="display: none;"> This work employs the spectral reconstruction approach of Ref. [1] to determine an inclusive rate in the $1+1$ dimensional O(3) non-linear $蟽$-model, analogous to the QCD part of ${e}^+{e}^- \rightarrow \rm {hadrons}$. The Euclidean two-point correlation function of the conserved current $j$ is computed using Monte Carlo lattice field theory simulations for a variety of spacetime volumes and lattice spacings. The spectral density of this correlator is related to the inclusive rate for $j \rightarrow {\rm X}$ in which all final states produced by the external current are summed. The ill-posed inverse problem of determining the spectral density from the correlation function is made tractable through the determination of smeared spectral densities in which the desired density is convolved with a set of known smearing kernels of finite width $蔚$. The smooth energy dependence of the underlying spectral density enables a controlled $蔚\to 0$ extrapolation in the inelastic region, yielding the real-time inclusive rate without reference to individual finite-volume energies or matrix elements. Systematic uncertainties due cutoff effects and residual finite-volume effects are estimated and taken into account in the final error budget. After taking the continuum limit, the results are consistent with the known analytic rate to within the combined statistical and systematic errors. Above energies where 20-particle states contribute, the overall precision is sufficient to discern the four-particle contribution to the spectral density. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.12774v1-abstract-full').style.display = 'none'; document.getElementById('2111.12774v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.11544">arXiv:2111.11544</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.11544">pdf</a>, <a href="https://arxiv.org/format/2111.11544">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Master-field simulations of QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Fritzsch%2C+P">P. Fritzsch</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bulava%2C+J">J. Bulava</a>, <a href="/search/hep-lat?searchtype=author&amp;query=C%C3%A8%2C+M">M. C猫</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Francis%2C+A">A. Francis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=L%C3%BCscher%2C+M">M. L眉scher</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rago%2C+A">A. Rago</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.11544v1-abstract-short" style="display: inline;"> We report on the first master-field simulations of QCD with 2+1 dynamical quark flavours using non-perturbatively improved stabilised Wilson fermions. Our simulations are performed at a lattice spacing of 0.094 fm with 96 and 192 points in each direction. On both lattices, the pion and kaon masses are equal to 270 and 450 MeV, respectively, and $m_蟺L$ thus reaches an unprecedented value of 25 on t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.11544v1-abstract-full').style.display = 'inline'; document.getElementById('2111.11544v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.11544v1-abstract-full" style="display: none;"> We report on the first master-field simulations of QCD with 2+1 dynamical quark flavours using non-perturbatively improved stabilised Wilson fermions. Our simulations are performed at a lattice spacing of 0.094 fm with 96 and 192 points in each direction. On both lattices, the pion and kaon masses are equal to 270 and 450 MeV, respectively, and $m_蟺L$ thus reaches an unprecedented value of 25 on the larger lattice. This setup matches a single point on a chiral trajectory with fixed trace of the quark mass matrix and allows for comparisons to standard large-scale simulations. We present our algorithmic setup and performance measures, and report about our experience in thermalising large master-field lattices with fermions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.11544v1-abstract-full').style.display = 'none'; document.getElementById('2111.11544v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 2 figures, 2 tables, talk presented at The 38th International Symposium on Lattice Field Theory, LATTICE2021 26th-30th July, 2021, Zoom/Gather@Massachusetts Institute of Technology</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-TH-2021-198 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.11541">arXiv:2111.11541</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.11541">pdf</a>, <a href="https://arxiv.org/format/2111.11541">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> $H$ dibaryon away from the $SU(3)_f$ symmetric point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Padmanath%2C+M">M. Padmanath</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bulava%2C+J">John Bulava</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Green%2C+J+R">Jeremy R. Green</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hanlon%2C+A+D">Andrew D. Hanlon</a>, <a href="/search/hep-lat?searchtype=author&amp;query=H%C3%B6rz%2C+B">Ben H枚rz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Junnarkar%2C+P">Parikshit Junnarkar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Morningstar%2C+C">Colin Morningstar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Paul%2C+S">Srijit Paul</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wittig%2C+H">Hartmut Wittig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.11541v1-abstract-short" style="display: inline;"> We present the current status of our efforts in search of $H$ dibaryon on $N_f$=2+1 CLS ensembles away from the $SU(3)$ flavor symmetric point. Utilizing the distillation framework (also known as LapH) in its exact and stochastic forms, we calculate two-point correlation matrices using large bases of bi-local two-baryon interpolators to reliably determine the low-energy spectra. We report the low&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.11541v1-abstract-full').style.display = 'inline'; document.getElementById('2111.11541v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.11541v1-abstract-full" style="display: none;"> We present the current status of our efforts in search of $H$ dibaryon on $N_f$=2+1 CLS ensembles away from the $SU(3)$ flavor symmetric point. Utilizing the distillation framework (also known as LapH) in its exact and stochastic forms, we calculate two-point correlation matrices using large bases of bi-local two-baryon interpolators to reliably determine the low-energy spectra. We report the low lying spectrum on several moving frames for multiple ensembles with different lattice spacing and physical volumes. The status of finite-volume analysis to extract the scattering amplitudes is also discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.11541v1-abstract-full').style.display = 'none'; document.getElementById('2111.11541v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures. Talk presented at the 38th International Symposium on Lattice Field Theory (Lattice 2021), 26-30 July, 2021, Zoom/Gather@Massachusetts Institute of Technology</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MITP-21-061 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.07755">arXiv:2111.07755</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.07755">pdf</a>, <a href="https://arxiv.org/format/2111.07755">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Progress on Meson-Baryon Scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Morningstar%2C+C">Colin Morningstar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bulava%2C+J">John Bulava</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hanlon%2C+A+D">Andrew D. Hanlon</a>, <a href="/search/hep-lat?searchtype=author&amp;query=H%C3%B6rz%2C+B">Ben H枚rz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mohler%2C+D">Daniel Mohler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Nicholson%2C+A">Amy Nicholson</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Skinner%2C+S">Sarah Skinner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Walker-Loud%2C+A">Andr茅 Walker-Loud</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.07755v1-abstract-short" style="display: inline;"> Progress in computing various meson-baryon scattering amplitudes is presented on a single ensemble from the Coordinated Lattice Simulations (CLS) consortium with $m_蟺=200$ MeV and $N_f=2+1$ dynamical fermions. The finite-volume L眉scher approach is employed to determine the lowest few partial waves from ground- and excited-state energies computed from correlation matrices rotated in a single pivot&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.07755v1-abstract-full').style.display = 'inline'; document.getElementById('2111.07755v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.07755v1-abstract-full" style="display: none;"> Progress in computing various meson-baryon scattering amplitudes is presented on a single ensemble from the Coordinated Lattice Simulations (CLS) consortium with $m_蟺=200$ MeV and $N_f=2+1$ dynamical fermions. The finite-volume L眉scher approach is employed to determine the lowest few partial waves from ground- and excited-state energies computed from correlation matrices rotated in a single pivot using a generalized eigenvector solution. This analysis requires evaluating matrices of correlation functions between single- and two-hadron interpolating operators which are projected onto definite spatial momenta and finite-volume irreducible representations. The stochastic LapH method is used to estimate all needed quark propagators. Preliminary results are presented for $I=\frac{1}{2}, \frac{3}{2}$ $N蟺$ amplitudes including the $螖(1232)$ resonance and the $I=0$ $S$-wave amplitude with unit strangeness relevant for the $螞(1405)$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.07755v1-abstract-full').style.display = 'none'; document.getElementById('2111.07755v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The 38th International Symposium on Lattice Field Theory, LATTICE2021 26th-30th July, 2021 Zoom/Gather@Massachusetts Institute of Technology 9 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.15375">arXiv:2110.15375</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.15375">pdf</a>, <a href="https://arxiv.org/format/2110.15375">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.22323/1.396.0383">10.22323/1.396.0383 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Approaching the master-field: Hadronic observables in large volumes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=C%C3%A8%2C+M">Marco C猫</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bruno%2C+M">Mattia Bruno</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bulava%2C+J">John Bulava</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Francis%2C+A">Anthony Francis</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fritzsch%2C+P">Patrick Fritzsch</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Green%2C+J+R">Jeremy R. Green</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hansen%2C+M+T">Maxwell T. Hansen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rago%2C+A">Antonio Rago</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.15375v1-abstract-short" style="display: inline;"> The master-field approach to lattice QCD envisions performing calculations on a small number of large-volume gauge-field configurations. Substantial progress has been made recently in the generation of such fields, and this must be joined with measurement strategies that take advantage of the large volume. In these proceedings, we describe how to compute simple hadronic quantities efficiently and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.15375v1-abstract-full').style.display = 'inline'; document.getElementById('2110.15375v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.15375v1-abstract-full" style="display: none;"> The master-field approach to lattice QCD envisions performing calculations on a small number of large-volume gauge-field configurations. Substantial progress has been made recently in the generation of such fields, and this must be joined with measurement strategies that take advantage of the large volume. In these proceedings, we describe how to compute simple hadronic quantities efficiently and estimate their errors in the master-field approach, i.e. by studying cross-correlations of observables on a single configuration. We discuss the scaling of the uncertainty with the volume and compare extractions based on momentum-projected and position-space two-point functions. The latter show promising results, already at intermediate volumes, but come with additional technical complexities such as a more complicated manifestation of boundary effects, which we also address. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.15375v1-abstract-full').style.display = 'none'; document.getElementById('2110.15375v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 2 figures, talk presented at The 38th International Symposium on Lattice Field Theory, LATTICE2021 26th-30th July, 2021, Zoom/Gather@Massachusetts Institute of Technology</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-TH-2021-164 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS(LATTICE2021)383 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.11825">arXiv:2009.11825</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.11825">pdf</a>, <a href="https://arxiv.org/format/2009.11825">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.103.014003">10.1103/PhysRevC.103.014003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Two-nucleon S-wave interactions at the $SU(3)$ flavor-symmetric point with $m_{ud}\simeq m_s^{\rm phys}$: a first lattice QCD calculation with the stochastic Laplacian Heaviside method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=H%C3%B6rz%2C+B">Ben H枚rz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Howarth%2C+D">Dean Howarth</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Rinaldi%2C+E">Enrico Rinaldi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hanlon%2C+A">Andrew Hanlon</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chang%2C+C+C">Chia Cheng Chang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=K%C3%B6rber%2C+C">Christopher K枚rber</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Berkowitz%2C+E">Evan Berkowitz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bulava%2C+J">John Bulava</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Clark%2C+M+A">M. A. Clark</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lee%2C+W+T">Wayne Tai Lee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Morningstar%2C+C">Colin Morningstar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Nicholson%2C+A">Amy Nicholson</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Vranas%2C+P">Pavlos Vranas</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Walker-Loud%2C+A">Andr茅 Walker-Loud</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.11825v2-abstract-short" style="display: inline;"> We report on the first application of the stochastic Laplacian Heaviside method for computing multi-particle interactions with lattice QCD to the two-nucleon system. Like the Laplacian Heaviside method, this method allows for the construction of interpolating operators which can be used to construct a positive definite set of two-nucleon correlation functions, unlike nearly all other applications&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.11825v2-abstract-full').style.display = 'inline'; document.getElementById('2009.11825v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.11825v2-abstract-full" style="display: none;"> We report on the first application of the stochastic Laplacian Heaviside method for computing multi-particle interactions with lattice QCD to the two-nucleon system. Like the Laplacian Heaviside method, this method allows for the construction of interpolating operators which can be used to construct a positive definite set of two-nucleon correlation functions, unlike nearly all other applications of lattice QCD to two nucleons in the literature. It also allows for a variational analysis in which optimal linear combinations of the interpolating operators are formed that couple predominantly to the eigenstates of the system. Utilizing such methods has become of paramount importance in order to help resolve the discrepancy in the literature on whether two nucleons in either isospin channel form a bound state at pion masses heavier than physical, with the discrepancy persisting even in the $SU(3)$-flavor symmetric point with all quark masses near the physical strange quark mass. This is the first in a series of papers aimed at resolving this discrepancy. In the present work, we employ the stochastic Laplacian Heaviside method without a hexaquark operator in the basis at a lattice spacing of $a\sim0.086$~fm, lattice volume of $L=48a\simeq4.1$~fm and pion mass $m_蟺\simeq714$ MeV. With this setup, the observed spectrum of two-nucleon energy levels strongly disfavors the presence of a bound state in either the deuteron or dineutron channel. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.11825v2-abstract-full').style.display = 'none'; document.getElementById('2009.11825v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">v2: version to be published in Phys. Rev. C.; v1: 13 pages plus figures and appendices</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LLNL-JRNL-813871, RIKEN-iTHEMS-Report-20, MITP/20-055 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. C 103, 014003 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.10021">arXiv:1911.10021</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.10021">pdf</a>, <a href="https://arxiv.org/format/1911.10021">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> I=3/2 nucleon-pion scattering and the Delta(1232) resonance on 2+1 flavor CLS ensembles using the stochastic LapH method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Andersen%2C+C+W">Christian Walther Andersen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bulava%2C+J">John Bulava</a>, <a href="/search/hep-lat?searchtype=author&amp;query=H%C3%B6rz%2C+B">Ben H枚rz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Morningstar%2C+C">Colin Morningstar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.10021v1-abstract-short" style="display: inline;"> Calculations of the elastic $I=\frac{3}{2}$ nucleon-pion scattering phase shifts on two lattice QCD ensembles with $m_蟺=200\mathrm{MeV}$ and $280\mathrm{MeV}$ are presented. The ensembles both employ $N_\mathrm{f} = 2+1$ Wilson clover fermions. We determine the $螖(1232)$ resonance parameters from a finite volume scattering analysis. In one study the single partial wave simplification is employed t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.10021v1-abstract-full').style.display = 'inline'; document.getElementById('1911.10021v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.10021v1-abstract-full" style="display: none;"> Calculations of the elastic $I=\frac{3}{2}$ nucleon-pion scattering phase shifts on two lattice QCD ensembles with $m_蟺=200\mathrm{MeV}$ and $280\mathrm{MeV}$ are presented. The ensembles both employ $N_\mathrm{f} = 2+1$ Wilson clover fermions. We determine the $螖(1232)$ resonance parameters from a finite volume scattering analysis. In one study the single partial wave simplification is employed to compute the $p$-wave amplitude while in the other we treat the partial wave mixing between $s$- and $p$-wave contributions. Fitting our data to a Breit-Wigner resonance model we find $m_螖/m_蟺= 7.13(9)$ and $4.75(5)$ on the two ensembles respectively, showing that for a lighter quark mass the resonance mass moves from near the $N蟺$ threshold to near the $N蟺蟺$ threshold, in agreement with experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.10021v1-abstract-full').style.display = 'none'; document.getElementById('1911.10021v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 1 figure, presented at the 37th International Symposium on Lattice Field Theory</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.13097">arXiv:1909.13097</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.13097">pdf</a>, <a href="https://arxiv.org/format/1909.13097">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0008643">10.1063/5.0008643 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Meson-Nucleon Scattering Amplitudes from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bulava%2C+J">John Bulava</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.13097v1-abstract-short" style="display: inline;"> Lattice QCD calculations of resonant meson-meson scattering amplitudes have improved significantly due to algorithmic and computational advances. However, progress in meson-nucleon scattering has been slower due to difficulties in computing the necessary correlation functions, the exponential signal-to-noise problem, and the finite-volume treatment of scattering with fermions. Nonetheless, first b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.13097v1-abstract-full').style.display = 'inline'; document.getElementById('1909.13097v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.13097v1-abstract-full" style="display: none;"> Lattice QCD calculations of resonant meson-meson scattering amplitudes have improved significantly due to algorithmic and computational advances. However, progress in meson-nucleon scattering has been slower due to difficulties in computing the necessary correlation functions, the exponential signal-to-noise problem, and the finite-volume treatment of scattering with fermions. Nonetheless, first benchmark calculations have now been performed. The status of lattice QCD calculations of meson-nucleon scattering amplitudes is reviewed together with comments on future prospects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.13097v1-abstract-full').style.display = 'none'; document.getElementById('1909.13097v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures. Proceeding from a plenary talk at MENU 2019</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.07747">arXiv:1909.07747</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.07747">pdf</a>, <a href="https://arxiv.org/format/1909.07747">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0008966">10.1063/5.0008966 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Including Tetraquark Operators in the Low-Lying Scalar Meson Sectors in Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Darvish%2C+D">Daniel Darvish</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brett%2C+R">Ruair铆 Brett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bulava%2C+J">John Bulava</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fallica%2C+J">Jacob Fallica</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hanlon%2C+A">Andrew Hanlon</a>, <a href="/search/hep-lat?searchtype=author&amp;query=H%C3%B6rz%2C+B">Ben H枚rz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Morningstar%2C+C">Colin Morningstar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.07747v1-abstract-short" style="display: inline;"> Lattice QCD allows us to probe the low-lying hadron spectrum in finite-volume using a basis of single- and multi-hadron interpolating operators. Here we examine the effect of including tetraquark operators on the spectrum in the scalar meson sectors containing the $K_0^*(700)$ ($魏$) and the $a_0(980)$ in $N_f = 2 + 1$ QCD, with $m_蟺\approx 230$ MeV. Preliminary results of additional finite-volume&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.07747v1-abstract-full').style.display = 'inline'; document.getElementById('1909.07747v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.07747v1-abstract-full" style="display: none;"> Lattice QCD allows us to probe the low-lying hadron spectrum in finite-volume using a basis of single- and multi-hadron interpolating operators. Here we examine the effect of including tetraquark operators on the spectrum in the scalar meson sectors containing the $K_0^*(700)$ ($魏$) and the $a_0(980)$ in $N_f = 2 + 1$ QCD, with $m_蟺\approx 230$ MeV. Preliminary results of additional finite-volume states found using tetraquark operators are shown, and possible implications of these states are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.07747v1-abstract-full').style.display = 'none'; document.getElementById('1909.07747v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures, proceedings for The 15th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon, MENU-2019</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.07306">arXiv:1909.07306</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.07306">pdf</a>, <a href="https://arxiv.org/format/1909.07306">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0008566">10.1063/5.0008566 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spectroscopy From The Lattice: The Scalar Glueball </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brett%2C+R">Ruair铆 Brett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bulava%2C+J">John Bulava</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Darvish%2C+D">Daniel Darvish</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fallica%2C+J">Jacob Fallica</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hanlon%2C+A">Andrew Hanlon</a>, <a href="/search/hep-lat?searchtype=author&amp;query=H%C3%B6rz%2C+B">Ben H枚rz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Morningstar%2C+C">Colin Morningstar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.07306v1-abstract-short" style="display: inline;"> Lattice calculations allow us to probe the low-lying, non-perturbative spectrum of QCD using first principles numerical methods. Here we present the low-lying spectrum in the scalar sector with vacuum quantum numbers including, in fully dynamical QCD for the first time, the mixing between glueball, q-qbar, and meson-meson operators. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.07306v1-abstract-full" style="display: none;"> Lattice calculations allow us to probe the low-lying, non-perturbative spectrum of QCD using first principles numerical methods. Here we present the low-lying spectrum in the scalar sector with vacuum quantum numbers including, in fully dynamical QCD for the first time, the mixing between glueball, q-qbar, and meson-meson operators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.07306v1-abstract-full').style.display = 'none'; document.getElementById('1909.07306v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures, Proceedings for The 15th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon, MENU-2019</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.11735">arXiv:1903.11735</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1903.11735">pdf</a>, <a href="https://arxiv.org/format/1903.11735">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.100.034521">10.1103/PhysRevD.100.034521 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Scattering amplitudes from finite-volume spectral functions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bulava%2C+J">John Bulava</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hansen%2C+M+T">Maxwell T. Hansen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.11735v1-abstract-short" style="display: inline;"> A novel proposal is outlined to determine scattering amplitudes from finite-volume spectral functions. The method requires extracting smeared spectral functions from finite-volume Euclidean correlation functions, with a particular complex smearing kernel of width $蔚$ which implements the standard $i蔚$-prescription. In the $L \to \infty$ limit these smeared spectral functions are therefore equivale&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.11735v1-abstract-full').style.display = 'inline'; document.getElementById('1903.11735v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.11735v1-abstract-full" style="display: none;"> A novel proposal is outlined to determine scattering amplitudes from finite-volume spectral functions. The method requires extracting smeared spectral functions from finite-volume Euclidean correlation functions, with a particular complex smearing kernel of width $蔚$ which implements the standard $i蔚$-prescription. In the $L \to \infty$ limit these smeared spectral functions are therefore equivalent to Minkowskian correlators with a specific time ordering to which a modified LSZ reduction formalism can be applied. The approach is presented for general $m \to n$ scattering amplitudes (above arbitrary inelastic thresholds) for a single-species real scalar field, although generalization to arbitrary spins and multiple coupled channels is likely straightforward. Processes mediated by the single insertion of an external current are also considered. Numerical determination of the finite-volume smeared spectral function is discussed briefly and the interplay between the finite volume, Euclidean signature, and time-ordered $i蔚$-prescription is illustrated perturbatively in a toy example. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.11735v1-abstract-full').style.display = 'none'; document.getElementById('1903.11735v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 2 figures, CERN-TH-2019-035, CP3-Origins-2019-006 DNRF90</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 100, 034521 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.04006">arXiv:1902.04006</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.04006">pdf</a>, <a href="https://arxiv.org/format/1902.04006">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2019.05.018">10.1016/j.physletb.2019.05.018 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> String breaking by light and strange quarks in QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bulava%2C+J">John Bulava</a>, <a href="/search/hep-lat?searchtype=author&amp;query=H%C3%B6rz%2C+B">Ben H枚rz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Knechtli%2C+F">Francesco Knechtli</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Koch%2C+V">Vanessa Koch</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Moir%2C+G">Graham Moir</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Morningstar%2C+C">Colin Morningstar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Peardon%2C+M">Mike Peardon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.04006v2-abstract-short" style="display: inline;"> The energy spectrum of a system containing a static quark anti-quark pair is computed for a wide range of source separations using lattice QCD with $N_\mathrm{f}=2+1$ dynamical flavours. By employing a variational method with a basis including operators resembling both the gluon string and systems of two separated static mesons, the first three energy levels are determined up to and beyond the dis&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.04006v2-abstract-full').style.display = 'inline'; document.getElementById('1902.04006v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.04006v2-abstract-full" style="display: none;"> The energy spectrum of a system containing a static quark anti-quark pair is computed for a wide range of source separations using lattice QCD with $N_\mathrm{f}=2+1$ dynamical flavours. By employing a variational method with a basis including operators resembling both the gluon string and systems of two separated static mesons, the first three energy levels are determined up to and beyond the distance where it is energetically favourable for the vacuum to screen the static sources through light- or strange-quark pair creation, enabling both these screening phenomena to be observed. The separation dependence of the energy spectrum is reliably parameterised over this saturation region with a simple model which can be used as input for subsequent investigations of quarkonia above threshold and heavy-light and heavy-strange coupled-channel meson scattering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.04006v2-abstract-full').style.display = 'none'; document.getElementById('1902.04006v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 3 figures; version accepted for publication in Physics Letters B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> WUB/19-00, CP3-Origins-2019-002 DNRF90, MITP/19-010 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.09289">arXiv:1811.09289</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.09289">pdf</a>, <a href="https://arxiv.org/format/1811.09289">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> String breaking with 2+1 dynamical fermions using the stochastic LapH method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Koch%2C+V">Vanessa Koch</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bulava%2C+J">John Bulava</a>, <a href="/search/hep-lat?searchtype=author&amp;query=H%C3%B6rz%2C+B">Ben H枚rz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Knechtli%2C+F">Francesco Knechtli</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Moir%2C+G">Graham Moir</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Morningstar%2C+C">Colin Morningstar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Peardon%2C+M">Mike Peardon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.09289v1-abstract-short" style="display: inline;"> The static potential $V(r)$ between a static quark and a static antiquark separated by a distance r is defined as the energy of the ground state of the system. As a consequence of confinement, the energy between the quark-antiquark pair is contained inside a color flux tube, which will break due to pair creation as soon as the energy is high enough. String breaking is manifested as a quantum-mecha&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.09289v1-abstract-full').style.display = 'inline'; document.getElementById('1811.09289v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.09289v1-abstract-full" style="display: none;"> The static potential $V(r)$ between a static quark and a static antiquark separated by a distance r is defined as the energy of the ground state of the system. As a consequence of confinement, the energy between the quark-antiquark pair is contained inside a color flux tube, which will break due to pair creation as soon as the energy is high enough. String breaking is manifested as a quantum-mechanical mixing phenomenon between different states containing two infinitely heavy quarks. We investigate this phenomenon with $N_\mathrm{f}=2+1$ flavors of dynamical fermions in the stochastic LapH framework, using an ensemble of gauge configurations generated through the CLS effort. We observe the effect of the third sea-quark flavor, which results in a second mixing-phenomenon. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.09289v1-abstract-full').style.display = 'none'; document.getElementById('1811.09289v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 2 figures, talk presented at the 36th Annual International Symposium on Lattice Field Theory, July 22-28, 2018, East Lansing, MI, USA</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.12747">arXiv:1810.12747</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.12747">pdf</a>, <a href="https://arxiv.org/ps/1810.12747">ps</a>, <a href="https://arxiv.org/format/1810.12747">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Three neutrons from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Wynen%2C+J">Jan-Lukas Wynen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Berkowitz%2C+E">Evan Berkowitz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Luu%2C+T">Thomas Luu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Shindler%2C+A">Andrea Shindler</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bulava%2C+J">John Bulava</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.12747v1-abstract-short" style="display: inline;"> We present a study on ab-initio calculations of three-neutron correlators from Lattice QCD. We extend the method of baryon blocks to systems of three spacially displaced baryons. This allows the measurement of three-neutron $p$-wave correlators with total spin $S=1/2$ and $3/2$. In addition, we use automatic code generation that has high flexibility and allows for easy inclusion of additional chan&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.12747v1-abstract-full').style.display = 'inline'; document.getElementById('1810.12747v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.12747v1-abstract-full" style="display: none;"> We present a study on ab-initio calculations of three-neutron correlators from Lattice QCD. We extend the method of baryon blocks to systems of three spacially displaced baryons. This allows the measurement of three-neutron $p$-wave correlators with total spin $S=1/2$ and $3/2$. In addition, we use automatic code generation that has high flexibility and allows for easy inclusion of additional channels in the future while optimizing the evaluation of contractions. Our measurements were performed on a newly generated $96\times 48^3$ Clover-Wilson gauge field ensemble with $m_蟺 \approx 370\,\text{MeV}$. We present preliminary results of our calculations of one pion and nucleon as well as two nucleon ($2N$) and three neutron ($3n$) correlators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.12747v1-abstract-full').style.display = 'none'; document.getElementById('1810.12747v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings from Lattice2018, 7 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.11433">arXiv:1810.11433</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.11433">pdf</a>, <a href="https://arxiv.org/format/1810.11433">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Scattering phase shift determinations from a two-scalar field theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Darvish%2C+D">Daniel Darvish</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brett%2C+R">Ruair铆 Brett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bulava%2C+J">John Bulava</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fallica%2C+J">Jacob Fallica</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hanlon%2C+A">Andrew Hanlon</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Morningstar%2C+C">Colin Morningstar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.11433v1-abstract-short" style="display: inline;"> A field theory involving two interacting scalar fields, previously studied by Rummukainen and Gottlieb, is revisited. Our study is not restricted to the limit of large quartic couplings, and a Symanzik-improved action is used so that continuum dispersion relations work well. The Metropolis method, combined with a local microcanonical updating algorithm, is employed in our Monte Carlo calculations.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.11433v1-abstract-full').style.display = 'inline'; document.getElementById('1810.11433v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.11433v1-abstract-full" style="display: none;"> A field theory involving two interacting scalar fields, previously studied by Rummukainen and Gottlieb, is revisited. Our study is not restricted to the limit of large quartic couplings, and a Symanzik-improved action is used so that continuum dispersion relations work well. The Metropolis method, combined with a local microcanonical updating algorithm, is employed in our Monte Carlo calculations. Isotropic lattices ranging from $16^3 \times 48$ to $53^3 \times 48$ are used, and scattering phase shifts are determined using a L眉scher analysis with multiple partial waves. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.11433v1-abstract-full').style.display = 'none'; document.getElementById('1810.11433v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 7 figures, proceedings for The 36th Annual International Symposium on Lattice Field Theory</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.11311">arXiv:1810.11311</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.11311">pdf</a>, <a href="https://arxiv.org/format/1810.11311">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> $K蟺$ scattering and excited meson spectroscopy using the stochastic LapH method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brett%2C+R">Ruair铆 Brett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bulava%2C+J">John Bulava</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fallica%2C+J">Jacob Fallica</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hanlon%2C+A">Andrew Hanlon</a>, <a href="/search/hep-lat?searchtype=author&amp;query=H%C3%B6rz%2C+B">Ben H枚rz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Morningstar%2C+C">Colin Morningstar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.11311v2-abstract-short" style="display: inline;"> Elastic $I=1/2$, $s$- and $p$-wave $K蟺$ scattering amplitudes are simultaneously calculated using a L眉scher style analysis on a single ensemble of dynamical Wilson-clover fermions at $m_蟺\sim 230$ MeV. Partial wave mixing due to the reduced rotational symmetries of the finite volume is included up to $\ell=2$. We also present finite-volume QCD spectra on two large anisotropic lattices (&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.11311v2-abstract-full').style.display = 'inline'; document.getElementById('1810.11311v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.11311v2-abstract-full" style="display: none;"> Elastic $I=1/2$, $s$- and $p$-wave $K蟺$ scattering amplitudes are simultaneously calculated using a L眉scher style analysis on a single ensemble of dynamical Wilson-clover fermions at $m_蟺\sim 230$ MeV. Partial wave mixing due to the reduced rotational symmetries of the finite volume is included up to $\ell=2$. We also present finite-volume QCD spectra on two large anisotropic lattices ($32^3 \times 256$, $24^3 \times 128$) with $m_蟺\sim 230,\ 390$ MeV respectively. In each symmetry channel, a large basis of one- and two-hadron interpolating operators is employed with all-to-all quark propagation treated using the stochastic LapH method. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.11311v2-abstract-full').style.display = 'none'; document.getElementById('1810.11311v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, proceedings for the 36th International Symposium on Lattice Field Theory (22-28 July 2018); references updated</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.05007">arXiv:1808.05007</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.05007">pdf</a>, <a href="https://arxiv.org/format/1808.05007">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysb.2018.12.018">10.1016/j.nuclphysb.2018.12.018 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The $I=1$ pion-pion scattering amplitude and timelike pion form factor from $N_{\rm f} = 2+1$ lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Andersen%2C+C">Christian Andersen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bulava%2C+J">John Bulava</a>, <a href="/search/hep-lat?searchtype=author&amp;query=H%C3%B6rz%2C+B">Ben H枚rz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Morningstar%2C+C">Colin Morningstar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.05007v2-abstract-short" style="display: inline;"> The elastic $I=1$ $p$-wave $蟺蟺$ scattering amplitude is calculated together with the isovector timelike pion form factor using lattice QCD with $N_{\rm f}=2+1$ dynamical quark flavors. Wilson clover ensembles generated by the Coordinated Lattice Simulations (CLS) initiative are employed at four lattice spacings down to $a = 0.05\,\mathrm{fm}$, several pion masses down to $m_蟺 = 200\,\mathrm{MeV}$,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.05007v2-abstract-full').style.display = 'inline'; document.getElementById('1808.05007v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.05007v2-abstract-full" style="display: none;"> The elastic $I=1$ $p$-wave $蟺蟺$ scattering amplitude is calculated together with the isovector timelike pion form factor using lattice QCD with $N_{\rm f}=2+1$ dynamical quark flavors. Wilson clover ensembles generated by the Coordinated Lattice Simulations (CLS) initiative are employed at four lattice spacings down to $a = 0.05\,\mathrm{fm}$, several pion masses down to $m_蟺 = 200\,\mathrm{MeV}$, and spatial volumes of extent $L = 3.1-5.5\,\mathrm{fm}$. The set of measurements on these ensembles, which is publicly available, enables an investigation of systematic errors due to the finite lattice spacing and spatial volume. The $蟺蟺$ scattering amplitude is fit on each ensemble by a Breit-Wigner resonance lineshape, while the form factor is described better by a thrice-subtracted dispersion relation than the Gounaris-Sakurai parametrization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.05007v2-abstract-full').style.display = 'none'; document.getElementById('1808.05007v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 12 figures. Typos fixed, small changes to the text, Refs. updated/added, agrees with published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CP3-Origins-2018-029 DNRF90 MITP/18-073 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.03100">arXiv:1802.03100</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1802.03100">pdf</a>, <a href="https://arxiv.org/format/1802.03100">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysb.2018.05.008">10.1016/j.nuclphysb.2018.05.008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Determination of $s$- and $p$-wave $I=1/2$ $K蟺$ scattering amplitudes in $N_{\mathrm{f}}=2+1$ lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brett%2C+R">Ruair铆 Brett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bulava%2C+J">John Bulava</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fallica%2C+J">Jacob Fallica</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hanlon%2C+A">Andrew Hanlon</a>, <a href="/search/hep-lat?searchtype=author&amp;query=H%C3%B6rz%2C+B">Ben H枚rz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Morningstar%2C+C">Colin Morningstar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.03100v2-abstract-short" style="display: inline;"> The elastic $I=1/2$, $s$- and $p$-wave kaon-pion scattering amplitudes are calculated using a single ensemble of anisotropic lattice QCD gauge field configurations with $N_{\mathrm{f}} = 2+1$ flavors of dynamical Wilson-clover fermions at $m_蟺 = 230\mathrm{MeV}$. A large spatial extent of $L = 3.7\mathrm{fm}$ enables a good energy resolution while partial wave mixing due to the reduced symmetries&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.03100v2-abstract-full').style.display = 'inline'; document.getElementById('1802.03100v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.03100v2-abstract-full" style="display: none;"> The elastic $I=1/2$, $s$- and $p$-wave kaon-pion scattering amplitudes are calculated using a single ensemble of anisotropic lattice QCD gauge field configurations with $N_{\mathrm{f}} = 2+1$ flavors of dynamical Wilson-clover fermions at $m_蟺 = 230\mathrm{MeV}$. A large spatial extent of $L = 3.7\mathrm{fm}$ enables a good energy resolution while partial wave mixing due to the reduced symmetries of the finite volume is treated explicitly.The $p$-wave amplitude is well described by a Breit-Wigner shape with parameters $m_{K^{*}}/m_蟺 = 3.808(18)$ and $g^{\mathrm{BW}}_{K^{*}K蟺} = 5.33(20)$ which are insensitive to the inclusion of $d$-wave mixing and variation of the $s$-wave parametrization. An effective range description of the near-threshold $s$-wave amplitude yields $m_蟺a_0 = -0.353(25)$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.03100v2-abstract-full').style.display = 'none'; document.getElementById('1802.03100v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 12 figures. Mistake corrected in Fig. 4, plus minor changes to the text. Agrees with published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CP3-Origins-2018-5 DNRF90, MITP/18-010 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl.Phys. B932 (2018) 29-51 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.04545">arXiv:1710.04545</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.04545">pdf</a>, <a href="https://arxiv.org/ps/1710.04545">ps</a>, <a href="https://arxiv.org/format/1710.04545">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/201817505026">10.1051/epjconf/201817505026 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multi-hadron spectroscopy in a large physical volume </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bulava%2C+J">John Bulava</a>, <a href="/search/hep-lat?searchtype=author&amp;query=H%C3%B6rz%2C+B">Ben H枚rz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Morningstar%2C+C">Colin Morningstar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.04545v1-abstract-short" style="display: inline;"> We demonstrate the efficacy of the stochastic LapH method to treat all-to-all quark propagation on a $N_f = 2+1$ CLS ensemble with large linear spatial extent $L = 5.5$ fm, allowing us to obtain the benchmark elastic isovector p-wave pion-pion scattering amplitude to good precision already on a relatively small number of gauge configurations. These results hold promise for multi-hadron spectroscop&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.04545v1-abstract-full').style.display = 'inline'; document.getElementById('1710.04545v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.04545v1-abstract-full" style="display: none;"> We demonstrate the efficacy of the stochastic LapH method to treat all-to-all quark propagation on a $N_f = 2+1$ CLS ensemble with large linear spatial extent $L = 5.5$ fm, allowing us to obtain the benchmark elastic isovector p-wave pion-pion scattering amplitude to good precision already on a relatively small number of gauge configurations. These results hold promise for multi-hadron spectroscopy at close-to-physical pion mass with exponential finite-volume effects under control. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.04545v1-abstract-full').style.display = 'none'; document.getElementById('1710.04545v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures. Presented at Lattice 2017, the 35th International Symposium on Lattice Field Theory, Granada, Spain, 18-24 June 2017</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.04169">arXiv:1710.04169</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.04169">pdf</a>, <a href="https://arxiv.org/ps/1710.04169">ps</a>, <a href="https://arxiv.org/format/1710.04169">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/201817505005">10.1051/epjconf/201817505005 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Scattering from finite-volume energies including higher partial waves and multiple decay channels </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Brett%2C+R">Ruair铆 Brett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bulava%2C+J">John Bulava</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fallica%2C+J">Jacob Fallica</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hanlon%2C+A">Andrew Hanlon</a>, <a href="/search/hep-lat?searchtype=author&amp;query=H%C3%B6rz%2C+B">Ben H枚rz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Morningstar%2C+C">Colin Morningstar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Singha%2C+B">Bijit Singha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.04169v1-abstract-short" style="display: inline;"> A new implementation of estimating the two-to-two $K$-matrix from finite-volume energies based on the Luescher formalism is described. The method includes higher partial waves and multiple decay channels, and the fitting procedure properly includes all covariances and statistical uncertainties. The method is also simpler than previously used procedures. Formulas and software for handling total spi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.04169v1-abstract-full').style.display = 'inline'; document.getElementById('1710.04169v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.04169v1-abstract-full" style="display: none;"> A new implementation of estimating the two-to-two $K$-matrix from finite-volume energies based on the Luescher formalism is described. The method includes higher partial waves and multiple decay channels, and the fitting procedure properly includes all covariances and statistical uncertainties. The method is also simpler than previously used procedures. Formulas and software for handling total spins up to $S=2$ and orbital angular momenta up to $L=6$ are presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.04169v1-abstract-full').style.display = 'none'; document.getElementById('1710.04169v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages. Presented at Lattice 2017, the 35th International Symposium on Lattice Field Theory, Granada, Spain, 18-24 June 2017</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.01557">arXiv:1710.01557</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.01557">pdf</a>, <a href="https://arxiv.org/format/1710.01557">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.97.014506">10.1103/PhysRevD.97.014506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The elastic $I=3/2$ $p$-wave nucleon-pion scattering amplitude and the $螖(1232)$ resonance from $N_{\mathrm{f}}=2+1$ lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Andersen%2C+C+W">Christian Walther Andersen</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bulava%2C+J">John Bulava</a>, <a href="/search/hep-lat?searchtype=author&amp;query=H%C3%B6rz%2C+B">Ben H枚rz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Morningstar%2C+C">Colin Morningstar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.01557v2-abstract-short" style="display: inline;"> We present the first direct determination of meson-baryon resonance parameters from a scattering amplitude calculated using lattice QCD. In particular, we calculate the elastic $I=3/2$, $p$-wave nucleon-pion amplitude on a single ensemble of $N_{\mathrm{f}}=2+1$ Wilson-clover fermions with $m_蟺=280\mathrm{MeV}$ and $m_{K}=460\mathrm{MeV}$. At these quark masses, the $螖(1232)$ resonance pole is fou&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.01557v2-abstract-full').style.display = 'inline'; document.getElementById('1710.01557v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.01557v2-abstract-full" style="display: none;"> We present the first direct determination of meson-baryon resonance parameters from a scattering amplitude calculated using lattice QCD. In particular, we calculate the elastic $I=3/2$, $p$-wave nucleon-pion amplitude on a single ensemble of $N_{\mathrm{f}}=2+1$ Wilson-clover fermions with $m_蟺=280\mathrm{MeV}$ and $m_{K}=460\mathrm{MeV}$. At these quark masses, the $螖(1232)$ resonance pole is found close to the $N-蟺$ threshold and a Breit-Wigner fit to the amplitude gives $g^{\mathrm{BW}}_{螖N蟺}=19.0(4.7)$ in agreement with phenomenological determinations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.01557v2-abstract-full').style.display = 'none'; document.getElementById('1710.01557v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 2 figures. Agrees with published version, one additional phase shift point and clarification of different coupling conventions</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CP3-Origins-2017-040, MITP/17-063 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 97, 014506 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.05817">arXiv:1707.05817</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1707.05817">pdf</a>, <a href="https://arxiv.org/format/1707.05817">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysb.2017.09.014">10.1016/j.nuclphysb.2017.09.014 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Estimating the two-particle $K$-matrix for multiple partial waves and decay channels from finite-volume energies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Morningstar%2C+C">Colin Morningstar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bulava%2C+J">John Bulava</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Singha%2C+B">Bijit Singha</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brett%2C+R">Ruair铆 Brett</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fallica%2C+J">Jacob Fallica</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hanlon%2C+A">Andrew Hanlon</a>, <a href="/search/hep-lat?searchtype=author&amp;query=H%C3%B6rz%2C+B">Ben H枚rz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.05817v1-abstract-short" style="display: inline;"> An implementation of estimating the two-to-two $K$-matrix from finite-volume energies based on the L眉scher formalism and involving a Hermitian matrix known as the &#34;box matrix&#34; is described. The method includes higher partial waves and multiple decay channels. Two fitting procedures for estimating the $K$-matrix parameters, which properly incorporate all statistical covariances, are discussed. Form&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.05817v1-abstract-full').style.display = 'inline'; document.getElementById('1707.05817v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.05817v1-abstract-full" style="display: none;"> An implementation of estimating the two-to-two $K$-matrix from finite-volume energies based on the L眉scher formalism and involving a Hermitian matrix known as the &#34;box matrix&#34; is described. The method includes higher partial waves and multiple decay channels. Two fitting procedures for estimating the $K$-matrix parameters, which properly incorporate all statistical covariances, are discussed. Formulas and software for handling total spins up to $S=2$ and orbital angular momenta up to $L=6$ are obtained for total momenta in several directions. First tests involving $蟻$-meson decay to two pions include the $L=3$ and $L=5$ partial waves, and the contributions from these higher waves are found to be negligible in the elastic energy range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.05817v1-abstract-full').style.display = 'none'; document.getElementById('1707.05817v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 1 figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1604.05827">arXiv:1604.05827</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1604.05827">pdf</a>, <a href="https://arxiv.org/format/1604.05827">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.93.114513">10.1103/PhysRevD.93.114513 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Non-perturbative renormalization of the axial current in $N_f = 3$ lattice QCD with Wilson fermions and tree-level improved gauge action </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bulava%2C+J">John Bulava</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Della+Morte%2C+M">Michele Della Morte</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Heitger%2C+J">Jochen Heitger</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wittemeier%2C+C">Christian Wittemeier</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1604.05827v2-abstract-short" style="display: inline;"> We non-perturbatively determine the renormalization factor of the axial vector current in lattice QCD with $N_f=3$ flavors of Wilson-clover fermions and the tree-level Symanzik-improved gauge action. The (by now standard) renormalization condition is derived from the massive axial Ward identity and it is imposed among Schr枚dinger functional states with large overlap on the lowest lying hadronic st&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.05827v2-abstract-full').style.display = 'inline'; document.getElementById('1604.05827v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1604.05827v2-abstract-full" style="display: none;"> We non-perturbatively determine the renormalization factor of the axial vector current in lattice QCD with $N_f=3$ flavors of Wilson-clover fermions and the tree-level Symanzik-improved gauge action. The (by now standard) renormalization condition is derived from the massive axial Ward identity and it is imposed among Schr枚dinger functional states with large overlap on the lowest lying hadronic state in the pseudoscalar channel, in order to reduce kinematically enhanced cutoff effects. We explore a range of couplings relevant for simulations at lattice spacings of $\approx 0.09$ fm and below. An interpolation formula for $Z_A(g_0^2)$, smoothly connecting the non-perturbative values to the 1-loop expression, is provided together with our final results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.05827v2-abstract-full').style.display = 'none'; document.getElementById('1604.05827v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 2 tables, 5 figures. Version accepted for publication in PRD. References added, results unchanged. arXiv admin note: text overlap with arXiv:1502.04999</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 93, 114513 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1604.05593">arXiv:1604.05593</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1604.05593">pdf</a>, <a href="https://arxiv.org/format/1604.05593">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysb.2016.07.024">10.1016/j.nuclphysb.2016.07.024 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $I=1$ and $I=2$ $蟺-蟺$ scattering phase shifts from $N_{\mathrm{f}} = 2+1$ lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bulava%2C+J">John Bulava</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fahy%2C+B">Brendan Fahy</a>, <a href="/search/hep-lat?searchtype=author&amp;query=H%C3%B6rz%2C+B">Ben H枚rz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Juge%2C+K+J">Keisuke J. Juge</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Morningstar%2C+C">Colin Morningstar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wong%2C+C+H">Chik Him Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1604.05593v2-abstract-short" style="display: inline;"> The $I=1$ $p$-wave and $I=2$ $s$-wave elastic $蟺$-$蟺$ scattering amplitudes are calculated from a first-principles lattice QCD simulation using a single ensemble of gauge field configurations with $N_{\mathrm{f}} = 2+1$ dynamical flavors of anisotropic clover-improved Wilson fermions. This ensemble has a large spatial volume $V=(3.7\mathrm{fm})^3$, pion mass $m_蟺 = 230\mathrm{MeV}$, and spatial la&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.05593v2-abstract-full').style.display = 'inline'; document.getElementById('1604.05593v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1604.05593v2-abstract-full" style="display: none;"> The $I=1$ $p$-wave and $I=2$ $s$-wave elastic $蟺$-$蟺$ scattering amplitudes are calculated from a first-principles lattice QCD simulation using a single ensemble of gauge field configurations with $N_{\mathrm{f}} = 2+1$ dynamical flavors of anisotropic clover-improved Wilson fermions. This ensemble has a large spatial volume $V=(3.7\mathrm{fm})^3$, pion mass $m_蟺 = 230\mathrm{MeV}$, and spatial lattice spacing $a_s = 0.11\mathrm{fm}$. Calculation of the necessary temporal correlation matrices is efficiently performed using the stochastic LapH method, while the large volume enables an improved energy resolution compared to previous work. For this single ensemble we obtain $m_蟻/m_蟺 = 3.350(24)$, $g_{蟻蟺蟺} = 5.99(26)$, and a clear signal for the $I=2$ $s$-wave. The success of the stochastic LapH method in this proof-of-principle large-volume calculation paves the way for quantitative study of the lattice spacing effects and quark mass dependence of scattering amplitudes using state-of-the-art ensembles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.05593v2-abstract-full').style.display = 'none'; document.getElementById('1604.05593v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 10 pdf figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1511.04029">arXiv:1511.04029</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1511.04029">pdf</a>, <a href="https://arxiv.org/format/1511.04029">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Towards string breaking with 2+1 dynamical fermions using the stochastic LapH method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Koch%2C+V">Vanessa Koch</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bulava%2C+J">John Bulava</a>, <a href="/search/hep-lat?searchtype=author&amp;query=H%C3%B6rz%2C+B">Ben H枚rz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Knechtli%2C+F">Francesco Knechtli</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Moir%2C+G">Graham Moir</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Morningstar%2C+C">Colin Morningstar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Peardon%2C+M">Mike Peardon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1511.04029v2-abstract-short" style="display: inline;"> We investigate the use of stochastically estimated light quark propagators in correlation functions involving a static color source. To this end we compute the static-light meson pseudoscalar correlation function in the stochastic LapH framework, using an ensemble of $N_f= 2+1$ gauge configurations generated through the CLS effort. We extract the static-light as well as the static-strange mass wit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.04029v2-abstract-full').style.display = 'inline'; document.getElementById('1511.04029v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1511.04029v2-abstract-full" style="display: none;"> We investigate the use of stochastically estimated light quark propagators in correlation functions involving a static color source. To this end we compute the static-light meson pseudoscalar correlation function in the stochastic LapH framework, using an ensemble of $N_f= 2+1$ gauge configurations generated through the CLS effort. We extract the static-light as well as the static-strange mass with good statistical precision. Together with the static potential, we obtain a preliminary estimate for the expected mixing region. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.04029v2-abstract-full').style.display = 'none'; document.getElementById('1511.04029v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Revised version, acknowledgements added</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1511.02351">arXiv:1511.02351</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1511.02351">pdf</a>, <a href="https://arxiv.org/format/1511.02351">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Pion-pion scattering and the timelike pion form factor from $N_{\mathrm{f}} = 2+1$ lattice QCD simulations using the stochastic LapH method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bulava%2C+J">John Bulava</a>, <a href="/search/hep-lat?searchtype=author&amp;query=H%C3%B6rz%2C+B">Ben H枚rz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fahy%2C+B">Brendan Fahy</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Juge%2C+K+J">K. J. Juge</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Morningstar%2C+C">Colin Morningstar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wong%2C+C+H">Chik Him Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1511.02351v2-abstract-short" style="display: inline;"> We report on progress applying the stochastic LapH method to estimate all-to-all propagators required in correlation functions of multi-hadron operators relevant for pion-pion scattering. Large-volume results for $I=2$ and $I=1$ pion-pion scattering phase shifts with good statistical precision are obtained from an $N_{\rm f} = 2+1$ anisotropic Wilson clover ensemble with $m_蟺 = 240\mathrm{MeV}$. W&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.02351v2-abstract-full').style.display = 'inline'; document.getElementById('1511.02351v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1511.02351v2-abstract-full" style="display: none;"> We report on progress applying the stochastic LapH method to estimate all-to-all propagators required in correlation functions of multi-hadron operators relevant for pion-pion scattering. Large-volume results for $I=2$ and $I=1$ pion-pion scattering phase shifts with good statistical precision are obtained from an $N_{\rm f} = 2+1$ anisotropic Wilson clover ensemble with $m_蟺 = 240\mathrm{MeV}$. We also present a preliminary determination of the $I=1$ pion-pion scattering phase shift and timelike pion form factor on an isotropic $N_{\rm f}=2+1$ flavour ensemble generated by the Coordinated Lattice Simulation (CLS) community effort. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.02351v2-abstract-full').style.display = 'none'; document.getElementById('1511.02351v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 5 figures. Combined proceedings of talks by J. Bulava and B. Hoerz at the 33rd International Symposium on Lattice Field Theory (Kobe, Japan)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1510.00371">arXiv:1510.00371</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1510.00371">pdf</a>, <a href="https://arxiv.org/format/1510.00371">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Excited-state energies and scattering phase shifts from lattice QCD with the stochastic LapH method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Morningstar%2C+C">Colin Morningstar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bulava%2C+J">John Bulava</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fahy%2C+B">Brendan Fahy</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fallica%2C+J">Jacob Fallica</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hanlon%2C+A">Andrew Hanlon</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hoerz%2C+B">Ben Hoerz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Juge%2C+K">Keisuke Juge</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wong%2C+C+H">Chik Him Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1510.00371v1-abstract-short" style="display: inline;"> Recent results in computing excited-state energies and meson-meson scattering phase shifts in lattice QCD are presented. A stochastic method of treating the low-lying modes of quark propagation that exploits Laplacian Heaviside quark-field smearing makes such studies possible now on large 32^3 x 256 and 48^3 x 128 lattices at near physical pion masses. Levels are identified using a variety of prob&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.00371v1-abstract-full').style.display = 'inline'; document.getElementById('1510.00371v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1510.00371v1-abstract-full" style="display: none;"> Recent results in computing excited-state energies and meson-meson scattering phase shifts in lattice QCD are presented. A stochastic method of treating the low-lying modes of quark propagation that exploits Laplacian Heaviside quark-field smearing makes such studies possible now on large 32^3 x 256 and 48^3 x 128 lattices at near physical pion masses. Levels are identified using a variety of probe interpolating operators, which include both single-hadron and a large number of two-hadron operators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.00371v1-abstract-full').style.display = 'none'; document.getElementById('1510.00371v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Talk presented at CIPANP2015, 15 pages, 7 figures. arXiv admin note: substantial text overlap with arXiv:1410.8839, arXiv:1310.7887, arXiv:1410.8843</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CIPANP2015-Morningstar </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1505.03360">arXiv:1505.03360</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1505.03360">pdf</a>, <a href="https://arxiv.org/format/1505.03360">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.92.054509">10.1103/PhysRevD.92.054509 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> B-meson spectroscopy in HQET at order 1/m </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bernardoni%2C+F">Fabio Bernardoni</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Blossier%2C+B">Beno卯t Blossier</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bulava%2C+J">John Bulava</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Della+Morte%2C+M">Michele Della Morte</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fritzsch%2C+P">Patrick Fritzsch</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garron%2C+N">Nicolas Garron</a>, <a href="/search/hep-lat?searchtype=author&amp;query=G%C3%A9rardin%2C+A">Antoine G茅rardin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Heitger%2C+J">Jochen Heitger</a>, <a href="/search/hep-lat?searchtype=author&amp;query=von+Hippel%2C+G">Georg von Hippel</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simma%2C+H">Hubert Simma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1505.03360v2-abstract-short" style="display: inline;"> We present a study of the B spectrum performed in the framework of Heavy Quark Effective Theory expanded to next-to-leading order in 1/m and non-perturbative in the strong coupling. Our analyses have been performed on Nf=2 lattice gauge field ensembles corresponding to three different lattice spacings and a wide range of pion masses. We obtain the Bs-meson mass and hyperfine splittings of the B- a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.03360v2-abstract-full').style.display = 'inline'; document.getElementById('1505.03360v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1505.03360v2-abstract-full" style="display: none;"> We present a study of the B spectrum performed in the framework of Heavy Quark Effective Theory expanded to next-to-leading order in 1/m and non-perturbative in the strong coupling. Our analyses have been performed on Nf=2 lattice gauge field ensembles corresponding to three different lattice spacings and a wide range of pion masses. We obtain the Bs-meson mass and hyperfine splittings of the B- and Bs-mesons that are in good agreement with the experimental values and examine the mass difference m_{Bs}-m_B as a further cross-check of our previous estimate of the b-quark mass. We also report on the mass splitting between the first excited state and the ground state in the B and Bs systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.03360v2-abstract-full').style.display = 'none'; document.getElementById('1505.03360v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 May, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 14 tables, 17 figures; Introduction extended and typos corrected. Version accepted for publication in PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CP3-Origins-2015-009 DNRF90, DESY 15-062, DIAS-2015-9, HU-EP-15/16, IFT-UAM/CSIC-15-043, LPT-Orsay/15-31, MITP/15-025, MS-TP-15-07, TCDMATH 15-04 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 92, 054509 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1502.07773">arXiv:1502.07773</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1502.07773">pdf</a>, <a href="https://arxiv.org/format/1502.07773">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Non-perturbative improvement and renormalization of the axial current in N_f=3 lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bulava%2C+J">John Bulava</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Della+Morte%2C+M">Michele Della Morte</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Heitger%2C+J">Jochen Heitger</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wittemeier%2C+C">Christian Wittemeier</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1502.07773v1-abstract-short" style="display: inline;"> We report on a non-perturbative computation of the renormalization factor Z_A of the axial vector current in three-flavour O(a) improved lattice QCD with Wilson quarks and tree-level Symanzik improved gauge action and also recall our recent determination of the improvement coefficient c_A. Our normalization and improvement conditions are formulated at constant physics in a Schr枚dinger functional s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.07773v1-abstract-full').style.display = 'inline'; document.getElementById('1502.07773v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1502.07773v1-abstract-full" style="display: none;"> We report on a non-perturbative computation of the renormalization factor Z_A of the axial vector current in three-flavour O(a) improved lattice QCD with Wilson quarks and tree-level Symanzik improved gauge action and also recall our recent determination of the improvement coefficient c_A. Our normalization and improvement conditions are formulated at constant physics in a Schr枚dinger functional setup. The normalization condition exploits the full, massive axial Ward identity to reduce finite quark mass effects in the evaluation of Z_A and correlators with boundary wave functions to suppress excited state contributions in the pseudoscalar channel. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.07773v1-abstract-full').style.display = 'none'; document.getElementById('1502.07773v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 3 figures; proceedings of the 32nd International Symposium on Lattice Field Theory (Lattice 2014), 23-28 June, 2014, Columbia University New York, NY</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MS-TP-15-04 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS(LATTICE2014)283 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1502.04999">arXiv:1502.04999</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1502.04999">pdf</a>, <a href="https://arxiv.org/format/1502.04999">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysb.2015.05.003">10.1016/j.nuclphysb.2015.05.003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Non-perturbative improvement of the axial current in N_f=3 lattice QCD with Wilson fermions and tree-level improved gauge action </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bulava%2C+J">John Bulava</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Della+Morte%2C+M">Michele Della Morte</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Heitger%2C+J">Jochen Heitger</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wittemeier%2C+C">Christian Wittemeier</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1502.04999v2-abstract-short" style="display: inline;"> The coefficient c_A required for O(a) improvement of the axial current in lattice QCD with N_f=3 flavors of Wilson fermions and the tree-level Symanzik-improved gauge action is determined non-perturbatively. The standard improvement condition using Schroedinger functional boundary conditions is employed at constant physics for a range of couplings relevant for simulations at lattice spacings of ~&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.04999v2-abstract-full').style.display = 'inline'; document.getElementById('1502.04999v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1502.04999v2-abstract-full" style="display: none;"> The coefficient c_A required for O(a) improvement of the axial current in lattice QCD with N_f=3 flavors of Wilson fermions and the tree-level Symanzik-improved gauge action is determined non-perturbatively. The standard improvement condition using Schroedinger functional boundary conditions is employed at constant physics for a range of couplings relevant for simulations at lattice spacings of ~ 0.09 fm and below. We define the improvement condition projected onto the zero topological charge sector of the theory, in order to avoid the problem of possibly insufficient tunneling between topological sectors in our simulations at the smallest bare coupling. An interpolation formula for c_A(g_0^2) is provided together with our final results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.04999v2-abstract-full').style.display = 'none'; document.getElementById('1502.04999v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 May, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 February, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages including figures and tables, latex2e; version published in Nucl. Phys. B, small additions to the text and references added, results unchanged</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> TCDMATH 15-01, MS-TP-15-02, CP3-Origins-2015-001 DNRF90, DIAS-2015-1 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl. Phys. B 896 (2015) 555 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1411.3916">arXiv:1411.3916</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1411.3916">pdf</a>, <a href="https://arxiv.org/format/1411.3916">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Form factors for $\mathrm B_\mathrm s \to \mathrm K \ell 谓$ decays in Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bahr%2C+F">Felix Bahr</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bernardoni%2C+F">Fabio Bernardoni</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bulava%2C+J">John Bulava</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Joseph%2C+A">Anosh Joseph</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ramos%2C+A">Alberto Ramos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simma%2C+H">Hubert Simma</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sommer%2C+R">Rainer Sommer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1411.3916v1-abstract-short" style="display: inline;"> We present the current status of the computation of the form factor $f_+ (q^2)$ for the semi-leptonic decay $\mathrm B_\mathrm s \to \mathrm K \ell 谓$ by the ALPHA collaboration. We use gauge configurations which were generated as part of the Coordinated Lattice Simulations (CLS) effort. They have $N_\mathrm f=2$ non-perturbatively $O(a)$ improved Wilson fermions, and pion masses down to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.3916v1-abstract-full').style.display = 'inline'; document.getElementById('1411.3916v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1411.3916v1-abstract-full" style="display: none;"> We present the current status of the computation of the form factor $f_+ (q^2)$ for the semi-leptonic decay $\mathrm B_\mathrm s \to \mathrm K \ell 谓$ by the ALPHA collaboration. We use gauge configurations which were generated as part of the Coordinated Lattice Simulations (CLS) effort. They have $N_\mathrm f=2$ non-perturbatively $O(a)$ improved Wilson fermions, and pion masses down to $\approx 250 \,\mathrm {MeV}$ with $m_蟺L \geq 4$. The heavy quark is treated in non-perturbative Heavy Quark Effective Theory (HQET). We discuss how to extract the form factors from the correlation functions and present first results for the form factor at $q^2 = 21.23\,\mathrm{GeV}^2$ extrapolated to the continuum. Next-to-leading order terms in HQET and the chiral extrapolation still need to be included in the analysis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.3916v1-abstract-full').style.display = 'none'; document.getElementById('1411.3916v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages and 3 figures. Proceedings of the 8th International Workshop on the CKM Unitarity Triangle (CKM 2014), Vienna, Austria, September 8-12, 2014</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY 14-217, SFB/CPP-14-90 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1410.8843">arXiv:1410.8843</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1410.8843">pdf</a>, <a href="https://arxiv.org/format/1410.8843">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Pion-pion scattering phase shifts with the stochastic LapH method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Fahy%2C+B">Brendan Fahy</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bulava%2C+J">John Bulava</a>, <a href="/search/hep-lat?searchtype=author&amp;query=H%C3%B6rz%2C+B">Ben H枚rz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Juge%2C+K+J">Keisuke J. Juge</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Morningstar%2C+C">Colin Morningstar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wong%2C+C+H">Chik Him Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1410.8843v1-abstract-short" style="display: inline;"> Progress in calculating scattering phase shifts on $N_f=2+1$ anisotropic clover Wilson lattices is described. The stochastic LapH method facilitates computations in large volumes and for light pion masses. Results for pion masses down to 240 MeV, keeping $m_蟺L &gt; 4$, are presented. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1410.8843v1-abstract-full" style="display: none;"> Progress in calculating scattering phase shifts on $N_f=2+1$ anisotropic clover Wilson lattices is described. The stochastic LapH method facilitates computations in large volumes and for light pion masses. Results for pion masses down to 240 MeV, keeping $m_蟺L &gt; 4$, are presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.8843v1-abstract-full').style.display = 'none'; document.getElementById('1410.8843v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 1 table, 3 figures, contribution to the 32nd International Symposium on Lattice Field Theory (Lattice 2014), 23-28 June 2014, Columbia University, New York, NY, USA</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1404.6951">arXiv:1404.6951</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1404.6951">pdf</a>, <a href="https://arxiv.org/format/1404.6951">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2014.11.051">10.1016/j.physletb.2014.11.051 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Precision lattice QCD computation of the $B^*B蟺$ coupling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bernardoni%2C+F">Fabio Bernardoni</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bulava%2C+J">John Bulava</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Donnellan%2C+M">Michael Donnellan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sommer%2C+R">Rainer Sommer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1404.6951v1-abstract-short" style="display: inline;"> The static $B^{*}B蟺$ coupling, $\hat{g}_蠂$, a low energy constant in the leading order heavy meson chiral Lagrangian, is determined using $N_\mathrm{f} = 2$ lattice QCD. We use CLS ensembles with lattice spacings and pion masses down to $a = 0.05\mathrm{fm}$ and $m_蟺=270\mathrm{MeV}$, and perform combined continuum and chiral extrapolations of our results which have a much better accuracy than pre&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1404.6951v1-abstract-full').style.display = 'inline'; document.getElementById('1404.6951v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1404.6951v1-abstract-full" style="display: none;"> The static $B^{*}B蟺$ coupling, $\hat{g}_蠂$, a low energy constant in the leading order heavy meson chiral Lagrangian, is determined using $N_\mathrm{f} = 2$ lattice QCD. We use CLS ensembles with lattice spacings and pion masses down to $a = 0.05\mathrm{fm}$ and $m_蟺=270\mathrm{MeV}$, and perform combined continuum and chiral extrapolations of our results which have a much better accuracy than previous numbers in the literature. As a by-product, we determine the coupling between the first radial excitations in the $B$ and $B^{*}$ channels ($\hat{g}_{22}$). Accounting for all uncertainties, which are dominated by the chiral extrapolation, we obtain $\hat{g}_蠂= 0.492(29)$, while $\hat{g}_{22}$ is somewhat smaller. The comparison to a precise quenched computation suggests that there is little influence by the sea quarks and $\hat{g}_蠂$ will not change much when a dynamical strange quark is included. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1404.6951v1-abstract-full').style.display = 'none'; document.getElementById('1404.6951v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 April, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, all included</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY 14-049, TCD 14-04 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1404.3590">arXiv:1404.3590</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1404.3590">pdf</a>, <a href="https://arxiv.org/format/1404.3590">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2014.06.051">10.1016/j.physletb.2014.06.051 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Decay constants of B-mesons from non-perturbative HQET with two light dynamical quarks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bernardoni%2C+F">F. Bernardoni</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Blossier%2C+B">B. Blossier</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bulava%2C+J">J. Bulava</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Della+Morte%2C+M">M. Della Morte</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fritzsch%2C+P">P. Fritzsch</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Garron%2C+N">N. Garron</a>, <a href="/search/hep-lat?searchtype=author&amp;query=G%C3%A9rardin%2C+A">A. G茅rardin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Heitger%2C+J">J. Heitger</a>, <a href="/search/hep-lat?searchtype=author&amp;query=von+Hippel%2C+G">G. von Hippel</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Simma%2C+H">H. Simma</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sommer%2C+R">R. Sommer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1404.3590v1-abstract-short" style="display: inline;"> We present a computation of B-meson decay constants from lattice QCD simulations within the framework of Heavy Quark Effective Theory for the b-quark. The next-to-leading order corrections in the HQET expansion are included non-perturbatively. Based on Nf=2 gauge field ensembles, covering three lattice spacings a (0.08-0.05)fm and pion masses down to 190MeV, a variational method for extracting had&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1404.3590v1-abstract-full').style.display = 'inline'; document.getElementById('1404.3590v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1404.3590v1-abstract-full" style="display: none;"> We present a computation of B-meson decay constants from lattice QCD simulations within the framework of Heavy Quark Effective Theory for the b-quark. The next-to-leading order corrections in the HQET expansion are included non-perturbatively. Based on Nf=2 gauge field ensembles, covering three lattice spacings a (0.08-0.05)fm and pion masses down to 190MeV, a variational method for extracting hadronic matrix elements is used to keep systematic errors under control. In addition we perform a careful autocorrelation analysis in the extrapolation to the continuum and to the physical pion mass limits. Our final results read fB=186(13)MeV, fBs=224(14)MeV and fBs/fB=1.203(65). A comparison with other results in the literature does not reveal a dependence on the number of dynamical quarks, and effects from truncating HQET appear to be negligible. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1404.3590v1-abstract-full').style.display = 'none'; document.getElementById('1404.3590v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 April, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages including figures and tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY 14-048, HU-EP-14/14, IFIC/14-24, CP3-Origins-2014-011 DNRF90, DIAS-2014-11, LPT-Orsay/14-19, MITP/14-026, MS-TP-14-18, SFB/CPP-14-20, TCD 14--03 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1401.2544">arXiv:1401.2544</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1401.2544">pdf</a>, <a href="https://arxiv.org/format/1401.2544">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/20147303018">10.1051/epjconf/20147303018 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Excited states in lattice QCD with the stochastic LapH method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bulava%2C+J">John Bulava</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fahy%2C+B">Brendan Fahy</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Foley%2C+J">Justin Foley</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jhang%2C+Y">You-Cyuan Jhang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Juge%2C+K+J">Keisuke J. Juge</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lenkner%2C+D">David Lenkner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Morningstar%2C+C">Colin Morningstar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wong%2C+C+H">Chik Him Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1401.2544v1-abstract-short" style="display: inline;"> Progress in computing the spectrum of excited baryons and mesons in lattice QCD is described. Results in the zero-momentum bosonic I=1/2, S=1, T1u symmetry sector of QCD using a correlation matrix of 58 operators are presented. All needed Wick contractions are efficiently evaluated using a stochastic method of treating the low-lying modes of quark propagation that exploits Laplacian Heaviside quar&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.2544v1-abstract-full').style.display = 'inline'; document.getElementById('1401.2544v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1401.2544v1-abstract-full" style="display: none;"> Progress in computing the spectrum of excited baryons and mesons in lattice QCD is described. Results in the zero-momentum bosonic I=1/2, S=1, T1u symmetry sector of QCD using a correlation matrix of 58 operators are presented. All needed Wick contractions are efficiently evaluated using a stochastic method of treating the low-lying modes of quark propagation that exploits Laplacian Heaviside quark-field smearing. Level identification using probe operators is discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.2544v1-abstract-full').style.display = 'none'; document.getElementById('1401.2544v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 January, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 3 figures, talk presented at the 13th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon (MENU 2013), Sept 30 - Oct 4, 2013, Rome, Italy</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1401.2382">arXiv:1401.2382</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1401.2382">pdf</a>, <a href="https://arxiv.org/format/1401.2382">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> The finite volume spectrum of excited states from lattice QCD simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bulava%2C+J">John Bulava</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fahy%2C+B">Brendan Fahy</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jhang%2C+Y">You-Cyuan Jhang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lenkner%2C+D">David Lenkner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Morningstar%2C+C+J">Colin J. Morningstar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Foley%2C+J">Justin Foley</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Juge%2C+K+J">Keisuke J. Juge</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wong%2C+C+H">Chik Him Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1401.2382v1-abstract-short" style="display: inline;"> We present results for the spectrum of excited mesons obtained from temporal correlations of spatially-extended single-hadron and multi-hadron operators computed in lattice QCD. The stochastic LapH algorithm is implemented on anisotropic, dynamical lattices for isovectors for pions of mass $390$ MeV. A large correlation matrix with single-particle and two-particle probe operators is diagonalized t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.2382v1-abstract-full').style.display = 'inline'; document.getElementById('1401.2382v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1401.2382v1-abstract-full" style="display: none;"> We present results for the spectrum of excited mesons obtained from temporal correlations of spatially-extended single-hadron and multi-hadron operators computed in lattice QCD. The stochastic LapH algorithm is implemented on anisotropic, dynamical lattices for isovectors for pions of mass $390$ MeV. A large correlation matrix with single-particle and two-particle probe operators is diagonalized to identify resonances. The masses of excited states in the $I=1, S=0, T_{1u}^+$ channel as well as the mixing of single and multi-particle probe operators are presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.2382v1-abstract-full').style.display = 'none'; document.getElementById('1401.2382v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures, in Proceedings of Hadron &#39;13</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1312.3591">arXiv:1312.3591</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1312.3591">pdf</a>, <a href="https://arxiv.org/format/1312.3591">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Determination of $c_\mathrm A$ in three-flavour lattice QCD with Wilson fermions and tree-level improved gauge action </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bulava%2C+J">John Bulava</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Della+Morte%2C+M">Michele Della Morte</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Heitger%2C+J">Jochen Heitger</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wittemeier%2C+C">Christian Wittemeier</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1312.3591v1-abstract-short" style="display: inline;"> We report on an ongoing non-perturbative determination of the improvement coefficient of the axial current, $c_\mathrm A$, with three flavours of dynamical $\mathrm O(a)$ improved Wilson quarks and tree-level Symanzik improved gauge action. Our computations are based on simulations with the openQCD code. The improvement condition for a range of couplings is formulated with Schr枚dinger functional b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1312.3591v1-abstract-full').style.display = 'inline'; document.getElementById('1312.3591v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1312.3591v1-abstract-full" style="display: none;"> We report on an ongoing non-perturbative determination of the improvement coefficient of the axial current, $c_\mathrm A$, with three flavours of dynamical $\mathrm O(a)$ improved Wilson quarks and tree-level Symanzik improved gauge action. Our computations are based on simulations with the openQCD code. The improvement condition for a range of couplings is formulated with Schr枚dinger functional boundary conditions and imposed along a line of constant physics in parameter space. Our analysis involves correlation functions with boundary wave functions such that a large sensitivity to $c_\mathrm A$ can be reached by exploiting the PCAC relation with two different pseudoscalar states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1312.3591v1-abstract-full').style.display = 'none'; document.getElementById('1312.3591v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures, presented at the 31st International Symposium on Lattice Field Theory (Lattice 2013), 29 July - 3 August 2013, Mainz, Germany</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MS-TP-13-31 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS(LATTICE 2013)311 </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Bulava%2C+J&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Bulava%2C+J&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Bulava%2C+J&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Bulava%2C+J&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10