CINXE.COM

Search results for: non−central nervous system cancers

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: non−central nervous system cancers</title> <meta name="description" content="Search results for: non−central nervous system cancers"> <meta name="keywords" content="non−central nervous system cancers"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="non−central nervous system cancers" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="non−central nervous system cancers"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 19979</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: non−central nervous system cancers</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19979</span> John Cunningham Virus Interaction with Multiple Sclerosis Disease Progression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sina%20Mahdavi">Sina Mahdavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and Objective: Multiple sclerosis (MS) is the most common inflammatory autoimmune disease of the central nervous system (CNS) that affects the myelination process in the CNS. Complex interactions of various "environmental or infectious" factors may act as triggers in autoimmunity and disease progression. The association between viral infections, especially the John Cunningham virus (JCV) and MS is one potential cause that is not well understood. This study aims to summarize the available data on JCV infection in MS disease progression. Materials and Methods: For this study, the keywords "Multiple sclerosis", " John Cunningham virus ", and "central nervous system" in the databases PubMed, Google Scholar, Sid, and MagIran between 2019 and 2022 were searched, and 12 articles were chosen, studied, and analyzed. Results: MS patients are candidates for natalizumab therapy, which inhibits lymphocyte migration and increases the risk of progressive multifocal leukoencephalopathy (PML), a rare lytic infection of glial cells caused by JCV. Oligodendrocytes may be the target of JCV infection in the central nervous system (CNS). Conclusion: There is a high expression of JCV during the natalizumab treatment period for MS patients, suggesting that the virus may play a role in the development of MS by inducing an inflammatory state. Therefore, it is necessary to evaluate anti-JCV antibody serum as an important risk factor for the development of PML before deciding on the treatment course for these patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multiple%20sclerosis" title="multiple sclerosis">multiple sclerosis</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Cunningham%20virus" title=" John Cunningham virus"> John Cunningham virus</a>, <a href="https://publications.waset.org/abstracts/search?q=central%20nervous%20system" title=" central nervous system"> central nervous system</a>, <a href="https://publications.waset.org/abstracts/search?q=autoimmunity" title=" autoimmunity"> autoimmunity</a> </p> <a href="https://publications.waset.org/abstracts/159420/john-cunningham-virus-interaction-with-multiple-sclerosis-disease-progression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159420.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19978</span> Non-AIDS Related Multiple Brain and Orbital Lymphoma Mimicking Meningioma: A Case Report</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eghosa%20Morgan">Eghosa Morgan</a>, <a href="https://publications.waset.org/abstracts/search?q=Bourtarbouch%20Mahjouba"> Bourtarbouch Mahjouba</a>, <a href="https://publications.waset.org/abstracts/search?q=Heida%20El%20Ouahabi"> Heida El Ouahabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Poluyi%20Edward"> Poluyi Edward</a>, <a href="https://publications.waset.org/abstracts/search?q=Diawarra%20Seylan"> Diawarra Seylan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Non-AIDS lymphoma, a type of primary central nervous system (CNS) lymphoma is an uncommon aggressive infiltrative malignant tumour involving several sites in the central nervous system, such as the periventricular region and leptomeninges. In this article, the authors presented a 26-year old man with painless progressive right exophthalmos and scalp swelling with no symptoms and signs of intracranial hypertension and hyperthyroidism. Magnetic resonance imaging (MRI) done revealed isointense masses with brilliant homogenous enhancement on contrast administration resembling a meningioma, with a dura tail – like attachment as seen in meningioma. He had surgery for the right orbital tumour and histopathological diagnosis confirmed our suspicion of lymphoma (B type). Steroid was given in the post-operative period which led to significant regression of the tumours, hence its description as ‘vanishing tumour’. He is presently receiving methotrexate-based chemotherapy and subsequently planned for radiotherapy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=central%20nervous%20system%20%28CNS%29" title="central nervous system (CNS)">central nervous system (CNS)</a>, <a href="https://publications.waset.org/abstracts/search?q=meningioma" title=" meningioma"> meningioma</a>, <a href="https://publications.waset.org/abstracts/search?q=non-aids%20lymphoma" title=" non-aids lymphoma"> non-aids lymphoma</a>, <a href="https://publications.waset.org/abstracts/search?q=orbital" title=" orbital"> orbital</a> </p> <a href="https://publications.waset.org/abstracts/153811/non-aids-related-multiple-brain-and-orbital-lymphoma-mimicking-meningioma-a-case-report" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153811.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19977</span> The Multiple Sclerosis and the Role of Human Herpesvirus 6 in Its Progression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sina%20Mahdavi">Sina Mahdavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and Objective: Multiple sclerosis (MS) is an inflammatory autoimmune disease of the CNS that affects the myelination process in the central nervous system (CNS). Complex interactions of various "environmental or infectious" factors may act as triggers in autoimmunity and disease progression. The association between viral infections, especially Human Herpesvirus 6 (HHV-6), and MS is one potential cause that is not well understood. In this study, we aim to summarize the available data on HHV-6 infection in MS disease progression. Materials and Methods: For this study, the keywords "Multiple sclerosis", " Human Herpesvirus 6 ", and "central nervous system" in the databases PubMed and Google Scholar between 2017 and 2022 were searched, and 12 articles were chosen, studied, and analyzed. Results: HHV 6 tends towards TCD 4+ lymphocytes and enters the CNS due to the weakening of the blood-brain barrier due to inflammatory damage. Following the observation that the HHV-6 U24 protein has a seven amino acid sequence with myelin basic protein, which is one of the main components of the myelin sheath, it could cause a molecular mimicry mechanism followed by cross-reactivity. Reactivation of HHV-6 in the CNS can cause the release of proinflammatory cytokines, including TNF-α, leading to immune-mediated demyelination in patients with MS. Conclusion: There is a high expression of endogenous retroviruses during the course of MS, which indicates the relationship between HHV-6 and MS, and that this virus can play a role in the development of MS by creating an inflammatory state. Therefore, measures to modulate the expression of HHV-6 may be effective in reducing inflammatory processes in demyelinated areas of MS patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multiple%20sclerosis" title="multiple sclerosis">multiple sclerosis</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20herpesvirus%206" title=" human herpesvirus 6"> human herpesvirus 6</a>, <a href="https://publications.waset.org/abstracts/search?q=central%20nervous%20system" title=" central nervous system"> central nervous system</a>, <a href="https://publications.waset.org/abstracts/search?q=autoimmunity" title=" autoimmunity"> autoimmunity</a> </p> <a href="https://publications.waset.org/abstracts/159261/the-multiple-sclerosis-and-the-role-of-human-herpesvirus-6-in-its-progression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159261.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19976</span> MR Imaging Spectrum of Intracranial Infections: An Experience of 100 Cases in a Tertiary Hospital in Northern India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Avik%20Banerjee">Avik Banerjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Kavita%20Saggar"> Kavita Saggar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Infections of the nervous system and adjacent structures are often life-threatening conditions. Despite the recent advances in neuroimaging evaluation, the diagnosis of unclear infectious CNS disease remains a challenge. Our aim is to evaluate the typical and atypical neuro-imaging features of the various routinely encountered CNS infected patients so as to form guidelines for their imaging recognition and differentiation from tumoral, vascular and other entities that warrant a different line of therapy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=central%20nervous%20system%20%28CNS%29" title="central nervous system (CNS)">central nervous system (CNS)</a>, <a href="https://publications.waset.org/abstracts/search?q=Cerebro%20Spinal%20Fluid%20%28Csf%29" title=" Cerebro Spinal Fluid (Csf)"> Cerebro Spinal Fluid (Csf)</a>, <a href="https://publications.waset.org/abstracts/search?q=Creutzfeldt%20Jakob%20Disease%20%28CJD%29" title=" Creutzfeldt Jakob Disease (CJD)"> Creutzfeldt Jakob Disease (CJD)</a>, <a href="https://publications.waset.org/abstracts/search?q=progressive%20multifocal%20leukoencephalopathy%20%28PML%29" title=" progressive multifocal leukoencephalopathy (PML)"> progressive multifocal leukoencephalopathy (PML)</a> </p> <a href="https://publications.waset.org/abstracts/16087/mr-imaging-spectrum-of-intracranial-infections-an-experience-of-100-cases-in-a-tertiary-hospital-in-northern-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16087.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19975</span> The Link of the Human Immunodeficiency Virus With the Progression of Multiple Sclerosis Disease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sina%20Mahdavi">Sina Mahdavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multiple sclerosis (MS) is a progressive inflammatory autoimmune disease of the CNS that affects the myelination process in the central nervous system (CNS). Complex interactions of various "environmental or infectious" factors may act as triggers in autoimmunity and disease progression. The association between viral infections, especially human immunodeficiency virus (HIV) and MS is one potential cause that is not well understood. This study aims to summarize the available data on human HIV infection in MS disease progression. In this study, the keywords "Multiple sclerosis", "Human immunodeficiency virus ", and "Central nervous system" in the databases PubMed, and Google Scholar between 2017 and 2022 were searched and 15 articles were chosen, studied, and analyzed. Revealed histologic signs of "MS-like illness" in the setting of HIV, which comprised widespread demyelination with reactive astrocytes, foamy macrophages, and perivascular infiltration with inflammatory cells, all of which are compatible with MS lesions. Human immunodeficiency virus causes dysfunction of the immune system, especially characterized by hypergammaglobulinemia and chronic activation of B cells. Activation of B cells leads to increased synthesis of immunoglobulin and finally to an excess of free light chains. Free light chains may be involved in autoimmune responses against neurons. There is a high expression of HIV during the course of MS, which indicates the relationship between HIV and MS, that this virus can play a role in the development of MS by creating an inflammatory state. Therefore, measures to modulate the expression of HIV may be effective in reducing inflammatory processes in demyelinated areas of MS patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multiple%20sclerosis" title="multiple sclerosis">multiple sclerosis</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20immunodeficiency%20virus" title=" human immunodeficiency virus"> human immunodeficiency virus</a>, <a href="https://publications.waset.org/abstracts/search?q=central%20nervous%20system" title=" central nervous system"> central nervous system</a>, <a href="https://publications.waset.org/abstracts/search?q=autoimmunity" title=" autoimmunity"> autoimmunity</a> </p> <a href="https://publications.waset.org/abstracts/159411/the-link-of-the-human-immunodeficiency-virus-with-the-progression-of-multiple-sclerosis-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159411.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19974</span> Autoantibodies against Central Nervous System Antigens and the Serum Levels of IL-32 in Patients with Schizophrenia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Keshavarz">Fatemeh Keshavarz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Schizophrenia is a disease of the nervous system, and immune system disorders can affect its pathogenesis. Activation of microglia, proinflammatory cytokines, disruption of the blood-brain barrier (BBB) due to inflammation, activation of autoreactive B cells, and consequently the production of autoantibodies against system antigens are among the immune processes involved in neurological diseases. interleukin 32 (IL-32) a proinflammatory cytokine that important player in the activation of the innate and adaptive immune responses. This study aimed to measure the serum level of IL-32 as well as the frequency of autoantibody positivity against several nervous system antigens in patients with schizophrenia. Material and Methods: This study was conducted on 40 patients with schizophrenia and 40 healthy individuals in the control group. Serum IL-32 levels were measured by ELISA. The frequency of autoantibodies against Hu, Ri, Yo, Tr, CV2, Amphiphysin, SOX1, Zic4, ITPR1, CARP, GAD, Recoverin, Titin, and Ganglioside antigens were measured by indirect immunofluorescence method. Results: Serum IL-32 levels in patients with schizophrenia were significantly higher compared to the control group. Autoantibodies were positive in 8 patients for GAD antigen and 5 patients for Ri antigen, which showed a significant relationship compared to the control group. Autoantibodies were also positive in 2 patients for CV2, in 1 patient for Hu, and in 1 patient for CARP. Negative results were reported for other antigens. Conclusion: Our findings suggest that elevated the serum IL-32 level and autoantibody positivity against several nervous system antigens may be involved in the pathogenesis of schizophrenia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=schizophrenia" title="schizophrenia">schizophrenia</a>, <a href="https://publications.waset.org/abstracts/search?q=microglia" title=" microglia"> microglia</a>, <a href="https://publications.waset.org/abstracts/search?q=autoantibodies" title=" autoantibodies"> autoantibodies</a>, <a href="https://publications.waset.org/abstracts/search?q=IL-32" title=" IL-32"> IL-32</a> </p> <a href="https://publications.waset.org/abstracts/147605/autoantibodies-against-central-nervous-system-antigens-and-the-serum-levels-of-il-32-in-patients-with-schizophrenia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147605.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19973</span> The Effect of the Epstein-Barr Virus on the Development of Multiple Sclerosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sina%20Mahdavi">Sina Mahdavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and Objective: Multiple sclerosis (MS) is the most common inflammatory autoimmune disease of the central nervous system (CNS) that affects the myelination process in the CNS. Complex interactions of various "environmental or infectious" factors may act as triggers in autoimmunity and disease progression. The association between viral infections, especially Epstein-Barr virus (EBV) and MS, is one potential cause that is not well understood. In this study, we aim to summarize the available data on EBV infection in MS disease progression. Materials and Methods: For this study, the keywords "Multiple sclerosis," "Epstein-Barr virus," and "central nervous system" in the databases PubMed, Google Scholar, Sid, and MagIran between 2016 and 2022 were searched, and 14 articles were chosen, studied, and analyzed. Results: Demyelinated lesions isolated from MS patients contain EBNAs from EBV proteins. The EBNA1 domain contains a pentapeptide fragment identical to B-crystallin, a heat shock peptide, that is increased in peripheral B cells in response to B-crystallin infection, resulting in myelin-directed autoimmunity mediated by proinflammatory T cells. EBNA2, which is involved in the regulation of viral transcription, may enhance transcription from MS risk loci. A 7-fold increase in the risk of MS has been observed in EBV infection with HLA-DR15 synergy. Conclusion: EBV infection along with a variety of specific genetic risk alleles, cause inflammatory cascades in the CNS by infected B cells. There is a high expression of EBV during the course of MS, which indicates the relationship between EBV and MS, that this virus can play a role in the development of MS by creating an inflammatory state. Therefore, measures to modulate the expression of EBV may be effective in reducing inflammatory processes in demyelinated areas of MS patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multiple%20sclerosis" title="multiple sclerosis">multiple sclerosis</a>, <a href="https://publications.waset.org/abstracts/search?q=Epstein-Barr%20virus" title=" Epstein-Barr virus"> Epstein-Barr virus</a>, <a href="https://publications.waset.org/abstracts/search?q=central%20nervous%20system" title=" central nervous system"> central nervous system</a>, <a href="https://publications.waset.org/abstracts/search?q=EBNAs" title=" EBNAs"> EBNAs</a> </p> <a href="https://publications.waset.org/abstracts/159252/the-effect-of-the-epstein-barr-virus-on-the-development-of-multiple-sclerosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159252.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19972</span> E-Survey: Cancer Treatment with Proton Beam Therapy in USA</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Auj-E%20Taqaddas">Auj-E Taqaddas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of proton beam therapy is increasing globally. It seems to offer dosimetric advantages, especially in paediatric central nervous system (CNS) and brain tumours. A short E-survey was conducted to assess the clinical, technical, and educational resources and strategies employed in the state of the art proton beam therapy (PBT) centres in the USA to determine the current status of proton beam therapy. The study also aimed at finding out which PBT skills are in demand as well as what improvements are needed to ensure efficient treatment planning, delivery, and dosimetry. The study resulted in identifying areas for future research and development and in identifying cancers for which PBT is most suitable compared to other modalities to facilitate the implementation and use of PBT in clinical settings for cancer treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cancer" title="cancer">cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=intensity%20modulated%20proton%20therapy" title=" intensity modulated proton therapy"> intensity modulated proton therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=proton%20beam%20therapy" title=" proton beam therapy"> proton beam therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20field%20uniform%20scanning" title=" single field uniform scanning"> single field uniform scanning</a> </p> <a href="https://publications.waset.org/abstracts/136847/e-survey-cancer-treatment-with-proton-beam-therapy-in-usa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136847.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19971</span> The Concept of Neurostatistics as a Neuroscience</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Igwenagu%20Chinelo%20Mercy">Igwenagu Chinelo Mercy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is on the concept of Neurostatistics in relation to neuroscience. Neuroscience also known as neurobiology is the scientific study of the nervous system. In the study of neuroscience, it has been noted that brain function and its relations to the process of acquiring knowledge and behaviour can be better explained by the use of various interrelated methods. The scope of neuroscience has broadened over time to include different approaches used to study the nervous system at different scales. On the other hand, Neurostatistics based on this study is viewed as a statistical concept that uses similar techniques of neuron mechanisms to solve some problems especially in the field of life science. This study is imperative in this era of Artificial intelligence/Machine leaning in the sense that clear understanding of the technique and its proper application could assist in solving some medical disorder that are mainly associated with the nervous system. This will also help in layman’s understanding of the technique of the nervous system in order to overcome some of the health challenges associated with it. For this concept to be well understood, an illustrative example using a brain associated disorder was used for demonstration. Structural equation modelling was adopted in the analysis. The results clearly show the link between the techniques of statistical model and nervous system. Hence, based on this study, the appropriateness of Neurostatistics application in relation to neuroscience could be based on the understanding of the behavioural pattern of both concepts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brain" title="brain">brain</a>, <a href="https://publications.waset.org/abstracts/search?q=neurons" title=" neurons"> neurons</a>, <a href="https://publications.waset.org/abstracts/search?q=neuroscience" title=" neuroscience"> neuroscience</a>, <a href="https://publications.waset.org/abstracts/search?q=neurostatistics" title=" neurostatistics"> neurostatistics</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20equation%20modeling" title=" structural equation modeling"> structural equation modeling</a> </p> <a href="https://publications.waset.org/abstracts/173355/the-concept-of-neurostatistics-as-a-neuroscience" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173355.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19970</span> Human Endogenous Retrovirus Link With Multiple Sclerosis Disease Progression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sina%20Mahdavi">Sina Mahdavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and Objective: Multiple sclerosis (MS) is an inflammatory autoimmune disease of the CNS that affects the myelination process in the central nervous system (CNS). Complex interactions of various "environmental or infectious" factors may act as triggers in autoimmunity and disease progression. The association between viral infections, especially human endogenous retrovirus (HERV) and MS is one potential cause that is not well understood. This study aims to summarize the available data on HERV infection in MS disease progression. Materials and Methods: For this study, the keywords "Multiple sclerosis", "Human endogenous retrovirus", and "central nervous system" in the databases PubMed, Google Scholar, Sid, and MagIran between 2016 and 2022 were searched and 14 articles chosen, studied, and analyzed. Results: In the leptomeningeal cells of MS patients, a retrovirus-like element associated with reverse transcriptase (RT) activity called multiple sclerosis-associated retroviruses (MSRV) has been identified. HERVs are expressed in the human CNS despite mechanisms to suppress their expression. External factors, especially viral infections such as influenza virus, Epstein-Barr virus, and herpes simplex virus type 1, can activate HERV gene expression. The MSRV coat protein is activated by activating TLR4 at the brain surface, particularly in oligodendroglial progenitor cells and macrophages, leading to immune cascades followed by the downregulation of myelin protein expression. The HERV-K18 envelope gene (env) acts as a superantigen and induces inflammatory responses in patients with MS. Conclusion: There is a high expression of endogenous retroviruses during the course of MS, which indicates the relationship between HERV and MS, that this virus can play a role in the development of MS by creating an inflammatory state. Therefore, measures to modulate the expression of endogenous retroviruses may be effective in reducing inflammatory processes in demyelinated areas of MS patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multiple%20sclerosis" title="multiple sclerosis">multiple sclerosis</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20endogenous%20retrovirus" title=" human endogenous retrovirus"> human endogenous retrovirus</a>, <a href="https://publications.waset.org/abstracts/search?q=central%20nervous%20system" title=" central nervous system"> central nervous system</a>, <a href="https://publications.waset.org/abstracts/search?q=MSRV" title=" MSRV"> MSRV</a> </p> <a href="https://publications.waset.org/abstracts/159422/human-endogenous-retrovirus-link-with-multiple-sclerosis-disease-progression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159422.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19969</span> The Multiple Sclerosis condition and the Role of Varicella-zoster virus in its Progression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sina%20Mahdavi">Sina Mahdavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Asghari%20Ozma"> Mahdi Asghari Ozma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multiple sclerosis (MS) is the most common inflammatory autoimmune disease of the CNS that affects the myelination process in the central nervous system (CNS). Complex interactions of various "environmental or infectious" factors may act as triggers in autoimmunity and disease progression. The association between viral infections, especially human Varicella-zoster virus (VZV) and MS is one potential cause that is not well understood. This study aims to summarize the available data on VZV retrovirus infection in MS disease progression. For this study, the keywords "Multiple sclerosis", " Human Varicella-zoster virus ", and "central nervous system" in the databases PubMed, Google Scholar, Sid, and MagIran between 2016 and 2022 were searched and 14 articles were chosen, studied, and analyzed. Analysis of the amino acid sequences of HNRNPA1 with VZV proteins has shown a 62% amino acid sequence similarity between VZV gE and the PrLD/M9 epitope region (TNPO1 binding domain) of mutant HNRNPA1. A heterogeneous nuclear ribonucleoprotein (hnRNP), which is produced by HNRNPA1, is involved in the processing and transfer of mRNA and pre-mRNA. Mutant HNRNPA1 mimics gE of VZV as an antigen that leads to autoantibody production. Mutant HnRNPA1 translocates to the cytoplasm, after aggregation is presented by MHC class I, followed by CD8 + cells. Of these, antibodies and immune cells against the gE epitopes of VZV remain due to the memory immune response, causing neurodegeneration and the development of MS in genetically predisposed individuals. VZV expression during the course of MS is present in genetically predisposed individuals with HNRNPA1 mutation, suggesting a link between VZV and MS, and that this virus may play a role in the development of MS by inducing an inflammatory state. Therefore, measures to modulate VZV expression may be effective in reducing inflammatory processes in demyelinated areas of MS patients in genetically predisposed individuals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multiple%20sclerosis" title="multiple sclerosis">multiple sclerosis</a>, <a href="https://publications.waset.org/abstracts/search?q=varicella-zoster%20virus" title=" varicella-zoster virus"> varicella-zoster virus</a>, <a href="https://publications.waset.org/abstracts/search?q=central%20nervous%20system" title=" central nervous system"> central nervous system</a>, <a href="https://publications.waset.org/abstracts/search?q=autoimmunity" title=" autoimmunity"> autoimmunity</a> </p> <a href="https://publications.waset.org/abstracts/159414/the-multiple-sclerosis-condition-and-the-role-of-varicella-zoster-virus-in-its-progression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159414.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19968</span> Microglia Activity and Induction of Mechanical Allodynia after Mincle Receptor Ligand Injection in Rat Spinal Cord</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jihoon%20Yang">Jihoon Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeong%20II%20Choi"> Jeong II Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mincle is expressed in macrophages and is members of immunoreceptors induced after exposure to various stimuli and stresses. Mincle receptor activation promotes the production of these substances by increasing the transcription of inflammatory cytokines and chemokines. Cytokines, which play an important role in the initiation and maintenance of such inflammatory pain diseases, have a significant effect on sensory neurons in addition to their enhancement and inhibitory effects on immune and inflammatory cells as mediators of cell interaction. Glial cells in the central nervous system play a critical role in development and maintenance of chronic pain states. Microglia are tissue-resident macrophages in the central nervous system, and belong to a group of mononuclear phagocytes. In the central nervous system, mincle receptor is present in neurons and glial cells of the brain.This study was performed to identify the Mincle receptor in the spinal cord and to investigate the effect of Mincle receptor activation on nociception and the changes of microglia. Materials and Methods: C-type lectins(Mincle) was identified in spinal cord of Male Sprague–Dawley rats. Then, mincle receptor ligand (TDB), via an intrathecal catheter. Mechanical allodynia was measured using von Frey test to evaluate the effect of intrathecal injection of TDB. Result: The present investigation shows that the intrathecal administration of TDB in the rat produces a reliable and quantifiable mechanical hyperalgesia. In addition, The mechanical hyperalgesia after TDB injection gradually developed over time and remained until 10 days. Mincle receptor is identified in the spinal cord, mainly expressed in neuronal cells, but not in microglia or astrocyte. These results suggest that activation of mincle receptor pathway in neurons plays an important role in inducing activation of microglia and inducing mechanical allodynia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mincle" title="mincle">mincle</a>, <a href="https://publications.waset.org/abstracts/search?q=spinal%20cord" title=" spinal cord"> spinal cord</a>, <a href="https://publications.waset.org/abstracts/search?q=pain" title=" pain"> pain</a>, <a href="https://publications.waset.org/abstracts/search?q=microglia" title=" microglia"> microglia</a> </p> <a href="https://publications.waset.org/abstracts/79571/microglia-activity-and-induction-of-mechanical-allodynia-after-mincle-receptor-ligand-injection-in-rat-spinal-cord" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79571.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19967</span> Blindness and Deafness, the Outcomes of Varicella Zoster Virus Encephalitis in HIV Positive Patient </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hadiseh%20Hosamirudsari">Hadiseh Hosamirudsari</a>, <a href="https://publications.waset.org/abstracts/search?q=Farhad%20Afsarikordehmahin"> Farhad Afsarikordehmahin</a>, <a href="https://publications.waset.org/abstracts/search?q=Pooria%20Sekhavatfar"> Pooria Sekhavatfar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concomitant cortical blindness and deafness that follow varicella zoster virus (VZV) infection is rare. We describe a case of ophthalmic zoster that caused cortical blindness and deafness after central nervous system (CNS) involvement. A 42-year old, HIV infected woman has developed progressive blurry vision and deafness, 4 weeks after ophthalmic zoster. A physical examination and positive VZV polymerase chain reaction (PCR) of cerebrospinal fluid (CSF) suggested VZV encephalitis. Complication of VZV encephalitis is considered as the cause of blindness and deafness. In neurological deficit patient especially with a history of herpes zoster, VZV infection should be regarded as the responsible agent in inflammatory disorders of nervous system. The immunocompromised state of patient (including HIV) is as important an agent as VZV infection in developing the disease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blindness" title="blindness">blindness</a>, <a href="https://publications.waset.org/abstracts/search?q=deafness" title=" deafness"> deafness</a>, <a href="https://publications.waset.org/abstracts/search?q=hiv" title=" hiv"> hiv</a>, <a href="https://publications.waset.org/abstracts/search?q=VZV%20%20encephalitis" title=" VZV encephalitis"> VZV encephalitis</a> </p> <a href="https://publications.waset.org/abstracts/31186/blindness-and-deafness-the-outcomes-of-varicella-zoster-virus-encephalitis-in-hiv-positive-patient" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31186.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19966</span> The Great Mimicker: A Case of Disseminated Tuberculosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20Ling">W. Ling</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Saufi%20Bin%20Awang"> Mohamed Saufi Bin Awang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Mycobacterium tuberculosis post a major health problem worldwide. Central nervous system (CNS) infection by mycobacterium tuberculosis is one of the most devastating complications of tuberculosis. Although with advancement in medical fields, we are yet to understand the pathophysiology of how mycobacterium tuberculosis was able to cross the blood-brain barrier (BBB) and infect the CNS. CNS TB may present with nonspecific clinical symptoms which can mimic other diseases/conditions; this is what makes the diagnosis relatively difficult and challenging. Public health has to be informed and educated about the spread of TB, and early identification of TB is important as it is a curable disease. Case Report: A young 21-year-old Malay gentleman was initially presented to us with symptoms of ear discharge, tinnitus, and right-sided headache for the past one year. Further history reveals that the symptoms have been mismanaged and neglected over the period of 1 year. Initial investigation reveals features of inflammation of the ear. Further imaging showed the feature of chronic inflammation of the otitis media and atypical right cerebral abscess, which has the same characteristic features and consistency. He further underwent a biopsy, and results reveal positive Mycobacterium tuberculosis of the otitis media. With the results and the available imaging, we were certain that this is likely a case of disseminated tuberculosis causing CNS TB. Conclusion: We aim to highlight the challenge and difficult face in our health care system and public health in early identification and treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=central%20nervous%20system%20tuberculosis" title="central nervous system tuberculosis">central nervous system tuberculosis</a>, <a href="https://publications.waset.org/abstracts/search?q=intracranial%20tuberculosis" title=" intracranial tuberculosis"> intracranial tuberculosis</a>, <a href="https://publications.waset.org/abstracts/search?q=tuberculous%20encephalopathy" title=" tuberculous encephalopathy"> tuberculous encephalopathy</a>, <a href="https://publications.waset.org/abstracts/search?q=tuberculous%20meningitis" title=" tuberculous meningitis"> tuberculous meningitis</a> </p> <a href="https://publications.waset.org/abstracts/138049/the-great-mimicker-a-case-of-disseminated-tuberculosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138049.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19965</span> Central Retinal Venous Occlusion Associated O Bilateral Optic Nerve Infiltration Revealing Relapse Of An Acute Lymphoblastic Leukemia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fendouli%20Ines">Fendouli Ines</a>, <a href="https://publications.waset.org/abstracts/search?q=Zaafrane%20Nesrine"> Zaafrane Nesrine</a>, <a href="https://publications.waset.org/abstracts/search?q=Mhamdi%20Hana"> Mhamdi Hana</a>, <a href="https://publications.waset.org/abstracts/search?q=Knani%20Leila"> Knani Leila</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghorbel%20Mohamed"> Ghorbel Mohamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Ocular infiltration of leukemia can involve orbit, uveal tract, retina and optic nerve. It may result from direct ocular infiltration by leukemic cells or indirect ocular involvement resulting from secondary hematologic changes, opportunistic infections and complications of various modalities of therapy. We here in report a case of central venous retinal occlusion associated to optic nerve infiltration as presenting signs of a relapse of acute lymphoblastic leukemia. Case Report: A twelve-year-old male -patient of acute B lymphoblastic leukemia presented with headaches and bilateral blurred vision in the left ee. Ophthalmic examination showed a visual acuity reduced to counting fingers in the right eye and no light perception in the left eye. Funduscopy revealed a voluminous disc edema surrounded by retinal haemorrhages in the right eye, and venous tortusities, papillary edema, and hemorrages suggesting central retinal venous occlusion in the LE. Swept source optical coherence tomography revealed a serous retinal detachment in the RE and .hyperreflective inner layers with macular edema in the left eye. Cerebro-orbital MRI showed bilateral thickened left optic nerve. There were no radiological signs of true papillary edema due to intracranial hypertension secondary to central nervous system involvement. Myelogram and lumbar punction demonstrated blast infiltration and confirmed ocular relapse of the leukemia. Conclusion: Ocular involvement lymphoblastic acute leukemias decreased since the introduction of a systematic prophylactic treatment of central nervous system. Periodic ophthalmic examination is necessary to allow early diagnosis and treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acute%20leukemia" title="acute leukemia">acute leukemia</a>, <a href="https://publications.waset.org/abstracts/search?q=optic%20nerve" title=" optic nerve"> optic nerve</a>, <a href="https://publications.waset.org/abstracts/search?q=infiltration" title=" infiltration"> infiltration</a>, <a href="https://publications.waset.org/abstracts/search?q=relapse" title=" relapse"> relapse</a> </p> <a href="https://publications.waset.org/abstracts/167221/central-retinal-venous-occlusion-associated-o-bilateral-optic-nerve-infiltration-revealing-relapse-of-an-acute-lymphoblastic-leukemia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19964</span> Peripheral Inflammation and Neurodegeneration; A Potential for Therapeutic Intervention in Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lourdes%20Hanna">Lourdes Hanna</a>, <a href="https://publications.waset.org/abstracts/search?q=Edward%20Poluyi"> Edward Poluyi</a>, <a href="https://publications.waset.org/abstracts/search?q=Chibuikem%20Ikwuegbuenyi"> Chibuikem Ikwuegbuenyi</a>, <a href="https://publications.waset.org/abstracts/search?q=Eghosa%20Morgan"> Eghosa Morgan</a>, <a href="https://publications.waset.org/abstracts/search?q=Grace%20Imaguezegie"> Grace Imaguezegie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Degeneration of the central nervous system (CNS), also known as neurodegeneration, describes an age-associated progressive loss of the structure and function of neuronal materials, leading to functional and mental impairments. Main body: Neuroinflammation contributes to the continuous worsening of neurodegenerative states which are characterised by functional and mental impairments due to the progressive loss of the structure and function of neu-ronal materials. Some of the most common neurodegenerative diseases include Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS). Whilst neuroinflammation is a key contributor to the progression of such disease states, it is not the single cause as there are multiple factors which contribute. Theoretically, non-steroidal anti-inflammatory drugs (NSAIDs) have potential to target neuroinflammation to reduce the severity of disease states. Whilst some animal models investigating the effects of NSAIDs on the risk of neurodegenerative diseases have shown a beneficial effect, this is not the same finding. Conclusion: Further investigation using more advanced research methods is required to better understand neuroinflammatory pathways and understand if there is still a potential window for NSAID efficacy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intervention" title="intervention">intervention</a>, <a href="https://publications.waset.org/abstracts/search?q=central%20nervous%20system" title=" central nervous system"> central nervous system</a>, <a href="https://publications.waset.org/abstracts/search?q=neurodegeneration" title=" neurodegeneration"> neurodegeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=neuroinflammation" title=" neuroinflammation"> neuroinflammation</a> </p> <a href="https://publications.waset.org/abstracts/153806/peripheral-inflammation-and-neurodegeneration-a-potential-for-therapeutic-intervention-in-alzheimers-disease-parkinsons-disease-and-amyotrophic-lateral-sclerosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153806.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19963</span> Neuroinflammation in Late-Life Depression: The Role of Glial Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chaomeng%20Liu">Chaomeng Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Li"> Li Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiao%20Wang"> Xiao Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Ren"> Li Ren</a>, <a href="https://publications.waset.org/abstracts/search?q=Qinge%20Zhang"> Qinge Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Late-life depression (LLD) is a prevalent mental disorder among the elderly, frequently accompanied by significant cognitive decline, and has emerged as a worldwide public health concern. Microglia, astrocytes, and peripheral immune cells play pivotal roles in regulating inflammatory responses within the central nervous system (CNS) across diverse cerebral disorders. This review commences with the clinical research findings and accentuates the recent advancements pertaining to microglia and astrocytes in the neuroinflammation process of LLD. The reciprocal communication network between the CNS and immune system is of paramount importance in the pathogenesis of depression and cognitive decline. Stress-induced downregulation of tight and gap junction proteins in the brain results in increased blood-brain barrier permeability and impaired astrocyte function. Concurrently, activated microglia release inflammatory mediators, initiating the kynurenine metabolic pathway and exacerbating the quinolinic acid/kynurenic acid imbalance. Moreover, the balance between Th17 and Treg cells is implicated in the preservation of immune homeostasis within the cerebral milieu of individuals suffering from LLD. The ultimate objective of this review is to present future strategies for the management and treatment of LLD, informed by the most recent advancements in research, with the aim of averting or postponing the onset of AD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neuroinflammation" title="neuroinflammation">neuroinflammation</a>, <a href="https://publications.waset.org/abstracts/search?q=late-life%20depression" title=" late-life depression"> late-life depression</a>, <a href="https://publications.waset.org/abstracts/search?q=microglia" title=" microglia"> microglia</a>, <a href="https://publications.waset.org/abstracts/search?q=astrocytes" title=" astrocytes"> astrocytes</a>, <a href="https://publications.waset.org/abstracts/search?q=central%20nervous%20system" title=" central nervous system"> central nervous system</a>, <a href="https://publications.waset.org/abstracts/search?q=blood-brain%20barrier" title=" blood-brain barrier"> blood-brain barrier</a>, <a href="https://publications.waset.org/abstracts/search?q=Kynurenine%20pathway" title=" Kynurenine pathway"> Kynurenine pathway</a> </p> <a href="https://publications.waset.org/abstracts/187726/neuroinflammation-in-late-life-depression-the-role-of-glial-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187726.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">44</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19962</span> Computational Characterization of Electronic Charge Transfer in Interfacial Phospholipid-Water Layers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samira%20Baghbanbari">Samira Baghbanbari</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20B.%20P.%20Lever"> A. B. P. Lever</a>, <a href="https://publications.waset.org/abstracts/search?q=Payam%20S.%20Shabestari"> Payam S. Shabestari</a>, <a href="https://publications.waset.org/abstracts/search?q=Donald%20Weaver"> Donald Weaver</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Existing signal transmission models, although undoubtedly useful, have proven insufficient to explain the full complexity of information transfer within the central nervous system. The development of transformative models will necessitate a more comprehensive understanding of neuronal lipid membrane electrophysiology. Pursuant to this goal, the role of highly organized interfacial phospholipid-water layers emerges as a promising case study. A series of phospholipids in neural-glial gap junction interfaces as well as cholesterol molecules have been computationally modelled using high-performance density functional theory (DFT) calculations. Subsequent 'charge decomposition analysis' calculations have revealed a net transfer of charge from phospholipid orbitals through the organized interfacial water layer before ultimately finding its way to cholesterol acceptor molecules. The specific pathway of charge transfer from phospholipid via water layers towards cholesterol has been mapped in detail. Cholesterol is an essential membrane component that is overrepresented in neuronal membranes as compared to other mammalian cells; given this relative abundance, its apparent role as an electronic acceptor may prove to be a relevant factor in further signal transmission studies of the central nervous system. The timescales over which this electronic charge transfer occurs have also been evaluated by utilizing a system design that systematically increases the number of water molecules separating lipids and cholesterol. Memory loss through hydrogen-bonded networks in water can occur at femtosecond timescales, whereas existing action potential-based models are limited to micro or nanosecond scales. As such, the development of future models that attempt to explain faster timescale signal transmission in the central nervous system may benefit from our work, which provides additional information regarding fast timescale energy transfer mechanisms occurring through interfacial water. The study possesses a dataset that includes six distinct phospholipids and a collection of cholesterol. Ten optimized geometric characteristics (features) were employed to conduct binary classification through an artificial neural network (ANN), differentiating cholesterol from the various phospholipids. This stems from our understanding that all lipids within the first group function as electronic charge donors, while cholesterol serves as an electronic charge acceptor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=charge%20transfer" title="charge transfer">charge transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20transmission" title=" signal transmission"> signal transmission</a>, <a href="https://publications.waset.org/abstracts/search?q=phospholipids" title=" phospholipids"> phospholipids</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20layers" title=" water layers"> water layers</a>, <a href="https://publications.waset.org/abstracts/search?q=ANN" title=" ANN"> ANN</a> </p> <a href="https://publications.waset.org/abstracts/175684/computational-characterization-of-electronic-charge-transfer-in-interfacial-phospholipid-water-layers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175684.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19961</span> Acute Poisoning Based on Age and Gender Caused by Pharmaceuticals and Therapies That Influence the Nervous System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ragy%20Raafat%20Gaber%20Attaalla">Ragy Raafat Gaber Attaalla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: We looked at acute poisonings brought on by illegal drugs and pharmaceuticals that influence the nervous system at Assiut University Hospitals. Methods: Between January 2010 and December 2015, we conducted a retrospective examination of patient records from the largest tertiary toxicology referral center in Assiut. We examined the frequency, pattern, and distribution of ages and genders of acute nervous system agent poisoning. Results: 29,083 individuals total—16,657 (57.27%) males and 12,426 (42.73%) females—were included in the current study. Men's and women's median ages were 29 and 26, respectively (p < 0.0001). 10,326 (83.10%) women and 12,071 (72.47%) men under 40 were present (p < 0.001). 44.10% of cases had a history of poisoning, and the majority of cases (69.38% in men and 79.00% in women, p<0.001) were purposeful. Between various age groups and nervous system agents, there were notable variations in the ratios of men and women. The most often used agent for women was alprazolam, whereas methadone was more popular for men. Overall, there was a rising tendency in acute poisoning associated with alcohol and opioids used to treat addiction disorders, but a declining trend with benzodiazepines and antidepressants. Conclusion: Addiction to methadone was widespread, particularly in young males, and the majority of these cases were self-inflicted. Alprazolam and clonazepam poisoning most commonly affect women and males in the 20–29 age range, respectively. Opium was utilized by men over 30 and women over 60. Over half of the deaths were related to illicit narcotics, with opium being the most common. This research could raise awareness and lead to the development of gender- and age-specific local programs for education and prevention. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acute%20poisonings" title="acute poisonings">acute poisonings</a>, <a href="https://publications.waset.org/abstracts/search?q=illegal%20drugs" title=" illegal drugs"> illegal drugs</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmaceuticals" title=" pharmaceuticals"> pharmaceuticals</a>, <a href="https://publications.waset.org/abstracts/search?q=nerve%20system" title=" nerve system"> nerve system</a> </p> <a href="https://publications.waset.org/abstracts/189153/acute-poisoning-based-on-age-and-gender-caused-by-pharmaceuticals-and-therapies-that-influence-the-nervous-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189153.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">29</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19960</span> Fabrication of Modified Chitosan-Gold Nanoshell with Mercaptopropionic Acid(MPA) for γ-Aminobutyric Acid Detection as a Surface-Enhanced Raman Scattering Substrate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bi%20Wa">Bi Wa</a>, <a href="https://publications.waset.org/abstracts/search?q=Su-Yeon%20Kwon"> Su-Yeon Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=Ik-Joong%20Kang"> Ik-Joong Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Surface-enhanced Raman Scattering (SERS) as the principle for enhancing Raman scattering by molecules adsorbed on rough metal surfaces or by nanostructures is used to detect the concentration change of γ-Aminobutyric Acid (GABA). GABA is the mainly inhibitory neurotransmitter in the mammalian central nervous system in the human body. It plays such significant role in reducing neuronal excitability throughout the nervous system. In this case, the Mercaptopropionic Acid (MPA) is used to modified chitosan –gold nanoshell, which enhances the absorption between GABA and Chitosan-gold nanoshell. The sulfur end of the MPA is linked to gold which is the surface of the chitosan nanoparticles via the very strong S–Au bond, while a functional group (carboxyl group) attached to GABA. The controlling of particles’ size and the surface morphology are also the important factors during the whole experiment. The particle around 100nm is using to link to MPA, and the range of GABA from 1mM to 30mM was detected by the Raman Scattering to obtain the calibrate curve. In this study, DLS, SEM, FT-IR, UV, SERS were used to analyze the products to obtain the conclusion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chitosan-gold%20nanoshell" title="chitosan-gold nanoshell">chitosan-gold nanoshell</a>, <a href="https://publications.waset.org/abstracts/search?q=mercaptopropionic%20acid" title=" mercaptopropionic acid"> mercaptopropionic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B3-aminobutyric%20acid" title=" γ-aminobutyric acid"> γ-aminobutyric acid</a>, <a href="https://publications.waset.org/abstracts/search?q=surface-enhanced%20raman%20scattering" title=" surface-enhanced raman scattering"> surface-enhanced raman scattering</a> </p> <a href="https://publications.waset.org/abstracts/54235/fabrication-of-modified-chitosan-gold-nanoshell-with-mercaptopropionic-acidmpa-for-gh-aminobutyric-acid-detection-as-a-surface-enhanced-raman-scattering-substrate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54235.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19959</span> Surface Enhanced Raman Substrate Detection on the Structure of γ-Aminobutyric Acid(GABA) Connected with Modified Gold-Chitosan Nanoparticles by Mercaptopropionic Acid (MPA)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bingjie%20Wang">Bingjie Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Su-Yeon%20Kwon"> Su-Yeon Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=Ik-Joong%20Kang"> Ik-Joong Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A Surface-enhanced Raman Scattering (SERS) as the principle for enhancing Raman scattering by molecules adsorbed on rough metal surfaces or by nanostructures is used to detect the concentration change of γ-Aminobutyric Acid (GABA). As for the gold-chitosan nanoshell, it is made by using chitosan nanoparticles crosslinking with sodium tripolyphosphate(TPP) for the first step to form the chitosan nanoparticles, which would be covered with the gold sequentially. The size of the fabricated product was around 100nm. Based on the method that the sulfur end of the MPA linked to gold can form the very strong S–Au bond, and the carboxyl group, the other end of the MPA, can easily absorb the GABA. GABA is the mainly inhibitory neurotransmitter in the mammalian central nervous system in the human body. It plays such significant role in reducing neuronal excitability throughout the nervous system. When the system formed, it generated SERS, which made a clear difference in the intensity of Raman scattering within the range of GABA concentration. So it is obtained from the experiment that the calibration curve according to the GABA concentration relevant with the SERS scattering. In this study, DLS, SEM, FT-IR, UV, SERS were used to analyze the products to obtain the conclusion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chitosan-gold%20nanoshell" title="chitosan-gold nanoshell">chitosan-gold nanoshell</a>, <a href="https://publications.waset.org/abstracts/search?q=mercaptopropionic%20acid" title=" mercaptopropionic acid"> mercaptopropionic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B3-aminobutyric%20acid" title=" γ-aminobutyric acid"> γ-aminobutyric acid</a>, <a href="https://publications.waset.org/abstracts/search?q=surface-enhanced%20Raman%20scattering" title=" surface-enhanced Raman scattering"> surface-enhanced Raman scattering</a> </p> <a href="https://publications.waset.org/abstracts/54664/surface-enhanced-raman-substrate-detection-on-the-structure-of-gh-aminobutyric-acidgaba-connected-with-modified-gold-chitosan-nanoparticles-by-mercaptopropionic-acid-mpa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54664.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19958</span> Evaluation of Central Nervous System Activity of Synthesized 5, 5-Diphenylimidazolidine-2, 4-Dione Derivatives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shweta%20Verma">Shweta Verma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Epilepsy is a chronic non-communicable central nervous system (CNS) disorder which affects a large population of all ages. Different classes of drugs are used for the treatment of this neurological disorder, but due to augmented drug resistance and side effects, these drugs become incompetent. Therefore, we design the synthesis of ten new derivatives of Phenytoin. The moiety of Phenytoin was hybridized with different phenols by using three step approach. The synthesized molecules were then investigated for different physicochemical parameters, such as Log P values using diverse software programs and to predict the potential to cross the blood-brain barrier. Objective: The Phenytoin derivatives were designed, synthesized, and characterized to meet the structural necessities indispensable for antiepileptic activity. Method: Firstly, the chloroacetylation of the 5,5-diphenyl hydantoin was carried out, and then various substituted phenols were added to it. The synthesized compounds were characterized and evaluated for antianxiety activity by elevated plus maze method and antiepileptic activity by using subcutaneous pentylenetetrazole (scPTZ) and maximal electroshock (MES) models and neurotoxicity. Result: The number of derivatives of 5,5-diphenyl hydantoin was developed and optimized. The number of parameters was optimized which reveal that the compound containing chloro group such as C3 and C6 showed imperative potential when compared with the standard drug Diazepam. Other compounds containing nitro and methyl group were also found to possess activity. Conclusion: It was summarized that the new compounds of 5,5-diphenyl hydantoin derivatives were synthesized. The results of the data show that the compound containing chloro group is more potent for CNS activity. The new compounds have the probability of being optimized further to engender new scaffolds to treat various CNS disorders. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phenytoin" title="phenytoin">phenytoin</a>, <a href="https://publications.waset.org/abstracts/search?q=parameters" title=" parameters"> parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=CNS%20activity" title=" CNS activity"> CNS activity</a>, <a href="https://publications.waset.org/abstracts/search?q=blood-brain%20barrier" title=" blood-brain barrier"> blood-brain barrier</a>, <a href="https://publications.waset.org/abstracts/search?q=Log%20P" title=" Log P"> Log P</a>, <a href="https://publications.waset.org/abstracts/search?q=CNS%20active" title=" CNS active"> CNS active</a> </p> <a href="https://publications.waset.org/abstracts/171519/evaluation-of-central-nervous-system-activity-of-synthesized-5-5-diphenylimidazolidine-2-4-dione-derivatives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171519.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19957</span> Primary Melanocytic Tumors of the Central Nervous System: A Clinico-Pathological Study of Seven Cases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sushila%20Jaiswal">Sushila Jaiswal</a>, <a href="https://publications.waset.org/abstracts/search?q=Awadhesh%20Kumar%20Jaiswal"> Awadhesh Kumar Jaiswal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Primary melanocytic tumors of the central nervous system (CNS) are uncommon lesions and arise from the melanocytes located within the leptomeninges. Aim and objective: The aim of the study was to evaluate the clinical details, histomorphology of the primary melanocytic tumor of CNS. Method: The study was performed by the retrospective review of the case records of the primary melanocytic tumors of CNS diagnosed in our department. The formalin-fixed, paraffin embedded tissue blocks and tissue sections were retrieved and reviewed. Results: Seven cases (6 males, 1 female; age range- 16-40 years; mean age- 27 years) of primary melanocytic tumors of CNS were retrieved over last seven years. The tumor was intracranial (n=5; frontal – 1 case, parietal – 1 case, cerebello-pontine angle- 1 case, occipital -1 case, foramen magnum-1 case) and intra spinal (n=2; cervical – 2 cases). All patients presented with the neurological deficits related to the location of the tumor. Four cases were malignant melanoma; two were melanocytoma of intermediate grade and remaining one was melanocytoma. On histopathology, melanocytoma and melanoma both displayed sheets of well-differentiated melanocytes having round to oval nuclei with finely dispersed chromatin, occasional single eosinophilic nucleoli and a moderate amount of cytoplasm with abundant granular melanin pigment. The absence of mitosis and macronucleoli was noticed in melanocytoma while melanoma showed frequent mitosis and macronucleoli. On immunohistochemistry, both showed diffuse strong HMB45 and S-100 immunopositivity. Conclusion: Primary melanocytic tumors of CNS are rare and predominantly seen in males. It is important to differentiate melanoma from melanocytoma as prognosis of later is good. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=melanocytoma" title="melanocytoma">melanocytoma</a>, <a href="https://publications.waset.org/abstracts/search?q=melanoma" title=" melanoma"> melanoma</a>, <a href="https://publications.waset.org/abstracts/search?q=brain%20tumor" title=" brain tumor"> brain tumor</a>, <a href="https://publications.waset.org/abstracts/search?q=melanin" title=" melanin"> melanin</a> </p> <a href="https://publications.waset.org/abstracts/54456/primary-melanocytic-tumors-of-the-central-nervous-system-a-clinico-pathological-study-of-seven-cases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54456.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19956</span> Mercaptopropionic Acid (MPA) Modifying Chitosan-Gold Nano Composite for γ-Aminobutyric Acid Analysis Using Raman Scattering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bingjie%20Wang">Bingjie Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Su-Yeon%20Kwon"> Su-Yeon Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=Ik-Joong%20Kang"> Ik-Joong Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of this experiment is to develop a sensor that can quickly check the concentration by using the nanoparticles made by chitosan and gold. Using chitosan nanoparticles crosslinking with sodium tripolyphosphate(TPP) is the first step to form the chitosan nanoparticles, which would be covered with the gold sequentially. The size of the fabricated product was around 100nm. Based on the method that the sulfur end of the MPA linked to gold can form the very strong S–Au bond, and the carboxyl group, the other end of the MPA, can easily absorb the GABA. As for the GABA, what is the primary inhibitory neurotransmitter in the mammalian central nervous system in the human body. It plays such significant role in reducing neuronal excitability pass through the nervous system. A Surface-enhanced Raman Scattering (SERS) as the principle for enhancing Raman scattering by molecules adsorbed on rough metal surfaces or by nanostructures is used to detect the concentration change of γ-Aminobutyric Acid (GABA). When the system is formed, it generated SERS, which made a clear difference in the intensity of Raman scattering within the range of GABA concentration. So it is obtained from the experiment that the calibration curve according to the GABA concentration relevant with the SERS scattering. In this study, DLS, SEM, FT-IR, UV, SERS were used to analyze the products to obtain the conclusion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mercaptopropionic%20acid" title="mercaptopropionic acid">mercaptopropionic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan-gold%20nanoshell" title=" chitosan-gold nanoshell"> chitosan-gold nanoshell</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B3-aminobutyric%20acid" title=" γ-aminobutyric acid"> γ-aminobutyric acid</a>, <a href="https://publications.waset.org/abstracts/search?q=surface-enhanced%20raman%20scattering" title=" surface-enhanced raman scattering"> surface-enhanced raman scattering</a> </p> <a href="https://publications.waset.org/abstracts/54392/mercaptopropionic-acid-mpa-modifying-chitosan-gold-nano-composite-for-gh-aminobutyric-acid-analysis-using-raman-scattering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54392.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19955</span> Acupoint Injection of High Concentration of Glucose Attenuates Mice Chronic Pain and Depression Comorbidity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chanya%20Inprasit">Chanya Inprasit</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Wen%20Lin"> Yi-Wen Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inflammation causes changes of peripheral and central nervous system properties, affecting both neuronal and non-neuronal cells, resulting in inflammatory pain. Acupoint injection (AI) was developed in the 1950s and has been widely used for relieving pain. It is an acupoint-stimulating technique that utilizes anatomically based meridians derived from Chinese medicine theory. AI has been accepted as an effective treatment and is thought to display superior results when compared to traditional acupuncture methods. However, the mechanism of AI needs to be ratified by more scientific evidence in order to support the theory and its therapeutic development. In this study, we explored the effect of AI on the comorbidity of chronic pain and depression. Mice hindpaw was injected by complete Freund’s adjuvant (CFA) to induce the condition of chronic pain. Measurements of mechanical and thermal hyperalgesia and depression-like behavior were analyzed. The results indicated a positive tendency to AI treatment. The comorbidity of chronic pain and depression was investigated with relation to transient receptor potential V1 (TRPV1) mechanism through the use of TRPV1 gene deletion. The expression of nociceptors such as voltage-gated sodium channels (Navs) or TRPV1, was significantly down-regulated by AI. The expression of inflammation-activated molecules: astrocytic marker glial fibrillary acidic protein (GFAP), the microglial marker Iba-1, S100B, and related kinases, were reversed by AI in both the peripheral and central nervous system. Taken together, these data provided a detailed molecular mechanism of AI-induced analgesia and anti-inflammatory properties. This finding may be utilized for clinical practice to treat chronic pain and depression comorbidity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inflammatory%20pain" title="inflammatory pain">inflammatory pain</a>, <a href="https://publications.waset.org/abstracts/search?q=acupoint%20injection" title=" acupoint injection"> acupoint injection</a>, <a href="https://publications.waset.org/abstracts/search?q=TRPV1" title=" TRPV1"> TRPV1</a>, <a href="https://publications.waset.org/abstracts/search?q=GFAP" title=" GFAP"> GFAP</a>, <a href="https://publications.waset.org/abstracts/search?q=S100B" title=" S100B"> S100B</a> </p> <a href="https://publications.waset.org/abstracts/104337/acupoint-injection-of-high-concentration-of-glucose-attenuates-mice-chronic-pain-and-depression-comorbidity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104337.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19954</span> Relationship Between Behavioral Inhibition/Approach System, and Perceived Stress, With White Blood Cell In Multiple Sclerosis Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amin%20Alvani">Amin Alvani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multiple sclerosis (MS) is a chronic, often disabling disease in which the immune system attacks the myelin sheath of neurons in the central nervous system. The present study aimed to investigate the Relationship between behavioral inhibition/approach system (BIS-BAS) and perceived stress (PS) whit control white blood cell (WBC). 60 MS patients (male=36.7, female=63.3%; age range=15-65 participated in the study and completed the demographic questionnaire, the count blood cell (CBC) test, the behavioral Activation and behavioral inhibition scale (BIS-BAS), and the perceived stress Questionnaire (PSS-14). The results revealed that Between of BAS-reward responsiveness (BAS-DR) subscale and PS, in more than MS patient (BIS), there are increase WBC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=behavioral%20inhibition%2Fapproach%20system" title="behavioral inhibition/approach system">behavioral inhibition/approach system</a>, <a href="https://publications.waset.org/abstracts/search?q=perceived%20stress" title=" perceived stress"> perceived stress</a>, <a href="https://publications.waset.org/abstracts/search?q=white%20blood%20cell" title=" white blood cell"> white blood cell</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20sclerosis" title=" multiple sclerosis"> multiple sclerosis</a> </p> <a href="https://publications.waset.org/abstracts/165572/relationship-between-behavioral-inhibitionapproach-system-and-perceived-stress-with-white-blood-cell-in-multiple-sclerosis-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165572.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19953</span> The Effect of the COVID-19 on Alzheimer’s Disease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ay%C5%9Fe%20Defne%20%C3%96z">Ayşe Defne Öz</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%96zlem%20Bozkurt"> Özlem Bozkurt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alzheimer's Disease (AD) is counted as one of the most important global health problems and the main cause of dementia. The term dementia refers to a wide spectrum of disorders characterized by global, chronic, and generally irreversible cognitive deterioration. It is estimated that %60 % to 80 of the cases of dementia are because of AD. Alzheimer's is a slowly progressive brain disease. The reason for AD is unknown to the author's best knowledge, yet it is one of the topics that is most researched. AD shows the histopathologically abnormal accumulation of the protein beta-amyloid (plague) outside neurons and twisted strands of the protein tau (tangles) inside neurons in the brain. These changes are accompanied by damage to the brain tissue and the death of neurons. AD causes people to have difficulty remembering names or conversations. Some of the later symptoms are difficulty in talking and walking. Alzheimer's Disease is elevated by the illness and mortality of COVID-19. COVID-19 has affected many lives globally and had profound effects on human lives. COVID-19 is caused by SARS-CoV-2, which is a virus that attacks the respiratory and central nervous system and has neuroinvasive potential. More than %80 of COVID-19 patients have ageusia or anosmia, representing the pathognomic features of the disease. Patients with dementia are frail, and with the COVID-19 pandemic, including isolation, cognitive decline may exacerbate. Furthermore, patients with AD can be unable to follow the directions, such as covering their mouth and nose while coughing and can live in nursing homes which makes them more open to being infected. As COVID-19 is highly infectious and its management requires isolation and quarantine, the need for caregivers for AD management conflicts with that of COVID-19 and adds an extra burden on AD patients, caregivers, families, society, and the economy. Due to the entry of SARS-CoV-2 into the central nervous system, inflammation caused by COVID-19, prolonged hospitalization, and delirium, it has been reported that COVID-19 causes many neurological disorders and predisposition to AD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alzheimer%27s%20disease" title="Alzheimer&#039;s disease">Alzheimer&#039;s disease</a>, <a href="https://publications.waset.org/abstracts/search?q=COVID-19" title=" COVID-19"> COVID-19</a>, <a href="https://publications.waset.org/abstracts/search?q=dementia" title=" dementia"> dementia</a>, <a href="https://publications.waset.org/abstracts/search?q=SARS-CoV-2" title=" SARS-CoV-2"> SARS-CoV-2</a> </p> <a href="https://publications.waset.org/abstracts/161071/the-effect-of-the-covid-19-on-alzheimers-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19952</span> Comparison of Effects over the Autonomic Nervous System When Using Force Training and Interval Training in Indoor Cycling with University Students</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Botero">Daniel Botero</a>, <a href="https://publications.waset.org/abstracts/search?q=Oscar%20Rubiano"> Oscar Rubiano</a>, <a href="https://publications.waset.org/abstracts/search?q=Pedro%20P.%20Barragan"> Pedro P. Barragan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaime%20Baron"> Jaime Baron</a>, <a href="https://publications.waset.org/abstracts/search?q=Leonardo%20Rodriguez%20Perdomo"> Leonardo Rodriguez Perdomo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaime%20Rodriguez"> Jaime Rodriguez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the last decade interval training (IT) has gained importance when is compare with strength training (ST). However, there are few studies analyzing the impact of these training over the autonomic nervous system (ANS). This work has aimed to compare the activity of the autonomic nervous system, when is expose to an IT or ST indoor cycling mode. After approval by the ethics committee, a cross-over clinical trial with 22 healthy participants (age 21 ± 3 years) was implemented. The selection of participants for the groups with sequence force-interval (F-I) and interval-force (I-F) was made randomly with assignation of 11 participants for each group. The temporal series of heart rate was obtained before and after each training using the POLAR TEAM® heart monitor. The evaluation of the ANS was performed with spectral analysis of the heart rate variability (HRV) using the fast Fourier transform (Kubios software). A training of 8 weeks in each sequence (4 weeks with each training) with an intermediate period of two weeks of washout was implemented for each group. The power parameter of the HRV in the low frequency band (LF = 0.04-0.15Hz related to the sympathetic nervous system), high frequency (HF = 0.15-0.4Hz, related to the parasympathetic) and LF/HF (with reference to a modulation of parasympathetic over the sympathetic), were calculated. Afterward, the difference between the parameters before and after was realized. Then, to evaluate statistical differences between each training was implemented the method of Wellek (Wellek and Blettner, 2012, Medicine, 109 (15), 276-81). To determine the difference of effect over parasympathetic when FT and IT are used, the T test is implemented obtaining a T value of 0.73 with p-value ≤ 0.1. For the sympathetic was obtained a T of 0.33 with p ≤ 0.1 and for LF/HF the T was 1.44 with a p ≥ 0.1. Then, the carry over effect was evaluated and was not present. Significant changes over autonomic activity with strength or interval training were not observed. However, a modulation of the parasympathetic over the sympathetic can be observed. Probably, these findings should be explained because the sample is little and/or the time of training was insufficient to generate changes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autonomic%20nervous" title="autonomic nervous">autonomic nervous</a>, <a href="https://publications.waset.org/abstracts/search?q=force%20training" title=" force training"> force training</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20cycling" title=" indoor cycling"> indoor cycling</a>, <a href="https://publications.waset.org/abstracts/search?q=interval%20training" title=" interval training"> interval training</a> </p> <a href="https://publications.waset.org/abstracts/95284/comparison-of-effects-over-the-autonomic-nervous-system-when-using-force-training-and-interval-training-in-indoor-cycling-with-university-students" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95284.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19951</span> The Role of Arousal in Time Perception: Implications for Emotional Driving</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ewa%20Siedlecka">Ewa Siedlecka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Emotional stress is an important risk factor in the rate and severity of traffic accidents. Moreover, incorrect time perception is implicated in the increase of traffic violations, such as running red lights or collisions. While the role of emotional arousal on perceived time is well-established, the role of physiological arousal in time perception remains unexamined. Specific emotions can be, however, associated with distinct physiological responses. In the current research, two studies examined the role of physiological arousal in time perception. In the first experiment, 41 participants engaged in a cold pressor task and had their time perception measured throughout the experiment. In the second study, 138 participants engaged in either isometric or deep breathing exercises. These activities were designed to simulate the sympathetic and parasympathetic nervous systems, respectively. Participants completed a bisection task to measure time perception in both studies, as well as a physiological response via an Electrocardiography (ECG). Results found that activation of the parasympathetic nervous system is associated with greater time perception. These findings are discussed with reference to models of time perception, as well as implications for emotional driving and misperceptions of speed. It is important to consider the role of physiology in the misperception of time, as these factors can lead to increases in driving accidents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emotions" title="emotions">emotions</a>, <a href="https://publications.waset.org/abstracts/search?q=nervous%20system" title=" nervous system"> nervous system</a>, <a href="https://publications.waset.org/abstracts/search?q=physiology" title=" physiology"> physiology</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20perception" title=" time perception"> time perception</a> </p> <a href="https://publications.waset.org/abstracts/91883/the-role-of-arousal-in-time-perception-implications-for-emotional-driving" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91883.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19950</span> The Design and Construction of the PV-Wind Autonomous System for Greenhouse Plantations in Central Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Napat%20Watjanatepin">Napat Watjanatepin</a>, <a href="https://publications.waset.org/abstracts/search?q=Wikorn%20Wong-Satiean"> Wikorn Wong-Satiean</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this research is to design and construct the PV-Wind hybrid autonomous system for the greenhouse plantation, and analyze the technical performance of the PV-Wind energy system. This design depends on the water consumption in the greenhouse by using 24 of the fogging mist each with the capability of 24 liter/min. The operating time is 4 times per day, each round for 15 min. The fogging system is being driven by water pump with AC motor rating 0.5 hp. The load energy consumed is around 1.125 kWh/d. The designing results of the PV-Wind hybrid energy system is that sufficient energy could be generated by this system. The results of this study can be applied as a technical data reference for other areas in the central part of Thailand. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PV-Wind%20hybrid%20autonomous%20system" title="PV-Wind hybrid autonomous system">PV-Wind hybrid autonomous system</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20plantation" title=" greenhouse plantation"> greenhouse plantation</a>, <a href="https://publications.waset.org/abstracts/search?q=fogging%20system" title=" fogging system"> fogging system</a>, <a href="https://publications.waset.org/abstracts/search?q=central%20part%20of%20Thailand" title=" central part of Thailand"> central part of Thailand</a> </p> <a href="https://publications.waset.org/abstracts/10478/the-design-and-construction-of-the-pv-wind-autonomous-system-for-greenhouse-plantations-in-central-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10478.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non%E2%88%92central%20nervous%20system%20cancers&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non%E2%88%92central%20nervous%20system%20cancers&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non%E2%88%92central%20nervous%20system%20cancers&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non%E2%88%92central%20nervous%20system%20cancers&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non%E2%88%92central%20nervous%20system%20cancers&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non%E2%88%92central%20nervous%20system%20cancers&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non%E2%88%92central%20nervous%20system%20cancers&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non%E2%88%92central%20nervous%20system%20cancers&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non%E2%88%92central%20nervous%20system%20cancers&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non%E2%88%92central%20nervous%20system%20cancers&amp;page=665">665</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non%E2%88%92central%20nervous%20system%20cancers&amp;page=666">666</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non%E2%88%92central%20nervous%20system%20cancers&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10