CINXE.COM
Search results for: additive manufacturing
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: additive manufacturing</title> <meta name="description" content="Search results for: additive manufacturing"> <meta name="keywords" content="additive manufacturing"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="additive manufacturing" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="additive manufacturing"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 992</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: additive manufacturing</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">992</span> Optimization of Surface Roughness in Additive Manufacturing Processes via Taguchi Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Anjian%20Chen">Anjian Chen</a>, <a href="https://publications.waset.org/search?q=Joseph%20C.%20Chen"> Joseph C. Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper studies a case where the targeted surface roughness of fused deposition modeling (FDM) additive manufacturing process is improved. The process is designing to reduce or eliminate the defects and improve the process capability index Cp and Cpk for an FDM additive manufacturing process. The baseline Cp is 0.274 and Cpk is 0.654. This research utilizes the Taguchi methodology, to eliminate defects and improve the process. The Taguchi method is used to optimize the additive manufacturing process and printing parameters that affect the targeted surface roughness of FDM additive manufacturing. The Taguchi L9 orthogonal array is used to organize the parameters' (four controllable parameters and one non-controllable parameter) effectiveness on the FDM additive manufacturing process. The four controllable parameters are nozzle temperature [°C], layer thickness [mm], nozzle speed [mm/s], and extruder speed [%]. The non-controllable parameter is the environmental temperature [°C]. After the optimization of the parameters, a confirmation print was printed to prove that the results can reduce the amount of defects and improve the process capability index Cp from 0.274 to 1.605 and the Cpk from 0.654 to 1.233 for the FDM additive manufacturing process. The final results confirmed that the Taguchi methodology is sufficient to improve the surface roughness of FDM additive manufacturing process.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Additive%20manufacturing" title="Additive manufacturing">Additive manufacturing</a>, <a href="https://publications.waset.org/search?q=fused%20deposition%20modeling" title=" fused deposition modeling"> fused deposition modeling</a>, <a href="https://publications.waset.org/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a>, <a href="https://publications.waset.org/search?q=Six-Sigma" title=" Six-Sigma"> Six-Sigma</a>, <a href="https://publications.waset.org/search?q=Taguchi%20method" title=" Taguchi method"> Taguchi method</a>, <a href="https://publications.waset.org/search?q=3D%20printing." title=" 3D printing."> 3D printing.</a> </p> <a href="https://publications.waset.org/10008825/optimization-of-surface-roughness-in-additive-manufacturing-processes-via-taguchi-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10008825/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10008825/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10008825/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10008825/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10008825/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10008825/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10008825/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10008825/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10008825/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10008825/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10008825.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1396</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">991</span> Influence of Surface Area on Dissolution of Additively Manufactured Polyvinyl Alcohol Tablets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Seyedebrahim%20Afkhami">Seyedebrahim Afkhami</a>, <a href="https://publications.waset.org/search?q=Meisam%20Abdi"> Meisam Abdi</a>, <a href="https://publications.waset.org/search?q=Reza%20Baserinia"> Reza Baserinia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Additive manufacturing is revolutionizing production in different industries, including pharmaceuticals. This case study explores the influence of surface area on the dissolution of additively manufactured polyvinyl alcohol parts as a polymer candidate. Specimens of different geometries and constant mass were fabricated using a Fused Deposition Modeling (FDM) 3D printer. The dissolution behavior of these samples was compared with respect to their surface area. Improved and accelerated dissolution was observed for samples with a larger surface area. This study highlights the capabilities of additive manufacturing to produce samples of complex geometries that cannot be manufactured otherwise to control the dissolution behavior for pharmaceutical and biopharmaceutical applications. </p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Additive%20manufacturing" title="Additive manufacturing">Additive manufacturing</a>, <a href="https://publications.waset.org/search?q=polymer%20dissolution" title=" polymer dissolution"> polymer dissolution</a>, <a href="https://publications.waset.org/search?q=fused%20deposition%20modelling" title=" fused deposition modelling"> fused deposition modelling</a>, <a href="https://publications.waset.org/search?q=geometry%20optimization." title=" geometry optimization."> geometry optimization.</a> </p> <a href="https://publications.waset.org/10013538/influence-of-surface-area-on-dissolution-of-additively-manufactured-polyvinyl-alcohol-tablets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10013538/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10013538/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10013538/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10013538/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10013538/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10013538/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10013538/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10013538/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10013538/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10013538/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10013538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">990</span> Integrated Design in Additive Manufacturing Based on Design for Manufacturing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=E.%20Asadollahi-Yazdi">E. Asadollahi-Yazdi</a>, <a href="https://publications.waset.org/search?q=J.%20Gardan"> J. Gardan</a>, <a href="https://publications.waset.org/search?q=P.%20Lafon"> P. Lafon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Nowadays, manufactures are encountered with production of different version of products due to quality, cost and time constraints. On the other hand, Additive Manufacturing (AM) as a production method based on CAD model disrupts the design and manufacturing cycle with new parameters. To consider these issues, the researchers utilized Design For Manufacturing (DFM) approach for AM but until now there is no integrated approach for design and manufacturing of product through the AM. So, this paper aims to provide a general methodology for managing the different production issues, as well as, support the interoperability with AM process and different Product Life Cycle Management tools. The problem is that the models of System Engineering which is used for managing complex systems cannot support the product evolution and its impact on the product life cycle. Therefore, it seems necessary to provide a general methodology for managing the product’s diversities which is created by using AM. This methodology must consider manufacture and assembly during product design as early as possible in the design stage. The latest approach of DFM, as a methodology to analyze the system comprehensively, integrates manufacturing constraints in the numerical model in upstream. So, DFM for AM is used to import the characteristics of AM into the design and manufacturing process of a hybrid product to manage the criteria coming from AM. Also, the research presents an integrated design method in order to take into account the knowledge of layers manufacturing technologies. For this purpose, the interface model based on the skin and skeleton concepts is provided, the usage and manufacturing skins are used to show the functional surface of the product. Also, the material flow and link between the skins are demonstrated by usage and manufacturing skeletons. Therefore, this integrated approach is a helpful methodology for designer and manufacturer in different decisions like material and process selection as well as, evaluation of product manufacturability.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Additive%20manufacturing" title="Additive manufacturing">Additive manufacturing</a>, <a href="https://publications.waset.org/search?q=3D%20printing" title=" 3D printing"> 3D printing</a>, <a href="https://publications.waset.org/search?q=design%20for%20manufacturing" title=" design for manufacturing"> design for manufacturing</a>, <a href="https://publications.waset.org/search?q=integrated%20design" title=" integrated design"> integrated design</a>, <a href="https://publications.waset.org/search?q=interoperability." title=" interoperability."> interoperability.</a> </p> <a href="https://publications.waset.org/10004757/integrated-design-in-additive-manufacturing-based-on-design-for-manufacturing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10004757/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10004757/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10004757/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10004757/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10004757/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10004757/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10004757/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10004757/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10004757/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10004757/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10004757.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2260</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">989</span> Design for Metal Additive Manufacturing: An Investigation of Key Design Application on Electron Beam Melting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Wadea%20Ameen">Wadea Ameen</a>, <a href="https://publications.waset.org/search?q=Abdulrahman%20Al-Ahmari"> Abdulrahman Al-Ahmari</a>, <a href="https://publications.waset.org/search?q=Osama%20Abdulhameed"> Osama Abdulhameed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Electron beam melting (EBM) is one of the modern additive manufacturing (AM) technologies. In EBM, the electron beam melts metal powder into a fully solid part layer by layer. Since EBM is a new technology, most designers are unaware of the capabilities and the limitations of EBM technology. Also, many engineers are facing many challenges to utilize the technology because of a lack of design rules for the technology. The aim of this study is to identify the capabilities and the limitations of EBM technology in fabrication of small features and overhang structures and develop a design rules that need to be considered by designers and engineers. In order to achieve this objective, a series of experiments are conducted. Several features having varying sizes were designed, fabricated, and evaluated to determine their manufacturability limits. In general, the results showed the capabilities and limitations of the EBM technology in fabrication of the small size features and the overhang structures. In the end, the results of these investigation experiments are used to develop design rules. Also, the results showed the importance of developing design rules for AM technologies in increasing the utilization of these technologies.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Additive%20manufacturing" title="Additive manufacturing">Additive manufacturing</a>, <a href="https://publications.waset.org/search?q=design%20for%20additive%20manufacturing" title=" design for additive manufacturing"> design for additive manufacturing</a>, <a href="https://publications.waset.org/search?q=electron%20beam%20melting" title=" electron beam melting"> electron beam melting</a>, <a href="https://publications.waset.org/search?q=self-supporting%20overhang." title=" self-supporting overhang."> self-supporting overhang.</a> </p> <a href="https://publications.waset.org/10010214/design-for-metal-additive-manufacturing-an-investigation-of-key-design-application-on-electron-beam-melting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10010214/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10010214/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10010214/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10010214/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10010214/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10010214/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10010214/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10010214/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10010214/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10010214/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10010214.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1170</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">988</span> Implementation of A Photo-Curable 3D Additive Manufacturing Technology with Coloring Gray Capability by Using Piezo Ink-Jet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ming-Jong%20Tsai">Ming-Jong Tsai</a>, <a href="https://publications.waset.org/search?q=Y.%20L.%20Cheng"> Y. L. Cheng</a>, <a href="https://publications.waset.org/search?q=Y.%20L.%20Kuo"> Y. L. Kuo</a>, <a href="https://publications.waset.org/search?q=S.%20Y.%20Hsiao"> S. Y. Hsiao</a>, <a href="https://publications.waset.org/search?q=J%20.W.%20Chen"> J .W. Chen</a>, <a href="https://publications.waset.org/search?q=P.%20H.%20Liu"> P. H. Liu</a>, <a href="https://publications.waset.org/search?q=D.%20H.%20Chen"> D. H. Chen </a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The 3D printing is a combination of digital technology, material science, intelligent manufacturing and control of opto-mechatronics systems. It is called the third industrial revolution from the view of the Economist Journal. A color 3D printing machine may provide the necessary support for high value-added industrial and commercial design, architectural design, personal boutique, and 3D artist’s creation. The main goal of this paper is to develop photo-curable color 3D manufacturing technology and system implementation. The key technologies include (1) Photo-curable color 3D additive manufacturing processes development and materials research (2) Piezo type ink-jet head control and Opto-mechatronics integration technique of the photo-curable color 3D laminated manufacturing system. The proposed system is integrated with single Piezo type ink-jet head with two individual channels for two primary UV light curable color resins which can provide for future colorful 3D printing solutions. The main research results are 16 grey levels and grey resolution of 75 dpi. </p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=3d%20printing" title="3d printing">3d printing</a>, <a href="https://publications.waset.org/search?q=additive%20manufacturing" title=" additive manufacturing"> additive manufacturing</a>, <a href="https://publications.waset.org/search?q=color" title=" color"> color</a>, <a href="https://publications.waset.org/search?q=photo-curable" title=" photo-curable"> photo-curable</a>, <a href="https://publications.waset.org/search?q=Piezo%20type%20ink-jet" title=" Piezo type ink-jet"> Piezo type ink-jet</a>, <a href="https://publications.waset.org/search?q=UV%20Resin." title=" UV Resin. "> UV Resin. </a> </p> <a href="https://publications.waset.org/10001738/implementation-of-a-photo-curable-3d-additive-manufacturing-technology-with-coloring-gray-capability-by-using-piezo-ink-jet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10001738/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10001738/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10001738/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10001738/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10001738/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10001738/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10001738/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10001738/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10001738/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10001738/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10001738.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2138</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">987</span> FEM Simulations to Study the Effects of Laser Power and Scan Speed on Molten Pool Size in Additive Manufacturing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Yee-Ting%20Lee">Yee-Ting Lee</a>, <a href="https://publications.waset.org/search?q=Jyun-Rong%20Zhuang"> Jyun-Rong Zhuang</a>, <a href="https://publications.waset.org/search?q=Wen-Hsin%20Hsieh"> Wen-Hsin Hsieh</a>, <a href="https://publications.waset.org/search?q=An-Shik%20Yang"> An-Shik Yang </a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Additive manufacturing (AM) is increasingly crucial in biomedical and aerospace industries. As a recently developed AM technique, selective laser melting (SLM) has become a commercial method for various manufacturing processes. However, the molten pool configuration during SLM of metal powders is a decisive issue for the product quality. It is very important to investigate the heat transfer characteristics during the laser heating process. In this work, the finite element method (FEM) software ANSYS<sup>®</sup> (work bench module 16.0) was used to predict the unsteady temperature distribution for resolving molten pool dimensions with consideration of temperature-dependent thermal physical properties of TiAl6V4 at different laser powers and scanning speeds. The simulated results of the temperature distributions illustrated that the ratio of laser power to scanning speed can greatly influence the size of molten pool of titanium alloy powder for SLM development.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Additive%20manufacturing" title="Additive manufacturing">Additive manufacturing</a>, <a href="https://publications.waset.org/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/search?q=molten%20pool%20dimensions" title=" molten pool dimensions"> molten pool dimensions</a>, <a href="https://publications.waset.org/search?q=selective%20laser%20melting." title=" selective laser melting. "> selective laser melting. </a> </p> <a href="https://publications.waset.org/10007345/fem-simulations-to-study-the-effects-of-laser-power-and-scan-speed-on-molten-pool-size-in-additive-manufacturing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007345/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007345/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007345/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007345/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007345/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007345/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007345/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007345/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007345/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007345/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007345.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1662</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">986</span> Applications for Additive Manufacturing Technology for Reducing the Weight of Body Parts of Gas Turbine Engines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Liubov%20A.%20Magerramova">Liubov A. Magerramova</a>, <a href="https://publications.waset.org/search?q=Mikhail%20A.%20Petrov"> Mikhail A. Petrov</a>, <a href="https://publications.waset.org/search?q=Vladimir%20V.%20Isakov"> Vladimir V. Isakov</a>, <a href="https://publications.waset.org/search?q=Liana%20A.%20Shcherbinina"> Liana A. Shcherbinina</a>, <a href="https://publications.waset.org/search?q=Suren%20G.%20Gukasyan"> Suren G. Gukasyan</a>, <a href="https://publications.waset.org/search?q=Daniil%20V.%20Povalyukhin"> Daniil V. Povalyukhin</a>, <a href="https://publications.waset.org/search?q=Olga%20G.%20Klimova-Korsmik"> Olga G. Klimova-Korsmik</a>, <a href="https://publications.waset.org/search?q=Darya%20V.%20Volosevich"> Darya V. Volosevich</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Aircraft engines are developing along the path of increasing resource, strength, reliability, and safety. The building of gas turbine engine body parts is a complex design and technological task. Particularly complex in the design and manufacturing are the casings of the input stages of helicopter gearboxes and central drives of aircraft engines. Traditional technologies, such as precision casting or isothermal forging, are characterized by significant limitations in parts production. For parts like housing, additive technologies guarantee spatial freedom and limitless or flexible design. This article presents the results of computational and experimental studies. These investigations justify the applicability of additive technologies (AT) to reduce the weight of aircraft housing gearbox parts by up to 32%. This is possible due to geometrical optimization compared to the classical, less flexible manufacturing methods and as-casted aircraft parts with over-insured values of safety factors. Using an example of the body of the input stage of an aircraft gearbox, visualization of the layer-by-layer manufacturing of a part based on thermal deformation was demonstrated.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Additive%20technologies" title="Additive technologies">Additive technologies</a>, <a href="https://publications.waset.org/search?q=gas%20turbine%20engines" title=" gas turbine engines"> gas turbine engines</a>, <a href="https://publications.waset.org/search?q=geometric%20optimization" title=" geometric optimization"> geometric optimization</a>, <a href="https://publications.waset.org/search?q=weight%20reduction." title=" weight reduction."> weight reduction.</a> </p> <a href="https://publications.waset.org/10013625/applications-for-additive-manufacturing-technology-for-reducing-the-weight-of-body-parts-of-gas-turbine-engines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10013625/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10013625/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10013625/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10013625/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10013625/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10013625/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10013625/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10013625/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10013625/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10013625/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10013625.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">985</span> Metal Inert Gas Welding-Based-Shaped Metal Deposition in Additive Layered Manufacturing: A Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Adnan%20A.%20Ugla">Adnan A. Ugla</a>, <a href="https://publications.waset.org/search?q=Hassan%20J.%20Khaudair"> Hassan J. Khaudair</a>, <a href="https://publications.waset.org/search?q=Ahmed%20R.%20J.%20Almusawi"> Ahmed R. J. Almusawi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Shaped Metal Deposition (SMD) in additive layered manufacturing technique is a promising alternative to traditional manufacturing used for manufacturing large, expensive metal components with complex geometry in addition to producing free structures by building materials in a layer by layer technique. The present paper is a comprehensive review of the literature and the latest rapid manufacturing technologies of the SMD technique. The aim of this paper is to comprehensively review the most prominent facts that researchers have dealt with in the SMD techniques especially those associated with the cold wire feed. The intent of this study is to review the literature presented on metal deposition processes and their classifications, including SMD process using Wire <strong><span dir="RTL">+</span></strong> Arc Additive Manufacturing (WAAM) which divides into wire + tungsten inert gas (TIG), metal inert gas (MIG), or plasma. This literary research presented covers extensive details on bead geometry, process parameters and heat input or arc energy resulting from the deposition process in both cases MIG and Tandem-MIG in SMD process. Furthermore, SMD may be done using Single Wire-MIG (SW-MIG) welding and SMD using Double Wire-MIG (DW-MIG) welding. The present review shows that the method of deposition of metals when using the DW-MIG process can be considered a distinctive and low-cost method to produce large metal components due to high deposition rates as well as reduce the input of high temperature generated during deposition and reduce the distortions. However, the accuracy and surface finish of the MIG-SMD are less as compared to electron and laser beam.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Shaped%20metal%20deposition" title="Shaped metal deposition">Shaped metal deposition</a>, <a href="https://publications.waset.org/search?q=additive%20manufacturing" title=" additive manufacturing"> additive manufacturing</a>, <a href="https://publications.waset.org/search?q=double-wire%20feed" title=" double-wire feed"> double-wire feed</a>, <a href="https://publications.waset.org/search?q=cold%20feed%20wire." title=" cold feed wire. "> cold feed wire. </a> </p> <a href="https://publications.waset.org/10010182/metal-inert-gas-welding-based-shaped-metal-deposition-in-additive-layered-manufacturing-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10010182/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10010182/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10010182/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10010182/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10010182/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10010182/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10010182/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10010182/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10010182/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10010182/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10010182.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1405</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">984</span> Fiber-Reinforced Sandwich Structures Based on Selective Laser Sintering: A Technological View</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=T.%20H%C3%A4fele">T. H盲fele</a>, <a href="https://publications.waset.org/search?q=J.%20Kaspar"> J. Kaspar</a>, <a href="https://publications.waset.org/search?q=M.%20Vielhaber"> M. Vielhaber</a>, <a href="https://publications.waset.org/search?q=W.%20Calles"> W. Calles</a>, <a href="https://publications.waset.org/search?q=J.%20Griebsch"> J. Griebsch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The demand for an increasing diversification of the product spectrum associated with the current huge customization desire and subsequently the decreasing unit quantities of each production lot is gaining more and more importance within a great variety of industrial branches, e.g. automotive industry. Nevertheless, traditional product development and production processes (molding, extrusion) are already reaching their limits or fail to address these trends of a flexible and digitized production in view of a product variability up to lot size one. Thus, upcoming innovative production concepts like the additive manufacturing technology basically create new opportunities with regard to extensive potentials in product development (constructive optimization) and manufacturing (economic individualization), but mostly suffer from insufficient strength regarding structural components. Therefore, this contribution presents an innovative technological and procedural conception of a hybrid additive manufacturing process (fiber-reinforced sandwich structures based on selective laser sintering technology) to overcome these current structural weaknesses, and consequently support the design of complex lightweight components.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Additive%20manufacturing" title="Additive manufacturing">Additive manufacturing</a>, <a href="https://publications.waset.org/search?q=fiber-reinforced%20plastics" title=" fiber-reinforced plastics"> fiber-reinforced plastics</a>, <a href="https://publications.waset.org/search?q=hybrid%20design" title=" hybrid design"> hybrid design</a>, <a href="https://publications.waset.org/search?q=lightweight%20design." title=" lightweight design. "> lightweight design. </a> </p> <a href="https://publications.waset.org/10007502/fiber-reinforced-sandwich-structures-based-on-selective-laser-sintering-a-technological-view" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007502/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007502/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007502/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007502/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007502/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007502/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007502/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007502/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007502/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007502/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007502.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1223</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">983</span> Evaluation of Environmental, Technical, and Economic Indicators of a Fused Deposition Modeling Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20Yosofi">M. Yosofi</a>, <a href="https://publications.waset.org/search?q=S.%20Ezeddini"> S. Ezeddini</a>, <a href="https://publications.waset.org/search?q=A.%20Ollivier"> A. Ollivier</a>, <a href="https://publications.waset.org/search?q=V.%20Lavaste"> V. Lavaste</a>, <a href="https://publications.waset.org/search?q=C.%20Mayousse"> C. Mayousse</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Additive manufacturing processes have changed significantly in a wide range of industries and their application progressed from rapid prototyping to production of end-use products. However, their environmental impact is still a rather open question. In order to support the growth of this technology in the industrial sector, environmental aspects should be considered and predictive models may help monitor and reduce the environmental footprint of the processes. This work presents predictive models based on a previously developed methodology for the environmental impact evaluation combined with a technical and economical assessment. Here we applied the methodology to the Fused Deposition Modeling process. First, we present the predictive models relative to different types of machines. Then, we present a decision-making tool designed to identify the optimum manufacturing strategy regarding technical, economic, and environmental criteria.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Additive%20manufacturing" title="Additive manufacturing">Additive manufacturing</a>, <a href="https://publications.waset.org/search?q=decision-makings" title=" decision-makings"> decision-makings</a>, <a href="https://publications.waset.org/search?q=environmental%20impact" title=" environmental impact"> environmental impact</a>, <a href="https://publications.waset.org/search?q=predictive%20models." title=" predictive models. "> predictive models. </a> </p> <a href="https://publications.waset.org/10011838/evaluation-of-environmental-technical-and-economic-indicators-of-a-fused-deposition-modeling-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10011838/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10011838/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10011838/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10011838/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10011838/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10011838/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10011838/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10011838/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10011838/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10011838/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10011838.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1066</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">982</span> Tool Wear Analysis in 3D Manufactured Ti6Al4V</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=David%20Downey">David Downey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>With the introduction of additive manufacturing (3D printing) to produce titanium (Ti6Al4V) components in the medical, aerospace and automotive industries, intricate geometries can be produced with virtually complete design freedom. However, the consideration of microstructural anisotropy resulting from the additive manufacturing process becomes necessary due to this design flexibility and the need to print a geometric shape that can consist of numerous angles, radii, and swept surfaces. A femoral knee implant serves as an example of a 3D-printed near-net-shaped product. The mechanical properties of the printed components, and consequently, their machinability, are affected by microstructural anisotropy. Currently, finish-machining operations performed on titanium printed parts using selective laser melting (SLM) utilize the same cutting tools employed for processing wrought titanium components. Cutting forces for components manufactured through SLM can be up to 70% higher than those for their wrought counterparts made of Ti6Al4V. Moreover, temperatures at the cutting interface of 3D printed material can surpass those of wrought titanium, leading to significant tool wear. Although the criteria for tool wear may be similar for both 3D printed and wrought materials, the rate of wear during the machining process may differ. The impact of these issues on the choice of cutting tool material and tool lifetimes will be discussed.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Additive%20manufacturing" title="Additive manufacturing">Additive manufacturing</a>, <a href="https://publications.waset.org/search?q=build%20orientation" title=" build orientation"> build orientation</a>, <a href="https://publications.waset.org/search?q=microstructural%20anisotropy" title=" microstructural anisotropy"> microstructural anisotropy</a>, <a href="https://publications.waset.org/search?q=printed%20titanium%20Ti6Al4V" title=" printed titanium Ti6Al4V"> printed titanium Ti6Al4V</a>, <a href="https://publications.waset.org/search?q=tool%20wear." title=" tool wear."> tool wear.</a> </p> <a href="https://publications.waset.org/10013568/tool-wear-analysis-in-3d-manufactured-ti6al4v" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10013568/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10013568/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10013568/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10013568/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10013568/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10013568/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10013568/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10013568/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10013568/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10013568/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10013568.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">981</span> Application of Powder Metallurgy Technologies for Gas Turbine Engine Wheel Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Liubov%20Magerramova">Liubov Magerramova</a>, <a href="https://publications.waset.org/search?q=Eugene%20Kratt"> Eugene Kratt</a>, <a href="https://publications.waset.org/search?q=Pavel%20Presniakov"> Pavel Presniakov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A detailed analysis has been performed for several schemes of Gas Turbine Wheels production based on additive and powder technologies including metal, ceramic, and stereolithography 3-D printing. During the process of development and debugging of gas turbine engine components, different versions of these components must be manufactured and tested. Cooled blades of the turbine are among of these components. They are usually produced by traditional casting methods. This method requires long and costly design and manufacture of casting molds. Moreover, traditional manufacturing methods limit the design possibilities of complex critical parts of engine, so capabilities of Powder Metallurgy Techniques (PMT) were analyzed to manufacture the turbine wheel with air-cooled blades. PMT dramatically reduce time needed for such production and allow creating new complex design solutions aimed at improving the technical characteristics of the engine: improving fuel efficiency and environmental performance, increasing reliability, and reducing weight. To accelerate and simplify the blades manufacturing process, several options based on additive technologies were used. The options were implemented in the form of various casting equipment for the manufacturing of blades. Methods of powder metallurgy were applied for connecting the blades with the disc. The optimal production scheme and a set of technologies for the manufacturing of blades and turbine wheel and other parts of the engine can be selected on the basis of the options considered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Additive%20technologies" title="Additive technologies">Additive technologies</a>, <a href="https://publications.waset.org/search?q=gas%20turbine%20engine" title=" gas turbine engine"> gas turbine engine</a>, <a href="https://publications.waset.org/search?q=powder%20technology" title=" powder technology"> powder technology</a>, <a href="https://publications.waset.org/search?q=turbine%20wheel." title=" turbine wheel. "> turbine wheel. </a> </p> <a href="https://publications.waset.org/10007877/application-of-powder-metallurgy-technologies-for-gas-turbine-engine-wheel-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007877/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007877/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007877/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007877/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007877/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007877/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007877/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007877/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007877/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007877/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007877.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1923</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">980</span> Material and Parameter Analysis of the PolyJet Process for Mold Making Using Design of Experiments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20Kampker">A. Kampker</a>, <a href="https://publications.waset.org/search?q=K.%20Kreisk%C3%B6ther"> K. Kreisk枚ther</a>, <a href="https://publications.waset.org/search?q=C.%20Reinders"> C. Reinders</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Since additive manufacturing technologies constantly advance, the use of this technology in mold making seems reasonable. Many manufacturers of additive manufacturing machines, however, do not offer any suggestions on how to parameterize the machine to achieve optimal results for mold making. The purpose of this research is to determine the interdependencies of different materials and parameters within the PolyJet process by using design of experiments (DoE), to additively manufacture molds, e.g. for thermoforming and injection molding applications. Therefore, the general requirements of thermoforming molds, such as heat resistance, surface quality and hardness, have been identified. Then, different materials and parameters of the PolyJet process, such as the orientation of the printed part, the layer thickness, the printing mode (matte or glossy), the distance between printed parts and the scaling of parts, have been examined. The multifactorial analysis covers the following properties of the printed samples: Tensile strength, tensile modulus, bending strength, elongation at break, surface quality, heat deflection temperature and surface hardness. The key objective of this research is that by joining the results from the DoE with the requirements of the mold making, optimal and tailored molds can be additively manufactured with the PolyJet process. These additively manufactured molds can then be used in prototyping processes, in process testing and in small to medium batch production.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Additive%20manufacturing" title="Additive manufacturing">Additive manufacturing</a>, <a href="https://publications.waset.org/search?q=design%20of%20experiments" title=" design of experiments"> design of experiments</a>, <a href="https://publications.waset.org/search?q=mold%20making" title=" mold making"> mold making</a>, <a href="https://publications.waset.org/search?q=PolyJet." title=" PolyJet."> PolyJet.</a> </p> <a href="https://publications.waset.org/10006639/material-and-parameter-analysis-of-the-polyjet-process-for-mold-making-using-design-of-experiments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10006639/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10006639/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10006639/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10006639/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10006639/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10006639/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10006639/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10006639/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10006639/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10006639/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10006639.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1732</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">979</span> Application of Rapid Prototyping to Create Additive Prototype Using Computer System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Meftah%20O.%20Bashir">Meftah O. Bashir</a>, <a href="https://publications.waset.org/search?q=Fatma%20A.%20Karkory"> Fatma A. Karkory</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rapid prototyping is a new group of manufacturing processes, which allows fabrication of physical of any complexity using a layer by layer deposition technique directly from a computer system. The rapid prototyping process greatly reduces the time and cost necessary to bring a new product to market. The prototypes made by these systems are used in a range of industrial application including design evaluation, verification, testing, and as patterns for casting processes. These processes employ a variety of materials and mechanisms to build up the layers to build the part. The present work was to build a FDM prototyping machine that could control the X-Y motion and material deposition, to generate two-dimensional and three-dimensional complex shapes. This study focused on the deposition of wax material. This work was to find out the properties of the wax materials used in this work in order to enable better control of the FDM process. This study will look at the integration of a computer controlled electro-mechanical system with the traditional FDM additive prototyping process. The characteristics of the wax were also analysed in order to optimise the model production process. These included wax phase change temperature, wax viscosity and wax droplet shape during processing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Rapid%20prototyping" title="Rapid prototyping">Rapid prototyping</a>, <a href="https://publications.waset.org/search?q=wax" title=" wax"> wax</a>, <a href="https://publications.waset.org/search?q=manufacturing%20processes" title=" manufacturing processes"> manufacturing processes</a>, <a href="https://publications.waset.org/search?q=additive%20prototyping." title=" additive prototyping."> additive prototyping.</a> </p> <a href="https://publications.waset.org/10002706/application-of-rapid-prototyping-to-create-additive-prototype-using-computer-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10002706/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10002706/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10002706/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10002706/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10002706/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10002706/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10002706/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10002706/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10002706/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10002706/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10002706.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1682</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">978</span> An Evaluation on the Effectiveness of a 3D Printed Composite Compression Mold</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Peng%20Hao%20Wang">Peng Hao Wang</a>, <a href="https://publications.waset.org/search?q=Garam%20Kim"> Garam Kim</a>, <a href="https://publications.waset.org/search?q=Ronald%20Sterkenburg"> Ronald Sterkenburg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The applications of composite materials within the aviation industry has been increasing at a rapid pace. However, the growing applications of composite materials have also led to growing demand for more tooling to support its manufacturing processes. Tooling and tooling maintenance represents a large portion of the composite manufacturing process and cost. Therefore, the industry’s adaptability to new techniques for fabricating high quality tools quickly and inexpensively will play a crucial role in composite material’s growing popularity in the aviation industry. One popular tool fabrication technique currently being developed involves additive manufacturing such as 3D printing. Although additive manufacturing and 3D printing are not entirely new concepts, the technique has been gaining popularity due to its ability to quickly fabricate components, maintain low material waste, and low cost. In this study, a team of Purdue University School of Aviation and Transportation Technology (SATT) faculty and students investigated the effectiveness of a 3D printed composite compression mold. A 3D printed composite compression mold was fabricated by 3D scanning a steel valve cover of an aircraft reciprocating engine. The 3D printed composite compression mold was used to fabricate carbon fiber versions of the aircraft reciprocating engine valve cover. The 3D printed composite compression mold was evaluated for its performance, durability, and dimensional stability while the fabricated carbon fiber valve covers were evaluated for its accuracy and quality. The results and data gathered from this study will determine the effectiveness of the 3D printed composite compression mold in a mass production environment and provide valuable information for future understanding, improvements, and design considerations of 3D printed composite molds.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Additive%20manufacturing" title="Additive manufacturing">Additive manufacturing</a>, <a href="https://publications.waset.org/search?q=carbon%20fiber" title=" carbon fiber"> carbon fiber</a>, <a href="https://publications.waset.org/search?q=composite%20tooling" title=" composite tooling"> composite tooling</a>, <a href="https://publications.waset.org/search?q=molds." title=" molds."> molds.</a> </p> <a href="https://publications.waset.org/10011783/an-evaluation-on-the-effectiveness-of-a-3d-printed-composite-compression-mold" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10011783/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10011783/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10011783/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10011783/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10011783/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10011783/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10011783/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10011783/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10011783/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10011783/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10011783.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">712</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">977</span> A Comparative Study of Additive and Nonparametric Regression Estimators and Variable Selection Procedures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Adriano%20Z.%20Zambom">Adriano Z. Zambom</a>, <a href="https://publications.waset.org/search?q=Preethi%20Ravikumar"> Preethi Ravikumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the biggest challenges in nonparametric regression is the curse of dimensionality. Additive models are known to overcome this problem by estimating only the individual additive effects of each covariate. However, if the model is misspecified, the accuracy of the estimator compared to the fully nonparametric one is unknown. In this work the efficiency of completely nonparametric regression estimators such as the Loess is compared to the estimators that assume additivity in several situations, including additive and non-additive regression scenarios. The comparison is done by computing the oracle mean square error of the estimators with regards to the true nonparametric regression function. Then, a backward elimination selection procedure based on the Akaike Information Criteria is proposed, which is computed from either the additive or the nonparametric model. Simulations show that if the additive model is misspecified, the percentage of time it fails to select important variables can be higher than that of the fully nonparametric approach. A dimension reduction step is included when nonparametric estimator cannot be computed due to the curse of dimensionality. Finally, the Boston housing dataset is analyzed using the proposed backward elimination procedure and the selected variables are identified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Additive%20models" title="Additive models">Additive models</a>, <a href="https://publications.waset.org/search?q=local%20polynomial%20regression" title=" local polynomial regression"> local polynomial regression</a>, <a href="https://publications.waset.org/search?q=residuals" title=" residuals"> residuals</a>, <a href="https://publications.waset.org/search?q=mean%20square%20error" title=" mean square error"> mean square error</a>, <a href="https://publications.waset.org/search?q=variable%20selection." title=" variable selection."> variable selection.</a> </p> <a href="https://publications.waset.org/10006600/a-comparative-study-of-additive-and-nonparametric-regression-estimators-and-variable-selection-procedures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10006600/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10006600/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10006600/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10006600/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10006600/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10006600/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10006600/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10006600/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10006600/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10006600/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10006600.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1014</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">976</span> Orthosis and Finite Elements: A Study for Development of New Designs through Additive Manufacturing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20Volpini">M. Volpini</a>, <a href="https://publications.waset.org/search?q=D.%20Alves"> D. Alves</a>, <a href="https://publications.waset.org/search?q=A.%20Horta"> A. Horta</a>, <a href="https://publications.waset.org/search?q=M.%20Borges"> M. Borges</a>, <a href="https://publications.waset.org/search?q=P.%20Reis"> P. Reis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The gait pattern in people that present motor limitations foment the demand for auxiliary locomotion devices. These artifacts for movement assistance vary according to its shape, size and functional features, following the clinical applications desired. Among the ortheses of lower limbs, the ankle-foot orthesis aims to improve the ability to walk in people with different neuromuscular limitations, although they do not always answer patients' expectations for their aesthetic and functional characteristics. The purpose of this study is to explore the possibility of using new design in additive manufacturer to reproduce the shape and functional features of a ankle-foot orthesis in an efficient and modern way. Therefore, this work presents a study about the performance of the mechanical forces through the analysis of finite elements in an ankle-foot orthesis. It will be demonstrated a study of distribution of the stress on the orthopedic device in orthostatism and during the movement in the course of patient's walk.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Additive%20manufacture" title="Additive manufacture">Additive manufacture</a>, <a href="https://publications.waset.org/search?q=new%20designs" title=" new designs"> new designs</a>, <a href="https://publications.waset.org/search?q=orthoses" title=" orthoses"> orthoses</a>, <a href="https://publications.waset.org/search?q=finite%20elements." title=" finite elements."> finite elements.</a> </p> <a href="https://publications.waset.org/10009127/orthosis-and-finite-elements-a-study-for-development-of-new-designs-through-additive-manufacturing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10009127/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10009127/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10009127/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10009127/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10009127/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10009127/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10009127/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10009127/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10009127/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10009127/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10009127.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1144</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">975</span> Influence of Build Orientation on Machinability of Selective Laser Melted Titanium Alloy-Ti-6Al-4V</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Manikandakumar%20Shunmugavel">Manikandakumar Shunmugavel</a>, <a href="https://publications.waset.org/search?q=Ashwin%20Polishetty"> Ashwin Polishetty</a>, <a href="https://publications.waset.org/search?q=Moshe%20Goldberg"> Moshe Goldberg</a>, <a href="https://publications.waset.org/search?q=Junior%20Nomani"> Junior Nomani</a>, <a href="https://publications.waset.org/search?q=Guy%20Littlefair"> Guy Littlefair</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Selective laser melting (SLM), a promising additive manufacturing (AM) technology, has a huge potential in the fabrication of Ti-6Al-4V near-net shape components. However, poor surface finish of the components fabricated from this technology requires secondary machining to achieve the desired accuracy and tolerance. Therefore, a systematic understanding of the machinability of SLM fabricated Ti-6Al-4V components is paramount to improve the productivity and product quality. Considering the significance of machining in SLM fabricated Ti-6Al-4V components, this research aim is to study the influence of build orientation on machinability characteristics by performing low speed orthogonal cutting tests. In addition, the machinability of SLM fabricated Ti-6Al-4V is compared with conventionally produced wrought Ti-6Al-4V to understand the influence of SLM technology on machining. This paper is an attempt to provide evidence to the hypothesis associated that build orientation influences cutting forces, chip formation and surface integrity during orthogonal cutting of SLM Ti-6Al-4V samples. Results obtained from the low speed orthogonal cutting tests highlight the practical importance of microstructure and build orientation on machinability of SLM Ti-6Al-4V. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Additive%20manufacturing" title="Additive manufacturing">Additive manufacturing</a>, <a href="https://publications.waset.org/search?q=build%20orientation" title=" build orientation"> build orientation</a>, <a href="https://publications.waset.org/search?q=machinability" title=" machinability"> machinability</a>, <a href="https://publications.waset.org/search?q=titanium%20alloys%20%28Ti-6Al-4V%29." title=" titanium alloys (Ti-6Al-4V). "> titanium alloys (Ti-6Al-4V). </a> </p> <a href="https://publications.waset.org/10007564/influence-of-build-orientation-on-machinability-of-selective-laser-melted-titanium-alloy-ti-6al-4v" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007564/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007564/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007564/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007564/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007564/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007564/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007564/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007564/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007564/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007564/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007564.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1097</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">974</span> Effects of Milling Process Parameters on Cutting Forces and Surface Roughness When Finishing Ti6al4v Produced by Electron Beam Melting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Abdulmajeed%20Dabwan">Abdulmajeed Dabwan</a>, <a href="https://publications.waset.org/search?q=Saqib%20Anwar"> Saqib Anwar</a>, <a href="https://publications.waset.org/search?q=Ali%20Al-Samhan"> Ali Al-Samhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Electron Beam Melting (EBM) is a metal powder bed-based Additive Manufacturing (AM) technology, which uses computer-controlled electron beams to create fully dense three-dimensional near-net-shaped parts from metal powder. It gives the ability to produce any complex parts directly from a computer-aided design (CAD) model without tools and dies, and with a variety of materials. However, the quality of the surface finish in EBM process has limitations to meeting the performance requirements of additively manufactured components. The aim of this study is to investigate the cutting forces induced during milling Ti6Al4V produced by EBM as well as the surface quality of the milled surfaces. The effects of cutting speed and radial depth of cut on the cutting forces, surface roughness, and surface morphology were investigated. The results indicated that the cutting speed was found to be proportional to the resultant cutting force at any cutting conditions while the surface roughness improved significantly with the increase in cutting speed and radial depth of cut.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Electron%20beam%20melting" title="Electron beam melting">Electron beam melting</a>, <a href="https://publications.waset.org/search?q=additive%20manufacturing" title=" additive manufacturing"> additive manufacturing</a>, <a href="https://publications.waset.org/search?q=Ti6Al4V" title=" Ti6Al4V"> Ti6Al4V</a>, <a href="https://publications.waset.org/search?q=surface%20morphology." title=" surface morphology."> surface morphology.</a> </p> <a href="https://publications.waset.org/10011397/effects-of-milling-process-parameters-on-cutting-forces-and-surface-roughness-when-finishing-ti6al4v-produced-by-electron-beam-melting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10011397/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10011397/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10011397/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10011397/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10011397/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10011397/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10011397/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10011397/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10011397/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10011397/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10011397.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">725</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">973</span> Reduction of Emissions of Nitrogen Oxides from Traffic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Frantisek%20Bozek">Frantisek Bozek</a>, <a href="https://publications.waset.org/search?q=Jiri%20Dvorak"> Jiri Dvorak</a>, <a href="https://publications.waset.org/search?q=Jaromir%20Mares"> Jaromir Mares</a>, <a href="https://publications.waset.org/search?q=Hana%20Malachova"> Hana Malachova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The value of emission factor was calculated in the older type of Diesel engine operating on an engine testing bench and then compared with the parameters monitored under similar conditions when the EnviroxTM additive was applied. It has been found out that the additive based on CeO2 nanoparticles reduces emission of NOx. The dependencies of NOx emissions on reduced torque, engine power and revolutions have been observed as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Additive" title="Additive">Additive</a>, <a href="https://publications.waset.org/search?q=air" title=" air"> air</a>, <a href="https://publications.waset.org/search?q=cerium%20dioxide" title=" cerium dioxide"> cerium dioxide</a>, <a href="https://publications.waset.org/search?q=emission%20factor" title=" emission factor"> emission factor</a>, <a href="https://publications.waset.org/search?q=emissions" title=" emissions"> emissions</a>, <a href="https://publications.waset.org/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/search?q=nitrogen%20oxides" title=" nitrogen oxides"> nitrogen oxides</a> </p> <a href="https://publications.waset.org/12623/reduction-of-emissions-of-nitrogen-oxides-from-traffic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/12623/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/12623/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/12623/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/12623/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/12623/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/12623/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/12623/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/12623/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/12623/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/12623/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/12623.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1723</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">972</span> Impact of Process Parameters on Tensile Strength of Fused Deposition Modeling Printed Crisscross Poylactic Acid </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Shilpesh%20R.%20Rajpurohit">Shilpesh R. Rajpurohit</a>, <a href="https://publications.waset.org/search?q=Harshit%20K.%20Dave"> Harshit K. Dave</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Additive manufacturing gains the popularity in recent times, due to its capability to create prototype as well functional as end use product directly from CAD data without any specific requirement of tooling. Fused deposition modeling (FDM) is one of the widely used additive manufacturing techniques that are used to create functional end use part of polymer that is comparable with the injection-molded parts. FDM printed part has an application in various fields such as automobile, aerospace, medical, electronic, etc. However, application of FDM part is greatly affected by poor mechanical properties. Proper selection of the process parameter could enhance the mechanical performance of the printed part. In the present study, experimental investigation has been carried out to study the behavior of the mechanical performance of the printed part with respect to process variables. Three process variables viz. raster angle, raster width and layer height have been varied to understand its effect on tensile strength. Further, effect of process variables on fractured surface has been also investigated.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=3D%20printing" title="3D printing">3D printing</a>, <a href="https://publications.waset.org/search?q=fused%20deposition%20modeling" title=" fused deposition modeling"> fused deposition modeling</a>, <a href="https://publications.waset.org/search?q=layer%20height" title=" layer height"> layer height</a>, <a href="https://publications.waset.org/search?q=raster%20angle" title=" raster angle"> raster angle</a>, <a href="https://publications.waset.org/search?q=raster%20width" title=" raster width"> raster width</a>, <a href="https://publications.waset.org/search?q=tensile%20strength." title=" tensile strength."> tensile strength.</a> </p> <a href="https://publications.waset.org/10008497/impact-of-process-parameters-on-tensile-strength-of-fused-deposition-modeling-printed-crisscross-poylactic-acid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10008497/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10008497/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10008497/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10008497/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10008497/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10008497/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10008497/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10008497/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10008497/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10008497/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10008497.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1663</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">971</span> Additive Friction Stir Manufacturing Process: Interest in Understanding Thermal Phenomena and Numerical Modeling of the Temperature Rise Phase</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20Lauvray">A. Lauvray</a>, <a href="https://publications.waset.org/search?q=F.%20Poulhaon"> F. Poulhaon</a>, <a href="https://publications.waset.org/search?q=P.%20Michaud"> P. Michaud</a>, <a href="https://publications.waset.org/search?q=P.%20Joyot"> P. Joyot</a>, <a href="https://publications.waset.org/search?q=E.%20Duc"> E. Duc</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Additive Friction Stir Manufacturing, or AFSM, is a new industrial process that follows the emergence of friction-based processes. The AFSM process is a solid-state additive process using the energy produced by the friction at the interface between a rotating non-consumable tool and a substrate. Friction depends on various parameters like axial force, rotation speed or friction coefficient. The feeder material is a metallic rod that flows through a hole in the tool. There is still a lack in understanding of the physical phenomena taking place during the process. This research aims at a better AFSM process understanding and implementation, thanks to numerical simulation and experimental validation performed on a prototype effector. Such an approach is considered a promising way for studying the influence of the process parameters and to finally identify a process window that seems relevant. The deposition of material through the AFSM process takes place in several phases. In chronological order these phases are the docking phase, the dwell time phase, the deposition phase, and the removal phase. The present work focuses on the dwell time phase that enables the temperature rise of the system due to pure friction. An analytic modeling of heat generation based on friction considers as main parameters the rotational speed and the contact pressure. Another parameter considered influential is the friction coefficient assumed to be variable, due to the self-lubrication of the system with the rise in temperature or the materials in contact roughness smoothing over time. This study proposes through a numerical modeling followed by an experimental validation to question the influence of the various input parameters on the dwell time phase. Rotation speed, temperature, spindle torque and axial force are the main monitored parameters during experimentations and serve as reference data for the calibration of the numerical model. This research shows that the geometry of the tool as well as fluctuations of the input parameters like axial force and rotational speed are very influential on the temperature reached and/or the time required to reach the targeted temperature. The main outcome is the prediction of a process window which is a key result for a more efficient process implementation.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=numerical%20model" title="numerical model">numerical model</a>, <a href="https://publications.waset.org/search?q=additive%20manufacturing" title=" additive manufacturing"> additive manufacturing</a>, <a href="https://publications.waset.org/search?q=frictional%20heat%20generation" title=" frictional heat generation"> frictional heat generation</a>, <a href="https://publications.waset.org/search?q=process" title=" process"> process</a> </p> <a href="https://publications.waset.org/10012274/additive-friction-stir-manufacturing-process-interest-in-understanding-thermal-phenomena-and-numerical-modeling-of-the-temperature-rise-phase" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10012274/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10012274/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10012274/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10012274/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10012274/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10012274/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10012274/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10012274/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10012274/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10012274/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10012274.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">523</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">970</span> Lean Production to Increase Reproducibility and Work Safety in the Laser Beam Melting Process Chain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=C.%20Bay">C. Bay</a>, <a href="https://publications.waset.org/search?q=A.%20Mahr"> A. Mahr</a>, <a href="https://publications.waset.org/search?q=H.%20Groneberg"> H. Groneberg</a>, <a href="https://publications.waset.org/search?q=F.%20D%C3%B6pper"> F. D枚pper</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Additive Manufacturing processes are becoming increasingly established in the industry for the economic production of complex prototypes and functional components. Laser beam melting (LBM), the most frequently used Additive Manufacturing technology for metal parts, has been gaining in industrial importance for several years. The LBM process chain – from material storage to machine set-up and component post-processing – requires many manual operations. These steps often depend on the manufactured component and are therefore not standardized. These operations are often not performed in a standardized manner, but depend on the experience of the machine operator, e.g., levelling of the build plate and adjusting the first powder layer in the LBM machine. This lack of standardization limits the reproducibility of the component quality. When processing metal powders with inhalable and alveolar particle fractions, the machine operator is at high risk due to the high reactivity and the toxic (e.g., carcinogenic) effect of the various metal powders. Faulty execution of the operation or unintentional omission of safety-relevant steps can impair the health of the machine operator. In this paper, all the steps of the LBM process chain are first analysed in terms of their influence on the two aforementioned challenges: reproducibility and work safety. Standardization to avoid errors increases the reproducibility of component quality as well as the adherence to and correct execution of safety-relevant operations. The corresponding lean method 5S will therefore be applied, in order to develop approaches in the form of recommended actions that standardize the work processes. These approaches will then be evaluated in terms of ease of implementation and their potential for improving reproducibility and work safety. The analysis and evaluation showed that sorting tools and spare parts as well as standardizing the workflow are likely to increase reproducibility. Organizing the operational steps and production environment decreases the hazards of material handling and consequently improves work safety.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Additive%20manufacturing" title="Additive manufacturing">Additive manufacturing</a>, <a href="https://publications.waset.org/search?q=lean%20production" title=" lean production"> lean production</a>, <a href="https://publications.waset.org/search?q=reproducibility" title=" reproducibility"> reproducibility</a>, <a href="https://publications.waset.org/search?q=work%20safety." title=" work safety."> work safety.</a> </p> <a href="https://publications.waset.org/10012097/lean-production-to-increase-reproducibility-and-work-safety-in-the-laser-beam-melting-process-chain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10012097/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10012097/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10012097/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10012097/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10012097/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10012097/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10012097/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10012097/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10012097/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10012097/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10012097.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">849</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">969</span> Influence of Internal Topologies on Components Produced by Selective Laser Melting: Numerical Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=C.%20Mal%C3%A7a">C. Mal莽a</a>, <a href="https://publications.waset.org/search?q=P.%20Gon%C3%A7alves"> P. Gon莽alves</a>, <a href="https://publications.waset.org/search?q=N.%20Alves"> N. Alves</a>, <a href="https://publications.waset.org/search?q=A.%20Mateus"> A. Mateus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Regardless of the manufacturing process used, subtractive or additive, material, purpose and application, produced components are conventionally solid mass with more or less complex shape depending on the production technology selected. Aspects such as reducing the weight of components, associated with the low volume of material required and the almost non-existent material waste, speed and flexibility of production and, primarily, a high mechanical strength combined with high structural performance, are competitive advantages in any industrial sector, from automotive, molds, aviation, aerospace, construction, pharmaceuticals, medicine and more recently in human tissue engineering. Such features, properties and functionalities are attained in metal components produced using the additive technique of Rapid Prototyping from metal powders commonly known as Selective Laser Melting (SLM), with optimized internal topologies and varying densities. In order to produce components with high strength and high structural and functional performance, regardless of the type of application, three different internal topologies were developed and analyzed using numerical computational tools. The developed topologies were numerically submitted to mechanical compression and four point bending testing. Finite Element Analysis results demonstrate how different internal topologies can contribute to improve mechanical properties, even with a high degree of porosity relatively to fully dense components. Results are very promising not only from the point of view of mechanical resistance, but especially through the achievement of considerable variation in density without loss of structural and functional high performance.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Additive%20Manufacturing" title="Additive Manufacturing">Additive Manufacturing</a>, <a href="https://publications.waset.org/search?q=Internal%20topologies" title=" Internal topologies"> Internal topologies</a>, <a href="https://publications.waset.org/search?q=Porosity" title=" Porosity"> Porosity</a>, <a href="https://publications.waset.org/search?q=Rapid%20Prototyping" title=" Rapid Prototyping"> Rapid Prototyping</a>, <a href="https://publications.waset.org/search?q=Selective%20Laser%20Melting." title=" Selective Laser Melting."> Selective Laser Melting.</a> </p> <a href="https://publications.waset.org/10000116/influence-of-internal-topologies-on-components-produced-by-selective-laser-melting-numerical-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000116/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000116/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000116/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000116/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000116/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000116/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000116/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000116/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000116/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000116/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000116.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2365</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">968</span> Thermo-Mechanical Analysis of Dissimilar Al/Cu Foil Single Lap Joints Made by Composite Metal Foil Manufacturing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Javaid%20Butt">Javaid Butt</a>, <a href="https://publications.waset.org/search?q=Habtom%20Mebrahtu"> Habtom Mebrahtu</a>, <a href="https://publications.waset.org/search?q=Hassan%20Shirvani"> Hassan Shirvani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The paper presents an additive manufacturing process for the production of metal and composite parts. It is termed as composite metal foil manufacturing and is a combination of laminated object manufacturing and brazing techniques. The process has been described in detail and is being used to produce dissimilar aluminum to copper foil single lap joints. A three dimensional finite element model has been developed to study the thermo-mechanical characteristics of the dissimilar Al/Cu single lap joint. The effects of thermal stress and strain have been analyzed by carrying out transient thermal analysis on the heated plates used to join the two 0.1mm thin metal foils. Tensile test has been carried out on the foils before joining and after the single Al/Cu lap joints are made, they are subjected to tensile lap-shear test to analyze the effect of heat on the foils. The analyses are designed to assess the mechanical integrity of the foils after the brazing process and understand whether or not the heat treatment has an effect on the fracture modes of the produced specimens.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Brazing" title="Brazing">Brazing</a>, <a href="https://publications.waset.org/search?q=Laminated%20Object%20Manufacturing" title=" Laminated Object Manufacturing"> Laminated Object Manufacturing</a>, <a href="https://publications.waset.org/search?q=Tensile%20Lap-Shear%20Test" title=" Tensile Lap-Shear Test"> Tensile Lap-Shear Test</a>, <a href="https://publications.waset.org/search?q=Thermo-Mechanical%20Analysis." title=" Thermo-Mechanical Analysis."> Thermo-Mechanical Analysis.</a> </p> <a href="https://publications.waset.org/10003321/thermo-mechanical-analysis-of-dissimilar-alcu-foil-single-lap-joints-made-by-composite-metal-foil-manufacturing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10003321/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10003321/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10003321/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10003321/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10003321/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10003321/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10003321/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10003321/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10003321/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10003321/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10003321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1904</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">967</span> Investigating the Effectiveness of a 3D Printed Composite Mold</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Peng%20Hao%20Wang">Peng Hao Wang</a>, <a href="https://publications.waset.org/search?q=Garam%20Kim"> Garam Kim</a>, <a href="https://publications.waset.org/search?q=Ronald%20Sterkenburg"> Ronald Sterkenburg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In composite manufacturing, the fabrication of tooling and tooling maintenance contributes to a large portion of the total cost. However, as the applications of composite materials continue to increase, there is also a growing demand for more tooling. The demand for more tooling places heavy emphasis on the industry’s ability to fabricate high quality tools while maintaining the tool’s cost effectiveness. One of the popular techniques of tool fabrication currently being developed utilizes additive manufacturing technology known as 3D printing. The popularity of 3D printing is due to 3D printing’s ability to maintain low material waste, low cost, and quick fabrication time. In this study, a team of Purdue University School of Aviation and Transportation Technology (SATT) faculty and students investigated the effectiveness of a 3D printed composite mold. A steel valve cover from an aircraft reciprocating engine was modeled utilizing 3D scanning and computer-aided design (CAD) to create a 3D printed composite mold. The mold was used to fabricate carbon fiber versions of the aircraft reciprocating engine valve cover. The carbon fiber valve covers were evaluated for dimensional accuracy and quality while the 3D printed composite mold was evaluated for durability and dimensional stability. The data collected from this study provided valuable information in the understanding of 3D printed composite molds, potential improvements for the molds, and considerations for future tooling design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Additive%20manufacturing" title="Additive manufacturing">Additive manufacturing</a>, <a href="https://publications.waset.org/search?q=carbon%20fiber" title=" carbon fiber"> carbon fiber</a>, <a href="https://publications.waset.org/search?q=composite%20tooling" title=" composite tooling"> composite tooling</a>, <a href="https://publications.waset.org/search?q=molds." title=" molds."> molds.</a> </p> <a href="https://publications.waset.org/10010864/investigating-the-effectiveness-of-a-3d-printed-composite-mold" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10010864/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10010864/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10010864/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10010864/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10010864/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10010864/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10010864/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10010864/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10010864/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10010864/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10010864.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">911</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">966</span> Framework for Improving Manufacturing "Implicit Competitiveness" by Enhancing Monozukuri Capability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Takahiro%20Togawa">Takahiro Togawa</a>, <a href="https://publications.waset.org/search?q=Nguyen%20Huu%20Phuc"> Nguyen Huu Phuc</a>, <a href="https://publications.waset.org/search?q=Shigeyuki%20Haruyama"> Shigeyuki Haruyama</a>, <a href="https://publications.waset.org/search?q=Oke%20Oktavianty"> Oke Oktavianty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Our research focuses on a framework which analyses the relationship between product/process architecture, manufacturing organizational capability and manufacturing "implicit competitiveness" in order to improve manufacturing implicit competitiveness. We found that 1) there is a relationship between architecture-based manufacturing organizational capability and manufacturing implicit competitiveness, and 2) analysis and measures conducted in manufacturing organizational capability proved effective to improve manufacturing implicit competitiveness.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Implicit%20competitiveness" title="Implicit competitiveness">Implicit competitiveness</a>, <a href="https://publications.waset.org/search?q=QCD" title=" QCD"> QCD</a>, <a href="https://publications.waset.org/search?q=Monozukuri%20capability." title=" Monozukuri capability."> Monozukuri capability.</a> </p> <a href="https://publications.waset.org/10008570/framework-for-improving-manufacturing-implicit-competitiveness-by-enhancing-monozukuri-capability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10008570/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10008570/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10008570/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10008570/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10008570/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10008570/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10008570/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10008570/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10008570/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10008570/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10008570.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1262</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">965</span> Improving Convergence of Parameter Tuning Process of the Additive Fuzzy System by New Learning Strategy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Thi%20Nguyen">Thi Nguyen</a>, <a href="https://publications.waset.org/search?q=Lee%20Gordon-Brown"> Lee Gordon-Brown</a>, <a href="https://publications.waset.org/search?q=Jim%20Peterson"> Jim Peterson</a>, <a href="https://publications.waset.org/search?q=Peter%20Wheeler"> Peter Wheeler</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An additive fuzzy system comprising m rules with n inputs and p outputs in each rule has at least t m(2n + 2 p + 1) parameters needing to be tuned. The system consists of a large number of if-then fuzzy rules and takes a long time to tune its parameters especially in the case of a large amount of training data samples. In this paper, a new learning strategy is investigated to cope with this obstacle. Parameters that tend toward constant values at the learning process are initially fixed and they are not tuned till the end of the learning time. Experiments based on applications of the additive fuzzy system in function approximation demonstrate that the proposed approach reduces the learning time and hence improves convergence speed considerably. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Additive%20fuzzy%20system" title="Additive fuzzy system">Additive fuzzy system</a>, <a href="https://publications.waset.org/search?q=improving%20convergence" title=" improving convergence"> improving convergence</a>, <a href="https://publications.waset.org/search?q=parameter%20learning%20process" title=" parameter learning process"> parameter learning process</a>, <a href="https://publications.waset.org/search?q=unsupervised%20learning." title=" unsupervised learning."> unsupervised learning.</a> </p> <a href="https://publications.waset.org/6593/improving-convergence-of-parameter-tuning-process-of-the-additive-fuzzy-system-by-new-learning-strategy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/6593/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/6593/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/6593/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/6593/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/6593/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/6593/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/6593/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/6593/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/6593/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/6593/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/6593.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1517</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">964</span> Flexible Manufacturing System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Peter%20Kostal">Peter Kostal</a>, <a href="https://publications.waset.org/search?q=Karol%20Velisek"> Karol Velisek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Flexible manufacturing system is a system that is able to respond to changed conditions. In general, this flexibility is divided into two key categories and several subcategories. The first category is the so called machine flexibility which enables to make various products by the given machinery. The second category is routing flexibility enabling to execute the same operation by various machines. Flexible manufacturing systems usually consist of three main parts: CNC machine tools, transport system and control system. A higher level of flexible manufacturing systems is represented by the so called intelligent manufacturing systems.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=drawing-free%20manufacturing" title="drawing-free manufacturing">drawing-free manufacturing</a>, <a href="https://publications.waset.org/search?q=flexible%20manufacturing%20system" title=" flexible manufacturing system"> flexible manufacturing system</a>, <a href="https://publications.waset.org/search?q=industrial%20robot" title=" industrial robot"> industrial robot</a>, <a href="https://publications.waset.org/search?q=material%20flow." title=" material flow."> material flow.</a> </p> <a href="https://publications.waset.org/10626/flexible-manufacturing-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10626/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10626/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10626/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10626/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10626/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10626/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10626/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10626/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10626/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10626/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10626.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">4962</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">963</span> Generative Design of Acoustical Diffuser and Absorber Elements Using Large-Scale Additive Manufacturing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=S.%20Aziz">S. Aziz</a>, <a href="https://publications.waset.org/search?q=B.%20Alexander"> B. Alexander</a>, <a href="https://publications.waset.org/search?q=C.%20Gengnagel"> C. Gengnagel</a>, <a href="https://publications.waset.org/search?q=S.%20Weinzierl"> S. Weinzierl</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper explores a generative design, simulation, and optimization workflow for the integration of acoustical diffuser and/or absorber geometry with embedded coupled Helmholtz-resonators for full scale 3D printed building components. Large-scale additive manufacturing in conjunction with algorithmic CAD design tools enables a vast amount of control when creating geometry. This is advantageous regarding the increasing demands of comfort standards for indoor spaces and the use of more resourceful and sustainable construction methods and materials. The presented methodology highlights these new technological advancements and offers a multimodal and integrative design solution with the potential for an immediate application in the AEC-Industry. In principle, the methodology can be applied to a wide range of structural elements that can be manufactured by additive manufacturing processes. The current paper focuses on a case study of an application for a biaxial load-bearing beam grillage made of reinforced concrete, which allows for a variety of applications through the combination of additive prefabricated semi-finished parts and in-situ concrete supplementation. The semi-prefabricated parts or formwork bodies form the basic framework of the supporting structure and at the same time have acoustic absorption and diffusion properties that are precisely acoustically programmed for the space underneath the structure. To this end, a hybrid validation strategy is being explored using a digital and cross-platform simulation environment, verified with physical prototyping. The iterative workflow starts with the generation of a parametric design model for the acoustical geometry using the algorithmic visual scripting editor Grasshopper3D inside the Building Information Modeling (BIM) software Revit. Various geometric attributes (i.e., bottleneck and cavity dimensions) of the resonator are parameterized and fed to a numerical optimization algorithm which can modify the geometry with the goal of increasing absorption at resonance and increasing the bandwidth of the effective absorption range. Using Rhino.Inside and LiveLink for Revit the generative model was imported directly into the Multiphysics simulation environment COMSOL. The geometry was further modified and prepared for simulation in a semi-automated process. The incident and scattered pressure fields were simulated from which the surface normal absorption coefficients were calculated. This reciprocal process was repeated to further optimize the geometric parameters. Subsequently the numerical models were compared to a set of 3D concrete printed physical twin models which were tested in a .25 m x .25 m impedance tube. The empirical results served to improve the starting parameter settings of the initial numerical model. The geometry resulting from the numerical optimization was finally returned to grasshopper for further implementation in an interdisciplinary study.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Acoustical%20design" title="Acoustical design">Acoustical design</a>, <a href="https://publications.waset.org/search?q=additive%20manufacturing" title=" additive manufacturing"> additive manufacturing</a>, <a href="https://publications.waset.org/search?q=computational%20design" title=" computational design"> computational design</a>, <a href="https://publications.waset.org/search?q=multimodal%20optimization." title=" multimodal optimization."> multimodal optimization.</a> </p> <a href="https://publications.waset.org/10012917/generative-design-of-acoustical-diffuser-and-absorber-elements-using-large-scale-additive-manufacturing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10012917/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10012917/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10012917/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10012917/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10012917/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10012917/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10012917/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10012917/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10012917/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10012917/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10012917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">615</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=additive%20manufacturing&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=additive%20manufacturing&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=additive%20manufacturing&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=additive%20manufacturing&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=additive%20manufacturing&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=additive%20manufacturing&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=additive%20manufacturing&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=additive%20manufacturing&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=additive%20manufacturing&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=additive%20manufacturing&page=33">33</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=additive%20manufacturing&page=34">34</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=additive%20manufacturing&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>