CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–46 of 46 results for author: <span class="mathjax">Mead, A</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/" aria-role="search"> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Mead, A"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Mead%2C+A&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Mead, A"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.18566">arXiv:2305.18566</a> <span> [<a href="https://arxiv.org/pdf/2305.18566">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1142/S2251171723400068">10.1142/S2251171723400068 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Scientific Investigation of Unidentified Aerial Phenomena (UAP) Using Multimodal Ground-Based Observatories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Watters%2C+W+A">Wesley Andr茅s Watters</a>, <a href="/search/?searchtype=author&query=Loeb%2C+A">Abraham Loeb</a>, <a href="/search/?searchtype=author&query=Laukien%2C+F">Frank Laukien</a>, <a href="/search/?searchtype=author&query=Cloete%2C+R">Richard Cloete</a>, <a href="/search/?searchtype=author&query=Delacroix%2C+A">Alex Delacroix</a>, <a href="/search/?searchtype=author&query=Dobroshinsky%2C+S">Sergei Dobroshinsky</a>, <a href="/search/?searchtype=author&query=Horvath%2C+B">Benjamin Horvath</a>, <a href="/search/?searchtype=author&query=Kelderman%2C+E">Ezra Kelderman</a>, <a href="/search/?searchtype=author&query=Little%2C+S">Sarah Little</a>, <a href="/search/?searchtype=author&query=Masson%2C+E">Eric Masson</a>, <a href="/search/?searchtype=author&query=Mead%2C+A">Andrew Mead</a>, <a href="/search/?searchtype=author&query=Randall%2C+M">Mitch Randall</a>, <a href="/search/?searchtype=author&query=Schultz%2C+F">Forrest Schultz</a>, <a href="/search/?searchtype=author&query=Szenher%2C+M">Matthew Szenher</a>, <a href="/search/?searchtype=author&query=Vervelidou%2C+F">Foteini Vervelidou</a>, <a href="/search/?searchtype=author&query=White%2C+A">Abigail White</a>, <a href="/search/?searchtype=author&query=Ahlstr%C3%B6m%2C+A">Angelique Ahlstr枚m</a>, <a href="/search/?searchtype=author&query=Cleland%2C+C">Carol Cleland</a>, <a href="/search/?searchtype=author&query=Dockal%2C+S">Spencer Dockal</a>, <a href="/search/?searchtype=author&query=Donahue%2C+N">Natasha Donahue</a>, <a href="/search/?searchtype=author&query=Elowitz%2C+M">Mark Elowitz</a>, <a href="/search/?searchtype=author&query=Ezell%2C+C">Carson Ezell</a>, <a href="/search/?searchtype=author&query=Gersznowicz%2C+A">Alex Gersznowicz</a>, <a href="/search/?searchtype=author&query=Gold%2C+N">Nicholas Gold</a>, <a href="/search/?searchtype=author&query=Hercz%2C+M+G">Michael G. Hercz</a> , et al. (13 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.18566v2-abstract-short" style="display: inline;"> (Abridged) Unidentified Aerial Phenomena (UAP) have resisted explanation and have received little formal scientific attention for 75 years. A primary objective of the Galileo Project is to build an integrated software and instrumentation system designed to conduct a multimodal census of aerial phenomena and to recognize anomalies. Here we present key motivations for the study of UAP and address hi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.18566v2-abstract-full').style.display = 'inline'; document.getElementById('2305.18566v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.18566v2-abstract-full" style="display: none;"> (Abridged) Unidentified Aerial Phenomena (UAP) have resisted explanation and have received little formal scientific attention for 75 years. A primary objective of the Galileo Project is to build an integrated software and instrumentation system designed to conduct a multimodal census of aerial phenomena and to recognize anomalies. Here we present key motivations for the study of UAP and address historical objections to this research. We describe an approach for highlighting outlier events in the high-dimensional parameter space of our census measurements. We provide a detailed roadmap for deciding measurement requirements, as well as a science traceability matrix (STM) for connecting sought-after physical parameters to observables and instrument requirements. We also discuss potential strategies for deciding where to locate instruments for development, testing, and final deployment. Our instrument package is multimodal and multispectral, consisting of (1) wide-field cameras in multiple bands for targeting and tracking of aerial objects and deriving their positions and kinematics using triangulation; (2) narrow-field instruments including cameras for characterizing morphology, spectra, polarimetry, and photometry; (3) passive multistatic arrays of antennas and receivers for radar-derived range and kinematics; (4) radio spectrum analyzers to measure radio and microwave emissions; (5) microphones for sampling acoustic emissions in the infrasonic through ultrasonic frequency bands; and (6) environmental sensors for characterizing ambient conditions (temperature, pressure, humidity, and wind velocity), as well as quasistatic electric and magnetic fields, and energetic particles. The use of multispectral instruments and multiple sensor modalities will help to ensure that artifacts are recognized and that true detections are corroborated and verifiable. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.18566v2-abstract-full').style.display = 'none'; document.getElementById('2305.18566v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This paper is published in the Journal of Astronomical Instrumentation, 12(1), 2340006 (2023) https://doi.org/10.1142/S2251171723400068</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Astronomical Instrumentation, 12(1), 2340006 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.18551">arXiv:2305.18551</a> <span> [<a href="https://arxiv.org/pdf/2305.18551">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1142/S2251171723400056">10.1142/S2251171723400056 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multi-Band Acoustic Monitoring of Aerial Signatures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Mead%2C+A">Andrew Mead</a>, <a href="/search/?searchtype=author&query=Little%2C+S">Sarah Little</a>, <a href="/search/?searchtype=author&query=Sail%2C+P">Paul Sail</a>, <a href="/search/?searchtype=author&query=Tu%2C+M">Michelle Tu</a>, <a href="/search/?searchtype=author&query=Watters%2C+W+A">Wesley Andr茅s Watters</a>, <a href="/search/?searchtype=author&query=White%2C+A">Abigail White</a>, <a href="/search/?searchtype=author&query=Cloete%2C+R">Richard Cloete</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.18551v1-abstract-short" style="display: inline;"> The Galileo Project's acoustic monitoring, omni-directional system (AMOS) aids in the detection and characterization of aerial phenomena. It uses a multi-band microphone suite spanning infrasonic to ultrasonic frequencies, providing an independent signal modality for validation and characterization of detected objects. The system utilizes infrasonic, audible, and ultrasonic systems to cover a wide… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.18551v1-abstract-full').style.display = 'inline'; document.getElementById('2305.18551v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.18551v1-abstract-full" style="display: none;"> The Galileo Project's acoustic monitoring, omni-directional system (AMOS) aids in the detection and characterization of aerial phenomena. It uses a multi-band microphone suite spanning infrasonic to ultrasonic frequencies, providing an independent signal modality for validation and characterization of detected objects. The system utilizes infrasonic, audible, and ultrasonic systems to cover a wide range of sounds produced by both natural and man-made aerial phenomena. Sound signals from aerial objects can be captured given certain conditions, such as when the sound level is above ambient noise and isn't excessively distorted by its transmission path. Findings suggest that audible sources can be detected up to 1 km away, infrasonic sources can be detected over much longer distances, and ultrasonic at shorter ones. Initial data collected from aircraft recordings with spectral analysis will help develop algorithms and software for quick identification of known aircraft. Future work will involve multi-sensor arrays for sound localization, larger data sets analysis, and incorporation of machine learning and AI for detection and identification of more types of phenomena in all frequency bands. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.18551v1-abstract-full').style.display = 'none'; document.getElementById('2305.18551v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Astronomical Instrumentation, 12(1), 2340005 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.06171">arXiv:2304.06171</a> <span> [<a href="https://arxiv.org/pdf/2304.06171">pdf</a>, <a href="https://arxiv.org/format/2304.06171">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Potential Major Improvement in Superconductors for High-Field Magnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Tahir-Kheli%2C+J">Jamil Tahir-Kheli</a>, <a href="/search/?searchtype=author&query=Hlasek%2C+T">Tomas Hlasek</a>, <a href="/search/?searchtype=author&query=Lojka%2C+M">Michal Lojka</a>, <a href="/search/?searchtype=author&query=Osofsky%2C+M+S">Michael S. Osofsky</a>, <a href="/search/?searchtype=author&query=Mead%2C+C+A">Carver A. Mead</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.06171v1-abstract-short" style="display: inline;"> Fusion reactors are limited by the magnetic field available to confine their plasma. The commercial fusion industry uses the larger magnetic field and higher operating temperature of the cuprate superconductor $\mathbf{YBa_{2}Cu_{3}O_{7-未}}$ (YBCO) in order to confine their plasma into a dense volume. A superconductor is a macroscopic quantum state that is protected from the metallic (resistive) s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.06171v1-abstract-full').style.display = 'inline'; document.getElementById('2304.06171v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.06171v1-abstract-full" style="display: none;"> Fusion reactors are limited by the magnetic field available to confine their plasma. The commercial fusion industry uses the larger magnetic field and higher operating temperature of the cuprate superconductor $\mathbf{YBa_{2}Cu_{3}O_{7-未}}$ (YBCO) in order to confine their plasma into a dense volume. A superconductor is a macroscopic quantum state that is protected from the metallic (resistive) state by an energy gap. Unfortunately, YBCO has an anisotropic gap, known as D-wave because it has the shape of a $\mathbf{d_{x^2-y^2}}$ chemical orbital. This D-wave gap means that poly-crystalline wire cannot be made because a few degree misalignment between grains in the wire leads to a drastic loss in its supercurrent carrying ability, and thereby its magnetic field limit. The superconductor industry has responded by growing nearly-single-crystal superconducting YBCO films on carefully prepared substrate tapes kilometers in length. Heroic development programs have made such tapes commercially available, but they are very expensive and delicate. MRI magnet superconductors, such as $\mathbf{NbTi}$ and $\mathbf{Nb_{3}Sn}$, are formed into poly-crystalline wires because they have an isotropic gap in the shape of an s chemical orbital (called S-wave) that makes them insensitive to grain misalignment. However, these materials are limited to lower magnetic fields and liquid-He temperatures. Here, we modified YBCO by doping the Y site with Ca and Ce atoms to form $\mathbf{(Y_{1-x-y}Ca_{x}Ce_{y})Ba_{2}Cu_{3}O_{7-未}}$, and show evidence that it changes to an S-wave gap. Its superconducting transition temperature, $\mathbf{T_c}$, of $\mathbf{\sim 70K}$, while lower than that of D-wave YBCO at $\mathbf{\sim 90K}$, is easily maintained using common, economic cryogenic equipment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.06171v1-abstract-full').style.display = 'none'; document.getElementById('2304.06171v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 23 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.08752">arXiv:2303.08752</a> <span> [<a href="https://arxiv.org/pdf/2303.08752">pdf</a>, <a href="https://arxiv.org/format/2303.08752">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.21105/astro.2303.08752">10.21105/astro.2303.08752 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The halo model for cosmology: a pedagogical review </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Asgari%2C+M">Marika Asgari</a>, <a href="/search/?searchtype=author&query=Mead%2C+A+J">Alexander J. Mead</a>, <a href="/search/?searchtype=author&query=Heymans%2C+C">Catherine Heymans</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.08752v2-abstract-short" style="display: inline;"> We present a pedagogical review of the halo model, a flexible framework that can describe the distribution of matter and its tracers on non-linear scales for both conventional and exotic cosmological models. We start with the premise that the complex structure of the cosmic web can be described by the sum of its individual components: dark matter, gas, and galaxies, all distributed within spherica… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.08752v2-abstract-full').style.display = 'inline'; document.getElementById('2303.08752v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.08752v2-abstract-full" style="display: none;"> We present a pedagogical review of the halo model, a flexible framework that can describe the distribution of matter and its tracers on non-linear scales for both conventional and exotic cosmological models. We start with the premise that the complex structure of the cosmic web can be described by the sum of its individual components: dark matter, gas, and galaxies, all distributed within spherical haloes with a range of masses. The halo properties are specified through a series of simulation-calibrated ingredients including the halo mass function, non-linear halo bias and a dark matter density profile that can additionally account for the impact of baryon feedback. By incorporating a model of the galaxy halo occupation distribution, the properties of central and satellite galaxies, their non-linear bias and intrinsic alignment can be predicted. Through analytical calculations of spherical collapse in exotic cosmologies, the halo model also provides predictions for non-linear clustering in beyond-$螞$CDM models. The halo model has been widely used to model observations of a variety of large-scale structure probes, most notably as the primary technique to model the underlying non-linear matter power spectrum. By documenting these varied and often distinct use cases, we seek to further coherent halo model analyses of future multi-tracer observables. This review is accompanied by the release of pyhalomodel: https://github.com/alexander-mead/pyhalomodel , flexible software to conduct a wide range of halo-model calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.08752v2-abstract-full').style.display = 'none'; document.getElementById('2303.08752v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Comments from the community are gratefully received for version 1</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.00780">arXiv:2302.00780</a> <span> [<a href="https://arxiv.org/pdf/2302.00780">pdf</a>, <a href="https://arxiv.org/format/2302.00780">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad2417">10.1093/mnras/stad2417 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On constraining Cosmology and the Halo Mass Function with Weak Gravitational Lensing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Gu%2C+S">Shiming Gu</a>, <a href="/search/?searchtype=author&query=Dor%2C+M">Marc-Antoine Dor</a>, <a href="/search/?searchtype=author&query=van+Waerbeke%2C+L">Ludovic van Waerbeke</a>, <a href="/search/?searchtype=author&query=Asgari%2C+M">Marika Asgari</a>, <a href="/search/?searchtype=author&query=Mead%2C+A">Alexander Mead</a>, <a href="/search/?searchtype=author&query=Tr%C3%B6ster%2C+T">Tilman Tr枚ster</a>, <a href="/search/?searchtype=author&query=Yan%2C+Z">Ziang Yan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.00780v3-abstract-short" style="display: inline;"> The discrepancy between the weak lensing (WL) and the {\it Planck} measurements of $S_8$ has been a subject of several studies. These studies tend to show that a suppression of the amplitude of the mass power spectrum $P(k)$ at high $k$ could resolve it. The WL signal at small-scale is sensitive to various effects, such as baryonic effects and intrinsic alignment. The accuracy of $P(k)$ depends on… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.00780v3-abstract-full').style.display = 'inline'; document.getElementById('2302.00780v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.00780v3-abstract-full" style="display: none;"> The discrepancy between the weak lensing (WL) and the {\it Planck} measurements of $S_8$ has been a subject of several studies. These studies tend to show that a suppression of the amplitude of the mass power spectrum $P(k)$ at high $k$ could resolve it. The WL signal at small-scale is sensitive to various effects, such as baryonic effects and intrinsic alignment. The accuracy of $P(k)$ depends on the modelling precision of these effects. A common approach for calculating $P(k)$ relies on a halo model. Amongst the various components necessary for the construction of $P(k)$, the halo mass function (HMF) is an important one. Traditionally, the HMF has been assumed to follow a fixed model. Recent literature shows that baryonic physics, amongst several other factors, could affect the HMF. In this study, we investigate the impact of allowing the HMF to vary. This provides a way of testing the validity of the halo model-HMF calibration using data. We find that the {\it Planck} cosmology is not compatible with the vanilla HMF for both the DES-y3 and the KiDS-1000 data. When the cosmology and the HMF parameters are allowed to vary, the {\it Planck} cosmology is no longer in tension. The modified HMF predicts a matter power spectrum with a $\sim 25\%$ power loss at $k\sim 1~{\rm h/Mpc}$, in agreement with the recent studies. We show that Stage IV surveys will be able to measure the HMF parameters with a few percent accuracy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.00780v3-abstract-full').style.display = 'none'; document.getElementById('2302.00780v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages (including appendixes), 10 figures, 3 tables, main results in Figs. 5&6</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2023, MNRAS, stad2417 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.12236">arXiv:2210.12236</a> <span> [<a href="https://arxiv.org/pdf/2210.12236">pdf</a>, <a href="https://arxiv.org/format/2210.12236">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Uncertain Evidence in Probabilistic Models and Stochastic Simulators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Munk%2C+A">Andreas Munk</a>, <a href="/search/?searchtype=author&query=Mead%2C+A">Alexander Mead</a>, <a href="/search/?searchtype=author&query=Wood%2C+F">Frank Wood</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.12236v2-abstract-short" style="display: inline;"> We consider the problem of performing Bayesian inference in probabilistic models where observations are accompanied by uncertainty, referred to as "uncertain evidence." We explore how to interpret uncertain evidence, and by extension the importance of proper interpretation as it pertains to inference about latent variables. We consider a recently-proposed method "distributional evidence" as well a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.12236v2-abstract-full').style.display = 'inline'; document.getElementById('2210.12236v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.12236v2-abstract-full" style="display: none;"> We consider the problem of performing Bayesian inference in probabilistic models where observations are accompanied by uncertainty, referred to as "uncertain evidence." We explore how to interpret uncertain evidence, and by extension the importance of proper interpretation as it pertains to inference about latent variables. We consider a recently-proposed method "distributional evidence" as well as revisit two older methods: Jeffrey's rule and virtual evidence. We devise guidelines on how to account for uncertain evidence and we provide new insights, particularly regarding consistency. To showcase the impact of different interpretations of the same uncertain evidence, we carry out experiments in which one interpretation is defined as "correct." We then compare inference results from each different interpretation illustrating the importance of careful consideration of uncertain evidence. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.12236v2-abstract-full').style.display = 'none'; document.getElementById('2210.12236v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.03110">arXiv:2210.03110</a> <span> [<a href="https://arxiv.org/pdf/2210.03110">pdf</a>, <a href="https://arxiv.org/format/2210.03110">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202245158">10.1051/0004-6361/202245158 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> KiDS-1000: Combined halo-model cosmology constraints from galaxy abundance, galaxy clustering and galaxy-galaxy lensing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Dvornik%2C+A">Andrej Dvornik</a>, <a href="/search/?searchtype=author&query=Heymans%2C+C">Catherine Heymans</a>, <a href="/search/?searchtype=author&query=Asgari%2C+M">Marika Asgari</a>, <a href="/search/?searchtype=author&query=Mahony%2C+C">Constance Mahony</a>, <a href="/search/?searchtype=author&query=Joachimi%2C+B">Benjamin Joachimi</a>, <a href="/search/?searchtype=author&query=Bilicki%2C+M">Maciej Bilicki</a>, <a href="/search/?searchtype=author&query=Chisari%2C+E">Elisa Chisari</a>, <a href="/search/?searchtype=author&query=Hildebrandt%2C+H">Hendrik Hildebrandt</a>, <a href="/search/?searchtype=author&query=Hoekstra%2C+H">Henk Hoekstra</a>, <a href="/search/?searchtype=author&query=Johnston%2C+H">Harry Johnston</a>, <a href="/search/?searchtype=author&query=Kuijken%2C+K">Konrad Kuijken</a>, <a href="/search/?searchtype=author&query=Mead%2C+A">Alexander Mead</a>, <a href="/search/?searchtype=author&query=Miyatake%2C+H">Hironao Miyatake</a>, <a href="/search/?searchtype=author&query=Nishimichi%2C+T">Takahiro Nishimichi</a>, <a href="/search/?searchtype=author&query=Reischke%2C+R">Robert Reischke</a>, <a href="/search/?searchtype=author&query=Unruh%2C+S">Sandra Unruh</a>, <a href="/search/?searchtype=author&query=Wright%2C+A+H">Angus H. Wright</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.03110v3-abstract-short" style="display: inline;"> We present constraints on the flat $螞$CDM cosmological model through a joint analysis of galaxy abundance, galaxy clustering and galaxy-galaxy lensing observables with the Kilo-Degree Survey. Our theoretical model combines a flexible conditional stellar mass function, to describe the galaxy-halo connection, with a cosmological N-body simulation-calibrated halo model to describe the non-linear matt… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.03110v3-abstract-full').style.display = 'inline'; document.getElementById('2210.03110v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.03110v3-abstract-full" style="display: none;"> We present constraints on the flat $螞$CDM cosmological model through a joint analysis of galaxy abundance, galaxy clustering and galaxy-galaxy lensing observables with the Kilo-Degree Survey. Our theoretical model combines a flexible conditional stellar mass function, to describe the galaxy-halo connection, with a cosmological N-body simulation-calibrated halo model to describe the non-linear matter field. Our magnitude-limited bright galaxy sample combines 9-band optical-to-near-infrared photometry with an extensive and complete spectroscopic training sample to provide accurate redshift and stellar mass estimates. Our faint galaxy sample provides a background of accurately calibrated lensing measurements. We constrain the structure growth parameter $S_8=蟽_8\sqrt{惟_{\mathrm{m}}/0.3}=0.773^{+0.028}_{-0.030}$, and the matter density parameter $惟_{\mathrm{m}}=0.290^{+0.021}_{-0.017}$. The galaxy-halo connection model adopted in the work is shown to be in agreement with previous studies. Our constraints on cosmological parameters are comparable to, and consistent with, joint $3\times2{\mathrm{pt}}$ clustering-lensing analyses that additionally include a cosmic shear observable. This analysis therefore brings attention to the significant constraining power in the often-excluded non-linear scales for galaxy clustering and galaxy-galaxy lensing observables. By adopting a theoretical model that accounts for non-linear halo bias, halo exclusion, scale-dependent galaxy bias and the impact of baryon feedback, this work demonstrates the potential and a way forward to include non-linear scales in cosmological analyses. Varying the width of the satellite galaxy distribution with an additional parameter yields a strong preference for sub-Poissonian variance, improving the goodness of fit by 0.18 in reduced $蠂^{2}$ value compared to a fixed Poisson distribution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.03110v3-abstract-full').style.display = 'none'; document.getElementById('2210.03110v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 16 figures, accepted for publication in A&A, v3 with updated figure from Corrigendum (https://www.aanda.org/articles/aa/full_html/2024/08/aa50702e-24/aa50702e-24.html, https://doi.org/10.1051/0004-6361/202450702e)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 675, A189 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.01790">arXiv:2202.01790</a> <span> [<a href="https://arxiv.org/pdf/2202.01790">pdf</a>, <a href="https://arxiv.org/format/2202.01790">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stac1858">10.1093/mnras/stac1858 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The halo model with beyond-linear halo bias: unbiasing cosmological constraints from galaxy-galaxy lensing and clustering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Mahony%2C+C">Constance Mahony</a>, <a href="/search/?searchtype=author&query=Dvornik%2C+A">Andrej Dvornik</a>, <a href="/search/?searchtype=author&query=Mead%2C+A">Alexander Mead</a>, <a href="/search/?searchtype=author&query=Heymans%2C+C">Catherine Heymans</a>, <a href="/search/?searchtype=author&query=Asgari%2C+M">Marika Asgari</a>, <a href="/search/?searchtype=author&query=Hildebrandt%2C+H">Hendrik Hildebrandt</a>, <a href="/search/?searchtype=author&query=Miyatake%2C+H">Hironao Miyatake</a>, <a href="/search/?searchtype=author&query=Nishimichi%2C+T">Takahiro Nishimichi</a>, <a href="/search/?searchtype=author&query=Reischke%2C+R">Robert Reischke</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.01790v2-abstract-short" style="display: inline;"> We determine the error introduced in a joint halo model analysis of galaxy-galaxy lensing and galaxy clustering observables when adopting the standard approximation of linear halo bias. Considering the Kilo-Degree Survey, we forecast that ignoring the non-linear halo bias would result in up to 5$蟽$ offsets in the recovered cosmological parameters describing structure growth, $S_8$, and the matter… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.01790v2-abstract-full').style.display = 'inline'; document.getElementById('2202.01790v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.01790v2-abstract-full" style="display: none;"> We determine the error introduced in a joint halo model analysis of galaxy-galaxy lensing and galaxy clustering observables when adopting the standard approximation of linear halo bias. Considering the Kilo-Degree Survey, we forecast that ignoring the non-linear halo bias would result in up to 5$蟽$ offsets in the recovered cosmological parameters describing structure growth, $S_8$, and the matter density parameter, $惟_{\mathrm{m}}$. We include the scales $10^{-1.3}<r_{\rm{p}} \ / h^{-1}\, \mathrm{Mpc}<10$ in the data vector, and the direction of these offsets are shown to depend on the freedom afforded to the halo model through other nuisance parameters. We conclude that a beyond-linear halo bias correction must therefore be included in future cosmological halo model analyses of large-scale structure observables on non-linear scales. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.01790v2-abstract-full').style.display = 'none'; document.getElementById('2202.01790v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">v2: Version accepted in MNRAS. Minor clarifications and added robustness test, conclusions unchanged</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> YITP-22-07 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.02088">arXiv:2111.02088</a> <span> [<a href="https://arxiv.org/pdf/2111.02088">pdf</a>, <a href="https://arxiv.org/format/2111.02088">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/202225700045">10.1051/epjconf/202225700045 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Constraining AGN feedback model with SZ profile </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Tanimura%2C+H">Hideki Tanimura</a>, <a href="/search/?searchtype=author&query=Hinshaw%2C+G">Gary Hinshaw</a>, <a href="/search/?searchtype=author&query=McCarthy%2C+I+G">Ian G. McCarthy</a>, <a href="/search/?searchtype=author&query=Van+Waerbeke%2C+L">Ludovic Van Waerbeke</a>, <a href="/search/?searchtype=author&query=Aghanim%2C+N">Nabila Aghanim</a>, <a href="/search/?searchtype=author&query=Ma%2C+Y">Yin-Zhe Ma</a>, <a href="/search/?searchtype=author&query=Mead%2C+A">Alexander Mead</a>, <a href="/search/?searchtype=author&query=Troster%2C+T">Tilman Troster</a>, <a href="/search/?searchtype=author&query=Hojjati%2C+A">Alireza Hojjati</a>, <a href="/search/?searchtype=author&query=Moraes%2C+B">Bruno Moraes</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.02088v2-abstract-short" style="display: inline;"> Relativistic jets from AGN have a wide range of impacts on galaxy groups and clusters and are key for understanding their formation and physical properties. However, this non-gravitational process is not well understood. Galaxy groups with shallow gravitational potentials are ideal laboratories to study and constrain the AGN feedback model. We studied hot gas in ~66,000 SDSS LRG halos with an aver… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.02088v2-abstract-full').style.display = 'inline'; document.getElementById('2111.02088v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.02088v2-abstract-full" style="display: none;"> Relativistic jets from AGN have a wide range of impacts on galaxy groups and clusters and are key for understanding their formation and physical properties. However, this non-gravitational process is not well understood. Galaxy groups with shallow gravitational potentials are ideal laboratories to study and constrain the AGN feedback model. We studied hot gas in ~66,000 SDSS LRG halos with an average halo mass of 3 x 10^13 Msun using the Planck tSZ map. We have detected their average tSZ radial profile at ~17 sigma and compared it with the cosmo-OWLS cosmological hydrodynamical simulations with different AGN feedback models. The best agreement has been obtained for the AGN 8.0 model in the simulations. We have also compared our measured tSZ profile with the prediction from the universal pressure profile assuming the self-similar relation and found them consistent if the model accounts for the clustering of neighboring haloes via a two-halo term. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.02088v2-abstract-full').style.display = 'none'; document.getElementById('2111.02088v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear in the Proceedings of the International Conference entitled "mm Universe @ NIKA2", Rome (Italy), June 2021, EPJ Web of conferences</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.04458">arXiv:2109.04458</a> <span> [<a href="https://arxiv.org/pdf/2109.04458">pdf</a>, <a href="https://arxiv.org/format/2109.04458">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202142197">10.1051/0004-6361/202142197 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Joint constraints on cosmology and the impact of baryon feedback: combining KiDS-1000 lensing with the thermal Sunyaev-Zeldovich effect from Planck and ACT </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Tr%C3%B6ster%2C+T">Tilman Tr枚ster</a>, <a href="/search/?searchtype=author&query=Mead%2C+A+J">Alexander J. Mead</a>, <a href="/search/?searchtype=author&query=Heymans%2C+C">Catherine Heymans</a>, <a href="/search/?searchtype=author&query=Yan%2C+Z">Ziang Yan</a>, <a href="/search/?searchtype=author&query=Alonso%2C+D">David Alonso</a>, <a href="/search/?searchtype=author&query=Asgari%2C+M">Marika Asgari</a>, <a href="/search/?searchtype=author&query=Bilicki%2C+M">Maciej Bilicki</a>, <a href="/search/?searchtype=author&query=Dvornik%2C+A">Andrej Dvornik</a>, <a href="/search/?searchtype=author&query=Hildebrandt%2C+H">Hendrik Hildebrandt</a>, <a href="/search/?searchtype=author&query=Joachimi%2C+B">Benjamin Joachimi</a>, <a href="/search/?searchtype=author&query=Kannawadi%2C+A">Arun Kannawadi</a>, <a href="/search/?searchtype=author&query=Kuijken%2C+K">Konrad Kuijken</a>, <a href="/search/?searchtype=author&query=Schneider%2C+P">Peter Schneider</a>, <a href="/search/?searchtype=author&query=Shan%2C+H">HuanYuan Shan</a>, <a href="/search/?searchtype=author&query=van+Waerbeke%2C+L">Ludovic van Waerbeke</a>, <a href="/search/?searchtype=author&query=Wright%2C+A+H">Angus H. Wright</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.04458v2-abstract-short" style="display: inline;"> We conduct a pseudo-$C_\ell$ analysis of the tomographic cross-correlation between 1000 deg$^2$ of weak lensing data from the Kilo-Degree Survey (KiDS-1000) and the thermal Sunyaev-Zeldovich (tSZ) effect measured by Planck and the Atacama Cosmology Telescope (ACT). Using HMx, a halo-model-based approach that consistently models the gas, star, and dark matter components, we are able to derive const… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.04458v2-abstract-full').style.display = 'inline'; document.getElementById('2109.04458v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.04458v2-abstract-full" style="display: none;"> We conduct a pseudo-$C_\ell$ analysis of the tomographic cross-correlation between 1000 deg$^2$ of weak lensing data from the Kilo-Degree Survey (KiDS-1000) and the thermal Sunyaev-Zeldovich (tSZ) effect measured by Planck and the Atacama Cosmology Telescope (ACT). Using HMx, a halo-model-based approach that consistently models the gas, star, and dark matter components, we are able to derive constraints on both cosmology and baryon feedback for the first time from these data, marginalising over redshift uncertainties, intrinsic alignment of galaxies, and contamination by the cosmic infrared background (CIB). We find our results to be insensitive to the CIB, while intrinsic alignment provides a small but significant contribution to the lensing--tSZ cross-correlation. The cosmological constraints are consistent with those of other low-redshift probes and prefer strong baryon feedback. The inferred amplitude of the lensing--tSZ cross-correlation signal, which scales as $蟽_8(惟_\mathrm{m}/0.3)^{0.2}$, is low by $\sim 2\,蟽$ compared to the primary cosmic microwave background constraints by Planck. The lensing--tSZ measurements are then combined with pseudo-$C_\ell$ measurements of KiDS-1000 cosmic shear into a novel joint analysis, accounting for the full cross-covariance between the probes, providing tight cosmological constraints by breaking parameter degeneracies inherent to both probes. The joint analysis gives an improvement of 40% on the constraint of $S_8=蟽_8\sqrt{惟_\mathrm{m}/0.3}$ over cosmic shear alone, while providing constraints on baryon feedback consistent with hydrodynamical simulations, demonstrating the potential of such joint analyses with baryonic tracers such as the tSZ effect. We discuss remaining modelling challenges that need to be addressed if these baryonic probes are to be included in future precision-cosmology analyses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.04458v2-abstract-full').style.display = 'none'; document.getElementById('2109.04458v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 16 figures. Accepted in A&A. Comments welcome. Code, data vectors, and covariances are available at https://github.com/tilmantroester/KiDS-1000xtSZ</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 660, A27 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.07701">arXiv:2102.07701</a> <span> [<a href="https://arxiv.org/pdf/2102.07701">pdf</a>, <a href="https://arxiv.org/format/2102.07701">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202140568">10.1051/0004-6361/202140568 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing galaxy bias and intergalactic gas pressure with KiDS Galaxies-tSZ-CMB lensing cross-correlations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Yan%2C+Z">Ziang Yan</a>, <a href="/search/?searchtype=author&query=van+Waerbeke%2C+L">Ludovic van Waerbeke</a>, <a href="/search/?searchtype=author&query=Tr%C3%B6ster%2C+T">Tilman Tr枚ster</a>, <a href="/search/?searchtype=author&query=Wright%2C+A+H">Angus H. Wright</a>, <a href="/search/?searchtype=author&query=Alonso%2C+D">David Alonso</a>, <a href="/search/?searchtype=author&query=Asgari%2C+M">Marika Asgari</a>, <a href="/search/?searchtype=author&query=Bilicki%2C+M">Maciej Bilicki</a>, <a href="/search/?searchtype=author&query=Erben%2C+T">Thomas Erben</a>, <a href="/search/?searchtype=author&query=Gu%2C+S">Shiming Gu</a>, <a href="/search/?searchtype=author&query=Heymans%2C+C">Catherine Heymans</a>, <a href="/search/?searchtype=author&query=Hildebrandt%2C+H">Hendrik Hildebrandt</a>, <a href="/search/?searchtype=author&query=Hinshaw%2C+G">Gary Hinshaw</a>, <a href="/search/?searchtype=author&query=Koukoufilippas%2C+N">Nick Koukoufilippas</a>, <a href="/search/?searchtype=author&query=Kannawadi%2C+A">Arun Kannawadi</a>, <a href="/search/?searchtype=author&query=Kuijken%2C+K">Konrad Kuijken</a>, <a href="/search/?searchtype=author&query=Mead%2C+A">Alexander Mead</a>, <a href="/search/?searchtype=author&query=Shan%2C+H">HuanYuan Shan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.07701v2-abstract-short" style="display: inline;"> We constrain the redshift dependence of gas pressure bias $\left\langle b_{y} P_{\mathrm{e}}\right\rangle$ (bias-weighted average electron pressure), which characterises the thermodynamics of intergalactic gas, through a combination of cross-correlations between galaxy positions and the thermal Sunyaev-Zeldovich (tSZ) effect, as well as galaxy positions and the gravitational lensing of the cosmic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.07701v2-abstract-full').style.display = 'inline'; document.getElementById('2102.07701v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.07701v2-abstract-full" style="display: none;"> We constrain the redshift dependence of gas pressure bias $\left\langle b_{y} P_{\mathrm{e}}\right\rangle$ (bias-weighted average electron pressure), which characterises the thermodynamics of intergalactic gas, through a combination of cross-correlations between galaxy positions and the thermal Sunyaev-Zeldovich (tSZ) effect, as well as galaxy positions and the gravitational lensing of the cosmic microwave background (CMB). The galaxy sample is from the fourth data release of the Kilo-Degree Survey (KiDS). The tSZ $y$ map and the CMB lensing map are from the {\textit{Planck}} 2015 and 2018 data releases, respectively. The measurements are performed in five redshift bins with $z\lesssim1$. With these measurements, combining galaxy-tSZ and galaxy-CMB lensing cross-correlations allows us to break the degeneracy between galaxy bias and gas pressure bias, and hence constrain them simultaneously. In all redshift bins, the best-fit values of $\bpe$ are at a level of $\sim 0.3\, \mathrm{meV/cm^3}$ and increase slightly with redshift. The galaxy bias is consistent with unity in all the redshift bins. Our results are not sensitive to the non-linear details of the cross-correlation, which are smoothed out by the {\textit{Planck}} beam. Our measurements are in agreement with previous measurements as well as with theoretical predictions. We also show that our conclusions are not changed when CMB lensing is replaced by galaxy lensing, which shows the consistency of the two lensing signals despite their radically different redshift ranges. This study demonstrates the feasibility of using CMB lensing to calibrate the galaxy distribution such that the galaxy distribution can be used as a mass proxy without relying on the precise knowledge of the matter distribution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.07701v2-abstract-full').style.display = 'none'; document.getElementById('2102.07701v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 14 figures, 3 tables, accepted for publication on Astronomy & Astrophysics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 651, A76 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.13425">arXiv:2012.13425</a> <span> [<a href="https://arxiv.org/pdf/2012.13425">pdf</a>, <a href="https://arxiv.org/format/2012.13425">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Methodology">stat.ME</span> </div> </div> <p class="title is-5 mathjax"> Designs with complex blocking structures and network effects for agricultural field experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Koutra%2C+V">Vasiliki Koutra</a>, <a href="/search/?searchtype=author&query=Gilmour%2C+S+G">Steven G. Gilmour</a>, <a href="/search/?searchtype=author&query=Parker%2C+B+M">Ben M. Parker</a>, <a href="/search/?searchtype=author&query=Mead%2C+A">Andrew Mead</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.13425v2-abstract-short" style="display: inline;"> We propose a novel model-based approach for constructing optimal designs with complex blocking structures and network effects, for application in agricultural field experiments. The potential interference among treatments applied to different plots is described via a network structure, defined via the adjacency matrix. We consider a field trial run at Rothamsted Research and provide a comparison o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.13425v2-abstract-full').style.display = 'inline'; document.getElementById('2012.13425v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.13425v2-abstract-full" style="display: none;"> We propose a novel model-based approach for constructing optimal designs with complex blocking structures and network effects, for application in agricultural field experiments. The potential interference among treatments applied to different plots is described via a network structure, defined via the adjacency matrix. We consider a field trial run at Rothamsted Research and provide a comparison of optimal designs under various different models, including the commonly used designs in such situations. It is shown that when there is interference between treatments on neighbouring plots, due to the spatial arrangement of the plots, designs incorporating network effects are at least as, and often more efficient than, randomised row-column designs. The advantage of network designs is that we can construct the neighbour structure even for an irregular layout by means of a graph to address the particular characteristics of the experiment. The need for such designs arises when it is required to account for treatment-induced patterns of heterogeneity. Ignoring the network structure can lead to imprecise estimates of the treatment parameters and invalid conclusions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.13425v2-abstract-full').style.display = 'none'; document.getElementById('2012.13425v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 62K05; 62K10 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.08858">arXiv:2011.08858</a> <span> [<a href="https://arxiv.org/pdf/2011.08858">pdf</a>, <a href="https://arxiv.org/format/2011.08858">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab748">10.1093/mnras/stab748 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Including beyond-linear halo bias in halo models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Mead%2C+A">Alexander Mead</a>, <a href="/search/?searchtype=author&query=Verde%2C+L">Licia Verde</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.08858v2-abstract-short" style="display: inline;"> We derive a simple prescription for including beyond-linear halo bias within the standard, analytical halo-model power spectrum calculation. This results in a corrective term that is added to the usual two-halo term. We measure this correction using data from $N$-body simulations and demonstrate that it can boost power in the two-halo term by a factor of $\sim2$ at scales $k\sim0.7\,h Mpc^{-1}$, w… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.08858v2-abstract-full').style.display = 'inline'; document.getElementById('2011.08858v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.08858v2-abstract-full" style="display: none;"> We derive a simple prescription for including beyond-linear halo bias within the standard, analytical halo-model power spectrum calculation. This results in a corrective term that is added to the usual two-halo term. We measure this correction using data from $N$-body simulations and demonstrate that it can boost power in the two-halo term by a factor of $\sim2$ at scales $k\sim0.7\,h Mpc^{-1}$, with the exact magnitude of the boost determined by the specific pair of fields in the two-point function. How this translates to the full power spectrum depends on the relative strength of the one-halo term, which can mask the importance of this correction to a greater or lesser degree, again depending on the fields. Generally we find that our correction is more important for signals that arise from lower-mass haloes. When comparing our calculation to simulated data we find that the under-prediction of power in the transition region between the two- and one-halo terms, which typically plagues halo-model calculations, is almost completely eliminated when including the full non-linear halo bias. We show improved results for the auto and cross spectra of galaxies, haloes and matter. In the specific case of matter-matter or matter-halo power we note that a large fraction of the improvement comes from the non-linear biasing between low- and high-mass haloes. We envisage our model being useful in the analytical modelling of cross correlation signals. Our non-linear bias halo-model code is available at https://github.com/alexander-mead/BNL <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.08858v2-abstract-full').style.display = 'none'; document.getElementById('2011.08858v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages; 6 figures; 3 appendices; v2 - matches MNRAS accepted version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.16416">arXiv:2010.16416</a> <span> [<a href="https://arxiv.org/pdf/2010.16416">pdf</a>, <a href="https://arxiv.org/format/2010.16416">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202039805">10.1051/0004-6361/202039805 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> KiDS-1000 Cosmology: constraints beyond flat $螞$CDM </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Tr%C3%B6ster%2C+T">Tilman Tr枚ster</a>, <a href="/search/?searchtype=author&query=Asgari%2C+M">Marika Asgari</a>, <a href="/search/?searchtype=author&query=Blake%2C+C">Chris Blake</a>, <a href="/search/?searchtype=author&query=Cataneo%2C+M">Matteo Cataneo</a>, <a href="/search/?searchtype=author&query=Heymans%2C+C">Catherine Heymans</a>, <a href="/search/?searchtype=author&query=Hildebrandt%2C+H">Hendrik Hildebrandt</a>, <a href="/search/?searchtype=author&query=Joachimi%2C+B">Benjamin Joachimi</a>, <a href="/search/?searchtype=author&query=Lin%2C+C">Chieh-An Lin</a>, <a href="/search/?searchtype=author&query=S%C3%A1nchez%2C+A+G">Ariel G. S谩nchez</a>, <a href="/search/?searchtype=author&query=Wright%2C+A+H">Angus H. Wright</a>, <a href="/search/?searchtype=author&query=Bilicki%2C+M">Maciej Bilicki</a>, <a href="/search/?searchtype=author&query=Bose%2C+B">Benjamin Bose</a>, <a href="/search/?searchtype=author&query=Crocce%2C+M">Martin Crocce</a>, <a href="/search/?searchtype=author&query=Dvornik%2C+A">Andrej Dvornik</a>, <a href="/search/?searchtype=author&query=Erben%2C+T">Thomas Erben</a>, <a href="/search/?searchtype=author&query=Giblin%2C+B">Benjamin Giblin</a>, <a href="/search/?searchtype=author&query=Glazebrook%2C+K">Karl Glazebrook</a>, <a href="/search/?searchtype=author&query=Hoekstra%2C+H">Henk Hoekstra</a>, <a href="/search/?searchtype=author&query=Joudaki%2C+S">Shahab Joudaki</a>, <a href="/search/?searchtype=author&query=Kannawadi%2C+A">Arun Kannawadi</a>, <a href="/search/?searchtype=author&query=K%C3%B6hlinger%2C+F">Fabian K枚hlinger</a>, <a href="/search/?searchtype=author&query=Kuijken%2C+K">Konrad Kuijken</a>, <a href="/search/?searchtype=author&query=Lidman%2C+C">Chris Lidman</a>, <a href="/search/?searchtype=author&query=Lombriser%2C+L">Lucas Lombriser</a>, <a href="/search/?searchtype=author&query=Mead%2C+A">Alexander Mead</a> , et al. (4 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.16416v2-abstract-short" style="display: inline;"> We present constraints on extensions to the flat $螞$CDM cosmological model by varying the spatial curvature $惟_K$, the sum of the neutrino masses $\sum m_谓$, the dark energy equation of state parameter $w$, and the Hu-Sawicki $f(R)$ gravity $f_{R0}$ parameter. With the combined $3\times2$pt measurements of cosmic shear from the Kilo-Degree Survey (KiDS-1000), galaxy clustering from the Baryon Osci… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.16416v2-abstract-full').style.display = 'inline'; document.getElementById('2010.16416v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.16416v2-abstract-full" style="display: none;"> We present constraints on extensions to the flat $螞$CDM cosmological model by varying the spatial curvature $惟_K$, the sum of the neutrino masses $\sum m_谓$, the dark energy equation of state parameter $w$, and the Hu-Sawicki $f(R)$ gravity $f_{R0}$ parameter. With the combined $3\times2$pt measurements of cosmic shear from the Kilo-Degree Survey (KiDS-1000), galaxy clustering from the Baryon Oscillation Spectroscopic Survey (BOSS), and galaxy-galaxy lensing from the overlap between KiDS-1000, BOSS, and the spectroscopic 2-degree Field Lensing Survey (2dFLenS), we find results that are fully consistent with a flat $螞$CDM model with $惟_K=0.011^{+0.054}_{-0.057}$, $\sum m_谓<1.76$ eV (95% CL), and $w=-0.99^{+0.11}_{-0.13}$. The $f_{R0}$ parameter is unconstrained in our fully non-linear $f(R)$ cosmic shear analysis. Considering three different model selection criteria, we find no clear preference for either the fiducial flat $螞$CDM model or any of the considered extensions. Besides extensions to the flat $螞$CDM parameter space, we also explore restrictions to common subsets of the flat $螞$CDM parameter space by fixing the amplitude of the primordial power spectrum to the Planck best-fit value, as well as adding external data from supernovae and lensing of the CMB. Neither the beyond-$螞$CDM models nor the imposed restrictions explored in this analysis are able to resolve the $\sim 3蟽$ tension in $S_8$ between the $3\times2$pt constraints and Planck, with the exception of $w$CDM, where the $S_8$ tension is resolved. The tension in the $w$CDM case persists, however, when considering the joint $S_8$-$w$ parameter space. The joint flat $螞$CDM CMB lensing and $3\times2$pt analysis is found to yield tight constraints on $惟_{\rm m}=0.307^{+0.008}_{-0.013}$, $蟽_8=0.769^{+0.022}_{-0.010}$, and $S_8=0.779^{+0.013}_{-0.013}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.16416v2-abstract-full').style.display = 'none'; document.getElementById('2010.16416v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 9 figures, 3 tables, accepted in A&A. This paper concludes the KiDS-1000 series of papers: Heymans, Tr枚ster et al. (arXiv:2007.15632), Asgari et al. (arXiv:2007.15633), Hildebrandt et al. (arXiv:2007.15635), Joachimi et al. (arXiv:2007.01844), and Giblin et al. (arXiv:2007.01845). Data products, likelihoods, and posteriors can be found http://kids.strw.leidenuniv.nl/DR4/lensing.php</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 649, A88 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.12717">arXiv:2009.12717</a> <span> [<a href="https://arxiv.org/pdf/2009.12717">pdf</a>, <a href="https://arxiv.org/format/2009.12717">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/staa3393">10.1093/mnras/staa3393 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Impact of cosmological signatures in two-point statistics beyond the linear regime </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Gomez-Navarro%2C+D+V">Dante V. Gomez-Navarro</a>, <a href="/search/?searchtype=author&query=Mead%2C+A">Alexander Mead</a>, <a href="/search/?searchtype=author&query=Aviles%2C+A">Alejandro Aviles</a>, <a href="/search/?searchtype=author&query=de+la+Macorra%2C+A">Axel de la Macorra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.12717v2-abstract-short" style="display: inline;"> Some beyond $螞$CDM cosmological models have dark-sector energy densities that suffer phase transitions. Fluctuations entering the horizon during such a transition can receive enhancements that ultimately show up as a distinctive bump in the power spectrum relative to a model with no phase transition. In this work, we study the non-linear evolution of such signatures in the matter power spectrum an… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.12717v2-abstract-full').style.display = 'inline'; document.getElementById('2009.12717v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.12717v2-abstract-full" style="display: none;"> Some beyond $螞$CDM cosmological models have dark-sector energy densities that suffer phase transitions. Fluctuations entering the horizon during such a transition can receive enhancements that ultimately show up as a distinctive bump in the power spectrum relative to a model with no phase transition. In this work, we study the non-linear evolution of such signatures in the matter power spectrum and correlation function using N-body simulations, perturbation theory and HMcode - a halo-model based method. We focus on modelling the response, computed as the ratio of statistics between a model containing a bump and one without it, rather than in the statistics themselves. Instead of working with a specific theoretical model, we inject a parametric family of Gaussian bumps into otherwise standard $螞$CDM spectra. We find that even when the primordial bump is located at linear scales, non-linearities tend to produce a second bump at smaller scales. This effect is understood within the halo model due to a more efficient halo formation. In redshift space these nonlinear signatures are partially erased because of the damping along the line-of-sight direction produced by non-coherent motions of particles at small scales. In configuration space, the bump modulates the correlation function reflecting as oscillations in the response, as it is clear in linear Eulerian theory; however, they become damped because large scale coherent flows have some tendency to occupy regions more depleted of particles. This mechanism is explained within Lagrangian Perturbation Theory and well captured by our simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.12717v2-abstract-full').style.display = 'none'; document.getElementById('2009.12717v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.01858">arXiv:2009.01858</a> <span> [<a href="https://arxiv.org/pdf/2009.01858">pdf</a>, <a href="https://arxiv.org/format/2009.01858">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab082">10.1093/mnras/stab082 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> HMcode-2020: Improved modelling of non-linear cosmological power spectra with baryonic feedback </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Mead%2C+A">Alexander Mead</a>, <a href="/search/?searchtype=author&query=Brieden%2C+S">Samuel Brieden</a>, <a href="/search/?searchtype=author&query=Tr%C3%B6ster%2C+T">Tilman Tr枚ster</a>, <a href="/search/?searchtype=author&query=Heymans%2C+C">Catherine Heymans</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.01858v2-abstract-short" style="display: inline;"> We present an updated version of the HMcode augmented halo model that can be used to make accurate predictions of the non-linear matter power spectrum over a wide range of cosmologies. Major improvements include modelling of BAO damping in the power spectrum and an updated treatment of massive neutrinos. We fit our model to simulated power spectra and show that we can match the results with an RMS… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.01858v2-abstract-full').style.display = 'inline'; document.getElementById('2009.01858v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.01858v2-abstract-full" style="display: none;"> We present an updated version of the HMcode augmented halo model that can be used to make accurate predictions of the non-linear matter power spectrum over a wide range of cosmologies. Major improvements include modelling of BAO damping in the power spectrum and an updated treatment of massive neutrinos. We fit our model to simulated power spectra and show that we can match the results with an RMS error of 2.5 per cent across a range of cosmologies, scales $k < 10\,h\mathrm{Mpc}^{-1}$, and redshifts $z<2$. The error rarely exceeds 5 per cent and never exceeds 16 per cent. The worst-case errors occur at $z\simeq2$, or for cosmologies with unusual dark-energy equations of state. This represents a significant improvement over previous versions of HMcode, and over other popular fitting functions, particularly for massive-neutrino cosmologies with high neutrino mass. We also present a simple halo model that can be used to model the impact of baryonic feedback on the power spectrum. This six-parameter physical model includes gas expulsion by AGN feedback and encapsulates star formation. By comparing this model to data from hydrodynamical simulations we demonstrate that the power spectrum response to feedback is matched at the $<1$ per cent level for $z<1$ and $k<20\,h\mathrm{Mpc}^{-1}$. We also present a single-parameter variant of this model, parametrized in terms of feedback strength, which is only slightly less accurate. We make code available for our non-linear and baryon models at https://github.com/alexander-mead/HMcode and it is also available within CAMB and soon within CLASS. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.01858v2-abstract-full').style.display = 'none'; document.getElementById('2009.01858v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 5 figures, 4 appendices; v2 - matches accepted version, new appendix with comparisons between HMcode and 6 different emulators</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.11365">arXiv:2006.11365</a> <span> [<a href="https://arxiv.org/pdf/2006.11365">pdf</a>, <a href="https://arxiv.org/format/2006.11365">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="History and Philosophy of Physics">physics.hist-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3390/sym12081373">10.3390/sym12081373 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Symmetry, Transactions, and the Mechanism of Wave Function Collapse </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Cramer%2C+J+G">John G. Cramer</a>, <a href="/search/?searchtype=author&query=Mead%2C+C+A">Carver A. Mead</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.11365v4-abstract-short" style="display: inline;"> The Transactional Interpretation of quantum mechanics exploits the intrinsic time-symmetry of wave mechanics to interpret the $蠄$ and $蠄$* wave functions present in all wave mechanics calculations as representing retarded and advanced waves moving in opposite time directions that form a quantum "handshake" or transaction. This handshake is a 4D standing-wave that builds up across space-time to tra… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.11365v4-abstract-full').style.display = 'inline'; document.getElementById('2006.11365v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.11365v4-abstract-full" style="display: none;"> The Transactional Interpretation of quantum mechanics exploits the intrinsic time-symmetry of wave mechanics to interpret the $蠄$ and $蠄$* wave functions present in all wave mechanics calculations as representing retarded and advanced waves moving in opposite time directions that form a quantum "handshake" or transaction. This handshake is a 4D standing-wave that builds up across space-time to transfer the conserved quantities of energy, momentum, and angular momentum in an interaction. Here we derive a two-atom quantum formalism describing a transaction. We show that the bi-directional electromagnetic coupling between atoms can be factored into a matched pair of vector potential Green's functions: one retarded and one advanced, and that this combination uniquely enforces the conservation of energy in a transaction. Thus factored, the single-electron wave functions of electromagnetically-coupled atoms can be analyzed using Schr枚dinger's original wave mechanics. The technique generalizes to any number of electromagnetically coupled single-electron states---no higher-dimensional space is needed. Using this technique, we show a worked example of the transfer of energy from a hydrogen atom in an excited state to a nearby hydrogen atom in its ground state. It is seen that the initial exchange creates a dynamically unstable situation that avalanches to the completed transaction, demonstrating that wave function collapse, considered mysterious in the literature, can be implemented with solutions of Schr枚dinger's original wave mechanics, coupled by this unique combination of retarded/advanced vector potentials, without the introduction of any additional mechanism or formalism. We also analyse a simplified version of the photon-splitting and Freedman-Clauser three-electron experiments and show that their results can be predicted by this formalism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.11365v4-abstract-full').style.display = 'none'; document.getElementById('2006.11365v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">48 pages, 19 figures; published in special Symmetry issue "Symmetries in Quantum Mechanics"; revised to reflect referee suggestions</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Symmetry 2020, 12(8), 1373 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.11819">arXiv:2005.11819</a> <span> [<a href="https://arxiv.org/pdf/2005.11819">pdf</a>, <a href="https://arxiv.org/format/2005.11819">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/staa3030">10.1093/mnras/staa3030 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Galaxy cluster mass estimation with deep learning and hydrodynamical simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Yan%2C+Z">Z. Yan</a>, <a href="/search/?searchtype=author&query=Mead%2C+A+J">A. J. Mead</a>, <a href="/search/?searchtype=author&query=Van+Waerbeke%2C+L">L. Van Waerbeke</a>, <a href="/search/?searchtype=author&query=Hinshaw%2C+G">G. Hinshaw</a>, <a href="/search/?searchtype=author&query=McCarthy%2C+I+G">I. G. McCarthy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.11819v2-abstract-short" style="display: inline;"> We evaluate the ability of Convolutional Neural Networks (CNNs) to predict galaxy cluster masses in the BAHAMAS hydrodynamical simulations. We train four separate single-channel networks using: stellar mass, soft X-ray flux, bolometric X-ray flux, and the Compton $y$ parameter as observational tracers, respectively. Our training set consists of $\sim$4800 synthetic cluster images generated from th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.11819v2-abstract-full').style.display = 'inline'; document.getElementById('2005.11819v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.11819v2-abstract-full" style="display: none;"> We evaluate the ability of Convolutional Neural Networks (CNNs) to predict galaxy cluster masses in the BAHAMAS hydrodynamical simulations. We train four separate single-channel networks using: stellar mass, soft X-ray flux, bolometric X-ray flux, and the Compton $y$ parameter as observational tracers, respectively. Our training set consists of $\sim$4800 synthetic cluster images generated from the simulation, while an additional $\sim$3200 images form a validation set and a test set, each with 1600 images. In order to mimic real observation, these images also contain uncorrelated structures located within 50 Mpc in front and behind clusters and seen in projection, as well as instrumental systematics including noise and smoothing. In addition to CNNs for all the four observables, we also train a `multi-channel' CNN by combining the four observational tracers. The learning curves of all the five CNNs converge within 1000 epochs. The resulting predictions are especially precise for halo masses in the range $10^{13.25}M_{\odot}<M<10^{14.5}M_{\odot}$, where all five networks produce mean mass biases of order $\approx$1\% with a scatter of $\lesssim$20\%. The network trained with Compton $y$ parameter maps yields the most precise predictions. We interpret the network's behaviour using two diagnostic tests to determine which features are used to predict cluster mass. The CNN trained with stellar mass images detect galaxies (not surprisingly), while CNNs trained with gas-based tracers utilise the shape of the signal to estimate cluster mass. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.11819v2-abstract-full').style.display = 'none'; document.getElementById('2005.11819v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 11 figures, 2 tables, Accepted for Publication on MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.00009">arXiv:2005.00009</a> <span> [<a href="https://arxiv.org/pdf/2005.00009">pdf</a>, <a href="https://arxiv.org/format/2005.00009">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202038308">10.1051/0004-6361/202038308 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A hydrodynamical halo model for weak-lensing cross correlations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Mead%2C+A+J">A. J. Mead</a>, <a href="/search/?searchtype=author&query=Tr%C3%B6ster%2C+T">T. Tr枚ster</a>, <a href="/search/?searchtype=author&query=Heymans%2C+C">C. Heymans</a>, <a href="/search/?searchtype=author&query=Van+Waerbeke%2C+L">L. Van Waerbeke</a>, <a href="/search/?searchtype=author&query=McCarthy%2C+I+G">I. G. McCarthy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.00009v2-abstract-short" style="display: inline;"> On the scale of galactic haloes, the distribution of matter in the cosmos is affected by energetic, non-gravitational processes; so-called baryonic feedback. A lack of knowledge about the details of how feedback processes redistribute matter is a source of uncertainty for weak-lensing surveys, which accurately probe the clustering of matter in the Universe over a wide range of scales. We develop a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.00009v2-abstract-full').style.display = 'inline'; document.getElementById('2005.00009v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.00009v2-abstract-full" style="display: none;"> On the scale of galactic haloes, the distribution of matter in the cosmos is affected by energetic, non-gravitational processes; so-called baryonic feedback. A lack of knowledge about the details of how feedback processes redistribute matter is a source of uncertainty for weak-lensing surveys, which accurately probe the clustering of matter in the Universe over a wide range of scales. We develop a cosmology-dependent model for the matter distribution that simultaneously accounts for the clustering of dark matter, gas and stars. We inform our model by comparing it to power spectra measured from the BAHAMAS suite of hydrodynamical simulations. As well as considering matter power spectra, we also consider spectra involving the electron-pressure field, which directly relates to the thermal Sunyaev-Zel'dovich (tSZ) effect. We fit parameters in our model so that it can simultaneously model both matter and pressure data and such that the distribution of gas as inferred from tSZ has influence on the matter spectrum predicted by our model. We present two variants; one that matches the feedback-induced suppression seen in the matter-matter power spectrum at the per-cent level and a second that matches the matter-matter data slightly less well (~2 per cent), but that is able to simultaneously model the matter-electron pressure spectrum at the ~15 per-cent level. We envisage our models being used to simultaneously learn about cosmological parameters and the strength of baryonic feedback using a combination of tSZ and lensing auto- and cross-correlation data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.00009v2-abstract-full').style.display = 'none'; document.getElementById('2005.00009v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main paper: 21 pages, 11 figures; Appendix: 16 pages, 13 figures; matches accepted version - referee report addressed, clarifications and extra text compared to v1, improved model, no significant changes of results</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 641, A130 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.06663">arXiv:1912.06663</a> <span> [<a href="https://arxiv.org/pdf/1912.06663">pdf</a>, <a href="https://arxiv.org/format/1912.06663">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/staa295">10.1093/mnras/staa295 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An analysis of galaxy cluster mis-centring using cosmological hydrodynamic simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Yan%2C+Z">Z. Yan</a>, <a href="/search/?searchtype=author&query=Raza%2C+N">N. Raza</a>, <a href="/search/?searchtype=author&query=Van+Waerbeke%2C+L">L. Van Waerbeke</a>, <a href="/search/?searchtype=author&query=Mead%2C+A+J">A. J. Mead</a>, <a href="/search/?searchtype=author&query=McCarthy%2C+I+G">I. G. McCarthy</a>, <a href="/search/?searchtype=author&query=Troester%2C+T">T. Troester</a>, <a href="/search/?searchtype=author&query=Hinshaw%2C+G">G. Hinshaw</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.06663v2-abstract-short" style="display: inline;"> The location of a galaxy cluster's centroid is typically derived from observations of the galactic and/or gas component of the cluster, but these typically deviate from the true centre. This can produce bias when observations are combined to study average cluster properties. Using data from the BAHAMAS cosmological hydrodynamic simulations we study this bias in both two and three dimensions for 20… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.06663v2-abstract-full').style.display = 'inline'; document.getElementById('1912.06663v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.06663v2-abstract-full" style="display: none;"> The location of a galaxy cluster's centroid is typically derived from observations of the galactic and/or gas component of the cluster, but these typically deviate from the true centre. This can produce bias when observations are combined to study average cluster properties. Using data from the BAHAMAS cosmological hydrodynamic simulations we study this bias in both two and three dimensions for 2000 clusters over the $10^{13} - 10^{15} ~\mathrm{M_{\odot}}$ mass range. We quantify and model the offset distributions between observationally-motivated centres and the `true' centre of the cluster, which is taken to be the most gravitationally bound particle measured in the simulation. We fit the cumulative distribution function of offsets with an exponential distribution and a Gamma distribution fit well with most of the centroid definitions. The galaxy-based centres can be seen to be divided into a mis-centred group and a well-centred group, with the well-centred group making up about $60\%$ of all the clusters. Gas-based centres are overall less scattered than galaxy-based centres. We also find a cluster-mass dependence of the offset distribution of gas-based centres, with generally larger offsets for smaller mass clusters. We then measure cluster density profiles centred at each choice of the centres and fit them with empirical models. Stacked, mis-centred density profiles fit to the Navarro-Frenk-White dark-matter profile and Komatsu-Seljak gas profile show that recovered shape and size parameters can significantly deviate from the true values. For the galaxy-based centres, this can lead to cluster masses being underestimated by up to $10\%$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.06663v2-abstract-full').style.display = 'none'; document.getElementById('1912.06663v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 9 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.04675">arXiv:1908.04675</a> <span> [<a href="https://arxiv.org/pdf/1908.04675">pdf</a>, <a href="https://arxiv.org/format/1908.04675">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.101.043512">10.1103/PhysRevD.101.043512 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Axion Quark Nugget Dark Matter: Time Modulations and Amplifications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Liang%2C+X">Xunyu Liang</a>, <a href="/search/?searchtype=author&query=Mead%2C+A">Alexander Mead</a>, <a href="/search/?searchtype=author&query=Siddiqui%2C+M+S+R">Md Shahriar Rahim Siddiqui</a>, <a href="/search/?searchtype=author&query=Van+Waerbeke%2C+L">Ludovic Van Waerbeke</a>, <a href="/search/?searchtype=author&query=Zhitnitsky%2C+A">Ariel Zhitnitsky</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.04675v3-abstract-short" style="display: inline;"> We study the new mechanism of the axion production suggested recently in [1,2]. This mechanism is based on the so-called Axion Quark Nugget (AQN) dark matter model, which was originally invented to explain the similarity of the dark and visible cosmological matter densities. We perform numerical simulations to evaluate the axion flux on the Earth's surface. We examine annual and daily modulations,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.04675v3-abstract-full').style.display = 'inline'; document.getElementById('1908.04675v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.04675v3-abstract-full" style="display: none;"> We study the new mechanism of the axion production suggested recently in [1,2]. This mechanism is based on the so-called Axion Quark Nugget (AQN) dark matter model, which was originally invented to explain the similarity of the dark and visible cosmological matter densities. We perform numerical simulations to evaluate the axion flux on the Earth's surface. We examine annual and daily modulations, which have been studied previously and are known to occur for any type of dark matter. We also discuss a novel type of short time enhancements which are unique to the AQN model: the statistical fluctuations and burst-like amplification, both of which can drastically amplify the axion signal, up to a factor $\sim10^2-10^3$ for a very short period of time. The present work studies the AQN-induced axions within the mass window $10^{-6}{\rm\,eV}\lesssim m_a\lesssim10^{-3}\rm\,eV$ with typical velocities $\langle v_a\rangle\sim0.6c$. We also comment on the broadband detection strategy to search for such relativistic axions by studying the daily and annual time modulations as well as random burst-like amplifications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.04675v3-abstract-full').style.display = 'none'; document.getElementById('1908.04675v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in Physical Review D, 23 pages, 13 figures. arXiv admin note: text overlap with arXiv:1905.00022</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 101, 043512 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.06082">arXiv:1905.06082</a> <span> [<a href="https://arxiv.org/pdf/1905.06082">pdf</a>, <a href="https://arxiv.org/format/1905.06082">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.21105/astro.1905.06082">10.21105/astro.1905.06082 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Modelling baryonic feedback for survey cosmology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Chisari%2C+N+E">Nora Elisa Chisari</a>, <a href="/search/?searchtype=author&query=Mead%2C+A+J">Alexander J. Mead</a>, <a href="/search/?searchtype=author&query=Joudaki%2C+S">Shahab Joudaki</a>, <a href="/search/?searchtype=author&query=Ferreira%2C+P">Pedro Ferreira</a>, <a href="/search/?searchtype=author&query=Schneider%2C+A">Aurel Schneider</a>, <a href="/search/?searchtype=author&query=Mohr%2C+J">Joseph Mohr</a>, <a href="/search/?searchtype=author&query=Tr%C3%B6ster%2C+T">Tilman Tr枚ster</a>, <a href="/search/?searchtype=author&query=Alonso%2C+D">David Alonso</a>, <a href="/search/?searchtype=author&query=McCarthy%2C+I+G">Ian G. McCarthy</a>, <a href="/search/?searchtype=author&query=Martin-Alvarez%2C+S">Sergio Martin-Alvarez</a>, <a href="/search/?searchtype=author&query=Devriendt%2C+J">Julien Devriendt</a>, <a href="/search/?searchtype=author&query=Slyz%2C+A">Adrianne Slyz</a>, <a href="/search/?searchtype=author&query=van+Daalen%2C+M+P">Marcel P. van Daalen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.06082v2-abstract-short" style="display: inline;"> Observational cosmology in the next decade will rely on probes of the distribution of matter in the redshift range between $0<z<3$ to elucidate the nature of dark matter and dark energy. In this redshift range, galaxy formation is known to have a significant impact on observables such as two-point correlations of galaxy shapes and positions, altering their amplitude and scale dependence beyond the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.06082v2-abstract-full').style.display = 'inline'; document.getElementById('1905.06082v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.06082v2-abstract-full" style="display: none;"> Observational cosmology in the next decade will rely on probes of the distribution of matter in the redshift range between $0<z<3$ to elucidate the nature of dark matter and dark energy. In this redshift range, galaxy formation is known to have a significant impact on observables such as two-point correlations of galaxy shapes and positions, altering their amplitude and scale dependence beyond the expected statistical uncertainty of upcoming experiments at separations under 10 Mpc. Successful extraction of information in such a regime thus requires, at the very least, unbiased models for the impact of galaxy formation on the matter distribution, and can benefit from complementary observational priors. This work reviews the current state of the art in the modelling of baryons for cosmology, from numerical methods to approximate analytical prescriptions, and makes recommendations for studies in the next decade, including a discussion of potential probe combinations that can help constrain the role of baryons in cosmological studies. We focus, in particular, on the modelling of the matter power spectrum, $P(k,z)$, as a function of scale and redshift, and of the observables derived from this quantity. This work is the result of a workshop held at the University of Oxford in November of 2018. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.06082v2-abstract-full').style.display = 'none'; document.getElementById('1905.06082v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 4 figures, a short review, accepted in The Open Journal of Astrophysics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.00022">arXiv:1905.00022</a> <span> [<a href="https://arxiv.org/pdf/1905.00022">pdf</a>, <a href="https://arxiv.org/format/1905.00022">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.100.043531">10.1103/PhysRevD.100.043531 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gravitationally trapped axions on Earth </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Lawson%2C+K">Kyle Lawson</a>, <a href="/search/?searchtype=author&query=Liang%2C+X">Xunyu Liang</a>, <a href="/search/?searchtype=author&query=Mead%2C+A">Alexander Mead</a>, <a href="/search/?searchtype=author&query=Siddiqui%2C+M+S+R">Md Shahriar Rahim Siddiqui</a>, <a href="/search/?searchtype=author&query=Van+Waerbeke%2C+L">Ludovic Van Waerbeke</a>, <a href="/search/?searchtype=author&query=Zhitnitsky%2C+A">Ariel Zhitnitsky</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.00022v2-abstract-short" style="display: inline;"> We advocate for the idea that there is a fundamentally new mechanism for axion production on Earth, as recently suggested in Fischer et al. (2018) and Liang & Zhitnitsky (2018). We specifically focus on production of axions within Earth, with low velocities such that they will be trapped in the gravitational field. Our computations are based on the so-called Axion Quark Nugget (AQN) dark matter mo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.00022v2-abstract-full').style.display = 'inline'; document.getElementById('1905.00022v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.00022v2-abstract-full" style="display: none;"> We advocate for the idea that there is a fundamentally new mechanism for axion production on Earth, as recently suggested in Fischer et al. (2018) and Liang & Zhitnitsky (2018). We specifically focus on production of axions within Earth, with low velocities such that they will be trapped in the gravitational field. Our computations are based on the so-called Axion Quark Nugget (AQN) dark matter model, which was originally invented to explain the similarity of the dark and visible cosmological matter densities. This occurs in the model irrespective of the axion mass $m_\mathrm{a}$ or initial misalignment angle $胃_0$. Annihilation of antimatter AQNs with visible matter inevitably produce axions when AQNs hit Earth. The emission rate of axions with velocities below escape velocity is very tiny compared to the overall emission, however these axions will be accumulated over the 4.5 billion year life time of the Earth, which greatly enhances the discovery potential. We perform numerical simulations with a realistically modeled incoming AQN velocity and mass distribution, and explore how AQNs interact as they travel through the interior of the Earth. We use this to estimate the axion flux on the surface of the Earth, the velocity-spectral features of trapped axions, the typical annihilation pattern of AQN, and the density profile of the axion halo around the Earth. Knowledge of these properties is necessary to make predictions for the observability of trapped axions using CAST, ADMX, MADMAX, CULTASK, ORPHEUS, ARIADNE, CASPEr, ABRACADABRA, QUAX, DM Radio. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.00022v2-abstract-full').style.display = 'none'; document.getElementById('1905.00022v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 8 figures, accepted by Physical Review D</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 100, 043531 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.06654">arXiv:1903.06654</a> <span> [<a href="https://arxiv.org/pdf/1903.06654">pdf</a>, <a href="https://arxiv.org/format/1903.06654">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stz3130">10.1093/mnras/stz3130 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing hot gas around luminous red galaxies through the Sunyaev-Zel'dovich effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Tanimura%2C+H">Hideki Tanimura</a>, <a href="/search/?searchtype=author&query=Hinshaw%2C+G">Gary Hinshaw</a>, <a href="/search/?searchtype=author&query=McCarthy%2C+I+G">Ian G. McCarthy</a>, <a href="/search/?searchtype=author&query=Van+Waerbeke%2C+L">Ludovic Van Waerbeke</a>, <a href="/search/?searchtype=author&query=Aghanim%2C+N">Nabila Aghanim</a>, <a href="/search/?searchtype=author&query=Ma%2C+Y">Yin-Zhe Ma</a>, <a href="/search/?searchtype=author&query=Mead%2C+A">Alexander Mead</a>, <a href="/search/?searchtype=author&query=Tr%C3%B6ster%2C+T">Tilman Tr枚ster</a>, <a href="/search/?searchtype=author&query=Hojjati%2C+A">Alireza Hojjati</a>, <a href="/search/?searchtype=author&query=Moraes%2C+B">Bruno Moraes</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.06654v2-abstract-short" style="display: inline;"> We construct the mean thermal Sunyaev-Zel'dovich (tSZ) Comptonization y profile around Luminous Red Galaxies (LRGs) in the redshift range 0.16 < z < 0.47 from the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) using the Planck y map. The mean central tSZ signal for the full sample is y ~ 1.8 * 10^(-7) and we detect tSZ emission out to ~30 arcmin, which is well beyond the 10 arcmin angular re… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.06654v2-abstract-full').style.display = 'inline'; document.getElementById('1903.06654v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.06654v2-abstract-full" style="display: none;"> We construct the mean thermal Sunyaev-Zel'dovich (tSZ) Comptonization y profile around Luminous Red Galaxies (LRGs) in the redshift range 0.16 < z < 0.47 from the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) using the Planck y map. The mean central tSZ signal for the full sample is y ~ 1.8 * 10^(-7) and we detect tSZ emission out to ~30 arcmin, which is well beyond the 10 arcmin angular resolution of the y map and well beyond the virial radii of the LRGs. We compare the measured profile with predictions from the cosmo-OWLS suite of cosmological hydrodynamical simulations. This comparison agrees well for models that include feedback from active galactic nuclei (AGN), but not with hydrodynamic models without this energetic feedback mechanism. This suggests that an additional heating mechanism is required over SNe feedback and star formation to explain the y data profile. We also compare our results with predictions based on the halo model with a universal pressure profile (UPP) giving the y signal. The predicted profile is consistent with the data, but only if we account for the clustering of haloes via a two-halo term and if halo masses are estimated using the mean stellar-to-halo mass (SHM) relation of Coupon et al. (2015) or Wang et al.(2016) estimated from gravitational lensing measurements. We also discuss the importance of scatter in the SHM relation on the model predictions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.06654v2-abstract-full').style.display = 'none'; document.getElementById('1903.06654v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 6 figures, accepted by MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.06076">arXiv:1812.06076</a> <span> [<a href="https://arxiv.org/pdf/1812.06076">pdf</a>, <a href="https://arxiv.org/format/1812.06076">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201834878">10.1051/0004-6361/201834878 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> KiDS+VIKING-450: Cosmic shear tomography with optical+infrared data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Hildebrandt%2C+H">H. Hildebrandt</a>, <a href="/search/?searchtype=author&query=K%C3%B6hlinger%2C+F">F. K枚hlinger</a>, <a href="/search/?searchtype=author&query=Busch%2C+J+L+v+d">J. L. van den Busch</a>, <a href="/search/?searchtype=author&query=Joachimi%2C+B">B. Joachimi</a>, <a href="/search/?searchtype=author&query=Heymans%2C+C">C. Heymans</a>, <a href="/search/?searchtype=author&query=Kannawadi%2C+A">A. Kannawadi</a>, <a href="/search/?searchtype=author&query=Wright%2C+A+H">A. H. Wright</a>, <a href="/search/?searchtype=author&query=Asgari%2C+M">M. Asgari</a>, <a href="/search/?searchtype=author&query=Blake%2C+C">C. Blake</a>, <a href="/search/?searchtype=author&query=Hoekstra%2C+H">H. Hoekstra</a>, <a href="/search/?searchtype=author&query=Joudaki%2C+S">S. Joudaki</a>, <a href="/search/?searchtype=author&query=Kuijken%2C+K">K. Kuijken</a>, <a href="/search/?searchtype=author&query=Miller%2C+L">L. Miller</a>, <a href="/search/?searchtype=author&query=Morrison%2C+C+B">C. B. Morrison</a>, <a href="/search/?searchtype=author&query=Tr%C3%B6ster%2C+T">T. Tr枚ster</a>, <a href="/search/?searchtype=author&query=Amon%2C+A">A. Amon</a>, <a href="/search/?searchtype=author&query=Archidiacono%2C+M">M. Archidiacono</a>, <a href="/search/?searchtype=author&query=Brieden%2C+S">S. Brieden</a>, <a href="/search/?searchtype=author&query=Choi%2C+A">A. Choi</a>, <a href="/search/?searchtype=author&query=de+Jong%2C+J+T+A">J. T. A. de Jong</a>, <a href="/search/?searchtype=author&query=Erben%2C+T">T. Erben</a>, <a href="/search/?searchtype=author&query=Giblin%2C+B">B. Giblin</a>, <a href="/search/?searchtype=author&query=Mead%2C+A">A. Mead</a>, <a href="/search/?searchtype=author&query=Peacock%2C+J+A">J. A. Peacock</a>, <a href="/search/?searchtype=author&query=Radovich%2C+M">M. Radovich</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.06076v2-abstract-short" style="display: inline;"> We present a tomographic cosmic shear analysis of the Kilo-Degree Survey (KiDS) combined with the VISTA Kilo-Degree Infrared Galaxy Survey (VIKING). This is the first time that a full optical to near-infrared data set has been used for a wide-field cosmological weak lensing experiment. This unprecedented data, spanning $450~$deg$^2$, allows us to improve significantly the estimation of photometric… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.06076v2-abstract-full').style.display = 'inline'; document.getElementById('1812.06076v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.06076v2-abstract-full" style="display: none;"> We present a tomographic cosmic shear analysis of the Kilo-Degree Survey (KiDS) combined with the VISTA Kilo-Degree Infrared Galaxy Survey (VIKING). This is the first time that a full optical to near-infrared data set has been used for a wide-field cosmological weak lensing experiment. This unprecedented data, spanning $450~$deg$^2$, allows us to improve significantly the estimation of photometric redshifts, such that we are able to include robustly higher-redshift sources for the lensing measurement, and - most importantly - solidify our knowledge of the redshift distributions of the sources. Based on a flat $螞$CDM model we find $S_8\equiv蟽_8\sqrt{惟_{\rm m}/0.3}=0.737_{-0.036}^{+0.040}$ in a blind analysis from cosmic shear alone. The tension between KiDS cosmic shear and the Planck-Legacy CMB measurements remains in this systematically more robust analysis, with $S_8$ differing by $2.3蟽$. This result is insensitive to changes in the priors on nuisance parameters for intrinsic alignment, baryon feedback, and neutrino mass. KiDS shear measurements are calibrated with a new, more realistic set of image simulations and no significant B-modes are detected in the survey, indicating that systematic errors are under control. When calibrating our redshift distributions by assuming the 30-band COSMOS-2015 photometric redshifts are correct (following the Dark Energy Survey and the Hyper Suprime-Cam Survey), we find the tension with Planck is alleviated. The robust determination of source redshift distributions remains one of the most challenging aspects for future cosmic shear surveys. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.06076v2-abstract-full').style.display = 'none'; document.getElementById('1812.06076v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 14 figures, accepted for publication by A&A; data products available at http://kids.strw.leidenuniv.nl</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 633, A69 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.05995">arXiv:1812.05995</a> <span> [<a href="https://arxiv.org/pdf/1812.05995">pdf</a>, <a href="https://arxiv.org/format/1812.05995">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/ab1658">10.3847/1538-4365/ab1658 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Core Cosmology Library: Precision Cosmological Predictions for LSST </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Chisari%2C+N+E">Nora Elisa Chisari</a>, <a href="/search/?searchtype=author&query=Alonso%2C+D">David Alonso</a>, <a href="/search/?searchtype=author&query=Krause%2C+E">Elisabeth Krause</a>, <a href="/search/?searchtype=author&query=Leonard%2C+C+D">C. Danielle Leonard</a>, <a href="/search/?searchtype=author&query=Bull%2C+P">Philip Bull</a>, <a href="/search/?searchtype=author&query=Neveu%2C+J">J茅r茅my Neveu</a>, <a href="/search/?searchtype=author&query=Villarreal%2C+A">Antonia Villarreal</a>, <a href="/search/?searchtype=author&query=Singh%2C+S">Sukhdeep Singh</a>, <a href="/search/?searchtype=author&query=McClintock%2C+T">Thomas McClintock</a>, <a href="/search/?searchtype=author&query=Ellison%2C+J">John Ellison</a>, <a href="/search/?searchtype=author&query=Du%2C+Z">Zilong Du</a>, <a href="/search/?searchtype=author&query=Zuntz%2C+J">Joe Zuntz</a>, <a href="/search/?searchtype=author&query=Mead%2C+A">Alexander Mead</a>, <a href="/search/?searchtype=author&query=Joudaki%2C+S">Shahab Joudaki</a>, <a href="/search/?searchtype=author&query=Lorenz%2C+C+S">Christiane S. Lorenz</a>, <a href="/search/?searchtype=author&query=Troester%2C+T">Tilman Troester</a>, <a href="/search/?searchtype=author&query=Sanchez%2C+J">Javier Sanchez</a>, <a href="/search/?searchtype=author&query=Lanusse%2C+F">Francois Lanusse</a>, <a href="/search/?searchtype=author&query=Ishak%2C+M">Mustapha Ishak</a>, <a href="/search/?searchtype=author&query=Hlozek%2C+R">Ren茅e Hlozek</a>, <a href="/search/?searchtype=author&query=Blazek%2C+J">Jonathan Blazek</a>, <a href="/search/?searchtype=author&query=Campagne%2C+J">Jean-Eric Campagne</a>, <a href="/search/?searchtype=author&query=Almoubayyed%2C+H">Husni Almoubayyed</a>, <a href="/search/?searchtype=author&query=Eifler%2C+T">Tim Eifler</a>, <a href="/search/?searchtype=author&query=Kirby%2C+M">Matthew Kirby</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.05995v2-abstract-short" style="display: inline;"> The Core Cosmology Library (CCL) provides routines to compute basic cosmological observables to a high degree of accuracy, which have been verified with an extensive suite of validation tests. Predictions are provided for many cosmological quantities, including distances, angular power spectra, correlation functions, halo bias and the halo mass function through state-of-the-art modeling prescripti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.05995v2-abstract-full').style.display = 'inline'; document.getElementById('1812.05995v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.05995v2-abstract-full" style="display: none;"> The Core Cosmology Library (CCL) provides routines to compute basic cosmological observables to a high degree of accuracy, which have been verified with an extensive suite of validation tests. Predictions are provided for many cosmological quantities, including distances, angular power spectra, correlation functions, halo bias and the halo mass function through state-of-the-art modeling prescriptions available in the literature. Fiducial specifications for the expected galaxy distributions for the Large Synoptic Survey Telescope (LSST) are also included, together with the capability of computing redshift distributions for a user-defined photometric redshift model. A rigorous validation procedure, based on comparisons between CCL and independent software packages, allows us to establish a well-defined numerical accuracy for each predicted quantity. As a result, predictions for correlation functions of galaxy clustering, galaxy-galaxy lensing and cosmic shear are demonstrated to be within a fraction of the expected statistical uncertainty of the observables for the models and in the range of scales of interest to LSST. CCL is an open source software package written in C, with a python interface and publicly available at https://github.com/LSSTDESC/CCL. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.05995v2-abstract-full').style.display = 'none'; document.getElementById('1812.05995v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 pages, 18 figures, matches ApJS accepted version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.05594">arXiv:1812.05594</a> <span> [<a href="https://arxiv.org/pdf/1812.05594">pdf</a>, <a href="https://arxiv.org/format/1812.05594">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stz1836">10.1093/mnras/stz1836 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On the road to percent accuracy: nonlinear reaction of the matter power spectrum to dark energy and modified gravity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Cataneo%2C+M">Matteo Cataneo</a>, <a href="/search/?searchtype=author&query=Lombriser%2C+L">Lucas Lombriser</a>, <a href="/search/?searchtype=author&query=Heymans%2C+C">Catherine Heymans</a>, <a href="/search/?searchtype=author&query=Mead%2C+A">Alexander Mead</a>, <a href="/search/?searchtype=author&query=Barreira%2C+A">Alexandre Barreira</a>, <a href="/search/?searchtype=author&query=Bose%2C+S">Sownak Bose</a>, <a href="/search/?searchtype=author&query=Li%2C+B">Baojiu Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.05594v2-abstract-short" style="display: inline;"> We present a general method to compute the nonlinear matter power spectrum for dark energy and modified gravity scenarios with percent-level accuracy. By adopting the halo model and nonlinear perturbation theory, we predict the reaction of a $螞$CDM matter power spectrum to the physics of an extended cosmological parameter space. By comparing our predictions to $N$-body simulations we demonstrate t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.05594v2-abstract-full').style.display = 'inline'; document.getElementById('1812.05594v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.05594v2-abstract-full" style="display: none;"> We present a general method to compute the nonlinear matter power spectrum for dark energy and modified gravity scenarios with percent-level accuracy. By adopting the halo model and nonlinear perturbation theory, we predict the reaction of a $螞$CDM matter power spectrum to the physics of an extended cosmological parameter space. By comparing our predictions to $N$-body simulations we demonstrate that with no-free parameters we can recover the nonlinear matter power spectrum for a wide range of different $w_0$-$w_a$ dark energy models to better than 1% accuracy out to $k \approx 1 \, h \, {\rm Mpc}^{-1}$. We obtain a similar performance for both DGP and $f(R)$ gravity, with the nonlinear matter power spectrum predicted to better than 3% accuracy over the same range of scales. When including direct measurements of the halo mass function from the simulations, this accuracy improves to 1%. With a single suite of standard $螞$CDM $N$-body simulations, our methodology provides a direct route to constrain a wide range of non-standard extensions to the concordance cosmology in the high signal-to-noise nonlinear regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.05594v2-abstract-full').style.display = 'none'; document.getElementById('1812.05594v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18+6 pages, 15 figures. Matches MNRAS accepted version. Few typos corrected</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.05024">arXiv:1709.05024</a> <span> [<a href="https://arxiv.org/pdf/1709.05024">pdf</a>, <a href="https://arxiv.org/format/1709.05024">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/sty3118">10.1093/mnras/sty3118 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Search for Warm/Hot Gas Filaments Between Pairs of SDSS Luminous Red Galaxies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Tanimura%2C+H">Hideki Tanimura</a>, <a href="/search/?searchtype=author&query=Hinshaw%2C+G">Gary Hinshaw</a>, <a href="/search/?searchtype=author&query=McCarthy%2C+I+G">Ian G. McCarthy</a>, <a href="/search/?searchtype=author&query=Van+Waerbeke%2C+L">Ludovic Van Waerbeke</a>, <a href="/search/?searchtype=author&query=Aghanim%2C+N">Nabila Aghanim</a>, <a href="/search/?searchtype=author&query=Ma%2C+Y">Yin-Zhe Ma</a>, <a href="/search/?searchtype=author&query=Mead%2C+A">Alexander Mead</a>, <a href="/search/?searchtype=author&query=Hojjati%2C+A">Alireza Hojjati</a>, <a href="/search/?searchtype=author&query=Tr%C3%B6ster%2C+T">Tilman Tr枚ster</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.05024v5-abstract-short" style="display: inline;"> We search the Planck data for a thermal Sunyaev-Zel'dovich (tSZ) signal due to gas filaments between pairs of Luminous Red Galaxies (LRG's) taken from the Sloan Digital Sky Survey Data Release 12 (SDSS/DR12). We identify $\sim$260,000 LRG pairs in the DR12 catalog that lie within 6-10 $h^{-1} \mathrm{Mpc}$ of each other in tangential direction and within 6 $h^{-1} \mathrm{Mpc}$ in radial direction… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.05024v5-abstract-full').style.display = 'inline'; document.getElementById('1709.05024v5-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.05024v5-abstract-full" style="display: none;"> We search the Planck data for a thermal Sunyaev-Zel'dovich (tSZ) signal due to gas filaments between pairs of Luminous Red Galaxies (LRG's) taken from the Sloan Digital Sky Survey Data Release 12 (SDSS/DR12). We identify $\sim$260,000 LRG pairs in the DR12 catalog that lie within 6-10 $h^{-1} \mathrm{Mpc}$ of each other in tangential direction and within 6 $h^{-1} \mathrm{Mpc}$ in radial direction. We stack pairs by rotating and scaling the angular positions of each LRG so they lie on a common reference frame, then we subtract a circularly symmetric halo from each member of the pair to search for a residual signal between the pair members. We find a statistically significant (5.3$蟽$) signal between LRG pairs in the stacked data with a magnitude $螖y = (1.31 \pm 0.25) \times 10^{-8}$. The uncertainty is estimated from two Monte Carlo null tests which also establish the reliability of our analysis. Assuming a simple, isothermal, cylindrical filament model of electron over-density with a radial density profile proportional to $r_c/r$ (as determined from simulations), where $r$ is the perpendicular distance from the cylinder axis and $r_c$ is the core radius of the density profile, we constrain the product of over-density and filament temperature to be $未_c \times (T_{\rm e}/10^7 \, {\rm K}) \times (r_c/0.5h^{-1} \, {\rm Mpc}) = 2.7 \pm 0.5$. To our knowledge, this is the first detection of filamentary gas at over-densities typical of cosmological large-scale structure. We compare our result to the BAHAMAS suite of cosmological hydrodynamic simulations (McCarthy et al. 2017) and find a slightly lower, but marginally consistent Comptonization excess, $螖y = (0.84 \pm 0.24) \times 10^{-8}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.05024v5-abstract-full').style.display = 'none'; document.getElementById('1709.05024v5-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 9 figures, accepted for publication in MNRAS (v4 and v5 to include funding acknowledgements. No other changes.)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Monthly Notices of the Royal Astronomical Society, Volume 483, Issue 1, 11 February 2019, Pages 223-234 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.03924">arXiv:1709.03924</a> <span> [<a href="https://arxiv.org/pdf/1709.03924">pdf</a>, <a href="https://arxiv.org/ps/1709.03924">ps</a>, <a href="https://arxiv.org/format/1709.03924">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stx2575">10.1093/mnras/stx2575 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Perturbative Gaussianizing transforms for cosmological fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Hall%2C+A">Alex Hall</a>, <a href="/search/?searchtype=author&query=Mead%2C+A">Alexander Mead</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.03924v2-abstract-short" style="display: inline;"> Constraints on cosmological parameters from large-scale structure have traditionally been obtained from two-point statistics. However, non-linear structure formation renders these statistics insufficient in capturing the full information content available, necessitating the measurement of higher-order moments to recover information which would otherwise be lost. We construct quantities based on no… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.03924v2-abstract-full').style.display = 'inline'; document.getElementById('1709.03924v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.03924v2-abstract-full" style="display: none;"> Constraints on cosmological parameters from large-scale structure have traditionally been obtained from two-point statistics. However, non-linear structure formation renders these statistics insufficient in capturing the full information content available, necessitating the measurement of higher-order moments to recover information which would otherwise be lost. We construct quantities based on non-linear and non-local transformations of weakly non-Gaussian fields that Gaussianize the full multivariate distribution at a given order in perturbation theory. Our approach does not require a model of the fields themselves and takes as input only the first few polyspectra, which could be modelled or measured from simulations or data, making our method particularly suited to observables lacking a robust perturbative description such as the weak-lensing shear. We apply our method to simulated density fields, finding a significantly reduced bispectrum and an enhanced correlation with the initial field. We demonstrate that our method reconstructs a large proportion of the linear baryon acoustic oscillations, improving the information content over the raw field by 35%. We apply the transform to toy 21cm intensity maps, showing that our method still performs well in the presence of complications such as redshift-space distortions, beam smoothing, pixel noise, and foreground subtraction. We discuss how this method might provide a route to constructing a perturbative model of the fully non-Gaussian multivariate likelihood function. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.03924v2-abstract-full').style.display = 'none'; document.getElementById('1709.03924v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 10 figures. Minor changes to match version published in MNRAS</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Mon Not R Astron Soc (2018) 473 (3): 3190-3203 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.06627">arXiv:1707.06627</a> <span> [<a href="https://arxiv.org/pdf/1707.06627">pdf</a>, <a href="https://arxiv.org/format/1707.06627">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stx2820">10.1093/mnras/stx2820 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> KiDS-450 + 2dFLenS: Cosmological parameter constraints from weak gravitational lensing tomography and overlapping redshift-space galaxy clustering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Joudaki%2C+S">Shahab Joudaki</a>, <a href="/search/?searchtype=author&query=Blake%2C+C">Chris Blake</a>, <a href="/search/?searchtype=author&query=Johnson%2C+A">Andrew Johnson</a>, <a href="/search/?searchtype=author&query=Amon%2C+A">Alexandra Amon</a>, <a href="/search/?searchtype=author&query=Asgari%2C+M">Marika Asgari</a>, <a href="/search/?searchtype=author&query=Choi%2C+A">Ami Choi</a>, <a href="/search/?searchtype=author&query=Erben%2C+T">Thomas Erben</a>, <a href="/search/?searchtype=author&query=Glazebrook%2C+K">Karl Glazebrook</a>, <a href="/search/?searchtype=author&query=Harnois-Deraps%2C+J">Joachim Harnois-Deraps</a>, <a href="/search/?searchtype=author&query=Heymans%2C+C">Catherine Heymans</a>, <a href="/search/?searchtype=author&query=Hildebrandt%2C+H">Hendrik Hildebrandt</a>, <a href="/search/?searchtype=author&query=Hoekstra%2C+H">Henk Hoekstra</a>, <a href="/search/?searchtype=author&query=Klaes%2C+D">Dominik Klaes</a>, <a href="/search/?searchtype=author&query=Kuijken%2C+K">Konrad Kuijken</a>, <a href="/search/?searchtype=author&query=Lidman%2C+C">Chris Lidman</a>, <a href="/search/?searchtype=author&query=Mead%2C+A">Alexander Mead</a>, <a href="/search/?searchtype=author&query=Miller%2C+L">Lance Miller</a>, <a href="/search/?searchtype=author&query=Parkinson%2C+D">David Parkinson</a>, <a href="/search/?searchtype=author&query=Poole%2C+G+B">Gregory B. Poole</a>, <a href="/search/?searchtype=author&query=Schneider%2C+P">Peter Schneider</a>, <a href="/search/?searchtype=author&query=Viola%2C+M">Massimo Viola</a>, <a href="/search/?searchtype=author&query=Wolf%2C+C">Christian Wolf</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.06627v2-abstract-short" style="display: inline;"> We perform a combined analysis of cosmic shear tomography, galaxy-galaxy lensing tomography, and redshift-space multipole power spectra (monopole and quadrupole) using 450 deg$^2$ of imaging data by the Kilo Degree Survey (KiDS) overlapping with two spectroscopic surveys: the 2-degree Field Lensing Survey (2dFLenS) and the Baryon Oscillation Spectroscopic Survey (BOSS). We restrict the galaxy-gala… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.06627v2-abstract-full').style.display = 'inline'; document.getElementById('1707.06627v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.06627v2-abstract-full" style="display: none;"> We perform a combined analysis of cosmic shear tomography, galaxy-galaxy lensing tomography, and redshift-space multipole power spectra (monopole and quadrupole) using 450 deg$^2$ of imaging data by the Kilo Degree Survey (KiDS) overlapping with two spectroscopic surveys: the 2-degree Field Lensing Survey (2dFLenS) and the Baryon Oscillation Spectroscopic Survey (BOSS). We restrict the galaxy-galaxy lensing and multipole power spectrum measurements to the overlapping regions with KiDS, and self-consistently compute the full covariance between the different observables using a large suite of $N$-body simulations. We methodically analyze different combinations of the observables, finding that galaxy-galaxy lensing measurements are particularly useful in improving the constraint on the intrinsic alignment amplitude (by 30%, positive at $3.5蟽$ in the fiducial data analysis), while the multipole power spectra are useful in tightening the constraints along the lensing degeneracy direction (e.g. factor of two stronger matter density constraint in the fiducial analysis). The fully combined constraint on $S_8 \equiv 蟽_8 \sqrt{惟_{\rm m}/0.3} = 0.742 \pm 0.035$, which is an improvement by 20% compared to KiDS alone, corresponds to a $2.6蟽$ discordance with Planck, and is not significantly affected by fitting to a more conservative set of scales. Given the tightening of the parameter space, we are unable to resolve the discordance with an extended cosmology that is simultaneously favored in a model selection sense, including the sum of neutrino masses, curvature, evolving dark energy, and modified gravity. The complementarity of our observables allows for constraints on modified gravity degrees of freedom that are not simultaneously bounded with either probe alone, and up to a factor of three improvement in the $S_8$ constraint in the extended cosmology compared to KiDS alone. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.06627v2-abstract-full').style.display = 'none'; document.getElementById('1707.06627v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 20 figures, results unchanged, version accepted for publication by MNRAS. Abstract abridged. Our measurements and fitting pipeline are public at https://github.com/sjoudaki/CosmoLSS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.04606">arXiv:1610.04606</a> <span> [<a href="https://arxiv.org/pdf/1610.04606">pdf</a>, <a href="https://arxiv.org/format/1610.04606">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stx998">10.1093/mnras/stx998 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> KiDS-450: Testing extensions to the standard cosmological model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Joudaki%2C+S">Shahab Joudaki</a>, <a href="/search/?searchtype=author&query=Mead%2C+A">Alexander Mead</a>, <a href="/search/?searchtype=author&query=Blake%2C+C">Chris Blake</a>, <a href="/search/?searchtype=author&query=Choi%2C+A">Ami Choi</a>, <a href="/search/?searchtype=author&query=de+Jong%2C+J">Jelte de Jong</a>, <a href="/search/?searchtype=author&query=Erben%2C+T">Thomas Erben</a>, <a href="/search/?searchtype=author&query=Conti%2C+I+F">Ian Fenech Conti</a>, <a href="/search/?searchtype=author&query=Herbonnet%2C+R">Ricardo Herbonnet</a>, <a href="/search/?searchtype=author&query=Heymans%2C+C">Catherine Heymans</a>, <a href="/search/?searchtype=author&query=Hildebrandt%2C+H">Hendrik Hildebrandt</a>, <a href="/search/?searchtype=author&query=Hoekstra%2C+H">Henk Hoekstra</a>, <a href="/search/?searchtype=author&query=Joachimi%2C+B">Benjamin Joachimi</a>, <a href="/search/?searchtype=author&query=Klaes%2C+D">Dominik Klaes</a>, <a href="/search/?searchtype=author&query=K%C3%B6hlinger%2C+F">Fabian K枚hlinger</a>, <a href="/search/?searchtype=author&query=Kuijken%2C+K">Konrad Kuijken</a>, <a href="/search/?searchtype=author&query=McFarland%2C+J">John McFarland</a>, <a href="/search/?searchtype=author&query=Miller%2C+L">Lance Miller</a>, <a href="/search/?searchtype=author&query=Schneider%2C+P">Peter Schneider</a>, <a href="/search/?searchtype=author&query=Viola%2C+M">Massimo Viola</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.04606v2-abstract-short" style="display: inline;"> We test extensions to the standard cosmological model with weak gravitational lensing tomography using 450 deg$^2$ of imaging data from the Kilo Degree Survey (KiDS). In these extended cosmologies, which include massive neutrinos, nonzero curvature, evolving dark energy, modified gravity, and running of the scalar spectral index, we also examine the discordance between KiDS and cosmic microwave ba… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.04606v2-abstract-full').style.display = 'inline'; document.getElementById('1610.04606v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.04606v2-abstract-full" style="display: none;"> We test extensions to the standard cosmological model with weak gravitational lensing tomography using 450 deg$^2$ of imaging data from the Kilo Degree Survey (KiDS). In these extended cosmologies, which include massive neutrinos, nonzero curvature, evolving dark energy, modified gravity, and running of the scalar spectral index, we also examine the discordance between KiDS and cosmic microwave background measurements from Planck. The discordance between the two datasets is largely unaffected by a more conservative treatment of the lensing systematics and the removal of angular scales most sensitive to nonlinear physics. The only extended cosmology that simultaneously alleviates the discordance with Planck and is at least moderately favored by the data includes evolving dark energy with a time-dependent equation of state (in the form of the $w_0-w_a$ parameterization). In this model, the respective $S_8 = 蟽_8 \sqrt{惟_{\rm m}/0.3}$ constraints agree at the $1蟽$ level, and there is `substantial concordance' between the KiDS and Planck datasets when accounting for the full parameter space. Moreover, the Planck constraint on the Hubble constant is wider than in LCDM and in agreement with the Riess et al. (2016) direct measurement of $H_0$. The dark energy model is moderately favored as compared to LCDM when combining the KiDS and Planck measurements, and remains moderately favored after including an informative prior on the Hubble constant. In both of these scenarios, marginalized constraints in the $w_0-w_a$ plane are discrepant with a cosmological constant at the $3蟽$ level. Moreover, KiDS constrains the sum of neutrino masses to 4.0 eV (95% CL), finds no preference for time or scale dependent modifications to the metric potentials, and is consistent with flatness and no running of the spectral index. The analysis code is public at https://github.com/sjoudaki/kids450 <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.04606v2-abstract-full').style.display = 'none'; document.getElementById('1610.04606v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 16 figures, results unchanged, version accepted for publication by MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1606.05345">arXiv:1606.05345</a> <span> [<a href="https://arxiv.org/pdf/1606.05345">pdf</a>, <a href="https://arxiv.org/format/1606.05345">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stw2312">10.1093/mnras/stw2312 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spherical collapse, formation hysteresis and the deeply non-linear cosmological power spectrum </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Mead%2C+A">Alexander Mead</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1606.05345v2-abstract-short" style="display: inline;"> I examine differences in non-linear structure formation between cosmological models that share a $z=0$ linear power spectrum in both shape and amplitude, but that differ via their growth history. $N$-body simulations of these models display an approximately identical large-scale-structure skeleton, but reveal deeply non-linear differences in the demographics and properties of haloes. I investigate… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.05345v2-abstract-full').style.display = 'inline'; document.getElementById('1606.05345v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1606.05345v2-abstract-full" style="display: none;"> I examine differences in non-linear structure formation between cosmological models that share a $z=0$ linear power spectrum in both shape and amplitude, but that differ via their growth history. $N$-body simulations of these models display an approximately identical large-scale-structure skeleton, but reveal deeply non-linear differences in the demographics and properties of haloes. I investigate to what extent the spherical-collapse model can help in understanding these differences, in both real and redshift space. I discuss how this is difficult to do if one attempts to identify haloes directly, because in that case one is subject to the vagaries of halo finding algorithms. However, I demonstrate that the halo model of structure formation provides an accurate non-linear response in the power spectrum, but only if results from spherical collapse that include formation hysteresis are properly incorporated. I comment on how this fact can be used to provide per cent level accurate matter power spectrum predictions for dark energy models for $k\leq5\,h\mathrm{Mpc}^{-1}$ by using the halo model as a correction to accurate $螞$CDM simulations. In the appendix I provide some fitting functions for the linear-collapse threshold ($未_\mathrm{c}$) and virialized overdensity ($螖_\mathrm{v}$) that are valid for a wide range of dark energy models. I also make my spherical-collapse code available at https://github.com/alexander-mead/collapse <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.05345v2-abstract-full').style.display = 'none'; document.getElementById('1606.05345v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures, accepted to MNRAS; v2 - small changes to align with published version, revised fitting function that can be more easily implemented</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1606.05338">arXiv:1606.05338</a> <span> [<a href="https://arxiv.org/pdf/1606.05338">pdf</a>, <a href="https://arxiv.org/format/1606.05338">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stw2805">10.1093/mnras/stw2805 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> KiDS-450: Cosmological parameter constraints from tomographic weak gravitational lensing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Hildebrandt%2C+H">H. Hildebrandt</a>, <a href="/search/?searchtype=author&query=Viola%2C+M">M. Viola</a>, <a href="/search/?searchtype=author&query=Heymans%2C+C">C. Heymans</a>, <a href="/search/?searchtype=author&query=Joudaki%2C+S">S. Joudaki</a>, <a href="/search/?searchtype=author&query=Kuijken%2C+K">K. Kuijken</a>, <a href="/search/?searchtype=author&query=Blake%2C+C">C. Blake</a>, <a href="/search/?searchtype=author&query=Erben%2C+T">T. Erben</a>, <a href="/search/?searchtype=author&query=Joachimi%2C+B">B. Joachimi</a>, <a href="/search/?searchtype=author&query=Klaes%2C+D">D. Klaes</a>, <a href="/search/?searchtype=author&query=Miller%2C+L">L. Miller</a>, <a href="/search/?searchtype=author&query=Morrison%2C+C+B">C. B. Morrison</a>, <a href="/search/?searchtype=author&query=Nakajima%2C+R">R. Nakajima</a>, <a href="/search/?searchtype=author&query=Kleijn%2C+G+V">G. Verdoes Kleijn</a>, <a href="/search/?searchtype=author&query=Amon%2C+A">A. Amon</a>, <a href="/search/?searchtype=author&query=Choi%2C+A">A. Choi</a>, <a href="/search/?searchtype=author&query=Covone%2C+G">G. Covone</a>, <a href="/search/?searchtype=author&query=de+Jong%2C+J+T+A">J. T. A. de Jong</a>, <a href="/search/?searchtype=author&query=Dvornik%2C+A">A. Dvornik</a>, <a href="/search/?searchtype=author&query=Conti%2C+I+F">I. Fenech Conti</a>, <a href="/search/?searchtype=author&query=Grado%2C+A">A. Grado</a>, <a href="/search/?searchtype=author&query=Harnois-D%C3%A9raps%2C+J">J. Harnois-D茅raps</a>, <a href="/search/?searchtype=author&query=Herbonnet%2C+R">R. Herbonnet</a>, <a href="/search/?searchtype=author&query=Hoekstra%2C+H">H. Hoekstra</a>, <a href="/search/?searchtype=author&query=K%C3%B6hlinger%2C+F">F. K枚hlinger</a>, <a href="/search/?searchtype=author&query=McFarland%2C+J">J. McFarland</a> , et al. (11 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1606.05338v2-abstract-short" style="display: inline;"> We present cosmological parameter constraints from a tomographic weak gravitational lensing analysis of ~450deg$^2$ of imaging data from the Kilo Degree Survey (KiDS). For a flat $螞$CDM cosmology with a prior on $H_0$ that encompasses the most recent direct measurements, we find $S_8\equiv蟽_8\sqrt{惟_{\rm m}/0.3}=0.745\pm0.039$. This result is in good agreement with other low redshift probes of lar… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.05338v2-abstract-full').style.display = 'inline'; document.getElementById('1606.05338v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1606.05338v2-abstract-full" style="display: none;"> We present cosmological parameter constraints from a tomographic weak gravitational lensing analysis of ~450deg$^2$ of imaging data from the Kilo Degree Survey (KiDS). For a flat $螞$CDM cosmology with a prior on $H_0$ that encompasses the most recent direct measurements, we find $S_8\equiv蟽_8\sqrt{惟_{\rm m}/0.3}=0.745\pm0.039$. This result is in good agreement with other low redshift probes of large scale structure, including recent cosmic shear results, along with pre-Planck cosmic microwave background constraints. A $2.3$-$蟽$ tension in $S_8$ and `substantial discordance' in the full parameter space is found with respect to the Planck 2015 results. We use shear measurements for nearly 15 million galaxies, determined with a new improved `self-calibrating' version of $lens$fit validated using an extensive suite of image simulations. Four-band $ugri$ photometric redshifts are calibrated directly with deep spectroscopic surveys. The redshift calibration is confirmed using two independent techniques based on angular cross-correlations and the properties of the photometric redshift probability distributions. Our covariance matrix is determined using an analytical approach, verified numerically with large mock galaxy catalogues. We account for uncertainties in the modelling of intrinsic galaxy alignments and the impact of baryon feedback on the shape of the non-linear matter power spectrum, in addition to the small residual uncertainties in the shear and redshift calibration. The cosmology analysis was performed blind. Our high-level data products, including shear correlation functions, covariance matrices, redshift distributions, and Monte Carlo Markov Chains are available at http://kids.strw.leidenuniv.nl. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.05338v2-abstract-full').style.display = 'none'; document.getElementById('1606.05338v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">49 pages, 34 figures, 9 tables, accepted for publication in MNRAS; data products available at http://kids.strw.leidenuniv.nl/</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1605.07842">arXiv:1605.07842</a> <span> [<a href="https://arxiv.org/pdf/1605.07842">pdf</a>, <a href="https://arxiv.org/ps/1605.07842">ps</a>, <a href="https://arxiv.org/format/1605.07842">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stw1963">10.1093/mnras/stw1963 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Slow blue nuclear hypervariables in PanSTARRS-1 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Lawrence%2C+A">A. Lawrence</a>, <a href="/search/?searchtype=author&query=Bruce%2C+A+G">A. G. Bruce</a>, <a href="/search/?searchtype=author&query=MacLeod%2C+C">C. MacLeod</a>, <a href="/search/?searchtype=author&query=Gezari%2C+S">S. Gezari</a>, <a href="/search/?searchtype=author&query=Elvis%2C+M">M. Elvis</a>, <a href="/search/?searchtype=author&query=Ward%2C+M">M. Ward</a>, <a href="/search/?searchtype=author&query=Smartt%2C+S+J">S. J. Smartt</a>, <a href="/search/?searchtype=author&query=Smith%2C+K+W">K. W. Smith</a>, <a href="/search/?searchtype=author&query=Wright%2C+D">D. Wright</a>, <a href="/search/?searchtype=author&query=Fraser%2C+M">M. Fraser</a>, <a href="/search/?searchtype=author&query=Marshall%2C+P">P. Marshall</a>, <a href="/search/?searchtype=author&query=Kaiser%2C+N">N. Kaiser</a>, <a href="/search/?searchtype=author&query=Burgett%2C+W">W. Burgett</a>, <a href="/search/?searchtype=author&query=Magnier%2C+E">E. Magnier</a>, <a href="/search/?searchtype=author&query=Tonry%2C+J">J. Tonry</a>, <a href="/search/?searchtype=author&query=Chambers%2C+K">K. Chambers</a>, <a href="/search/?searchtype=author&query=Wainscoat%2C+R">R. Wainscoat</a>, <a href="/search/?searchtype=author&query=Waters%2C+C">C. Waters</a>, <a href="/search/?searchtype=author&query=Price%2C+P">P. Price</a>, <a href="/search/?searchtype=author&query=Metcalfe%2C+N">N. Metcalfe</a>, <a href="/search/?searchtype=author&query=Valenti%2C+S">S. Valenti</a>, <a href="/search/?searchtype=author&query=Kotak%2C+R">R. Kotak</a>, <a href="/search/?searchtype=author&query=Mead%2C+A">A. Mead</a>, <a href="/search/?searchtype=author&query=Inserra%2C+C">C. Inserra</a>, <a href="/search/?searchtype=author&query=Chen%2C+T+W">T. W. Chen</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1605.07842v2-abstract-short" style="display: inline;"> We discuss 76 large amplitude transients (Delta-m>1.5) occurring in the nuclei of galaxies, nearly all with no previously known Active Galactic Nucleus (AGN). They have been discovered as part of the Pan-STARRS1 (PS1) 3pi survey, by comparison with SDSS photometry a decade earlier, and then monitored with the Liverpool Telescope, and studied spectroscopically with the William Herschel Telescope (W… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.07842v2-abstract-full').style.display = 'inline'; document.getElementById('1605.07842v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1605.07842v2-abstract-full" style="display: none;"> We discuss 76 large amplitude transients (Delta-m>1.5) occurring in the nuclei of galaxies, nearly all with no previously known Active Galactic Nucleus (AGN). They have been discovered as part of the Pan-STARRS1 (PS1) 3pi survey, by comparison with SDSS photometry a decade earlier, and then monitored with the Liverpool Telescope, and studied spectroscopically with the William Herschel Telescope (WHT). Based on colours, light curve shape, and spectra, these transients fall into four groups. A few are misclassified stars or objects of unknown type. Some are red/fast transients and are known or likely nuclear supernovae. A few are either radio sources or erratic variables and so likely blazars. However the majority (~66%) are blue and evolve slowly, on a timescale of years. Spectroscopy shows them to be AGN at z~ 0.3 - 1.4, which must have brightened since the SDSS photometry by around an order of magnitude. It is likely that these objects were in fact AGN a decade ago, but too weak to be recognised by SDSS; they could then be classed as "hypervariable" AGN. By searching the SDSS Stripe 82 quasar database, we find 15 similar objects. We discuss several possible explanations for these slow blue hypervariables - (i) unusually luminous tidal disruption events; (ii) extinction events; (iii) changes in accretion state; and (iv) large amplitude microlensing by stars in foreground galaxies. A mixture of explanations (iii) and (iv) seems most likely. Both hold promise of considerable new insight into the AGN phenomenon. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.07842v2-abstract-full').style.display = 'none'; document.getElementById('1605.07842v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">MNRAS in press; accepted Aug 2016; 44 pages, 27 figures This is the revised (accepted) version after refereeing Originally submitted to MNRAS December 2015</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1602.02154">arXiv:1602.02154</a> <span> [<a href="https://arxiv.org/pdf/1602.02154">pdf</a>, <a href="https://arxiv.org/format/1602.02154">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stw681">10.1093/mnras/stw681 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Accurate halo-model matter power spectra with dark energy, massive neutrinos and modified gravitational forces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Mead%2C+A">Alexander Mead</a>, <a href="/search/?searchtype=author&query=Heymans%2C+C">Catherine Heymans</a>, <a href="/search/?searchtype=author&query=Lombriser%2C+L">Lucas Lombriser</a>, <a href="/search/?searchtype=author&query=Peacock%2C+J">John Peacock</a>, <a href="/search/?searchtype=author&query=Steele%2C+O">Olivia Steele</a>, <a href="/search/?searchtype=author&query=Winther%2C+H">Hans Winther</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1602.02154v2-abstract-short" style="display: inline;"> We present an accurate non-linear matter power spectrum prediction scheme for a variety of extensions to the standard cosmological paradigm, which uses the tuned halo model previously developed in Mead (2015b). We consider dark energy models that are both minimally and non-minimally coupled, massive neutrinos and modified gravitational forces with chameleon and Vainshtein screening mechanisms. In… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.02154v2-abstract-full').style.display = 'inline'; document.getElementById('1602.02154v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1602.02154v2-abstract-full" style="display: none;"> We present an accurate non-linear matter power spectrum prediction scheme for a variety of extensions to the standard cosmological paradigm, which uses the tuned halo model previously developed in Mead (2015b). We consider dark energy models that are both minimally and non-minimally coupled, massive neutrinos and modified gravitational forces with chameleon and Vainshtein screening mechanisms. In all cases we compare halo-model power spectra to measurements from high-resolution simulations. We show that the tuned halo model method can predict the non-linear matter power spectrum measured from simulations of parameterised $w(a)$ dark energy models at the few per cent level for $k<10\,h\mathrm{Mpc}^{-1}$, and we present theoretically motivated extensions to cover non-minimally coupled scalar fields, massive neutrinos and Vainshtein screened modified gravity models that result in few per cent accurate power spectra for $k<10\,h\mathrm{Mpc}^{-1}$. For chameleon screened models we achieve only 10 per cent accuracy for the same range of scales. Finally, we use our halo model to investigate degeneracies between different extensions to the standard cosmological model, finding that the impact of baryonic feedback on the non-linear matter power spectrum can be considered independently of modified gravity or massive neutrino extensions. In contrast, considering the impact of modified gravity and massive neutrinos independently results in biased estimates of power at the level of 5 per cent at scales $k>0.5\,h\mathrm{Mpc}^{-1}$. An updated version of our publicly available HMcode can be found at https://github.com/alexander-mead/HMcode <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.02154v2-abstract-full').style.display = 'none'; document.getElementById('1602.02154v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 February, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 9 figures, published in MNRAS, v2 - closely matches published version, no major changes</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Monthly Notices of the Royal Astronomical Society 2016 459 (2): 1468-1488 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1601.05786">arXiv:1601.05786</a> <span> [<a href="https://arxiv.org/pdf/1601.05786">pdf</a>, <a href="https://arxiv.org/format/1601.05786">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stw2665">10.1093/mnras/stw2665 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> CFHTLenS revisited: assessing concordance with Planck including astrophysical systematics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Joudaki%2C+S">Shahab Joudaki</a>, <a href="/search/?searchtype=author&query=Blake%2C+C">Chris Blake</a>, <a href="/search/?searchtype=author&query=Heymans%2C+C">Catherine Heymans</a>, <a href="/search/?searchtype=author&query=Choi%2C+A">Ami Choi</a>, <a href="/search/?searchtype=author&query=Harnois-Deraps%2C+J">Joachim Harnois-Deraps</a>, <a href="/search/?searchtype=author&query=Hildebrandt%2C+H">Hendrik Hildebrandt</a>, <a href="/search/?searchtype=author&query=Joachimi%2C+B">Benjamin Joachimi</a>, <a href="/search/?searchtype=author&query=Johnson%2C+A">Andrew Johnson</a>, <a href="/search/?searchtype=author&query=Mead%2C+A">Alexander Mead</a>, <a href="/search/?searchtype=author&query=Parkinson%2C+D">David Parkinson</a>, <a href="/search/?searchtype=author&query=Viola%2C+M">Massimo Viola</a>, <a href="/search/?searchtype=author&query=van+Waerbeke%2C+L">Ludovic van Waerbeke</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1601.05786v2-abstract-short" style="display: inline;"> We investigate the impact of astrophysical systematics on cosmic shear cosmological parameter constraints from the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS), and the concordance with cosmic microwave background measurements by Planck. We present updated CFHTLenS cosmic shear tomography measurements extended to degree scales using a covariance calibrated by a new suite of N-body simu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.05786v2-abstract-full').style.display = 'inline'; document.getElementById('1601.05786v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1601.05786v2-abstract-full" style="display: none;"> We investigate the impact of astrophysical systematics on cosmic shear cosmological parameter constraints from the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS), and the concordance with cosmic microwave background measurements by Planck. We present updated CFHTLenS cosmic shear tomography measurements extended to degree scales using a covariance calibrated by a new suite of N-body simulations. We analyze these measurements with a new model fitting pipeline, accounting for key systematic uncertainties arising from intrinsic galaxy alignments, baryonic effects in the nonlinear matter power spectrum, and photometric redshift uncertainties. We examine the impact of the systematic degrees of freedom on the cosmological parameter constraints, both independently and jointly. When the systematic uncertainties are considered independently, the intrinsic alignment amplitude is the only degree of freedom that is substantially preferred by the data. When the systematic uncertainties are considered jointly, there is no consistently strong preference in favor of the more complex models. We quantify the level of concordance between the CFHTLenS and Planck datasets by employing two distinct data concordance tests, grounded in Bayesian evidence and information theory. We find that the two data concordance tests largely agree with one another, and that the level of concordance between the CFHTLenS and Planck datasets is sensitive to the exact details of the systematic uncertainties included in our analysis, ranging from decisive discordance to substantial concordance as the treatment of the systematic uncertainties becomes more conservative. The least conservative scenario is the one most favored by the cosmic shear data, but it is also the one that shows the greatest degree of discordance with Planck. The data and analysis code are public at https://github.com/sjoudaki/cfhtlens_revisited <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.05786v2-abstract-full').style.display = 'none'; document.getElementById('1601.05786v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 12 figures, results unchanged, version accepted for publication by MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1511.09082">arXiv:1511.09082</a> <span> [<a href="https://arxiv.org/pdf/1511.09082">pdf</a>, <a href="https://arxiv.org/ps/1511.09082">ps</a>, <a href="https://arxiv.org/format/1511.09082">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/0004-6256/151/2/42">10.3847/0004-6256/151/2/42 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Radio Properties of Young Stellar Objects in the Core of the Serpens South Infrared Dark Cloud </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Kern%2C+N">Nicholas Kern</a>, <a href="/search/?searchtype=author&query=Keown%2C+J">Jared Keown</a>, <a href="/search/?searchtype=author&query=Tobin%2C+J">John Tobin</a>, <a href="/search/?searchtype=author&query=Mead%2C+A">Adrian Mead</a>, <a href="/search/?searchtype=author&query=Gutermuth%2C+R">Robert Gutermuth</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1511.09082v1-abstract-short" style="display: inline;"> We present deep radio continuum observations of the star-forming core of the Serpens South Infrared Dark Cloud with the Karl G. Jansky Very Large Array (VLA). Observations were conducted in two bands centered at 7.25 GHz (4.14 cm) and 4.75 GHz (6.31 cm) with an rms of 8.5 and 11.1 microJy/beam, respectively. We also use 2MASS, Spitzer and Herschel data to put our radio observations in the context… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.09082v1-abstract-full').style.display = 'inline'; document.getElementById('1511.09082v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1511.09082v1-abstract-full" style="display: none;"> We present deep radio continuum observations of the star-forming core of the Serpens South Infrared Dark Cloud with the Karl G. Jansky Very Large Array (VLA). Observations were conducted in two bands centered at 7.25 GHz (4.14 cm) and 4.75 GHz (6.31 cm) with an rms of 8.5 and 11.1 microJy/beam, respectively. We also use 2MASS, Spitzer and Herschel data to put our radio observations in the context of young stellar populations characterized by near and far infrared observations. Within a 5 arcmin x 5 arcmin region of interest around the central cluster, we detect roughly eighteen radio sources, seven of which we determine are protostellar in nature due to their radio spectral indices and their association with infrared sources. We find evidence for a previously undetected embedded Class 0 protostar and reaffirm Class 0 protostellar classifications determined by previous millimeter wavelength continuum studies. We use our infrared data to derive mid-infrared luminosities for three of our protostellar sources and find relative agreement between the known YSO radio luminosity vs bolometric luminosity correlation. Lastly, we marginally detect an additional six radio sources at the 2-3 sigma level that lie within two arcseconds of infrared YSO candidates, providing motivation for higher sensitivity studies to clarify the nature of these sources and further probe embedded and/or low luminosity YSOs in Serpens South. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.09082v1-abstract-full').style.display = 'none'; document.getElementById('1511.09082v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2015. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1505.07833">arXiv:1505.07833</a> <span> [<a href="https://arxiv.org/pdf/1505.07833">pdf</a>, <a href="https://arxiv.org/ps/1505.07833">ps</a>, <a href="https://arxiv.org/format/1505.07833">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stv2036">10.1093/mnras/stv2036 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An accurate halo model for fitting non-linear cosmological power spectra and baryonic feedback models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Mead%2C+A">Alexander Mead</a>, <a href="/search/?searchtype=author&query=Peacock%2C+J">John Peacock</a>, <a href="/search/?searchtype=author&query=Heymans%2C+C">Catherine Heymans</a>, <a href="/search/?searchtype=author&query=Joudaki%2C+S">Shahab Joudaki</a>, <a href="/search/?searchtype=author&query=Heavens%2C+A">Alan Heavens</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1505.07833v3-abstract-short" style="display: inline;"> We present an optimized variant of the halo model, designed to produce accurate matter power spectra well into the non-linear regime for a wide range of cosmological models. To do this, we introduce physically motivated free parameters into the halo-model formalism and fit these to data from high-resolution $N$-body simulations. For a variety of $螞$CDM and $w$CDM models the halo-model power is acc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.07833v3-abstract-full').style.display = 'inline'; document.getElementById('1505.07833v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1505.07833v3-abstract-full" style="display: none;"> We present an optimized variant of the halo model, designed to produce accurate matter power spectra well into the non-linear regime for a wide range of cosmological models. To do this, we introduce physically motivated free parameters into the halo-model formalism and fit these to data from high-resolution $N$-body simulations. For a variety of $螞$CDM and $w$CDM models the halo-model power is accurate to $\simeq 5$ per cent for $k\leq 10h\,\mathrm{Mpc}$ and $z\leq 2$. An advantage of our new halo model is that it can be adapted to account for the effects of baryonic feedback on the power spectrum. We demonstrate this by fitting the halo model to power spectra from the OWLS hydrodynamical simulation suite via parameters that govern halo internal structure. We are able to fit all feedback models investigated at the 5 per cent level using only two free parameters, and we place limits on the range of these halo parameters for feedback models investigated by the OWLS simulations. Accurate predictions to high-$k$ are vital for weak lensing surveys, and these halo parameters could be considered nuisance parameters to marginalize over in future analyses to mitigate uncertainty regarding the details of feedback. Finally, we investigate how lensing observables predicted by our model compare to those from simulations and from HALOFIT for a range of $k$-cuts and feedback models and quantify the angular scales at which these effects become important. Code to calculate power spectra from the model presented in this paper can be found at https://github.com/alexander-mead/hmcode <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.07833v3-abstract-full').style.display = 'none'; document.getElementById('1505.07833v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 May, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 10 figures, published in MNRAS, v2 - minor text additions, closely matched published version, v3 - corrected equation (B10) in the appendix</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Monthly Notices of the Royal Astronomical Society 2015 454 (2): 1958-1975 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1501.04961">arXiv:1501.04961</a> <span> [<a href="https://arxiv.org/pdf/1501.04961">pdf</a>, <a href="https://arxiv.org/ps/1501.04961">ps</a>, <a href="https://arxiv.org/format/1501.04961">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.114.251101">10.1103/PhysRevLett.114.251101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unscreening Modified Gravity in the Matter Power Spectrum </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Lombriser%2C+L">Lucas Lombriser</a>, <a href="/search/?searchtype=author&query=Simpson%2C+F">Fergus Simpson</a>, <a href="/search/?searchtype=author&query=Mead%2C+A">Alexander Mead</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1501.04961v2-abstract-short" style="display: inline;"> Viable modifications of gravity that may produce cosmic acceleration need to be screened in high-density regions such as the Solar System, where general relativity is well tested. Screening mechanisms also prevent strong anomalies in the large-scale structure and limit the constraints that can be inferred on these gravity models from cosmology. We find that by suppressing the contribution of the s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.04961v2-abstract-full').style.display = 'inline'; document.getElementById('1501.04961v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1501.04961v2-abstract-full" style="display: none;"> Viable modifications of gravity that may produce cosmic acceleration need to be screened in high-density regions such as the Solar System, where general relativity is well tested. Screening mechanisms also prevent strong anomalies in the large-scale structure and limit the constraints that can be inferred on these gravity models from cosmology. We find that by suppressing the contribution of the screened high-density regions in the matter power spectrum, allowing a greater contribution of unscreened low densities, modified gravity models can be more readily discriminated from the concordance cosmology. Moreover, by variation of density thresholds, degeneracies with other effects may be dealt with more adequately. Specializing to chameleon gravity as a worked example for screening in modified gravity, employing N-body simulations of f(R) models and the halo model of chameleon theories, we demonstrate the effectiveness of this method. We find that a percent-level measurement of the clipped power at k < 0.3 h/Mpc can yield constraints on chameleon models that are more stringent than what is inferred from Solar System tests or distance indicators in unscreened dwarf galaxies. Finally, we verify that our method is also applicable to the Vainshtein mechanism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.04961v2-abstract-full').style.display = 'none'; document.getElementById('1501.04961v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 September, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 January, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 2 figures; v2 matches published version, including application to Vainshtein mechanism</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 114, 251101 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1412.5195">arXiv:1412.5195</a> <span> [<a href="https://arxiv.org/pdf/1412.5195">pdf</a>, <a href="https://arxiv.org/ps/1412.5195">ps</a>, <a href="https://arxiv.org/format/1412.5195">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stv1484">10.1093/mnras/stv1484 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Rapid simulation rescaling from standard to modified gravity models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Mead%2C+A">Alexander Mead</a>, <a href="/search/?searchtype=author&query=Peacock%2C+J">John Peacock</a>, <a href="/search/?searchtype=author&query=Lombriser%2C+L">Lucas Lombriser</a>, <a href="/search/?searchtype=author&query=Li%2C+B">Baojiu Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1412.5195v3-abstract-short" style="display: inline;"> We develop and test an algorithm to rescale a simulated dark-matter particle distribution or halo catalogue from a standard gravity model to that of a modified gravity model. This method is based on that of Angulo & White but with some additional ingredients to account for (i) scale-dependent growth of linear density perturbations and (ii) screening mechanisms that are generic features of viable m… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.5195v3-abstract-full').style.display = 'inline'; document.getElementById('1412.5195v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1412.5195v3-abstract-full" style="display: none;"> We develop and test an algorithm to rescale a simulated dark-matter particle distribution or halo catalogue from a standard gravity model to that of a modified gravity model. This method is based on that of Angulo & White but with some additional ingredients to account for (i) scale-dependent growth of linear density perturbations and (ii) screening mechanisms that are generic features of viable modified gravity models. We attempt to keep the method as general as possible, so that it may plausibly be applied to a wide range of modified theories, although tests against simulations are restricted to a subclass of $f(R)$ models at this stage. We show that rescaling allows the power spectrum of matter to be reproduced at the $\sim 3$ per cent level in both real and redshift space up to $k=0.1h\,\mathrm{Mpc}^{-1}$ if we change the box size and alter the particle displacement field; this limit can be extended to $k=1h\,\mathrm{Mpc}^{-1}$ if we additionally alter halo internal structure. We simultaneously develop an algorithm that can be applied directly to a halo catalogue, in which case the halo mass function and clustering can be reproduced at the $\sim 5$ per cent level. Finally we investigate the clustering of halo particle distributions, generated from rescaled halo catalogues, and find that a similar accuracy can be reached. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.5195v3-abstract-full').style.display = 'none'; document.getElementById('1412.5195v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 13 figures, accepted for publication in MNRAS, v3 - closely matches published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Monthly Notices of the Royal Astronomical Society 2015 452 (4): 4203-4221 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1408.5277">arXiv:1408.5277</a> <span> [<a href="https://arxiv.org/pdf/1408.5277">pdf</a>, <a href="https://arxiv.org/format/1408.5277">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/S147355041400041X">10.1017/S147355041400041X <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Surface Flux Patterns on Planets in Circumbinary Systems, and Potential for Photosynthesis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Forgan%2C+D+H">Duncan H. Forgan</a>, <a href="/search/?searchtype=author&query=Mead%2C+A">Alexander Mead</a>, <a href="/search/?searchtype=author&query=Cockell%2C+C+S">Charles S. Cockell</a>, <a href="/search/?searchtype=author&query=Raven%2C+J+A">John A. Raven</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1408.5277v1-abstract-short" style="display: inline;"> Recently, the Kepler Space Telescope has detected several planets in orbit around a close binary star system. These so-called circumbinary planets will experience non-trivial spatial and temporal distributions of radiative flux on their surfaces, with features not seen in their single-star orbiting counterparts. Earthlike circumbinary planets inhabited by photosynthetic organisms will be forced to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1408.5277v1-abstract-full').style.display = 'inline'; document.getElementById('1408.5277v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1408.5277v1-abstract-full" style="display: none;"> Recently, the Kepler Space Telescope has detected several planets in orbit around a close binary star system. These so-called circumbinary planets will experience non-trivial spatial and temporal distributions of radiative flux on their surfaces, with features not seen in their single-star orbiting counterparts. Earthlike circumbinary planets inhabited by photosynthetic organisms will be forced to adapt to these unusual flux patterns. We map the flux received by putative Earthlike planets (as a function of surface latitude/longitude and time) orbiting the binary star systems Kepler-16 and Kepler-47, two star systems which already boast circumbinary exoplanet detections. The longitudinal and latitudinal distribution of flux is sensitive to the centre of mass motion of the binary, and the relative orbital phases of the binary and planet. Total eclipses of the secondary by the primary, as well as partial eclipses of the primary by the secondary add an extra forcing term to the system. We also find that the patterns of darkness on the surface are equally unique. Beyond the planet's polar circles, the surface spends a significantly longer time in darkness than latitudes around the equator, due to the stars' motions delaying the first sunrise of spring (or hastening the last sunset of autumn). In the case of Kepler-47, we also find a weak longitudinal dependence for darkness, but this effect tends to average out if considered over many orbits. In the light of these flux and darkness patterns, we consider and discuss the prospects and challenges for photosynthetic organisms, using terrestrial analogues as a guide. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1408.5277v1-abstract-full').style.display = 'none'; document.getElementById('1408.5277v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 43 figures, accepted for publication in the International Journal of Astrobiology</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1408.1047">arXiv:1408.1047</a> <span> [<a href="https://arxiv.org/pdf/1408.1047">pdf</a>, <a href="https://arxiv.org/ps/1408.1047">ps</a>, <a href="https://arxiv.org/format/1408.1047">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stu1964">10.1093/mnras/stu1964 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Remapping simulated halo catalogues in redshift space </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Mead%2C+A">Alexander Mead</a>, <a href="/search/?searchtype=author&query=Peacock%2C+J">John Peacock</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1408.1047v2-abstract-short" style="display: inline;"> We discuss the extension to redshift space of a rescaling algorithm, designed to alter the effective cosmology of a pre-existing simulated particle distribution or catalogue of dark matter haloes. The rescaling approach was initially developed by Angulo & White and was adapted and applied to halo catalogues in real space in our previous work. This algorithm requires no information other than the i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1408.1047v2-abstract-full').style.display = 'inline'; document.getElementById('1408.1047v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1408.1047v2-abstract-full" style="display: none;"> We discuss the extension to redshift space of a rescaling algorithm, designed to alter the effective cosmology of a pre-existing simulated particle distribution or catalogue of dark matter haloes. The rescaling approach was initially developed by Angulo & White and was adapted and applied to halo catalogues in real space in our previous work. This algorithm requires no information other than the initial and target cosmological parameters, and it contains no tuned parameters. It is shown here that the rescaling method also works well in redshift space, and that the rescaled simulations can reproduce the growth rate of cosmological density fluctuations appropriate for the target cosmology. Even when rescaling a grossly non-standard model with Lambda=0 and zero baryons, the redshift-space power spectrum of standard LCDM can be reproduced to about 5% error for k<0.2h Mpc^-1. The ratio of quadrupole-to-monopole power spectra remains correct to the same tolerance up to k=1h Mpc^-1, provided that the input halo catalogue contains measured internal velocity dispersions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1408.1047v2-abstract-full').style.display = 'none'; document.getElementById('1408.1047v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 November, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 August, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 6 figures, accepted for publication in MNRAS</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Monthly Notices of the Royal Astronomical Society 2014 445 (2): 3453-3465 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1405.1325">arXiv:1405.1325</a> <span> [<a href="https://arxiv.org/pdf/1405.1325">pdf</a>, <a href="https://arxiv.org/format/1405.1325">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stu1579">10.1093/mnras/stu1579 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Super-luminous supernovae from PESSTO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Nicholl%2C+M">M. Nicholl</a>, <a href="/search/?searchtype=author&query=Smartt%2C+S+J">S. J. Smartt</a>, <a href="/search/?searchtype=author&query=Jerkstrand%2C+A">A. Jerkstrand</a>, <a href="/search/?searchtype=author&query=Inserra%2C+C">C. Inserra</a>, <a href="/search/?searchtype=author&query=Anderson%2C+J+P">J. P. Anderson</a>, <a href="/search/?searchtype=author&query=Baltay%2C+C">C. Baltay</a>, <a href="/search/?searchtype=author&query=Benetti%2C+S">S. Benetti</a>, <a href="/search/?searchtype=author&query=Chen%2C+T+-">T. -W. Chen</a>, <a href="/search/?searchtype=author&query=Elias-Rosa%2C+N">N. Elias-Rosa</a>, <a href="/search/?searchtype=author&query=Feindt%2C+U">U. Feindt</a>, <a href="/search/?searchtype=author&query=Fraser%2C+M">M. Fraser</a>, <a href="/search/?searchtype=author&query=Gal-Yam%2C+A">A. Gal-Yam</a>, <a href="/search/?searchtype=author&query=Hadjiyska%2C+E">E. Hadjiyska</a>, <a href="/search/?searchtype=author&query=Howell%2C+D+A">D. A. Howell</a>, <a href="/search/?searchtype=author&query=Kotak%2C+R">R. Kotak</a>, <a href="/search/?searchtype=author&query=Lawrence%2C+A">A. Lawrence</a>, <a href="/search/?searchtype=author&query=Leloudas%2C+G">G. Leloudas</a>, <a href="/search/?searchtype=author&query=Margheim%2C+S">S. Margheim</a>, <a href="/search/?searchtype=author&query=Mattila%2C+S">S. Mattila</a>, <a href="/search/?searchtype=author&query=McKinnon%2C+R">R. McKinnon</a>, <a href="/search/?searchtype=author&query=McCrum%2C+M">M. McCrum</a>, <a href="/search/?searchtype=author&query=Mead%2C+A">A. Mead</a>, <a href="/search/?searchtype=author&query=Nugent%2C+P">P. Nugent</a>, <a href="/search/?searchtype=author&query=Rabinowitz%2C+D">D. Rabinowitz</a>, <a href="/search/?searchtype=author&query=Rest%2C+A">A. Rest</a> , et al. (7 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1405.1325v2-abstract-short" style="display: inline;"> We present optical spectra and light curves for three hydrogen-poor super-luminous supernovae followed by the Public ESO Spectroscopic Survey of Transient Objects (PESSTO). Time series spectroscopy from a few days after maximum light to 100 days later shows them to be fairly typical of this class, with spectra dominated by Ca II, Mg II, Fe II and Si II, which evolve slowly over most of the post-pe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.1325v2-abstract-full').style.display = 'inline'; document.getElementById('1405.1325v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1405.1325v2-abstract-full" style="display: none;"> We present optical spectra and light curves for three hydrogen-poor super-luminous supernovae followed by the Public ESO Spectroscopic Survey of Transient Objects (PESSTO). Time series spectroscopy from a few days after maximum light to 100 days later shows them to be fairly typical of this class, with spectra dominated by Ca II, Mg II, Fe II and Si II, which evolve slowly over most of the post-peak photospheric phase. We determine bolometric light curves and apply simple fitting tools, based on the diffusion of energy input by magnetar spin-down, 56Ni decay, and collision of the ejecta with an opaque circumstellar shell. We investigate how the heterogeneous light curves of our sample (combined with others from the literature) can help to constrain the possible mechanisms behind these events. We have followed these events to beyond 100-200 days after peak, to disentangle host galaxy light from fading supernova flux and to differentiate between the models, which predict diverse behaviour at this phase. Models powered by radioactivity require unrealistic parameters to reproduce the observed light curves, as found by previous studies. Both magnetar heating and circumstellar interaction still appear to be viable candidates. A large diversity is emerging in observed tail-phase luminosities, with magnetar models failing in some cases to predict the rapid drop in flux. This would suggest either that magnetars are not responsible, or that the X-ray flux from the magnetar wind is not fully trapped. The light curve of one object shows a distinct re-brightening at around 100d after maximum light. We argue that this could result either from multiple shells of circumstellar material, or from a magnetar ionisation front breaking out of the ejecta. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.1325v2-abstract-full').style.display = 'none'; document.getElementById('1405.1325v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 May, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in MNRAS (Aug 2014)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2014, MNRAS, 444, 2096 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1402.5044">arXiv:1402.5044</a> <span> [<a href="https://arxiv.org/pdf/1402.5044">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/S1473550414000068">10.1017/S1473550414000068 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Photosynthetic Potential of Planets in 3:2 Spin Orbit Resonances </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Brown%2C+S+P">S. P. Brown</a>, <a href="/search/?searchtype=author&query=Mead%2C+A+J">A. J. Mead</a>, <a href="/search/?searchtype=author&query=Forgan%2C+D+H">D. H. Forgan</a>, <a href="/search/?searchtype=author&query=Raven%2C+J+A">J. A. Raven</a>, <a href="/search/?searchtype=author&query=Cockell%2C+C+S">C. S. Cockell</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1402.5044v1-abstract-short" style="display: inline;"> Photosynthetic life requires sufficient photosynthetically active radiation (PAR) to metabolise. On Earth, plant behaviour, physiology and metabolism are sculpted around the night-day cycle by an endogenous biological circadian clock. The evolution of life was influenced by the Earth-Sun orbital dynamic, which generates the photo-environment incident on the planetary surface. In this work the un… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.5044v1-abstract-full').style.display = 'inline'; document.getElementById('1402.5044v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1402.5044v1-abstract-full" style="display: none;"> Photosynthetic life requires sufficient photosynthetically active radiation (PAR) to metabolise. On Earth, plant behaviour, physiology and metabolism are sculpted around the night-day cycle by an endogenous biological circadian clock. The evolution of life was influenced by the Earth-Sun orbital dynamic, which generates the photo-environment incident on the planetary surface. In this work the unusual photo-environment of an Earth-like planet (ELP) in 3:2 spin orbit resonance is explored. Photo-environments on the ELP are longitudinally differentiated, in addition to differentiations relating to latitude and depth (for aquatic organisms) which are familiar on Earth. The light environment on such a planet could be compatible with Earth's photosynthetic life although the threat of atmospheric freeze-out and prolonged periods of darkness would present significant challenges. We emphasise the relationship between the evolution of life on a planetary body with its orbital dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.5044v1-abstract-full').style.display = 'none'; document.getElementById('1402.5044v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 17 figures, accepted for publication in the International Journal of Astrobiology</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1310.0483">arXiv:1310.0483</a> <span> [<a href="https://arxiv.org/pdf/1310.0483">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Populations and Evolution">q-bio.PE</span> </div> </div> <p class="title is-5 mathjax"> Continental Diversity of Chenopodium album Seedling Recruitment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Andujar"> Andujar</a>, <a href="/search/?searchtype=author&query=G.%2C+J">J. G.</a>, <a href="/search/?searchtype=author&query=Benoit%2C+D+L">D. L. Benoit</a>, <a href="/search/?searchtype=author&query=Davis%2C+A">A. Davis</a>, <a href="/search/?searchtype=author&query=Dekker%2C+J">J. Dekker</a>, <a href="/search/?searchtype=author&query=Graziani%2C+F">F. Graziani</a>, <a href="/search/?searchtype=author&query=Grundy%2C+A">A. Grundy</a>, <a href="/search/?searchtype=author&query=Karlsson%2C+L">L. Karlsson</a>, <a href="/search/?searchtype=author&query=Mead%2C+A">A. Mead</a>, <a href="/search/?searchtype=author&query=Milberg%2C+P">P. Milberg</a>, <a href="/search/?searchtype=author&query=Neve%2C+P">P. Neve</a>, <a href="/search/?searchtype=author&query=Rasmussen%2C+I+A">I. A. Rasmussen</a>, <a href="/search/?searchtype=author&query=Salonen%2C+J">J. Salonen</a>, <a href="/search/?searchtype=author&query=Sera%2C+B">B. Sera</a>, <a href="/search/?searchtype=author&query=Sousa%2C+E">E. Sousa</a>, <a href="/search/?searchtype=author&query=Tei%2C+F">F. Tei</a>, <a href="/search/?searchtype=author&query=Torresen%2C+K+S">K. S. Torresen</a>, <a href="/search/?searchtype=author&query=Urbano%2C+J+M">J. M. Urbano</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1310.0483v1-abstract-short" style="display: inline;"> Chenopodium album seedling emergence studies were conducted at nine European and two North American locations comparing local populations with a common population from Denmark. It is hypothesized that C. album seedling recruitment timing and magnitude have adapted to environmental and cropping system practices of a locality. Limitations in the habitat (filter 1) were reflected in local C. album po… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1310.0483v1-abstract-full').style.display = 'inline'; document.getElementById('1310.0483v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1310.0483v1-abstract-full" style="display: none;"> Chenopodium album seedling emergence studies were conducted at nine European and two North American locations comparing local populations with a common population from Denmark. It is hypothesized that C. album seedling recruitment timing and magnitude have adapted to environmental and cropping system practices of a locality. Limitations in the habitat (filter 1) were reflected in local C. album population recruitment season length. Generally, the duration of seedling recruitment of both populations (local; DEN-COM) increased with decreasing latitude, north-to-south. In general, compared to the local population, DEN-COM recruitment at locations north of Denmark was longer and south of Denmark was shorter, and ended sooner. Generally, the local cropping system disturbances (CSD) period increased with decreasing latitude. The total duration of the CSD period was over twice as long in the south as that in the north. Recruitment at each locality possessed seasonal structure (time, number) consisting of 2-4 discrete seasonal cohorts. This may be an adaptive means by which C. album searches for, and exploits, recruitment opportunity just prior to, and after, predictable disturbances. The control of C. album seedling emergence is contained in the heteroblastic traits of its locally adapted seeds, and is stimulated by a complex interaction of light, heat, water, nitrate and oxygen signals inherent in the local environment. Our observations of complex recruitment patterns occurring at critical cropping times is strong evidence that C. album possesses a flexible and sensitive germination regulation system adaptable to opportunity in many different Eurasian and North American agricultural habitats. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1310.0483v1-abstract-full').style.display = 'none'; document.getElementById('1310.0483v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">82 pages; 12 tables; 20 seedling recruitment calendars; 9 data summaries; this manuscript is the product of the germination and seedling emergence working group of the European Weed Research Society</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1308.5183">arXiv:1308.5183</a> <span> [<a href="https://arxiv.org/pdf/1308.5183">pdf</a>, <a href="https://arxiv.org/ps/1308.5183">ps</a>, <a href="https://arxiv.org/format/1308.5183">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stu345">10.1093/mnras/stu345 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Remapping dark matter halo catalogues between cosmological simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Mead%2C+A">Alexander Mead</a>, <a href="/search/?searchtype=author&query=Peacock%2C+J">John Peacock</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1308.5183v3-abstract-short" style="display: inline;"> We present and test a method for modifying the catalogue of dark matter haloes produced from a given cosmological simulation, so that it resembles the result of a simulation with an entirely different set of parameters. This extends the method of Angulo & White (2010), which rescales the full particle distribution from a simulation. Working directly with the halo catalogue offers an advantage in s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1308.5183v3-abstract-full').style.display = 'inline'; document.getElementById('1308.5183v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1308.5183v3-abstract-full" style="display: none;"> We present and test a method for modifying the catalogue of dark matter haloes produced from a given cosmological simulation, so that it resembles the result of a simulation with an entirely different set of parameters. This extends the method of Angulo & White (2010), which rescales the full particle distribution from a simulation. Working directly with the halo catalogue offers an advantage in speed, and also allows modifications of the internal structure of the haloes to account for nonlinear differences between cosmologies. Our method can be used directly on a halo catalogue in a self contained manner without any additional information about the overall density field: although the large-scale displacement field is required by the method, this can be inferred from the halo catalogue alone. We show proof of concept of our method by rescaling a matter-only simulation with no baryon acoustic oscillation (BAO) features to a more standard LCDM model containing a cosmological constant and a BAO signal. In conjunction with the halo occupation approach, this method provides a basis for the rapid generation of mock galaxy samples spanning a wide range of cosmological parameters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1308.5183v3-abstract-full').style.display = 'none'; document.getElementById('1308.5183v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 August, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 10 figures, accepted for publication in MNRAS</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Mon.Not.Roy.Astron.Soc.440.2:1233-1247,2014 </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>