CINXE.COM
Search results for: Wet spinning
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Wet spinning</title> <meta name="description" content="Search results for: Wet spinning"> <meta name="keywords" content="Wet spinning"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Wet spinning" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Wet spinning"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 107</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Wet spinning</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">107</span> Analysis for Shear Spinning of Tubes with Hard-To-Work Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sukhwinder%20Singh%20Jolly">Sukhwinder Singh Jolly</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal spinning is one such process in which the stresses are localized to a small area and the material is made to flow or move over the mandrel with the help of spinning tool. Spinning of tubular products can be performed by two techniques, forward spinning and backward spinning. Many researchers have studied the process both experimentally and analytically. An effort has been made to apply the process to the spinning of thin wall, highly precision, small bore long tube in hard-to-work materials such as titanium. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20spinning" title="metal spinning">metal spinning</a>, <a href="https://publications.waset.org/abstracts/search?q=hard-to-work%20materials" title=" hard-to-work materials"> hard-to-work materials</a>, <a href="https://publications.waset.org/abstracts/search?q=roller%20diameter" title=" roller diameter"> roller diameter</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20consumption" title=" power consumption"> power consumption</a> </p> <a href="https://publications.waset.org/abstracts/22316/analysis-for-shear-spinning-of-tubes-with-hard-to-work-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22316.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">106</span> A Systamatic Review on Experimental, FEM Analysis and Simulation of Metal Spinning Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amol%20M.%20Jadhav">Amol M. Jadhav</a>, <a href="https://publications.waset.org/abstracts/search?q=Sharad%20S.%20Chudhari"> Sharad S. Chudhari</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Khedkar"> S. S. Khedkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This review presents a through survey of research paper work on the experimental analysis, FEM Analysis & simulation of the metal spinning process. In this literature survey all the papers being taken from Elsevier publication and most of the from journal of material processing technology. In a last two decade or so, metal spinning process gradually used as chip less formation for the production of engineering component in a small to medium batch quantities. The review aims to provide include into the experimentation, FEM analysis of various components, simulation of metal spinning process and act as guide for research working on metal spinning processes. The review of existing work has several gaps in current knowledge of metal spinning processes. The evaluation of experiment is thickness strain, the spinning force, the twisting angle, the surface roughness of the conventional & shear metal spinning process; the evaluation of FEM of metal spinning to path definition with sufficient fine mesh to capture behavior of work piece; The evaluation of feed rate of roller, direction of roller,& type of roller stimulated. The metal spinning process has the more flexible to produce a wider range of product shape & to form more challenge material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20spinning" title="metal spinning">metal spinning</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM%20analysis" title=" FEM analysis"> FEM analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation%20of%20metal%20spinning" title=" simulation of metal spinning"> simulation of metal spinning</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20engineering" title=" mechanical engineering"> mechanical engineering</a> </p> <a href="https://publications.waset.org/abstracts/17246/a-systamatic-review-on-experimental-fem-analysis-and-simulation-of-metal-spinning-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17246.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">105</span> Physical Properties of Alkali Resistant-Glass Fibers in Continuous Fiber Spinning Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ji-Sun%20Lee">Ji-Sun Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Soong-Keun%20Hyun"> Soong-Keun Hyun</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-Ho%20Kim"> Jin-Ho Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a glass fiber is fabricated using a continuous spinning process from alkali resistant (AR) glass with 4 wt% zirconia. In order to confirm the melting properties of the marble glass, the raw material is placed into a Pt crucible and melted at 1650 ℃ for 2 h, and then annealed. In order to confirm the transparency of the clear marble glass, the visible transmittance is measured, and the fiber spinning condition is investigated by using high temperature viscosity measurements. A change in the diameter is observed according to the winding speed in the range of 100–900 rpm; it is also verified as a function of the fiberizing temperature in the range of 1200–1260 ℃. The optimum winding speed and spinning temperature are 500 rpm and 1240 ℃, respectively. The properties of the prepared spinning fiber are confirmed using optical microscope, tensile strength, modulus, and alkali-resistant tests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glass%20composition" title="glass composition">glass composition</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20diameter" title=" fiber diameter"> fiber diameter</a>, <a href="https://publications.waset.org/abstracts/search?q=continuous%20filament%20fiber" title=" continuous filament fiber"> continuous filament fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=continuous%20spinning" title=" continuous spinning"> continuous spinning</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20properties" title=" physical properties"> physical properties</a> </p> <a href="https://publications.waset.org/abstracts/75451/physical-properties-of-alkali-resistant-glass-fibers-in-continuous-fiber-spinning-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75451.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">104</span> Parameter Study for TPU Nanofibers Fabricated via Centrifugal Spinning </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasin%20Akg%C3%BCl">Yasin Akgül</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusuf%20Polat"> Yusuf Polat</a>, <a href="https://publications.waset.org/abstracts/search?q=Emine%20Canbay"> Emine Canbay</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20K%C4%B1l%C4%B1%C3%A7"> Ali Kılıç</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrospinning is the most common method to produce nanofibers. However, low production rate is still a big challenge for industrial applications of this method. In this study, morphology of nanofibers obtained from namely centrifugal spinning was investigated. Dominant process parameters acting on the fiber diameter and fiber orientation were discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=centrifugal%20spinning" title="centrifugal spinning">centrifugal spinning</a>, <a href="https://publications.waset.org/abstracts/search?q=electrospinning" title=" electrospinning"> electrospinning</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofiber" title=" nanofiber"> nanofiber</a>, <a href="https://publications.waset.org/abstracts/search?q=TPU%20nanofibers" title=" TPU nanofibers"> TPU nanofibers</a> </p> <a href="https://publications.waset.org/abstracts/21298/parameter-study-for-tpu-nanofibers-fabricated-via-centrifugal-spinning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21298.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">103</span> Effect of Incremental Forming Parameters on Titanium Alloys Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Homola">P. Homola</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Novakova"> L. Novakova</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Kafka"> V. Kafka</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20P.%20Oscoz"> M. P. Oscoz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shear spinning is closely related to the asymmetric incremental sheet forming (AISF) that could significantly reduce costs incurred by the fabrication of complex aeronautical components with a minimal environmental impact. The spinning experiments were carried out on commercially pure titanium (Ti-Gr2) and Ti-6Al-4V (Ti-Gr5) alloy. Three forming modes were used to characterize the titanium alloys properties from the point of view of different spinning parameters. The structure and properties of the materials were assessed by means of metallographic analyses and micro-hardness measurements. The highest value wall angle failure limit was achieved using spinning parameters mode for both materials. The feed rate effect was observed only in the samples from the Ti-Gr2 material, when a refinement of the grain microstructure with lower feed rate and higher tangential speed occurred. Ti-Gr5 alloy exhibited a decrease of the micro-hardness at higher straining due to recovery processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=incremental%20forming" title="incremental forming">incremental forming</a>, <a href="https://publications.waset.org/abstracts/search?q=metallography" title=" metallography"> metallography</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20spinning" title=" shear spinning"> shear spinning</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20alloys" title=" titanium alloys"> titanium alloys</a> </p> <a href="https://publications.waset.org/abstracts/4222/effect-of-incremental-forming-parameters-on-titanium-alloys-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4222.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">102</span> Modeling, Analysis, and Optimization of Process Parameters of Metal Spinning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Ravi%20Kumar">B. Ravi Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Gajanana"> S. Gajanana</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Hemachandra%20Reddy"> K. Hemachandra Reddy</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Udayani"> K. Udayani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Physically into various derived shapes and sizes under the effect of externally applied forces. The spinning process is an advanced plastic working technology and is frequently used for manufacturing axisymmetric shapes. Over the last few decades, Sheet metal spinning has developed significantly and spun products have widely used in various industries. Nowadays the process has been expanded to new horizons in industries, since tendency to use minimum tool and equipment costs and also using lower forces with the output of excellent surface quality and good mechanical properties. The automation of the process is of greater importance, due to its wider applications like decorative household goods, rocket nose cones, gas cylinders, etc. This paper aims to gain insight into the conventional spinning process by employing experimental and numerical methods. The present work proposes an approach for optimizing process parameters are mandrel speed (rpm), roller nose radius (mm), thickness of the sheet (mm). Forming force, surface roughness and strain are the responses.in spinning of Aluminum (2024-T3) using DOE-Response Surface Methodology (RSM) and Analysis of variance (ANOVA). The FEA software is used for modeling and analysis. The process parameters considered in the experimentation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FEA" title="FEA">FEA</a>, <a href="https://publications.waset.org/abstracts/search?q=RSM" title=" RSM"> RSM</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20parameters" title=" process parameters"> process parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=sheet%20metal%20spinning" title=" sheet metal spinning"> sheet metal spinning</a> </p> <a href="https://publications.waset.org/abstracts/20070/modeling-analysis-and-optimization-of-process-parameters-of-metal-spinning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20070.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">101</span> Recycling of Post-Industrial Cotton Wastes: Quality and Rotor Spinning of Reclaimed Fibers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B%C3%A9chir%20Wanassi">Béchir Wanassi</a>, <a href="https://publications.waset.org/abstracts/search?q=B%C3%A9chir%20Azzouz"> Béchir Azzouz</a>, <a href="https://publications.waset.org/abstracts/search?q=Taher%20Halimi"> Taher Halimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Ben%20Hassen"> Mohamed Ben Hassen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mechanical recycling of post-industrial cotton yarn wastes, as well as the effects of passage number on the properties of reclaimed fibers, have been investigated. A new Modified Fiber Quality Index (MFQI) and Spinning Consistency Index (MSCI) for the characterization of the quality are presented. This index gives the real potential of spinnability according to its physical properties. The best quality of reclaimed fibers (after 7th passage) was used to produce rotor yarns. 100% recycling cotton yarns were produced in open-end spinning system with different rotor speed (i.e. 65000, 70000, and 80000 rpm), opening roller speed (i.e. 7700, 8200, and 8700 rpm) and twist factor (i.e. 137, 165, and 183). The effects of spinning parameters were investigated to evaluate a 100% recycling cotton yarns quality (TQI, hairiness, thin places, and thick places) using DOE method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cotton%20wastes" title="cotton wastes">cotton wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=DOE" title=" DOE"> DOE</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20recycling" title=" mechanical recycling"> mechanical recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=rotor%20spinning" title=" rotor spinning "> rotor spinning </a> </p> <a href="https://publications.waset.org/abstracts/32161/recycling-of-post-industrial-cotton-wastes-quality-and-rotor-spinning-of-reclaimed-fibers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32161.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">100</span> Analysis of Stall Angle Delay in Airfoil Coupled with Spinning Cylinder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Kiran">N. Kiran</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Vikas"> S. A. Vikas</a>, <a href="https://publications.waset.org/abstracts/search?q=Yatish%20Chandra"> Yatish Chandra</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Srinivasan"> S. Srinivasan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Several Centuries ago, the aerodynamic studies on rotating cylinders and spheres have started. From the observation, the rotation of a cylinder has a remarkable effect on the aerodynamic characteristics is noticed. In case of airfoils as the angle of attack increases, the drag increases with reduction in lift i.e at the critical angle of attack. If at this point a strong impulse is imparted to the boundary layer by means of a spinning cylinder, the re-energisation of boundary layer is achieved and hence delaying the boundary layer separation and stalling characteristics. Analysis of aerodynamic effects spinning cylinder either at leading edge or at trailing edge of the airfoil is carried in the past, the positioning of cylinder close to trailing edge and its effects in delaying the stall are yet to be analyzed in depth. This paper aim is to understand the combined aerodynamic effects of coupling the spinning cylinder with the airfoil closer to the Trailing edge, by considering different spin ratio of the cylinder, its location and geometrical parameters in relation to the chord of the airfoil. From the analysis, it was observed that the spinning cylinder speed of rotation and location had a impact on stalling characteristics for a prescribed free stream condition. The results predicted through CFD analysis and experimental analysis showed a raise in aerodynamic efficiency and as the spin ratio increases, increase in stalling angle of attack is noticed when compared to the airfoil without spinning cylinder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamics" title="aerodynamics">aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=airfoil" title=" airfoil"> airfoil</a>, <a href="https://publications.waset.org/abstracts/search?q=spinning%20cylinder" title=" spinning cylinder"> spinning cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=stalling" title=" stalling"> stalling</a> </p> <a href="https://publications.waset.org/abstracts/34802/analysis-of-stall-angle-delay-in-airfoil-coupled-with-spinning-cylinder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34802.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">99</span> Power Reduction of Hall-Effect Sensor by Pulse Width Modulation of Spinning-Current</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyungil%20Chae">Hyungil Chae</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents a method to reduce spinning current of a Hall-effect sensor for low-power magnetic sensor applications. Spinning current of a Hall-effect sensor changes the direction of bias current periodically and can separate signals from DC-offset. The bias current is proportional to the sensor sensitivity but also increases the power consumption. To achieve both high sensitivity and low power consumption, the bias current can be pulse-width modulated. When the bias current duration Tb is reduced by a factor of N compared to the spinning current period of Tₛ/2, the total power consumption can be saved by N times. N can be large as long as the Hall-effect sensor settles down within Tb. The proposed scheme is implemented and simulated in a 0.18um CMOS process, and the power saving factor is 9.6 when N is 10. Acknowledgements: This work was supported by Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIP) (20160001360022003, Development of Hall Semi-conductor for Smart Car and Device). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chopper%20stabilization" title="chopper stabilization">chopper stabilization</a>, <a href="https://publications.waset.org/abstracts/search?q=Hall-effect%20sensor" title=" Hall-effect sensor"> Hall-effect sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=pulse%20width%20modulation" title=" pulse width modulation"> pulse width modulation</a>, <a href="https://publications.waset.org/abstracts/search?q=spinning%20current" title=" spinning current"> spinning current</a> </p> <a href="https://publications.waset.org/abstracts/83742/power-reduction-of-hall-effect-sensor-by-pulse-width-modulation-of-spinning-current" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83742.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">484</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">98</span> Potential of High Performance Ring Spinning Based on Superconducting Magnetic Bearing </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Hossain">M. Hossain</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Abdkader"> A. Abdkader</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Cherif"> C. Cherif</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Berger"> A. Berger</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sparing"> M. Sparing</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20H%C3%BChne"> R. Hühne</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Schultz"> L. Schultz</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Nielsch"> K. Nielsch </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the best quality of yarn and the flexibility of the machine, the ring spinning process is the most widely used spinning method for short staple yarn production. However, the productivity of these machines is still much lower in comparison to other spinning systems such as rotor or air-jet spinning process. The main reason for this limitation lies on the twisting mechanism of the ring spinning process. In the ring/traveler twisting system, each rotation of the traveler along with the ring inserts twist in the yarn. The rotation of the traveler at higher speed includes strong frictional forces, which in turn generates heat. Different ring/traveler systems concerning with its geometries, material combinations and coatings have already been implemented to solve the frictional problem. However, such developments can neither completely solve the frictional problem nor increase the productivity. The friction free superconducting magnetic bearing (SMB) system can be a right alternative replacing the existing ring/traveler system. The unique concept of SMB bearings is that they possess a self-stabilizing behavior, i.e. they remain fully passive without any necessity for expensive position sensing and control. Within the framework of a research project funded by German research foundation (DFG), suitable concepts of the SMB-system have been designed, developed, and integrated as a twisting device of ring spinning replacing the existing ring/traveler system. With the help of the developed mathematical model and experimental investigation, the physical limitations of this innovative twisting device in the spinning process have been determined. The interaction among the parameters of the spinning process and the superconducting twisting element has been further evaluated, which derives the concrete information regarding the new spinning process. Moreover, the influence of the implemented SMB twisting system on the yarn quality has been analyzed with respect to different process parameters. The presented work reveals the enormous potential of the innovative twisting mechanism, so that the productivity of the ring spinning process especially in case of thermoplastic materials can be at least doubled for the first time in a hundred years. The SMB ring spinning tester has also been presented in the international fair “International Textile Machinery Association (ITMA) 2015”. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ring%20spinning" title="ring spinning">ring spinning</a>, <a href="https://publications.waset.org/abstracts/search?q=superconducting%20magnetic%20bearing" title=" superconducting magnetic bearing"> superconducting magnetic bearing</a>, <a href="https://publications.waset.org/abstracts/search?q=yarn%20properties" title=" yarn properties"> yarn properties</a>, <a href="https://publications.waset.org/abstracts/search?q=productivity" title=" productivity"> productivity</a> </p> <a href="https://publications.waset.org/abstracts/77595/potential-of-high-performance-ring-spinning-based-on-superconducting-magnetic-bearing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77595.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">97</span> Transesterification of Refined Palm Oil to Biodiesel in a Continuous Spinning Disc Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Weerinda%20%20Appamana">Weerinda Appamana</a>, <a href="https://publications.waset.org/abstracts/search?q=Jirapong%20Keawkoon"> Jirapong Keawkoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Yamonporn%20Pacthong"> Yamonporn Pacthong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jirathiti%20Chitsanguansuk"> Jirathiti Chitsanguansuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Yanyong%20Sookklay"> Yanyong Sookklay </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present work, spinning disc reactor has been used for the intensification of synthesis of biodiesel from refined palm oil (RPO) based on the transesterification reaction. Experiments have been performed using different spinning disc surface and under varying operating parameters viz. molar ratio of oil to methanol (over the range of 1:4.5–1:9), rotational speed (over the range of 500–2,000 rpm), total flow rate (over the range of 260-520 ml/min), and KOH catalyst loading of 1.50% by weight of oil. Maximum FAME (fatty acid methyl esters) yield (97.5 %) of biodiesel from RPO was obtained at oil to methanol ratio of 1:6, temperature of 60 °C, and rotational speed of 1500 rpm and flow rate of 520 mL/min using groove disc at KOH catalyst loading of 1.5 wt%. Also, higher yield efficiency (biodiesel produced per unit energy consumed) was obtained for using the spinning disc reactor based approach as compared to the ultrasound hydrodynamic cavitation and conventional mechanical stirrer reactors. It obviously offers a significant reduction in the reaction time for the transesterification, especially when compared with the reaction time of 90 minutes required for the conventional mechanical stirrer. It can be concluded that the spinning disk reactor is a promising alternative method for continuous biodiesel production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spinning%20disc%20reactor" title="spinning disc reactor">spinning disc reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title=" biodiesel"> biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20intensification" title=" process intensification"> process intensification</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20efficiency" title=" yield efficiency"> yield efficiency</a> </p> <a href="https://publications.waset.org/abstracts/92625/transesterification-of-refined-palm-oil-to-biodiesel-in-a-continuous-spinning-disc-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92625.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">96</span> Conceptual Design of a Customer Friendly Variable Volume and Variable Spinning Speed Washing Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20A.%20Akaash%20Emmanuel%20Raj">C. A. Akaash Emmanuel Raj</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20R.%20Sanal%20Kumar"> V. R. Sanal Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper using smart materials we have proposed a specially manufactured variable volume spin tub for loading clothes for negating the vibration to a certain extent for getting better operating performance. Additionally, we have recommended a variable spinning speed rotor for handling varieties of garments for an efficient washing, aiming for increasing the life span of both the garments and the machine. As a part of the conflicting dynamic constraints and demands of the customer friendly design optimization of a lucrative and cosmetic washing machine we have proposed a drier and a desalination system capable to supply desirable heat and a pleasing fragrance to the garments. We thus concluded that while incorporating variable volume and variable spinning speed tub integrated with a drier and desalination system, the washing machine could meet the varieties of domestic requirements of the customers cost-effectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=customer%20friendly%20washing%20machine" title="customer friendly washing machine">customer friendly washing machine</a>, <a href="https://publications.waset.org/abstracts/search?q=drier%20design" title=" drier design"> drier design</a>, <a href="https://publications.waset.org/abstracts/search?q=quick%20cloth%20cleaning" title=" quick cloth cleaning"> quick cloth cleaning</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20tub%20volume%20washing%20machine" title=" variable tub volume washing machine"> variable tub volume washing machine</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20spinning%20speed%20washing%20machine" title=" variable spinning speed washing machine"> variable spinning speed washing machine</a> </p> <a href="https://publications.waset.org/abstracts/89042/conceptual-design-of-a-customer-friendly-variable-volume-and-variable-spinning-speed-washing-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89042.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">95</span> The Research of 'Rope Coiling' Effect in Near-Field Electrospinning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Feiyu%20Fang">Feiyu Fang</a>, <a href="https://publications.waset.org/abstracts/search?q=Han%20Wang"> Han Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xin%20Chen"> Xin Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Zeng"> Jun Zeng</a>, <a href="https://publications.waset.org/abstracts/search?q=Feng%20Liang"> Feng Liang</a>, <a href="https://publications.waset.org/abstracts/search?q=Peixuan%20Wu"> Peixuan Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The 'rope coiling' effect is a normal instability phenomenon widespread exists in viscous fluid, elastic rods and polymeric fibers owing to compressive stress when they fall into a moving belt. Near-field electro-spinning is the modified electro-spinning technique has the ability to direct write micro fibers. In this research, we study the “rope coiling” effect in near-field electro-spinning. By changing the distance between nozzle and collector or the speed ratio between the charge jet speed and the platform moving speed, we obtain a pile of different models coils including the meandering, alternating and coiling patterns. Therefore, this instability can be used to direct write micro structured fibers with a one-step process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rope%20coiling%20effects" title="rope coiling effects">rope coiling effects</a>, <a href="https://publications.waset.org/abstracts/search?q=near-field%20electrospinning" title=" near-field electrospinning"> near-field electrospinning</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20write" title=" direct write"> direct write</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20structure" title=" micro structure"> micro structure</a> </p> <a href="https://publications.waset.org/abstracts/49472/the-research-of-rope-coiling-effect-in-near-field-electrospinning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49472.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">94</span> Study of Structure and Properties of Polyester/Carbon Blends for Technical Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manisha%20A.%20Hira">Manisha A. Hira</a>, <a href="https://publications.waset.org/abstracts/search?q=Arup%20Rakshit"> Arup Rakshit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Textile substrates are endowed with flexibility and ease of making–up, but are non-conductors of electricity. Conductive materials like carbon can be incorporated into textile structures to make flexible conductive materials. Such conductive textiles find applications as electrostatic discharge materials, electromagnetic shielding materials and flexible materials to carry current or signals. This work focuses on use of carbon fiber as conductor of electricity. Carbon fibers in staple or tow form can be incorporated in textile yarn structure to conduct electricity. The paper highlights the process for development of these conductive yarns of polyester/carbon using Friction spinning (DREF) as well as ring spinning. The optimized process parameters for processing hybrid structure of polyester with carbon tow on DREF spinning and polyester with carbon staple fiber using ring spinning have been presented. The studies have been linked to highlight the electrical conductivity of the developed yarns. Further, the developed yarns have been incorporated as weft in fabric and their electrical conductivity has been evaluated. The paper demonstrates the structure and properties of fabrics developed from such polyester/carbon blend yarns and their suitability as electrically dissipative fabrics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20fiber" title="carbon fiber">carbon fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=conductive%20textiles" title=" conductive textiles"> conductive textiles</a>, <a href="https://publications.waset.org/abstracts/search?q=electrostatic%20dissipative%20materials" title=" electrostatic dissipative materials"> electrostatic dissipative materials</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20yarns" title=" hybrid yarns"> hybrid yarns</a> </p> <a href="https://publications.waset.org/abstracts/45276/study-of-structure-and-properties-of-polyestercarbon-blends-for-technical-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45276.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">93</span> Electro Spinning in Nanotechnology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahoud%20Alfama">Mahoud Alfama</a>, <a href="https://publications.waset.org/abstracts/search?q=Meloud%20Yones"> Meloud Yones</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelbaset%20Zroga"> Abdelbaset Zroga</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelati%20Elalem"> Abdelati Elalem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrospinning has been recognized as an efficient technique for the fabrication of polymer nanofibers. Various polymers have been successfully electrospun into ultrafine fibers in recent years mostly in solvent solution and some in melt form. Potential applications based on such fibers specifically their use as reinforcement in nanocomposite development have been realized. In this paper we examine -electrospinning by providing a brief description of the theory behind the process examining the effect of changing the process parameters on fiber morphology, and discussing the potential applications and impacts of electrospinning on the field of tissue engineering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanotechnology" title="nanotechnology">nanotechnology</a>, <a href="https://publications.waset.org/abstracts/search?q=electro%20spinning" title=" electro spinning"> electro spinning</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20materials" title=" reinforced materials"> reinforced materials</a> </p> <a href="https://publications.waset.org/abstracts/11575/electro-spinning-in-nanotechnology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11575.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">92</span> Advantages of a New Manufacturing Facility for the Production of Nanofiber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Knizek">R. Knizek</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Karhankova"> D. Karhankova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The production of nanofibers and the machinery for their production is a current issue. The pioneer, in the industrial production of nanofibers, is the machinery with the sales descriptions Nanospider<sup>TM</sup> from the company Elmarco, which came into being in 2008. Most of the production facilities, like Nanospider<sup>TM</sup>, use electrospinning. There are also other methods of industrial production of nanofibers, such as the centrifugal spinning process, which is used by FibeRio Technology Corporation. However, each method and machine has its advantages, but also disadvantages and that is the reason why a new machine called as Nanomachine, which eliminates the disadvantages of other production facilities producing nanofibers, has been developed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanomachine" title="nanomachine">nanomachine</a>, <a href="https://publications.waset.org/abstracts/search?q=nanospider" title=" nanospider"> nanospider</a>, <a href="https://publications.waset.org/abstracts/search?q=spinning%20slat" title=" spinning slat"> spinning slat</a>, <a href="https://publications.waset.org/abstracts/search?q=electrospinning" title=" electrospinning"> electrospinning</a> </p> <a href="https://publications.waset.org/abstracts/44075/advantages-of-a-new-manufacturing-facility-for-the-production-of-nanofiber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44075.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">91</span> Experimental Investigation Of Membrane Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Serhat%20Ersoyo%C4%9Flu">Ali Serhat Ersoyoğlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kevser%20Dincer"> Kevser Dincer</a>, <a href="https://publications.waset.org/abstracts/search?q=Salih%20Yayla"> Salih Yayla</a>, <a href="https://publications.waset.org/abstracts/search?q=Derya%20Sayg%C4%B1l%C4%B1"> Derya Saygılı</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, performance of membrane was experimentally investigated. A solution having 1,5 gr Yttria-Stabilized Zirconia (YSZ)+ 10 mL methanol was prepared. This solution was taken out and filled into a spinning syringe. 6 grill-shaped wires having the sizes of 2x2 cm2’were cladded with YSZ + methanol solution by using the spinning method. After coating, the grill-shaped wires were left to dry. The dry wires were then weighed on a precision scale to determine the amount of coating imposed. The grill-shaped wires were mounted on the anode side of the PEM fuel cell membrane. Effects of the coating on the wires on current, power and resistance performances in the PEM fuel cells were determined experimentally and compared for every case. The highest current occurred at the 1st second on current #1, while the lowest current occurred at the 1171th second on current #6. The highest resistance was recorded at the 1171th second on resistance # 6, the lowest occurred at the 1st second on resistance # 1, whereas the highest power took place at the 1st second on power #1, the lowest power appeared at the 1171th second on power #5. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=membrane" title="membrane">membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=electro-spinning%20method" title=" electro-spinning method"> electro-spinning method</a>, <a href="https://publications.waset.org/abstracts/search?q=Yttria-Stabilized%20Zirconia" title=" Yttria-Stabilized Zirconia"> Yttria-Stabilized Zirconia</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20cells" title=" fuel cells"> fuel cells</a> </p> <a href="https://publications.waset.org/abstracts/8065/experimental-investigation-of-membrane-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8065.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">90</span> Wet Spun Graphene Fibers With Silver Nanoparticles For Flexible Electronic Applications </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syed%20W.%20Hasan">Syed W. Hasan</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhiqun%20Tian"> Zhiqun Tian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wet spinning provides a facile and economic route to fabricate graphene nanofibers (GFs) on mass scale. Nevertheless, the pristine GFs exhibit significantly low electrical and mechanical properties owing to stacked graphene sheets and weak inter-atomic bonding. In this report, we present highly conductive Ag-decorated-GFs (Ag/GFs). The SEM micrographs show Ag nanoparticles (NPs) (dia ~10 nm) are homogeneously distributed throughout the cross-section of the fiber. The Ag NPs provide a conductive network for the electrons flow raising the conductivity to 1.8(10^4) S/m which is 4 times higher than the pristine GFs. Our results surpass the conductivities of graphene fibers doped with CNTs, Nanocarbon, fullerene, and Cu. The chemical and structural attributes of Ag/GFs are further elucidated through XPS, AFM and Raman spectroscopy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ag%20nanoparticles" title="Ag nanoparticles">Ag nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=Conductive%20fibers" title=" Conductive fibers"> Conductive fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=Graphene" title=" Graphene"> Graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=Wet%20spinning" title=" Wet spinning"> Wet spinning</a> </p> <a href="https://publications.waset.org/abstracts/122583/wet-spun-graphene-fibers-with-silver-nanoparticles-for-flexible-electronic-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122583.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">89</span> Biodegradable Self-Supporting Nanofiber Membranes Prepared by Centrifugal Spinning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Milos%20Beran">Milos Beran</a>, <a href="https://publications.waset.org/abstracts/search?q=Josef%20Drahorad"> Josef Drahorad</a>, <a href="https://publications.waset.org/abstracts/search?q=Ondrej%20Vltavsky"> Ondrej Vltavsky</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Fronek"> Martin Fronek</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiri%20Sova"> Jiri Sova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> While most nanofibers are produced using electrospinning, this technique suffers from several drawbacks, such as the requirement for specialized equipment, high electrical potential, and electrically conductive targets. Consequently, recent years have seen the increasing emergence of novel strategies in generating nanofibers in a larger scale and higher throughput manner. The centrifugal spinning is simple, cheap and highly productive technology for nanofiber production. In principle, the drawing of solution filament into nanofibers using centrifugal spinning is achieved through the controlled manipulation of centrifugal force, viscoelasticity, and mass transfer characteristics of the spinning solutions. Engineering efforts of researches of the Food research institute Prague and the Czech Technical University in the field the centrifugal nozzleless spinning led to introduction of a pilot plant demonstrator NANOCENT. The main advantages of the demonstrator are lower investment cost - thanks to simpler construction compared to widely used electrospinning equipments, higher production speed, new application possibilities and easy maintenance. The centrifugal nozzleless spinning is especially suitable to produce submicron fibers from polymeric solutions in highly volatile solvents, such as chloroform, DCM, THF, or acetone. To date, submicron fibers have been prepared from PS, PUR and biodegradable polyesters, such as PHB, PLA, PCL, or PBS. The products are in form of 3D structures or nanofiber membranes. Unique self-supporting nanofiber membranes were prepared from the biodegradable polyesters in different mixtures. The nanofiber membranes have been tested for different applications. Filtration efficiencies for water solutions and aerosols in air were evaluated. Different active inserts were added to the solutions before the spinning process, such as inorganic nanoparticles, organic precursors of metal oxides, antimicrobial and wound healing compounds or photocatalytic phthalocyanines. Sintering can be subsequently carried out to remove the polymeric material and transfer the organic precursors to metal oxides, such as Si02, or photocatalytic Zn02 and Ti02, to obtain inorganic nanofibers. Electrospinning is more suitable technology to produce membranes for the filtration applications than the centrifugal nozzleless spinning, because of the formation of more homogenous nanofiber layers and fibers with smaller diameters. The self-supporting nanofiber membranes prepared from the biodegradable polyesters are especially suitable for medical applications, such as wound or burn healing dressings or tissue engineering scaffolds. This work was supported by the research grants TH03020466 of the Technology Agency of the Czech Republic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymeric%20nanofibers" title="polymeric nanofibers">polymeric nanofibers</a>, <a href="https://publications.waset.org/abstracts/search?q=self-supporting%20nanofiber%20membranes" title=" self-supporting nanofiber membranes"> self-supporting nanofiber membranes</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradable%20polyesters" title=" biodegradable polyesters"> biodegradable polyesters</a>, <a href="https://publications.waset.org/abstracts/search?q=active%20inserts" title=" active inserts"> active inserts</a> </p> <a href="https://publications.waset.org/abstracts/86889/biodegradable-self-supporting-nanofiber-membranes-prepared-by-centrifugal-spinning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86889.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">88</span> Synthesis of Magnesium Oxide in Spinning Disk Reactor and Its Applications in Cycloaddition of Carbon Dioxide to Epoxides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tzu-Wen%20Liu">Tzu-Wen Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Feng%20Lin"> Yi-Feng Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Shao%20Chen"> Yu-Shao Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> CO_2 is believed to be partly responsible for changes to the global climates. Carbon capture and storage (CCS) is one way to reduce carbon dioxide emissions in the past. Recently, how to convert the captured CO_2 into fine chemicals gets lots of attention owing to reducing carbon dioxide emissions and providing greener feedstock for the chemicals industry. A variety of products can be manufactured from carbon dioxide and the most attractive products are cyclic carbonates. Therefore, the kind of catalyst plays an important role in cycloaddition of carbon dioxide to epoxides. Magnesium oxide can be an efficiency heterogeneous catalyst for the cycloaddition of carbon dioxide to epoxides because magnesium oxide has both acid and base active sites and can provide the adsorption of carbon dioxide, promoting ring-opening reaction. Spinning disk reactor (SDR) is one of the device of high-gravity technique and has successfully used for synthesis of nanoparticles by precipitation methods because of the high mass transfer rate. Synthesis of nanoparticles in SDR has advantages of low energy consumption and easy to scale up. The aim of this research is to synthesize magnesium hydroxide nanoparticles in SDR as precursors for magnesium oxide. Experimental results showed that the calcination temperature of magnesium hydroxide to magnesium oxide, and the pressure and temperature of cycloaddition reaction had significantly effect on the conversion and selectivity of the reaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnesium%20oxide" title="magnesium oxide">magnesium oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=catalyst" title=" catalyst"> catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=cycloaddition" title=" cycloaddition"> cycloaddition</a>, <a href="https://publications.waset.org/abstracts/search?q=spinning%20disk%20reactor" title=" spinning disk reactor"> spinning disk reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide" title=" carbon dioxide"> carbon dioxide</a> </p> <a href="https://publications.waset.org/abstracts/63228/synthesis-of-magnesium-oxide-in-spinning-disk-reactor-and-its-applications-in-cycloaddition-of-carbon-dioxide-to-epoxides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63228.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">87</span> Understanding the Complexities of Consumer Financial Spinning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olivier%20Mesly">Olivier Mesly</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research presents a conceptual framework termed “Consumer Financial Spinning” (CFS) to analyze consumer behavior in the financial/economic markets. This phenomenon occurs when consumers of high-stakes financial products accumulate unsustainable debt, leading them to detach from their initial financial hierarchy of needs, wealth-related goals, and preferences regarding their household portfolio of assets. The daring actions of these consumers, forming a dark financial triangle, are characterized by three behaviors: overconfidence, the use of rationed rationality, and deceitfulness. We show that we can incorporate CFS into the traditional CAPM and Markovitz’ portfolio optimization models to create a framework that explains such market phenomena as the global financial crisis, highlighting the antecedents and consequences of ill-conceived speculation. Because this is a conceptual paper, there is no methodology with respect to ground studies. However, we apply modeling principles derived from the data percolation methodology, which contains tenets explicating how to structure concepts. A simulation test of the proposed framework is conducted; it demonstrates the conditions under which the relationship between expected returns and risk may deviate from linearity. The analysis and conceptual findings are particularly relevant both theoretically and pragmatically as they shed light on the psychological conditions that drive intense speculation, which can lead to market turmoil. Armed with such understanding, regulators are better equipped to propose solutions before the economic problems become out of control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=consumer%20financial%20spinning" title="consumer financial spinning">consumer financial spinning</a>, <a href="https://publications.waset.org/abstracts/search?q=rationality" title=" rationality"> rationality</a>, <a href="https://publications.waset.org/abstracts/search?q=deceitfulness" title=" deceitfulness"> deceitfulness</a>, <a href="https://publications.waset.org/abstracts/search?q=overconfidence" title=" overconfidence"> overconfidence</a>, <a href="https://publications.waset.org/abstracts/search?q=CAPM" title=" CAPM"> CAPM</a> </p> <a href="https://publications.waset.org/abstracts/182461/understanding-the-complexities-of-consumer-financial-spinning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182461.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">48</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">86</span> Nafion Nanofiber Composite Membrane Fabrication for Fuel Cell Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20N.%20Okafor">C. N. Okafor</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Maaza"> M. Maaza</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20A.%20E.%20Mokrani"> T. A. E. Mokrani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A proton exchange membrane has been developed for Direct Methanol Fuel Cell (DMFC). The nanofiber network composite membranes were prepared by interconnected network of Nafion (perfuorosulfonic acid) nanofibers that have been embedded in an uncharged and inert polymer matrix, by electro-spinning. The spinning solution of Nafion with a low concentration (1 wt. % compared to Nafion) of high molecular weight poly(ethylene oxide), as a carrier polymer. The interconnected network of Nafion nanofibers with average fiber diameter in the range of 160-700nm, were used to make the membranes, with the nanofiber occupying up to 85% of the membrane volume. The matrix polymer was cross-linked with Norland Optical Adhesive 63 under UV. The resulting membranes showed proton conductivity of 0.10 S/cm at 25°C and 80% RH; and methanol permeability of 3.6 x 10-6 cm2/s. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20membrane" title="composite membrane">composite membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=electrospinning" title=" electrospinning"> electrospinning</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20cell" title=" fuel cell"> fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofibers" title=" nanofibers"> nanofibers</a> </p> <a href="https://publications.waset.org/abstracts/6757/nafion-nanofiber-composite-membrane-fabrication-for-fuel-cell-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6757.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">85</span> Impact of Capital Structure, Dividend Policy and Sustainability on Value of Firm: A Case Study of Spinning Textile Sector of Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zahid%20Ahmad">Zahid Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Samia%20Yousaf"> Samia Yousaf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main purpose of this study is to evaluate and assess the financial position, operating performance, and recent outlook of the companies. This study investigates the impact of capital structure, dividend policy and sustainability on the value of firms of textile spinning sector of Pakistan which is listed on Pakistan stock exchange. The panel data technique has been applied to this group of textile sector which is textile spinning. This study covers the last ten years of time period. All the data related to the variables have been collected from the annual reports and financial statements of the textile sector firms. There are differently related determinants to measure the capital structure which are fixed assets turnover ratio, debt ratio, equity ratio, debt to equity ratio, assets tangibility, and shareholder’s equity. Dividend policy is being measured by two determinants which are earning per share (EPS) and dividend payout ratio. Sustainability is being measured by three suitable factors which are sales growth, gross profit margin ratio and firm size. These are three independent variables and their determinants of this study. Value of firm is measured through the return on asset (ROA). Capital structure is at the top of the list among all the three variables. According to the results of this research work, somewhere all the three variables generates positive and significant effect on the firm’s performance and its growth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capital%20structure" title="capital structure">capital structure</a>, <a href="https://publications.waset.org/abstracts/search?q=dividend%20policy" title=" dividend policy"> dividend policy</a>, <a href="https://publications.waset.org/abstracts/search?q=panel%20data" title=" panel data"> panel data</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/79844/impact-of-capital-structure-dividend-policy-and-sustainability-on-value-of-firm-a-case-study-of-spinning-textile-sector-of-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79844.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">231</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">84</span> Fabrication of Uniform Nanofibers Using Gas Dynamic Virtual Nozzle Based Microfluidic Liquid Jet System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Vasireddi">R. Vasireddi</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Kruse"> J. Kruse</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Vakili"> M. Vakili</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Trebbin"> M. Trebbin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Here we present a gas dynamic virtual nozzle (GDVN) based microfluidic jetting devices for spinning of nano/microfibers. The device is fabricated by soft lithography techniques and is based on the principle of a GDVN for precise three-dimensional gas focusing of the spinning solution. The nozzle device is used to produce micro/nanofibers of a perfluorinated terpolymer (THV), which were collected on an aluminum substrate for scanning electron microscopy (SEM) analysis. The influences of air pressure, polymer concentration, flow rate and nozzle geometry on the fiber properties were investigated. It was revealed that surface properties are controlled by air pressure and polymer concentration while the diameter and shape of the fibers are influenced mostly by the concentration of the polymer solution and pressure. Alterations of the nozzle geometry had a negligible effect on the fiber properties, however, the jetting stability was affected. Round and flat fibers with differing surface properties from craters, grooves to smooth surfaces could be fabricated by controlling the above-mentioned parameters. Furthermore, the formation of surface roughness was attributed to the fast evaporation rate and velocity (mis)match between the polymer solution jet and the surrounding air stream. The diameter of the fibers could be tuned from ~250 nm to ~15 µm. Because of the simplicity of the setup, the precise control of the fiber properties, access to biocompatible nanofiber fabrication and the easy scale-up of parallel channels for high throughput, this method offers significant benefits compared to existing solution-based fiber production methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20dynamic%20virtual%20nozzle%20%28GDVN%29%20principle" title="gas dynamic virtual nozzle (GDVN) principle">gas dynamic virtual nozzle (GDVN) principle</a>, <a href="https://publications.waset.org/abstracts/search?q=microfluidic%20device" title=" microfluidic device"> microfluidic device</a>, <a href="https://publications.waset.org/abstracts/search?q=spinning" title=" spinning"> spinning</a>, <a href="https://publications.waset.org/abstracts/search?q=uniform%20nanofibers" title=" uniform nanofibers"> uniform nanofibers</a> </p> <a href="https://publications.waset.org/abstracts/98281/fabrication-of-uniform-nanofibers-using-gas-dynamic-virtual-nozzle-based-microfluidic-liquid-jet-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98281.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">83</span> The Determination of Operating Reserve in Small Power Systems Based on Reliability Criteria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Falsafi%20Falsafizadeh">H. Falsafi Falsafizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Zeinali%20Zeinali"> R. Zeinali Zeinali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focuses on determination of total Operating Reserve (OR) level, consisting of spinning and non-spinning reserves, in two small real power systems, in such a way that the system reliability indicator would comply with typical industry standards. For this purpose, the standard used by the North American Electric Reliability Corporation (NERC) – i.e., 1 day outage in 10 years or 0.1 days/year is relied. The simulation of system operation for these systems that was used for the determination of total operating reserve level was performed by industry standard production simulation software in this field, named PLEXOS. In this paper, the operating reserve which meets an annual Loss of Load Expectation (LOLE) of approximately 0.1 days per year is determined in the study year. This reserve is the minimum amount of reserve required in a power system and generally defined as a percentage of the annual peak. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=frequency%20control" title="frequency control">frequency control</a>, <a href="https://publications.waset.org/abstracts/search?q=LOLE" title=" LOLE"> LOLE</a>, <a href="https://publications.waset.org/abstracts/search?q=operating%20reserve" title=" operating reserve"> operating reserve</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20reliability" title=" system reliability"> system reliability</a> </p> <a href="https://publications.waset.org/abstracts/67268/the-determination-of-operating-reserve-in-small-power-systems-based-on-reliability-criteria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67268.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">82</span> Application of Nanofibers in Heavy Metal (HM) Filtration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhijeet%20Kumar">Abhijeet Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Palaniswamy%20N.%20K."> Palaniswamy N. K.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heavy metal contamination in water sources endangers both the environment and human health. Various water filtration techniques have been employed till now for purification and removal of hazardous metals from water. Among all the existing methods, nanofibres have emerged as a viable alternative for effective heavy metal removal in recent years because of their unique qualities, such as large surface area, interconnected porous structure, and customizable surface chemistry. Among the numerous manufacturing techniques, solution blow spinning has gained popularity as a versatile process for producing nanofibers with customized properties. This paper seeks to offer a complete overview of the use of nanofibers for heavy metal filtration, particularly those produced using solution blow spinning. The review discusses current advances in nanofiber materials, production processes, and heavy metal removal performance. Furthermore, the field's difficulties and future opportunities are examined in order to direct future research and development activities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title="heavy metals">heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofiber%20composite" title=" nanofiber composite"> nanofiber composite</a>, <a href="https://publications.waset.org/abstracts/search?q=filter%20membranes" title=" filter membranes"> filter membranes</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=impaction" title=" impaction"> impaction</a> </p> <a href="https://publications.waset.org/abstracts/177806/application-of-nanofibers-in-heavy-metal-hm-filtration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177806.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">81</span> Eli-Twist Spun Yarn: An Alternative to Conventional Sewing Thread</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sujit%20Kumar%20Sinha">Sujit Kumar Sinha</a>, <a href="https://publications.waset.org/abstracts/search?q=Madan%20Lal%20Regar"> Madan Lal Regar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sewing thread plays an important role in the transformation of a two-dimensional fabric into a three-dimensional garment. The interaction of the sewing thread with the fabric at the seam not only influences the appearance of a garment but also its performance. Careful selection of sewing thread and associated parameters can only help in improvement. Over the years, ring spinning has been dominating the yarn market. In the pursuit of improvement to challenge its dominance alternative technology has also been developed. But no real challenge has been posed by the any of the developed spinning systems. Eli-Twist spinning system can be a new method of yarn manufacture to provide a product with improved mechanical and physical properties with respect to the conventional ring spun yarn. The system, patented by Suessen has gained considerable attention in the recent times. The process of produces a two-ply compact yarn with improved fiber utilization. It produces a novel structure combining all advantages of condensing and doubling. In the present study, sewing threads of three different counts each from cotton, polyester and polyester/cotton (50/50) blend were produced on a ring and Eli-Twist systems. A twist multiplier of 4.2 was used to produce all the yarns. A comparison of hairiness, tensile strength and coefficient of friction with conventional ring yarn was made. Eli-Twist yarn has shown better frictional characteristics, better tensile strength and less hairiness. The performance of the Eli-Twist sewing thread has also been found to be better than the conventional 2-ply sewing thread. The performance was estimated through seam strength, seam elongation and seam efficiency of sewn fabric. Eli-Twist sewing thread has shown less friction, less hairiness, and higher tensile strength. Eli-Twist sewing thread resulted in better seam characteristics in comparison to conventional 2-ply sewing thread. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ring%20spun%20yarn" title="ring spun yarn">ring spun yarn</a>, <a href="https://publications.waset.org/abstracts/search?q=Eli-Twist%20yarn" title=" Eli-Twist yarn"> Eli-Twist yarn</a>, <a href="https://publications.waset.org/abstracts/search?q=sewing%20thread" title=" sewing thread"> sewing thread</a>, <a href="https://publications.waset.org/abstracts/search?q=seam%20strength" title=" seam strength"> seam strength</a>, <a href="https://publications.waset.org/abstracts/search?q=seam%20elongation" title=" seam elongation"> seam elongation</a>, <a href="https://publications.waset.org/abstracts/search?q=seam%20efficiency" title=" seam efficiency"> seam efficiency</a> </p> <a href="https://publications.waset.org/abstracts/84534/eli-twist-spun-yarn-an-alternative-to-conventional-sewing-thread" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84534.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">80</span> Free Convection from a Perforated Spinning Cone with Heat Generation, Temperature-Dependent Viscosity and Partial Slip</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gilbert%20Makanda">Gilbert Makanda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem of free convection from a perforated spinning cone with viscous dissipation, temperature-dependent viscosity, and partial slip was studied. The boundary layer velocity and temperature profiles were numerically computed for different values of the spin, viscosity variation, inertia drag force, Eckert, suction/blowing parameters. The partial differential equations were transformed into a system of ordinary differential equations which were solved using the fourth-order Runge-Kutta method. This paper considered the effect of partial slip and spin parameters on the swirling velocity profiles which are rarely reported in the literature. The results obtained by this method was compared to those in the literature and found to be in agreement. Increasing the viscosity variation parameter, spin, partial slip, Eckert number, Darcian drag force parameters reduce swirling velocity profiles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=free%20convection" title="free convection">free convection</a>, <a href="https://publications.waset.org/abstracts/search?q=suction%2Finjection" title=" suction/injection"> suction/injection</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20slip" title=" partial slip"> partial slip</a>, <a href="https://publications.waset.org/abstracts/search?q=viscous%20dissipation" title=" viscous dissipation"> viscous dissipation</a> </p> <a href="https://publications.waset.org/abstracts/74530/free-convection-from-a-perforated-spinning-cone-with-heat-generation-temperature-dependent-viscosity-and-partial-slip" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74530.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">79</span> Mechanical Properties of Carbon Fibre Reinforced Thermoplastic Composites Consisting of Recycled Carbon Fibres and Polyamide 6 Fibres</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mir%20Mohammad%20Badrul%20Hasan">Mir Mohammad Badrul Hasan</a>, <a href="https://publications.waset.org/abstracts/search?q=Anwar%20Abdkader"> Anwar Abdkader</a>, <a href="https://publications.waset.org/abstracts/search?q=Chokri%20Cherif"> Chokri Cherif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the increasing demand and use of carbon fibre reinforced composites (CFRC), disposal of the carbon fibres (CF) and end of life composite parts is gaining tremendous importance on the issue especially of sustainability. Furthermore, a number of processes (e. g. pyrolysis, solvolysis, etc.) are available currently to obtain recycled CF (rCF) from end-of-life CFRC. Since the CF waste or rCF are neither allowed to be thermally degraded nor landfilled (EU Directive 1999/31/EC), profitable recycling and re-use concepts are urgently necessary. Currently, the market for materials based on rCF mainly consists of random mats (nonwoven) made from short fibres. The strengths of composites that can be achieved from injection-molded components and from nonwovens are between 200-404 MPa and are characterized by low performance and suitable for non-structural applications such as in aircraft and vehicle interiors. On the contrary, spinning rCF to yarn constructions offers good potential for higher CFRC material properties due to high fibre orientation and compaction of rCF. However, no investigation is reported till yet on the direct comparison of the mechanical properties of thermoplastic CFRC manufactured from virgin CF filament yarn and spun yarns from staple rCF. There is a lack of understanding on the level of performance of the composites that can be achieved from hybrid yarns consisting of rCF and PA6 fibres. In this drop back, extensive research works are being carried out at the Textile Machinery and High-Performance Material Technology (ITM) on the development of new thermoplastic CFRC from hybrid yarns consisting of rCF. For this purpose, a process chain is developed at the ITM starting from fibre preparation to hybrid yarns manufacturing consisting of staple rCF by mixing with thermoplastic fibres. The objective is to apply such hybrid yarns for the manufacturing of load bearing textile reinforced thermoplastic CFRCs. In this paper, the development of innovative multi-component core-sheath hybrid yarn structures consisting of staple rCF and polyamide 6 (PA 6) on a DREF-3000 friction spinning machine is reported. Furthermore, Unidirectional (UD) CFRCs are manufactured from the developed hybrid yarns, and the mechanical properties of the composites such as tensile and flexural properties are analyzed. The results show that the UD composite manufactured from the developed hybrid yarns consisting of staple rCF possesses approximately 80% of the tensile strength and E-module to those produced from virgin CF filament yarn. The results show a huge potential of the DREF-3000 friction spinning process to develop composites from rCF for high-performance applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=recycled%20carbon%20fibres" title="recycled carbon fibres">recycled carbon fibres</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20yarn" title=" hybrid yarn"> hybrid yarn</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20spinning" title=" friction spinning"> friction spinning</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoplastic%20composite" title=" thermoplastic composite"> thermoplastic composite</a> </p> <a href="https://publications.waset.org/abstracts/86016/mechanical-properties-of-carbon-fibre-reinforced-thermoplastic-composites-consisting-of-recycled-carbon-fibres-and-polyamide-6-fibres" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86016.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">78</span> Color Conversion Films with CuInS2/ZnS Quantum Dots Embedded Polystyrene Nanofibers by Electrospinning Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wonkyung%20Na">Wonkyung Na</a>, <a href="https://publications.waset.org/abstracts/search?q=Namhun%20Kim"> Namhun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Heeyeop%20Chae"> Heeyeop Chae</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quantum dots (QDs) are getting attentions due to their excellent optical properties in display, solar cell, biomolecule detection and lighting applications. Energy band gap can be easilty controlled by controlling their size and QDs are proper to apply in light-emitting-diode(LED) and lighting application, especially. Typically cadmium (Cd) containing QDs show a narrow photoluminescence (PL) spectrum and high quantum yield. However, Cd is classified as a hazardous materials and the use of Cd is being tightly regulated under 100ppm level in many countries.InP and CuInS2 (CIS) are being investigated as Cd-free QD materials and it is recently demonstrated that the performance of those Cd-free QDs is comparable to their Cd-based rivals.Due to a broad emission spectrum, CuInS2 QDs are also proper to be applied to white LED.4 For the lighting applications, the QD should be made in forms of color conversion films. Various film processes are reported with QDs in polymer matrixes. In this work, we synthesized the CuInS2 (CIS) QDs and QD embedded polystyrene color conversion films were fabricated for white color emission with electro-spinning process. As a result, blue light from blue LED is converted to white light with high color rendering index (CRI) of 72 by the color conversion films. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CuInS2%2FZnS" title="CuInS2/ZnS">CuInS2/ZnS</a>, <a href="https://publications.waset.org/abstracts/search?q=electro-spinning" title=" electro-spinning"> electro-spinning</a>, <a href="https://publications.waset.org/abstracts/search?q=color%20conversion%20films" title=" color conversion films"> color conversion films</a>, <a href="https://publications.waset.org/abstracts/search?q=white%20light%20emitting%20diodes" title=" white light emitting diodes"> white light emitting diodes</a> </p> <a href="https://publications.waset.org/abstracts/17273/color-conversion-films-with-cuins2zns-quantum-dots-embedded-polystyrene-nanofibers-by-electrospinning-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17273.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">813</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Wet%20spinning&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Wet%20spinning&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Wet%20spinning&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Wet%20spinning&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>