CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 486 results for author: <span class="mathjax">Yang, J</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/hep-ph" aria-role="search"> Searching in archive <strong>hep-ph</strong>. <a href="/search/?searchtype=author&amp;query=Yang%2C+J">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Yang, J"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Yang%2C+J&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Yang, J"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Yang%2C+J&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Yang%2C+J&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Yang%2C+J&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Yang%2C+J&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Yang%2C+J&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Yang%2C+J&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.00803">arXiv:2412.00803</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.00803">pdf</a>, <a href="https://arxiv.org/format/2412.00803">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Quantum simulation of the phase transition of the massive Thirring model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Gong%2C+J">Jia-Qi Gong</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Yang%2C+J">Ji-Chong Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.00803v1-abstract-short" style="display: inline;"> The rapid development of quantum computing technology has made it possible to study the thermodynamic properties of fermionic systems at finite temperatures through quantum simulations on a quantum computer. This provides a novel approach to the study of the chiral phase transition of fermionic systems. Among these, the quantum minimally entangled typical thermal states (QMETTS) algorithm has rece&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.00803v1-abstract-full').style.display = 'inline'; document.getElementById('2412.00803v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.00803v1-abstract-full" style="display: none;"> The rapid development of quantum computing technology has made it possible to study the thermodynamic properties of fermionic systems at finite temperatures through quantum simulations on a quantum computer. This provides a novel approach to the study of the chiral phase transition of fermionic systems. Among these, the quantum minimally entangled typical thermal states (QMETTS) algorithm has recently attracted considerable interest. The massive Thirring model, which exhibits a variety of phenomena at low temperatures, includes both a chiral phase transition and a topologically non-trivial ground state. It therefore raises the intriguing question of whether its phase transition can be studied using a quantum simulation approach. In this study, the chiral phase transition of the massive Thirring model and its dual topological phase transition are studied using the QMETTS algorithm. The results show that QMETTS is able to accurately reproduce the phase transition and thermodynamic properties of the massive Thirring model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.00803v1-abstract-full').style.display = 'none'; document.getElementById('2412.00803v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.11648">arXiv:2411.11648</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.11648">pdf</a>, <a href="https://arxiv.org/ps/2411.11648">ps</a>, <a href="https://arxiv.org/format/2411.11648">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Evidence for Two Excited $惟^{-}$ Hyperons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Balossino%2C+I">I. Balossino</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Berger%2C+N">N. Berger</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bianco%2C+E">E. Bianco</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bortone%2C+A">A. Bortone</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Briere%2C+R+A">R. A. Briere</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Brueggemann%2C+A">A. Brueggemann</a> , et al. (650 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.11648v1-abstract-short" style="display: inline;"> Using $e^+e^-$ collision data corresponding to an integrated luminosity of 19 fb$^{-1}$ collected by the BESIII detector at center-of-mass energies ranging from 4.13 to 4.70 GeV, we report the first evidence for a new excited $惟^{-}$ hyperon, the $惟^*(2109)^{-}$, through the process $e^+ e^- \to 惟^*(2109)^{-} \bar惟^{+} +c.c.$ with a significance of 3.7 $蟽$. The mass and width of $惟^*(2109)^{-}$ ar&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11648v1-abstract-full').style.display = 'inline'; document.getElementById('2411.11648v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.11648v1-abstract-full" style="display: none;"> Using $e^+e^-$ collision data corresponding to an integrated luminosity of 19 fb$^{-1}$ collected by the BESIII detector at center-of-mass energies ranging from 4.13 to 4.70 GeV, we report the first evidence for a new excited $惟^{-}$ hyperon, the $惟^*(2109)^{-}$, through the process $e^+ e^- \to 惟^*(2109)^{-} \bar惟^{+} +c.c.$ with a significance of 3.7 $蟽$. The mass and width of $惟^*(2109)^{-}$ are measured to be $2108.8 \pm 5.5_{\rm stat} \pm 1.5_{\rm syst} {\rm MeV}/c^{2}$ and $21.6 \pm 17.7_{\rm stat} \pm 9.4_{\rm syst} {\rm MeV}$, respectively. We also present evidence for production of the $惟^*(2012)^{-}$ in the process $e^+ e^- \to 惟^*(2012)^{-} \bar惟^{+} +c.c.$ with a significance of 3.7 $蟽$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11648v1-abstract-full').style.display = 'none'; document.getElementById('2411.11648v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.04804">arXiv:2411.04804</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.04804">pdf</a>, <a href="https://arxiv.org/format/2411.04804">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Search for Neutral Triple Gauge Couplings with $ZZ$ Production at Future Electron Positron Colliders </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Guo%2C+Y">Yu-Chen Guo</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Pan%2C+C">Chun-Jing Pan</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ruan%2C+M">Man-Qi Ruan</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Yang%2C+J">Ji-Chong Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.04804v1-abstract-short" style="display: inline;"> This study investigates Neutral Triple Gauge Couplings (nTGCs) through $ZZ$ production at future electron-positron colliders. The impact of beam polarization on cross section is analyzed. We compare the signals and backgrounds for five different $ZZ$ decay channels and present our event selection strategies for future $e^+e^-$ colliders. The expected coefficient constraints for each decay channels&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04804v1-abstract-full').style.display = 'inline'; document.getElementById('2411.04804v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.04804v1-abstract-full" style="display: none;"> This study investigates Neutral Triple Gauge Couplings (nTGCs) through $ZZ$ production at future electron-positron colliders. The impact of beam polarization on cross section is analyzed. We compare the signals and backgrounds for five different $ZZ$ decay channels and present our event selection strategies for future $e^+e^-$ colliders. The expected coefficient constraints for each decay channels are provided, and final expected constraints are derived by combining results from the different decay patterns. Our analysis indicates that future electron-positron colliders will have significantly enhanced detection capabilities for nTGCs compared to the current LHC experiments, with expected improvements in constraints by one to two orders of magnitude. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04804v1-abstract-full').style.display = 'none'; document.getElementById('2411.04804v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 25 figures, 19 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.01744">arXiv:2411.01744</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.01744">pdf</a>, <a href="https://arxiv.org/ps/2411.01744">ps</a>, <a href="https://arxiv.org/format/2411.01744">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Neutrinos in the flavor-dependent $U(1)_F$ model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Yang%2C+J">Jin-Lei Yang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Li%2C+J">Jie Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.01744v1-abstract-short" style="display: inline;"> The neutrino oscillation experiments provide definitive evidence of new physics beyond the Standard Model (SM), and the neutrino mass-squared differences and flavor mixing have been precisely measured. This study examines the neutrino sector within the flavor-dependent $U(1)_F$ model, where the unique fermion sector can simultaneously address both the flavor mixing puzzle and the mass hierarchy pu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01744v1-abstract-full').style.display = 'inline'; document.getElementById('2411.01744v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.01744v1-abstract-full" style="display: none;"> The neutrino oscillation experiments provide definitive evidence of new physics beyond the Standard Model (SM), and the neutrino mass-squared differences and flavor mixing have been precisely measured. This study examines the neutrino sector within the flavor-dependent $U(1)_F$ model, where the unique fermion sector can simultaneously address both the flavor mixing puzzle and the mass hierarchy puzzle. It is found that the lightest neutrino is naturally massless in this model, and the predicted neutrino mass-squared differences, flavor mixing angles, Dirac CP phase agree well with the experimental measurements. Additionally, the effects of the Dirac CP phase and Majorana CP phase on the theoretical predictions of the neutrino transition magnetic dipole moments are analyzed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01744v1-abstract-full').style.display = 'none'; document.getElementById('2411.01744v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 4 fifures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.23666">arXiv:2410.23666</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.23666">pdf</a>, <a href="https://arxiv.org/format/2410.23666">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Growth of Gravitational Wave Spectrum from Sound Waves in a Universe with Generic Expansion Rate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Guo%2C+H">Huai-Ke Guo</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hu%2C+J">Jiahang Hu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Xiao%2C+Y">Yang Xiao</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Yang%2C+J+M">Jin Min Yang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhang%2C+Y">Yang Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.23666v1-abstract-short" style="display: inline;"> We derived here the factor $违$, which quantifies how the gravitational wave spectrum generated by sound waves in the radiation sector grows over time, in a universe with a generic expanding rate set by another dominant energy content. When the dominant energy density satisfies $蟻\propto a^{-3(1+w)}$, we found that $违$ has a compact analytical expression: $违=\frac{2[1-y^{3(w-1)/2}]}{3(1-w)}$, where&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23666v1-abstract-full').style.display = 'inline'; document.getElementById('2410.23666v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.23666v1-abstract-full" style="display: none;"> We derived here the factor $违$, which quantifies how the gravitational wave spectrum generated by sound waves in the radiation sector grows over time, in a universe with a generic expanding rate set by another dominant energy content. When the dominant energy density satisfies $蟻\propto a^{-3(1+w)}$, we found that $违$ has a compact analytical expression: $违=\frac{2[1-y^{3(w-1)/2}]}{3(1-w)}$, where $y = a(t)/a(t_s)$ which is the ratio of the scale factor at a later time $t$ to that at $t_s$ when gravitational wave production from sound waves starts. This generic result reduces to that derived previously for radiation-dominated and matter-dominated cases, thus generalizing previous formulas to more general cosmological contexts and providing more accurate results. The derivation relies solely on a stationary source, implying that this generic result of $违$ serves as an universal factor in describing the growth of the gravitational wave production and can appear beyond cosmological phase transitions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23666v1-abstract-full').style.display = 'none'; document.getElementById('2410.23666v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.20645">arXiv:2410.20645</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.20645">pdf</a>, <a href="https://arxiv.org/format/2410.20645">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Direct detection of Higgs portal for light self-interacting dark matter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Xu%2C+W">Wu-Long Xu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Yang%2C+J+M">Jin Min Yang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhu%2C+B">Bin Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.20645v1-abstract-short" style="display: inline;"> Self-interacting dark matter (SIDM) can address the small-scale anomalies and previous researches focused on such a SIDM heavier than GeV, for which the self-scattering cross-section is in the quantum resonance region and has a non-trivial velocity dependence. For a SIDM lighter than GeV, the self-scattering cross-section falls within the Born region. In this work, considering the constraints from&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20645v1-abstract-full').style.display = 'inline'; document.getElementById('2410.20645v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.20645v1-abstract-full" style="display: none;"> Self-interacting dark matter (SIDM) can address the small-scale anomalies and previous researches focused on such a SIDM heavier than GeV, for which the self-scattering cross-section is in the quantum resonance region and has a non-trivial velocity dependence. For a SIDM lighter than GeV, the self-scattering cross-section falls within the Born region. In this work, considering the constraints from CMB, BBN and the DM relic density, we investigate the direct detection of the Higgs portal for a sub-GeV SIDM with a scalar mediator. For this end, we consider two approaches : one is the cosmic-ray accelerated dark matter (CRDM) scattering off the nucleon, the other is the electron recoil caused by the halo dark matter. We present direct detection limits for the parameter space of light SIDM and scalar mediator. We find that the detectability in either approach needs a sizable mediator-Higgs mixing angle ($\sin胃$) which is larger than one for the CRDM approach and larger than $10^{-3}$ for the electron recoil approach. While the former case cannot be realized in the Higgs-portal light SIDM model with a scalar mediator, the latter case may also be constrained by some astrophysical observations or beam dump experiment. Anyway, even if other constraints are quite stringent, the direct detection may provide independent limits for such a sub-GeV SIDM. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20645v1-abstract-full').style.display = 'none'; document.getElementById('2410.20645v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.18847">arXiv:2410.18847</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.18847">pdf</a>, <a href="https://arxiv.org/format/2410.18847">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> A novel quantum machine learning classifier to search for new physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Yang%2C+J">Ji-Chong Yang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhang%2C+S">Shuai Zhang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Yue%2C+C">Chong-Xing Yue</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.18847v1-abstract-short" style="display: inline;"> Due to the success of the Standard Model~(SM), it is reasonable to anticipate that, the signal of new physics~(NP) beyond the SM is small, and future searches for NP and precision tests of the SM will require high luminosity collider experiments. Moreover, as the precision tests of the SM advances, rarer processes with a greater number of final-state particles will require consideration, which wil&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18847v1-abstract-full').style.display = 'inline'; document.getElementById('2410.18847v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.18847v1-abstract-full" style="display: none;"> Due to the success of the Standard Model~(SM), it is reasonable to anticipate that, the signal of new physics~(NP) beyond the SM is small, and future searches for NP and precision tests of the SM will require high luminosity collider experiments. Moreover, as the precision tests of the SM advances, rarer processes with a greater number of final-state particles will require consideration, which will in turn require the analysis of a multitude of observables. As an inherent consequence of the high luminosity, the generation of a large amount of experimental data in a large feature space presents a significant challenge for data processing. In recent years, quantum machine learning has emerged as a promising approach for processing large amounts of complex data on a quantum computer. In this study, we propose a variational quantum searching neighbor~(VQSN) algorithm to search for NP. As an example, we apply the VQSN in the phenomenological study of the gluon quartic gauge couplings~(gQGCs) at the Large Hadron Collider. The results suggest that VQSN demonstrates superior efficiency to a classical counterpart k-nearest neighbor algorithm, even when dealing with classical data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18847v1-abstract-full').style.display = 'none'; document.getElementById('2410.18847v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 1 figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13659">arXiv:2410.13659</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.13659">pdf</a>, <a href="https://arxiv.org/ps/2410.13659">ps</a>, <a href="https://arxiv.org/format/2410.13659">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-024-13592-x">10.1140/epjc/s10052-024-13592-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Neutralino dark matter in the extension of MSSM with two triplets and singlet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Yang%2C+Z">Zhong-Jun Yang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Yang%2C+J">Jin-Lei Yang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhao%2C+S">Shu-Min Zhao</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Wu%2C+X">Xing-Gang Wu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Feng%2C+T">Tai-Fu Feng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13659v1-abstract-short" style="display: inline;"> In an extension of MSSM with two triplets and a singlet, called the TNMSSM, there are seven neutralinos which can enrich the study of cold dark matter if one expects that the weakly interacting massive particle (WIMP) is responsible for the observation of Planck satellite. Such a model, compared to the MSSM, can naturally offer a solution to the $渭$ problem, and its lightest neutralino, which is b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13659v1-abstract-full').style.display = 'inline'; document.getElementById('2410.13659v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13659v1-abstract-full" style="display: none;"> In an extension of MSSM with two triplets and a singlet, called the TNMSSM, there are seven neutralinos which can enrich the study of cold dark matter if one expects that the weakly interacting massive particle (WIMP) is responsible for the observation of Planck satellite. Such a model, compared to the MSSM, can naturally offer a solution to the $渭$ problem, and its lightest neutralino, which is bino-like, can also provide a correct relic density by using the coannihilation mechanism due to the newly added triplinos. Taking into account the related experimental measurements, such as the bound on the SM-like Higgs mass, the $B$ meson rare decays, the anomalous magnetic moment of the muon $a_渭$, the Large Hadron Collider (LHC) measurements and the latest dark matter direct detection experiment LUX-ZEPLIN (LZ), the TNMSSM parameter space can be strictly limited. In respect to all the constraints mentioned above, we find that a bino-like neutralino with a mass in the region $[100, 450]~\rm{GeV}$ can successfully account for the correct dark matter relic density. Additionally, most of the viable parameter space can be tested in the near future experiments such as the Xenon-nT experiment or LHC. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13659v1-abstract-full').style.display = 'none'; document.getElementById('2410.13659v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur.Phys.J.C 84 (2024) 11, 1216 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13515">arXiv:2410.13515</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.13515">pdf</a>, <a href="https://arxiv.org/format/2410.13515">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Observation of a rare beta decay of the charmed baryon with a Graph Neural Network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/hep-ph?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Balossino%2C+I">I. Balossino</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Berger%2C+N">N. Berger</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bianco%2C+E">E. Bianco</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bortone%2C+A">A. Bortone</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Briere%2C+R+A">R. A. Briere</a> , et al. (637 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13515v1-abstract-short" style="display: inline;"> The study of beta decay of the charmed baryon provides unique insights into the fundamental mechanism of the strong and electro-weak interactions. The $螞_c^+$, being the lightest charmed baryon, undergoes disintegration solely through the charm quark weak decay. Its beta decay provides an ideal laboratory for investigating non-perturbative effects in quantum chromodynamics and for constraining the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13515v1-abstract-full').style.display = 'inline'; document.getElementById('2410.13515v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13515v1-abstract-full" style="display: none;"> The study of beta decay of the charmed baryon provides unique insights into the fundamental mechanism of the strong and electro-weak interactions. The $螞_c^+$, being the lightest charmed baryon, undergoes disintegration solely through the charm quark weak decay. Its beta decay provides an ideal laboratory for investigating non-perturbative effects in quantum chromodynamics and for constraining the fundamental parameters of the Cabibbo-Kobayashi-Maskawa matrix in weak interaction theory. This article presents the first observation of the Cabibbo-suppressed $螞_c^+$ beta decay into a neutron $螞_c^+ \rightarrow n e^+ 谓_{e}$, based on $4.5~\mathrm{fb}^{-1}$ of electron-positron annihilation data collected with the BESIII detector in the energy region above the $螞^+_c\bar螞^-_c$ threshold. A novel machine learning technique, leveraging Graph Neural Networks, has been utilized to effectively separate signals from dominant backgrounds, particularly $螞_c^+ \rightarrow 螞e^+ 谓_{e}$. This approach has yielded a statistical significance of more than $10蟽$. The absolute branching fraction of $螞_c^+ \rightarrow n e^+ 谓_{e}$ is measured to be $(3.57\pm0.34_{\mathrm{stat}}\pm0.14_{\mathrm{syst}})\times 10^{-3}$. For the first time, the CKM matrix element $\left|V_{cd}\right|$ is extracted via a charmed baryon decay to be $0.208\pm0.011_{\rm exp.}\pm0.007_{\rm LQCD}\pm0.001_{蟿_{螞_c^+}}$. This study provides a new probe to further understand fundamental interactions in the charmed baryon sector, and demonstrates the power of modern machine learning techniques in enhancing experimental capability in high energy physics research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13515v1-abstract-full').style.display = 'none'; document.getElementById('2410.13515v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13368">arXiv:2410.13368</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.13368">pdf</a>, <a href="https://arxiv.org/format/2410.13368">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Observation of the Singly Cabibbo-Suppressed Decay $螞_c^{+}\to p蟺^0$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/hep-ph?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Balossino%2C+I">I. Balossino</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Berger%2C+N">N. Berger</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bianco%2C+E">E. Bianco</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bortone%2C+A">A. Bortone</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Briere%2C+R+A">R. A. Briere</a> , et al. (638 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13368v1-abstract-short" style="display: inline;"> Utilizing 4.5${~\rm{fb}}^{-1}$ of $e^+e^-$ annihilation data collected with the BESIII detector at the BEPCII collider at center-of-mass energies between 4.600 and 4.699 GeV, the first observation of the singly Cabibbo-suppressed decay $螞_c^{+}\to p蟺^0$ is presented, with a statistical significance of $5.4蟽$. The ratio of the branching fractions of $螞_c^{+}\to p蟺^0$ and $螞_c^{+}\to p畏$ is measured&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13368v1-abstract-full').style.display = 'inline'; document.getElementById('2410.13368v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13368v1-abstract-full" style="display: none;"> Utilizing 4.5${~\rm{fb}}^{-1}$ of $e^+e^-$ annihilation data collected with the BESIII detector at the BEPCII collider at center-of-mass energies between 4.600 and 4.699 GeV, the first observation of the singly Cabibbo-suppressed decay $螞_c^{+}\to p蟺^0$ is presented, with a statistical significance of $5.4蟽$. The ratio of the branching fractions of $螞_c^{+}\to p蟺^0$ and $螞_c^{+}\to p畏$ is measured as $\mathcal{B}(螞_c^{+}\to p蟺^0)/\mathcal{B}(螞_c^{+}\to p畏)=(0.120\pm0.026_{\rm stat.}\pm0.007_{\rm syst.})$. This result resolves the longstanding discrepancy between earlier experimental searches, providing both a decisive conclusion and valuable input for QCD-inspired theoretical models. A sophisticated deep learning approach using a Transformer-based architecture is employed to distinguish the signal from the prevalent hadronic backgrounds, complemented by thorough validation and systematic uncertainty quantification. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13368v1-abstract-full').style.display = 'none'; document.getElementById('2410.13368v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.08686">arXiv:2410.08686</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.08686">pdf</a>, <a href="https://arxiv.org/format/2410.08686">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Almost general analysis of CKM and MNS matrices for hierarchical Yukawa structure and interpretation of Dirac CP phase probed by DUNE and T2HK </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Yang%2C+M+J+S">Masaki J. S. Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.08686v2-abstract-short" style="display: inline;"> In this letter, we perform an almost general analysis of flavor-mixing matrices $V_{\rm CKM}$ and $U_{\rm MNS}$ to investigate the discriminative power of CP phases by next-generation neutrino oscillation experiments. As an approximation, we neglect the 1-3 mixing of diagonalization for more hierarchical fermions $u,e$. Thus there are two sources of CP violation in $V_{\rm CKM}$ and $U_{\rm MNS}$,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.08686v2-abstract-full').style.display = 'inline'; document.getElementById('2410.08686v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.08686v2-abstract-full" style="display: none;"> In this letter, we perform an almost general analysis of flavor-mixing matrices $V_{\rm CKM}$ and $U_{\rm MNS}$ to investigate the discriminative power of CP phases by next-generation neutrino oscillation experiments. As an approximation, we neglect the 1-3 mixing of diagonalization for more hierarchical fermions $u,e$. Thus there are two sources of CP violation in $V_{\rm CKM}$ and $U_{\rm MNS}$, the intrinsic CP phase $未_{d, 谓}$ in diagonalization of less hierarchical fermions $d, 谓$ and relative phases between two unitary matrices. By eliminating unphysical phases and imposing constraints of the three measured mixing angles, the flavor-mixing matrices are analytically displayed by two phases and the 1-2 mixing $s_{u, e}$ of more hierarchical fermions. For sufficiently small 1-2 mixing $s_{e}$ of charged leptons, the Dirac phase $未$ is mostly identical to the intrinsic phase of neutrinos $未_谓$. Therefore, future detection of the Dirac phase indicates the observation of $未_谓$. On the other hand, if such a CP violation is not observed, an upper limit is placed on a combination of $未_谓$ and relative phases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.08686v2-abstract-full').style.display = 'none'; document.getElementById('2410.08686v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 3 figures will be published in PLB</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> STUPP-24-271 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.17231">arXiv:2409.17231</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.17231">pdf</a>, <a href="https://arxiv.org/format/2409.17231">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Small-$x$ gluon GPD constrained from deeply virtual $J/蠄$ production and gluon PDF through universal-moment parameterization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Guo%2C+Y">Yuxun Guo</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Santiago%2C+M+G">M. Gabriel Santiago</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Yang%2C+J">Jinghong Yang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhang%2C+H">Hao-Cheng Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.17231v3-abstract-short" style="display: inline;"> We phenomenologically constrain the small-$x$ and small-$尉$ gluon generalized parton distributions (GPDs) with the deeply virtual $J/蠄$ production (DV$J/蠄$P) in the framework of GPDs through universal moment parameterization (GUMP). We use a hybrid cross-section formula combining collinear factorization to the next-to-leading order (NLO) accuracy of the strong coupling $伪_s$, with corrections from&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17231v3-abstract-full').style.display = 'inline'; document.getElementById('2409.17231v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.17231v3-abstract-full" style="display: none;"> We phenomenologically constrain the small-$x$ and small-$尉$ gluon generalized parton distributions (GPDs) with the deeply virtual $J/蠄$ production (DV$J/蠄$P) in the framework of GPDs through universal moment parameterization (GUMP). We use a hybrid cross-section formula combining collinear factorization to the next-to-leading order (NLO) accuracy of the strong coupling $伪_s$, with corrections from non-relativistic QCD to account for the power corrections due to the heavy $J/蠄$ mass. We reach reasonable fit to the measured differential cross-sections of DV$J/蠄$P by H1 at Hadron-Electron Ring Accelerator (HERA) as well as forward gluon PDFs from JAM22 global analysis. We find that both NLO and non-relativistic corrections are significant for heavy vector meson productions. Of course, the gluon GPD we obtain still contain considerable freedom in need of inputs from other constraints, particularly in the distribution-amplitude-like region. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17231v3-abstract-full').style.display = 'none'; document.getElementById('2409.17231v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages 7 figures; v2,v3: fix some bugs</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.16628">arXiv:2409.16628</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.16628">pdf</a>, <a href="https://arxiv.org/ps/2409.16628">ps</a>, <a href="https://arxiv.org/format/2409.16628">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Lepton-flavor violation in the left-right supersymmetric standard model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Huang%2C+Y">Yong-Kang Huang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Yang%2C+J">Jin-Lei Yang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Cui%2C+S">Sheng-Kai Cui</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Feng%2C+T">Tai-Fu Feng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.16628v1-abstract-short" style="display: inline;"> In the Standard Model (SM), the charged lepton-flavor violation (CLFV) processes are forbidden, so the observation of CLFV represents a clear signal of new physics that goes beyond the Standard Model. In this work, we focus on the CLFV processes $l_{j}^{-}\to l_{i}^{-}纬$ and $l_{j}^{-}\to l_{i}^{-}l_{i}^{-}l_{i}^{+}$ in LRSSM. Considering the constraints of the updated experimental datas, the nume&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16628v1-abstract-full').style.display = 'inline'; document.getElementById('2409.16628v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.16628v1-abstract-full" style="display: none;"> In the Standard Model (SM), the charged lepton-flavor violation (CLFV) processes are forbidden, so the observation of CLFV represents a clear signal of new physics that goes beyond the Standard Model. In this work, we focus on the CLFV processes $l_{j}^{-}\to l_{i}^{-}纬$ and $l_{j}^{-}\to l_{i}^{-}l_{i}^{-}l_{i}^{+}$ in LRSSM. Considering the constraints of the updated experimental datas, the numerical results show that the new contributions of $SU{{\left( 2 \right)}_{R}}$ gauge interaction and a large number of other new particles, such as ${{Z}^{&#39;}}$ boson, double-charged Higgs-bosons in LRSSM can make significant contributions to the CLFV processes $l_{j}^{-}\to l_{i}^{-}纬$ and $l_{j}^{-}\to l_{i}^{-}l_{i}^{-}l_{i}^{+}$, which is much different from the ones predicted in other SUSY models. This work provide a theoretical base for finding the LFV phenomena in new physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16628v1-abstract-full').style.display = 'none'; document.getElementById('2409.16628v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages,6 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.07010">arXiv:2409.07010</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.07010">pdf</a>, <a href="https://arxiv.org/format/2409.07010">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Detect anomalous quartic gauge couplings at muon colliders with quantum kernel k-means </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Zhang%2C+S">Shuai Zhang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Chen%2C+K">Ke-Xin Chen</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Yang%2C+J">Ji-Chong Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.07010v1-abstract-short" style="display: inline;"> In recent years, with the increasing luminosities of colliders, handling the growing amount of data has become a major challenge for future New Physics~(NP) phenomenological research. To improve efficiency, machine learning algorithms have been introduced into the field of high-energy physics. As a machine learning algorithm, kernel k-means has been demonstrated to be useful for searching NP signa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07010v1-abstract-full').style.display = 'inline'; document.getElementById('2409.07010v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.07010v1-abstract-full" style="display: none;"> In recent years, with the increasing luminosities of colliders, handling the growing amount of data has become a major challenge for future New Physics~(NP) phenomenological research. To improve efficiency, machine learning algorithms have been introduced into the field of high-energy physics. As a machine learning algorithm, kernel k-means has been demonstrated to be useful for searching NP signals. It is well known that the kernel k-means algorithm can be carried out with the help of quantum computing, which suggests that quantum kernel k-means~(QKKM) is also a potential tool for NP phenomenological studies in the future. This paper investigates how to search for NP signals using the k-means anomaly detection event selection strategy with quantum kernels. Taking the $渭^+渭^-\to v\bar{v}纬纬$ process at a muon collider as an example, the dimension-8 operators contributing to anomalous quartic gauge couplings~(aQGCs) are studied. The expected coefficient constraints obtained using the QKKM of three different forms of quantum kernels and k-means algorithm are presented, it can be shown that QKKM can help to find the signal of aQGCs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07010v1-abstract-full').style.display = 'none'; document.getElementById('2409.07010v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.07366">arXiv:2408.07366</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.07366">pdf</a>, <a href="https://arxiv.org/format/2408.07366">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Probing a light long-lived pseudo-scalar from Higgs decay via displaced taus at the LHC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Shan%2C+L">Lianyou Shan</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Wang%2C+L">Lei Wang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Yang%2C+J+M">Jin Min Yang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhu%2C+R">Rui Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.07366v1-abstract-short" style="display: inline;"> A light (GeV mass) long-lived ($c蟿$ around dozens of millimeters) CP-odd scalar can be readily predicted in new physics models. In this work we investigate the Higgs decay into such a light scalar plus a $Z$-boson and take the aligned two-Higgs-doublet model (2HDM) as an example. This light long-lived scalar, with the dominant decay to tau leptons, will fly over a distance from the production poin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07366v1-abstract-full').style.display = 'inline'; document.getElementById('2408.07366v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.07366v1-abstract-full" style="display: none;"> A light (GeV mass) long-lived ($c蟿$ around dozens of millimeters) CP-odd scalar can be readily predicted in new physics models. In this work we investigate the Higgs decay into such a light scalar plus a $Z$-boson and take the aligned two-Higgs-doublet model (2HDM) as an example. This light long-lived scalar, with the dominant decay to tau leptons, will fly over a distance from the production point and present a displaced vertex in an Inner Detector of a generally purposed experiment like ATLAS or CMS. In our study we focus on the LHC experiment and perform Monte Carlo simulations for the signal and backgrounds. We demonstrate some benchmark points for the aligned 2HDM and find the signal to be detectable when the luminosity is accumulated to 300 fb$^{-1}$. So our study suggests an experimental search for this process in the ongoing LHC. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07366v1-abstract-full').style.display = 'none'; document.getElementById('2408.07366v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.06677">arXiv:2408.06677</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.06677">pdf</a>, <a href="https://arxiv.org/format/2408.06677">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Search for $畏_c(2S)\to蠅蠅$ and $蠅蠁$ decays and measurements of $蠂_{cJ}\to蠅蠅$ and $蠅蠁$ in $蠄(2S)$ radiative processes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/hep-ph?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Balossino%2C+I">I. Balossino</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Berger%2C+N">N. Berger</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bianco%2C+E">E. Bianco</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bortone%2C+A">A. Bortone</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Briere%2C+R+A">R. A. Briere</a> , et al. (643 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.06677v1-abstract-short" style="display: inline;"> Using $(2712\pm 14)$ $\times$ 10$^{6}$ $蠄(2S)$ events collected with the BESIII detector at the BEPCII collider, we search for the decays $畏_{c}(2S)\to蠅蠅$ and $畏_{c}(2S)\to蠅蠁$ via the process $蠄(2S)\to纬畏_{c}(2S)$. Evidence of $畏_{c}(2S)\to蠅蠅$ is found with a statistical significance of $3.2蟽$. The branching fraction is measured to be&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.06677v1-abstract-full').style.display = 'inline'; document.getElementById('2408.06677v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.06677v1-abstract-full" style="display: none;"> Using $(2712\pm 14)$ $\times$ 10$^{6}$ $蠄(2S)$ events collected with the BESIII detector at the BEPCII collider, we search for the decays $畏_{c}(2S)\to蠅蠅$ and $畏_{c}(2S)\to蠅蠁$ via the process $蠄(2S)\to纬畏_{c}(2S)$. Evidence of $畏_{c}(2S)\to蠅蠅$ is found with a statistical significance of $3.2蟽$. The branching fraction is measured to be $\mathcal{B}(畏_{c}(2S)\to蠅蠅)=(5.65\pm3.77(\rm stat.)\pm5.32(\rm syst.))\times10^{-4}$. No statistically significant signal is observed for the decay $畏_{c}(2S)\to蠅蠁$. The upper limit of the branching fraction at the 90\% confidence level is determined to be $\mathcal{B}(蠄(2S)\to纬畏_{c}(2S),畏_{c}(2S)\to蠅蠁)&lt;2.24\times 10^{-7}$. We also update the branching fractions of $蠂_{cJ}\to 蠅蠅$ and $蠂_{cJ}\to蠅蠁$ decays via the $蠄(2S)\to纬蠂_{cJ}$ transition. The branching fractions are determined to be $\mathcal{B}(蠂_{c0}\to蠅蠅)=(10.63\pm0.11\pm0.46)\times 10^{-4}$, $\mathcal{B}(蠂_{c1}\to蠅蠅)=(6.39\pm0.07\pm0.29)\times 10^{-4}$, $\mathcal{B}(蠂_{c2}\to蠅蠅)=(8.50\pm0.08\pm0.38)\times 10^{-4}$, $\mathcal{B}(蠂_{c0}\to蠅蠁)=(1.18\pm0.03\pm0.05)\times 10^{-4}$, $\mathcal{B}(蠂_{c1}\to蠅蠁)=(2.03\pm0.15\pm0.12)\times 10^{-5}$, and $\mathcal{B}(蠂_{c2}\to蠅蠁)=(9.37\pm1.07\pm0.59)\times 10^{-6}$, where the first uncertainties are statistical and the second are systematic. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.06677v1-abstract-full').style.display = 'none'; document.getElementById('2408.06677v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.20586">arXiv:2407.20586</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.20586">pdf</a>, <a href="https://arxiv.org/ps/2407.20586">ps</a>, <a href="https://arxiv.org/format/2407.20586">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> CP asymmetries corresponding to the imaginary parts of the interference terms in cascade decays of heavy hadrons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Qi%2C+J">Jing-Juan Qi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Yang%2C+J">Jian-Yu Yang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhang%2C+Z">Zhen-Hua Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.20586v2-abstract-short" style="display: inline;"> A mechanism of generating CP violation through the imaginary part of the interference of two amplitudes is proposed. This mechanism has shown clear evidence in decays such as $B^\pm\to 蟺^\pm蟺^+蟺^-$. The proposed mechanism is helpful in searching for CP violation in bottom and charmed baryon decay processes. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.20586v2-abstract-full" style="display: none;"> A mechanism of generating CP violation through the imaginary part of the interference of two amplitudes is proposed. This mechanism has shown clear evidence in decays such as $B^\pm\to 蟺^\pm蟺^+蟺^-$. The proposed mechanism is helpful in searching for CP violation in bottom and charmed baryon decay processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20586v2-abstract-full').style.display = 'none'; document.getElementById('2407.20586v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages,1 figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.11727">arXiv:2407.11727</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.11727">pdf</a>, <a href="https://arxiv.org/ps/2407.11727">ps</a>, <a href="https://arxiv.org/format/2407.11727">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Measurement of the branching fraction of $D^+_s\to \ell^+谓_\ell$ via $e^+e^-\to D^{*+}_{s} D^{*-}_{s}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/hep-ph?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Balossino%2C+I">I. Balossino</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Berger%2C+N">N. Berger</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bianco%2C+E">E. Bianco</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bortone%2C+A">A. Bortone</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Briere%2C+R+A">R. A. Briere</a> , et al. (634 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.11727v2-abstract-short" style="display: inline;"> Based on $10.64~\mathrm{fb}^{-1}$ of $e^+e^-$ collision data taken at center-of-mass energies between 4.237 and 4.699 GeV with the BESIII detector, we study the leptonic $D^+_s$ decays using the $e^+e^-\to D^{*+}_{s} D^{*-}_{s}$ process. The branching fractions of $D_s^+\to\ell^+谓_{\ell}\,(\ell=渭,蟿)$ are measured to be $\mathcal{B}(D_s^+\to渭^+谓_渭)=(0.547\pm0.026_{\rm stat}\pm0.016_{\rm syst})\%$ a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11727v2-abstract-full').style.display = 'inline'; document.getElementById('2407.11727v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.11727v2-abstract-full" style="display: none;"> Based on $10.64~\mathrm{fb}^{-1}$ of $e^+e^-$ collision data taken at center-of-mass energies between 4.237 and 4.699 GeV with the BESIII detector, we study the leptonic $D^+_s$ decays using the $e^+e^-\to D^{*+}_{s} D^{*-}_{s}$ process. The branching fractions of $D_s^+\to\ell^+谓_{\ell}\,(\ell=渭,蟿)$ are measured to be $\mathcal{B}(D_s^+\to渭^+谓_渭)=(0.547\pm0.026_{\rm stat}\pm0.016_{\rm syst})\%$ and $\mathcal{B}(D_s^+\to蟿^+谓_蟿)=(5.60\pm0.16_{\rm stat}\pm0.20_{\rm syst})\%$, respectively. The product of the decay constant and Cabibbo-Kobayashi-Maskawa matrix element $|V_{cs}|$ is determined to be $f_{D_s^+}|V_{cs}|=(246.5\pm5.9_{\rm stat}\pm3.6_{\rm syst}\pm0.5_{\rm input})_{渭谓}~\mathrm{MeV}$ and $f_{D_s^+}|V_{cs}|=(252.7\pm3.6_{\rm stat}\pm4.5_{\rm syst}\pm0.6_{\rm input}))_{蟿谓}~\mathrm{MeV}$, respectively. Taking the value of $|V_{cs}|$ from a global fit in the Standard Model, we obtain ${f_{D^+_s}}=(252.8\pm6.0_{\rm stat}\pm3.7_{\rm syst}\pm0.6_{\rm input})_{渭谓}$ MeV and ${f_{D^+_s}}=(259.2\pm3.6_{\rm stat}\pm4.5_{\rm syst}\pm0.6_{\rm input})_{蟿谓}$ MeV, respectively. Conversely, taking the value for $f_{D_s^+}$ from the latest lattice quantum chromodynamics calculation, we obtain $|V_{cs}| =(0.986\pm0.023_{\rm stat}\pm0.014_{\rm syst}\pm0.003_{\rm input})_{渭谓}$ and $|V_{cs}| = (1.011\pm0.014_{\rm stat}\pm0.018_{\rm syst}\pm0.003_{\rm input})_{蟿谓}$, respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11727v2-abstract-full').style.display = 'none'; document.getElementById('2407.11727v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.18323">arXiv:2406.18323</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.18323">pdf</a>, <a href="https://arxiv.org/format/2406.18323">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Transition magnetic moment of Majorana neutrinos in the triplets next-to-minimal MSSM </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Zhang%2C+Z">Zhao-Yang Zhang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Yang%2C+J">Jin-Lei Yang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhang%2C+H">Hai-Bin Zhang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Feng%2C+T">Tai-Fu Feng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.18323v3-abstract-short" style="display: inline;"> The TNMSSM is an attractive extension of the Standard Model. It combines the advantages of the NMSSM and the TMSSM to give three tiny Majorana neutrinos masses via a type I+II seesaw mechanism. With the on-shell renormalization scheme, we consider the neutrino masses up to one loop approximation. Applying the effective Lagrangian method, we study the transition magnetic moments of Majorana neutrin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.18323v3-abstract-full').style.display = 'inline'; document.getElementById('2406.18323v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.18323v3-abstract-full" style="display: none;"> The TNMSSM is an attractive extension of the Standard Model. It combines the advantages of the NMSSM and the TMSSM to give three tiny Majorana neutrinos masses via a type I+II seesaw mechanism. With the on-shell renormalization scheme, we consider the neutrino masses up to one loop approximation. Applying the effective Lagrangian method, we study the transition magnetic moments of Majorana neutrinos and consider the normal hierarchy (NH) and inverse hierarchy (IH) neutrino mass spectra within the constraints of experimental data on neutrino oscillations. The solar neutrino transition magnetic moment is further deduced, and compared with the XENONnT experiment limit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.18323v3-abstract-full').style.display = 'none'; document.getElementById('2406.18323v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.08698">arXiv:2406.08698</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.08698">pdf</a>, <a href="https://arxiv.org/format/2406.08698">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Constraints on Ultra Heavy Dark Matter Properties from Dwarf Spheroidal Galaxies with LHAASO Observations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Cao%2C+Z">Zhen Cao</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Aharonian%2C+F">F. Aharonian</a>, <a href="/search/hep-ph?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Axikegu"> Axikegu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bai%2C+Y+X">Y. X. Bai</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bao%2C+Y+W">Y. W. Bao</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bastieri%2C+D">D. Bastieri</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bi%2C+X+J">X. J. Bi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bi%2C+Y+J">Y. J. Bi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Cai%2C+J+T">J. T. Cai</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Cao%2C+Q">Q. Cao</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Cao%2C+W+Y">W. Y. Cao</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Cao%2C+Z">Zhe Cao</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Chang%2C+J">J. Chang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Chang%2C+J+F">J. F. Chang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Chen%2C+A+M">A. M. Chen</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Chen%2C+E+S">E. S. Chen</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Chen%2C+L">Liang Chen</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Chen%2C+L">Lin Chen</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Chen%2C+L">Long Chen</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Chen%2C+M+J">M. J. Chen</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Chen%2C+M+L">M. L. Chen</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Chen%2C+Q+H">Q. H. Chen</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Chen%2C+S+H">S. H. Chen</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Chen%2C+S+Z">S. Z. Chen</a> , et al. (255 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.08698v1-abstract-short" style="display: inline;"> In this work we try to search for signals generated by ultra-heavy dark matter at the Large High Altitude Air Shower Observatory (LHAASO) data. We look for possible gamma-ray by dark matter annihilation or decay from 16 dwarf spheroidal galaxies in the field of view of LHAASO. Dwarf spheroidal galaxies are among the most promising targets for indirect detection of dark matter which have low fluxes&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.08698v1-abstract-full').style.display = 'inline'; document.getElementById('2406.08698v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.08698v1-abstract-full" style="display: none;"> In this work we try to search for signals generated by ultra-heavy dark matter at the Large High Altitude Air Shower Observatory (LHAASO) data. We look for possible gamma-ray by dark matter annihilation or decay from 16 dwarf spheroidal galaxies in the field of view of LHAASO. Dwarf spheroidal galaxies are among the most promising targets for indirect detection of dark matter which have low fluxes of astrophysical $纬$-ray background while large amount of dark matter. By analyzing more than 700 days observational data at LHAASO, no significant dark matter signal from 1 TeV to 1 EeV is detected. Accordingly we derive the most stringent constraints on the ultra-heavy dark matter annihilation cross-section up to EeV. The constraints on the lifetime of dark matter in decay mode are also derived. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.08698v1-abstract-full').style.display = 'none'; document.getElementById('2406.08698v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 12 figures, accepted by PRL</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.03108">arXiv:2406.03108</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.03108">pdf</a>, <a href="https://arxiv.org/ps/2406.03108">ps</a>, <a href="https://arxiv.org/format/2406.03108">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Lepton flavor violating decays $Z\rightarrow l^{\pm}_{i}l^{\mp}_{j}$ in the B-L Supersymmetric Standard Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Huo%2C+J">Jia-Peng Huo</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Dong%2C+X">Xing-Xing Dong</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ma%2C+J">Jiao Ma</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhao%2C+S">Shu-Min Zhao</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Guo%2C+C">Cai Guo</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhang%2C+H">Hai-Bin Zhang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Yang%2C+J">Jin-Lei Yang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Feng%2C+T">Tai-Fu Feng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.03108v1-abstract-short" style="display: inline;"> Lepton flavor violation (LFV) represents a clear new physics (NP) signal beyond the standard model (SM). In this paper, we study LFV decays $Z\rightarrow l^{\pm}_{i}l^{\mp}_{j}$ in the B-L Supersymmetric Standard Model(B-LSSM). We calculate these processes separately in the mass eigenstate basis and the electroweak interaction basis, and the latter adopt the mass insertion approximation (MIA) meth&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.03108v1-abstract-full').style.display = 'inline'; document.getElementById('2406.03108v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.03108v1-abstract-full" style="display: none;"> Lepton flavor violation (LFV) represents a clear new physics (NP) signal beyond the standard model (SM). In this paper, we study LFV decays $Z\rightarrow l^{\pm}_{i}l^{\mp}_{j}$ in the B-L Supersymmetric Standard Model(B-LSSM). We calculate these processes separately in the mass eigenstate basis and the electroweak interaction basis, and the latter adopt the mass insertion approximation (MIA) method. The MIA clearly shows the effect of parameters on the LFV decays $Z\rightarrow l^{\pm}_{i}l^{\mp}_{j}$ in the analytic level, which provides a new way for us to analyze the LFV processes. At the same time, the corresponding constraints from the LFV decays $l^{-}_{j} \rightarrow l^{-}_{i} 纬$ and $(g-2)_渭$ are considered to analyze the numerical results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.03108v1-abstract-full').style.display = 'none'; document.getElementById('2406.03108v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.01926">arXiv:2406.01926</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.01926">pdf</a>, <a href="https://arxiv.org/ps/2406.01926">ps</a>, <a href="https://arxiv.org/format/2406.01926">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Explaining the possible 95 GeV excesses in the B-L symmetric SSM </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Yang%2C+J">Jin-Lei Yang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Guo%2C+M">Ming-Hui Guo</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhang%2C+W">Wen-Hui Zhang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhang%2C+H">Hai-Bin Zhang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Feng%2C+T">Tai-Fu Feng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.01926v5-abstract-short" style="display: inline;"> This study investigates the excesses observed in the diphoton and $b\bar b$ data around $95\;{\rm GeV}$ within the framework of the $B-L$ supersymmetric model (B-LSSM). Comparing with the minimal supersymmetric standard model, the B-LSSM incorporates two singlet chiral Higgs bosons which mix with the SM-like Higgs boson due to the gauge kinetic mixing effect. The richer Higgs sector indicates that&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.01926v5-abstract-full').style.display = 'inline'; document.getElementById('2406.01926v5-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.01926v5-abstract-full" style="display: none;"> This study investigates the excesses observed in the diphoton and $b\bar b$ data around $95\;{\rm GeV}$ within the framework of the $B-L$ supersymmetric model (B-LSSM). Comparing with the minimal supersymmetric standard model, the B-LSSM incorporates two singlet chiral Higgs bosons which mix with the SM-like Higgs boson due to the gauge kinetic mixing effect. The richer Higgs sector indicates that designating the B-LSSM specific CP-even Higgs state as the lightest Higgs boson has great potential to explain the excesses at around $95\;{\rm GeV}$. Considering the two-loop effective potential corrections to the squared Higgs mass matrix, it is found that the signal strengthes $渭(h_{95})_{纬纬}$, $渭(h_{95})_{b b}$ can be described simultaneously in the experimental $1蟽$ interval. And the B-LSSM specific parameters $\tan尾&#39;$, $B_畏$, $g_{YB}$, $M_{Z&#39;}$ affect the theoretical predictions on the light Higgs boson masses and signal strengthes $渭(h_{95})_{纬纬}$, $渭(h_{95})_{bb}$ significantly. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.01926v5-abstract-full').style.display = 'none'; document.getElementById('2406.01926v5-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 4 figures. arXiv admin note: text overlap with arXiv:2405.07243</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.18226">arXiv:2405.18226</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.18226">pdf</a>, <a href="https://arxiv.org/format/2405.18226">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Theoretical bounds on dark Higgs mass in a self-interacting dark matter model with $U(1)&#39;$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Li%2C+S">Song Li</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Yang%2C+J+M">Jin Min Yang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhang%2C+M">Mengchao Zhang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhu%2C+R">Rui Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.18226v2-abstract-short" style="display: inline;"> Motivated by the null results of current dark matter searches and the small-scale problems, we study a dark sector charged by a spontaneous broken gauge $U(1)&#39;$. To explore the parameter space of this model, in addition to the consideration of the small-scale data, we also consider the theoretical bounds on the dark Higgs mass, with the upper bound coming from the tree-level perturbative unitarity&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.18226v2-abstract-full').style.display = 'inline'; document.getElementById('2405.18226v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.18226v2-abstract-full" style="display: none;"> Motivated by the null results of current dark matter searches and the small-scale problems, we study a dark sector charged by a spontaneous broken gauge $U(1)&#39;$. To explore the parameter space of this model, in addition to the consideration of the small-scale data, we also consider the theoretical bounds on the dark Higgs mass, with the upper bound coming from the tree-level perturbative unitarity and the lower bound from the one-loop Linde-Weinberg bound. We deeply examine the dependence of the Linde-Weinberg bound on gauge choice and energy scale, and present a Linde-Weinberg bound that is gauge and scale independent. Combining the theoretical and observational constraints, we obtain the following ranges for the parameter space: the dark matter mass is 10-500 GeV, the mediator (dark photon) mass is 0.5-5 MeV, the dark Higgs mass is 0.05-50 MeV, and the dark fine-structure constant is 0.001-0.4. We conclude that the dark Higgs in this model cannot be ignored in the phenomenological study of the dark sector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.18226v2-abstract-full').style.display = 'none'; document.getElementById('2405.18226v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">45 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.17807">arXiv:2405.17807</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.17807">pdf</a>, <a href="https://arxiv.org/ps/2405.17807">ps</a>, <a href="https://arxiv.org/format/2405.17807">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> The flavor-dependent $U(1)_F$ model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Yang%2C+J">Jin-Lei Yang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhang%2C+H">Hai-Bin Zhang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Feng%2C+T">Tai-Fu Feng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.17807v1-abstract-short" style="display: inline;"> A flavor-dependent model (FDM) is proposed in this work. The model extends the Standard Model by an extra $U(1)_F$ local gauge group, two scalar doublets, one scalar singlet and two right-handed neutrinos, where the additional $U(1)_F$ charges are related to the particles&#39; flavor. The new fermion sector in the FDM can explain the flavor mixings puzzle and the mass hierarchy puzzle simultaneously,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.17807v1-abstract-full').style.display = 'inline'; document.getElementById('2405.17807v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.17807v1-abstract-full" style="display: none;"> A flavor-dependent model (FDM) is proposed in this work. The model extends the Standard Model by an extra $U(1)_F$ local gauge group, two scalar doublets, one scalar singlet and two right-handed neutrinos, where the additional $U(1)_F$ charges are related to the particles&#39; flavor. The new fermion sector in the FDM can explain the flavor mixings puzzle and the mass hierarchy puzzle simultaneously, and the nonzero Majorana neutrino masses can be obtained naturally by the Type I see-saw mechanism. In addition, the $B$ meson rare decay processes $\bar B \to X_s纬$, $B_s^0 \to 渭^+渭^-$, the top quark rare decay processes $t\to ch$, $t\to uh$ and the $蟿$ lepton flavor violation processes $蟿\to 3e$, $蟿\to 3渭$, $渭\to 3e$ predicted in the FDM are analyzed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.17807v1-abstract-full').style.display = 'none'; document.getElementById('2405.17807v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.17792">arXiv:2405.17792</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.17792">pdf</a>, <a href="https://arxiv.org/format/2405.17792">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> JUNO Sensitivity to Invisible Decay Modes of Neutrons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=JUNO+Collaboration"> JUNO Collaboration</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Abusleme%2C+A">Angel Abusleme</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Adam%2C+T">Thomas Adam</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Adamowicz%2C+K">Kai Adamowicz</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ahmad%2C+S">Shakeel Ahmad</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ahmed%2C+R">Rizwan Ahmed</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Aiello%2C+S">Sebastiano Aiello</a>, <a href="/search/hep-ph?searchtype=author&amp;query=An%2C+F">Fengpeng An</a>, <a href="/search/hep-ph?searchtype=author&amp;query=An%2C+Q">Qi An</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Andronico%2C+G">Giuseppe Andronico</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Anfimov%2C+N">Nikolay Anfimov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Antonelli%2C+V">Vito Antonelli</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Antoshkina%2C+T">Tatiana Antoshkina</a>, <a href="/search/hep-ph?searchtype=author&amp;query=de+Andr%C3%A9%2C+J+P+A+M">Jo茫o Pedro Athayde Marcondes de Andr茅</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Auguste%2C+D">Didier Auguste</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bai%2C+W">Weidong Bai</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Balashov%2C+N">Nikita Balashov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Baldini%2C+W">Wander Baldini</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Barresi%2C+A">Andrea Barresi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Basilico%2C+D">Davide Basilico</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Baussan%2C+E">Eric Baussan</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bellato%2C+M">Marco Bellato</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Beretta%2C+M">Marco Beretta</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bergnoli%2C+A">Antonio Bergnoli</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bick%2C+D">Daniel Bick</a> , et al. (635 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.17792v1-abstract-short" style="display: inline;"> We explore the bound neutrons decay into invisible particles (e.g., $n\rightarrow 3 谓$ or $nn \rightarrow 2 谓$) in the JUNO liquid scintillator detector. The invisible decay includes two decay modes: $ n \rightarrow { inv} $ and $ nn \rightarrow { inv} $. The invisible decays of $s$-shell neutrons in $^{12}{\rm C}$ will leave a highly excited residual nucleus. Subsequently, some de-excitation mode&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.17792v1-abstract-full').style.display = 'inline'; document.getElementById('2405.17792v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.17792v1-abstract-full" style="display: none;"> We explore the bound neutrons decay into invisible particles (e.g., $n\rightarrow 3 谓$ or $nn \rightarrow 2 谓$) in the JUNO liquid scintillator detector. The invisible decay includes two decay modes: $ n \rightarrow { inv} $ and $ nn \rightarrow { inv} $. The invisible decays of $s$-shell neutrons in $^{12}{\rm C}$ will leave a highly excited residual nucleus. Subsequently, some de-excitation modes of the excited residual nuclei can produce a time- and space-correlated triple coincidence signal in the JUNO detector. Based on a full Monte Carlo simulation informed with the latest available data, we estimate all backgrounds, including inverse beta decay events of the reactor antineutrino $\bar谓_e$, natural radioactivity, cosmogenic isotopes and neutral current interactions of atmospheric neutrinos. Pulse shape discrimination and multivariate analysis techniques are employed to further suppress backgrounds. With two years of exposure, JUNO is expected to give an order of magnitude improvement compared to the current best limits. After 10 years of data taking, the JUNO expected sensitivities at a 90% confidence level are $蟿/B( n \rightarrow { inv} ) &gt; 5.0 \times 10^{31} \, {\rm yr}$ and $蟿/B( nn \rightarrow { inv} ) &gt; 1.4 \times 10^{32} \, {\rm yr}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.17792v1-abstract-full').style.display = 'none'; document.getElementById('2405.17792v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 7 figures, 4 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.07243">arXiv:2405.07243</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.07243">pdf</a>, <a href="https://arxiv.org/ps/2405.07243">ps</a>, <a href="https://arxiv.org/format/2405.07243">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> The origin of the 95 GeV excess in the flavor-dependent U(1)X model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Ge%2C+Z">Zhao-feng Ge</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Niu%2C+F">Feng-Yan Niu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Yang%2C+J">Jin-Lei Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.07243v1-abstract-short" style="display: inline;"> This study investigates the excesses observed in the CMS diphoton and ditau data around 95 GeV within the framework of the flavor-dependent U(1)X model. The model introduces a singlet scalar to explain the nonzero neutrino masses. This newly introduced Higgs interacts directly with the quark sector, motivated by the aim to explain the flavor numbers of the fermion sector. Additionally, it undergoe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.07243v1-abstract-full').style.display = 'inline'; document.getElementById('2405.07243v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.07243v1-abstract-full" style="display: none;"> This study investigates the excesses observed in the CMS diphoton and ditau data around 95 GeV within the framework of the flavor-dependent U(1)X model. The model introduces a singlet scalar to explain the nonzero neutrino masses. This newly introduced Higgs interacts directly with the quark sector, motivated by the aim to explain the flavor numbers of the fermion sector. Additionally, it undergoes mixing with the SM-like Higgs boson. The study suggests that designating this singlet Higgs state in this model as the lightest Higgs boson holds great potential for explaining the excesses around 95 GeV. In the calculations, we maintained the masses of the lightest and next-to-lightest Higgs bosons at around 95 GeV and 125 GeV respectively. It was found that the theoretical predictions on the signal strengthes 渭(h95)_纬纬, 渭(h95)_蟿蟿 in the flavor-dependent U(1)X model can be fitted well to the excesses observed at CMS. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.07243v1-abstract-full').style.display = 'none'; document.getElementById('2405.07243v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.15990">arXiv:2404.15990</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.15990">pdf</a>, <a href="https://arxiv.org/ps/2404.15990">ps</a>, <a href="https://arxiv.org/format/2404.15990">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2024.138677">10.1016/j.physletb.2024.138677 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A mechanism relating the fermionic mass hierarchy to the flavor mixing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Yang%2C+J">Jin-Lei Yang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhang%2C+H">Hai-Bin Zhang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Feng%2C+T">Tai-Fu Feng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.15990v2-abstract-short" style="display: inline;"> Considering the hierarchical structure of fermionic masses and the fermionic flavor mixing puzzles in the Standard Model, we propose to relate them by the see-saw mechanism, i.e. only the third generation of quarks and charged leptons achieve the masses at the tree level, the first two generations achieves masses through the mixings with the third generation, and the neutrinos achieve tiny Majoran&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.15990v2-abstract-full').style.display = 'inline'; document.getElementById('2404.15990v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.15990v2-abstract-full" style="display: none;"> Considering the hierarchical structure of fermionic masses and the fermionic flavor mixing puzzles in the Standard Model, we propose to relate them by the see-saw mechanism, i.e. only the third generation of quarks and charged leptons achieve the masses at the tree level, the first two generations achieves masses through the mixings with the third generation, and the neutrinos achieve tiny Majorana masses by the so-called Type-I see-saw mechanism. This new picture at the fermion sector can explain simultaneously the flavor mixing puzzle and mass hierarchy puzzle in the SM. In addition, a flavor-dependent model (FDM) is proposed to realize the new mechanism, and observing the top quark rare decay processes $t\to ch$, $t\to uh$ and the lepton flavor violation processes $渭\to3e,\;蟿\to3e,\;渭\to3渭$ is effective to test the proposed FDM. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.15990v2-abstract-full').style.display = 'none'; document.getElementById('2404.15990v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Lett. B 853 (2024) 138677 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.02033">arXiv:2404.02033</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.02033">pdf</a>, <a href="https://arxiv.org/format/2404.02033">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Search for $C$-even states decaying to $D_{s}^{\pm}D_{s}^{*\mp}$ with masses between $4.08$ and $4.32~\mathrm{GeV}/c^{2}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/hep-ph?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Balossino%2C+I">I. Balossino</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Berger%2C+N">N. Berger</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bianco%2C+E">E. Bianco</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bortone%2C+A">A. Bortone</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Briere%2C+R+A">R. A. Briere</a> , et al. (638 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.02033v2-abstract-short" style="display: inline;"> Six $C$-even states, denoted as $X$, with quantum numbers $J^{PC}=0^{-+}$, $1^{\pm+}$, or $2^{\pm+}$, are searched for via the $e^+e^-\to纬D_{s}^{\pm}D_{s}^{*\mp}$ process using $(1667.39\pm8.84)~\mathrm{pb}^{-1}$ of $e^+e^-$ collision data collected with the BESIII detector operating at the BEPCII storage ring at center-of-mass energy of $\sqrt{s}=(4681.92\pm0.30)~\mathrm{MeV}$. No statistically s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.02033v2-abstract-full').style.display = 'inline'; document.getElementById('2404.02033v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.02033v2-abstract-full" style="display: none;"> Six $C$-even states, denoted as $X$, with quantum numbers $J^{PC}=0^{-+}$, $1^{\pm+}$, or $2^{\pm+}$, are searched for via the $e^+e^-\to纬D_{s}^{\pm}D_{s}^{*\mp}$ process using $(1667.39\pm8.84)~\mathrm{pb}^{-1}$ of $e^+e^-$ collision data collected with the BESIII detector operating at the BEPCII storage ring at center-of-mass energy of $\sqrt{s}=(4681.92\pm0.30)~\mathrm{MeV}$. No statistically significant signal is observed in the mass range from $4.08$ to $4.32~\mathrm{GeV}/c^{2}$. The upper limits of $蟽[e^+e^- \to 纬X] \cdot \mathcal{B}[X \to D_{s}^{\pm} D_{s}^{*\mp}]$ at a $90\%$ confidence level are determined. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.02033v2-abstract-full').style.display = 'none'; document.getElementById('2404.02033v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 110, 032017 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.10877">arXiv:2403.10877</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.10877">pdf</a>, <a href="https://arxiv.org/ps/2403.10877">ps</a>, <a href="https://arxiv.org/format/2403.10877">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Test of lepton universality and measurement of the form factors of $D^0\to K^{*}(892)^-渭^+谓_渭$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/hep-ph?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Balossino%2C+I">I. Balossino</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Berger%2C+N">N. Berger</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bianco%2C+E">E. Bianco</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bortone%2C+A">A. Bortone</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Briere%2C+R+A">R. A. Briere</a> , et al. (637 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.10877v1-abstract-short" style="display: inline;"> We report a first study of the semileptonic decay $D^0\rightarrow K^-蟺^0渭^{+}谓_渭$ by analyzing an $e^+e^-$ annihilation data sample of $7.9~\mathrm{fb}^{-1}$ collected at the center-of-mass energy of 3.773 GeV with the BESIII detector. The absolute branching fraction of $D^0\to K^-蟺^0渭^{+}谓_渭$ is measured for the first time to be $(0.729 \pm 0.014_{\rm stat} \pm 0.011_{\rm syst})\%$. Based on an a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.10877v1-abstract-full').style.display = 'inline'; document.getElementById('2403.10877v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.10877v1-abstract-full" style="display: none;"> We report a first study of the semileptonic decay $D^0\rightarrow K^-蟺^0渭^{+}谓_渭$ by analyzing an $e^+e^-$ annihilation data sample of $7.9~\mathrm{fb}^{-1}$ collected at the center-of-mass energy of 3.773 GeV with the BESIII detector. The absolute branching fraction of $D^0\to K^-蟺^0渭^{+}谓_渭$ is measured for the first time to be $(0.729 \pm 0.014_{\rm stat} \pm 0.011_{\rm syst})\%$. Based on an amplitude analysis, the $S\text{-}{\rm wave}$ contribution is determined to be $(5.76 \pm 0.35_{\rm stat} \pm 0.29_{\rm syst})\%$ of the total decay rate in addition to the dominated $K^{*}(892)^-$ component. The branching fraction of $D^0\to K^{*}(892)^-渭^+谓_渭$ is given to be $(2.062 \pm 0.039_{\rm stat} \pm 0.032_{\rm syst})\%$, which improves the precision of the world average by a factor of 5. Combining with the world average of ${\mathcal B}(D^0\to K^{*}(892)^-e^+谓_e)$, the ratio of the branching fractions obtained is $\frac{{\mathcal B}(D^0\to K^{*}(892)^-渭^+谓_渭)}{{\mathcal B}(D^0\to K^{*}(892)^-e^+谓_e)} = 0.96\pm0.08$, in agreement with lepton flavor universality. Furthermore, assuming single-pole dominance parameterization, the most precise hadronic form factor ratios for $D^0\to K^{*}(892)^{-} 渭^+谓_渭$ are extracted to be $r_{V}=V(0)/A_1(0)=1.37 \pm 0.09_{\rm stat} \pm 0.03_{\rm syst}$ and $r_{2}=A_2(0)/A_1(0)=0.76 \pm 0.06_{\rm stat} \pm 0.02_{\rm syst}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.10877v1-abstract-full').style.display = 'none'; document.getElementById('2403.10877v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.02767">arXiv:2402.02767</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.02767">pdf</a>, <a href="https://arxiv.org/ps/2402.02767">ps</a>, <a href="https://arxiv.org/format/2402.02767">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Chiral perturbative solution for the type-I seesaw mechanism in next-to-leading order </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Yang%2C+M+J+S">Masaki J. S. Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.02767v1-abstract-short" style="display: inline;"> In this letter, we perform chiral perturbative diagonalization of the type-I seesaw mechanism by hierarchical singular values $位_{i}$ of the Dirac mass matrix $m_{D}$ up to the next-to-leading order (NLO). Since the mass matrix of right-handed neutrinos $M_{R}$ has parity symmetries under $位_{i} \leftrightarrow - 位_{i}$, the singular values $M_{i}$ and mixing angles of diagonalization of $M_{R}$ a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.02767v1-abstract-full').style.display = 'inline'; document.getElementById('2402.02767v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.02767v1-abstract-full" style="display: none;"> In this letter, we perform chiral perturbative diagonalization of the type-I seesaw mechanism by hierarchical singular values $位_{i}$ of the Dirac mass matrix $m_{D}$ up to the next-to-leading order (NLO). Since the mass matrix of right-handed neutrinos $M_{R}$ has parity symmetries under $位_{i} \leftrightarrow - 位_{i}$, the singular values $M_{i}$ and mixing angles of diagonalization of $M_{R}$ are written by only even and odd orders of $位_{i}$ respectively. We confirm this fact by specific perturbative expansions of the third- and the fourth-order by $位_{i}$. As a result, as long as the chiral perturbation theory is valid, the NLO contributions are generally suppressed by $O(位_{i}^{2} / \labmda_{j}^{2}) \lesssim 1\%$ compared to the leading-order expressions that have sufficient accuracies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.02767v1-abstract-full').style.display = 'none'; document.getElementById('2402.02767v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> STUPP-23-269 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.12442">arXiv:2401.12442</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.12442">pdf</a>, <a href="https://arxiv.org/format/2401.12442">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Scale Invariant Extension of the Standard Model: A Nightmare Scenario in Cosmology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Aoki%2C+M">Mayumi Aoki</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kubo%2C+J">Jisuke Kubo</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Yang%2C+J">Jinbo Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.12442v2-abstract-short" style="display: inline;"> Inflationary observables of a classically scale invariant model, in which the origin of the Planck mass and the electroweak scale including the right-handed neutrino mass is chiral symmetry breaking in a QCD-like hidden sector, are studied. Despite a three-field inflation the initial-value-dependence is strongly suppressed thanks to a river-valley like potential. The model predicts the tensor-to-s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.12442v2-abstract-full').style.display = 'inline'; document.getElementById('2401.12442v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.12442v2-abstract-full" style="display: none;"> Inflationary observables of a classically scale invariant model, in which the origin of the Planck mass and the electroweak scale including the right-handed neutrino mass is chiral symmetry breaking in a QCD-like hidden sector, are studied. Despite a three-field inflation the initial-value-dependence is strongly suppressed thanks to a river-valley like potential. The model predicts the tensor-to-scalar ratio $r$ of cosmological perturbations smaller than that of the $R^2$ inflation, i.e., $ 0.0044 \gsim r \gsim 0.0017$ for e-foldings between $50$ and $60$: The model will be consistent even with a null detection at LiteBird/CMB-S4. We find that the non-Gaussianity parameter $f_{NL}$ is $O(10^{-2})$, the same size as that of single-field inflation. The dark matter particles are the lightest Nambu-Goldstone bosons associated with chiral symmetry breaking, which are decay products of one of the inflatons and are heavier than $10^9$ GeV with a strongly suppressed coupling with the standard model, implying that the dark matter will be unobservable in direct as well as indirect measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.12442v2-abstract-full').style.display = 'none'; document.getElementById('2401.12442v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 18 figures, published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> KANAZAWA-24-01 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.03826">arXiv:2401.03826</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.03826">pdf</a>, <a href="https://arxiv.org/format/2401.03826">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.110.054509">10.1103/PhysRevD.110.054509 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Split of the pseudo-critical temperatures of chiral and confine/deconfine transitions by temperature gradient </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Yang%2C+J">Ji-Chong Yang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Li%2C+W">Wen-Wen Li</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Yue%2C+C">Chong-Xing Yue</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.03826v2-abstract-short" style="display: inline;"> Searching of the critical endpoint of the phase transition of Quantum Chromodynamics~(QCD) matter in experiments is of great interest. The temperature in the fireball of a collider is location dependent, however, most theoretical studies address the scenario of uniform temperature. In this work, the effect of temperature gradients is investigated using lattice QCD approach. We find that the temper&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.03826v2-abstract-full').style.display = 'inline'; document.getElementById('2401.03826v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.03826v2-abstract-full" style="display: none;"> Searching of the critical endpoint of the phase transition of Quantum Chromodynamics~(QCD) matter in experiments is of great interest. The temperature in the fireball of a collider is location dependent, however, most theoretical studies address the scenario of uniform temperature. In this work, the effect of temperature gradients is investigated using lattice QCD approach. We find that the temperature gradient catalyzes chiral symmetry breaking, meanwhile the temperature gradient increases the Polyakov loop in the confined phase but suppresses the Polyakov loop in the deconfined phase. Furthermore, the temperature gradient decreases the pseudo-critical temperature of chiral transition but increases the pseudo-critical temperature of the confine/deconfine transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.03826v2-abstract-full').style.display = 'none'; document.getElementById('2401.03826v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">update journal reference</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 110, 054509 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.01162">arXiv:2401.01162</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.01162">pdf</a>, <a href="https://arxiv.org/format/2401.01162">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Can Bell inequalities be tested via scattering cross-section at colliders ? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Li%2C+S">Song Li</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Shen%2C+W">Wei Shen</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Yang%2C+J+M">Jin Min Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.01162v3-abstract-short" style="display: inline;"> In current studies for testing Bell inequalities at colliders, the reconstruction of spin correlations from scattering cross-sections relies on the bilinear form of the spin correlations, but not all local hidden variable models (LHVMs) have such a property. To demonstrate that a general LHVM cannot be rule out via scattering cross-section data, we propose a specific LHVM, which can exactly duplic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01162v3-abstract-full').style.display = 'inline'; document.getElementById('2401.01162v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.01162v3-abstract-full" style="display: none;"> In current studies for testing Bell inequalities at colliders, the reconstruction of spin correlations from scattering cross-sections relies on the bilinear form of the spin correlations, but not all local hidden variable models (LHVMs) have such a property. To demonstrate that a general LHVM cannot be rule out via scattering cross-section data, we propose a specific LHVM, which can exactly duplicate the same scattering cross-section for particle production and decay as the standard quantum theory, making it indistinguishable at colliders in principle. Despite of this, we find that reconstructing spin correlations through scattering cross-sections can still exclude a broad class of LHVMs, e.g., those models employing classical spin correlations as a surrogate for quantum spin correlations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01162v3-abstract-full').style.display = 'none'; document.getElementById('2401.01162v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.01718">arXiv:2312.01718</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.01718">pdf</a>, <a href="https://arxiv.org/format/2312.01718">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Type-II Seesaw Leptogenesis along the Ridge </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Han%2C+C">Chengcheng Han</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Lei%2C+Z">Zhanhong Lei</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Yang%2C+J+M">Jin Min Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.01718v1-abstract-short" style="display: inline;"> Type-II seesaw leptogenesis is a model that integrates inflation, baryon number asymmetry, and neutrino mass simultaneously. It employs the Affleck-Dine mechanism to generate lepton asymmetry, with the Higgs bosons serving as the inflaton. Previous studies assumed inflation to occur in a valley of the potential, employing the single-field approximation. In this work, we explore an alternative scen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.01718v1-abstract-full').style.display = 'inline'; document.getElementById('2312.01718v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.01718v1-abstract-full" style="display: none;"> Type-II seesaw leptogenesis is a model that integrates inflation, baryon number asymmetry, and neutrino mass simultaneously. It employs the Affleck-Dine mechanism to generate lepton asymmetry, with the Higgs bosons serving as the inflaton. Previous studies assumed inflation to occur in a valley of the potential, employing the single-field approximation. In this work, we explore an alternative scenario for the type-II seesaw leptogenesis, where the inflation takes place along a ridge of the potential. Firstly, we conduct a comprehensive numerical calculation in the canonical scenario, where inflation occurs in a valley, confirming the effectiveness of the single-field approximation. Then, we introduce a novel scenario wherein inflation initiates along the potential&#39;s ridge and transitions to the valley in the late stages. In this case, the single-field inflation approximation is no longer valid, yet leptogenesis is still successfully achieved. We find that this scenario can generate a significant non-Gaussianity signature, offering testable predictions for future experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.01718v1-abstract-full').style.display = 'none'; document.getElementById('2312.01718v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.01693">arXiv:2312.01693</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.01693">pdf</a>, <a href="https://arxiv.org/ps/2312.01693">ps</a>, <a href="https://arxiv.org/format/2312.01693">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Allowed region for the (second) lightest mass $M_{1,2}$ of right-handed neutrino $谓_{R 1,2}$ with $SO (10)$-inspired relations and sequential dominance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Yang%2C+M+J+S">Masaki J. S. Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.01693v2-abstract-short" style="display: inline;"> In this paper, we evaluate the (second) lightest mass $M_{1,2}$ of right-handed neutrino $谓_{R1,2}$ in grand unified theories with the type-I seesaw mechanism that predicts an almost massless neutrino $m_{1 \, \rm or \, 3} \sim 0$. By chiral perturbative treatment, the masses $M_{1,2}$ are expressed as $M_{1} = m_{D1}^{2}/m_{11} , \, M_{2} = m_{D2}^{2} m_{11} / (m_{11} m_{22} - m_{12}^{2})$ with t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.01693v2-abstract-full').style.display = 'inline'; document.getElementById('2312.01693v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.01693v2-abstract-full" style="display: none;"> In this paper, we evaluate the (second) lightest mass $M_{1,2}$ of right-handed neutrino $谓_{R1,2}$ in grand unified theories with the type-I seesaw mechanism that predicts an almost massless neutrino $m_{1 \, \rm or \, 3} \sim 0$. By chiral perturbative treatment, the masses $M_{1,2}$ are expressed as $M_{1} = m_{D1}^{2}/m_{11} , \, M_{2} = m_{D2}^{2} m_{11} / (m_{11} m_{22} - m_{12}^{2})$ with the mass matrix of left-handed neutrinos $m$ in the diagonal basis of the Dirac mass matrix $m_{D}$. Assuming $m_{Di}$ and the unitary matrix $V$ in the singular value decomposition $(m_{D})_{ij} = V_{ik} m_{D k} U^{\dagger}_{kj}$ are close to observed fermion masses and the CKM matrix, $M_{1,2}$ and their allowed regions are expressed by parameters in the low energy and unknown phases. As a result, for $m_{D1} \simeq 0.5$ MeV and $m_{D2} \simeq 100$ MeV, we obtain $M_{1}^{\rm NH} \simeq 3 \times 10^{4 - 6}$ GeV and $M_{2}^{\rm NH} \simeq 3 \times 10^{6-8}$ GeV in the NH, $M_{1}^{\rm IH} \simeq 5 \times 10^{3 - 4}$ GeV and $M_{2}^{\rm IH} \simeq 4 \times 10^{8-9}$ GeV in the IH. These upper and lower bounds are proportional to $m_{Di}^{2}$ or $m_{D1} m_{D2}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.01693v2-abstract-full').style.display = 'none'; document.getElementById('2312.01693v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> STUPP-23-268 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.16627">arXiv:2311.16627</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.16627">pdf</a>, <a href="https://arxiv.org/format/2311.16627">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.109.095028">10.1103/PhysRevD.109.095028 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Searching for gluon quartic gauge couplings at muon colliders using the auto-encoder </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Zhang%2C+Y">Yu-Ting Zhang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Wang%2C+X">Xin-Tong Wang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Yang%2C+J">Ji-Chong Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.16627v2-abstract-short" style="display: inline;"> One of the difficulties one has to face in the future phenomenological studies of the new physics~(NP), is the need to deal with increasing amounts of data. It is therefore increasingly important to improve the efficiency in the phenomenological study of the NP. Whether it is the use of the Standard Model effective field theory~(SMEFT), the use of machine learning~(ML) algorithms, or the use of qu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.16627v2-abstract-full').style.display = 'inline'; document.getElementById('2311.16627v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.16627v2-abstract-full" style="display: none;"> One of the difficulties one has to face in the future phenomenological studies of the new physics~(NP), is the need to deal with increasing amounts of data. It is therefore increasingly important to improve the efficiency in the phenomenological study of the NP. Whether it is the use of the Standard Model effective field theory~(SMEFT), the use of machine learning~(ML) algorithms, or the use of quantum computing, all are means of improving the efficiency. In this paper, we use a ML algorithm, the auto-encoder~(AE), to study the dimension-8 operators in the SMEFT which contribute to the gluon quartic gauge couplings~(gQGCs) at muon colliders. The AE is one of the ML algorithms that has the potential to be accelerated by the quantum computing. It is found that the AE-based anomaly detection algorithm can be used as event selection strategy to study the gQGCs at the muon colliders, and is effective compared with traditional event selection strategies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.16627v2-abstract-full').style.display = 'none'; document.getElementById('2311.16627v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">update journal reference</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 109, 095028, (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.15280">arXiv:2311.15280</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.15280">pdf</a>, <a href="https://arxiv.org/format/2311.15280">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-024-13208-4">10.1140/epjc/s10052-024-13208-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optimize the event selection strategy to study the anomalous quartic gauge couplings at muon colliders using the support vector machine and quantum support vector machine </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Zhang%2C+S">Shuai Zhang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Guo%2C+Y">Yu-Chen Guo</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Yang%2C+J">Ji-Chong Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.15280v3-abstract-short" style="display: inline;"> The search of the new physics~(NP) beyond the Standard Model is one of the most important topics in current high energy physics. With the increasing luminosities at the colliders, the search for NP signals requires the analysis of more and more data, and the efficiency in data processing becomes particularly important. As a machine learning algorithm, support vector machine~(SVM) is expected to to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.15280v3-abstract-full').style.display = 'inline'; document.getElementById('2311.15280v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.15280v3-abstract-full" style="display: none;"> The search of the new physics~(NP) beyond the Standard Model is one of the most important topics in current high energy physics. With the increasing luminosities at the colliders, the search for NP signals requires the analysis of more and more data, and the efficiency in data processing becomes particularly important. As a machine learning algorithm, support vector machine~(SVM) is expected to to be useful in the search of NP. Meanwhile, the quantum computing has the potential to offer huge advantages when dealing with large amounts of data, which suggests that quantum SVM~(QSVM) is a potential tool in future phenomenological studies of the NP. How to use SVM and QSVM to optimize event selection strategies to search for NP signals are studied in this paper. Taking the tri-photon process at a muon collider as an example, it can be shown that the event selection strategies optimized by the SVM and QSVM are effective in the search of the dimension-8 operators contributing to the anomalous quartic gauge couplings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.15280v3-abstract-full').style.display = 'none'; document.getElementById('2311.15280v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C (2024) 84:833 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.10999">arXiv:2311.10999</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.10999">pdf</a>, <a href="https://arxiv.org/format/2311.10999">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-024-13160-3">10.1140/epjc/s10052-024-13160-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> HL-LHC sensitivity to higgsinos from natural SUSY with gravitino LSP </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Dai%2C+J">Jian-Peng Dai</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Li%2C+S">Song Li</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Yang%2C+J">Jin-Min Yang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhang%2C+Y">Yang Zhang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhu%2C+P">Pengxuan Zhu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhu%2C+R">Rui Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.10999v2-abstract-short" style="display: inline;"> In the realm of natural supersymmetric models, higgsinos are typically the lightest electroweakinos. In gauge-mediated supersymmetry breaking models, the lightest higgsino-dominated particles decay into a $Z$-boson or a Higgs boson ($h$), along with an ultra-light gravitino ($\tilde{G}$) serving as the lightest supersymmetric particle (LSP). This scenario suggests a significant non-resonant $hh$ p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.10999v2-abstract-full').style.display = 'inline'; document.getElementById('2311.10999v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.10999v2-abstract-full" style="display: none;"> In the realm of natural supersymmetric models, higgsinos are typically the lightest electroweakinos. In gauge-mediated supersymmetry breaking models, the lightest higgsino-dominated particles decay into a $Z$-boson or a Higgs boson ($h$), along with an ultra-light gravitino ($\tilde{G}$) serving as the lightest supersymmetric particle (LSP). This scenario suggests a significant non-resonant $hh$ production. Basing on the recent global fitting results of the $\tilde{G}$-EWMSSM (MSSM with light electroweakinos and an eV-scale gravitino as the LSP) performed by the \textsf{GAMBIT} collaboration, which support a higgsino dominated electroweakino as light as 140 GeV, we develop two simplified models to evaluate their detection potential at the high-luminosity LHC (HL-LHC) with $\sqrt{s} = 14~{\rm TeV}$ and an integrated luminosity of $3000~{\rm fb}^{-1}$. The first model examines the processes where heavier higgsino-dominated states decay into soft $W/Z$ bosons, while the second focuses on direct decays of all three higgsino-dominated electroweakinos into $W/Z/h$ plus a $\tilde{G}$. Our study, incorporating both models and their distinct decay channels, utilizes detailed Monte Carlo simulations for signals and standard model backgrounds. We find that the HL-LHC can probe higgsinos up to 575 GeV, potentially discovering or excluding the natural SUSY scenario in the context of a gravitino LSP. Further, we reinterpret this discovery potential using the GAMBIT global fit samples, and find that the entire parameter space of $|渭| \leq 500~{\rm GeV}$ with an electroweak fine-tuning measure ($螖_{\rm EW}$) under 100 in $\tilde{G}$-EWMSSM is accessible at the HL-LHC. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.10999v2-abstract-full').style.display = 'none'; document.getElementById('2311.10999v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 12 figures, and 6 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.04654">arXiv:2310.04654</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.04654">pdf</a>, <a href="https://arxiv.org/format/2310.04654">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Estimating the Uncertainty of Cosmological First Order Phase Transitions with Numerical Simulations of Bubble Nucleation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Guo%2C+H">Huai-Ke Guo</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Li%2C+S">Song Li</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Xiao%2C+Y">Yang Xiao</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Yang%2C+J+M">Jin Min Yang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhang%2C+Y">Yang Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.04654v2-abstract-short" style="display: inline;"> In order to study the validity of analytical formulas used in the calculation of characteristic physical quantities related to vacuum bubbles, we conduct several numerical simulations of bubble kinematics in the context of cosmological first-order phase transitions to determine potentially existing systematic uncertainties. By comparing with the analytical results, we obtain the following observat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.04654v2-abstract-full').style.display = 'inline'; document.getElementById('2310.04654v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.04654v2-abstract-full" style="display: none;"> In order to study the validity of analytical formulas used in the calculation of characteristic physical quantities related to vacuum bubbles, we conduct several numerical simulations of bubble kinematics in the context of cosmological first-order phase transitions to determine potentially existing systematic uncertainties. By comparing with the analytical results, we obtain the following observations: (1) The simulated false vacuum fraction will approach the theoretical one with increasing simulated volume. When the side length of the cubic simulation volume becomes larger than 14.5 $尾_{th}^{-1}$ , the simulated results do not change significantly; (2) The theoretical expected total number of bubbles do not agree with the simulated ones, which may be caused by the inconsistent use of the false vacuum fraction formula; (3) The different nucleation rate prefactors do not affect the bubble kinetics much; (4) The lifetime distribution in the sound shell model does not obey an exponential distribution, in such a way as to cause a suppression in the gravitational wave spectra. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.04654v2-abstract-full').style.display = 'none'; document.getElementById('2310.04654v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">PRD accepted version, 12 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.15068">arXiv:2309.15068</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.15068">pdf</a>, <a href="https://arxiv.org/format/2309.15068">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-024-12819-1">10.1140/epjc/s10052-024-12819-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gluon-gluon fusion contribution to the productions of three gauge bosons at the LHC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Dai%2C+J">Jianpeng Dai</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hu%2C+Z">Zhenghong Hu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Liu%2C+T">Tao Liu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Yang%2C+J+M">Jin Min Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.15068v2-abstract-short" style="display: inline;"> Productions of multiple gauge bosons at the LHC are sensitive to triple or quartic gauge couplings and thus provide a sensitive test for the electroweak sector of the Standard Model and allow for a probe of new physics. In this work we calculate the gluon-gluon initiate state contribution to the productions of three gauge bosons ($Z纬纬$, $ZZ纬$ and $W^+W^-纬$) at the LHC, which is formally part of NN&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.15068v2-abstract-full').style.display = 'inline'; document.getElementById('2309.15068v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.15068v2-abstract-full" style="display: none;"> Productions of multiple gauge bosons at the LHC are sensitive to triple or quartic gauge couplings and thus provide a sensitive test for the electroweak sector of the Standard Model and allow for a probe of new physics. In this work we calculate the gluon-gluon initiate state contribution to the productions of three gauge bosons ($Z纬纬$, $ZZ纬$ and $W^+W^-纬$) at the LHC, which is formally part of NNLO effects compared to the LO quark-antiquark channels corrections. For each process we present the ratio between the gluon-gluon channels contribution and the quark-antiquark channels contribution. We found that such a ratio for $Z纬纬$ ($ZZ纬$) is of the order of $10^{-3}$ ($10^{-4}$), much smaller than the corresponding ratio for the diboson production due to the decrease of gluon PDF when more particles appear in the final states. These small ratios imply that gluon-gluon fusion contribution is phenomenological negligible for the productions of $Z纬纬$ and $ZZ纬$. However, for $W^+W^-纬$ production, the ratio is about 5\%, which is of the same order of magnitude as the ratio for $W^+W^-$ production due to the big cancellation between the amplitudes of quark-antiquark channels. While such an effect can be neglected currently at the LHC, it may be accessible at the HL-LHC. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.15068v2-abstract-full').style.display = 'none'; document.getElementById('2309.15068v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">1+15 pages, 8 figures, 4 tables. Uncertainties provided, more discussions added, more references added</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.09281">arXiv:2309.09281</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.09281">pdf</a>, <a href="https://arxiv.org/format/2309.09281">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-024-13069-x">10.1140/epjc/s10052-024-13069-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Study of the effects of external imaginary electric field and chiral chemical potential on quark matter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Yang%2C+J">Ji-Chong Yang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhang%2C+X">Xin Zhang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Chen%2C+J">Jian-Xing Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.09281v2-abstract-short" style="display: inline;"> The behavior of quark matter with both external electric field and chiral chemical potential is theoretically and experimentally interesting to consider. In this paper, the case of simultaneous presence of imaginary electric field and chiral chemical potential is investigated using the lattice QCD approach with $N_f=1+1$ dynamical staggered fermions. We find that overall both the imaginary electri&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.09281v2-abstract-full').style.display = 'inline'; document.getElementById('2309.09281v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.09281v2-abstract-full" style="display: none;"> The behavior of quark matter with both external electric field and chiral chemical potential is theoretically and experimentally interesting to consider. In this paper, the case of simultaneous presence of imaginary electric field and chiral chemical potential is investigated using the lattice QCD approach with $N_f=1+1$ dynamical staggered fermions. We find that overall both the imaginary electric field and the chiral chemical potential can exacerbate chiral symmetry breaking, which is consistent with theoretical predictions. However we also find a non-monotonic behavior of chiral condensation at specific electric field strengths and chiral chemical potentials. In addition to this, we find that the behavior of Polyakov loop in the complex plane is not significantly affected by chiral chemical potential in the region of the parameters consider in this paper. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.09281v2-abstract-full').style.display = 'none'; document.getElementById('2309.09281v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 20 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C (2024) 84:746 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.07109">arXiv:2309.07109</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.07109">pdf</a>, <a href="https://arxiv.org/ps/2309.07109">ps</a>, <a href="https://arxiv.org/format/2309.07109">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Real-time Monitoring for the Next Core-Collapse Supernova in JUNO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Abusleme%2C+A">Angel Abusleme</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Adam%2C+T">Thomas Adam</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ahmad%2C+S">Shakeel Ahmad</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ahmed%2C+R">Rizwan Ahmed</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Aiello%2C+S">Sebastiano Aiello</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Akram%2C+M">Muhammad Akram</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Aleem%2C+A">Abid Aleem</a>, <a href="/search/hep-ph?searchtype=author&amp;query=An%2C+F">Fengpeng An</a>, <a href="/search/hep-ph?searchtype=author&amp;query=An%2C+Q">Qi An</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Andronico%2C+G">Giuseppe Andronico</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Anfimov%2C+N">Nikolay Anfimov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Antonelli%2C+V">Vito Antonelli</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Antoshkina%2C+T">Tatiana Antoshkina</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Asavapibhop%2C+B">Burin Asavapibhop</a>, <a href="/search/hep-ph?searchtype=author&amp;query=de+Andr%C3%A9%2C+J+P+A+M">Jo茫o Pedro Athayde Marcondes de Andr茅</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Auguste%2C+D">Didier Auguste</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bai%2C+W">Weidong Bai</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Balashov%2C+N">Nikita Balashov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Baldini%2C+W">Wander Baldini</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Barresi%2C+A">Andrea Barresi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Basilico%2C+D">Davide Basilico</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Baussan%2C+E">Eric Baussan</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bellato%2C+M">Marco Bellato</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Beretta%2C+M">Marco Beretta</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bergnoli%2C+A">Antonio Bergnoli</a> , et al. (606 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.07109v2-abstract-short" style="display: inline;"> The core-collapse supernova (CCSN) is considered one of the most energetic astrophysical events in the universe. The early and prompt detection of neutrinos before (pre-SN) and during the supernova (SN) burst presents a unique opportunity for multi-messenger observations of CCSN events. In this study, we describe the monitoring concept and present the sensitivity of the system to pre-SN and SN neu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.07109v2-abstract-full').style.display = 'inline'; document.getElementById('2309.07109v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.07109v2-abstract-full" style="display: none;"> The core-collapse supernova (CCSN) is considered one of the most energetic astrophysical events in the universe. The early and prompt detection of neutrinos before (pre-SN) and during the supernova (SN) burst presents a unique opportunity for multi-messenger observations of CCSN events. In this study, we describe the monitoring concept and present the sensitivity of the system to pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton liquid scintillator detector currently under construction in South China. The real-time monitoring system is designed to ensure both prompt alert speed and comprehensive coverage of progenitor stars. It incorporates prompt monitors on the electronic board as well as online monitors at the data acquisition stage. Assuming a false alert rate of 1 per year, this monitoring system exhibits sensitivity to pre-SN neutrinos up to a distance of approximately 1.6 (0.9) kiloparsecs and SN neutrinos up to about 370 (360) kiloparsecs for a progenitor mass of 30 solar masses, considering both normal and inverted mass ordering scenarios. The pointing ability of the CCSN is evaluated by analyzing the accumulated event anisotropy of inverse beta decay interactions from pre-SN or SN neutrinos. This, along with the early alert, can play a crucial role in facilitating follow-up multi-messenger observations of the next galactic or nearby extragalactic CCSN. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.07109v2-abstract-full').style.display = 'none'; document.getElementById('2309.07109v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 9 figures, accepted for the publication at JCAP</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.01162">arXiv:2309.01162</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.01162">pdf</a>, <a href="https://arxiv.org/format/2309.01162">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Contribution of Majoron to Hubble tension in gauged U(1)$_{L_渭-L_蟿}$ Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Asai%2C+K">Kento Asai</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Asano%2C+T">Tomoya Asano</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Sato%2C+J">Joe Sato</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Yang%2C+M+J+S">Masaki J. S. Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.01162v1-abstract-short" style="display: inline;"> In this paper, we analyze parameter regions that can alleviate the Hubble tension in the U(1)$_{L_渭- L_蟿}$ model with the broken lepton number U(1)$_L$ symmetry. As new particles, this model has a U(1)$_{L_渭- L_蟿}$ gauge boson $Z&#39;$ and a Majoron $蠁$, which can affect the early universe and the effective number of neutrino species $N_{\rm eff}$. If $Z&#39;$ and $蠁$ simultaneously exist in the early uni&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.01162v1-abstract-full').style.display = 'inline'; document.getElementById('2309.01162v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.01162v1-abstract-full" style="display: none;"> In this paper, we analyze parameter regions that can alleviate the Hubble tension in the U(1)$_{L_渭- L_蟿}$ model with the broken lepton number U(1)$_L$ symmetry. As new particles, this model has a U(1)$_{L_渭- L_蟿}$ gauge boson $Z&#39;$ and a Majoron $蠁$, which can affect the early universe and the effective number of neutrino species $N_{\rm eff}$. If $Z&#39;$ and $蠁$ simultaneously exist in the early universe, $Z&#39;\,$-$\,蠁$ interaction processes such as $Z&#39;谓_伪\leftrightarrow 蠁\bar谓_尾$ occur. The comparison of $N_{\rm eff}$ between the cases with and without the $Z&#39;\,$-$\,蠁$ interaction processes shows that these processes make a small contribution of $\mathcal{O}(10^{-4})$ to $N_{\rm eff}$, and it does not need to be considered for the alleviation of the Hubble tension. Based on these facts, we calculated $N_{\rm eff}$ for various Majoron parameters without the $Z&#39;\,$-$\,蠁$ interaction processes to search parameters that could alleviate the Hubble tension. As a result, we found that the U(1)$_{L_渭- L_蟿}$ gauge boson and Majoron can alleviate the Hubble tension in some parameter regions, and there is a non-trivial synergy contribution between $Z&#39;$ and $蠁$. Moreover, the parameter region with a lighter mass $m_蠁\lesssim 2$ MeV and a larger coupling $位\gtrsim 10^{-8}$ is excluded because it predicts too large $N_{\rm eff}$, i.e. $N_{\rm eff} \gtrsim 3.5$. The favored and restricted regions of the Majoron parameters depend on the $Z&#39;$ parameters because of the presence of the $Z&#39;$ contribution and synergy one. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.01162v1-abstract-full').style.display = 'none'; document.getElementById('2309.01162v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> STUPP-23-263 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.14438">arXiv:2308.14438</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.14438">pdf</a>, <a href="https://arxiv.org/format/2308.14438">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Freeze-in bino dark matter in high scale supersymmetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Han%2C+C">Chengcheng Han</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Wu%2C+P">Peiwen Wu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Yang%2C+J+M">Jin Min Yang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhang%2C+M">Mengchao Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.14438v2-abstract-short" style="display: inline;"> We explore a scenario of high scale supersymmetry where all supersymmetric particles except gauginos stay at a high energy scale $M_{\rm SUSY}$ which is much larger than the reheating temperature $T_\text{RH}$. The dark matter is dominated by bino component with mass around the electroweak scale and the observed relic abundance is mainly generated by the freeze-in process during the early universe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.14438v2-abstract-full').style.display = 'inline'; document.getElementById('2308.14438v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.14438v2-abstract-full" style="display: none;"> We explore a scenario of high scale supersymmetry where all supersymmetric particles except gauginos stay at a high energy scale $M_{\rm SUSY}$ which is much larger than the reheating temperature $T_\text{RH}$. The dark matter is dominated by bino component with mass around the electroweak scale and the observed relic abundance is mainly generated by the freeze-in process during the early universe. Considering the various constraints, we identify two available scenarios in which the supersymmetric sector at an energy scale below $T_\text{RH}$ consists of: a) bino; b) bino and wino. Typically, for a bino mass around 0.1-1 TeV and a wino mass around 2 TeV, we find that $M_{\rm SUSY}$ should be around $10^{12-14}$ GeV with $T_\text{RH}$ around $10^{4-6}$ GeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.14438v2-abstract-full').style.display = 'none'; document.getElementById('2308.14438v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 4 figures, revised version accepted by Physical Review D for publication</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.12718">arXiv:2308.12718</a> <span>&nbsp;&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Chiral perturbative reconstruction of the complex orthogonal matrix $R$ in Casas--Ibarra parameterization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Yang%2C+M+J+S">Masaki J. S. Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.12718v2-abstract-short" style="display: inline;"> In this letter, we perform a chiral perturbative analysis by singular values $m_{Di}$ of the Dirac mass matrix $m_{D}$ for the type-I seesaw mechanism. In the basis where $m_{D} = V m_{D}^{\rm diag} U^{\dagger}$ is diagonal, the mass matrix of right-handed neutrinos $M_{R}$ is written by $M_{R} = m_{D}^{\rm diag} m^{-1} m_{D}^{\rm diag}$. If the mass matrix of light neutrinos $m$ has an inverse ma&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.12718v2-abstract-full').style.display = 'inline'; document.getElementById('2308.12718v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.12718v2-abstract-full" style="display: none;"> In this letter, we perform a chiral perturbative analysis by singular values $m_{Di}$ of the Dirac mass matrix $m_{D}$ for the type-I seesaw mechanism. In the basis where $m_{D} = V m_{D}^{\rm diag} U^{\dagger}$ is diagonal, the mass matrix of right-handed neutrinos $M_{R}$ is written by $M_{R} = m_{D}^{\rm diag} m^{-1} m_{D}^{\rm diag}$. If the mass matrix of light neutrinos $m$ has an inverse matrix and the singular values $m_{Di}$ are hierarchical ($m_{D1} \ll m_{D2} \ll m_{D3}$), the singular values $M_{i}$ and diagonalization matrix $U$ of $M_{R}$ are obtained perturbatively. By treating $m_{Di}$ and $V$ as input parameters, $m_{D}$ is represented in the basis where $M_{R}$ is diagonal, and we perturbatively derive the orthogonal matrix $R$ in Casas--Ibarra parameterization. As a result, $R$ is independent of $m_{Di}$ in the leading order, and it is reconstructed as an orthonormal basis $R_{i1} \simeq \pm \sqrt{m_{i} / m_{11} } (U_{\rm MNS}^{T} V^{*})_{i1} \, , R_{i2} \simeq \pm 蔚_{ijk} R_{j3} R_{k1} \, , R_{i3} \simeq \pm {(U_{\rm MNS}^{\dagger} V)_{i3} / \sqrt {m_{i} (m^{-1})_{33}} } $. Here, $m_{i}$ is the masses of light neutrinos and $\pm$ denotes the independent degree of freedom for each column vector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.12718v2-abstract-full').style.display = 'none'; document.getElementById('2308.12718v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This paper has been withdrawn by the author because the same description is found in arXiv:1705.01935</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> STUPP-23-266 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.10426">arXiv:2308.10426</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.10426">pdf</a>, <a href="https://arxiv.org/format/2308.10426">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.108.103524">10.1103/PhysRevD.108.103524 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Constraints on Inflaton Higgs Field Couplings </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Yang%2C+J">Jessie Yang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hertzberg%2C+M+P">Mark P. Hertzberg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.10426v2-abstract-short" style="display: inline;"> According to the best-fit parameters of the Standard Model, the Higgs field&#39;s potential reaches a maximum at a field value $h \sim 10^{10-11}$ GeV and then turns over to negative values. During reheating after inflation, resonance between the inflaton and the Higgs can cause the Higgs to fluctuate past this maximum and run down the dangerous side of the potential if these fields couple too strongl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.10426v2-abstract-full').style.display = 'inline'; document.getElementById('2308.10426v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.10426v2-abstract-full" style="display: none;"> According to the best-fit parameters of the Standard Model, the Higgs field&#39;s potential reaches a maximum at a field value $h \sim 10^{10-11}$ GeV and then turns over to negative values. During reheating after inflation, resonance between the inflaton and the Higgs can cause the Higgs to fluctuate past this maximum and run down the dangerous side of the potential if these fields couple too strongly. In this paper, we place constraints on the inflaton-Higgs couplings such that the probability of the Higgs entering the unstable regime during reheating is small. To do so, the equations of motion are approximately solved semi-analytically, then solved fully numerically. Next the growth in variance is used to determine the parameter space for $魏$ and $伪$, the coupling coefficients for inflaton-Higgs cubic and quartic interactions, respectively. We find the upper bounds of $魏&lt; 1.6 \times 10^{-5} m_蠁\sim 2.2 \times 10^8$ GeV and $伪&lt; 10^{-8}$ to allow the Higgs to remain stable in most Hubble patches during reheating, and we also find the full two parameter joint constraints. We find a corresponding bound on the reheat temperature of $T_\text{reh} \lesssim 9.2 \times 10^9$ GeV. Additionally, de Sitter temperature fluctuations during inflation put a lower bound on inflaton-Higgs coupling by providing an effective mass for the Higgs, pushing back its hilltop during inflation. These additional constraints provide a lower bound on $伪$, while $魏$ must also be non-zero for the inflaton to decay efficiently. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.10426v2-abstract-full').style.display = 'none'; document.getElementById('2308.10426v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages in double column format, 12 figures. V2: Updated towards version accepted for publication in Phys. Rev. D, including journal title</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 108, 103524 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.08300">arXiv:2308.08300</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.08300">pdf</a>, <a href="https://arxiv.org/format/2308.08300">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Hierarchical High-Point Energy Flow Network for Jet Tagging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Shen%2C+W">Wei Shen</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Wang%2C+D">Daohan Wang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Yang%2C+J+M">Jin Min Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.08300v1-abstract-short" style="display: inline;"> Jet substructure observable basis is a systematic and powerful tool for analyzing the internal energy distribution of constituent particles within a jet. In this work, we propose a novel method to insert neural networks into jet substructure basis as a simple yet efficient interpretable IRC-safe deep learning framework to discover discriminative jet observables. The Energy Flow Polynomial (EFP) co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.08300v1-abstract-full').style.display = 'inline'; document.getElementById('2308.08300v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.08300v1-abstract-full" style="display: none;"> Jet substructure observable basis is a systematic and powerful tool for analyzing the internal energy distribution of constituent particles within a jet. In this work, we propose a novel method to insert neural networks into jet substructure basis as a simple yet efficient interpretable IRC-safe deep learning framework to discover discriminative jet observables. The Energy Flow Polynomial (EFP) could be computed with a certain summation order, resulting in a reorganized form which exhibits hierarchical IRC-safety. Thus inserting non-linear functions after the separate summation could significantly extend the scope of IRC-safe jet substructure observables, where neural networks can come into play as an important role. Based on the structure of the simplest class of EFPs which corresponds to path graphs, we propose the Hierarchical Energy Flow Networks and the Local Hierarchical Energy Flow Networks. These two architectures exhibit remarkable discrimination performance on the top tagging dataset and quark-gluon dataset compared to other benchmark algorithms even only utilizing the kinematic information of constituent particles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.08300v1-abstract-full').style.display = 'none'; document.getElementById('2308.08300v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.05304">arXiv:2308.05304</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.05304">pdf</a>, <a href="https://arxiv.org/ps/2308.05304">ps</a>, <a href="https://arxiv.org/format/2308.05304">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/ad7012">10.1088/1674-1137/ad7012 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> W boson mass in the NP models with extra $U(1)$ gauge group </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Yang%2C+J">Jin-Lei Yang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ge%2C+Z">Zhao-Feng Ge</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Yang%2C+X">Xiu-Yi Yang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Cui%2C+S">Sheng-Kai Cui</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Feng%2C+T">Tai-Fu Feng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.05304v3-abstract-short" style="display: inline;"> The precise measurement of the W boson mass is closely related to the contributions of new physics (NP), which can significantly constrain the parameter space of NP models, particularly those with an additional $U(1)$ local gauge group. The inclusion of a new $Z&#39;$ gauge boson and gauge couplings in these models can contribute to the oblique parameters $S$, $T$, $U$ and W boson mass at tree level.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.05304v3-abstract-full').style.display = 'inline'; document.getElementById('2308.05304v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.05304v3-abstract-full" style="display: none;"> The precise measurement of the W boson mass is closely related to the contributions of new physics (NP), which can significantly constrain the parameter space of NP models, particularly those with an additional $U(1)$ local gauge group. The inclusion of a new $Z&#39;$ gauge boson and gauge couplings in these models can contribute to the oblique parameters $S$, $T$, $U$ and W boson mass at tree level. Taking into account the effects of kinetic mixing, we calculate and analyze the oblique parameters $S$, $T$, $U$ and W boson mass in such NP models in this study. It is found that the kinetic mixing effects can make significant contributions to the W boson mass, which can satisfy the recently measured W boson mass at CDF II or ATLAS by choosing appropriate values of gauge coupling constants and extra $U(1)$ group charges of leptons or scalar doublets. In addition, if the leptonic Yukawa couplings are invariant under the extra $U(1)$ local gauge group, these contributions can be eliminated by redefining the gauge boson fields through eliminating the neutral currents involving charged leptons, even with nonzero kinetic mixing effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.05304v3-abstract-full').style.display = 'none'; document.getElementById('2308.05304v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chin. Phys. C \textbf{48}, no.11,113102 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.02170">arXiv:2308.02170</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.02170">pdf</a>, <a href="https://arxiv.org/format/2308.02170">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Sommerfeld enhancement for puffy self-interacting dark matter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Wang%2C+W">Wenyu Wang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Xu%2C+W">Wu-Long Xu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Yang%2C+J+M">Jin Min Yang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhu%2C+B">Bin Zhu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhu%2C+R">Rui Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.02170v1-abstract-short" style="display: inline;"> We examine the Sommerfeld enhancement effect for the puffy self-interacting dark matter. We find out two new parameters to classify the self-scattering cross section into the Born, the resonance and the classical regimes for the puffy dark matter. Then we observe that the resonance peaks for the puffy dark matter self-scattering and for the Sommerfeld enhancement effect have the same locations. Fu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.02170v1-abstract-full').style.display = 'inline'; document.getElementById('2308.02170v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.02170v1-abstract-full" style="display: none;"> We examine the Sommerfeld enhancement effect for the puffy self-interacting dark matter. We find out two new parameters to classify the self-scattering cross section into the Born, the resonance and the classical regimes for the puffy dark matter. Then we observe that the resonance peaks for the puffy dark matter self-scattering and for the Sommerfeld enhancement effect have the same locations. Further, we find that for a large ratio between $R_蠂$ (radius of a puffy dark matter particle) and $1/m_蠁$ (force range), the Sommerfeld enhancement factor approaches to 1 (no enhancement). Finally, for the puffy SIDM scenario to solve the small-scale problems, the values of the Sommerfeld enhancement factor are displayed in the allowed parameter regions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.02170v1-abstract-full').style.display = 'none'; document.getElementById('2308.02170v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.01540">arXiv:2308.01540</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.01540">pdf</a>, <a href="https://arxiv.org/format/2308.01540">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.131.191002">10.1103/PhysRevLett.131.191002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for Dark-Matter-Nucleon Interactions with a Dark Mediator in PandaX-4T </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Huang%2C+D">Di Huang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Abdukerim%2C+A">Abdusalam Abdukerim</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bo%2C+Z">Zihao Bo</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Chen%2C+W">Wei Chen</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Chen%2C+X">Xun Chen</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Chen%2C+Y">Yunhua Chen</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Cheng%2C+C">Chen Cheng</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Cheng%2C+Z">Zhaokan Cheng</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Cui%2C+X">Xiangyi Cui</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Fan%2C+Y">Yingjie Fan</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Fang%2C+D">Deqing Fang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Fu%2C+C">Changbo Fu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Fu%2C+M">Mengting Fu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Geng%2C+L">Lisheng Geng</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Giboni%2C+K">Karl Giboni</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Gu%2C+L">Linhui Gu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Guo%2C+X">Xuyuan Guo</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Han%2C+C">Chencheng Han</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Han%2C+K">Ke Han</a>, <a href="/search/hep-ph?searchtype=author&amp;query=He%2C+C">Changda He</a>, <a href="/search/hep-ph?searchtype=author&amp;query=He%2C+J">Jinrong He</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Huang%2C+Y">Yanlin Huang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Huang%2C+Z">Zhou Huang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hou%2C+R">Ruquan Hou</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ji%2C+X">Xiangdong Ji</a> , et al. (70 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.01540v3-abstract-short" style="display: inline;"> We report results of a search for dark-matter-nucleon interactions via a dark mediator using optimized low-energy data from the PandaX-4T liquid xenon experiment. With the ionization-signal-only data and utilizing the Migdal effect, we set the most stringent limits on the cross section for dark matter masses ranging from 30~$\rm{MeV/c^2}$ to 2~$\rm{GeV/c^2}$. Under the assumption that the dark med&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.01540v3-abstract-full').style.display = 'inline'; document.getElementById('2308.01540v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.01540v3-abstract-full" style="display: none;"> We report results of a search for dark-matter-nucleon interactions via a dark mediator using optimized low-energy data from the PandaX-4T liquid xenon experiment. With the ionization-signal-only data and utilizing the Migdal effect, we set the most stringent limits on the cross section for dark matter masses ranging from 30~$\rm{MeV/c^2}$ to 2~$\rm{GeV/c^2}$. Under the assumption that the dark mediator is a dark photon that decays into scalar dark matter pairs in the early Universe, we rule out significant parameter space of such thermal relic dark-matter model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.01540v3-abstract-full').style.display = 'none'; document.getElementById('2308.01540v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 131, 191002 (2023) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Yang%2C+J&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Yang%2C+J&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Yang%2C+J&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Yang%2C+J&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Yang%2C+J&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Yang%2C+J&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10