CINXE.COM
Search results for: cycloaddition
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: cycloaddition</title> <meta name="description" content="Search results for: cycloaddition"> <meta name="keywords" content="cycloaddition"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="cycloaddition" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="cycloaddition"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 19</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: cycloaddition</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Synthesis, Characterization, and Quantum Investigations on [3+2] Cycloaddition Reaction of Nitrile Oxide with 1,5-Benzodiazepine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samir%20Hmaimou">Samir Hmaimou</a>, <a href="https://publications.waset.org/abstracts/search?q=Marouane%20Ait%20Lahcen"> Marouane Ait Lahcen</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Adardour"> Mohamed Adardour</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Maatallah"> Mohamed Maatallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdesselam%20Baouid"> Abdesselam Baouid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to (3 + 2) cycloaddition and condensation reaction, a wide range of synthetic routes can be used to obtain biologically active heterocyclic compounds. Condensation and (3+2) cycloaddition reactions in heterocyclic syntheses are versatile due to the wide variety of possible combinations of several atoms of the reactants. In this article, we first outline the synthesis of benzodiazepine 4 with two dipolarophilic centers (C=C and C=N) by condensation reaction. Then, we use it for cycloaddition reactions (3+2) with nitrile oxides to prepare oxadiazole-benzodiazepines and pyrazole-benzodiazepine compounds. ¹H and ¹³C NMR are used to establish all the structures of the synthesized products. These condensation and cycloaddition reactions were then analyzed using density functional theory (DFT) calculations at the B3LYP/6-311G(d,p) theoretical level. In this study, the mechanism of the one-step cycloaddition reaction was investigated. Molecular electrostatic potential (MEP) was used to identify the electrophilic and nucleophilic attack sites of the molecules studied. Additionally, Fukui investigations (electrophilic f- and nucleophilic f+) in the various reaction centers of the reactants demonstrate that, whether in the condensation reaction or cycloaddition, the reaction proceeds through the atomic centers with the most important Fukui functions, which is in full agreement with experimental observations. In the condensation reaction, thermodynamic control of regio, chemo, and stereoselectivity is observed, while those of cycloaddition are subject to kinetic control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cycloaddition%20reaction" title="cycloaddition reaction">cycloaddition reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=regioselectivity" title=" regioselectivity"> regioselectivity</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanism%20reaction" title=" mechanism reaction"> mechanism reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=NMR%20analysis" title=" NMR analysis"> NMR analysis</a> </p> <a href="https://publications.waset.org/abstracts/192375/synthesis-characterization-and-quantum-investigations-on-32-cycloaddition-reaction-of-nitrile-oxide-with-15-benzodiazepine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192375.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">17</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Green Synthesis of Nicotine Analogues via Cycloaddition Reactions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Agnieszka%20Fry%C5%BAlewicz">Agnieszka Fryźlewicz</a>, <a href="https://publications.waset.org/abstracts/search?q=Jowita%20Kras"> Jowita Kras</a>, <a href="https://publications.waset.org/abstracts/search?q=Miko%C5%82aj%20Sadowski"> Mikołaj Sadowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Agnieszka%20%C5%81apczuk-Krygier"> Agnieszka Łapczuk-Krygier</a>, <a href="https://publications.waset.org/abstracts/search?q=Agnieszka%20K%C4%85cka-Zych%20Radomir%20Jasi%C5%84ski"> Agnieszka Kącka-Zych Radomir Jasiński</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nicotines are a group of compounds containing conjugated pyridine and pyrrolidine molecular segments. They are widely applied in medicine, pharmacy, and agriculture. Namely as researched treatment of Alzheimer, depression, Parkinson's, Tourette syndrome, general nervous and mental disorders. Furthermore, nicotine itself is used as a stimulant, animal repellent and was widely applied as an insecticide. In our work, we obtained nicotine analogues with possible applications in agriculture. The synthesis employed [3+2] cycloaddition (32CA) reactions, occurring between pirydyl-functionalised nitrones and conjugated nitroalkenes, that allowed us to fully regio- and stereoselectively obtain product. Moreover, cycloaddition reaction realizes rapidly in mild conditions with the full atomic economy, thus fitting into “green chemistry” trends. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nicotine" title="nicotine">nicotine</a>, <a href="https://publications.waset.org/abstracts/search?q=isoxazolidine" title=" isoxazolidine"> isoxazolidine</a>, <a href="https://publications.waset.org/abstracts/search?q=1-3-dipolar%20cycloaddition" title=" 1-3-dipolar cycloaddition"> 1-3-dipolar cycloaddition</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20chemistry" title=" green chemistry"> green chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20and%20pharmacological%20activity" title=" biological and pharmacological activity"> biological and pharmacological activity</a> </p> <a href="https://publications.waset.org/abstracts/141036/green-synthesis-of-nicotine-analogues-via-cycloaddition-reactions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141036.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Preparation of Ternary Metal Oxide Aerogel Catalysts for Carbon Dioxide and Propylene Oxide Cycloaddition Reaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20J.%20Lin">Y. J. Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20F.%20Lin"> Y. F. Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> CO2 is the primary greenhouse gas which causes global warming in recent years. As the carbon capture and storage (CCS) getting maturing, the reuse of carbon dioxide which made from CCS is the important issue. In this way, the most common method is the synthesis of cyclic carbonate chemicals from the cycloaddition reaction of carbon dioxide and epoxide. The catalyst plays an important role in the CO2/epoxide cycloaddition reactions. The Lewis acid and base sites are both needed on the catalyst surface for the help of epoxide ring opening, leading to the synthesis of cyclic carbonate. Furthermore, the larger specific surface area and more active site of the catalyst are also needed to enhance the efficiency of the CO2/epoxide cycloaddition reactions. Aerogel is a mesoporous nanomaterial (pore size between 2~50 nm) with high specific surface area and porosity (at least 90%) and low density. In this study, the ternary metal oxide aerogels, Mg-doped Al2O3 aerogels, with higher specific surface area and Lewis acid and base sites on the aerogel surface are successfully prepared by using a facile sol-gel reaction. The as-prepared Mg-doped Al2O3 aerogels are also served as heterogenous catalyst for the CO2/propylene- oxide cycloaddition reaction. Compared to the pristine Al2O3 aerogels, the Mg-doped Al2O3 aerogels possessed both Lewis acid and base sites on the surface are able to enhance the efficiency of the CO2/propylene oxide cycloaddition reactions. As a result, the as-prepared Mg-doped Al2O3 aerogels are a promising and novel catalyst for the CO2/epoxide cycloaddition reactions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ternary" title="ternary">ternary</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20oxide%20aerogel" title=" metal oxide aerogel"> metal oxide aerogel</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2%20reuse" title=" CO2 reuse"> CO2 reuse</a>, <a href="https://publications.waset.org/abstracts/search?q=cycloaddition" title=" cycloaddition"> cycloaddition</a>, <a href="https://publications.waset.org/abstracts/search?q=propylene%20oxide" title=" propylene oxide"> propylene oxide</a> </p> <a href="https://publications.waset.org/abstracts/63086/preparation-of-ternary-metal-oxide-aerogel-catalysts-for-carbon-dioxide-and-propylene-oxide-cycloaddition-reaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63086.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Investigation of the Mechanism, Régio and Sterioselectivity Using the 1,3-Dipolar Cycloaddition Reaction of Fused 1h-Pyrrole-2,3-Diones with Nitrones: Molecular Electron Density Theory Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ameur%20Soukaina">Ameur Soukaina</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeroual%20Abdellah"> Zeroual Abdellah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mazoir%20Noureddine"> Mazoir Noureddine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Molecular Electron Density Theory (MEDT) elucidates the regioselectivity of the [4+2] cycloaddition reaction between 3-aroylpyrrolo[1,2-α]quinoxaline-1,2,4(5H)-trione and butyl vinyl ether Regioselectivity and stereoselectivity. The regioselectivity mechanisms of these reactions were investigated by evaluating potential energy surfaces calculated for cycloaddition processes and DFT density-based reactivity indices. These methods have been successfully applied to predict preferred regioisomers for different method alternatives. Reactions were monitored by performing transition state optimizations, calculations of intrinsic reaction coordinates, and activation energies. The observed regioselectivity was rationalized using DFT-based reactivity descriptors such as the Parr function. Solvent effects were also investigated in 1,4-dioxane solvent using a field model for self-consistent reactions. The results were compared with experimental data to find good agreement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cycloaddition" title="cycloaddition">cycloaddition</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=ELF" title=" ELF"> ELF</a>, <a href="https://publications.waset.org/abstracts/search?q=MEDT" title=" MEDT"> MEDT</a>, <a href="https://publications.waset.org/abstracts/search?q=parr" title=" parr"> parr</a>, <a href="https://publications.waset.org/abstracts/search?q=stereoselectivit%C3%A9" title=" stereoselectivité"> stereoselectivité</a> </p> <a href="https://publications.waset.org/abstracts/148675/investigation-of-the-mechanism-regio-and-sterioselectivity-using-the-13-dipolar-cycloaddition-reaction-of-fused-1h-pyrrole-23-diones-with-nitrones-molecular-electron-density-theory-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148675.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Synthesis of Magnesium Oxide in Spinning Disk Reactor and Its Applications in Cycloaddition of Carbon Dioxide to Epoxides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tzu-Wen%20Liu">Tzu-Wen Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Feng%20Lin"> Yi-Feng Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Shao%20Chen"> Yu-Shao Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> CO_2 is believed to be partly responsible for changes to the global climates. Carbon capture and storage (CCS) is one way to reduce carbon dioxide emissions in the past. Recently, how to convert the captured CO_2 into fine chemicals gets lots of attention owing to reducing carbon dioxide emissions and providing greener feedstock for the chemicals industry. A variety of products can be manufactured from carbon dioxide and the most attractive products are cyclic carbonates. Therefore, the kind of catalyst plays an important role in cycloaddition of carbon dioxide to epoxides. Magnesium oxide can be an efficiency heterogeneous catalyst for the cycloaddition of carbon dioxide to epoxides because magnesium oxide has both acid and base active sites and can provide the adsorption of carbon dioxide, promoting ring-opening reaction. Spinning disk reactor (SDR) is one of the device of high-gravity technique and has successfully used for synthesis of nanoparticles by precipitation methods because of the high mass transfer rate. Synthesis of nanoparticles in SDR has advantages of low energy consumption and easy to scale up. The aim of this research is to synthesize magnesium hydroxide nanoparticles in SDR as precursors for magnesium oxide. Experimental results showed that the calcination temperature of magnesium hydroxide to magnesium oxide, and the pressure and temperature of cycloaddition reaction had significantly effect on the conversion and selectivity of the reaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnesium%20oxide" title="magnesium oxide">magnesium oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=catalyst" title=" catalyst"> catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=cycloaddition" title=" cycloaddition"> cycloaddition</a>, <a href="https://publications.waset.org/abstracts/search?q=spinning%20disk%20reactor" title=" spinning disk reactor"> spinning disk reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide" title=" carbon dioxide"> carbon dioxide</a> </p> <a href="https://publications.waset.org/abstracts/63228/synthesis-of-magnesium-oxide-in-spinning-disk-reactor-and-its-applications-in-cycloaddition-of-carbon-dioxide-to-epoxides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63228.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Exploring the 1,3-Dipolar Cycloaddition Reaction between Nitrilimine and 6-Methyl-4,5-dihydropyridazin-3(2h)-one through MEDT and Molecular Docking Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zineb%20Ouahdi">Zineb Ouahdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spirocyclic compound derivatives, with their unique heterocyclic motifs, serve as a continual source of inspiration in the pursuit of developing potential therapeutic agents. These compounds are diverse in their chemical structures; some have fully saturated skeletons, while others are partially unsaturated. Nevertheless, these compounds share a characteristic feature with natural products - the presence of at least one heteroatom in one of their rings. The inclusion of a C = O dipolarophile in pyridazinones imparts an exciting aspect for 1,3-dipolar cycloaddition reactions, the focal point of our study. Our research has involved a detailed theoretical investigation of the reaction between ethyl (Z)-2-bromo-2-(2-(p-tolyl)hydrazono)acetate and 6-methyl-4,5-dihydropyridazine-3(2H)-one. This has been accomplished using the DFT/B3LYP/6-31g(d,p) method, intending to illuminate the chemical pathway of this reaction. The chemical reactivity theories we used for this purpose included FMO, TS, and local and global indices derived from conceptual DFT. The theoretical framework outlined in this study allowed us to propose a reaction mechanism for cycloaddition reactions. It also enabled the identification of the potential activities of the analyzed compounds (P1, P2, P3, P4, P5, and P6) against the major protease of the coronavirus disease (COVID-19). This was achieved using various computational tools, including AutoDock Tools, Autodock Vina, Autodock 4, and PYRX. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MEDT" title="MEDT">MEDT</a>, <a href="https://publications.waset.org/abstracts/search?q=pyridazin" title=" pyridazin"> pyridazin</a>, <a href="https://publications.waset.org/abstracts/search?q=cycloaddition" title=" cycloaddition"> cycloaddition</a>, <a href="https://publications.waset.org/abstracts/search?q=FMO" title=" FMO"> FMO</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=docking" title=" docking"> docking</a> </p> <a href="https://publications.waset.org/abstracts/167702/exploring-the-13-dipolar-cycloaddition-reaction-between-nitrilimine-and-6-methyl-45-dihydropyridazin-32h-one-through-medt-and-molecular-docking-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167702.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Prediction of the Regioselectivity of 1,3-Dipolar Cycloaddition Reactions of Nitrile Oxides with 2(5H)-Furanones Using Recent Theoretical Reactivity Indices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imad%20Eddine%20Charif">Imad Eddine Charif</a>, <a href="https://publications.waset.org/abstracts/search?q=Wafaa%20Benchouk"> Wafaa Benchouk</a>, <a href="https://publications.waset.org/abstracts/search?q=Sidi%20Mohamed%20Mekelleche"> Sidi Mohamed Mekelleche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The regioselectivity of a series of 16 1,3-dipolar cycloaddition reactions of nitrile oxides with 2(5H)-furanones has been analysed by means of global and local electrophilic and nucleophilic reactivity indices using density functional theory at the B3LYP level together with the 6-31G(d) basis set. The local electrophilicity and nucleophilicity indices, based on Fukui and Parr functions, have been calculated for the terminal sites, namely the C1 and O3 atoms of the 1,3-dipole and the C4 and C5 atoms of the dipolarophile. These local indices were calculated using both Mulliken and natural charges and spin densities. The results obtained show that the C5 atom of the 2(5H)-furanones is the most electrophilic site whereas the O3 atom of the nitrile oxides is the most nucleophilic centre. It turns out that the experimental regioselectivity is correctly reproduced, indicating that both Fukui- and Parr-based indices are efficient tools for the prediction of the regiochemistry of the studied reactions and could be used for the prediction of newly designed reactions of the same kind. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=1" title="1">1</a>, <a href="https://publications.waset.org/abstracts/search?q=3-dipolar%20cycloaddition" title="3-dipolar cycloaddition">3-dipolar cycloaddition</a>, <a href="https://publications.waset.org/abstracts/search?q=density%20functional%20theory" title=" density functional theory"> density functional theory</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrile%20oxides" title=" nitrile oxides"> nitrile oxides</a>, <a href="https://publications.waset.org/abstracts/search?q=regioselectivity" title=" regioselectivity"> regioselectivity</a>, <a href="https://publications.waset.org/abstracts/search?q=reactivity%20indices" title=" reactivity indices"> reactivity indices</a> </p> <a href="https://publications.waset.org/abstracts/92661/prediction-of-the-regioselectivity-of-13-dipolar-cycloaddition-reactions-of-nitrile-oxides-with-25h-furanones-using-recent-theoretical-reactivity-indices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92661.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Molecular Electron Density Theory Study on the Mechanism and Selectivity of the 1,3 Dipolar Cycloaddition Reaction of N-Methyl-C-(2-Furyl) Nitrone with Activated Alkenes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moulay%20Driss%20Mellaoui">Moulay Driss Mellaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdallah%20Imjjad"> Abdallah Imjjad</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachid%20Boutiddar"> Rachid Boutiddar</a>, <a href="https://publications.waset.org/abstracts/search?q=Haydar%20Mohammad-Salim"> Haydar Mohammad-Salim</a>, <a href="https://publications.waset.org/abstracts/search?q=Nivedita%20Acharjee"> Nivedita Acharjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Bourzi"> Hassan Bourzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Souad%20El%20Issami"> Souad El Issami</a>, <a href="https://publications.waset.org/abstracts/search?q=Khalid%20Abbiche"> Khalid Abbiche</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanane%20Zejli"> Hanane Zejli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have investigated the underlying molecular processes involved in the [3+2] cycloaddition (32CA) reactions between N-methyl-C-(2-furyl) nitrone and three acetylene derivatives: 4b, 5b, and 6b. For this investigation, we utilized molecular electron density theory (MEDT) and density functional theory (DFT) methods at the B3LYP-D3/6 31G (d) computational level. These 32CA reactions, which exhibit a zwitterionic (zw-type) nature, proceed through a one-step mechanism with activation enthalpies ranging from 8.80 to 14.37 kcal mol−1 in acetonitrile and ethanol solvents. When the nitrone reacts with phenyl methyl propiolate (4b), two regioisomeric pathways lead to the formation of two products: P1,5-4b and P1,4-4b. On the other hand, when the nitrone reacts with dimethyl acetylene dicarboxylate (5b) and acetylene dicarboxylic acid (but-2-ynedioic acid) (6b), it results in the formation of a single product. Through topological analysis, we can categorize the nitrone as a zwitterionic three-atom component (TAC). Furthermore, the analysis of conceptual density functional theory (CDFT) indices classifies the 32CA reactions of the nitrone with 4b, 5b, and 6b as forward electron density flux (FEDF) reactions. The study of bond evolution theory (BET) reveals that the formation of new C-C and C-O covalent bonds does not initiate in the transition states, as the intermediate stages of these reactions display pseudoradical centers of the atoms already involved in bonding. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=4-isoxazoline" title="4-isoxazoline">4-isoxazoline</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT%2FB3LYP-D3" title=" DFT/B3LYP-D3"> DFT/B3LYP-D3</a>, <a href="https://publications.waset.org/abstracts/search?q=regioselectivity" title=" regioselectivity"> regioselectivity</a>, <a href="https://publications.waset.org/abstracts/search?q=cycloaddition%20reaction" title=" cycloaddition reaction"> cycloaddition reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=MEDT" title=" MEDT"> MEDT</a>, <a href="https://publications.waset.org/abstracts/search?q=ELF" title=" ELF"> ELF</a> </p> <a href="https://publications.waset.org/abstracts/167271/molecular-electron-density-theory-study-on-the-mechanism-and-selectivity-of-the-13-dipolar-cycloaddition-reaction-of-n-methyl-c-2-furyl-nitrone-with-activated-alkenes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167271.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> In situ Ortho-Quinone Methide Reactions for Construction of Flavonoids with Fused Ring Systems </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vidia%20A.%20Nuraini">Vidia A. Nuraini</a>, <a href="https://publications.waset.org/abstracts/search?q=Eugene%20M.%20H.%20Yee"> Eugene M. H. Yee</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohan%20Bhadbhade"> Mohan Bhadbhade</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20StC.%20Black"> David StC. Black</a>, <a href="https://publications.waset.org/abstracts/search?q=Naresh%20Kumar"> Naresh Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flavonoids are naturally occurring compounds that have been shown to exhibit a wide range of biological properties including anticancer and anti-inflammatory activities. However, flavonoids suffer from low bioavailability, which limits their overall utility for therapeutic applications. One of the methods to overcome this limitation is through structural modification of natural flavonoids. In this study, flavanone, isoflavanone, and isoflavene, were structurally modified through the introduction of additional fused-ring systems via ortho-quinone methide intermediates (o-QMs). These intermediates can readily undergo a [4+2] cycloaddition through an inverse-electron-demand Diels–Alder reaction with electron-rich dienophiles. A regioselective Mannich reaction using bis-(N,N-dimethylamino)methane was employed to generate the o-QM precursors of flavanone, isoflavanone, and isoflavene. The o-QM intermediates were subsequently generated in situ through thermal elimination of the dimethylamine functionality and reacted with a variety of dienophiles to produce novel flavonoids with fused-ring systems. A total of 21 novel flavonoid analogs were successfully synthesized. The X-ray crystal structure of cycloaddition adducts, particularly those derived from 3,4-dihydro-2H-pyran and p-methoxystyrene revealed a special case of enantiomeric disorder, where two enantiomers in equal amounts superpose with one another, with the exception for atoms that have opposite configuration. The anticancer properties of fused-ring systems derived from isoflavene were evaluated against the neuroblastoma SKN-BE(2)C, the triple negative breast cancer MDA-MB-231, and the glioblastoma U87 cancer cell lines. One of these cycloaddition adducts had displayed improved anti-proliferative activity against MDA-MB-231 and U87 cancer cell lines as compared to the parent compound. Further anticancer and anti-inflammatory activities of the flavanone and isoflavanone analogs are currently being investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Diels-Alder%20reaction" title="Diels-Alder reaction">Diels-Alder reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=flavonoids" title=" flavonoids"> flavonoids</a>, <a href="https://publications.waset.org/abstracts/search?q=Mannich%20reaction" title=" Mannich reaction"> Mannich reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=ortho-quinone%20methide." title=" ortho-quinone methide."> ortho-quinone methide.</a> </p> <a href="https://publications.waset.org/abstracts/74903/in-situ-ortho-quinone-methide-reactions-for-construction-of-flavonoids-with-fused-ring-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74903.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Synthesis, Density Functional Theory (DFT) and Antibacterial Studies of Highly Functionalized Novel Spiropyrrolidine 4-Quinolone-3-Carboxylic Acids Derived from 6-Acetyl Quinolone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thangaraj%20Arasakumar">Thangaraj Arasakumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Athar%20Ata"> Athar Ata</a>, <a href="https://publications.waset.org/abstracts/search?q=Palathurai%20Subramaniam%20Mohan"> Palathurai Subramaniam Mohan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A series of novel 4-quinolone-3-carboxylic acid grafted spiropyrrolidines as new type of antibacterial agents were synthesized via multicomponent 1,3-dipolar cycloaddition reaction of an azomethine ylides with a newly prepared (E)-4-oxo-6-(3-phenyl-acryloyl)-1,4-dihydro-quinoline-3-carboxylic acids in high regioselectivity with good yields. The structure of cycloadduct characterized by FT IR, mass, 1H, 13C, 2D NMR techniques and elemental analysis. Structure and spectrometry of compound 8a has been investigated theoretically by using HF and DFT approach at B3LYP, M05-2x/6-31G* levels of theories. The optimized geometries and calculated vibrational frequencies are evaluated via comparison with experimental values. A good agreement is found between the measured and calculated values. The DFT studies support the molecular mechanism of this cycloaddition reaction and determine the molecular electrostatic potential and thermodynamic properties. Furthermore, the antibacterial activities of synthesized compounds were evaluated against Gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis) and Gram-negative bacteria strains (Escherichia coli, Klebsiella pneumoniae). Among 21 compounds screened, 8f and 8p were found to be more active against tested bacteria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activity" title="antibacterial activity">antibacterial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=azomethine%20ylide" title=" azomethine ylide"> azomethine ylide</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT%20calculation" title=" DFT calculation"> DFT calculation</a>, <a href="https://publications.waset.org/abstracts/search?q=spirooxindole" title=" spirooxindole"> spirooxindole</a> </p> <a href="https://publications.waset.org/abstracts/44428/synthesis-density-functional-theory-dft-and-antibacterial-studies-of-highly-functionalized-novel-spiropyrrolidine-4-quinolone-3-carboxylic-acids-derived-from-6-acetyl-quinolone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44428.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Reactions of 4-Aryl-1H-1,2,3-Triazoles with Cycloalkenones and Epoxides: Synthesis of 2,4- and 1,4-Disubstituted 1,2,3-Triazoles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ujjawal%20Kumar%20Bhagat">Ujjawal Kumar Bhagat</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamaluddin"> Kamaluddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Rama%20Krishna%20Peddinti"> Rama Krishna Peddinti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Huisgen’s 1,3-dipolar [3+2] cycloaddition of organic azides and alkynes often give the mixtures of both the regioisomers 1,4- and 1,5- disubstituted 1,2,3-triazoles. Later, in presence of metal salts (click chemistry) such as copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) was used for the synthesis of 1,4-disubstituted 1,2,3-triazoles as a sole products regioselectively. Also, the ‘click reactions’ of Ruthenium-catalyzed azides-alkynes cycloaddition (RuAAC) is used for the synthesis of 1,5-disubstituted 1,2,3-triazoles as a single isomer. The synthesis of 1,4- and 1.5-disubstituted 1,2,3-triazoles has become the gold standard of ‘click chemistry’ due to its reliability, specificity, and biocompatibility. The 1,4- and 1,5-disubstituted 1,2,3-triazoles have emerged as one of the most powerful entities in the varieties of biological properties like antibacterial, antitubercular, antitumor, antifungal and antiprotozoal activities. Some of the 1,4,5-trisubstituted 1,2,3-triazoles exhibit Hsp90 inhibiting properties. The 1,4-disubstituted 1,2,3-triazoles also play a big role in the area of material sciences. The triazole-derived oligomeric, polymeric structures are the potential materials for the preparation of organic optoelectronics, silicon elastomers and unimolecular block copolymers. By the virtue of hydrogen bonding and dipole interactions, the 1,2,3-triazole moiety readily associates with the biological targets. Since, the 4-aryl-1H-1,2,3-triazoles are stable entities, they are chemically robust and very less reactive. In this regard, the addition of 4-aryl-1H-1,2,3-triazoles as nucleophiles to α,β-unsaturated carbonyls and nucleophilic substitution with the epoxides constitutes a powerful and challenging synthetic approach for the generation of disubstituted 1,2,3-triazoles. Herein, we have developed aza-Michael addition of 4-aryl-1H-1,2,3-triazoles to 2-cycloalken-1-ones in the presence of an organic base (DABCO) in acetonotrile solvent leading to the formation of disubstituted 1,2,3-triazoles. The reaction provides 1,4-disubstituted triazoles, 3-(4-aryl-1H-1,2,3-triazol-1-yl)cycloalkanones in major amount along with 1,5-disubstituted 1,2,3-triazoles, minor regioisomers with excellent combined chemical yields (upto99%). The nucleophilic behavior of 4-aryl-1H-1,2,3-triazoles was also tested in the ring opening of meso-epoxides in the presence of organic bases (DABCO/Et3N) in acetonotrile solvent furnishing the two regioisomers1,4- and 1,5-disubstituted 1,2,3-triazoles. Thus, the novelty of this methodology is synthesis of diversified disubstituted 1,2,3-triazoles under metal free condition.The results will be presented in detail. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aza-Michael%20addition" title="aza-Michael addition">aza-Michael addition</a>, <a href="https://publications.waset.org/abstracts/search?q=cycloalkenones" title=" cycloalkenones"> cycloalkenones</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxides" title=" epoxides"> epoxides</a>, <a href="https://publications.waset.org/abstracts/search?q=triazoles" title=" triazoles"> triazoles</a> </p> <a href="https://publications.waset.org/abstracts/63327/reactions-of-4-aryl-1h-123-triazoles-with-cycloalkenones-and-epoxides-synthesis-of-24-and-14-disubstituted-123-triazoles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63327.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Exploitation of the Solvent Effect and the Mechanism of the Cycloaddition Reaction Between 2-Chlorobenzimidazole and Benzonitrile N-Oxide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Abdoul-Hakim">M. Abdoul-Hakim</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Zeroual"> A. Zeroual</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Garmes"> H. Garmes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 2-Chlorobenzimidazoles are amphoteric compounds and versatile intermediates for the construction of polycyclic heterocycles. In this theoretical study performed by DFT at the B3LYP/6-311+G(d,p) level, we showed that the most likely route to obtain benzimidazo[1,2-d]oxadiazole from the reaction of 2-Chlorobenzimidazole with benzonitrile N-oxide involves the presence of anionic species, a concerted mechanism is not possible. The inclusion of the effect of the polar protic solvent (MeOH) favors the course of the reaction. The key interactions causing bond formation and breakage were identified by ELF topological analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=benzimidazo%5B1" title="benzimidazo[1">benzimidazo[1</a>, <a href="https://publications.waset.org/abstracts/search?q=2-d%5Doxadiazole" title=" 2-d]oxadiazole"> 2-d]oxadiazole</a>, <a href="https://publications.waset.org/abstracts/search?q=benzonitrile%20N-oxide" title=" benzonitrile N-oxide"> benzonitrile N-oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=ELF" title=" ELF"> ELF</a>, <a href="https://publications.waset.org/abstracts/search?q=polycyclic%20heterocycles" title=" polycyclic heterocycles"> polycyclic heterocycles</a> </p> <a href="https://publications.waset.org/abstracts/148777/exploitation-of-the-solvent-effect-and-the-mechanism-of-the-cycloaddition-reaction-between-2-chlorobenzimidazole-and-benzonitrile-n-oxide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148777.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Synthesis and Structural Characterization of 6-Nitroindazole Derivatives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20El%20Moctar%20Abeidi">Mohamed El Moctar Abeidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The indazole derivatives exhibit a wide spectrum of biological activities. They are known for their anti-tumor, antiplatelet, anti-viral, anti-microbial, anti-inflammatory, anti-leishmania and even anti-spermatogen. As part of our research on the synthesis of a number of heterocycles capable of exhibiting a biological and pharmacological property, due to our ongoing interest in the development of a simple and low-cost procedure for obtaining heterocyclic compounds that may have an interest for medicinal purposes. We present in this work the synthesis of 6-nitro-indazoles derivatives, using two different methods. the first method is the alkylation of Nitroindazole by two different alkylating agents under the conditions of solid/liquid phase transfer catalysis in N, N-dimethylformamide (DMF) in the presence of potassium carbonate (K₂CO₃) as a base, and tetra-n-butylammonium bromide (BTBA) as a catalyst. While the other method is the 1,3-dipolar cycloaddition, in this case, we have undertaken the preparation of bi-heterocyclic containing the 6-nitroindazole associate with group of isoxazoline, isoxazole or 1,2,3-Triazole under normal conditions and, under the catalytic conditions of the click chemistry we were also able to determine the structures without any ambiguity by the ¹H and ¹³C NMR. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indazole" title="indazole">indazole</a>, <a href="https://publications.waset.org/abstracts/search?q=6-nitroindazole" title=" 6-nitroindazole"> 6-nitroindazole</a>, <a href="https://publications.waset.org/abstracts/search?q=isoxazole" title=" isoxazole"> isoxazole</a>, <a href="https://publications.waset.org/abstracts/search?q=1" title=" 1"> 1</a>, <a href="https://publications.waset.org/abstracts/search?q=2" title="2">2</a>, <a href="https://publications.waset.org/abstracts/search?q=3-Triazole" title="3-Triazole">3-Triazole</a> </p> <a href="https://publications.waset.org/abstracts/98087/synthesis-and-structural-characterization-of-6-nitroindazole-derivatives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98087.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Development of One-Pot Sequential Cyclizations and Photocatalyzed Decarboxylative Radical Cyclization: Application Towards Aspidospermatan Alkaloids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guillaume%20B%C3%A9langer">Guillaume Bélanger</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Philippe%20Fontaine"> Jean-Philippe Fontaine</a>, <a href="https://publications.waset.org/abstracts/search?q=Cl%C3%A9mence%20Hauduc"> Clémence Hauduc</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is an undeniable thirst from organic chemists and from the pharmaceutical industry to access complex alkaloids with short syntheses. While medicinal chemists are interested in the fascinating wide range of biological properties of alkaloids, synthetic chemists are rather interested in finding new routes to access these challenging natural products of often low availability from nature. To synthesize complex polycyclic cores of natural products, reaction cascades or sequences performed one-pot offer a neat advantage over classical methods for their rapid increase in molecular complexity in a single operation. In counterpart, reaction cascades need to be run on substrates bearing all the required functional groups necessary for the key cyclizations. Chemoselectivity is thus a major issue associated with such a strategy, in addition to diastereocontrol and regiocontrol for the overall transformation. In the pursuit of synthetic efficiency, our research group developed an innovative one-pot transformation of linear substrates into bi- and tricyclic adducts applied to the construction of Aspidospermatan-type alkaloids. The latter is a rich class of indole alkaloids bearing a unique bridged azatricyclic core. Despite many efforts toward the synthesis of members of this family, efficient and versatile synthetic routes are still coveted. Indeed, very short, non-racemic approaches are rather scarce: for example, in the cases of aspidospermidine and aspidospermine, syntheses are all fifteen steps and over. We envisaged a unified approach to access several members of the Aspidospermatan alkaloids family. The key sequence features a highly chemoselective formamide activation that triggers a Vilsmeier-Haack cyclization, followed by an azomethine ylide generation and intramolecular cycloaddition. Despite the high density and variety of functional groups on the substrates (electron-rich and electron-poor alkenes, nitrile, amide, ester, enol ether), the sequence generated three new carbon-carbon bonds and three rings in a single operation with good yield and high chemoselectivity. A detailed study of amide, nucleophile, and dipolarophile variations to finally get to the successful combination required for the key transformation will be presented. To complete the indoline fragment of the natural products, we developed an original approach. Indeed, all reported routes to Aspidospermatan alkaloids introduce the indoline or indole early in the synthesis. In our work, the indoline needs to be installed on the azatricyclic core after the key cyclization sequence. As a result, typical Fischer indolization is not suited since this reaction is known to fail on such substrates. We thus envisaged a unique photocatalyzed decarboxylative radical cyclization. The development of this reaction as well as the scope and limitations of the methodology, will also be presented. The original Vilsmeier-Haack and azomethine ylide cyclization sequence as well as the new photocatalyzed decarboxylative radical cyclization will undoubtedly open access to new routes toward polycyclic indole alkaloids and derivatives of pharmaceutical interest in general. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aspidospermatan%20alkaloids" title="Aspidospermatan alkaloids">Aspidospermatan alkaloids</a>, <a href="https://publications.waset.org/abstracts/search?q=azomethine%20ylide%20cycloaddition" title=" azomethine ylide cycloaddition"> azomethine ylide cycloaddition</a>, <a href="https://publications.waset.org/abstracts/search?q=decarboxylative%20radical%20cyclization" title=" decarboxylative radical cyclization"> decarboxylative radical cyclization</a>, <a href="https://publications.waset.org/abstracts/search?q=indole%20and%20indoline%20synthesis" title=" indole and indoline synthesis"> indole and indoline synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=one-pot%20sequential%20cyclizations" title=" one-pot sequential cyclizations"> one-pot sequential cyclizations</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title=" photocatalysis"> photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Vilsmeier-Haack%20Cyclization" title=" Vilsmeier-Haack Cyclization"> Vilsmeier-Haack Cyclization</a> </p> <a href="https://publications.waset.org/abstracts/139547/development-of-one-pot-sequential-cyclizations-and-photocatalyzed-decarboxylative-radical-cyclization-application-towards-aspidospermatan-alkaloids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139547.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Polymer-Nanographite Nanocomposites for Biosensor Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Payal%20Mazumdar">Payal Mazumdar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunita%20Rattan"> Sunita Rattan</a>, <a href="https://publications.waset.org/abstracts/search?q=Monalisa%20Mukherjee"> Monalisa Mukherjee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polymer nanocomposites are a special class of materials having unique properties and wide application in diverse areas such as EMI shielding, sensors, photovoltaic cells, membrane separation properties, drug delivery etc. Recently the nanocomposites are being investigated for their use in biomedical fields as biosensors. Though nanocomposites with carbon nanoparticles have received worldwide attention in the past few years, comparatively less work has been done on nanographite although it has in-plane electrical, thermal and mechanical properties comparable to that of carbon nanotubes. The main challenge in the fabrication of these nanocomposites lies in the establishment of homogeneous dispersion of nanographite in polymer matrix. In the present work, attempts have been made to synthesize the nanocomposites of polystyrene and nanographite using click chemistry. The polymer and the nanographite are functionalized prior to the formation of nanocomposites. The polymer, polystyrene, was functionalized with alkyne moeity and nanographite with azide moiety. The fabricating of the nanocomposites was accomplished through click chemistry using Cu (I)-catalyzed Huisgen dipolar cycloaddition. The functionalization of filler and polymer was confirmed by NMR and FTIR. The nanocomposites formed by the click chemistry exhibit better electrical properties and the sensors are evaluated for their application as biosensors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title="nanocomposites">nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=click%20chemistry" title=" click chemistry"> click chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=nanographite" title=" nanographite"> nanographite</a>, <a href="https://publications.waset.org/abstracts/search?q=biosensor" title=" biosensor"> biosensor</a> </p> <a href="https://publications.waset.org/abstracts/9241/polymer-nanographite-nanocomposites-for-biosensor-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9241.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Synthesis and Pharmaco-Potential Evaluation of Quinoline Hybrids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paul%20Awolade">Paul Awolade</a>, <a href="https://publications.waset.org/abstracts/search?q=Parvesh%20Singh"> Parvesh Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The global threat of pathogenic resistance to available therapeutic agents has become a menace to clinical practice, public health and man’s existence inconsequential. This has therefore led to an exigency in the development of new molecular scaffolds with profound activity profiles. In this vein, a versatile synthetic tool for accessing new molecules by incorporating two or more pharmacophores into a single entity with the unique ability to be recognized by multiple receptors hence leading to an improved bioactivity, known as molecular hybridization, has been explored with tremendous success. Accordingly, aware of the similarity in pharmacological activity spectrum of quinoline and 1,2,3-triazole pharmacophores such as; anti-Alzheimer, anticancer, anti-HIV, antimalarial and antimicrobial to mention but a few, the present study sets out to synthesize hybrids of quinoline and 1,2,3-triazole. The hybrids were accessed via click chemistry using copper catalysed azide-alkyne 1,3-dipolar cycloaddition reaction. All synthesized compounds were evaluated for their pharmaco-potential in an antimicrobial assay out of which the 3-OH derivative emerged as the most active with MIC value of 4 μg/mL against Cryptococcus neoformans; a value superior to standard Fluconazole and comparable to Amphotericin B. Structures of synthesized hybrids were elucidated using appropriate spectroscopic techniques (1H, 13C and 2D NMR, FT-IR and HRMS). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioisostere" title="bioisostere">bioisostere</a>, <a href="https://publications.waset.org/abstracts/search?q=click%20chemistry" title=" click chemistry"> click chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20hybridization" title=" molecular hybridization"> molecular hybridization</a>, <a href="https://publications.waset.org/abstracts/search?q=quinoline" title=" quinoline"> quinoline</a>, <a href="https://publications.waset.org/abstracts/search?q=1" title=" 1"> 1</a>, <a href="https://publications.waset.org/abstracts/search?q=2" title="2">2</a>, <a href="https://publications.waset.org/abstracts/search?q=3-triazole" title="3-triazole">3-triazole</a> </p> <a href="https://publications.waset.org/abstracts/99723/synthesis-and-pharmaco-potential-evaluation-of-quinoline-hybrids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Sonodynamic Activity of Porphyrins-SWCNT</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Bosca">F. Bosca</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Foglietta"> F. Foglietta</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Turci"> F. Turci</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Calcio%20Gaudino"> E. Calcio Gaudino</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Mana"> S. Mana</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Dosio"> F. Dosio</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Canaparo"> R. Canaparo</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Serpe"> L. Serpe</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Barge"> A. Barge</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, medical science has improved chemotherapy, radiation therapy and adjuvant therapy and has developed newer targeted therapies as well as refining surgical techniques for removing cancer. However, the chances of surviving the disease depend greatly on the type and location of the cancer and the extent of the disease at the start of treatment. Moreover, mainstream forms of cancer treatment have side effects which range from the unpleasant to the fatal. Therefore, the continuation of progress in anti-cancer therapy may depend on placing emphasis on other existing but less thoroughly investigated therapeutic approaches such as Sonodynamic Therapy (SDT). SDT is based on the local activation of a so called 'sonosensitizer', a molecule able to be excited by ultrasound, the radical production as a consequence of its relaxation processes and cell death due to different mechanisms induced by radical production. The present work deals with synthesis, characterization and preliminary in vitro test of Single Walled Carbon Nanotubes (SWCNT) decorated with porphyrins and biological vectors. The SWCNT’s surface was modified exploiting 1, 3-dipolar cycloaddition or Dies Alder reactions. For this purpose, different porphyrins scaffolds were ad-hoc synthesized using also non-conventional techniques. To increase cellular specificity of porphyrin-conjugated SWCNTs and to improve their ability to be suspended in aqueous solution, the modified nano-tubes were grafted with suitable glutamine or hyaluronic acid derivatives. These nano-sized sonosensitizers were characterized by several methodologies and tested in vitro on different cancer cell lines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sonodynamic%20therapy" title="sonodynamic therapy">sonodynamic therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=porphyrins%20synthesis%20and%20modification" title=" porphyrins synthesis and modification"> porphyrins synthesis and modification</a>, <a href="https://publications.waset.org/abstracts/search?q=SWNCT%20grafting" title=" SWNCT grafting"> SWNCT grafting</a>, <a href="https://publications.waset.org/abstracts/search?q=hyaluronic%20acid" title=" hyaluronic acid"> hyaluronic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-cancer%20treatment" title=" anti-cancer treatment"> anti-cancer treatment</a> </p> <a href="https://publications.waset.org/abstracts/4873/sonodynamic-activity-of-porphyrins-swcnt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4873.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Synthesis of 5-Substituted 1H-Tetrazoles in Deep Eutectic Solvent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Swapnil%20A.%20Padvi">Swapnil A. Padvi</a>, <a href="https://publications.waset.org/abstracts/search?q=Dipak%20S.%20Dalal"> Dipak S. Dalal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The chemistry of tetrazoles has been grown tremendously in the past few years because tetrazoles are important and useful class of heterocyclic compounds which have a widespread application such as anticancer, antimicrobial, analgesics, antibacterial, antifungal, antihypertensive, and anti-allergic drugs in medicinal chemistry. Furthermore, tetrazoles have application in material sciences as explosives, rocket propellants, and in information recording systems. In addition to this, they have a wide range of application in coordination chemistry as a ligand. Deep eutectic solvents (DES) have emerged over the current decade as a novel class of green reaction media and applied in various fields of sciences because of their unique physical and chemical properties similar to the ionic liquids such as low vapor pressure, non-volatility, high thermal stability and recyclability. In addition, the reactants of DES are cheaply available, low-toxic, and biodegradable, which makes them predominantly required for large-scale applications effectively in industrial production. Herein we report the [2+3] cycloaddition reaction of organic nitriles with sodium azide affords the corresponding 5-substituted 1H-tetrazoles in six different types of choline chloride based deep eutectic solvents under mild reaction condition. Choline chloride: ZnCl2 (1:2) showed the best results for the synthesis of 5-substituted 1 H-tetrazoles. This method reduces the disadvantages such as: the use of toxic metals and expensive reagents, drastic reaction conditions and the presence of dangerous hydrazoic acid. The approach provides environment-friendly, short reaction times, good to excellent yields; safe process and simple workup make this method an attractive and useful contribution to present green organic synthesis of 5-substituted-1H-tetrazoles. All synthesized compounds were characterized by IR, 1H NMR, 13C NMR and Mass spectroscopy. DES can be recovered and reused three times with very little loss in activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=click%20chemistry" title="click chemistry">click chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=choline%20chloride" title=" choline chloride"> choline chloride</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20chemistry" title=" green chemistry"> green chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20eutectic%20solvent" title=" deep eutectic solvent"> deep eutectic solvent</a>, <a href="https://publications.waset.org/abstracts/search?q=tetrazoles" title=" tetrazoles"> tetrazoles</a> </p> <a href="https://publications.waset.org/abstracts/73046/synthesis-of-5-substituted-1h-tetrazoles-in-deep-eutectic-solvent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73046.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">231</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Synthesis and Catalytic Activity of N-Heterocyclic Carbene Copper Catalysts Supported on Magnetic Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iwona%20Misztalewska-Turkowicz">Iwona Misztalewska-Turkowicz</a>, <a href="https://publications.waset.org/abstracts/search?q=Agnieszka%20Z.%20Wilczewska"> Agnieszka Z. Wilczewska</a>, <a href="https://publications.waset.org/abstracts/search?q=Karolina%20H.%20Markiewicz"> Karolina H. Markiewicz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbenes - species which possess neutral carbon atom with two shared and two unshared valence electrons, are known for their high reactivity and instability. Nevertheless, it is also known, that some carbenes i.e. N-heterocyclic carbenes (NHCs), can form stable crystals. The usability of NHCs in organic synthesis was studied. Due to their exceptional properties (high nucleophilicity) NHCs are commonly used as organocatalysts and also as ligands in transition metal complexes. NHC ligands possess better electron-donating properties than phosphines. Moreover, they exhibit lower toxicity. Due to these features, phosphines are frequently replaced by NHC ligands. In this research is discussed the synthesis of five-membered NHCs which are mainly obtained by deprotonation of azolium salts, e.g., imidazolium or imidazolinium salts. Some of them are immobilized on a solid support what leads to formation of heterogeneous, recyclable catalysts. Magnetic nanoparticles (MNPs) are often used as a solid support for catalysts. MNPs can be easily separated from the reaction mixture using an external magnetic field. Due to their low size and high surface to volume ratio, they are a good choice for immobilization of catalysts. Herein is presented synthesis of N-heterocyclic carbene copper complexes directly on the surface of magnetic nanoparticles. Formation of four different catalysts is discussed. They vary in copper oxidation state (Cu(I) and Cu(II)) and structure of NHC ligand. Catalysts were tested in Huisgen reaction, a type of copper catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Huisgen reaction represents one of the few universal and highly efficient reactions in which 1,2,3-triazoles can be obtained. The catalytic activity of all synthesized catalysts was compared with activity of commercially available ones. Different reaction conditions (solvent, temperature, the addition of reductant) and reusability of the obtained catalysts were investigated and are discussed. The project was financially supported by National Science Centre, Poland, grant no. 2016/21/N/ST5/01316. Analyses were performed in Centre of Synthesis and Analyses BioNanoTechno of University of Bialystok. The equipment in the Centre of Synthesis and Analysis BioNanoTechno of University of Bialystok was funded by EU, as a part of the Operational Program Development of Eastern Poland 2007-2013, project: POPW.01.03.00-20-034/09-00 and POPW.01.03.00-20-004/11. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=N-heterocyclic%20carbenes" title="N-heterocyclic carbenes">N-heterocyclic carbenes</a>, <a href="https://publications.waset.org/abstracts/search?q=click%20reaction" title=" click reaction"> click reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20nanoparticles" title=" magnetic nanoparticles"> magnetic nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20catalysts" title=" copper catalysts"> copper catalysts</a> </p> <a href="https://publications.waset.org/abstracts/72477/synthesis-and-catalytic-activity-of-n-heterocyclic-carbene-copper-catalysts-supported-on-magnetic-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72477.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>