CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;30 of 30 results for author: <span class="mathjax">Shao, Q</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/quant-ph" aria-role="search"> Searching in archive <strong>quant-ph</strong>. <a href="/search/?searchtype=author&amp;query=Shao%2C+Q">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Shao, Q"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Shao%2C+Q&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Shao, Q"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.11454">arXiv:2407.11454</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.11454">pdf</a>, <a href="https://arxiv.org/format/2407.11454">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> </div> </div> <p class="title is-5 mathjax"> Cloud-based Semi-Quantum Money </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+Y">Yichi Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jin%2C+S">Siyuan Jin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Huang%2C+Y">Yuhan Huang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zeng%2C+B">Bei Zeng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shao%2C+Q">Qiming Shao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.11454v1-abstract-short" style="display: inline;"> In the 1970s, Wiesner introduced the concept of quantum money, where quantum states generated according to specific rules function as currency. These states circulate among users with quantum resources through quantum channels or face-to-face interactions. Quantum mechanics grants quantum money physical-level unforgeability but also makes minting, storing, and circulating it significantly challeng&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11454v1-abstract-full').style.display = 'inline'; document.getElementById('2407.11454v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.11454v1-abstract-full" style="display: none;"> In the 1970s, Wiesner introduced the concept of quantum money, where quantum states generated according to specific rules function as currency. These states circulate among users with quantum resources through quantum channels or face-to-face interactions. Quantum mechanics grants quantum money physical-level unforgeability but also makes minting, storing, and circulating it significantly challenging. Currently, quantum computers capable of minting and preserving quantum money have not yet emerged, and existing quantum channels are not stable enough to support the efficient transmission of quantum states for quantum money, limiting its practicality. Semi-quantum money schemes support fully classical transactions and complete classical banks, reducing dependence on quantum resources and enhancing feasibility. To further minimize the system&#39;s reliance on quantum resources, we propose a cloud-based semi-quantum money (CSQM) scheme. This scheme relies only on semi-honest third-party quantum clouds, while the rest of the system remains entirely classical. We also discuss estimating the computational power required by the quantum cloud for the scheme and conduct a security analysis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11454v1-abstract-full').style.display = 'none'; document.getElementById('2407.11454v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.03201">arXiv:2407.03201</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.03201">pdf</a>, <a href="https://arxiv.org/format/2407.03201">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s44306-024-00035-2">10.1038/s44306-024-00035-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Wideband Coherent Microwave Conversion via Magnon Nonlinearity in Hybrid Quantum System </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+J">Jiahao Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+J">Jiacheng Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ren%2C+Z">Zheyu Ren</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leung%2C+M+Y">Man Yin Leung</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Leung%2C+W+K">Wai Kuen Leung</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ho%2C+K+O">Kin On Ho</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+X">Xiangrong Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shao%2C+Q">Qiming Shao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+S">Sen Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.03201v1-abstract-short" style="display: inline;"> Frequency conversion is a widely realized physical process in nonlinear systems of optics and electronics. As an emerging nonlinear platform, spintronic devices have the potential to achieve stronger frequency conversion. Here, we demonstrated a microwave frequency conversion method in a hybrid quantum system, integrating nitrogen-vacancy centers in diamond with magnetic thin film CoFeB. We achiev&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03201v1-abstract-full').style.display = 'inline'; document.getElementById('2407.03201v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.03201v1-abstract-full" style="display: none;"> Frequency conversion is a widely realized physical process in nonlinear systems of optics and electronics. As an emerging nonlinear platform, spintronic devices have the potential to achieve stronger frequency conversion. Here, we demonstrated a microwave frequency conversion method in a hybrid quantum system, integrating nitrogen-vacancy centers in diamond with magnetic thin film CoFeB. We achieve a conversion bandwidth ranging from 0.1 to 12GHz, presenting an up to $\mathrm{25^{th}}$ order frequency conversion and further display the application of this method for frequency detection and qubits coherent control. Distinct from traditional frequency conversion techniques based on nonlinear electric response, our approach employs nonlinear magnetic response in spintronic devices. The nonlinearity, originating from the symmetry breaking such as domain walls in magnetic films, presents that our method can be adapted to hybrid systems of other spintronic devices and spin qubits, expanding the application scope of spintronic devices and providing a promising on-chip platform for coupling quantum systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03201v1-abstract-full').style.display = 'none'; document.getElementById('2407.03201v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Spintronics volume 2, Article number: 30 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.03502">arXiv:2406.03502</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.03502">pdf</a>, <a href="https://arxiv.org/format/2406.03502">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum-Inspired Mean Field Probabilistic Model for Combinatorial Optimization Problems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Huang%2C+Y">Yuhan Huang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jin%2C+S">Siyuan Jin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+Y">Yichi Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Pan%2C+L">Ling Pan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shao%2C+Q">Qiming Shao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.03502v1-abstract-short" style="display: inline;"> Combinatorial optimization problems are pivotal across many fields. Among these, Quadratic Unconstrained Binary Optimization (QUBO) problems, central to fields like portfolio optimization, network design, and computational biology, are NP-hard and require exponential computational resources. To address these challenges, we develop a novel Quantum-Inspired Mean Field (QIMF) probabilistic model that&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.03502v1-abstract-full').style.display = 'inline'; document.getElementById('2406.03502v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.03502v1-abstract-full" style="display: none;"> Combinatorial optimization problems are pivotal across many fields. Among these, Quadratic Unconstrained Binary Optimization (QUBO) problems, central to fields like portfolio optimization, network design, and computational biology, are NP-hard and require exponential computational resources. To address these challenges, we develop a novel Quantum-Inspired Mean Field (QIMF) probabilistic model that approximates solutions to QUBO problems with enhanced accuracy and efficiency. The QIMF model draws inspiration from quantum measurement principles and leverages the mean field probabilistic model. We incorporate a measurement grouping technique and an amplitude-based shot allocation strategy, both critical for optimizing cost functions with a polynomial speedup over traditional methods. Our extensive empirical studies demonstrate significant improvements in solution evaluation for large-scale problems of portfolio selection, the weighted maxcut problem, and the Ising model. Specifically, using S&amp;P 500 data from 2022 and 2023, QIMF improves cost values by 152.8% and 12.5%, respectively, compared to the state-of-the-art baselines. Furthermore, when evaluated on increasingly larger datasets for QUBO problems, QIMF&#39;s scalability demonstrates its potential for large-scale QUBO challenges. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.03502v1-abstract-full').style.display = 'none'; document.getElementById('2406.03502v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.19564">arXiv:2405.19564</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.19564">pdf</a>, <a href="https://arxiv.org/ps/2405.19564">ps</a>, <a href="https://arxiv.org/format/2405.19564">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum error detection with noise-resilient parity-controlled gate in two-dimensional Rydberg atom arrays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+F+Q">F. Q. Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Su%2C+S+L">S. L. Su</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+W">Weibin Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shao%2C+X+Q">X. Q. Shao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.19564v1-abstract-short" style="display: inline;"> Quantum error detection relies primarily on precise measurement of qubit parity, a fundamental operation in quantum information processing. Here, we introduce a resilient parity-controlled gate tailored for detecting quantum errors within a 2D Rydberg atom array. Our method enables the discrimination between even and odd parities of virtually excited control atoms by tracking the dynamic evolution&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.19564v1-abstract-full').style.display = 'inline'; document.getElementById('2405.19564v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.19564v1-abstract-full" style="display: none;"> Quantum error detection relies primarily on precise measurement of qubit parity, a fundamental operation in quantum information processing. Here, we introduce a resilient parity-controlled gate tailored for detecting quantum errors within a 2D Rydberg atom array. Our method enables the discrimination between even and odd parities of virtually excited control atoms by tracking the dynamic evolution of an auxiliary atom. Using spin-exchange dipolar interactions of Rydberg states and single- and two-photon driving between ground states and Rydberg states, our method speeds up Rydberg-parity measurements by a large amount compared to previous methods. In practical application, we explore three-qubit repetition codes, standard surface codes featuring stabilizers in the forms $ZZZZ$ and $XXXX$, as well as rotated surface codes in the $XZZX$ configuration, facilitating the measurement of stabilizers with a single-shot readout. We carry out thorough numerical simulations to evaluate the feasibility of our strategy, considering potential experimental imperfections such as undesired interactions between Rydberg states, fluctuations in atomic positions, dephasing noise, and laser amplitude inhomogeneities. Particular emphasis is placed on ensuring the reliability and advantages of the physical mechanisms of the parity meter. These results affirm the robustness and viability of our protocol, positioning it as a promising candidate for quantum error detection employing the Rydberg atom system in the foreseeable future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.19564v1-abstract-full').style.display = 'none'; document.getElementById('2405.19564v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 17 figures, comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.10451">arXiv:2405.10451</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.10451">pdf</a>, <a href="https://arxiv.org/ps/2405.10451">ps</a>, <a href="https://arxiv.org/format/2405.10451">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.109.062603">10.1103/PhysRevA.109.062603 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Simulation of a feedback-based algorithm for quantum optimization for a realistic neutral atom system with an optimized small-angle controlled-phase gate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+S+X">S. X. Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mu%2C+W+L">W. L. Mu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=You%2C+J+B">J. B. You</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shao%2C+X+Q">X. Q. Shao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.10451v3-abstract-short" style="display: inline;"> In contrast to the classical optimization process required by the quantum approximate optimization algorithm, FALQON, a feedback-based algorithm for quantum optimization [A. B. Magann {\it et al.,} {\color{blue}Phys. Rev. Lett. {\bf129}, 250502 (2022)}], enables one to obtain approximate solutions to combinatorial optimization problems without any classical optimization effort. In this study, we l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.10451v3-abstract-full').style.display = 'inline'; document.getElementById('2405.10451v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.10451v3-abstract-full" style="display: none;"> In contrast to the classical optimization process required by the quantum approximate optimization algorithm, FALQON, a feedback-based algorithm for quantum optimization [A. B. Magann {\it et al.,} {\color{blue}Phys. Rev. Lett. {\bf129}, 250502 (2022)}], enables one to obtain approximate solutions to combinatorial optimization problems without any classical optimization effort. In this study, we leverage the specifications of a recent experimental platform for the neutral atom system [Z. Fu {\it et al.,} {\color{blue}Phys. Rev. A {\bf105}, 042430 (2022)}] and present a scheme to implement an optimally tuned small-angle controlled-phase gate. By examining the 2- to 4-qubit FALQON algorithms in the Max-Cut problem and considering the spontaneous emission of the neutral atomic system, we have observed that the performance of FALQON implemented with small-angle controlled-phase gates exceeds that of FALQON utilizing CZ gates. This approach has the potential to significantly simplify the logic circuit required to simulate FALQON and effectively address the Max-Cut problem, which may pave a way for the experimental implementation of near-term noisy intermediate-scale quantum algorithms with neutral-atom systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.10451v3-abstract-full').style.display = 'none'; document.getElementById('2405.10451v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">typos corrected and figures updated</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 109, 062603 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.06189">arXiv:2405.06189</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.06189">pdf</a>, <a href="https://arxiv.org/ps/2405.06189">ps</a>, <a href="https://arxiv.org/format/2405.06189">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjqt/s40507-024-00246-w">10.1140/epjqt/s40507-024-00246-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Holonomic swap and controlled-swap gates of neutral atoms via selective Rydberg pumping </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Sun%2C+C+F">C. F. Sun</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+X+Y">X. Y. Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mu%2C+W+L">W. L. Mu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+G+C">G. C. Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=You%2C+J+B">J. B. You</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shao%2C+X+Q">X. Q. Shao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.06189v1-abstract-short" style="display: inline;"> Holonomic quantum computing offers a promising paradigm for quantum computation due to its error resistance and the ability to perform universal quantum computations. Here, we propose a scheme for the rapid implementation of a holonomic swap gate in neutral atomic systems, based on the selective Rydberg pumping mechanism. By employing time-dependent soft control, we effectively mitigate the impact&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.06189v1-abstract-full').style.display = 'inline'; document.getElementById('2405.06189v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.06189v1-abstract-full" style="display: none;"> Holonomic quantum computing offers a promising paradigm for quantum computation due to its error resistance and the ability to perform universal quantum computations. Here, we propose a scheme for the rapid implementation of a holonomic swap gate in neutral atomic systems, based on the selective Rydberg pumping mechanism. By employing time-dependent soft control, we effectively mitigate the impact of off-resonant terms even at higher driving intensities compared to time-independent driving. This approach accelerates the synthesis of logic gates and passively reduces the decoherence effects. Furthermore, by introducing an additional atom and applying the appropriate driving field, our scheme can be directly extended to implement a three-qubit controlled-swap gate. This advancement makes it a valuable tool for quantum state preparation, quantum switches, and a variational quantum algorithm in neutral atom systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.06189v1-abstract-full').style.display = 'none'; document.getElementById('2405.06189v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by EPJ Quantum Technology</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> EPJ Quantum Technology 11, 34 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.06434">arXiv:2404.06434</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.06434">pdf</a>, <a href="https://arxiv.org/format/2404.06434">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum Graph Optimization Algorithm </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Huang%2C+Y">Yuhan Huang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Nugraha%2C+F+P">Ferris Prima Nugraha</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jin%2C+S">Siyuan Jin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+Y">Yichi Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zeng%2C+B">Bei Zeng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shao%2C+Q">Qiming Shao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.06434v1-abstract-short" style="display: inline;"> Quadratic unconstrained binary optimization (QUBO) tasks are very important in chemistry, finance, job scheduling, and so on, which can be represented using graph structures, with the variables as nodes and the interaction between them as edges. Variational quantum algorithms, especially the Quantum Approximate Optimization Algorithm (QAOA) and its variants, present a promising way, potentially ex&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.06434v1-abstract-full').style.display = 'inline'; document.getElementById('2404.06434v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.06434v1-abstract-full" style="display: none;"> Quadratic unconstrained binary optimization (QUBO) tasks are very important in chemistry, finance, job scheduling, and so on, which can be represented using graph structures, with the variables as nodes and the interaction between them as edges. Variational quantum algorithms, especially the Quantum Approximate Optimization Algorithm (QAOA) and its variants, present a promising way, potentially exceeding the capabilities of classical algorithms, for addressing QUBO tasks. However, the possibility of using message-passing machines, inspired by classical graph neural networks, to enhance the power and performance of these quantum algorithms for QUBO tasks was not investigated. This study introduces a novel variational quantum graph optimization algorithm that integrates the message-passing mechanism, which demonstrates significant improvements in performance for solving QUBO problems in terms of resource efficiency and solution precision, compared to QAOA, its variants, and other quantum graph neural networks. Furthermore, in terms of scalability on QUBO tasks, our algorithm shows superior performance compared to QAOA, presenting a substantial advancement in the field of quantum approximate optimization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.06434v1-abstract-full').style.display = 'none'; document.getElementById('2404.06434v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11pages,5figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.01986">arXiv:2401.01986</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.01986">pdf</a>, <a href="https://arxiv.org/ps/2401.01986">ps</a>, <a href="https://arxiv.org/format/2401.01986">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.109.042604">10.1103/PhysRevA.109.042604 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Generation of complete graph states in a spin-$1/2$ Heisenberg chain with a globally optimized magnetic field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+X+X">X. X. Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+D+X">D. X. Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shao%2C+X+Q">X. Q. Shao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.01986v3-abstract-short" style="display: inline;"> Graph states possess significant practical value in measurement-based quantum computation, with complete graph states that exhibit exceptional performance in quantum metrology. In this work, we introduce a method for generating multiparticle complete graph states using a spin-$1/2$ Heisenberg $XX$ chain subjected to a time-varying magnetic field, which applies to a wide range of systems. Our schem&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01986v3-abstract-full').style.display = 'inline'; document.getElementById('2401.01986v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.01986v3-abstract-full" style="display: none;"> Graph states possess significant practical value in measurement-based quantum computation, with complete graph states that exhibit exceptional performance in quantum metrology. In this work, we introduce a method for generating multiparticle complete graph states using a spin-$1/2$ Heisenberg $XX$ chain subjected to a time-varying magnetic field, which applies to a wide range of systems. Our scheme relies exclusively on nearest-neighbor interactions between atoms, with real-time magnetic field formation facilitated by quantum optimal control theory. We focus specifically on neutral-atom systems, finding that multiparticle complete graph states with $N=3\sim6$ can be achieved in less than $0.25~渭{\rm s}$, utilizing a hopping amplitude of ${J}/{(2蟺)} = -2.443~{\rm MHz}$. This assumes an initial state provided by an equal-weight superposition of all spin states that are encoded by the dipolar interacting Rydberg states. Additionally, we thoroughly address various experimental imperfections and showcase the robustness of our approach against atomic vibrations, fluctuations in pulse amplitude, and spontaneous emission of Rydberg states. Considering the common occurrence of disturbances in experimental setups of neutral-atom systems, our one-step strategy for achieving such graph states emerges as a more empirically viable alternative to techniques based on controlled-Z gates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01986v3-abstract-full').style.display = 'none'; document.getElementById('2401.01986v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted by Physical Review A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review A 109, 042604 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.13039">arXiv:2303.13039</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.13039">pdf</a>, <a href="https://arxiv.org/ps/2303.13039">ps</a>, <a href="https://arxiv.org/format/2303.13039">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.20.014014">10.1103/PhysRevApplied.20.014014 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-fidelity interconversion between Greenberger-Horne-Zeilinger and $W$ states through Floquet-Lindblad engineering in Rydberg atom arrays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Shao%2C+X+Q">X. Q. Shao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+F">F. Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xue%2C+X+W">X. W. Xue</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mu%2C+W+L">W. L. Mu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+W">Weibin Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.13039v2-abstract-short" style="display: inline;"> Greenberger-Horne-Zeilinger and W states feature genuine tripartite entanglement that cannot be converted into each other by local operations and classical communication. Here, we present a dissipative protocol for deterministic interconversion between Greenberger-Horne-Zeilinger and W states of three neutral $^{87}$Rb atoms arranged in an equilateral triangle of a two-dimensional array. With thre&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.13039v2-abstract-full').style.display = 'inline'; document.getElementById('2303.13039v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.13039v2-abstract-full" style="display: none;"> Greenberger-Horne-Zeilinger and W states feature genuine tripartite entanglement that cannot be converted into each other by local operations and classical communication. Here, we present a dissipative protocol for deterministic interconversion between Greenberger-Horne-Zeilinger and W states of three neutral $^{87}$Rb atoms arranged in an equilateral triangle of a two-dimensional array. With three atomic levels and diagonal van der Waals interactions of Rydberg atoms, the interconversion between tripartite entangled states can be efficiently accomplished in the Floquet-Lindblad framework through the periodic optical pump and dissipation engineering. We evaluate the feasibility of the existing methodology using the experimental parameters accessible to current neutral-atom platforms. We find that our scheme is robust against typical noises, such as laser phase noise and geometric imperfections of the atom array. In addition, our scheme can integrate the Gaussian soft quantum control technique, which further reduces the overall conversion time and increases the resilience to timing errors and interatomic distance fluctuations. The high-fidelity and robust tripartite entanglement interconversion protocol provides a route to save physical resources and enhance the computational efficiency of quantum networks formed by neutral-atom arrays. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.13039v2-abstract-full').style.display = 'none'; document.getElementById('2303.13039v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 14 figures, accepted by Physical Review Applied</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 20, 014014 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.12788">arXiv:2209.12788</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.12788">pdf</a>, <a href="https://arxiv.org/format/2209.12788">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1142/S0217751X24500076">10.1142/S0217751X24500076 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Application of Quantum Machine Learning in a Higgs Physics Study at the CEPC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Fadol%2C+A">Abdualazem Fadol</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sha%2C+Q">Qiyu Sha</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Fang%2C+Y">Yaquan Fang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+Z">Zhan Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Qian%2C+S">Sitian Qian</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xiao%2C+Y">Yuyang Xiao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+Y">Yu Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+C">Chen Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.12788v2-abstract-short" style="display: inline;"> Machine learning has blossomed in recent decades and has become essential in many fields. It significantly solved some problems in particle physics -- particle reconstruction, event classification, etc. However, it is now time to break the limitation of conventional machine learning with quantum computing. A support-vector machine algorithm with a quantum kernel estimator (QSVM-Kernel) leverages h&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.12788v2-abstract-full').style.display = 'inline'; document.getElementById('2209.12788v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.12788v2-abstract-full" style="display: none;"> Machine learning has blossomed in recent decades and has become essential in many fields. It significantly solved some problems in particle physics -- particle reconstruction, event classification, etc. However, it is now time to break the limitation of conventional machine learning with quantum computing. A support-vector machine algorithm with a quantum kernel estimator (QSVM-Kernel) leverages high-dimensional quantum state space to identify a signal from backgrounds. In this study, we have pioneered employing this quantum machine learning algorithm to study the $e^{+}e^{-} \rightarrow ZH$ process at the Circular Electron-Positron Collider (CEPC), a proposed Higgs factory to study electroweak symmetry breaking of particle physics. Using 6 qubits on quantum computer simulators, we optimised the QSVM-Kernel algorithm and obtained a classification performance similar to the classical support-vector machine algorithm. Furthermore, we have validated the QSVM-Kernel algorithm using 6-qubits on quantum computer hardware from both IBM and Origin Quantum: the classification performances of both are approaching noiseless quantum computer simulators. In addition, the Origin Quantum hardware results are similar to the IBM Quantum hardware within the uncertainties in our study. Our study shows that state-of-the-art quantum computing technologies could be utilised by particle physics, a branch of fundamental science that relies on big experimental data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.12788v2-abstract-full').style.display = 'none'; document.getElementById('2209.12788v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> International Journal of Modern Physics A, 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.05926">arXiv:2207.05926</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.05926">pdf</a>, <a href="https://arxiv.org/ps/2207.05926">ps</a>, <a href="https://arxiv.org/format/2207.05926">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.106.014138">10.1103/PhysRevE.106.014138 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optimal charging of open spin-chain quantum batteries via homodyne-based feedback control </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Yao%2C+Y">Y. Yao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shao%2C+X+Q">X. Q. Shao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.05926v1-abstract-short" style="display: inline;"> We study the problem of charging a dissipative one-dimensional $XXX$ spin-chain quantum battery using local magnetic fields in the presence of spin decay. The introduction of quantum feedback control based on homodyne measurement contributes to improve various performance of the quantum battery, such as energy storage, ergotropy, and effective space utilization rate. For the zero temperature envir&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.05926v1-abstract-full').style.display = 'inline'; document.getElementById('2207.05926v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.05926v1-abstract-full" style="display: none;"> We study the problem of charging a dissipative one-dimensional $XXX$ spin-chain quantum battery using local magnetic fields in the presence of spin decay. The introduction of quantum feedback control based on homodyne measurement contributes to improve various performance of the quantum battery, such as energy storage, ergotropy, and effective space utilization rate. For the zero temperature environment, there is a set of optimal parameters to ensure that the spin-chain quantum battery can be fully charged and the energy stored in the battery can be fully extracted under the perfect measurement condition, which is found through the analytical calculation of a simple two-site spin-chain quantum battery and further verified by numerical simulation of a four-site spin-chain counterpart. For completeness, the adverse effects of imperfect measurement, anisotropic parameter, and finite temperature on the charging process of the quantum battery are also considered. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.05926v1-abstract-full').style.display = 'none'; document.getElementById('2207.05926v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pgaes, 12 figures, accepted by Phys. Rev. E</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.05994">arXiv:2201.05994</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.05994">pdf</a>, <a href="https://arxiv.org/ps/2201.05994">ps</a>, <a href="https://arxiv.org/format/2201.05994">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.18.044042">10.1103/PhysRevApplied.18.044042 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Single temporal-pulse-modulated parameterized controlled-phase gate for Rydberg atoms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+X+X">X. X. Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shao%2C+X+Q">X. Q. Shao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+W">Weibin Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.05994v2-abstract-short" style="display: inline;"> We propose an adiabatic protocol for implementing a controlled-phase gate CZ$_胃$ with continuous $胃$ of neutral atoms through a symmetrical two-photon excitation process via the second resonance line, $6P$ in $^{87}$Rb, with a single-temporal-modulation-coupling of the ground state and intermediate state. Relying on different adiabatic paths, the phase factor $胃$ of CZ$_胃$ gate can be accumulated&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.05994v2-abstract-full').style.display = 'inline'; document.getElementById('2201.05994v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.05994v2-abstract-full" style="display: none;"> We propose an adiabatic protocol for implementing a controlled-phase gate CZ$_胃$ with continuous $胃$ of neutral atoms through a symmetrical two-photon excitation process via the second resonance line, $6P$ in $^{87}$Rb, with a single-temporal-modulation-coupling of the ground state and intermediate state. Relying on different adiabatic paths, the phase factor $胃$ of CZ$_胃$ gate can be accumulated on the logic qubit state $|11\rangle$ alone by calibrating the shape of the temporal pulse where strict zero amplitudes at the start and end of the pulse are not needed. For a wide range of $胃$, we can obtain the fidelity of CZ$_胃$ gate over $99.7\%$ in less than $1~渭$s, in the presence of spontaneous emission from intermediate and Rydberg states. And in particular for $胃=蟺$, we benchmark the performance of the CZ gate by taking into account various experimental imperfections, such as Doppler shifts, fluctuation of Rydberg-Rydberg interaction strength, inhomogeneous Rabi frequency, and noise of driving fields, etc, and show that the predicted fidelity is able to maintain at about $98.4\%$ after correcting the measurement error. This gate protocol provides a robustness against the fluctuation of pulse amplitude and a flexible way for adjusting the entangling phase, which may contribute to the experimental implementation of near-term noisy intermediate-scale quantum (NISQ) computation and algorithm with neutral-atom systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.05994v2-abstract-full').style.display = 'none'; document.getElementById('2201.05994v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 12 figures, accepted by Phys. Rev. Applied</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 18, 044042 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.02376">arXiv:2107.02376</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.02376">pdf</a>, <a href="https://arxiv.org/ps/2107.02376">ps</a>, <a href="https://arxiv.org/format/2107.02376">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.105.032417">10.1103/PhysRevA.105.032417 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coherent ground-state transport of neutral atoms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+X+X">X. X. Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=You%2C+J+B">J. B. You</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shao%2C+X+Q">X. Q. Shao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+W">Weibin Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.02376v4-abstract-short" style="display: inline;"> Quantum state transport is an important way to study the energy or information flow. By combining the unconventional Rydberg pumping mechanism and the diagonal form of van der Waals interactions, we construct a theoretical model via second-order perturbation theory to realize a long-range coherent transport inside the ground-state manifold of neutral atoms system. With the adjustment of the Rabi f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.02376v4-abstract-full').style.display = 'inline'; document.getElementById('2107.02376v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.02376v4-abstract-full" style="display: none;"> Quantum state transport is an important way to study the energy or information flow. By combining the unconventional Rydberg pumping mechanism and the diagonal form of van der Waals interactions, we construct a theoretical model via second-order perturbation theory to realize a long-range coherent transport inside the ground-state manifold of neutral atoms system. With the adjustment of the Rabi frequencies and the interatomic distance, this model can be used to simulate various single-body physics phenomena such as Heisenberg $XX$ spin chain restricted in the single-excitation manifold, coherently perfect quantum state transfer, parameter adjustable Su-Schrieffer-Heeger model, and chiral motion of atomic excitation in the triangle by varying the geometrical arrangement of the three atoms, which effectively avoid the influence of atomic spontaneous emission at the same time. Moreover, the influence of atomic position fluctuation on the fidelity of quantum state transmission is discussed in detail, and the corresponding numerical results show that our work provides a robust and easy-implemented scheme for quantum state transport with neutral atoms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.02376v4-abstract-full').style.display = 'none'; document.getElementById('2107.02376v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20pages, 21 figures, published in Phys. Rev. A 105, 032417 (2022)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.16036">arXiv:2010.16036</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.16036">pdf</a>, <a href="https://arxiv.org/ps/2010.16036">ps</a>, <a href="https://arxiv.org/format/2010.16036">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.410158">10.1364/OE.410158 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> One-step implementation of Toffoli gate for neutral atoms based on unconventional Rydberg pumping </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Yin%2C+H+D">H. D. Yin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+X+X">X. X. Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+G+C">G. C. Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shao%2C+X+Q">X. Q. Shao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.16036v1-abstract-short" style="display: inline;"> Compared with the idea of universal quantum computation, a direct synthesis of a multiqubit logic gate can greatly improve the efficiency of quantum information processing tasks. Here we propose an efficient scheme to implement a three-qubit controlled-not (Toffoli) gate of neutral atoms based on unconventional Rydberg pumping. By adjusting the strengths of Rabi frequencies of driving fields, the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.16036v1-abstract-full').style.display = 'inline'; document.getElementById('2010.16036v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.16036v1-abstract-full" style="display: none;"> Compared with the idea of universal quantum computation, a direct synthesis of a multiqubit logic gate can greatly improve the efficiency of quantum information processing tasks. Here we propose an efficient scheme to implement a three-qubit controlled-not (Toffoli) gate of neutral atoms based on unconventional Rydberg pumping. By adjusting the strengths of Rabi frequencies of driving fields, the Toffoli gate can be achieved within one step, which is also insensitive to the fluctuation of the Rydberg-Rydberg interaction. Considering different atom alignments, we can obtain a high-fidelity Toffoli gate at the same operation time $\sim 7~渭s$. In addition, our scheme can be further extended to the four-qubit case without altering the operating time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.16036v1-abstract-full').style.display = 'none'; document.getElementById('2010.16036v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To be published in Optics Express</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.11570">arXiv:2004.11570</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.11570">pdf</a>, <a href="https://arxiv.org/ps/2004.11570">ps</a>, <a href="https://arxiv.org/format/2004.11570">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Dissipative engineering a tripartite Greenberger-Horne-Zeilinger state for neutral atoms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+D+X">D. X. Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xiao%2C+H+W">H. W. Xiao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+C">C. Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shao%2C+X+Q">X. Q. Shao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.11570v1-abstract-short" style="display: inline;"> The multipartite Greenberger-Horne-Zeilinger (GHZ) states are indispensable elements for various quantum information processing tasks. Here we put forward two deterministic proposals to dissipatively prepare tripartite GHZ states in a neutral atom system. The first scheme can be considered as an extension of a recent work [T. M. Wintermantel, Y. Wang, G. Lochead, \textit{et al}, {Phys. Rev. Lett.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.11570v1-abstract-full').style.display = 'inline'; document.getElementById('2004.11570v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.11570v1-abstract-full" style="display: none;"> The multipartite Greenberger-Horne-Zeilinger (GHZ) states are indispensable elements for various quantum information processing tasks. Here we put forward two deterministic proposals to dissipatively prepare tripartite GHZ states in a neutral atom system. The first scheme can be considered as an extension of a recent work [T. M. Wintermantel, Y. Wang, G. Lochead, \textit{et al}, {Phys. Rev. Lett. \textbf{124}, 070503 (2020)}]. By virtue of the polychromatic driving fields and the engineered spontaneous emission, a multipartite GHZ state with odd numbers of atoms are generated with a high efficiency. This scheme effectively overcomes the problem of dependence on the initial state but sensitive to the decay of Rydberg state. In the second scenario, we exploit the spontaneous emission of the Rydberg states as a resource, thence a steady tripartite GHZ state with fidelity around $98\%$ can be obtained by simultaneously integrating the switching driving of unconventional Rydberg pumping and the Rydberg antiblockade effect. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.11570v1-abstract-full').style.display = 'none'; document.getElementById('2004.11570v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.06594">arXiv:1908.06594</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1908.06594">pdf</a>, <a href="https://arxiv.org/ps/1908.06594">ps</a>, <a href="https://arxiv.org/format/1908.06594">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.101.012329">10.1103/PhysRevA.101.012329 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Deterministic generation of maximally discordant mixed states by dissipation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+X+X">X. X. Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yin%2C+H+D">H. D. Yin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+D+X">D. X. Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shao%2C+X+Q">X. Q. Shao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.06594v2-abstract-short" style="display: inline;"> Entanglement can be considered as a special quantum correlation, but not the only kind. Even for a separable quantum system, it is allowed to exist non-classical correlations. Here we propose two dissipative schemes for generating a maximally correlated state of two qubits in the absence of quantum entanglement, which was raised by [F. Galve, G. L. Giorgi, and R. Zambrini, {\color{blue}Phys. Rev.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.06594v2-abstract-full').style.display = 'inline'; document.getElementById('1908.06594v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.06594v2-abstract-full" style="display: none;"> Entanglement can be considered as a special quantum correlation, but not the only kind. Even for a separable quantum system, it is allowed to exist non-classical correlations. Here we propose two dissipative schemes for generating a maximally correlated state of two qubits in the absence of quantum entanglement, which was raised by [F. Galve, G. L. Giorgi, and R. Zambrini, {\color{blue}Phys. Rev. A {\bf 83}, 012102 (2011)}]. These protocols take full advantages of the interaction between four-level atoms and strongly lossy optical cavities. In the first scenario, we alternatively change the phases of two classical driving fields, while the second proposal introduces a strongly lossy coupled-cavity system. Both schemes can realize all Lindblad terms required by the dissipative dynamics, guaranteeing the maximally quantum dissonant state to be the unique steady state for a certain subspace of system. Moreover, since the target state is a mixed state, the performance of our method is evaluated by the definition of super-fidelity $G(蟻_{1},蟻_{2})$, and the strictly numerical simulations indicate that fidelity outstripping $99\%$ of the quantum dissonant state is achievable with the current cavity quantum electrodynamics parameters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.06594v2-abstract-full').style.display = 'none'; document.getElementById('1908.06594v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 10 figures, accepted by pra</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 101, 012329 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.04207">arXiv:1811.04207</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.04207">pdf</a>, <a href="https://arxiv.org/ps/1811.04207">ps</a>, <a href="https://arxiv.org/format/1811.04207">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Rapid population transfer of a two-level system by a polychromatically driving field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+D+X">D. X. Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shao%2C+X+Q">X. Q. Shao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.04207v1-abstract-short" style="display: inline;"> We propose a simple exact analytical solution for a model consisting of a two-level system and a polychromatically driving field. It helps us to realize a rapid complete population transfer from the ground state to the excited state, and the system can be stable at the excited state for an extremely long time. A combination of the mechanism and the Rydberg atoms successfully prepares the Bell stat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.04207v1-abstract-full').style.display = 'inline'; document.getElementById('1811.04207v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.04207v1-abstract-full" style="display: none;"> We propose a simple exact analytical solution for a model consisting of a two-level system and a polychromatically driving field. It helps us to realize a rapid complete population transfer from the ground state to the excited state, and the system can be stable at the excited state for an extremely long time. A combination of the mechanism and the Rydberg atoms successfully prepares the Bell state and multipartite $W$ state, and the experimental feasibility is discussed via the current experimental parameters. Finally, the simple exact analytical solution is generalized into a three-level system, which leads to a significant enhancement of the robustness against dissipation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.04207v1-abstract-full').style.display = 'none'; document.getElementById('1811.04207v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.05336">arXiv:1806.05336</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1806.05336">pdf</a>, <a href="https://arxiv.org/ps/1806.05336">ps</a>, <a href="https://arxiv.org/format/1806.05336">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.98.062338">10.1103/PhysRevA.98.062338 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unconventional Rydberg pumping and applications in quantum information processing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+D+X">D. X. Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shao%2C+X+Q">X. Q. Shao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.05336v2-abstract-short" style="display: inline;"> We propose a mechanism of unconventional Rydberg pumping (URP) via simultaneously driving each Rydberg atom by two classical fields with different strengths of Rabi frequencies. This mechanism differs from the general Rydberg blockade or Rydberg antiblockade since it is closely related to the ground states of atoms, i.e. two atoms in the same ground state are stable while two atoms in different gr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.05336v2-abstract-full').style.display = 'inline'; document.getElementById('1806.05336v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.05336v2-abstract-full" style="display: none;"> We propose a mechanism of unconventional Rydberg pumping (URP) via simultaneously driving each Rydberg atom by two classical fields with different strengths of Rabi frequencies. This mechanism differs from the general Rydberg blockade or Rydberg antiblockade since it is closely related to the ground states of atoms, i.e. two atoms in the same ground state are stable while two atoms in different ground states are resonantly excited. Furthermore, we find the URP can be employed to simplify some special quantum information processing tasks, such as implementation of a three-qubit controlled phase gate with only a single Rabi oscillation, preparation of two- and three-dimensional steady-state entanglement with two identical atoms, and realization of the autonomous quantum error correction in a Rydberg-atom-cavity system. The feasibility of the above applications is certified explicitly by the state-of-the-art technology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.05336v2-abstract-full').style.display = 'none'; document.getElementById('1806.05336v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 11 figures. The typos in Eq (2) are corrected</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 98, 062338 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.06216">arXiv:1710.06216</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.06216">pdf</a>, <a href="https://arxiv.org/ps/1710.06216">ps</a>, <a href="https://arxiv.org/format/1710.06216">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.25.015806">10.1364/OE.25.015806 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Conversion of entangled states with nitrogen-vacancy centers coupled to microtoroidal resonators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Ji%2C+Y+Q">Y. Q. Ji</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shao%2C+X+Q">X. Q. Shao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yi%2C+X+X">X. X. Yi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.06216v1-abstract-short" style="display: inline;"> We propose efficient schemes for converting three-photon, four-photon and five-photon GHZ state to a $W$ state or Dicke state, respectively with the nitrogen-vacancy (N-V) centers via single-photon input-output process and cross-Kerr nonlinearities. The total success probability can be improved by iterating the conversion process for the case of three-photon and five-photon while it does not requi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.06216v1-abstract-full').style.display = 'inline'; document.getElementById('1710.06216v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.06216v1-abstract-full" style="display: none;"> We propose efficient schemes for converting three-photon, four-photon and five-photon GHZ state to a $W$ state or Dicke state, respectively with the nitrogen-vacancy (N-V) centers via single-photon input-output process and cross-Kerr nonlinearities. The total success probability can be improved by iterating the conversion process for the case of three-photon and five-photon while it does not require iteration for converting four-photon GHZ state to a $W$ state. The analysis of feasibility shows that our scheme is feasible for current experimental technology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.06216v1-abstract-full').style.display = 'none'; document.getElementById('1710.06216v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Opt. Express, 25, 15806-15817 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.06163">arXiv:1710.06163</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.06163">pdf</a>, <a href="https://arxiv.org/ps/1710.06163">ps</a>, <a href="https://arxiv.org/format/1710.06163">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41598-017-01499-5">10.1038/s41598-017-01499-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fusing atomic $W$ states via quantum Zeno dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Ji%2C+Y+Q">Y. Q. Ji</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shao%2C+X+Q">X. Q. Shao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yi%2C+X+X">X. X. Yi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.06163v1-abstract-short" style="display: inline;"> We propose a scheme for preparation of large-scale entangled $W$ states based on the fusion mechanism via quantum Zeno dynamics. By sending two atoms belonging to an $n$-atom $W$ state and an $m$-atom $W$ state, respectively, into a vacuum cavity (or two separate cavities), we may obtain a ($n+m-2$)-atom $W$ state via detecting the two-atom state after interaction. The present scheme is robust aga&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.06163v1-abstract-full').style.display = 'inline'; document.getElementById('1710.06163v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.06163v1-abstract-full" style="display: none;"> We propose a scheme for preparation of large-scale entangled $W$ states based on the fusion mechanism via quantum Zeno dynamics. By sending two atoms belonging to an $n$-atom $W$ state and an $m$-atom $W$ state, respectively, into a vacuum cavity (or two separate cavities), we may obtain a ($n+m-2$)-atom $W$ state via detecting the two-atom state after interaction. The present scheme is robust against both spontaneous emission of atoms and decay of cavity, and the feasibility analysis indicates that it can also be realized in experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.06163v1-abstract-full').style.display = 'none'; document.getElementById('1710.06163v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. Rep. 7, 1378 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.06152">arXiv:1710.06152</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.06152">pdf</a>, <a href="https://arxiv.org/ps/1710.06152">ps</a>, <a href="https://arxiv.org/format/1710.06152">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.96.043815">10.1103/PhysRevA.96.043815 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Enhanced exciton transmission by quantum-jump-based feedback </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Ji%2C+Y+Q">Y. Q. Ji</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Qin%2C+M">M. Qin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shao%2C+X+Q">X. Q. Shao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yi%2C+X+X">X. X. Yi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.06152v1-abstract-short" style="display: inline;"> With rotating-wave approximation (RWA), we show in this paper that exciton transmission in a one-dimensional two-level molecule chain embedded in a cavity can be enhanced or suppressed by strong cavity-chain couplings. This exciton transmission is closely related to the number of molecules and the distribution of molecular exciton energy. In addition, we propose a proposal to enhance the exciton t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.06152v1-abstract-full').style.display = 'inline'; document.getElementById('1710.06152v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.06152v1-abstract-full" style="display: none;"> With rotating-wave approximation (RWA), we show in this paper that exciton transmission in a one-dimensional two-level molecule chain embedded in a cavity can be enhanced or suppressed by strong cavity-chain couplings. This exciton transmission is closely related to the number of molecules and the distribution of molecular exciton energy. In addition, we propose a proposal to enhance the exciton transmission by quantum-jump-based feedback. These results may find applications in experiments of exciton transmission in organic materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.06152v1-abstract-full').style.display = 'none'; document.getElementById('1710.06152v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A, 96, 043815 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.05122">arXiv:1710.05122</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.05122">pdf</a>, <a href="https://arxiv.org/ps/1710.05122">ps</a>, <a href="https://arxiv.org/format/1710.05122">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11128-017-1711-y">10.1007/s11128-017-1711-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Entangled state fusion with Rydberg atoms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Ji%2C+Y+Q">Y. Q. Ji</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Dai%2C+C+M">C. M. Dai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shao%2C+X+Q">X. Q. Shao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yi%2C+X+X">X. X. Yi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.05122v2-abstract-short" style="display: inline;"> We propose a scheme for preparation of large-scale entangled $GHZ$ states and $W$ states with neutral Rydberg atoms. The scheme mainly depends on Rydberg antiblockade effect, i.e., as the Rydberg-Rydberg-interaction (RRI) strength and the detuning between the atom transition frequency and the classical laser frequency satisfies some certain conditions, the effective Rabi oscillation between the tw&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.05122v2-abstract-full').style.display = 'inline'; document.getElementById('1710.05122v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.05122v2-abstract-full" style="display: none;"> We propose a scheme for preparation of large-scale entangled $GHZ$ states and $W$ states with neutral Rydberg atoms. The scheme mainly depends on Rydberg antiblockade effect, i.e., as the Rydberg-Rydberg-interaction (RRI) strength and the detuning between the atom transition frequency and the classical laser frequency satisfies some certain conditions, the effective Rabi oscillation between the two ground states and the two excitation Rydberg states would be generated. The prominent advantage is that both two-multiparticle $GHZ$ states and two-multiparticle $W$ states can be fused in this model, especially the success probability for fusion of $GHZ$ states can reach unit. In addition, the imperfections induced by the spontaneous emission is also discussed through numerical simulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.05122v2-abstract-full').style.display = 'none'; document.getElementById('1710.05122v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Quantum Inf Process (2017) 16:259 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.08327">arXiv:1709.08327</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1709.08327">pdf</a>, <a href="https://arxiv.org/ps/1709.08327">ps</a>, <a href="https://arxiv.org/format/1709.08327">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.96.062315">10.1103/PhysRevA.96.062315 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dissipative preparation of steady Greenberger-Horne-Zeilinger states for Rydberg atoms with quantum Zeno dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Shao%2C+X+Q">X. Q. Shao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+J+H">J. H. Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yi%2C+X+X">X. X. Yi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Long%2C+G">Gui-Lu Long</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.08327v2-abstract-short" style="display: inline;"> Inspired by a recent work [Reiter, Reeb, and S酶rensen, Phys. Rev. Lett. {\bf117}, 040501 (2016)], we present a simplified proposal for dissipatively preparing a Greenberger-Horne-Zeilinger (GHZ) state of three Rydberg atoms in a cavity. The $Z$ pumping is implemented under the action of the spontaneous emission of $螞$-type atoms and the quantum Zeno dynamics induced by strong continuous coupling.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.08327v2-abstract-full').style.display = 'inline'; document.getElementById('1709.08327v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.08327v2-abstract-full" style="display: none;"> Inspired by a recent work [Reiter, Reeb, and S酶rensen, Phys. Rev. Lett. {\bf117}, 040501 (2016)], we present a simplified proposal for dissipatively preparing a Greenberger-Horne-Zeilinger (GHZ) state of three Rydberg atoms in a cavity. The $Z$ pumping is implemented under the action of the spontaneous emission of $螞$-type atoms and the quantum Zeno dynamics induced by strong continuous coupling. In the meantime, a dissipative Rydberg pumping breaks up the stability of the state $|{\rm GHZ}_+\rangle$ in the process of $Z$ pumping, making $|{\rm GHZ}_-\rangle$ be the unique steady state of system. Compared with the former scheme, the number of driving fields acting on atoms is greatly reduced and only a single-mode cavity is required. The numerical simulation of the full master equation reveals that a high fidelity $\sim98\%$ can be obtained with the currently achievable parameters in the Rydberg-atom-cavity system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.08327v2-abstract-full').style.display = 'none'; document.getElementById('1709.08327v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted by PRA</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 96, 062315 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.06471">arXiv:1705.06471</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1705.06471">pdf</a>, <a href="https://arxiv.org/ps/1705.06471">ps</a>, <a href="https://arxiv.org/format/1705.06471">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OL.42.003904">10.1364/OL.42.003904 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Engineering steady-state entanglement via dissipation and quantum Zeno dynamics in optical cavity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+D+X">D. X. Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shao%2C+X+Q">X. Q. Shao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+J+H">J. H. Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yi%2C+X+X">X. X. Yi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.06471v2-abstract-short" style="display: inline;"> A new mechanism is proposed for dissipatively preparing maximal Bell entangled state of two atoms in an optical cavity. This scheme integrates the spontaneous emission, the light shift of atoms in the presence of dispersive microwave field, and the quantum Zeno dynamics induced by continuous coupling, to obtain a unique steady state irrespective of initial state. Even for a large cavity decay, a h&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.06471v2-abstract-full').style.display = 'inline'; document.getElementById('1705.06471v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.06471v2-abstract-full" style="display: none;"> A new mechanism is proposed for dissipatively preparing maximal Bell entangled state of two atoms in an optical cavity. This scheme integrates the spontaneous emission, the light shift of atoms in the presence of dispersive microwave field, and the quantum Zeno dynamics induced by continuous coupling, to obtain a unique steady state irrespective of initial state. Even for a large cavity decay, a high-fidelity entangled state is achievable at a short convergence time, since the occupation of cavity mode is inhibited by the Zeno requirement. Therefore, a low single-atom cooperativity $C=g^2/(魏纬)$ is good enough for realizing a high fidelity of entanglement in a wide range of decoherence parameters. As a straightforward extension, the feasibility for preparation of two-atom Knill-Laflamme-Milburn state with the same mechanism is also discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.06471v2-abstract-full').style.display = 'none'; document.getElementById('1705.06471v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Opt. Lett. 42, 3904-3907 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.03614">arXiv:1705.03614</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1705.03614">pdf</a>, <a href="https://arxiv.org/ps/1705.03614">ps</a>, <a href="https://arxiv.org/format/1705.03614">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.95.062339">10.1103/PhysRevA.95.062339 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dissipation-based entanglement via quantum Zeno dynamics and Rydberg antiblockade </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Shao%2C+X+Q">X. Q. Shao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+J+H">J. H. Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yi%2C+X+X">X. X. Yi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.03614v1-abstract-short" style="display: inline;"> A novel scheme is proposed for dissipative generation of maximally entanglement between two Rydberg atoms in the context of cavity QED. The spontaneous emission of atoms combined with quantum Zeno dynamics and Rydberg antiblockade guarantees a unique steady solution of the master equation of system, which just corresponds to the antisymmetric Bell state $|S\rangle$. The convergence rate is acceler&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.03614v1-abstract-full').style.display = 'inline'; document.getElementById('1705.03614v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.03614v1-abstract-full" style="display: none;"> A novel scheme is proposed for dissipative generation of maximally entanglement between two Rydberg atoms in the context of cavity QED. The spontaneous emission of atoms combined with quantum Zeno dynamics and Rydberg antiblockade guarantees a unique steady solution of the master equation of system, which just corresponds to the antisymmetric Bell state $|S\rangle$. The convergence rate is accelerated by the ground-state blockade mechanism of Rydberg atoms. Meanwhile the effect of cavity decay is suppressed by the Zeno requirement, leading to a steady-state fidelity about $90\%$ as the single-atom cooperativity parameter $C\equiv g^2/(魏纬)= 10$, and this restriction is further relaxed to $C= 5.2$ once the quantum-jump-based feedback control is exploited. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.03614v1-abstract-full').style.display = 'none'; document.getElementById('1705.03614v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures, comments are welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 95, 062339 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.03081">arXiv:1705.03081</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1705.03081">pdf</a>, <a href="https://arxiv.org/ps/1705.03081">ps</a>, <a href="https://arxiv.org/format/1705.03081">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.96.012328">10.1103/PhysRevA.96.012328 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ground-state blockade of Rydberg atoms and application in entanglement generation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Shao%2C+X+Q">X. Q. Shao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+D+X">D. X. Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ji%2C+Y+Q">Y. Q. Ji</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+J+H">J. H. Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yi%2C+X+X">X. X. Yi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.03081v2-abstract-short" style="display: inline;"> We propose a mechanism of ground-state blockade between two $N$-type Rydberg atoms in virtue of Rydberg-antiblockade effect and Raman transition. Inspired by the quantum Zeno effect, the strong Rydberg antiblockade interaction plays a role in frequently measuring one ground state of two, leading to a blockade effect for double occupation of the corresponding quantum state. By encoding the logic qu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.03081v2-abstract-full').style.display = 'inline'; document.getElementById('1705.03081v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.03081v2-abstract-full" style="display: none;"> We propose a mechanism of ground-state blockade between two $N$-type Rydberg atoms in virtue of Rydberg-antiblockade effect and Raman transition. Inspired by the quantum Zeno effect, the strong Rydberg antiblockade interaction plays a role in frequently measuring one ground state of two, leading to a blockade effect for double occupation of the corresponding quantum state. By encoding the logic qubits into the ground states, we efficiently avoid the spontaneous emission of the excited Rydberg state, and maintain the nonlinear Rydberg-Rydberg interaction at the same time. As applications, we discuss in detail the feasibility of preparing two-atom and three-atom entanglement with ground-state blockade in closed system and open system, respectively, which shows that a high fidelity of entangled state can be obtained with current experimental parameters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.03081v2-abstract-full').style.display = 'none'; document.getElementById('1705.03081v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 96, 012328 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1701.00081">arXiv:1701.00081</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1701.00081">pdf</a>, <a href="https://arxiv.org/ps/1701.00081">ps</a>, <a href="https://arxiv.org/format/1701.00081">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.95.022317">10.1103/PhysRevA.95.022317 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dissipative stabilization of quantum-feedback-based multipartite entanglement with Rydberg atoms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Shao%2C+X+Q">X. Q. Shao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=WU%2C+J+H">J. H. WU</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yi%2C+X+X">X. X. Yi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1701.00081v1-abstract-short" style="display: inline;"> A quantum-feedback-based scheme is proposed for generating multipartite entanglements of Rydberg atoms in a dissipative optical cavity. The Rydberg blockade mechanism efficiently prevents double excitations of the system, which is further exploited to speed up the stabilization of an entangled state with a single Rydberg state excitation. The corresponding feedback operations are greatly simplifie&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.00081v1-abstract-full').style.display = 'inline'; document.getElementById('1701.00081v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1701.00081v1-abstract-full" style="display: none;"> A quantum-feedback-based scheme is proposed for generating multipartite entanglements of Rydberg atoms in a dissipative optical cavity. The Rydberg blockade mechanism efficiently prevents double excitations of the system, which is further exploited to speed up the stabilization of an entangled state with a single Rydberg state excitation. The corresponding feedback operations are greatly simplified, since only one regular atom needs to be controlled during the whole process, irrespective of the number of particles. The form of entangled state is also adjustable via regulating the Rabi frequencies of driving fields. Moreover, a relatively long-life time of the high-lying Rydberg level guarantees a high fidelity in a realistic situation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.00081v1-abstract-full').style.display = 'none'; document.getElementById('1701.00081v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 95, 022317 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1607.05413">arXiv:1607.05413</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1607.05413">pdf</a>, <a href="https://arxiv.org/ps/1607.05413">ps</a>, <a href="https://arxiv.org/format/1607.05413">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.94.032307">10.1103/PhysRevA.94.032307 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dissipative preparation of tripartite singlet state in coupled arrays of cavities via quantum feedback control </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Shao%2C+X+Q">X. Q. Shao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z+H">Z. H. Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+H+D">H. D. Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yi%2C+X+X">X. X. Yi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1607.05413v1-abstract-short" style="display: inline;"> We propose an experimentally feasible scheme for dissipative preparation of tripartite entangled state with atoms separately trapped in an array of three coupled cavities. The combination of coherent driving fields and quantum-jump-based feedback control will drive the system into a non-equilibrium steady state, which has a nearly perfect overlap with the genuine three-atom singlet state. Differen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.05413v1-abstract-full').style.display = 'inline'; document.getElementById('1607.05413v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1607.05413v1-abstract-full" style="display: none;"> We propose an experimentally feasible scheme for dissipative preparation of tripartite entangled state with atoms separately trapped in an array of three coupled cavities. The combination of coherent driving fields and quantum-jump-based feedback control will drive the system into a non-equilibrium steady state, which has a nearly perfect overlap with the genuine three-atom singlet state. Different control strategies are investigated and the corresponding optimal parameters are confirmed. Moreover, the fidelity of target state is insensitive to detection inefficiencies, and it oversteps 90\% for a wide range of decoherence parameters as long as the single-atom cooperativity parameter $C\equiv g^2/(纬魏)&gt;350$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.05413v1-abstract-full').style.display = 'none'; document.getElementById('1607.05413v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures, comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.03657">arXiv:1507.03657</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1507.03657">pdf</a>, <a href="https://arxiv.org/ps/1507.03657">ps</a>, <a href="https://arxiv.org/format/1507.03657">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Engineering the coupling between Majorana bound states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Z+C">Z. C. Shi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shao%2C+X+Q">X. Q. Shao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xia%2C+Y">Y. Xia</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yi%2C+X+X">X. X. Yi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.03657v3-abstract-short" style="display: inline;"> We study the coupling between Majorana bound states (CMBS), which is mediated by a topologically trivial chain in the presence of pairing coupling and long-range coupling. The results show that CMBS can be enhanced by the pairing coupling and long-range coupling of the trivial chain. When driving the trivial chain by periodic driving field, we deduce the analytical expressions of CMBS in the high-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.03657v3-abstract-full').style.display = 'inline'; document.getElementById('1507.03657v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.03657v3-abstract-full" style="display: none;"> We study the coupling between Majorana bound states (CMBS), which is mediated by a topologically trivial chain in the presence of pairing coupling and long-range coupling. The results show that CMBS can be enhanced by the pairing coupling and long-range coupling of the trivial chain. When driving the trivial chain by periodic driving field, we deduce the analytical expressions of CMBS in the high-frequency limit, and demonstrate that CMBS can be modulated by the frequency and amplitude of driving field. Finally we exhibit the application of tunable CMBS in realizing quantum logic gates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.03657v3-abstract-full').style.display = 'none'; document.getElementById('1507.03657v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1505.01556">arXiv:1505.01556</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1505.01556">pdf</a>, <a href="https://arxiv.org/ps/1505.01556">ps</a>, <a href="https://arxiv.org/format/1505.01556">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.92.052122">10.1103/PhysRevE.92.052122 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum response theory for open systems and its application to Hall conductance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Shen%2C+H+Z">H. Z. Shen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Qin%2C+M">M. Qin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y+H">Y. H. Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shao%2C+X+Q">X. Q. Shao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yi%2C+X+X">X. X. Yi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1505.01556v1-abstract-short" style="display: inline;"> Quantum linear response theory considers only the response of a closed quantum system to a perturbation up to first order in the perturbation. This theory breaks down when the system subjects to environments and the response up to second order in perturbation is not negligible. In this paper, we develop a quantum nonlinear response theory for open systems. We first formulate this theory in terms o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.01556v1-abstract-full').style.display = 'inline'; document.getElementById('1505.01556v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1505.01556v1-abstract-full" style="display: none;"> Quantum linear response theory considers only the response of a closed quantum system to a perturbation up to first order in the perturbation. This theory breaks down when the system subjects to environments and the response up to second order in perturbation is not negligible. In this paper, we develop a quantum nonlinear response theory for open systems. We first formulate this theory in terms of general susceptibility, then apply it to deriving the Hall conductance for the open system at finite temperature. Taking the two-band model as an example, we derive the Hall conductance for the two-band model. We calculate the Hall conductance for a two-dimensional ferromagnetic electron gas and a two-dimensional lattice model via different expressions for $d_伪(\vec p), \ 伪=x,y,z$. The results show that the transition points of topological phase almost remain unchanged in the presence of environments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.01556v1-abstract-full').style.display = 'none'; document.getElementById('1505.01556v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 May, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review E 92, 052122 (2015) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10