CINXE.COM

(PDF) The Effect of the Dataset Size on the Accuracy of Software Defect Prediction Models: An Empirical Study | Mohammad Alshayeb - Academia.edu

<!DOCTYPE html> <html > <head> <meta charset="utf-8"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <meta content="width=device-width, initial-scale=1" name="viewport"> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs"> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="lvQaNLh2i8Z1a6vRx1EMp+mH++Rrc3G1b8gqzGryIegcCLX/t/2IBhDXamDiorm74Kvp4mQ7b0SCX539xDJoRA==" /> <meta name="citation_title" content="The Effect of the Dataset Size on the Accuracy of Software Defect Prediction Models: An Empirical Study" /> <meta name="citation_publication_date" content="2021/01/01" /> <meta name="citation_journal_title" content="Inteligencia Artificial" /> <meta name="citation_author" content="Mohammad Alshayeb" /> <meta name="twitter:card" content="summary" /> <meta name="twitter:url" content="https://www.academia.edu/124273809/The_Effect_of_the_Dataset_Size_on_the_Accuracy_of_Software_Defect_Prediction_Models_An_Empirical_Study" /> <meta name="twitter:title" content="The Effect of the Dataset Size on the Accuracy of Software Defect Prediction Models: An Empirical Study" /> <meta name="twitter:description" content="The ongoing development of computer systems requires massive software projects. Running the components of these huge projects for testing purposes might be a costly process; therefore, parameter estimation can be used instead. Software defect" /> <meta name="twitter:image" content="http://a.academia-assets.com/images/twitter-card.jpeg" /> <meta property="fb:app_id" content="2369844204" /> <meta property="og:type" content="article" /> <meta property="og:url" content="https://www.academia.edu/124273809/The_Effect_of_the_Dataset_Size_on_the_Accuracy_of_Software_Defect_Prediction_Models_An_Empirical_Study" /> <meta property="og:title" content="The Effect of the Dataset Size on the Accuracy of Software Defect Prediction Models: An Empirical Study" /> <meta property="og:image" content="http://a.academia-assets.com/images/open-graph-icons/fb-paper.gif" /> <meta property="og:description" content="The ongoing development of computer systems requires massive software projects. Running the components of these huge projects for testing purposes might be a costly process; therefore, parameter estimation can be used instead. Software defect" /> <meta property="article:author" content="https://ua-huntsville.academia.edu/MohammadAlshayeb" /> <meta name="description" content="The ongoing development of computer systems requires massive software projects. Running the components of these huge projects for testing purposes might be a costly process; therefore, parameter estimation can be used instead. Software defect" /> <title>(PDF) The Effect of the Dataset Size on the Accuracy of Software Defect Prediction Models: An Empirical Study | Mohammad Alshayeb - Academia.edu</title> <link rel="canonical" href="https://www.academia.edu/124273809/The_Effect_of_the_Dataset_Size_on_the_Accuracy_of_Software_Defect_Prediction_Models_An_Empirical_Study" /> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "single_work", 'action': "show", 'controller_action': 'single_work#show', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script> var $controller_name = 'single_work'; var $action_name = "show"; var $rails_env = 'production'; var $app_rev = '49879c2402910372f4abc62630a427bbe033d190'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.require = { config: function() { return function() {} } } </script> <script> window.Aedu = window.Aedu || {}; window.Aedu.hit_data = null; window.Aedu.serverRenderTime = new Date(1732411404000); window.Aedu.timeDifference = new Date().getTime() - 1732411404000; </script> <script type="application/ld+json">{"@context":"https://schema.org","@type":"ScholarlyArticle","abstract":"The ongoing development of computer systems requires massive software projects. Running the components of these huge projects for testing purposes might be a costly process; therefore, parameter estimation can be used instead. Software defect prediction models are crucial for software quality assurance. This study investigates the impact of dataset size and feature selection algorithms on software defect prediction models. We use two approaches to build software defect prediction models: a statistical approach and a machine learning approach with support vector machines (SVMs). The fault prediction model was built based on four datasets of different sizes. Additionally, four feature selection algorithms were used. We found that applying the SVM defect prediction model on datasets with a reduced number of measures as features may enhance the accuracy of the fault prediction model. Also, it directs the test effort to maintain the most influential set of metrics. We also found that the...","author":[{"@context":"https://schema.org","@type":"Person","name":"Mohammad Alshayeb"}],"contributor":[],"dateCreated":"2024-09-29","dateModified":"2024-09-29","datePublished":"2021-01-01","headline":"The Effect of the Dataset Size on the Accuracy of Software Defect Prediction Models: An Empirical Study","inLanguage":"en","keywords":["Computer Science","Machine Learning","Data Mining","Feature Selection","Software","Predictive Modelling","Inteligencia artificial","Support vector machine"],"locationCreated":null,"publication":"Inteligencia Artificial","publisher":{"@context":"https://schema.org","@type":"Organization","name":"IBERAMIA: Sociedad Iberoamericana de Inteligencia Artificial"},"image":null,"thumbnailUrl":null,"url":"https://www.academia.edu/124273809/The_Effect_of_the_Dataset_Size_on_the_Accuracy_of_Software_Defect_Prediction_Models_An_Empirical_Study","sourceOrganization":[{"@context":"https://schema.org","@type":"EducationalOrganization","name":"ua-huntsville"}]}</script><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/single_work_page/loswp-352e32ba4e89304dc0b4fa5b3952eef2198174c54cdb79066bc62e91c68a1a91.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-8d679e925718b5e8e4b18e9a4fab37f7eaa99e43386459376559080ac8f2856a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/text_button-73590134e40cdb49f9abdc8e796cc00dc362693f3f0f6137d6cf9bb78c318ce7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> </head> <body> <div id='react-modal'></div> <div class="js-upgrade-ie-banner" style="display: none; text-align: center; padding: 8px 0; background-color: #ebe480;"><p style="color: #000; font-size: 12px; margin: 0 0 4px;">Academia.edu no longer supports Internet Explorer.</p><p style="color: #000; font-size: 12px; margin: 0;">To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.querySelector('.js-upgrade-ie-banner').style.display = 'block'; }</script> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "8c0c0a6d252c218ebe26bd8e5ffe4ef19991cdaf0ea4338e256e05d395d4d519", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="XkHwoE+Ir9Yi8Rt2gXKtCAqBHdGjpWC/jn9W8Su4panUvV9rQAOsFkdN2sekgRgUA60P16ztfk5j6OHAhXjsBQ==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://www.academia.edu/124273809/The_Effect_of_the_Dataset_Size_on_the_Accuracy_of_Software_Defect_Prediction_Models_An_Empirical_Study" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="yem7irRp/rsYKXS/FqoxASjIjBCo+a76FGZ7+m6KCg5DFRRBu+L9e32VtQ4zWYQdIeSeFqexsAv58czLwEpDog==" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><input class="btn btn-primary btn-block g-recaptcha js-password-reset-submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" type="submit" value="Email me a link" /></form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script> <div class="header--container" id="main-header-container"><div class="header--inner-container header--inner-container-ds2"><div class="header-ds2--left-wrapper"><div class="header-ds2--left-wrapper-inner"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="hide-on-desktop-redesign" style="height: 24px; width: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hide-on-mobile-redesign" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a><div class="header--search-container header--search-container-ds2"><form class="js-SiteSearch-form select2-no-default-pills" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><svg style="width: 14px; height: 14px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="search" class="header--search-icon svg-inline--fa fa-search fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M505 442.7L405.3 343c-4.5-4.5-10.6-7-17-7H372c27.6-35.3 44-79.7 44-128C416 93.1 322.9 0 208 0S0 93.1 0 208s93.1 208 208 208c48.3 0 92.7-16.4 128-44v16.3c0 6.4 2.5 12.5 7 17l99.7 99.7c9.4 9.4 24.6 9.4 33.9 0l28.3-28.3c9.4-9.4 9.4-24.6.1-34zM208 336c-70.7 0-128-57.2-128-128 0-70.7 57.2-128 128-128 70.7 0 128 57.2 128 128 0 70.7-57.2 128-128 128z"></path></svg><input class="header--search-input header--search-input-ds2 js-SiteSearch-form-input" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" /></form></div></div></div><nav class="header--nav-buttons header--nav-buttons-ds2 js-main-nav"><a class="ds2-5-button ds2-5-button--secondary js-header-login-url header-button-ds2 header-login-ds2 hide-on-mobile-redesign" href="https://www.academia.edu/login" rel="nofollow">Log In</a><a class="ds2-5-button ds2-5-button--secondary header-button-ds2 hide-on-mobile-redesign" href="https://www.academia.edu/signup" rel="nofollow">Sign Up</a><button class="header--hamburger-button header--hamburger-button-ds2 hide-on-desktop-redesign js-header-hamburger-button"><div class="icon-bar"></div><div class="icon-bar" style="margin-top: 4px;"></div><div class="icon-bar" style="margin-top: 4px;"></div></button></nav></div><ul class="header--dropdown-container js-header-dropdown"><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/login" rel="nofollow">Log In</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/signup" rel="nofollow">Sign Up</a></li><li class="header--dropdown-row js-header-dropdown-expand-button"><button class="header--dropdown-button">more<svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="caret-down" class="header--dropdown-button-icon svg-inline--fa fa-caret-down fa-w-10" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><path fill="currentColor" d="M31.3 192h257.3c17.8 0 26.7 21.5 14.1 34.1L174.1 354.8c-7.8 7.8-20.5 7.8-28.3 0L17.2 226.1C4.6 213.5 13.5 192 31.3 192z"></path></svg></button></li><li><ul class="header--expanded-dropdown-container"><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/about">About</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/press">Press</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://medium.com/@academia">Blog</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/documents">Papers</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/terms">Terms</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/privacy">Privacy</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/copyright">Copyright</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/hiring"><svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="header--dropdown-row-icon svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>We&#39;re Hiring!</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://support.academia.edu/"><svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="header--dropdown-row-icon svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>Help Center</a></li><li class="header--dropdown-row js-header-dropdown-collapse-button"><button class="header--dropdown-button">less<svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="caret-up" class="header--dropdown-button-icon svg-inline--fa fa-caret-up fa-w-10" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><path fill="currentColor" d="M288.662 352H31.338c-17.818 0-26.741-21.543-14.142-34.142l128.662-128.662c7.81-7.81 20.474-7.81 28.284 0l128.662 128.662c12.6 12.599 3.676 34.142-14.142 34.142z"></path></svg></button></li></ul></li></ul></div> <script src="//a.academia-assets.com/assets/webpack_bundles/fast_loswp-bundle-bf3d831cde46cd0e142f29f81a3fc4ce5ab45a404c10c12a480e83de68aff851.js" defer="defer"></script><script>window.loswp = {}; window.loswp.author = 169048435; window.loswp.bulkDownloadFilterCounts = {}; window.loswp.hasDownloadableAttachment = true; window.loswp.hasViewableAttachments = true; // TODO: just use routes for this window.loswp.loginUrl = "https://www.academia.edu/login?post_login_redirect_url=https%3A%2F%2Fwww.academia.edu%2F124273809%2FThe_Effect_of_the_Dataset_Size_on_the_Accuracy_of_Software_Defect_Prediction_Models_An_Empirical_Study%3Fauto%3Ddownload"; window.loswp.translateUrl = "https://www.academia.edu/login?post_login_redirect_url=https%3A%2F%2Fwww.academia.edu%2F124273809%2FThe_Effect_of_the_Dataset_Size_on_the_Accuracy_of_Software_Defect_Prediction_Models_An_Empirical_Study%3Fshow_translation%3Dtrue"; window.loswp.previewableAttachments = [{"id":118530691,"identifier":"Attachment_118530691","shouldShowBulkDownload":false}]; window.loswp.shouldDetectTimezone = true; window.loswp.shouldShowBulkDownload = true; window.loswp.showSignupCaptcha = false window.loswp.willEdgeCache = false; window.loswp.work = {"work":{"id":124273809,"created_at":"2024-09-29T22:42:06.921-07:00","from_world_paper_id":259684938,"updated_at":"2024-11-09T10:39:01.981-08:00","_data":{"abstract":"The ongoing development of computer systems requires massive software projects. Running the components of these huge projects for testing purposes might be a costly process; therefore, parameter estimation can be used instead. Software defect prediction models are crucial for software quality assurance. This study investigates the impact of dataset size and feature selection algorithms on software defect prediction models. We use two approaches to build software defect prediction models: a statistical approach and a machine learning approach with support vector machines (SVMs). The fault prediction model was built based on four datasets of different sizes. Additionally, four feature selection algorithms were used. We found that applying the SVM defect prediction model on datasets with a reduced number of measures as features may enhance the accuracy of the fault prediction model. Also, it directs the test effort to maintain the most influential set of metrics. We also found that the...","publisher":"IBERAMIA: Sociedad Iberoamericana de Inteligencia Artificial","publication_date":"2021,,","publication_name":"Inteligencia Artificial"},"document_type":"paper","pre_hit_view_count_baseline":null,"quality":"high","language":"en","title":"The Effect of the Dataset Size on the Accuracy of Software Defect Prediction Models: An Empirical Study","broadcastable":true,"draft":null,"has_indexable_attachment":true,"indexable":true}}["work"]; window.loswp.workCoauthors = [169048435]; window.loswp.locale = "en"; window.loswp.countryCode = "SG"; window.loswp.cwvAbTestBucket = ""; window.loswp.designVariant = "ds_vanilla"; window.loswp.fullPageMobileSutdModalVariant = "control"; window.loswp.useOptimizedScribd4genScript = false; window.loswp.appleClientId = 'edu.academia.applesignon';</script><script defer="" src="https://accounts.google.com/gsi/client"></script><div class="ds-loswp-container"><div class="ds-work-card--grid-container"><div class="ds-work-card--container js-loswp-work-card"><div class="ds-work-card--cover"><div class="ds-work-cover--wrapper"><div class="ds-work-cover--container"><button class="ds-work-cover--clickable js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;swp-splash-paper-cover&quot;,&quot;attachmentId&quot;:118530691,&quot;attachmentType&quot;:&quot;pdf&quot;}"><img alt="First page of “The Effect of the Dataset Size on the Accuracy of Software Defect Prediction Models: An Empirical Study”" class="ds-work-cover--cover-thumbnail" src="https://0.academia-photos.com/attachment_thumbnails/118530691/mini_magick20240930-1-uymtf4.png?1727674930" /><img alt="PDF Icon" class="ds-work-cover--file-icon" src="//a.academia-assets.com/assets/single_work_splash/adobe.icon-574afd46eb6b03a77a153a647fb47e30546f9215c0ee6a25df597a779717f9ef.svg" /><div class="ds-work-cover--hover-container"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span><p>Download Free PDF</p></div><div class="ds-work-cover--ribbon-container">Download Free PDF</div><div class="ds-work-cover--ribbon-triangle"></div></button></div></div></div><div class="ds-work-card--work-information"><h1 class="ds-work-card--work-title">The Effect of the Dataset Size on the Accuracy of Software Defect Prediction Models: An Empirical Study</h1><div class="ds-work-card--work-authors ds-work-card--detail"><a class="ds-work-card--author js-wsj-grid-card-author ds2-5-body-md ds2-5-body-link" data-author-id="169048435" href="https://ua-huntsville.academia.edu/MohammadAlshayeb"><img alt="Profile image of Mohammad Alshayeb" class="ds-work-card--author-avatar" src="//a.academia-assets.com/images/s65_no_pic.png" />Mohammad Alshayeb</a></div><p class="ds-work-card--detail ds2-5-body-sm">2021, Inteligencia Artificial</p><p class="ds-work-card--work-abstract ds-work-card--detail ds2-5-body-md">The ongoing development of computer systems requires massive software projects. Running the components of these huge projects for testing purposes might be a costly process; therefore, parameter estimation can be used instead. Software defect prediction models are crucial for software quality assurance. This study investigates the impact of dataset size and feature selection algorithms on software defect prediction models. We use two approaches to build software defect prediction models: a statistical approach and a machine learning approach with support vector machines (SVMs). The fault prediction model was built based on four datasets of different sizes. Additionally, four feature selection algorithms were used. We found that applying the SVM defect prediction model on datasets with a reduced number of measures as features may enhance the accuracy of the fault prediction model. Also, it directs the test effort to maintain the most influential set of metrics. We also found that the...</p><div class="ds-work-card--button-container"><button class="ds2-5-button js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;continue-reading-button--work-card&quot;,&quot;attachmentId&quot;:118530691,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;workUrl&quot;:&quot;https://www.academia.edu/124273809/The_Effect_of_the_Dataset_Size_on_the_Accuracy_of_Software_Defect_Prediction_Models_An_Empirical_Study&quot;}">See full PDF</button><button class="ds2-5-button ds2-5-button--secondary js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;download-pdf-button--work-card&quot;,&quot;attachmentId&quot;:118530691,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;workUrl&quot;:&quot;https://www.academia.edu/124273809/The_Effect_of_the_Dataset_Size_on_the_Accuracy_of_Software_Defect_Prediction_Models_An_Empirical_Study&quot;}"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span>Download PDF</button></div></div></div></div><div data-auto_select="false" data-client_id="331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b" data-doc_id="118530691" data-landing_url="https://www.academia.edu/124273809/The_Effect_of_the_Dataset_Size_on_the_Accuracy_of_Software_Defect_Prediction_Models_An_Empirical_Study" data-login_uri="https://www.academia.edu/registrations/google_one_tap" data-moment_callback="onGoogleOneTapEvent" id="g_id_onload"></div><div class="ds-top-related-works--grid-container"><div class="ds-related-content--container ds-top-related-works--container"><h2 class="ds-related-content--heading">Related papers</h2><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="0" data-entity-id="79616709" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/79616709/A_Feature_Selection_Based_Model_for_Software_Defect_Prediction">A Feature Selection Based Model for Software Defect Prediction</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="21199256" href="https://independent.academia.edu/SonaliAgarwal4">Sonali Agarwal</a></div><p class="ds-related-work--metadata ds2-5-body-xs">International Journal of Advanced Science and Technology, 2014</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;A Feature Selection Based Model for Software Defect Prediction&quot;,&quot;attachmentId&quot;:86270476,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/79616709/A_Feature_Selection_Based_Model_for_Software_Defect_Prediction&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/79616709/A_Feature_Selection_Based_Model_for_Software_Defect_Prediction"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="1" data-entity-id="62043306" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/62043306/Software_Fault_Prediction_with_Data_Mining_Techniques_by_Using_Feature_Selection_Based_Models">Software Fault Prediction with Data Mining Techniques by Using Feature Selection Based Models</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="117335126" href="https://independent.academia.edu/AmitJakhar8">Amit Jakhar</a></div><p class="ds-related-work--metadata ds2-5-body-xs">International Journal on Electrical Engineering and Informatics</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Software Fault Prediction with Data Mining Techniques by Using Feature Selection Based Models&quot;,&quot;attachmentId&quot;:74911731,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/62043306/Software_Fault_Prediction_with_Data_Mining_Techniques_by_Using_Feature_Selection_Based_Models&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/62043306/Software_Fault_Prediction_with_Data_Mining_Techniques_by_Using_Feature_Selection_Based_Models"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="2" data-entity-id="72396257" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/72396257/A_feature_selection_model_for_prediction_of_software_defects">A feature selection model for prediction of software defects</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="25624213" href="https://independent.academia.edu/ashimakukkar">ashima kukkar</a></div><p class="ds-related-work--metadata ds2-5-body-xs">International Journal of Embedded Systems</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;A feature selection model for prediction of software defects&quot;,&quot;attachmentId&quot;:81337741,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/72396257/A_feature_selection_model_for_prediction_of_software_defects&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/72396257/A_feature_selection_model_for_prediction_of_software_defects"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="3" data-entity-id="67013502" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/67013502/A_Survey_of_Feature_Selection_Methods_for_Software_Defect_Prediction_Models">A Survey of Feature Selection Methods for Software Defect Prediction Models</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="209728964" href="https://fudutse.academia.edu/ShamsuddeenAbubakar">Shamsuddeen M U H A M M A D Abubakar</a><span>, </span><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="64612320" href="https://independent.academia.edu/AbubakarMiyim">Abubakar Miyim</a><span>, </span><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="11789335" href="https://independent.academia.edu/sufyanuzahraddeen">sufyanu zahraddeen</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2020</p><p class="ds-related-work--abstract ds2-5-body-sm">Feature selection is a technique used to select an optimal feature subset from the original input features according to a specific criterion. The criterion is often formulated as an objective function that finds which features are most appropriate for some tasks at hand. The reason why it is interesting to find a subset of features is because that it always easier to solve a problem in a lower dimension. This helps in understanding the nonlinear mapping between input and output variables. This paper reviewed the basic Feature Selection Techniques for Software Defect Prediction Model and their domain applications. The Subsets selection are categorized into three distinct models and are discussed in a concise form to provide young researchers with the general methods of Subset Selection. Support Vector Machine with Recursive Feature Elimination for both Logistic Regression and Random Forest was introduced to evaluate the performance between filter, wrapper, and embedded feature select...</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;A Survey of Feature Selection Methods for Software Defect Prediction Models&quot;,&quot;attachmentId&quot;:77993725,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/67013502/A_Survey_of_Feature_Selection_Methods_for_Software_Defect_Prediction_Models&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/67013502/A_Survey_of_Feature_Selection_Methods_for_Software_Defect_Prediction_Models"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="4" data-entity-id="52950165" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/52950165/Impact_of_Feature_Selection_Methods_on_the_Predictive_Performance_of_Software_Defect_Prediction_Models_An_Extensive_Empirical_Study">Impact of Feature Selection Methods on the Predictive Performance of Software Defect Prediction Models: An Extensive Empirical Study</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="49949400" href="https://unilorin.academia.edu/AbdullateefBalogun">Abdullateef Balogun</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Symmetry</p><p class="ds-related-work--abstract ds2-5-body-sm">Feature selection (FS) is a feasible solution for mitigating high dimensionality problem, and many FS methods have been proposed in the context of software defect prediction (SDP). Moreover, many empirical studies on the impact and effectiveness of FS methods on SDP models often lead to contradictory experimental results and inconsistent findings. These contradictions can be attributed to relative study limitations such as small datasets, limited FS search methods, and unsuitable prediction models in the respective scope of studies. It is hence critical to conduct an extensive empirical study to address these contradictions to guide researchers and buttress the scientific tenacity of experimental conclusions. In this study, we investigated the impact of 46 FS methods using Naïve Bayes and Decision Tree classifiers over 25 software defect datasets from 4 software repositories (NASA, PROMISE, ReLink, and AEEEM). The ensuing prediction models were evaluated based on accuracy and AUC va...</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Impact of Feature Selection Methods on the Predictive Performance of Software Defect Prediction Models: An Extensive Empirical Study&quot;,&quot;attachmentId&quot;:69964883,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/52950165/Impact_of_Feature_Selection_Methods_on_the_Predictive_Performance_of_Software_Defect_Prediction_Models_An_Extensive_Empirical_Study&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/52950165/Impact_of_Feature_Selection_Methods_on_the_Predictive_Performance_of_Software_Defect_Prediction_Models_An_Extensive_Empirical_Study"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="5" data-entity-id="90535741" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/90535741/Optimal_Machine_learning_Model_for_Software_Defect_Prediction">Optimal Machine learning Model for Software Defect Prediction</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="99080811" href="https://ggsipu.academia.edu/TriptiGautam">Tripti Gautam</a></div><p class="ds-related-work--metadata ds2-5-body-xs">International Journal of Intelligent Systems and Applications, 2019</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Optimal Machine learning Model for Software Defect Prediction&quot;,&quot;attachmentId&quot;:94072630,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/90535741/Optimal_Machine_learning_Model_for_Software_Defect_Prediction&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/90535741/Optimal_Machine_learning_Model_for_Software_Defect_Prediction"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="6" data-entity-id="72369631" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/72369631/Software_Fault_Proneness_Prediction_Using_Support_Vector_Machines">Software Fault Proneness Prediction Using Support Vector Machines</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="29575573" href="https://independent.academia.edu/ArvinderKaur11">Arvinder Kaur</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2009</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Software Fault Proneness Prediction Using Support Vector Machines&quot;,&quot;attachmentId&quot;:81322867,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/72369631/Software_Fault_Proneness_Prediction_Using_Support_Vector_Machines&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/72369631/Software_Fault_Proneness_Prediction_Using_Support_Vector_Machines"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="7" data-entity-id="34314424" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/34314424/Predicting_Software_Defects_through_SVM_An_Empirical_Approach">Predicting Software Defects through SVM: An Empirical Approach</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="59400872" href="https://amu-in.academia.edu/JunaidReshi">Junaid A Reshi</a></div><p class="ds-related-work--abstract ds2-5-body-sm">Software defect prediction is an important aspect of preventive maintenance of a software. Many techniques have been employed to improve software quality through defect prediction. This paper introduces an approach of defect prediction through a machine learning algorithm, support vector machines (SVM), by using the code smells as the factor. Smell prediction model based on support vector machines was used to predict defects in the subsequent releases of the eclipse software. The results signify the role of smells in predicting the defects of a software. The results can further be used as a baseline to investigate further the role of smells in predicting defects.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Predicting Software Defects through SVM: An Empirical Approach&quot;,&quot;attachmentId&quot;:54215255,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/34314424/Predicting_Software_Defects_through_SVM_An_Empirical_Approach&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/34314424/Predicting_Software_Defects_through_SVM_An_Empirical_Approach"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="8" data-entity-id="44558609" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/44558609/Performance_comparison_of_Machine_learning_classifiers_in_Software_Defects_Prediction">Performance comparison of Machine learning classifiers in Software Defects Prediction</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="2594470" href="https://independent.academia.edu/iosrjournals">IOSR Journals</a></div><p class="ds-related-work--abstract ds2-5-body-sm">Background: In software development life cycle, software testing is the main stage which can minimize the defects of software. A domain which has receiving much attention of software researchers since past couple of years is software defects prediction (SDP). Its aim to minimize the cost, time and improve the efficiency of software. The main aim of this research is to show a comparative analysis of software defect prediction based on support vector machine SVM and extreme learning machine ELM. In this domain defect prediction models were created using three different prediction techniques based on test data and training data. i.e. cross-validation prediction, cross-version prediction and cross-project prediction. In this study we used cross version prediction approach, data from old version of a software is used as training data to develop the prediction model and the model is evaluated from same project of current version. Materials and Methods: In our studies, we consider three different versions of eclipse version control system then we had split the data into training and tested sets. We choose different object oriented metrics and algorithm to build our model, aiming to predict software defects in different versions. For training purpose of our model we used SVM and ELM. To validate our prediction models, we can calculate the performance of prediction model using some popular used measurement scales such as accuracy, precision, recall, AUC (Area under ROC curve). Results: By comparing the file based results of SVM and ELM we can find the average accuracy values and AUC. This means the extreme learning machine has the highest AUC value, but the value of accuracy is also close to SVM. And SVM have similar accuracy, and very close AUC value. Then we can see how these models perform in package based prediction. By comparing the data in package based prediction of SVM and ELM, the accuracy and AUC values shows thatSVM has best accuracy, but the value of AUC decreases apparently. So we can conclude that SVM has best prediction results in file based defects.The results demonstrate that support vector machine is best fit for the cross version defect prediction. Conclusion: Software testing has become more and more important in software reliability since last couple of years. But on software testing we are wasting much time, resource and money. Software defect prediction can help to improve the efficiency of software testing and guide the direct resource allocation. In this study, we discussed the key techniques including software metrics, classifiers, and defect prediction models and its evaluation.Python language is most widely use language especially in data science.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Performance comparison of Machine learning classifiers in Software Defects Prediction&quot;,&quot;attachmentId&quot;:65011074,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/44558609/Performance_comparison_of_Machine_learning_classifiers_in_Software_Defects_Prediction&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/44558609/Performance_comparison_of_Machine_learning_classifiers_in_Software_Defects_Prediction"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="9" data-entity-id="87379733" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/87379733/The_impact_of_training_data_selection_on_the_software_defect_prediction_performance_and_data_complexity">The impact of training data selection on the software defect prediction performance and data complexity</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="375470" href="https://utem.academia.edu/SabrinaAhmad">Sabrina Ahmad</a><span>, </span><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="238845534" href="https://independent.academia.edu/BenyaminLangguSinaga">Benyamin Langgu Sinaga</a><span>, </span><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="171721299" href="https://independent.academia.edu/beeiiaes">beei iaes</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Bulletin of Electrical Engineering and Informatics, 2022</p><p class="ds-related-work--abstract ds2-5-body-sm">Directly learning a defect prediction model from cross-project datasets results in a model with poor performance. Hence, training data selection becomes a feasible solution to this problem. Limited comparative studies investigating the effect of training data selection on the prediction performance have presented contradictory results. Those studies also did not analyze why a training data selection method underperforms. This study aims to investigate the impact of training data selection on the defect prediction model and data complexity measures. The method is based on an empirical comparison between prediction performance and data complexity measure before and after selection. This study compared 13 training data selection methods on 61 projects using six classification algorithms and measured the data complexity using six complexity measures focusing on overlap class, noise level, and class imbalanced ratio. Experimental results indicate that the best method for each dataset varies depending on the dataset and classifiers. The training data selection most affects noise rate and class imbalance. We concluded that critically selecting the training data method could improve the performance of the prediction model. We recommend dealing with noise and unbalanced classes when designing training data methods.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;The impact of training data selection on the software defect prediction performance and data complexity&quot;,&quot;attachmentId&quot;:91604264,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/87379733/The_impact_of_training_data_selection_on_the_software_defect_prediction_performance_and_data_complexity&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/87379733/The_impact_of_training_data_selection_on_the_software_defect_prediction_performance_and_data_complexity"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div></div></div><div class="ds-sticky-ctas--wrapper js-loswp-sticky-ctas hidden"><div class="ds-sticky-ctas--grid-container"><div class="ds-sticky-ctas--container"><button class="ds2-5-button js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;continue-reading-button--sticky-ctas&quot;,&quot;attachmentId&quot;:118530691,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;workUrl&quot;:null}">See full PDF</button><button class="ds2-5-button ds2-5-button--secondary js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;download-pdf-button--sticky-ctas&quot;,&quot;attachmentId&quot;:118530691,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;workUrl&quot;:null}"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span>Download PDF</button></div></div></div><div class="ds-below-fold--grid-container"><div class="ds-work--container js-loswp-embedded-document"><div class="attachment_preview" data-attachment="Attachment_118530691" style="display: none"><div class="js-scribd-document-container"><div class="scribd--document-loading js-scribd-document-loader" style="display: block;"><img alt="Loading..." src="//a.academia-assets.com/images/loaders/paper-load.gif" /><p>Loading Preview</p></div></div><div style="text-align: center;"><div class="scribd--no-preview-alert js-preview-unavailable"><p>Sorry, preview is currently unavailable. You can download the paper by clicking the button above.</p></div></div></div></div><div class="ds-sidebar--container js-work-sidebar"><div class="ds-related-content--container"><h2 class="ds-related-content--heading">Related papers</h2><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="0" data-entity-id="79869423" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/79869423/Machine_Learning_Techniques_to_Predict_Software_Defect">Machine Learning Techniques to Predict Software Defect</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="14677866" href="https://independent.academia.edu/VadlamaniRavi">Vadlamani Ravi</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Encyclopedia of Business Analytics and Optimization</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Machine Learning Techniques to Predict Software Defect&quot;,&quot;attachmentId&quot;:86439448,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/79869423/Machine_Learning_Techniques_to_Predict_Software_Defect&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/79869423/Machine_Learning_Techniques_to_Predict_Software_Defect"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="1" data-entity-id="35755190" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/35755190/Optimized_Support_Vector_Machine_for_Software_Defect_Prediction">Optimized Support Vector Machine for Software Defect Prediction</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="65581582" href="https://independent.academia.edu/IJERDJOURNAL">IJERD JOURNAL</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Optimized Support Vector Machine for Software Defect Prediction&quot;,&quot;attachmentId&quot;:55630773,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/35755190/Optimized_Support_Vector_Machine_for_Software_Defect_Prediction&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/35755190/Optimized_Support_Vector_Machine_for_Software_Defect_Prediction"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="2" data-entity-id="43791071" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/43791071/Feature_Selection_in_Cross_Project_Software_Defect_Prediction">Feature Selection in Cross-Project Software Defect Prediction</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="5049657" href="https://unpam.academia.edu/AriesSaifudin">Aries Saifudin</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Physics: Conference Series, 2020</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Feature Selection in Cross-Project Software Defect Prediction&quot;,&quot;attachmentId&quot;:64106751,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/43791071/Feature_Selection_in_Cross_Project_Software_Defect_Prediction&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/43791071/Feature_Selection_in_Cross_Project_Software_Defect_Prediction"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="3" data-entity-id="100870195" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/100870195/Software_Defect_Prediction_Analysis_Using_Machine_Learning_Techniques">Software Defect Prediction Analysis Using Machine Learning Techniques</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="3110072" href="https://ump.academia.edu/GranBadshah">Gran Badshah</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Sustainability</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Software Defect Prediction Analysis Using Machine Learning Techniques&quot;,&quot;attachmentId&quot;:101569096,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/100870195/Software_Defect_Prediction_Analysis_Using_Machine_Learning_Techniques&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/100870195/Software_Defect_Prediction_Analysis_Using_Machine_Learning_Techniques"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="4" data-entity-id="1852475" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/1852475/A_Hybrid_Feature_Selection_Model_for_Software_Fault_Prediction">A Hybrid Feature Selection Model for Software Fault Prediction</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="522712" href="https://annauniv.academia.edu/AkalyaDevi">Akalya Devi</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;A Hybrid Feature Selection Model for Software Fault Prediction&quot;,&quot;attachmentId&quot;:30868770,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/1852475/A_Hybrid_Feature_Selection_Model_for_Software_Fault_Prediction&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/1852475/A_Hybrid_Feature_Selection_Model_for_Software_Fault_Prediction"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="5" data-entity-id="59315239" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/59315239/Choosing_software_metrics_for_defect_prediction_an_investigation_on_feature_selection_techniques">Choosing software metrics for defect prediction: an investigation on feature selection techniques</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="101461231" href="https://independent.academia.edu/NaeemSeliya">Naeem Seliya</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Software: Practice and Experience, 2011</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Choosing software metrics for defect prediction: an investigation on feature selection techniques&quot;,&quot;attachmentId&quot;:73302177,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/59315239/Choosing_software_metrics_for_defect_prediction_an_investigation_on_feature_selection_techniques&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/59315239/Choosing_software_metrics_for_defect_prediction_an_investigation_on_feature_selection_techniques"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="6" data-entity-id="9733851" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/9733851/A_Comparison_Framework_of_Classification_Models_for_Software_Defect_Prediction">A Comparison Framework of Classification Models for Software Defect Prediction</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="13748913" href="https://dinus.academia.edu/RomiSatriaWahono">Romi Satria Wahono</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;A Comparison Framework of Classification Models for Software Defect Prediction&quot;,&quot;attachmentId&quot;:35919207,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/9733851/A_Comparison_Framework_of_Classification_Models_for_Software_Defect_Prediction&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/9733851/A_Comparison_Framework_of_Classification_Models_for_Software_Defect_Prediction"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="7" data-entity-id="55604384" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/55604384/Performance_Analysis_of_Machine_Learning_Techniques_on_Software_Defect_Prediction_using_NASA_Datasets">Performance Analysis of Machine Learning Techniques on Software Defect Prediction using NASA Datasets</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="140564901" href="https://independent.academia.edu/shahinalom23">shahin alom</a></div><p class="ds-related-work--metadata ds2-5-body-xs">International Journal of Advanced Computer Science and Applications, 2019</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Performance Analysis of Machine Learning Techniques on Software Defect Prediction using NASA Datasets&quot;,&quot;attachmentId&quot;:71398880,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/55604384/Performance_Analysis_of_Machine_Learning_Techniques_on_Software_Defect_Prediction_using_NASA_Datasets&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/55604384/Performance_Analysis_of_Machine_Learning_Techniques_on_Software_Defect_Prediction_using_NASA_Datasets"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div></div><div class="ds-related-content--container"><h2 class="ds-related-content--heading">Related topics</h2><div class="ds-research-interests--pills-container"><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="422" href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="2008" href="https://www.academia.edu/Documents/in/Machine_Learning">Machine Learning</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="2009" href="https://www.academia.edu/Documents/in/Data_Mining">Data Mining</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="43619" href="https://www.academia.edu/Documents/in/Feature_Selection">Feature Selection</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="53293" href="https://www.academia.edu/Documents/in/Software">Software</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="81034" href="https://www.academia.edu/Documents/in/Predictive_Modelling">Predictive Modelling</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="141502" href="https://www.academia.edu/Documents/in/Inteligencia_artificial-1">Inteligencia artificial</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="191289" href="https://www.academia.edu/Documents/in/Support_vector_machine">Support vector machine</a></div></div></div></div></div><div class="footer--content"><ul class="footer--main-links hide-on-mobile"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px; position: relative; bottom: -1px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We&#39;re Hiring!</strong></a></li><li><a href="https://support.academia.edu/"><svg style="width: 12px; height: 12px; position: relative; bottom: -1px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer--research-interests"><li>Find new research papers in:</li><li><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul><ul class="footer--legal-links hide-on-mobile"><li><a href="https://www.academia.edu/terms">Terms</a></li><li><a href="https://www.academia.edu/privacy">Privacy</a></li><li><a href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2024</li></ul></div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10