CINXE.COM
Spacetime - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Spacetime - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"c0631079-4aef-4f37-8522-fbb2051f8a5e","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Spacetime","wgTitle":"Spacetime","wgCurRevisionId":1270412209,"wgRevisionId":1270412209,"wgArticleId":28758,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 maint: location missing publisher","Articles with short description","Short description is different from Wikidata","Pages using multiple image with manual scaled images","Articles needing additional references from March 2024","All articles needing additional references","Articles with excerpts","Commons category link from Wikidata","Use dmy dates from April 2019","Spacetime","Concepts in physics","Theoretical physics","Theory of relativity","Time","Time in physics","Conceptual models"], "wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Spacetime","wgRelevantArticleId":28758,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":100000,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q133327","wgCheckUserClientHintsHeadersJsApi":["brands","architecture", "bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP", "ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.14"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/d/d1/GPB_circling_earth.jpg"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="900"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/d/d1/GPB_circling_earth.jpg/800px-GPB_circling_earth.jpg"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="600"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/d/d1/GPB_circling_earth.jpg/640px-GPB_circling_earth.jpg"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="480"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Spacetime - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Spacetime"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Spacetime&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Spacetime"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Spacetime rootpage-Spacetime skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" title="Main menu" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?wmf_source=donate&wmf_medium=sidebar&wmf_campaign=en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Spacetime" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Spacetime" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&wmf_medium=sidebar&wmf_campaign=en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Spacetime" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Spacetime" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Fundamentals" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Fundamentals"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Fundamentals</span> </div> </a> <button aria-controls="toc-Fundamentals-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Fundamentals subsection</span> </button> <ul id="toc-Fundamentals-sublist" class="vector-toc-list"> <li id="toc-Definitions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Definitions"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Definitions</span> </div> </a> <ul id="toc-Definitions-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>History</span> </div> </a> <ul id="toc-History-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Spacetime_in_special_relativity" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Spacetime_in_special_relativity"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Spacetime in special relativity</span> </div> </a> <button aria-controls="toc-Spacetime_in_special_relativity-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Spacetime in special relativity subsection</span> </button> <ul id="toc-Spacetime_in_special_relativity-sublist" class="vector-toc-list"> <li id="toc-Spacetime_interval" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Spacetime_interval"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Spacetime interval</span> </div> </a> <ul id="toc-Spacetime_interval-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Reference_frames" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Reference_frames"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Reference frames</span> </div> </a> <ul id="toc-Reference_frames-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Light_cone" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Light_cone"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Light cone</span> </div> </a> <ul id="toc-Light_cone-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Relativity_of_simultaneity" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Relativity_of_simultaneity"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4</span> <span>Relativity of simultaneity</span> </div> </a> <ul id="toc-Relativity_of_simultaneity-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Invariant_hyperbola" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Invariant_hyperbola"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.5</span> <span>Invariant hyperbola</span> </div> </a> <ul id="toc-Invariant_hyperbola-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Time_dilation_and_length_contraction" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Time_dilation_and_length_contraction"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.6</span> <span>Time dilation and length contraction</span> </div> </a> <ul id="toc-Time_dilation_and_length_contraction-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Mutual_time_dilation_and_the_twin_paradox" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Mutual_time_dilation_and_the_twin_paradox"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.7</span> <span>Mutual time dilation and the twin paradox</span> </div> </a> <ul id="toc-Mutual_time_dilation_and_the_twin_paradox-sublist" class="vector-toc-list"> <li id="toc-Mutual_time_dilation" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Mutual_time_dilation"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.7.1</span> <span>Mutual time dilation</span> </div> </a> <ul id="toc-Mutual_time_dilation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Twin_paradox" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Twin_paradox"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.7.2</span> <span>Twin paradox</span> </div> </a> <ul id="toc-Twin_paradox-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Gravitation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Gravitation"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.8</span> <span>Gravitation</span> </div> </a> <ul id="toc-Gravitation-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Basic_mathematics_of_spacetime" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Basic_mathematics_of_spacetime"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Basic mathematics of spacetime</span> </div> </a> <button aria-controls="toc-Basic_mathematics_of_spacetime-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Basic mathematics of spacetime subsection</span> </button> <ul id="toc-Basic_mathematics_of_spacetime-sublist" class="vector-toc-list"> <li id="toc-Galilean_transformations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Galilean_transformations"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Galilean transformations</span> </div> </a> <ul id="toc-Galilean_transformations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Relativistic_composition_of_velocities" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Relativistic_composition_of_velocities"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Relativistic composition of velocities</span> </div> </a> <ul id="toc-Relativistic_composition_of_velocities-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Time_dilation_and_length_contraction_revisited" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Time_dilation_and_length_contraction_revisited"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Time dilation and length contraction revisited</span> </div> </a> <ul id="toc-Time_dilation_and_length_contraction_revisited-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Lorentz_transformations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Lorentz_transformations"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4</span> <span>Lorentz transformations</span> </div> </a> <ul id="toc-Lorentz_transformations-sublist" class="vector-toc-list"> <li id="toc-Deriving_the_Lorentz_transformations" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Deriving_the_Lorentz_transformations"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4.1</span> <span>Deriving the Lorentz transformations</span> </div> </a> <ul id="toc-Deriving_the_Lorentz_transformations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Linearity_of_the_Lorentz_transformations" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Linearity_of_the_Lorentz_transformations"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4.2</span> <span>Linearity of the Lorentz transformations</span> </div> </a> <ul id="toc-Linearity_of_the_Lorentz_transformations-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Doppler_effect" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Doppler_effect"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.5</span> <span>Doppler effect</span> </div> </a> <ul id="toc-Doppler_effect-sublist" class="vector-toc-list"> <li id="toc-Longitudinal_Doppler_effect" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Longitudinal_Doppler_effect"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.5.1</span> <span>Longitudinal Doppler effect</span> </div> </a> <ul id="toc-Longitudinal_Doppler_effect-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Transverse_Doppler_effect" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Transverse_Doppler_effect"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.5.2</span> <span>Transverse Doppler effect</span> </div> </a> <ul id="toc-Transverse_Doppler_effect-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Energy_and_momentum" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Energy_and_momentum"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.6</span> <span>Energy and momentum</span> </div> </a> <ul id="toc-Energy_and_momentum-sublist" class="vector-toc-list"> <li id="toc-Extending_momentum_to_four_dimensions" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Extending_momentum_to_four_dimensions"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.6.1</span> <span>Extending momentum to four dimensions</span> </div> </a> <ul id="toc-Extending_momentum_to_four_dimensions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Momentum_of_light" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Momentum_of_light"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.6.2</span> <span>Momentum of light</span> </div> </a> <ul id="toc-Momentum_of_light-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Mass–energy_relationship" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Mass–energy_relationship"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.6.3</span> <span>Mass–energy relationship</span> </div> </a> <ul id="toc-Mass–energy_relationship-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Four-momentum" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Four-momentum"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.6.4</span> <span>Four-momentum</span> </div> </a> <ul id="toc-Four-momentum-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Conservation_laws" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Conservation_laws"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.7</span> <span>Conservation laws</span> </div> </a> <ul id="toc-Conservation_laws-sublist" class="vector-toc-list"> <li id="toc-Total_momentum" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Total_momentum"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.7.1</span> <span>Total momentum</span> </div> </a> <ul id="toc-Total_momentum-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Choice_of_reference_frames" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Choice_of_reference_frames"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.7.2</span> <span>Choice of reference frames</span> </div> </a> <ul id="toc-Choice_of_reference_frames-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Energy_and_momentum_conservation" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Energy_and_momentum_conservation"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.7.3</span> <span>Energy and momentum conservation</span> </div> </a> <ul id="toc-Energy_and_momentum_conservation-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-Introduction_to_curved_spacetime" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Introduction_to_curved_spacetime"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Introduction to curved spacetime</span> </div> </a> <ul id="toc-Introduction_to_curved_spacetime-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Technical_topics" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Technical_topics"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Technical topics</span> </div> </a> <button aria-controls="toc-Technical_topics-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Technical topics subsection</span> </button> <ul id="toc-Technical_topics-sublist" class="vector-toc-list"> <li id="toc-Is_spacetime_really_curved?" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Is_spacetime_really_curved?"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Is spacetime really curved?</span> </div> </a> <ul id="toc-Is_spacetime_really_curved?-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Asymptotic_symmetries" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Asymptotic_symmetries"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Asymptotic symmetries</span> </div> </a> <ul id="toc-Asymptotic_symmetries-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Riemannian_geometry" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Riemannian_geometry"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.3</span> <span>Riemannian geometry</span> </div> </a> <ul id="toc-Riemannian_geometry-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Curved_manifolds" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Curved_manifolds"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.4</span> <span>Curved manifolds</span> </div> </a> <ul id="toc-Curved_manifolds-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Privileged_character_of_3+1_spacetime" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Privileged_character_of_3+1_spacetime"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.5</span> <span>Privileged character of 3+1 spacetime</span> </div> </a> <ul id="toc-Privileged_character_of_3+1_spacetime-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Additional_details" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Additional_details"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Additional details</span> </div> </a> <ul id="toc-Additional_details-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>Further reading</span> </div> </a> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" title="Table of Contents" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Spacetime</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 89 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-89" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">89 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Ruimtetyd" title="Ruimtetyd – Afrikaans" lang="af" hreflang="af" data-title="Ruimtetyd" data-language-autonym="Afrikaans" data-language-local-name="Afrikaans" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-als mw-list-item"><a href="https://als.wikipedia.org/wiki/Raumzeit" title="Raumzeit – Alemannic" lang="gsw" hreflang="gsw" data-title="Raumzeit" data-language-autonym="Alemannisch" data-language-local-name="Alemannic" class="interlanguage-link-target"><span>Alemannisch</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%B2%D9%85%D9%83%D8%A7%D9%86" title="زمكان – Arabic" lang="ar" hreflang="ar" data-title="زمكان" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Espaciu-tiempu" title="Espaciu-tiempu – Asturian" lang="ast" hreflang="ast" data-title="Espaciu-tiempu" data-language-autonym="Asturianu" data-language-local-name="Asturian" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/M%C9%99kan-zaman" title="Məkan-zaman – Azerbaijani" lang="az" hreflang="az" data-title="Məkan-zaman" data-language-autonym="Azərbaycanca" data-language-local-name="Azerbaijani" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-azb mw-list-item"><a href="https://azb.wikipedia.org/wiki/%D9%81%D8%B6%D8%A7%D8%B2%D8%A7%D9%85%D8%A7%D9%86" title="فضازامان – South Azerbaijani" lang="azb" hreflang="azb" data-title="فضازامان" data-language-autonym="تۆرکجه" data-language-local-name="South Azerbaijani" class="interlanguage-link-target"><span>تۆرکجه</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%B8%E0%A7%8D%E0%A6%A5%E0%A6%BE%E0%A6%A8-%E0%A6%95%E0%A6%BE%E0%A6%B2" title="স্থান-কাল – Bangla" lang="bn" hreflang="bn" data-title="স্থান-কাল" data-language-autonym="বাংলা" data-language-local-name="Bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%9F%D1%80%D0%B0%D1%81%D1%82%D0%BE%D1%80%D0%B0-%D1%87%D0%B0%D1%81" title="Прастора-час – Belarusian" lang="be" hreflang="be" data-title="Прастора-час" data-language-autonym="Беларуская" data-language-local-name="Belarusian" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-bh mw-list-item"><a href="https://bh.wikipedia.org/wiki/%E0%A4%95%E0%A4%BE%E0%A4%B2-%E0%A4%85%E0%A4%B5%E0%A4%95%E0%A4%BE%E0%A4%B6" title="काल-अवकाश – Bhojpuri" lang="bh" hreflang="bh" data-title="काल-अवकाश" data-language-autonym="भोजपुरी" data-language-local-name="Bhojpuri" class="interlanguage-link-target"><span>भोजपुरी</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%9F%D1%80%D0%BE%D1%81%D1%82%D1%80%D0%B0%D0%BD%D1%81%D1%82%D0%B2%D0%BE-%D0%B2%D1%80%D0%B5%D0%BC%D0%B5" title="Пространство-време – Bulgarian" lang="bg" hreflang="bg" data-title="Пространство-време" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Prostorvrijeme" title="Prostorvrijeme – Bosnian" lang="bs" hreflang="bs" data-title="Prostorvrijeme" data-language-autonym="Bosanski" data-language-local-name="Bosnian" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Espaitemps" title="Espaitemps – Catalan" lang="ca" hreflang="ca" data-title="Espaitemps" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%A3%C3%A7%D0%BB%C4%83%D1%85-%D0%B2%C4%83%D1%85%C4%83%D1%82" title="Уçлăх-вăхăт – Chuvash" lang="cv" hreflang="cv" data-title="Уçлăх-вăхăт" data-language-autonym="Чӑвашла" data-language-local-name="Chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/%C4%8Casoprostor" title="Časoprostor – Czech" lang="cs" hreflang="cs" data-title="Časoprostor" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Gofod-amser" title="Gofod-amser – Welsh" lang="cy" hreflang="cy" data-title="Gofod-amser" data-language-autonym="Cymraeg" data-language-local-name="Welsh" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Rumtid" title="Rumtid – Danish" lang="da" hreflang="da" data-title="Rumtid" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Raumzeit" title="Raumzeit – German" lang="de" hreflang="de" data-title="Raumzeit" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Aegruum" title="Aegruum – Estonian" lang="et" hreflang="et" data-title="Aegruum" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%A7%CF%89%CF%81%CE%BF%CF%87%CF%81%CF%8C%CE%BD%CE%BF%CF%82" title="Χωροχρόνος – Greek" lang="el" hreflang="el" data-title="Χωροχρόνος" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Espacio-tiempo" title="Espacio-tiempo – Spanish" lang="es" hreflang="es" data-title="Espacio-tiempo" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Spactempo" title="Spactempo – Esperanto" lang="eo" hreflang="eo" data-title="Spactempo" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Espazio-denbora" title="Espazio-denbora – Basque" lang="eu" hreflang="eu" data-title="Espazio-denbora" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%81%D8%B6%D8%A7%D8%B2%D9%85%D8%A7%D9%86" title="فضازمان – Persian" lang="fa" hreflang="fa" data-title="فضازمان" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Espace-temps" title="Espace-temps – French" lang="fr" hreflang="fr" data-title="Espace-temps" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Sp%C3%A1s-am" title="Spás-am – Irish" lang="ga" hreflang="ga" data-title="Spás-am" data-language-autonym="Gaeilge" data-language-local-name="Irish" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Espazo-tempo" title="Espazo-tempo – Galician" lang="gl" hreflang="gl" data-title="Espazo-tempo" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%8B%9C%EA%B3%B5%EA%B0%84" title="시공간 – Korean" lang="ko" hreflang="ko" data-title="시공간" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%8F%D5%A1%D6%80%D5%A1%D5%AE%D5%A1%D5%AA%D5%A1%D5%B4%D5%A1%D5%B6%D5%A1%D5%AF" title="Տարածաժամանակ – Armenian" lang="hy" hreflang="hy" data-title="Տարածաժամանակ" data-language-autonym="Հայերեն" data-language-local-name="Armenian" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%A6%E0%A4%BF%E0%A4%95%E0%A5%8D-%E0%A4%95%E0%A4%BE%E0%A4%B2" title="दिक्-काल – Hindi" lang="hi" hreflang="hi" data-title="दिक्-काल" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Prostorvrijeme" title="Prostorvrijeme – Croatian" lang="hr" hreflang="hr" data-title="Prostorvrijeme" data-language-autonym="Hrvatski" data-language-local-name="Croatian" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Ruang_waktu" title="Ruang waktu – Indonesian" lang="id" hreflang="id" data-title="Ruang waktu" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://ia.wikipedia.org/wiki/Spatiotempore" title="Spatiotempore – Interlingua" lang="ia" hreflang="ia" data-title="Spatiotempore" data-language-autonym="Interlingua" data-language-local-name="Interlingua" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/T%C3%ADmar%C3%BAm" title="Tímarúm – Icelandic" lang="is" hreflang="is" data-title="Tímarúm" data-language-autonym="Íslenska" data-language-local-name="Icelandic" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Spaziotempo" title="Spaziotempo – Italian" lang="it" hreflang="it" data-title="Spaziotempo" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he badge-Q17437796 badge-featuredarticle mw-list-item" title="featured article badge"><a href="https://he.wikipedia.org/wiki/%D7%9E%D7%A8%D7%97%D7%91-%D7%96%D7%9E%D7%9F" title="מרחב-זמן – Hebrew" lang="he" hreflang="he" data-title="מרחב-זמן" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%A1%E1%83%98%E1%83%95%E1%83%A0%E1%83%AA%E1%83%94-%E1%83%93%E1%83%A0%E1%83%9D" title="სივრცე-დრო – Georgian" lang="ka" hreflang="ka" data-title="სივრცე-დრო" data-language-autonym="ქართული" data-language-local-name="Georgian" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%A3%D0%B0%D2%9B%D1%8B%D1%82-%D0%BA%D0%B5%D2%A3%D1%96%D1%81%D1%82%D1%96%D0%BA" title="Уақыт-кеңістік – Kazakh" lang="kk" hreflang="kk" data-title="Уақыт-кеңістік" data-language-autonym="Қазақша" data-language-local-name="Kazakh" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-lo mw-list-item"><a href="https://lo.wikipedia.org/wiki/%E0%BB%80%E0%BA%A7%E0%BA%A5%E0%BA%B2%E0%BA%AD%E0%BA%B2%E0%BA%A7%E0%BA%B0%E0%BA%81%E0%BA%B2%E0%BA%94" title="ເວລາອາວະກາດ – Lao" lang="lo" hreflang="lo" data-title="ເວລາອາວະກາດ" data-language-autonym="ລາວ" data-language-local-name="Lao" class="interlanguage-link-target"><span>ລາວ</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Spatitempus" title="Spatitempus – Latin" lang="la" hreflang="la" data-title="Spatitempus" data-language-autonym="Latina" data-language-local-name="Latin" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Laiktelpa" title="Laiktelpa – Latvian" lang="lv" hreflang="lv" data-title="Laiktelpa" data-language-autonym="Latviešu" data-language-local-name="Latvian" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Erdv%C4%97laikis" title="Erdvėlaikis – Lithuanian" lang="lt" hreflang="lt" data-title="Erdvėlaikis" data-language-autonym="Lietuvių" data-language-local-name="Lithuanian" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/T%C3%A9rid%C5%91" title="Téridő – Hungarian" lang="hu" hreflang="hu" data-title="Téridő" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%92%D1%80%D0%B5%D0%BC%D0%B5-%D0%BF%D1%80%D0%BE%D1%81%D1%82%D0%BE%D1%80" title="Време-простор – Macedonian" lang="mk" hreflang="mk" data-title="Време-простор" data-language-autonym="Македонски" data-language-local-name="Macedonian" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%B8%E0%B5%8D%E0%B4%A5%E0%B5%82%E0%B4%B2%E0%B4%95%E0%B4%BE%E0%B4%B2%E0%B4%A4" title="സ്ഥൂലകാലത – Malayalam" lang="ml" hreflang="ml" data-title="സ്ഥൂലകാലത" data-language-autonym="മലയാളം" data-language-local-name="Malayalam" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-mr mw-list-item"><a href="https://mr.wikipedia.org/wiki/%E0%A4%95%E0%A4%BE%E0%A4%B2-%E0%A4%85%E0%A4%B5%E0%A4%95%E0%A4%BE%E0%A4%B6" title="काल-अवकाश – Marathi" lang="mr" hreflang="mr" data-title="काल-अवकाश" data-language-autonym="मराठी" data-language-local-name="Marathi" class="interlanguage-link-target"><span>मराठी</span></a></li><li class="interlanguage-link interwiki-xmf mw-list-item"><a href="https://xmf.wikipedia.org/wiki/%E1%83%9D%E1%83%A4%E1%83%98%E1%83%A0%E1%83%A9%E1%83%90-%E1%83%91%E1%83%9D%E1%83%A0%E1%83%AF%E1%83%98" title="ოფირჩა-ბორჯი – Mingrelian" lang="xmf" hreflang="xmf" data-title="ოფირჩა-ბორჯი" data-language-autonym="მარგალური" data-language-local-name="Mingrelian" class="interlanguage-link-target"><span>მარგალური</span></a></li><li class="interlanguage-link interwiki-arz mw-list-item"><a href="https://arz.wikipedia.org/wiki/%D8%B3%D8%A8%D9%8A%D8%B3-%D8%AA%D8%A7%D9%8A%D9%85" title="سبيس-تايم – Egyptian Arabic" lang="arz" hreflang="arz" data-title="سبيس-تايم" data-language-autonym="مصرى" data-language-local-name="Egyptian Arabic" class="interlanguage-link-target"><span>مصرى</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Ruang-masa" title="Ruang-masa – Malay" lang="ms" hreflang="ms" data-title="Ruang-masa" data-language-autonym="Bahasa Melayu" data-language-local-name="Malay" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-my mw-list-item"><a href="https://my.wikipedia.org/wiki/%E1%80%A1%E1%80%AC%E1%80%80%E1%80%AC%E1%80%9E%E1%80%A1%E1%80%81%E1%80%BB%E1%80%AD%E1%80%94%E1%80%BA" title="အာကာသအချိန် – Burmese" lang="my" hreflang="my" data-title="အာကာသအချိန်" data-language-autonym="မြန်မာဘာသာ" data-language-local-name="Burmese" class="interlanguage-link-target"><span>မြန်မာဘာသာ</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Ruimtetijd" title="Ruimtetijd – Dutch" lang="nl" hreflang="nl" data-title="Ruimtetijd" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E6%99%82%E7%A9%BA" title="時空 – Japanese" lang="ja" hreflang="ja" data-title="時空" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-frr mw-list-item"><a href="https://frr.wikipedia.org/wiki/R%C3%BCmtidj" title="Rümtidj – Northern Frisian" lang="frr" hreflang="frr" data-title="Rümtidj" data-language-autonym="Nordfriisk" data-language-local-name="Northern Frisian" class="interlanguage-link-target"><span>Nordfriisk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Tidrom" title="Tidrom – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Tidrom" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Tidrom" title="Tidrom – Norwegian Nynorsk" lang="nn" hreflang="nn" data-title="Tidrom" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegian Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-oc mw-list-item"><a href="https://oc.wikipedia.org/wiki/Espacitemps" title="Espacitemps – Occitan" lang="oc" hreflang="oc" data-title="Espacitemps" data-language-autonym="Occitan" data-language-local-name="Occitan" class="interlanguage-link-target"><span>Occitan</span></a></li><li class="interlanguage-link interwiki-om mw-list-item"><a href="https://om.wikipedia.org/wiki/Sam-yeroo" title="Sam-yeroo – Oromo" lang="om" hreflang="om" data-title="Sam-yeroo" data-language-autonym="Oromoo" data-language-local-name="Oromo" class="interlanguage-link-target"><span>Oromoo</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Fazo-vaqt" title="Fazo-vaqt – Uzbek" lang="uz" hreflang="uz" data-title="Fazo-vaqt" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="Uzbek" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%B8%E0%A8%AA%E0%A9%87%E0%A8%B8%E0%A8%9F%E0%A8%BE%E0%A8%88%E0%A8%AE" title="ਸਪੇਸਟਾਈਮ – Punjabi" lang="pa" hreflang="pa" data-title="ਸਪੇਸਟਾਈਮ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="Punjabi" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pnb mw-list-item"><a href="https://pnb.wikipedia.org/wiki/%D8%B3%D9%BE%DB%8C%D8%B3_%D9%B9%D8%A7%D8%A6%DB%8C%D9%85" title="سپیس ٹائیم – Western Punjabi" lang="pnb" hreflang="pnb" data-title="سپیس ٹائیم" data-language-autonym="پنجابی" data-language-local-name="Western Punjabi" class="interlanguage-link-target"><span>پنجابی</span></a></li><li class="interlanguage-link interwiki-ps mw-list-item"><a href="https://ps.wikipedia.org/wiki/%D8%AA%D8%B4%D9%8A%D8%A7%D9%84_%D9%88%D8%AE%D8%AA" title="تشيال وخت – Pashto" lang="ps" hreflang="ps" data-title="تشيال وخت" data-language-autonym="پښتو" data-language-local-name="Pashto" class="interlanguage-link-target"><span>پښتو</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Czasoprzestrze%C5%84" title="Czasoprzestrzeń – Polish" lang="pl" hreflang="pl" data-title="Czasoprzestrzeń" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Espa%C3%A7o-tempo" title="Espaço-tempo – Portuguese" lang="pt" hreflang="pt" data-title="Espaço-tempo" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Spa%C8%9Biu-timp" title="Spațiu-timp – Romanian" lang="ro" hreflang="ro" data-title="Spațiu-timp" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-qu mw-list-item"><a href="https://qu.wikipedia.org/wiki/Pacha" title="Pacha – Quechua" lang="qu" hreflang="qu" data-title="Pacha" data-language-autonym="Runa Simi" data-language-local-name="Quechua" class="interlanguage-link-target"><span>Runa Simi</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9F%D1%80%D0%BE%D1%81%D1%82%D1%80%D0%B0%D0%BD%D1%81%D1%82%D0%B2%D0%BE-%D0%B2%D1%80%D0%B5%D0%BC%D1%8F" title="Пространство-время – Russian" lang="ru" hreflang="ru" data-title="Пространство-время" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Hap%C3%ABsir%C3%AB-koha" title="Hapësirë-koha – Albanian" lang="sq" hreflang="sq" data-title="Hapësirë-koha" data-language-autonym="Shqip" data-language-local-name="Albanian" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-si mw-list-item"><a href="https://si.wikipedia.org/wiki/%E0%B6%85%E0%B7%80%E0%B6%9A%E0%B7%8F%E0%B7%81_%E0%B6%9A%E0%B7%8F%E0%B6%BD%E0%B6%BA" title="අවකාශ කාලය – Sinhala" lang="si" hreflang="si" data-title="අවකාශ කාලය" data-language-autonym="සිංහල" data-language-local-name="Sinhala" class="interlanguage-link-target"><span>සිංහල</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Spacetime" title="Spacetime – Simple English" lang="en-simple" hreflang="en-simple" data-title="Spacetime" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/%C4%8Casopriestor" title="Časopriestor – Slovak" lang="sk" hreflang="sk" data-title="Časopriestor" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Prostor-%C4%8Das" title="Prostor-čas – Slovenian" lang="sl" hreflang="sl" data-title="Prostor-čas" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%DA%A9%D8%A7%D8%AA%D8%AC%DB%8E" title="کاتجێ – Central Kurdish" lang="ckb" hreflang="ckb" data-title="کاتجێ" data-language-autonym="کوردی" data-language-local-name="Central Kurdish" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%9F%D1%80%D0%BE%D1%81%D1%82%D0%BE%D1%80-%D0%B2%D1%80%D0%B5%D0%BC%D0%B5" title="Простор-време – Serbian" lang="sr" hreflang="sr" data-title="Простор-време" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Prostorvreme" title="Prostorvreme – Serbo-Croatian" lang="sh" hreflang="sh" data-title="Prostorvreme" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Croatian" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Aika-avaruus" title="Aika-avaruus – Finnish" lang="fi" hreflang="fi" data-title="Aika-avaruus" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Rumtid" title="Rumtid – Swedish" lang="sv" hreflang="sv" data-title="Rumtid" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Espasyo-panahon" title="Espasyo-panahon – Tagalog" lang="tl" hreflang="tl" data-title="Espasyo-panahon" data-language-autonym="Tagalog" data-language-local-name="Tagalog" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%B5%E0%AF%86%E0%AE%B3%E0%AE%BF%E0%AE%A8%E0%AF%87%E0%AE%B0%E0%AE%AE%E0%AF%8D" title="வெளிநேரம் – Tamil" lang="ta" hreflang="ta" data-title="வெளிநேரம்" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-tt mw-list-item"><a href="https://tt.wikipedia.org/wiki/F%C3%A4za-waq%C4%B1t" title="Fäza-waqıt – Tatar" lang="tt" hreflang="tt" data-title="Fäza-waqıt" data-language-autonym="Татарча / tatarça" data-language-local-name="Tatar" class="interlanguage-link-target"><span>Татарча / tatarça</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%9B%E0%B8%A3%E0%B8%B4%E0%B8%A0%E0%B8%B9%E0%B8%A1%E0%B8%B4-%E0%B9%80%E0%B8%A7%E0%B8%A5%E0%B8%B2" title="ปริภูมิ-เวลา – Thai" lang="th" hreflang="th" data-title="ปริภูมิ-เวลา" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tg mw-list-item"><a href="https://tg.wikipedia.org/wiki/%D0%A4%D0%B0%D0%B7%D0%BE-%D0%B7%D0%B0%D0%BC%D0%BE%D0%BD" title="Фазо-замон – Tajik" lang="tg" hreflang="tg" data-title="Фазо-замон" data-language-autonym="Тоҷикӣ" data-language-local-name="Tajik" class="interlanguage-link-target"><span>Тоҷикӣ</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Uzayzaman" title="Uzayzaman – Turkish" lang="tr" hreflang="tr" data-title="Uzayzaman" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9F%D1%80%D0%BE%D1%81%D1%82%D1%96%D1%80-%D1%87%D0%B0%D1%81" title="Простір-час – Ukrainian" lang="uk" hreflang="uk" data-title="Простір-час" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D8%B2%D9%85%D8%A7%D9%86_%D9%88_%D9%85%DA%A9%D8%A7%DA%BA" title="زمان و مکاں – Urdu" lang="ur" hreflang="ur" data-title="زمان و مکاں" data-language-autonym="اردو" data-language-local-name="Urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-vec mw-list-item"><a href="https://vec.wikipedia.org/wiki/Sp%C3%A0siotenpo" title="Spàsiotenpo – Venetian" lang="vec" hreflang="vec" data-title="Spàsiotenpo" data-language-autonym="Vèneto" data-language-local-name="Venetian" class="interlanguage-link-target"><span>Vèneto</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Kh%C3%B4ng%E2%80%93th%E1%BB%9Di_gian" title="Không–thời gian – Vietnamese" lang="vi" hreflang="vi" data-title="Không–thời gian" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-war mw-list-item"><a href="https://war.wikipedia.org/wiki/Kalarakan-oras" title="Kalarakan-oras – Waray" lang="war" hreflang="war" data-title="Kalarakan-oras" data-language-autonym="Winaray" data-language-local-name="Waray" class="interlanguage-link-target"><span>Winaray</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E6%97%B6%E7%A9%BA" title="时空 – Wu" lang="wuu" hreflang="wuu" data-title="时空" data-language-autonym="吴语" data-language-local-name="Wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E6%99%82%E7%A9%BA" title="時空 – Cantonese" lang="yue" hreflang="yue" data-title="時空" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E6%97%B6%E7%A9%BA" title="时空 – Chinese" lang="zh" hreflang="zh" data-title="时空" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q133327#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Spacetime" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Spacetime" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Spacetime"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Spacetime&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Spacetime&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Spacetime"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Spacetime&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Spacetime&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Spacetime" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Spacetime" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Spacetime&oldid=1270412209" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Spacetime&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Spacetime&id=1270412209&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FSpacetime"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FSpacetime"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Spacetime&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Spacetime&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Spacetime" hreflang="en"><span>Wikimedia Commons</span></a></li><li class="wb-otherproject-link wb-otherproject-wikiquote mw-list-item"><a href="https://en.wikiquote.org/wiki/Spacetime" hreflang="en"><span>Wikiquote</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q133327" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Mathematical model combining space and time</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">"Space and time" and "Time and space" redirect here. For other uses, see <a href="/wiki/Space_and_Time_(disambiguation)" class="mw-redirect mw-disambig" title="Space and Time (disambiguation)">Space and Time (disambiguation)</a>, <a href="/wiki/Timespace_(disambiguation)" class="mw-redirect mw-disambig" title="Timespace (disambiguation)">Timespace (disambiguation)</a>, and <a href="/wiki/Spacetime_(disambiguation)" class="mw-disambig" title="Spacetime (disambiguation)">Spacetime (disambiguation)</a>.</div> <style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><style data-mw-deduplicate="TemplateStyles:r1247671788">.mw-parser-output .spacetime .sidebar-list-title{background:transparent;border-top:1px solid #aaa;text-align:center}.mw-parser-output .spacetime .sidebar-below{background-color:transparent;border-color:#A2B8BF}</style><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><table class="sidebar sidebar-collapse nomobile nowraplinks spacetime"><tbody><tr><td class="sidebar-pretitle">Part of a series on</td></tr><tr><th class="sidebar-title-with-pretitle"><a class="mw-selflink selflink">Spacetime</a></th></tr><tr><td class="sidebar-image"><span typeof="mw:File"><a href="/wiki/File:GPB_circling_earth.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d1/GPB_circling_earth.jpg/240px-GPB_circling_earth.jpg" decoding="async" width="240" height="180" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d1/GPB_circling_earth.jpg/360px-GPB_circling_earth.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d1/GPB_circling_earth.jpg/480px-GPB_circling_earth.jpg 2x" data-file-width="1200" data-file-height="900" /></a></span></td></tr><tr><td class="sidebar-content"> <div class="hlist"> <ul><li><a href="/wiki/Special_relativity" title="Special relativity">Special relativity</a></li> <li><a href="/wiki/General_relativity" title="General relativity">General relativity</a></li></ul> </div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)">Spacetime concepts</div><div class="sidebar-list-content mw-collapsible-content"><div class="plainlist"> <ul><li><a class="mw-selflink selflink">Spacetime manifold</a></li> <li><a href="/wiki/Equivalence_principle" title="Equivalence principle">Equivalence principle</a></li> <li><a href="/wiki/Lorentz_transformation" title="Lorentz transformation">Lorentz transformations</a></li> <li><a href="/wiki/Minkowski_space" title="Minkowski space">Minkowski space</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)">General relativity</div><div class="sidebar-list-content mw-collapsible-content"><div class="plainlist"> <ul><li><a href="/wiki/Introduction_to_general_relativity" title="Introduction to general relativity">Introduction to general relativity</a></li> <li><a href="/wiki/Introduction_to_the_mathematics_of_general_relativity" title="Introduction to the mathematics of general relativity">Mathematics of general relativity</a></li> <li><a href="/wiki/Einstein_field_equations" title="Einstein field equations">Einstein field equations</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)">Classical gravity</div><div class="sidebar-list-content mw-collapsible-content"><div class="plainlist"> <ul><li><a href="/wiki/Gravity" title="Gravity">Introduction to gravitation</a></li> <li><a href="/wiki/Newton%27s_law_of_universal_gravitation" title="Newton's law of universal gravitation">Newton's law of universal gravitation</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)">Relevant mathematics</div><div class="sidebar-list-content mw-collapsible-content"><div class="plainlist"> <ul><li><a href="/wiki/Four-vector" title="Four-vector">Four-vector</a></li> <li><a href="/wiki/Derivations_of_the_Lorentz_transformations" title="Derivations of the Lorentz transformations">Derivations of relativity</a></li> <li><a href="/wiki/Spacetime_diagram" title="Spacetime diagram">Spacetime diagrams</a></li> <li><a href="/wiki/Differential_geometry" title="Differential geometry">Differential geometry</a></li> <li><a href="/wiki/Curved_space" title="Curved space">Curved space</a></li> <li><a href="/wiki/Curved_spacetime" title="Curved spacetime">Curved spacetime</a></li> <li><a href="/wiki/Mathematics_of_general_relativity" title="Mathematics of general relativity">Mathematics of general relativity</a></li> <li><a href="/wiki/Spacetime_topology" title="Spacetime topology">Spacetime topology</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-below"> <div class="hlist"> <ul><li><span class="nowrap"><span class="nowrap"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg/14px-Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg.png" decoding="async" width="14" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg/21px-Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg/28px-Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg.png 2x" data-file-width="530" data-file-height="600" /></a></span> </span><a href="/wiki/Portal:Physics" title="Portal:Physics">Physics portal</a></span></li> <li><span class="nowrap"><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:Spacetime" title="Category:Spacetime">Category</a></span></li></ul> </div></td></tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Spacetime" title="Template:Spacetime"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Spacetime" title="Template talk:Spacetime"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Spacetime" title="Special:EditPage/Template:Spacetime"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <p>In <a href="/wiki/Physics" title="Physics">physics</a>, <b>spacetime</b>, also called the <b>space-time continuum</b>, is a <a href="/wiki/Mathematical_model" title="Mathematical model">mathematical model</a> that fuses the <a href="/wiki/Three-dimensional_space" title="Three-dimensional space">three dimensions of space</a> and the one dimension of <a href="/wiki/Time" title="Time">time</a> into a single <a href="/wiki/Four-dimensional" class="mw-redirect" title="Four-dimensional">four-dimensional</a> <a href="/wiki/Continuum_(measurement)" title="Continuum (measurement)">continuum</a>. <a href="/wiki/Spacetime_diagram" title="Spacetime diagram">Spacetime diagrams</a> are useful in visualizing and understanding <a href="/wiki/Special_relativity" title="Special relativity">relativistic</a> effects, such as how different observers perceive <i>where</i> and <i>when</i> events occur. </p><p>Until the turn of the 20th century, the assumption had been that the three-dimensional geometry of the universe (its description in terms of locations, shapes, distances, and directions) was distinct from time (the measurement of when events occur within the universe). However, <a href="/wiki/Space" title="Space">space</a> and time took on new meanings with the <a href="/wiki/Lorentz_transformation" title="Lorentz transformation">Lorentz transformation</a> and <a href="/wiki/Special_relativity" title="Special relativity">special theory of relativity</a>. </p><p>In 1908, <a href="/wiki/Hermann_Minkowski" title="Hermann Minkowski">Hermann Minkowski</a> presented a geometric interpretation of special relativity that fused time and the three spatial dimensions into a single four-dimensional continuum now known as <a href="/wiki/Minkowski_space" title="Minkowski space">Minkowski space</a>. This interpretation proved vital to the <a href="/wiki/General_relativity" title="General relativity">general theory of relativity</a>, wherein spacetime is curved by <a href="/wiki/Stress%E2%80%93energy_tensor" title="Stress–energy tensor">mass and energy</a>. </p><p><span class="anchor" id="Contents"></span> </p> <style data-mw-deduplicate="TemplateStyles:r886046785">.mw-parser-output .toclimit-2 .toclevel-1 ul,.mw-parser-output .toclimit-3 .toclevel-2 ul,.mw-parser-output .toclimit-4 .toclevel-3 ul,.mw-parser-output .toclimit-5 .toclevel-4 ul,.mw-parser-output .toclimit-6 .toclevel-5 ul,.mw-parser-output .toclimit-7 .toclevel-6 ul{display:none}</style><div class="toclimit-3"><meta property="mw:PageProp/toc" /></div> <div class="mw-heading mw-heading2"><h2 id="Fundamentals">Fundamentals</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spacetime&action=edit&section=1" title="Edit section: Fundamentals"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><span class="anchor" id="Introduction"></span> <span class="anchor" id="Definitions"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Definitions">Definitions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spacetime&action=edit&section=2" title="Edit section: Definitions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Non-relativistic <a href="/wiki/Classical_mechanics" title="Classical mechanics">classical mechanics</a> treats <a href="/wiki/Time" title="Time">time</a> as a universal quantity of measurement that is uniform throughout, is separate from space, and is agreed on by all observers. Classical mechanics assumes that time has a constant rate of passage, independent of the <a href="/wiki/Observer_(special_relativity)" title="Observer (special relativity)">observer's</a> state of <a href="/wiki/Motion_(physics)" class="mw-redirect" title="Motion (physics)">motion</a>, or anything external.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> It assumes that space is <a href="/wiki/Euclidean_space" title="Euclidean space">Euclidean</a>: it assumes that space follows the geometry of common sense.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p><p>In the context of <a href="/wiki/Special_relativity" title="Special relativity">special relativity</a>, time cannot be separated from the three dimensions of space, because the observed rate at which time passes for an object depends on the object's <a href="/wiki/Velocity" title="Velocity">velocity</a> relative to the observer.<sup id="cite_ref-Schutz_3-0" class="reference"><a href="#cite_note-Schutz-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 214–217">: 214–217 </span></sup> <a href="/wiki/General_relativity" title="General relativity">General relativity</a> provides an explanation of how <a href="/wiki/Gravitational_field" title="Gravitational field">gravitational fields</a> can slow the passage of time for an object as seen by an observer outside the field. </p><p>In ordinary space, a position is specified by three numbers, known as <a href="/wiki/Dimension#In_physics" title="Dimension">dimensions</a>. In the <a href="/wiki/Cartesian_coordinate_system" title="Cartesian coordinate system">Cartesian coordinate system</a>, these are often called <i>x</i>, <i>y</i> and <i>z</i>. A point in spacetime is called an <i>event</i>, and requires four numbers to be specified: the three-dimensional location in space, plus the position in time (Fig. 1). An event is represented by a set of coordinates <i>x</i>, <i>y</i>, <i>z</i> and <i>t</i>.<sup id="cite_ref-Fock_1966_4-0" class="reference"><a href="#cite_note-Fock_1966-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> Spacetime is thus <a href="/wiki/Four-dimensional_space" title="Four-dimensional space">four-dimensional</a>. </p><p>Unlike the analogies used in popular writings to explain events, such as firecrackers or sparks, mathematical events have zero duration and represent a single point in spacetime.<sup id="cite_ref-Lawden_1982_5-0" class="reference"><a href="#cite_note-Lawden_1982-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> Although it is possible to be in motion relative to the popping of a firecracker or a spark, it is not possible for an observer to be in motion relative to an event. </p><p>The path of a particle through spacetime can be considered to be a sequence of events. The series of events can be linked together to form a curve that represents the particle's progress through spacetime. That path is called the particle's <i>world line</i>.<sup id="cite_ref-Collier_6-0" class="reference"><a href="#cite_note-Collier-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 105">: 105 </span></sup> </p><p>Mathematically, spacetime is a <i><a href="/wiki/Manifold" title="Manifold">manifold</a></i>, which is to say, it appears locally "flat" near each point in the same way that, at small enough scales, the surface of a globe appears to be flat.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> A scale factor, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span> (conventionally called the <i>speed-of-light</i>) relates distances measured in space to distances measured in time. The magnitude of this scale factor (nearly 300,000 kilometres or 190,000 miles in space being equivalent to one second in time), along with the fact that spacetime is a manifold, implies that at ordinary, non-relativistic speeds and at ordinary, human-scale distances, there is little that humans might observe that is noticeably different from what they might observe if the world were Euclidean. It was only with the advent of sensitive scientific measurements in the mid-1800s, such as the <a href="/wiki/Fizeau_experiment" title="Fizeau experiment">Fizeau experiment</a> and the <a href="/wiki/Michelson%E2%80%93Morley_experiment" title="Michelson–Morley experiment">Michelson–Morley experiment</a>, that puzzling discrepancies began to be noted between observation versus predictions based on the implicit assumption of Euclidean space.<sup id="cite_ref-French_8-0" class="reference"><a href="#cite_note-French-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> </p><p><span class="anchor" id="Figure_1-1"></span> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Observer_in_special_relativity.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d4/Observer_in_special_relativity.svg/220px-Observer_in_special_relativity.svg.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d4/Observer_in_special_relativity.svg/330px-Observer_in_special_relativity.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d4/Observer_in_special_relativity.svg/440px-Observer_in_special_relativity.svg.png 2x" data-file-width="605" data-file-height="605" /></a><figcaption>Figure 1-1. Each location in spacetime is marked by four numbers defined by a <a href="/wiki/Frame_of_reference" title="Frame of reference">frame of reference</a>: the position in space, and the time, which can be visualized as the reading of a clock located at each position in space. The 'observer' synchronizes the clocks according to their own reference frame.</figcaption></figure> <p>In special relativity, an observer will, in most cases, mean a frame of reference from which a set of objects or events is being measured. This usage differs significantly from the ordinary English meaning of the term. Reference frames are inherently nonlocal constructs, and according to this usage of the term, it does not make sense to speak of an observer as having a location.<sup id="cite_ref-Taylor_9-0" class="reference"><a href="#cite_note-Taylor-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> </p><p>In Fig. 1-1, imagine that the frame under consideration is equipped with a dense lattice of clocks, synchronized within this reference frame, that extends indefinitely throughout the three dimensions of space. Any specific location within the lattice is not important. The latticework of clocks is used to determine the time and position of events taking place within the whole frame. The term <i>observer</i> refers to the whole ensemble of clocks associated with one inertial frame of reference.<sup id="cite_ref-Taylor_9-1" class="reference"><a href="#cite_note-Taylor-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 17–22">: 17–22 </span></sup> </p><p>In this idealized case, every point in space has a clock associated with it, and thus the clocks register each event instantly, with no time delay between an event and its recording. A real observer will see a delay between the emission of a signal and its detection due to the speed of light. To synchronize the clocks, in the <a href="/wiki/Data_reduction" title="Data reduction">data reduction</a> following an experiment, the time when a signal is received will be corrected to reflect its actual time were it to have been recorded by an idealized lattice of clocks.<sup id="cite_ref-Taylor_9-2" class="reference"><a href="#cite_note-Taylor-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 17–22">: 17–22 </span></sup> </p><p>In many books on special relativity, especially older ones, the word "observer" is used in the more ordinary sense of the word. It is usually clear from context which meaning has been adopted. </p><p>Physicists distinguish between what one <i>measures</i> or <i>observes</i>, after one has factored out signal propagation delays, versus what one visually sees without such corrections. Failing to understand <a href="/wiki/Special_relativity#Measurement_versus_visual_appearance" title="Special relativity">the difference between what one measures and what one sees</a> is the source of much confusion among students of relativity.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spacetime&action=edit&section=3" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><span class="anchor" id="History"></span> </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/History_of_special_relativity" title="History of special relativity">History of special relativity</a> and <a href="/wiki/History_of_Lorentz_transformations" title="History of Lorentz transformations">History of Lorentz transformations</a></div> <style data-mw-deduplicate="TemplateStyles:r1273380762/mw-parser-output/.tmulti">.mw-parser-output .tmulti .multiimageinner{display:flex;flex-direction:column}.mw-parser-output .tmulti .trow{display:flex;flex-direction:row;clear:left;flex-wrap:wrap;width:100%;box-sizing:border-box}.mw-parser-output .tmulti .tsingle{margin:1px;float:left}.mw-parser-output .tmulti .theader{clear:both;font-weight:bold;text-align:center;align-self:center;background-color:transparent;width:100%}.mw-parser-output .tmulti .thumbcaption{background-color:transparent}.mw-parser-output .tmulti .text-align-left{text-align:left}.mw-parser-output .tmulti .text-align-right{text-align:right}.mw-parser-output .tmulti .text-align-center{text-align:center}@media all and (max-width:720px){.mw-parser-output .tmulti .thumbinner{width:100%!important;box-sizing:border-box;max-width:none!important;align-items:center}.mw-parser-output .tmulti .trow{justify-content:center}.mw-parser-output .tmulti .tsingle{float:none!important;max-width:100%!important;box-sizing:border-box;text-align:center}.mw-parser-output .tmulti .tsingle .thumbcaption{text-align:left}.mw-parser-output .tmulti .trow>.thumbcaption{text-align:center}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .tmulti .multiimageinner span:not(.skin-invert-image):not(.skin-invert):not(.bg-transparent) img{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .tmulti .multiimageinner span:not(.skin-invert-image):not(.skin-invert):not(.bg-transparent) img{background-color:white}}</style><div class="thumb tmulti tright"><div class="thumbinner multiimageinner" style="width:224px;max-width:224px"><div class="trow"><div class="tsingle" style="width:222px;max-width:222px"><div class="thumbimage"><span typeof="mw:File"><a href="/wiki/File:Michelson-Morley_experiment_conducted_with_white_light.png" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Michelson-Morley_experiment_conducted_with_white_light.png/220px-Michelson-Morley_experiment_conducted_with_white_light.png" decoding="async" width="220" height="209" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Michelson-Morley_experiment_conducted_with_white_light.png/330px-Michelson-Morley_experiment_conducted_with_white_light.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Michelson-Morley_experiment_conducted_with_white_light.png/440px-Michelson-Morley_experiment_conducted_with_white_light.png 2x" data-file-width="690" data-file-height="655" /></a></span></div></div></div><div class="trow"><div class="tsingle" style="width:222px;max-width:222px"><div class="thumbimage"><span typeof="mw:File"><a href="/wiki/File:MichelsonMorleyAnimationDE.gif" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/7c/MichelsonMorleyAnimationDE.gif/220px-MichelsonMorleyAnimationDE.gif" decoding="async" width="220" height="108" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/7/7c/MichelsonMorleyAnimationDE.gif 1.5x" data-file-width="247" data-file-height="121" /></a></span></div><div class="thumbcaption">Figure 1-2. Michelson and Morley expected that motion through the aether would cause a differential phase shift between light traversing the two arms of their apparatus. The most logical explanation of their negative result, aether dragging, was in conflict with the observation of stellar aberration.</div></div></div></div></div> <p>By the mid-1800s, various experiments such as the observation of the <a href="/wiki/Arago_spot" title="Arago spot">Arago spot</a> and <a href="/wiki/Foucault%27s_measurements_of_the_speed_of_light" title="Foucault's measurements of the speed of light">differential measurements of the speed of light in air versus water</a> were considered to have proven the wave nature of light as opposed to a <a href="/wiki/Corpuscular_theory_of_light" title="Corpuscular theory of light">corpuscular theory</a>.<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> Propagation of waves was then assumed to require the existence of a <i>waving</i> medium; in the case of light waves, this was considered to be a hypothetical <a href="/wiki/Luminiferous_aether" title="Luminiferous aether">luminiferous aether</a>.<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">[</span>note 1<span class="cite-bracket">]</span></a></sup> The various attempts to establish the properties of this hypothetical medium yielded contradictory results. For example, the <a href="/wiki/Fizeau_experiment" title="Fizeau experiment">Fizeau experiment</a> of 1851, conducted by French physicist <a href="/wiki/Hippolyte_Fizeau" title="Hippolyte Fizeau">Hippolyte Fizeau</a>, demonstrated that the speed of light in flowing water was less than the sum of the speed of light in air plus the speed of the water by an amount dependent on the water's index of refraction.<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> </p><p>Among other issues, the dependence of the partial <a href="/wiki/Aether-dragging" class="mw-redirect" title="Aether-dragging">aether-dragging</a> implied by this experiment on the index of refraction (which is dependent on wavelength) led to the unpalatable conclusion that aether <i>simultaneously</i> flows at different speeds for different colors of light.<sup id="cite_ref-Stachel_14-0" class="reference"><a href="#cite_note-Stachel-14"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> The <a href="/wiki/Michelson%E2%80%93Morley_experiment" title="Michelson–Morley experiment">Michelson–Morley experiment</a> of 1887 (Fig. 1-2) showed no differential influence of Earth's motions through the hypothetical aether on the speed of light, and the most likely explanation, complete aether dragging, was in conflict with the observation of <a href="/wiki/Stellar_aberration" class="mw-redirect" title="Stellar aberration">stellar aberration</a>.<sup id="cite_ref-French_8-1" class="reference"><a href="#cite_note-French-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> </p><p><a href="/wiki/George_Francis_FitzGerald" title="George Francis FitzGerald">George Francis FitzGerald</a> in 1889,<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> and <a href="/wiki/Hendrik_Lorentz" title="Hendrik Lorentz">Hendrik Lorentz</a> in 1892, independently proposed that material bodies traveling through the fixed aether were physically affected by their passage, contracting in the direction of motion by an amount that was exactly what was necessary to explain the negative results of the Michelson–Morley experiment. No length changes occur in directions transverse to the direction of motion. </p><p>By 1904, Lorentz had expanded his theory such that he had arrived at equations formally identical with those that Einstein was to derive later, i.e. the <a href="/wiki/Lorentz_transformation" title="Lorentz transformation">Lorentz transformation</a>.<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> As a theory of <a href="/wiki/Dynamics_(mechanics)" class="mw-redirect" title="Dynamics (mechanics)">dynamics</a> (the study of forces and torques and their effect on motion), his theory assumed actual physical deformations of the physical constituents of matter.<sup id="cite_ref-Pais_17-0" class="reference"><a href="#cite_note-Pais-17"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 163–174">: 163–174 </span></sup> Lorentz's equations predicted a quantity that he called <i>local time</i>, with which he could explain the <a href="/wiki/Aberration_of_light" class="mw-redirect" title="Aberration of light">aberration of light</a>, the Fizeau experiment and other phenomena. </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1273380762/mw-parser-output/.tmulti"><div class="thumb tmulti tright"><div class="thumbinner multiimageinner" style="width:292px;max-width:292px"><div class="trow"><div class="tsingle" style="width:141px;max-width:141px"><div class="thumbimage" style="height:195px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/File:H_A_Lorentz_(Nobel).jpg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/2d/H_A_Lorentz_%28Nobel%29.jpg/139px-H_A_Lorentz_%28Nobel%29.jpg" decoding="async" width="139" height="197" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/2d/H_A_Lorentz_%28Nobel%29.jpg/209px-H_A_Lorentz_%28Nobel%29.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/2d/H_A_Lorentz_%28Nobel%29.jpg/278px-H_A_Lorentz_%28Nobel%29.jpg 2x" data-file-width="280" data-file-height="396" /></a></span></div><div class="thumbcaption"><a href="/wiki/Hendrik_Lorentz" title="Hendrik Lorentz">Hendrik Lorentz</a></div></div><div class="tsingle" style="width:147px;max-width:147px"><div class="thumbimage" style="height:195px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/File:Henri_Poincar%C3%A9-2.jpg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/45/Henri_Poincar%C3%A9-2.jpg/145px-Henri_Poincar%C3%A9-2.jpg" decoding="async" width="145" height="195" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/45/Henri_Poincar%C3%A9-2.jpg/218px-Henri_Poincar%C3%A9-2.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/45/Henri_Poincar%C3%A9-2.jpg/290px-Henri_Poincar%C3%A9-2.jpg 2x" data-file-width="371" data-file-height="500" /></a></span></div><div class="thumbcaption"><a href="/wiki/Henri_Poincar%C3%A9" title="Henri Poincaré">Henri Poincaré</a></div></div></div><div class="trow"><div class="tsingle" style="width:140px;max-width:140px"><div class="thumbimage" style="height:195px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/File:Albert_Einstein_(Nobel).png" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/50/Albert_Einstein_%28Nobel%29.png/138px-Albert_Einstein_%28Nobel%29.png" decoding="async" width="138" height="195" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/50/Albert_Einstein_%28Nobel%29.png/207px-Albert_Einstein_%28Nobel%29.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/50/Albert_Einstein_%28Nobel%29.png/276px-Albert_Einstein_%28Nobel%29.png 2x" data-file-width="280" data-file-height="396" /></a></span></div><div class="thumbcaption"><a href="/wiki/Albert_Einstein" title="Albert Einstein">Albert Einstein</a></div></div><div class="tsingle" style="width:148px;max-width:148px"><div class="thumbimage" style="height:195px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/File:Hermann_Minkowski_Portrait.jpg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d3/Hermann_Minkowski_Portrait.jpg/146px-Hermann_Minkowski_Portrait.jpg" decoding="async" width="146" height="196" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d3/Hermann_Minkowski_Portrait.jpg/219px-Hermann_Minkowski_Portrait.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d3/Hermann_Minkowski_Portrait.jpg/292px-Hermann_Minkowski_Portrait.jpg 2x" data-file-width="813" data-file-height="1093" /></a></span></div><div class="thumbcaption"><a href="/wiki/Hermann_Minkowski" title="Hermann Minkowski">Hermann Minkowski</a></div></div></div><div class="trow" style="display:flow-root"><div class="thumbcaption" style="text-align:center">Figure 1-3.</div></div></div></div> <p><a href="/wiki/Henri_Poincar%C3%A9" title="Henri Poincaré">Henri Poincaré</a> was the first to combine space and time into spacetime.<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Miller_19-0" class="reference"><a href="#cite_note-Miller-19"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 73–80, 93–95">: 73–80, 93–95 </span></sup> He argued in 1898 that the simultaneity of two events is a matter of convention.<sup id="cite_ref-Galison2003_20-0" class="reference"><a href="#cite_note-Galison2003-20"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">[</span>note 2<span class="cite-bracket">]</span></a></sup> In 1900, he recognized that Lorentz's "local time" is actually what is indicated by moving clocks by applying an explicitly <i>operational definition</i> of clock synchronization assuming constant light speed.<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">[</span>note 3<span class="cite-bracket">]</span></a></sup> In 1900 and 1904, he suggested the inherent undetectability of the aether by emphasizing the validity of what he called the <a href="/wiki/Principle_of_relativity" title="Principle of relativity">principle of relativity</a>. In 1905/1906<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> he mathematically perfected Lorentz's theory of electrons in order to bring it into accordance with the postulate of relativity. </p><p>While discussing various hypotheses on Lorentz invariant gravitation, he introduced the innovative concept of a 4-dimensional spacetime by defining various <a href="/wiki/Four_vector" class="mw-redirect" title="Four vector">four vectors</a>, namely <a href="/wiki/Four-position" class="mw-redirect" title="Four-position">four-position</a>, <a href="/wiki/Four-velocity" title="Four-velocity">four-velocity</a>, and <a href="/wiki/Four-force" title="Four-force">four-force</a>.<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Walter_25-0" class="reference"><a href="#cite_note-Walter-25"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> He did not pursue the 4-dimensional formalism in subsequent papers, however, stating that this line of research seemed to "entail great pain for limited profit", ultimately concluding "that three-dimensional language seems the best suited to the description of our world".<sup id="cite_ref-Walter_25-1" class="reference"><a href="#cite_note-Walter-25"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> Even as late as 1909, Poincaré continued to describe the dynamical interpretation of the Lorentz transform.<sup id="cite_ref-Pais_17-1" class="reference"><a href="#cite_note-Pais-17"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 163–174">: 163–174 </span></sup> </p><p>In 1905, <a href="/wiki/Albert_Einstein" title="Albert Einstein">Albert Einstein</a> analyzed special relativity in terms of <a href="/wiki/Kinematics" title="Kinematics">kinematics</a> (the study of moving bodies without reference to forces) rather than dynamics. His results were mathematically equivalent to those of Lorentz and Poincaré. He obtained them by recognizing that the entire theory can be built upon two postulates: the principle of relativity and the principle of the constancy of light speed. His work was filled with vivid imagery involving the exchange of light signals between clocks in motion, careful measurements of the lengths of moving rods, and other such examples.<sup id="cite_ref-Einstein1905_26-0" class="reference"><a href="#cite_note-Einstein1905-26"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">[</span>note 4<span class="cite-bracket">]</span></a></sup> </p><p>Einstein in 1905 superseded previous attempts of an <a href="/wiki/Electromagnetic_mass" title="Electromagnetic mass">electromagnetic mass</a>–energy relation by introducing the general <a href="/wiki/Equivalence_of_mass_and_energy" class="mw-redirect" title="Equivalence of mass and energy">equivalence of mass and energy</a>, which was instrumental for his subsequent formulation of the <a href="/wiki/Equivalence_principle" title="Equivalence principle">equivalence principle</a> in 1907, which declares the equivalence of inertial and gravitational mass. By using the mass–energy equivalence, Einstein showed that the gravitational mass of a body is proportional to its energy content, which was one of the early results in developing <a href="/wiki/General_relativity" title="General relativity">general relativity</a>. While it would appear that he did not at first think geometrically about spacetime,<sup id="cite_ref-Schutz_3-1" class="reference"><a href="#cite_note-Schutz-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 219">: 219 </span></sup> in the further development of general relativity, Einstein fully incorporated the spacetime formalism. </p><p>When Einstein published in 1905, another of his competitors, his former mathematics professor <a href="/wiki/Hermann_Minkowski" title="Hermann Minkowski">Hermann Minkowski</a>, had also arrived at most of the basic elements of special relativity. <a href="/wiki/Max_Born" title="Max Born">Max Born</a> recounted a meeting he had made with Minkowski, seeking to be Minkowski's student/collaborator:<sup id="cite_ref-Weinstein_29-0" class="reference"><a href="#cite_note-Weinstein-29"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup> </p> <style data-mw-deduplicate="TemplateStyles:r1244412712">.mw-parser-output .templatequote{overflow:hidden;margin:1em 0;padding:0 32px}.mw-parser-output .templatequotecite{line-height:1.5em;text-align:left;margin-top:0}@media(min-width:500px){.mw-parser-output .templatequotecite{padding-left:1.6em}}</style><blockquote class="templatequote"><p>I went to Cologne, met Minkowski and heard his celebrated lecture 'Space and Time' delivered on 2 September 1908. [...] He told me later that it came to him as a great shock when Einstein published his paper in which the equivalence of the different local times of observers moving relative to each other was pronounced; for he had reached the same conclusions independently but did not publish them because he wished first to work out the mathematical structure in all its splendor. He never made a priority claim and always gave Einstein his full share in the great discovery.</p></blockquote> <p>Minkowski had been concerned with the state of electrodynamics after Michelson's disruptive experiments at least since the summer of 1905, when Minkowski and <a href="/wiki/David_Hilbert" title="David Hilbert">David Hilbert</a> led an advanced seminar attended by notable physicists of the time to study the papers of Lorentz, Poincaré et al. Minkowski saw Einstein's work as an extension of Lorentz's, and was most directly influenced by Poincaré.<sup id="cite_ref-Galison_30-0" class="reference"><a href="#cite_note-Galison-30"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Minkowski_Diagram_from_1908_%27Raum_und_Zeit%27_lecture.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c8/Minkowski_Diagram_from_1908_%27Raum_und_Zeit%27_lecture.jpg/330px-Minkowski_Diagram_from_1908_%27Raum_und_Zeit%27_lecture.jpg" decoding="async" width="330" height="203" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c8/Minkowski_Diagram_from_1908_%27Raum_und_Zeit%27_lecture.jpg/495px-Minkowski_Diagram_from_1908_%27Raum_und_Zeit%27_lecture.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c8/Minkowski_Diagram_from_1908_%27Raum_und_Zeit%27_lecture.jpg/660px-Minkowski_Diagram_from_1908_%27Raum_und_Zeit%27_lecture.jpg 2x" data-file-width="680" data-file-height="418" /></a><figcaption>Figure 1–4. Hand-colored transparency presented by Minkowski in his 1908 <i>Raum und Zeit</i> lecture</figcaption></figure> <p>On 5 November 1907 (a little more than a year before his death), Minkowski introduced his geometric interpretation of spacetime in a lecture to the Göttingen Mathematical society with the title, <i>The Relativity Principle</i> (<i>Das Relativitätsprinzip</i>).<sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">[</span>note 5<span class="cite-bracket">]</span></a></sup> On 21 September 1908, Minkowski presented his talk, <i>Space and Time</i> (<i>Raum und Zeit</i>),<sup id="cite_ref-Minkowski_Raum_und_Zeit_32-0" class="reference"><a href="#cite_note-Minkowski_Raum_und_Zeit-32"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup> to the German Society of Scientists and Physicians. The opening words of <i>Space and Time</i> include Minkowski's statement that "Henceforth, space for itself, and time for itself shall completely reduce to a mere shadow, and only some sort of union of the two shall preserve independence." <i>Space and Time</i> included the first public presentation of spacetime diagrams (Fig. 1-4), and included a remarkable demonstration that the concept of the <i>invariant interval</i> (<a href="#Spacetime_in_special_relativity">discussed below</a>), along with the empirical observation that the speed of light is finite, allows derivation of the entirety of special relativity.<sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">[</span>note 6<span class="cite-bracket">]</span></a></sup> </p><p>The spacetime concept and the Lorentz group are closely connected to certain types of <a href="/wiki/Lie_sphere_geometry" title="Lie sphere geometry">sphere</a>, <a href="/wiki/Hyperbolic_geometry" title="Hyperbolic geometry">hyperbolic</a>, or <a href="/wiki/Conformal_geometry" title="Conformal geometry">conformal geometries</a> and their transformation groups already developed in the 19th century, in which <a href="/wiki/History_of_Lorentz_transformations" title="History of Lorentz transformations">invariant intervals analogous to the spacetime interval</a> are used.<sup id="cite_ref-37" class="reference"><a href="#cite_note-37"><span class="cite-bracket">[</span>note 7<span class="cite-bracket">]</span></a></sup> </p><p>Einstein, for his part, was initially dismissive of Minkowski's geometric interpretation of special relativity, regarding it as <i>überflüssige Gelehrsamkeit</i> (superfluous learnedness). However, in order to complete his search for general relativity that started in 1907, the geometric interpretation of relativity proved to be vital. In 1916, Einstein fully acknowledged his indebtedness to Minkowski, whose interpretation greatly facilitated the transition to general relativity.<sup id="cite_ref-Pais_17-2" class="reference"><a href="#cite_note-Pais-17"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 151–152">: 151–152 </span></sup> Since there are other types of spacetime, such as the curved spacetime of general relativity, the spacetime of special relativity is today known as <i>Minkowski spacetime.</i> </p> <div class="mw-heading mw-heading2"><h2 id="Spacetime_in_special_relativity">Spacetime in special relativity <span class="anchor" id="In_special_relativity"></span></h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spacetime&action=edit&section=4" title="Edit section: Spacetime in special relativity"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Minkowski_spacetime" class="mw-redirect" title="Minkowski spacetime">Minkowski spacetime</a></div> <p><span class="anchor" id="Spacetime_interval"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Spacetime_interval">Spacetime interval</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spacetime&action=edit&section=5" title="Edit section: Spacetime interval"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Causal_structure" title="Causal structure">Causal structure</a></div> <p>In three dimensions, the <i><a href="/wiki/Euclidean_distance" title="Euclidean distance">distance</a></i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta {d}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta {d}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9678438b054b49ae86753fddcd1d3fb56905f02" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.152ex; height:2.176ex;" alt="{\displaystyle \Delta {d}}"></span> between two points can be defined using the <a href="/wiki/Pythagorean_theorem" title="Pythagorean theorem">Pythagorean theorem</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\Delta {d})^{2}=(\Delta {x})^{2}+(\Delta {y})^{2}+(\Delta {z})^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\Delta {d})^{2}=(\Delta {x})^{2}+(\Delta {y})^{2}+(\Delta {z})^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ac3271a65f22e02097c096c0b2b7422c5f09d8a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:32.766ex; height:3.176ex;" alt="{\displaystyle (\Delta {d})^{2}=(\Delta {x})^{2}+(\Delta {y})^{2}+(\Delta {z})^{2}}"></span></dd></dl> <p>Although two viewers may measure the <i>x</i>, <i>y</i>, and <i>z</i> position of the two points using different coordinate systems, the distance between the points will be the same for both, assuming that they are measuring using the same units. The distance is "invariant". </p><p>In special relativity, however, the distance between two points is no longer the same if measured by two different observers, when one of the observers is moving, because of <a href="/wiki/Lorentz_contraction" class="mw-redirect" title="Lorentz contraction">Lorentz contraction</a>. The situation is even more complicated if the two points are separated in time as well as in space. For example, if one observer sees two events occur at the same place, but at different times, a person moving with respect to the first observer will see the two events occurring at different places, because the moving point of view sees itself as stationary, and the position of the event as receding or approaching. Thus, a different measure must be used to measure the effective "distance" between two events.<sup id="cite_ref-Kogut_2001_38-0" class="reference"><a href="#cite_note-Kogut_2001-38"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 48–50, 100–102">: 48–50, 100–102 </span></sup> </p><p>In four-dimensional spacetime, the analog to distance is the interval. Although time comes in as a fourth dimension, it is treated differently than the spatial dimensions. Minkowski space hence differs in important respects from <a href="/wiki/Four-dimensional_space" title="Four-dimensional space">four-dimensional Euclidean space</a>. The fundamental reason for merging space and time into spacetime is that space and time are separately not invariant, which is to say that, under the proper conditions, different observers will disagree on the length of time between two <a href="/wiki/Event_(relativity)" title="Event (relativity)">events</a> (because of <a href="/wiki/Time_dilation" title="Time dilation">time dilation</a>) or the distance between the two events (because of <a href="/wiki/Length_contraction" title="Length contraction">length contraction</a>). Special relativity provides a new invariant, called the <b>spacetime interval</b>, which combines distances in space and in time. All observers who measure the time and distance between any two events will end up computing the same spacetime interval. Suppose an observer measures two events as being separated in time by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c28867ecd34e2caed12cf38feadf6a81a7ee542" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.775ex; height:2.176ex;" alt="{\displaystyle \Delta t}"></span> and a spatial distance <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta x.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta x.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/be3b6f50db83212b4a2359c6b9339be3cf1a93e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.912ex; height:2.176ex;" alt="{\displaystyle \Delta x.}"></span> Then the squared spacetime interval <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\Delta {s})^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\Delta {s})^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/28dafa371298280ba0fc2780b2df5edbb4d4ac6b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.89ex; height:3.176ex;" alt="{\displaystyle (\Delta {s})^{2}}"></span> between the two events that are separated by a distance <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta {x}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta {x}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0687a91dc6db711eea0094a2a7325e3dc0031f72" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.266ex; height:2.176ex;" alt="{\displaystyle \Delta {x}}"></span> in space and by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta {ct}=c\Delta t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mi>t</mi> </mrow> <mo>=</mo> <mi>c</mi> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta {ct}=c\Delta t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e97cb0b8a0ef51e380e1bafe9a8d58c47dbbab36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.663ex; height:2.176ex;" alt="{\displaystyle \Delta {ct}=c\Delta t}"></span> in the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ct}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ct}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72479bb6f1dc1b592b57dd9fed06d5f50030a804" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.846ex; height:2.009ex;" alt="{\displaystyle ct}"></span>-coordinate is:<sup id="cite_ref-D'Inverno_1002_39-0" class="reference"><a href="#cite_note-D'Inverno_1002-39"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\Delta s)^{2}=(\Delta ct)^{2}-(\Delta x)^{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>s</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>c</mi> <mi>t</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\Delta s)^{2}=(\Delta ct)^{2}-(\Delta x)^{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/915eda1718dfc846fae9e13dfb87521c694e9c75" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.251ex; height:3.176ex;" alt="{\displaystyle (\Delta s)^{2}=(\Delta ct)^{2}-(\Delta x)^{2},}"></span></dd></dl> <p>or for three space dimensions, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\Delta s)^{2}=(\Delta ct)^{2}-(\Delta x)^{2}-(\Delta y)^{2}-(\Delta z)^{2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>s</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>c</mi> <mi>t</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>y</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\Delta s)^{2}=(\Delta ct)^{2}-(\Delta x)^{2}-(\Delta y)^{2}-(\Delta z)^{2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4c325c3ef7af5bf6c83de6d76d7e22573140624" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:42.774ex; height:3.176ex;" alt="{\displaystyle (\Delta s)^{2}=(\Delta ct)^{2}-(\Delta x)^{2}-(\Delta y)^{2}-(\Delta z)^{2}.}"></span></dd></dl> <p>The constant <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae5e8f9eb465084d3a00a24026b80652b74ef58e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.654ex; height:2.009ex;" alt="{\displaystyle c,}"></span> the speed of light, converts time <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span> units (like seconds) into space units (like meters). The squared interval <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta s^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta s^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d76e6fc5f1353a997222afbf3f50f1e57731a17" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.081ex; height:2.676ex;" alt="{\displaystyle \Delta s^{2}}"></span> is a measure of separation between events A and B that are time separated and in addition space separated either because there are two separate objects undergoing events, or because a single object in space is moving inertially between its events. The separation interval is the difference between the square of the spatial distance separating event B from event A and the square of the spatial distance traveled by a light signal in that same time interval <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c28867ecd34e2caed12cf38feadf6a81a7ee542" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.775ex; height:2.176ex;" alt="{\displaystyle \Delta t}"></span>. If the event separation is due to a light signal, then this difference vanishes and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta s=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>s</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta s=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41e8be6b5d820d42e03b08677c538d8464f49328" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.287ex; height:2.176ex;" alt="{\displaystyle \Delta s=0}"></span>. </p><p>When the event considered is infinitesimally close to each other, then we may write </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ds^{2}=c^{2}dt^{2}-dx^{2}-dy^{2}-dz^{2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>d</mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mi>d</mi> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mi>d</mi> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ds^{2}=c^{2}dt^{2}-dx^{2}-dy^{2}-dz^{2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aa75a5b7123081b4b9be6bfe0340d0b4ae8bfec0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:31.189ex; height:3.009ex;" alt="{\displaystyle ds^{2}=c^{2}dt^{2}-dx^{2}-dy^{2}-dz^{2}.}"></span></dd></dl> <p>In a different inertial frame, say with coordinates <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (t',x',y',z')}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msup> <mi>t</mi> <mo>′</mo> </msup> <mo>,</mo> <msup> <mi>x</mi> <mo>′</mo> </msup> <mo>,</mo> <msup> <mi>y</mi> <mo>′</mo> </msup> <mo>,</mo> <msup> <mi>z</mi> <mo>′</mo> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (t',x',y',z')}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0570a0199bfae73e0e14346ad593034c49540343" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.07ex; height:3.009ex;" alt="{\displaystyle (t',x',y',z')}"></span>, the spacetime interval <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ds'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <msup> <mi>s</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ds'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce50b62a45f76307b0e69bd7f94b64088d977439" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.991ex; height:2.509ex;" alt="{\displaystyle ds'}"></span> can be written in a same form as above. Because of the constancy of speed of light, the light events in all inertial frames belong to zero interval, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ds=ds'=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mi>s</mi> <mo>=</mo> <mi>d</mi> <msup> <mi>s</mi> <mo>′</mo> </msup> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ds=ds'=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fab8b16a9c1c34c6a38587881eb49c77363866c9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:12.657ex; height:2.509ex;" alt="{\displaystyle ds=ds'=0}"></span>. For any other infinitesimal event where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ds\neq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mi>s</mi> <mo>≠<!-- ≠ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ds\neq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d53ca093dff568584d3550bd6c6739b67b6baba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.567ex; height:2.676ex;" alt="{\displaystyle ds\neq 0}"></span>, one can prove that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ds^{2}=ds'^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mi>d</mi> <msup> <mi>s</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ds^{2}=ds'^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/61f30f90c8387f27856b470858e051b8f3007471" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.272ex; height:2.676ex;" alt="{\displaystyle ds^{2}=ds'^{2}}"></span> which in turn upon integration leads to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s=s'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>=</mo> <msup> <mi>s</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s=s'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/13204863dd8c3e7375c6d96b55b9175c42862ef8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.964ex; height:2.509ex;" alt="{\displaystyle s=s'}"></span>.<sup id="cite_ref-40" class="reference"><a href="#cite_note-40"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 2">: 2 </span></sup> The invariance of the spacetime interval between the same events for all inertial frames of reference is one of the fundamental results of special theory of relativity. </p><p>Although for brevity, one frequently sees interval expressions expressed without deltas, including in most of the following discussion, it should be understood that in general, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> means <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta {x}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta {x}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0687a91dc6db711eea0094a2a7325e3dc0031f72" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.266ex; height:2.176ex;" alt="{\displaystyle \Delta {x}}"></span>, etc. We are always concerned with <i>differences</i> of spatial or temporal coordinate values belonging to two events, and since there is no preferred origin, single coordinate values have no essential meaning. </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Spacetime_Diagram_of_Two_Photons_and_a_Slower_than_Light_Object.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a8/Spacetime_Diagram_of_Two_Photons_and_a_Slower_than_Light_Object.png/220px-Spacetime_Diagram_of_Two_Photons_and_a_Slower_than_Light_Object.png" decoding="async" width="220" height="219" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/a/a8/Spacetime_Diagram_of_Two_Photons_and_a_Slower_than_Light_Object.png 1.5x" data-file-width="297" data-file-height="295" /></a><figcaption>Figure 2–1. Spacetime diagram illustrating two photons, A and B, originating at the same event, and a slower-than-light-speed object, C</figcaption></figure> <p>The equation above is similar to the Pythagorean theorem, except with a minus sign between the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (ct)^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>c</mi> <mi>t</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (ct)^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e1d0396fbe39ceb81d7543a05f2de8ad43c1757" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.71ex; height:3.176ex;" alt="{\displaystyle (ct)^{2}}"></span> and the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf0bf28fd28f45d07e1ceb909ce333c18c558c93" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.384ex; height:2.676ex;" alt="{\displaystyle x^{2}}"></span> terms. The spacetime interval is the quantity <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s^{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s^{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a76b5ce071235358cb822d06e732404537e6f2f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.792ex; height:3.009ex;" alt="{\displaystyle s^{2},}"></span> not <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01d131dfd7673938b947072a13a9744fe997e632" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:1.676ex;" alt="{\displaystyle s}"></span> itself. The reason is that unlike distances in Euclidean geometry, intervals in Minkowski spacetime can be negative. Rather than deal with square roots of negative numbers, physicists customarily regard <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/58d7841cee3671436949ee789b84a848fd150bd3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.145ex; height:2.676ex;" alt="{\displaystyle s^{2}}"></span> as a distinct symbol in itself, rather than the square of something.<sup id="cite_ref-Schutz_3-2" class="reference"><a href="#cite_note-Schutz-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 217">: 217 </span></sup> </p> <dl><dd><b>Note:</b> There are two sign conventions in use in the relativity literature: <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s^{2}=(ct)^{2}-x^{2}-y^{2}-z^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mo stretchy="false">(</mo> <mi>c</mi> <mi>t</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s^{2}=(ct)^{2}-x^{2}-y^{2}-z^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f23925b5cf46cde030d50e5b651f10a0e7764b25" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.218ex; height:3.176ex;" alt="{\displaystyle s^{2}=(ct)^{2}-x^{2}-y^{2}-z^{2}}"></span></dd></dl></dd> <dd>and <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s^{2}=-(ct)^{2}+x^{2}+y^{2}+z^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mi>c</mi> <mi>t</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s^{2}=-(ct)^{2}+x^{2}+y^{2}+z^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/baf5cd9cd6f86a2e3d940e13185a063104285ad7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.026ex; height:3.176ex;" alt="{\displaystyle s^{2}=-(ct)^{2}+x^{2}+y^{2}+z^{2}}"></span></dd></dl></dd> <dd>These sign conventions are associated with the <a href="/wiki/Metric_signature" title="Metric signature">metric signatures</a> <span class="nowrap">(+−−−)</span> and <span class="nowrap">(−+++).</span> A minor variation is to place the time coordinate last rather than first. Both conventions are widely used within the field of study.<sup id="cite_ref-Carroll_2022_41-0" class="reference"><a href="#cite_note-Carroll_2022-41"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup></dd> <dd>In the following discussion, we use the first convention.</dd></dl> <p>In general <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/58d7841cee3671436949ee789b84a848fd150bd3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.145ex; height:2.676ex;" alt="{\displaystyle s^{2}}"></span> can assume any real number value. If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/58d7841cee3671436949ee789b84a848fd150bd3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.145ex; height:2.676ex;" alt="{\displaystyle s^{2}}"></span> is positive, the spacetime interval is referred to as <b>timelike</b>. Since spatial distance traversed by any massive object is always less than distance traveled by the light for the same time interval, positive intervals are always timelike. If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/58d7841cee3671436949ee789b84a848fd150bd3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.145ex; height:2.676ex;" alt="{\displaystyle s^{2}}"></span> is negative, the spacetime interval is said to be <b>spacelike</b>. Spacetime intervals are equal to zero when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=\pm ct.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mo>±<!-- ± --></mo> <mi>c</mi> <mi>t</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=\pm ct.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a1181bf709d0ecb402322b70ffa1c03e23fd62c7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.73ex; height:2.176ex;" alt="{\displaystyle x=\pm ct.}"></span> In other words, the spacetime interval between two events on the world line of something moving at the speed of light is zero. Such an interval is termed <b>lightlike</b> or <b>null</b>. A photon arriving in our eye from a distant star will not have aged, despite having (from our perspective) spent years in its passage.<sup id="cite_ref-Kogut_2001_38-1" class="reference"><a href="#cite_note-Kogut_2001-38"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 48–50">: 48–50 </span></sup> </p><p>A spacetime diagram is typically drawn with only a single space and a single time coordinate. Fig. 2-1 presents a spacetime diagram illustrating the <a href="/wiki/World_lines" class="mw-redirect" title="World lines">world lines</a> (i.e. paths in spacetime) of two photons, A and B, originating from the same event and going in opposite directions. In addition, C illustrates the world line of a slower-than-light-speed object. The vertical time coordinate is scaled by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span> so that it has the same units (meters) as the horizontal space coordinate. Since photons travel at the speed of light, their world lines have a slope of ±1.<sup id="cite_ref-Kogut_2001_38-2" class="reference"><a href="#cite_note-Kogut_2001-38"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 23–25">: 23–25 </span></sup> In other words, every meter that a photon travels to the left or right requires approximately 3.3 nanoseconds of time. </p><p><span class="anchor" id="Reference_frames"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Reference_frames">Reference frames</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spacetime&action=edit&section=6" title="Edit section: Reference frames"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1251242444">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><table class="box-More_citations_needed_section plainlinks metadata ambox ambox-content ambox-Refimprove" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Question_book-new.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/50px-Question_book-new.svg.png" decoding="async" width="50" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/75px-Question_book-new.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/100px-Question_book-new.svg.png 2x" data-file-width="512" data-file-height="399" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">This section <b>needs additional citations for <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">verification</a></b>.<span class="hide-when-compact"> Please help <a href="/wiki/Special:EditPage/Spacetime" title="Special:EditPage/Spacetime">improve this article</a> by <a href="/wiki/Help:Referencing_for_beginners" title="Help:Referencing for beginners">adding citations to reliable sources</a> in this section. Unsourced material may be challenged and removed.</span> <span class="date-container"><i>(<span class="date">March 2024</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Standard_configuration_of_coordinate_systems.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a0/Standard_configuration_of_coordinate_systems.svg/220px-Standard_configuration_of_coordinate_systems.svg.png" decoding="async" width="220" height="189" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a0/Standard_configuration_of_coordinate_systems.svg/330px-Standard_configuration_of_coordinate_systems.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a0/Standard_configuration_of_coordinate_systems.svg/440px-Standard_configuration_of_coordinate_systems.svg.png 2x" data-file-width="416" data-file-height="357" /></a><figcaption>Figure 2-2. Galilean diagram of two frames of reference in standard configuration</figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Galilean_and_Spacetime_coordinate_transformations.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8f/Galilean_and_Spacetime_coordinate_transformations.png/330px-Galilean_and_Spacetime_coordinate_transformations.png" decoding="async" width="330" height="229" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8f/Galilean_and_Spacetime_coordinate_transformations.png/495px-Galilean_and_Spacetime_coordinate_transformations.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8f/Galilean_and_Spacetime_coordinate_transformations.png/660px-Galilean_and_Spacetime_coordinate_transformations.png 2x" data-file-width="730" data-file-height="507" /></a><figcaption>Figure 2–3. (a) Galilean diagram of two frames of reference in standard configuration, (b) spacetime diagram of two frames of reference, (c) spacetime diagram showing the path of a reflected light pulse</figcaption></figure> <p>To gain insight in how spacetime coordinates measured by observers in different <a href="/wiki/Inertial_frame_of_reference" title="Inertial frame of reference">reference frames</a> compare with each other, it is useful to work with a simplified setup with frames in a <i>standard configuration.</i> With care, this allows simplification of the math with no loss of generality in the conclusions that are reached. In Fig. 2-2, two <a href="/wiki/Galilean_reference_frame" class="mw-redirect" title="Galilean reference frame">Galilean reference frames</a> (i.e. conventional 3-space frames) are displayed in relative motion. Frame S belongs to a first observer O, and frame S′ (pronounced "S prime") belongs to a second observer O′. </p> <ul><li>The <i>x</i>, <i>y</i>, <i>z</i> axes of frame S are oriented parallel to the respective primed axes of frame S′.</li> <li>Frame S′ moves in the <i>x</i>-direction of frame S with a constant velocity <i>v</i> as measured in frame S.</li> <li>The origins of frames S and S′ are coincident when time <i>t</i> = 0 for frame S and <i>t</i>′ = 0 for frame S′.<sup id="cite_ref-Collier_6-1" class="reference"><a href="#cite_note-Collier-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 107">: 107 </span></sup></li></ul> <p>Fig. 2-3a redraws Fig. 2-2 in a different orientation. Fig. 2-3b illustrates a <i>relativistic</i> spacetime diagram from the viewpoint of observer O. Since S and S′ are in standard configuration, their origins coincide at times <i>t</i> = 0 in frame S and <i>t</i>′ = 0 in frame S′. The <i>ct</i>′ axis passes through the events in frame S′ which have <i>x</i>′ = 0. But the points with <i>x</i>′ = 0 are moving in the <i>x</i>-direction of frame S with velocity <i>v</i>, so that they are not coincident with the <i>ct</i> axis at any time other than zero. Therefore, the <i>ct</i>′ axis is tilted with respect to the <i>ct</i> axis by an angle <i>θ</i> given by<sup id="cite_ref-Kogut_2001_38-3" class="reference"><a href="#cite_note-Kogut_2001-38"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 23–31">: 23–31 </span></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tan(\theta )=v/c.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tan</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>θ<!-- θ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>c</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tan(\theta )=v/c.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/97f2d1070dc4206eb995c29c0ae710b2342c20e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.302ex; height:2.843ex;" alt="{\displaystyle \tan(\theta )=v/c.}"></span></dd></dl> <p>The <i>x</i>′ axis is also tilted with respect to the <i>x</i> axis. To determine the angle of this tilt, we recall that the slope of the world line of a light pulse is always ±1. Fig. 2-3c presents a spacetime diagram from the viewpoint of observer O′. Event P represents the emission of a light pulse at <i>x</i>′ = 0, <i>ct</i>′ = −<i>a</i>. The pulse is reflected from a mirror situated a distance <i>a</i> from the light source (event Q), and returns to the light source at <i>x</i>′ = 0, <i>ct</i>′ = <i>a</i> (event R). </p><p>The same events P, Q, R are plotted in Fig. 2-3b in the frame of observer O. The light paths have slopes = 1 and −1, so that △PQR forms a right triangle with PQ and QR both at 45 degrees to the <i>x</i> and <i>ct</i> axes. Since OP = OQ = OR, the angle between <i>x</i>′ and <i>x</i> must also be <i>θ</i>.<sup id="cite_ref-Collier_6-2" class="reference"><a href="#cite_note-Collier-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 113–118">: 113–118 </span></sup> </p><p>While the rest frame has space and time axes that meet at right angles, the moving frame is drawn with axes that meet at an acute angle. The frames are actually equivalent.<sup id="cite_ref-Kogut_2001_38-4" class="reference"><a href="#cite_note-Kogut_2001-38"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 23–31">: 23–31 </span></sup> The asymmetry is due to unavoidable distortions in how spacetime coordinates can map onto a <a href="/wiki/Cartesian_plane" class="mw-redirect" title="Cartesian plane">Cartesian plane</a>, and should be considered no stranger than the manner in which, on a <a href="/wiki/Mercator_projection" title="Mercator projection">Mercator projection</a> of the Earth, the relative sizes of land masses near the poles (Greenland and Antarctica) are highly exaggerated relative to land masses near the Equator. </p><p><span class="anchor" id="Light_cone"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Light_cone">Light cone</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spacetime&action=edit&section=7" title="Edit section: Light cone"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Light_cone" title="Light cone">light cone</a></div> <p><span class="anchor" id="Figure_2-4"></span> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:ModernPhysicsSpaceTimeA.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/dc/ModernPhysicsSpaceTimeA.png/220px-ModernPhysicsSpaceTimeA.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/dc/ModernPhysicsSpaceTimeA.png/330px-ModernPhysicsSpaceTimeA.png 1.5x, //upload.wikimedia.org/wikipedia/commons/d/dc/ModernPhysicsSpaceTimeA.png 2x" data-file-width="343" data-file-height="343" /></a><figcaption>Figure 2–4. The light cone centered on an event divides the rest of spacetime into the future, the past, and "elsewhere"</figcaption></figure> <p>In Fig. 2–4, event O is at the origin of a spacetime diagram, and the two diagonal lines represent all events that have zero spacetime interval with respect to the origin event. These two lines form what is called the <i>light cone</i> of the event O, since adding a second spatial dimension (Fig. 2-5) makes the appearance that of two <a href="/wiki/Cone" title="Cone">right circular cones</a> meeting with their apices at O. One cone extends into the <a href="/wiki/Future" title="Future">future</a> (t>0), the other into the <a href="/wiki/Past" title="Past">past</a> (t<0). </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:World_line.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/9a/World_line.png/220px-World_line.png" decoding="async" width="220" height="214" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/9a/World_line.png/330px-World_line.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/9a/World_line.png/440px-World_line.png 2x" data-file-width="477" data-file-height="464" /></a><figcaption>Figure 2–5. Light cone in 2D space plus a time dimension</figcaption></figure> <p>A light (double) cone divides spacetime into separate regions with respect to its apex. The interior of the future light cone consists of all events that are separated from the apex by more <i>time</i> (temporal distance) than necessary to cross their <i>spatial distance</i> at lightspeed; these events comprise the <i>timelike future</i> of the event O. Likewise, the <i>timelike past</i> comprises the interior events of the past light cone. So in <i>timelike intervals</i> Δ<i>ct</i> is greater than Δ<i>x</i>, making timelike intervals positive.<sup id="cite_ref-Schutz_3-3" class="reference"><a href="#cite_note-Schutz-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 220">: 220 </span></sup> </p><p>The region exterior to the light cone consists of events that are separated from the event O by more <i>space</i> than can be crossed at lightspeed in the given <i>time</i>. These events comprise the so-called <i>spacelike</i> region of the event O, denoted "Elsewhere" in Fig. 2-4. Events on the light cone itself are said to be <i>lightlike</i> (or <i>null separated</i>) from O. Because of the invariance of the spacetime interval, all observers will assign the same light cone to any given event, and thus will agree on this division of spacetime.<sup id="cite_ref-Schutz_3-4" class="reference"><a href="#cite_note-Schutz-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 220">: 220 </span></sup> </p><p>The light cone has an essential role within the concept of <a href="/wiki/Causality" title="Causality">causality</a>. It is possible for a not-faster-than-light-speed signal to travel from the position and time of O to the position and time of D (Fig. 2-4). It is hence possible for event O to have a causal influence on event D. The future light cone contains all the events that could be causally influenced by O. Likewise, it is possible for a not-faster-than-light-speed signal to travel from the position and time of A, to the position and time of O. The past light cone contains all the events that could have a causal influence on O. In contrast, assuming that signals cannot travel faster than the speed of light, any event, like e.g. B or C, in the spacelike region (Elsewhere), cannot either affect event O, nor can they be affected by event O employing such signalling. Under this assumption any causal relationship between event O and any events in the spacelike region of a light cone is excluded.<sup id="cite_ref-42" class="reference"><a href="#cite_note-42"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup> </p><p><span class="anchor" id="Relativity_of_simultaneity"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Relativity_of_simultaneity">Relativity of simultaneity</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spacetime&action=edit&section=8" title="Edit section: Relativity of simultaneity"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><span class="anchor" id="Figure_2-6"></span> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Relativity_of_Simultaneity_Animation.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/78/Relativity_of_Simultaneity_Animation.gif/220px-Relativity_of_Simultaneity_Animation.gif" decoding="async" width="220" height="237" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/78/Relativity_of_Simultaneity_Animation.gif/330px-Relativity_of_Simultaneity_Animation.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/7/78/Relativity_of_Simultaneity_Animation.gif 2x" data-file-width="400" data-file-height="430" /></a><figcaption>Figure 2–6. Animation illustrating relativity of simultaneity</figcaption></figure> <p>All observers will agree that for any given event, an event within the given event's future light cone occurs <i>after</i> the given event. Likewise, for any given event, an event within the given event's past light cone occurs <i>before</i> the given event. The before–after relationship observed for timelike-separated events remains unchanged no matter what the <a href="/wiki/Frame_of_reference" title="Frame of reference">reference frame</a> of the observer, i.e. no matter how the observer may be moving. The situation is quite different for spacelike-separated events. <a href="#Figure_2-4"><b>Fig. 2-4</b></a> was drawn from the reference frame of an observer moving at <span class="nowrap"><i>v</i> = 0.</span> From this reference frame, event C is observed to occur after event O, and event B is observed to occur before event O.<sup id="cite_ref-plato.stanford.edu_43-0" class="reference"><a href="#cite_note-plato.stanford.edu-43"><span class="cite-bracket">[</span>36<span class="cite-bracket">]</span></a></sup> </p><p>From a different reference frame, the orderings of these non-causally-related events can be reversed. In particular, one notes that if two events are simultaneous in a particular reference frame, they are <i>necessarily</i> separated by a spacelike interval and thus are noncausally related. The observation that simultaneity is not absolute, but depends on the observer's reference frame, is termed the <a href="/wiki/Relativity_of_simultaneity" title="Relativity of simultaneity">relativity of simultaneity</a>.<sup id="cite_ref-plato.stanford.edu_43-1" class="reference"><a href="#cite_note-plato.stanford.edu-43"><span class="cite-bracket">[</span>36<span class="cite-bracket">]</span></a></sup> </p><p>Fig. 2-6 illustrates the use of spacetime diagrams in the analysis of the relativity of simultaneity. The events in spacetime are invariant, but the coordinate frames transform as discussed above for Fig. 2-3. The three events <span class="nowrap">(A, B, C)</span> are simultaneous from the reference frame of an observer moving at <span class="nowrap"><i>v</i> = 0.</span> From the reference frame of an observer moving at <span class="nowrap"><i>v</i> = 0.3<i>c</i>,</span> the events appear to occur in the order <span class="nowrap">C, B, A.</span> From the reference frame of an observer moving at <span class="nowrap"><i>v</i> = −0.5<i>c</i></span>, the events appear to occur in the order <span class="nowrap">A, B, C</span>. The white line represents a <i>plane of simultaneity</i> being moved from the past of the observer to the future of the observer, highlighting events residing on it. The gray area is the light cone of the observer, which remains invariant. </p><p>A spacelike spacetime interval gives the same distance that an observer would measure if the events being measured were simultaneous to the observer. A spacelike spacetime interval hence provides a measure of <i>proper distance</i>, i.e. the true distance = <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {-s^{2}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo>−<!-- − --></mo> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {-s^{2}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b0e96645683ca539b6157677cb33912fd6952f31" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.923ex; height:3.509ex;" alt="{\displaystyle {\sqrt {-s^{2}}}.}"></span> Likewise, a timelike spacetime interval gives the same measure of time as would be presented by the cumulative ticking of a clock that moves along a given world line. A timelike spacetime interval hence provides a measure of the <i>proper time</i> = <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {s^{2}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {s^{2}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a3c93b5c7b78291a528e551cf5f646ed15c3b195" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.115ex; height:3.343ex;" alt="{\displaystyle {\sqrt {s^{2}}}.}"></span><sup id="cite_ref-Schutz_3-5" class="reference"><a href="#cite_note-Schutz-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 220–221">: 220–221 </span></sup> </p><p><span class="anchor" id="Invariant_hyperbola"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Invariant_hyperbola">Invariant hyperbola</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spacetime&action=edit&section=9" title="Edit section: Invariant hyperbola"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1251242444"><table class="box-More_citations_needed_section plainlinks metadata ambox ambox-content ambox-Refimprove" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Question_book-new.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/50px-Question_book-new.svg.png" decoding="async" width="50" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/75px-Question_book-new.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/100px-Question_book-new.svg.png 2x" data-file-width="512" data-file-height="399" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">This section <b>needs additional citations for <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">verification</a></b>.<span class="hide-when-compact"> Please help <a href="/wiki/Special:EditPage/Spacetime" title="Special:EditPage/Spacetime">improve this article</a> by <a href="/wiki/Help:Referencing_for_beginners" title="Help:Referencing for beginners">adding citations to reliable sources</a> in this section. Unsourced material may be challenged and removed.</span> <span class="date-container"><i>(<span class="date">March 2024</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <p><span class="anchor" id="Spacelike_and_Timelike_Invariant_Hyperbolas"></span> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Spacelike_and_Timelike_Invariant_Hyperbolas.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/29/Spacelike_and_Timelike_Invariant_Hyperbolas.png/330px-Spacelike_and_Timelike_Invariant_Hyperbolas.png" decoding="async" width="330" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/29/Spacelike_and_Timelike_Invariant_Hyperbolas.png/495px-Spacelike_and_Timelike_Invariant_Hyperbolas.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/29/Spacelike_and_Timelike_Invariant_Hyperbolas.png/660px-Spacelike_and_Timelike_Invariant_Hyperbolas.png 2x" data-file-width="900" data-file-height="600" /></a><figcaption>Figure 2–7. (a) Families of invariant hyperbolae, (b) Hyperboloids of two sheets and one sheet</figcaption></figure> <p>In Euclidean space (having spatial dimensions only), the set of points equidistant (using the Euclidean metric) from some point form a circle (in two dimensions) or a sphere (in three dimensions). In <span class="nowrap">(1+1)-dimensional</span> Minkowski spacetime (having one temporal and one spatial dimension), the points at some constant spacetime interval away from the origin (using the Minkowski metric) form curves given by the two equations </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (ct)^{2}-x^{2}=\pm s^{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>c</mi> <mi>t</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mo>±<!-- ± --></mo> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (ct)^{2}-x^{2}=\pm s^{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f3c59e31f477559e589190b850f86dd03046692" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.632ex; height:3.176ex;" alt="{\displaystyle (ct)^{2}-x^{2}=\pm s^{2},}"></span></dd></dl> <p>with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/58d7841cee3671436949ee789b84a848fd150bd3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.145ex; height:2.676ex;" alt="{\displaystyle s^{2}}"></span>some positive real constant. These equations describe two families of hyperbolae in an <i>x</i>–<i>ct</i> spacetime diagram, which are termed <i>invariant hyperbolae</i>. </p><p>In Fig. 2-7a, each magenta hyperbola connects all events having some fixed spacelike separation from the origin, while the green hyperbolae connect events of equal timelike separation. </p><p>The magenta hyperbolae, which cross the <i>x</i> axis, are timelike curves, which is to say that these hyperbolae represent actual paths that can be traversed by (constantly accelerating) particles in spacetime: Between any two events on one hyperbola a causality relation is possible, because the inverse of the slope—representing the necessary speed—for all secants is less than <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span>. On the other hand, the green hyperbolae, which cross the <i>ct</i> axis, are spacelike curves because all intervals <i>along</i> these hyperbolae are spacelike intervals: No causality is possible between any two points on one of these hyperbolae, because all secants represent speeds larger than <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span>. </p><p>Fig. 2-7b reflects the situation in <span class="nowrap">(1+2)-dimensional</span> Minkowski spacetime (one temporal and two spatial dimensions) with the corresponding hyperboloids. The invariant hyperbolae displaced by spacelike intervals from the origin generate <a href="/wiki/Hyperboloid" title="Hyperboloid">hyperboloids</a> of one sheet, while the invariant hyperbolae displaced by timelike intervals from the origin generate hyperboloids of two sheets. </p><p>The (1+2)-dimensional boundary between space- and time-like hyperboloids, established by the events forming a zero spacetime interval to the origin, is made up by degenerating the hyperboloids to the light cone. In (1+1)-dimensions the hyperbolae degenerate to the two grey 45°-lines depicted in Fig. 2-7a. </p><p><span class="anchor" id="Time_dilation_and_length_contraction"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Time_dilation_and_length_contraction">Time dilation and length contraction</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spacetime&action=edit&section=10" title="Edit section: Time dilation and length contraction"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Spacetime_diagram_of_invariant_hyperbola.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/09/Spacetime_diagram_of_invariant_hyperbola.png/220px-Spacetime_diagram_of_invariant_hyperbola.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/09/Spacetime_diagram_of_invariant_hyperbola.png/330px-Spacetime_diagram_of_invariant_hyperbola.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/09/Spacetime_diagram_of_invariant_hyperbola.png/440px-Spacetime_diagram_of_invariant_hyperbola.png 2x" data-file-width="475" data-file-height="475" /></a><figcaption>Figure 2–8. The invariant hyperbola comprises the points that can be reached from the origin in a fixed proper time by clocks traveling at different speeds</figcaption></figure> <p>Fig. 2-8 illustrates the invariant hyperbola for all events that can be reached from the origin in a proper time of 5 meters (approximately <span class="nowrap"><span data-sort-value="6992167000000000000♠"></span>1.67<span style="margin-left:0.25em;margin-right:0.15em;">×</span>10<sup>−8</sup> s</span>). Different world lines represent clocks moving at different speeds. A clock that is stationary with respect to the observer has a world line that is vertical, and the elapsed time measured by the observer is the same as the proper time. For a clock traveling at 0.3 <i>c</i>, the elapsed time measured by the observer is 5.24 meters (<span class="nowrap"><span data-sort-value="6992175000000000000♠"></span>1.75<span style="margin-left:0.25em;margin-right:0.15em;">×</span>10<sup>−8</sup> s</span>), while for a clock traveling at 0.7 <i>c</i>, the elapsed time measured by the observer is 7.00 meters (<span class="nowrap"><span data-sort-value="6992233999999999999♠"></span>2.34<span style="margin-left:0.25em;margin-right:0.15em;">×</span>10<sup>−8</sup> s</span>).<sup id="cite_ref-Schutz_3-6" class="reference"><a href="#cite_note-Schutz-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 220–221">: 220–221 </span></sup> </p><p>This illustrates the phenomenon known as <a href="/wiki/Time_dilation" title="Time dilation">time dilation</a>. Clocks that travel faster take longer (in the observer frame) to tick out the same amount of proper time, and they travel further along the x–axis within that proper time than they would have without time dilation.<sup id="cite_ref-Schutz_3-7" class="reference"><a href="#cite_note-Schutz-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 220–221">: 220–221 </span></sup> The measurement of time dilation by two observers in different inertial reference frames is mutual. If observer O measures the clocks of observer O′ as running slower in his frame, observer O′ in turn will measure the clocks of observer O as running slower. </p><p><span class="anchor" id="Figure_2-9"></span> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Animated_Spacetime_Diagram_-_Length_Contraction.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/85/Animated_Spacetime_Diagram_-_Length_Contraction.gif/220px-Animated_Spacetime_Diagram_-_Length_Contraction.gif" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/8/85/Animated_Spacetime_Diagram_-_Length_Contraction.gif 1.5x" data-file-width="300" data-file-height="300" /></a><figcaption>Figure 2–9. In this spacetime diagram, the 1 m length of the moving rod, as measured in the primed frame, is the foreshortened distance OC when projected onto the unprimed frame.</figcaption></figure> <p><a href="/wiki/Length_contraction" title="Length contraction">Length contraction</a>, like time dilation, is a manifestation of the relativity of simultaneity. Measurement of length requires measurement of the spacetime interval between two events that are simultaneous in one's frame of reference. But events that are simultaneous in one frame of reference are, in general, not simultaneous in other frames of reference. </p><p>Fig. 2-9 illustrates the motions of a 1 m rod that is traveling at 0.5 <i>c</i> along the <i>x</i> axis. The edges of the blue band represent the world lines of the rod's two endpoints. The invariant hyperbola illustrates events separated from the origin by a spacelike interval of 1 m. The endpoints O and B measured when <i>t</i><span class="nowrap" style="padding-left:0.1em;">′</span> = 0 are simultaneous events in the S′ frame. But to an observer in frame S, events O and B are not simultaneous. To measure length, the observer in frame S measures the endpoints of the rod as projected onto the <i>x</i>-axis along their world lines. The projection of the rod's <i>world sheet</i> onto the <i>x</i> axis yields the foreshortened length OC.<sup id="cite_ref-Collier_6-3" class="reference"><a href="#cite_note-Collier-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 125">: 125 </span></sup> </p><p>(not illustrated) Drawing a vertical line through A so that it intersects the <i>x</i>′ axis demonstrates that, even as OB is foreshortened from the point of view of observer O, OA is likewise foreshortened from the point of view of observer O′. In the same way that each observer measures the other's clocks as running slow, each observer measures the other's rulers as being contracted. </p><p>In regards to mutual length contraction, <a href="#Figure_2-9"><b>Fig. 2-9</b></a> illustrates that the primed and unprimed frames are mutually <a href="/wiki/Lorentz_transformation#Coordinate_transformation" title="Lorentz transformation">rotated</a> by a <a href="/wiki/Hyperbolic_angle" title="Hyperbolic angle">hyperbolic angle</a> (analogous to ordinary angles in Euclidean geometry).<sup id="cite_ref-44" class="reference"><a href="#cite_note-44"><span class="cite-bracket">[</span>note 8<span class="cite-bracket">]</span></a></sup> Because of this rotation, the projection of a primed meter-stick onto the unprimed <i>x</i>-axis is foreshortened, while the projection of an unprimed meter-stick onto the primed x′-axis is likewise foreshortened. </p> <div class="mw-heading mw-heading3"><h3 id="Mutual_time_dilation_and_the_twin_paradox">Mutual time dilation and the twin paradox</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spacetime&action=edit&section=11" title="Edit section: Mutual time dilation and the twin paradox"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Twin_paradox" title="Twin paradox">Twin paradox</a></div> <div class="mw-heading mw-heading4"><h4 id="Mutual_time_dilation">Mutual time dilation</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spacetime&action=edit&section=12" title="Edit section: Mutual time dilation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Mutual time dilation and length contraction tend to strike beginners as inherently self-contradictory concepts. If an observer in frame S measures a clock, at rest in frame S', as running slower than his', while S' is moving at speed <i>v</i> in S, then the principle of relativity requires that an observer in frame S' likewise measures a clock in frame S, moving at speed −<i>v</i> in S', as running slower than hers. How two clocks can run <i>both slower</i> than the other, is an important question that "goes to the heart of understanding special relativity."<sup id="cite_ref-Schutz_3-8" class="reference"><a href="#cite_note-Schutz-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 198">: 198 </span></sup> </p><p>This apparent contradiction stems from not correctly taking into account the different settings of the necessary, related measurements. These settings allow for a consistent explanation of the <i>only apparent</i> contradiction. It is not about the abstract ticking of two identical clocks, but about how to measure in one frame the temporal distance of two ticks of a moving clock. It turns out that in mutually observing the duration between ticks of clocks, each moving in the respective frame, different sets of clocks must be involved. In order to measure in frame S the tick duration of a moving clock W′ (at rest in S′), one uses <i>two</i> additional, synchronized clocks W<sub>1</sub> and W<sub>2</sub> at rest in two arbitrarily fixed points in S with the spatial distance <i>d</i>. </p> <dl><dd><small>Two events can be defined by the condition "two clocks are simultaneously at one place", i.e., when W′ passes each W<sub>1</sub> and W<sub>2</sub>. For both events the two readings of the collocated clocks are recorded. The difference of the two readings of W<sub>1</sub> and W<sub>2</sub> is the temporal distance of the two events in S, and their spatial distance is <i>d</i>. The difference of the two readings of W′ is the temporal distance of the two events in S′. In S′ these events are only separated in time, they happen at the same place in S′. Because of the invariance of the spacetime interval spanned by these two events, and the nonzero spatial separation <i>d</i> in S, the temporal distance in S′ must be smaller than the one in S: the <i>smaller</i> temporal distance between the two events, resulting from the readings of the moving clock W′, belongs to the <i>slower</i> running clock W′.</small></dd></dl> <p>Conversely, for judging in frame S′ the temporal distance of two events on a moving clock W (at rest in S), one needs two clocks at rest in S′. </p> <dl><dd><small>In this comparison the clock W is moving by with velocity −<i>v</i>. Recording again the four readings for the events, defined by "two clocks simultaneously at one place", results in the analogous temporal distances of the two events, now temporally and spatially separated in S′, and only temporally separated but collocated in S. To keep the spacetime interval invariant, the temporal distance in S must be smaller than in S′, because of the spatial separation of the events in S′: now clock W is observed to run slower.</small></dd></dl> <p>The necessary recordings for the two judgements, with "one moving clock" and "two clocks at rest" in respectively S or S′, involves two different sets, each with three clocks. Since there are different sets of clocks involved in the measurements, there is no inherent necessity that the measurements be reciprocally "consistent" such that, if one observer measures the moving clock to be slow, the other observer measures the one's clock to be fast.<sup id="cite_ref-Schutz_3-9" class="reference"><a href="#cite_note-Schutz-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 198–199">: 198–199 </span></sup> </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1273380762/mw-parser-output/.tmulti"><div class="thumb tmulti tright"><div class="thumbinner multiimageinner" style="width:242px;max-width:242px"><div class="trow"><div class="tsingle" style="width:240px;max-width:240px"><div class="thumbimage" style="height:238px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/File:Spacetime_Diagrams_of_Mutual_Time_Dilation_B.png" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/96/Spacetime_Diagrams_of_Mutual_Time_Dilation_B.png/238px-Spacetime_Diagrams_of_Mutual_Time_Dilation_B.png" decoding="async" width="238" height="238" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/9/96/Spacetime_Diagrams_of_Mutual_Time_Dilation_B.png 1.5x" data-file-width="300" data-file-height="300" /></a></span></div></div></div><div class="trow"><div class="tsingle" style="width:240px;max-width:240px"><div class="thumbimage" style="height:238px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/File:Spacetime_Diagrams_of_Mutual_Time_Dilation_D.png" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8d/Spacetime_Diagrams_of_Mutual_Time_Dilation_D.png/238px-Spacetime_Diagrams_of_Mutual_Time_Dilation_D.png" decoding="async" width="238" height="238" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/8/8d/Spacetime_Diagrams_of_Mutual_Time_Dilation_D.png 1.5x" data-file-width="300" data-file-height="300" /></a></span></div></div></div><div class="trow" style="display:flex"><div class="thumbcaption">Figure 2-10. Mutual time dilation</div></div></div></div> <p>Fig. 2-10 illustrates the previous discussion of mutual time dilation with <a href="/wiki/Minkowski_diagram" class="mw-redirect" title="Minkowski diagram">Minkowski diagrams</a>. The upper picture reflects the measurements as seen from frame S "at rest" with unprimed, rectangular axes, and frame S′ "moving with <i>v</i> > 0", coordinatized by primed, oblique axes, slanted to the right; the lower picture shows frame S′ "at rest" with primed, rectangular coordinates, and frame S "moving with −<i>v</i> < 0", with unprimed, oblique axes, slanted to the left. </p><p>Each line drawn parallel to a spatial axis (<i>x</i>, <i>x</i>′) represents a line of simultaneity. All events on such a line have the same time value (<i>ct</i>, <i>ct</i>′). Likewise, each line drawn parallel to a temporal axis (<i>ct</i>, <i>ct′</i>) represents a line of equal spatial coordinate values (<i>x</i>, <i>x</i>′). </p> <dl><dd><small>One may designate in both pictures the origin <i>O</i> (= <i>O</i><span class="nowrap" style="padding-left:0.1em;">′</span>) as the event, where the respective "moving clock" is collocated with the "first clock at rest" in both comparisons. Obviously, for this event the readings on both clocks in both comparisons are zero. As a consequence, the worldlines of the moving clocks are the slanted to the right <i>ct</i>′-axis (upper pictures, clock W′) and the slanted to the left <i>ct</i>-axes (lower pictures, clock W). The worldlines of W<sub>1</sub> and W′<sub>1</sub> are the corresponding vertical time axes (<i>ct</i> in the upper pictures, and <i>ct</i>′ in the lower pictures).</small></dd> <dd><small>In the upper picture the place for W<sub>2</sub> is taken to be <i>A<sub>x</sub></i> > 0, and thus the worldline (not shown in the pictures) of this clock intersects the worldline of the moving clock (the <i>ct</i>′-axis) in the event labelled <i>A</i>, where "two clocks are simultaneously at one place". In the lower picture the place for W′<sub>2</sub> is taken to be <i>C</i><sub><i>x</i>′</sub> < 0, and so in this measurement the moving clock W passes W′<sub>2</sub> in the event <i>C</i>.</small></dd> <dd><small>In the upper picture the <i>ct</i>-coordinate <i>A<sub>t</sub></i> of the event <i>A</i> (the reading of W<sub>2</sub>) is labeled <i>B</i>, thus giving the elapsed time between the two events, measured with W<sub>1</sub> and W<sub>2</sub>, as <i>OB</i>. For a comparison, the length of the time interval <i>OA</i>, measured with W′, must be transformed to the scale of the <i>ct</i>-axis. This is done by the invariant hyperbola (see also Fig. 2-8) through <i>A</i>, connecting all events with the same spacetime interval from the origin as <i>A</i>. This yields the event <i>C</i> on the <i>ct</i>-axis, and obviously: <i>OC</i> < <i>OB</i>, the "moving" clock W′ runs slower.</small></dd></dl> <p>To show the mutual time dilation immediately in the upper picture, the event <i>D</i> may be constructed as the event at <i>x</i>′ = 0 (the location of clock W′ in S′), that is simultaneous to <i>C</i> (<i>OC</i> has equal spacetime interval as <i>OA</i>) in S′. This shows that the time interval <i>OD</i> is longer than <i>OA</i>, showing that the "moving" clock runs slower.<sup id="cite_ref-Collier_6-4" class="reference"><a href="#cite_note-Collier-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 124">: 124 </span></sup> </p><p>In the lower picture the frame S is moving with velocity −<i>v</i> in the frame S′ at rest. The worldline of clock W is the <i>ct</i>-axis (slanted to the left), the worldline of W′<sub>1</sub> is the vertical <i>ct</i>′-axis, and the worldline of W′<sub>2</sub> is the vertical through event <i>C</i>, with <i>ct</i>′-coordinate <i>D</i>. The invariant hyperbola through event <i>C</i> scales the time interval <i>OC</i> to <i>OA</i>, which is shorter than <i>OD</i>; also, <i>B</i> is constructed (similar to <i>D</i> in the upper pictures) as simultaneous to <i>A</i> in S, at <i>x</i> = 0. The result <i>OB</i> > <i>OC</i> corresponds again to above. </p><p>The word "measure" is important. In classical physics an observer cannot affect an observed object, but the object's state of motion <i>can</i> affect the observer's <i>observations</i> of the object. </p> <div class="mw-heading mw-heading4"><h4 id="Twin_paradox">Twin paradox</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spacetime&action=edit&section=13" title="Edit section: Twin paradox"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Many introductions to special relativity illustrate the differences between Galilean relativity and special relativity by posing a series of "paradoxes". These paradoxes are, in fact, ill-posed problems, resulting from our unfamiliarity with velocities comparable to the speed of light. The remedy is to solve many problems in special relativity and to become familiar with its so-called counter-intuitive predictions. The geometrical approach to studying spacetime is considered one of the best methods for developing a modern intuition.<sup id="cite_ref-Schutz1985_45-0" class="reference"><a href="#cite_note-Schutz1985-45"><span class="cite-bracket">[</span>37<span class="cite-bracket">]</span></a></sup> </p><p>The <a href="/wiki/Twin_paradox" title="Twin paradox">twin paradox</a> is a <a href="/wiki/Thought_experiment" title="Thought experiment">thought experiment</a> involving identical twins, one of whom makes a journey into space in a high-speed rocket, returning home to find that the twin who remained on Earth has aged more. This result appears puzzling because each twin observes the other twin as moving, and so at first glance, it would appear that each should find the other to have aged less. The twin paradox sidesteps the justification for mutual time dilation presented above by avoiding the requirement for a third clock.<sup id="cite_ref-Schutz_3-10" class="reference"><a href="#cite_note-Schutz-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 207">: 207 </span></sup> Nevertheless, the <i>twin paradox</i> is not a true paradox because it is easily understood within the context of special relativity. </p><p>The impression that a paradox exists stems from a misunderstanding of what special relativity states. Special relativity does not declare all frames of reference to be equivalent, only inertial frames. The traveling twin's frame is not inertial during periods when she is accelerating. Furthermore, the difference between the twins is observationally detectable: the traveling twin needs to fire her rockets to be able to return home, while the stay-at-home twin does not.<sup id="cite_ref-Weiss_46-0" class="reference"><a href="#cite_note-Weiss-46"><span class="cite-bracket">[</span>38<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-47" class="reference"><a href="#cite_note-47"><span class="cite-bracket">[</span>note 9<span class="cite-bracket">]</span></a></sup> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Introductory_Physics_fig_4.9.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f4/Introductory_Physics_fig_4.9.png/220px-Introductory_Physics_fig_4.9.png" decoding="async" width="220" height="177" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f4/Introductory_Physics_fig_4.9.png/330px-Introductory_Physics_fig_4.9.png 1.5x, //upload.wikimedia.org/wikipedia/commons/f/f4/Introductory_Physics_fig_4.9.png 2x" data-file-width="345" data-file-height="277" /></a><figcaption>Figure 2–11. Spacetime explanation of the twin paradox</figcaption></figure> <p>These distinctions should result in a difference in the twins' ages. The spacetime diagram of Fig. 2-11 presents the simple case of a twin going straight out along the x axis and immediately turning back. From the standpoint of the stay-at-home twin, there is nothing puzzling about the twin paradox at all. The proper time measured along the traveling twin's world line from O to C, plus the proper time measured from C to B, is less than the stay-at-home twin's proper time measured from O to A to B. More complex trajectories require integrating the proper time between the respective events along the curve (i.e. the <a href="/wiki/Line_integral" title="Line integral">path integral</a>) to calculate the total amount of proper time experienced by the traveling twin.<sup id="cite_ref-Weiss_46-1" class="reference"><a href="#cite_note-Weiss-46"><span class="cite-bracket">[</span>38<span class="cite-bracket">]</span></a></sup> </p><p>Complications arise if the twin paradox is analyzed from the traveling twin's point of view. </p><p>Weiss's nomenclature, designating the stay-at-home twin as Terence and the traveling twin as Stella, is hereafter used.<sup id="cite_ref-Weiss_46-2" class="reference"><a href="#cite_note-Weiss-46"><span class="cite-bracket">[</span>38<span class="cite-bracket">]</span></a></sup> </p><p>Stella is not in an inertial frame. Given this fact, it is sometimes incorrectly stated that full resolution of the twin paradox requires general relativity:<sup id="cite_ref-Weiss_46-3" class="reference"><a href="#cite_note-Weiss-46"><span class="cite-bracket">[</span>38<span class="cite-bracket">]</span></a></sup> </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1244412712"><blockquote class="templatequote"><p>A pure SR analysis would be as follows: Analyzed in Stella's rest frame, she is motionless for the entire trip. When she fires her rockets for the turnaround, she experiences a pseudo force which resembles a gravitational force.<sup id="cite_ref-Weiss_46-4" class="reference"><a href="#cite_note-Weiss-46"><span class="cite-bracket">[</span>38<span class="cite-bracket">]</span></a></sup> <a href="#Figure_2-6"><b>Figs. 2-6</b></a> and 2-11 illustrate the concept of lines (planes) of simultaneity: Lines parallel to the observer's <i>x</i>-axis (<i>xy</i>-plane) represent sets of events that are simultaneous in the observer frame. In Fig. 2-11, the blue lines connect events on Terence's world line which, <i>from Stella's point of view</i>, are simultaneous with events on her world line. (Terence, in turn, would observe a set of horizontal lines of simultaneity.) Throughout both the outbound and the inbound legs of Stella's journey, she measures Terence's clocks as running slower than her own. <i>But during the turnaround</i> (i.e. between the bold blue lines in the figure), a shift takes place in the angle of her lines of simultaneity, corresponding to a rapid skip-over of the events in Terence's world line that Stella considers to be simultaneous with her own. Therefore, at the end of her trip, Stella finds that Terence has aged more than she has.<sup id="cite_ref-Weiss_46-5" class="reference"><a href="#cite_note-Weiss-46"><span class="cite-bracket">[</span>38<span class="cite-bracket">]</span></a></sup></p></blockquote> <p>Although general relativity is not required to analyze the twin paradox, application of the <a href="/wiki/Equivalence_Principle" class="mw-redirect" title="Equivalence Principle">Equivalence Principle</a> of general relativity does provide some additional insight into the subject. Stella is not stationary in an inertial frame. Analyzed in Stella's rest frame, she is motionless for the entire trip. When she is coasting her rest frame is inertial, and Terence's clock will appear to run slow. But when she fires her rockets for the turnaround, her rest frame is an accelerated frame and she experiences a force which is pushing her as if she were in a gravitational field. Terence will appear to be high up in that field and because of <a href="/wiki/Gravitational_time_dilation" title="Gravitational time dilation">gravitational time dilation</a>, his clock will appear to run fast, so much so that the net result will be that Terence has aged more than Stella when they are back together.<sup id="cite_ref-Weiss_46-6" class="reference"><a href="#cite_note-Weiss-46"><span class="cite-bracket">[</span>38<span class="cite-bracket">]</span></a></sup> The theoretical arguments predicting gravitational time dilation are not exclusive to general relativity. Any theory of gravity will predict gravitational time dilation if it respects the principle of equivalence, including Newton's theory.<sup id="cite_ref-Schutz_3-11" class="reference"><a href="#cite_note-Schutz-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 16">: 16 </span></sup> <span class="anchor" id="Gravitation"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Gravitation">Gravitation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spacetime&action=edit&section=14" title="Edit section: Gravitation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>This introductory section has focused on the spacetime of special relativity, since it is the easiest to describe. Minkowski spacetime is flat, takes no account of gravity, is uniform throughout, and serves as nothing more than a static background for the events that take place in it. The presence of gravity greatly complicates the description of spacetime. In general relativity, spacetime is no longer a static background, but actively interacts with the physical systems that it contains. Spacetime curves in the presence of matter, can propagate waves, bends light, and exhibits a host of other phenomena.<sup id="cite_ref-Schutz_3-12" class="reference"><a href="#cite_note-Schutz-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 221">: 221 </span></sup> A few of these phenomena are described in the later sections of this article. </p> <div class="mw-heading mw-heading2"><h2 id="Basic_mathematics_of_spacetime">Basic mathematics of spacetime <span class="anchor" id="Mathematics"></span></h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spacetime&action=edit&section=15" title="Edit section: Basic mathematics of spacetime"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><span class="anchor" id="Galilean_transformations"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Galilean_transformations">Galilean transformations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spacetime&action=edit&section=16" title="Edit section: Galilean transformations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Galilean_group" class="mw-redirect" title="Galilean group">Galilean group</a></div> <p>A basic goal is to be able to compare measurements made by observers in relative motion. If there is an observer O in frame S who has measured the time and space coordinates of an event, assigning this event three Cartesian coordinates and the time as measured on his lattice of synchronized clocks <span class="nowrap">(<i>x</i>, <i>y</i>, <i>z</i>, <i>t</i>)</span> (see <a href="#Figure_1-1"><b>Fig. 1-1</b></a>). A second observer O′ in a different frame S′ measures the same event in her coordinate system and her lattice of synchronized clocks <span class="nowrap">(<i>x</i><span class="nowrap" style="padding-left:0.1em;">′</span>, <i>y</i><span class="nowrap" style="padding-left:0.1em;">′</span>, <i>z</i><span class="nowrap" style="padding-left:0.1em;">′</span>, <i>t</i><span class="nowrap" style="padding-left:0.1em;">′</span>)</span>. With inertial frames, neither observer is under acceleration, and a simple set of equations allows us to relate coordinates <span class="nowrap">(<i>x</i>, <i>y</i>, <i>z</i>, <i>t</i>)</span> to <span class="nowrap">(<i>x</i><span class="nowrap" style="padding-left:0.1em;">′</span>, <i>y</i><span class="nowrap" style="padding-left:0.1em;">′</span>, <i>z</i><span class="nowrap" style="padding-left:0.1em;">′</span>, <i>t</i><span class="nowrap" style="padding-left:0.1em;">′</span>)</span>. Given that the two coordinate systems are in standard configuration, meaning that they are aligned with parallel <span class="nowrap">(<i>x</i>, <i>y</i>, <i>z</i>)</span> coordinates and that <span class="nowrap"><i>t</i> = 0</span> when <span class="nowrap"><i>t</i><span class="nowrap" style="padding-left:0.1em;">′</span> = 0</span>, the coordinate transformation is as follows:<sup id="cite_ref-48" class="reference"><a href="#cite_note-48"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-49" class="reference"><a href="#cite_note-49"><span class="cite-bracket">[</span>40<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x'=x-vt}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mo>′</mo> </msup> <mo>=</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>v</mi> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x'=x-vt}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/750ef5412025d2ea242170bb04644aaeed88dd7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:11.25ex; height:2.676ex;" alt="{\displaystyle x'=x-vt}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y'=y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>y</mi> <mo>′</mo> </msup> <mo>=</mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y'=y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e6239f12a70a7f715303934acf9dbae208fceb80" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.099ex; height:2.843ex;" alt="{\displaystyle y'=y}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z'=z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>z</mi> <mo>′</mo> </msup> <mo>=</mo> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z'=z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/80bfd939a15c0857a6b1df928f061d0e8973c342" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.962ex; height:2.509ex;" alt="{\displaystyle z'=z}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t'=t.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>t</mi> <mo>′</mo> </msup> <mo>=</mo> <mi>t</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t'=t.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/434feca39e7aba3b55a98c3630183c10380eff50" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.109ex; height:2.509ex;" alt="{\displaystyle t'=t.}"></span></dd></dl> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Galilean_Spacetime_and_composition_of_velocities.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f7/Galilean_Spacetime_and_composition_of_velocities.svg/220px-Galilean_Spacetime_and_composition_of_velocities.svg.png" decoding="async" width="220" height="210" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f7/Galilean_Spacetime_and_composition_of_velocities.svg/330px-Galilean_Spacetime_and_composition_of_velocities.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f7/Galilean_Spacetime_and_composition_of_velocities.svg/440px-Galilean_Spacetime_and_composition_of_velocities.svg.png 2x" data-file-width="468" data-file-height="447" /></a><figcaption>Figure 3–1. <b>Galilean</b> Spacetime and composition of velocities</figcaption></figure> <p>Fig. 3-1 illustrates that in Newton's theory, time is universal, not the velocity of light.<sup id="cite_ref-Bais_50-0" class="reference"><a href="#cite_note-Bais-50"><span class="cite-bracket">[</span>41<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 36–37">: 36–37 </span></sup> Consider the following thought experiment: The red arrow illustrates a train that is moving at 0.4 c with respect to the platform. Within the train, a passenger shoots a bullet with a speed of 0.4 c in the frame of the train. The blue arrow illustrates that a person standing on the train tracks measures the bullet as traveling at 0.8 c. This is in accordance with our naive expectations. </p><p>More generally, assuming that frame S′ is moving at velocity <i>v</i> with respect to frame S, then within frame S′, observer O′ measures an object moving with velocity <i>u</i><span class="nowrap" style="padding-left:0.1em;">′</span>. Velocity <i>u</i> with respect to frame S, since <span class="nowrap"><i>x</i> = <i>ut</i></span>, <span class="nowrap"><i>x</i><span class="nowrap" style="padding-left:0.1em;">′</span> = <i>x</i> − <i>vt</i></span>, and <span class="nowrap"><i>t</i> = <i>t</i><span class="nowrap" style="padding-left:0.1em;">′</span></span>, can be written as <span class="nowrap"><i>x</i><span class="nowrap" style="padding-left:0.1em;">′</span> = <i>ut</i> − <i>vt</i></span> = <span class="nowrap">(<i>u</i> − <i>v</i>)<i>t</i></span> = <span class="nowrap">(<i>u</i> − <i>v</i>)<i>t</i><span class="nowrap" style="padding-left:0.1em;">′</span></span>. This leads to <span class="nowrap"><i>u</i><span class="nowrap" style="padding-left:0.1em;">′</span> = <i>x</i><span class="nowrap" style="padding-left:0.1em;">′</span>/<i>t</i><span class="nowrap" style="padding-left:0.1em;">′</span></span> and ultimately </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u'=u-v}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>u</mi> <mo>′</mo> </msup> <mo>=</mo> <mi>u</mi> <mo>−<!-- − --></mo> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u'=u-v}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d387d02293dc8fe23999d9ea29b01d6a0f0b652" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.411ex; height:2.676ex;" alt="{\displaystyle u'=u-v}"></span>  or  <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u=u'+v,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>u</mi> <mo>=</mo> <msup> <mi>u</mi> <mo>′</mo> </msup> <mo>+</mo> <mi>v</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u=u'+v,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0cd44a47b229ae739e77f43710a3b774b52c8aee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.057ex; height:2.843ex;" alt="{\displaystyle u=u'+v,}"></span></dd></dl> <p>which is the common-sense <b>Galilean law for the addition of velocities</b>. <span class="anchor" id="Relativistic_composition_of_velocities"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Relativistic_composition_of_velocities">Relativistic composition of velocities</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spacetime&action=edit&section=17" title="Edit section: Relativistic composition of velocities"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Velocity_addition_formula" class="mw-redirect" title="Velocity addition formula">Velocity addition formula</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Relativistic_composition_of_velocities.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/7a/Relativistic_composition_of_velocities.svg/330px-Relativistic_composition_of_velocities.svg.png" decoding="async" width="330" height="164" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/7a/Relativistic_composition_of_velocities.svg/495px-Relativistic_composition_of_velocities.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/7a/Relativistic_composition_of_velocities.svg/660px-Relativistic_composition_of_velocities.svg.png 2x" data-file-width="900" data-file-height="447" /></a><figcaption>Figure 3–2. Relativistic composition of velocities</figcaption></figure> <p>The composition of velocities is quite different in relativistic spacetime. To reduce the complexity of the equations slightly, we introduce a common shorthand for the ratio of the speed of an object relative to light, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta =v/c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>β<!-- β --></mi> <mo>=</mo> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beta =v/c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c09197ac61cf6c55baab7eaaf25cbde57010efd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.727ex; height:2.843ex;" alt="{\displaystyle \beta =v/c}"></span></dd></dl> <p>Fig. 3-2a illustrates a red train that is moving forward at a speed given by <span class="nowrap"><i>v</i>/<i>c</i> = <i>β</i> = <i>s</i>/<i>a</i></span>. From the primed frame of the train, a passenger shoots a bullet with a speed given by <span class="nowrap"><i>u</i><span class="nowrap" style="padding-left:0.1em;">′</span>/<i>c</i> = <i>β</i><span class="nowrap" style="padding-left:0.1em;">′</span> = <i>n</i>/<i>m</i></span>, where the distance is measured along a line parallel to the red <i>x</i><span class="nowrap" style="padding-left:0.1em;">′</span> axis rather than parallel to the black <i>x</i> axis. What is the composite velocity <i>u</i> of the bullet relative to the platform, as represented by the blue arrow? Referring to Fig. 3-2b: </p> <ol><li>From the platform, the composite speed of the bullet is given by <span class="nowrap"><i>u</i> = <i>c</i>(<i>s</i> + <i>r</i>)/(<i>a</i> + <i>b</i>)</span>.</li> <li>The two yellow triangles are similar because they are right triangles that share a common angle <i>α</i>. In the large yellow triangle, the ratio <span class="nowrap"><i>s</i>/<i>a</i> = <i>v</i>/<i>c</i> = <i>β</i></span>.</li> <li>The ratios of corresponding sides of the two yellow triangles are constant, so that <span class="nowrap"><i>r</i>/<i>a</i> = <i>b</i>/<i>s</i></span> = <span class="nowrap"><i>n</i>/<i>m</i> = <i>β</i><span class="nowrap" style="padding-left:0.1em;">′</span></span>. So <span class="nowrap"><i>b</i> = <i>u</i><span class="nowrap" style="padding-left:0.1em;">′</span><i>s</i>/<i>c</i></span> and <span class="nowrap"><i>r</i> = <i>u</i><span class="nowrap" style="padding-left:0.1em;">′</span><i>a</i>/<i>c</i></span>.</li> <li>Substitute the expressions for <i>b</i> and <i>r</i> into the expression for <i>u</i> in step 1 to yield Einstein's formula for the addition of velocities:<sup id="cite_ref-Bais_50-1" class="reference"><a href="#cite_note-Bais-50"><span class="cite-bracket">[</span>41<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 42–48">: 42–48 </span></sup> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u={v+u' \over 1+(vu'/c^{2})}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>u</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>v</mi> <mo>+</mo> <msup> <mi>u</mi> <mo>′</mo> </msup> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mo stretchy="false">(</mo> <mi>v</mi> <msup> <mi>u</mi> <mo>′</mo> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u={v+u' \over 1+(vu'/c^{2})}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6eb3091ed58441a1f81b65cdc3911cc471084ee4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:18.089ex; height:6.343ex;" alt="{\displaystyle u={v+u' \over 1+(vu'/c^{2})}.}"></span></dd></dl></li></ol> <p>The relativistic formula for addition of velocities presented above exhibits several important features: </p> <ul><li>If <i>u</i><span class="nowrap" style="padding-left:0.1em;">′</span> and <i>v</i> are both very small compared with the speed of light, then the product <i>vu</i><span class="nowrap" style="padding-left:0.1em;">′</span>/<i>c</i><sup>2</sup> becomes vanishingly small, and the overall result becomes indistinguishable from the Galilean formula (Newton's formula) for the addition of velocities: <i>u</i> = <i>u</i><span class="nowrap" style="padding-left:0.1em;">′</span> + <i>v</i>. The Galilean formula is a special case of the relativistic formula applicable to low velocities.</li> <li>If <i>u</i><span class="nowrap" style="padding-left:0.1em;">′</span> is set equal to <i>c</i>, then the formula yields <i>u</i> = <i>c</i> regardless of the starting value of <i>v</i>. The velocity of light is the same for all observers regardless their motions relative to the emitting source.<sup id="cite_ref-Bais_50-2" class="reference"><a href="#cite_note-Bais-50"><span class="cite-bracket">[</span>41<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 49">: 49 </span></sup></li></ul> <p><span class="anchor" id="Time_dilation_and_length_contraction_revisited"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Time_dilation_and_length_contraction_revisited">Time dilation and length contraction revisited</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spacetime&action=edit&section=18" title="Edit section: Time dilation and length contraction revisited"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1251242444"><table class="box-More_citations_needed_section plainlinks metadata ambox ambox-content ambox-Refimprove" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Question_book-new.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/50px-Question_book-new.svg.png" decoding="async" width="50" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/75px-Question_book-new.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/100px-Question_book-new.svg.png 2x" data-file-width="512" data-file-height="399" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">This section <b>needs additional citations for <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">verification</a></b>.<span class="hide-when-compact"> Please help <a href="/wiki/Special:EditPage/Spacetime" title="Special:EditPage/Spacetime">improve this article</a> by <a href="/wiki/Help:Referencing_for_beginners" title="Help:Referencing for beginners">adding citations to reliable sources</a> in this section. Unsourced material may be challenged and removed.</span> <span class="date-container"><i>(<span class="date">March 2024</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Time_dilation" title="Time dilation">Time dilation</a> and <a href="/wiki/Length_contraction" title="Length contraction">Length contraction</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Spacetime_Diagrams_Illustrating_Time_Dilation_and_Length_Contraction.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/7d/Spacetime_Diagrams_Illustrating_Time_Dilation_and_Length_Contraction.png/330px-Spacetime_Diagrams_Illustrating_Time_Dilation_and_Length_Contraction.png" decoding="async" width="330" height="159" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/7d/Spacetime_Diagrams_Illustrating_Time_Dilation_and_Length_Contraction.png/495px-Spacetime_Diagrams_Illustrating_Time_Dilation_and_Length_Contraction.png 1.5x, //upload.wikimedia.org/wikipedia/commons/7/7d/Spacetime_Diagrams_Illustrating_Time_Dilation_and_Length_Contraction.png 2x" data-file-width="625" data-file-height="301" /></a><figcaption>Figure 3-3. Spacetime diagrams illustrating time dilation and length contraction</figcaption></figure> <p>It is straightforward to obtain quantitative expressions for time dilation and length contraction. Fig. 3-3 is a composite image containing individual frames taken from two previous animations, simplified and relabeled for the purposes of this section. </p><p>To reduce the complexity of the equations slightly, there are a variety of different shorthand notations for <i>ct</i>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {T} =ct}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> <mo>=</mo> <mi>c</mi> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {T} =ct}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/875546560ff52f486e9c643b0c2fc9a0b36a471e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.623ex; height:2.176ex;" alt="{\displaystyle \mathrm {T} =ct}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w=ct}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>w</mi> <mo>=</mo> <mi>c</mi> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle w=ct}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/559320bfcb3168bb0bd10668ef74ff4efc0613eb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.609ex; height:2.009ex;" alt="{\displaystyle w=ct}"></span> are common.</dd> <dd>One also sees very frequently the use of the convention <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c=1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>=</mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c=1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d36c299a0acdbc74dd3fa29bd2846392c83214ea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.915ex; height:2.176ex;" alt="{\displaystyle c=1.}"></span></dd></dl> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Lorentz_factor.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/00/Lorentz_factor.svg/220px-Lorentz_factor.svg.png" decoding="async" width="220" height="223" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/00/Lorentz_factor.svg/330px-Lorentz_factor.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/00/Lorentz_factor.svg/440px-Lorentz_factor.svg.png 2x" data-file-width="1102" data-file-height="1118" /></a><figcaption>Figure 3–4. Lorentz factor as a function of velocity</figcaption></figure> <p>In Fig. 3-3a, segments <i>OA</i> and <i>OK</i> represent equal spacetime intervals. Time dilation is represented by the ratio <i>OB</i>/<i>OK</i>. The invariant hyperbola has the equation <span class="nowrap"><span class="texhtml"><i>w</i> = <span class="nowrap">√<span style="border-top:1px solid; padding:0 0.1em;"><i>x</i><sup>2</sup> + <i>k</i><sup>2</sup></span></span></span></span> where <i>k</i> = <i>OK</i>, and the red line representing the world line of a particle in motion has the equation <i>w</i> = <i>x</i>/<i>β</i> = <i>xc</i>/<i>v</i>. A bit of algebraic manipulation yields <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle OB=OK/{\sqrt {1-v^{2}/c^{2}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>O</mi> <mi>B</mi> <mo>=</mo> <mi>O</mi> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>−<!-- − --></mo> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle OB=OK/{\sqrt {1-v^{2}/c^{2}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2bf299981affe61fc87c0439173fb2938788aeb8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:24.016ex; height:3.343ex;" alt="{\textstyle OB=OK/{\sqrt {1-v^{2}/c^{2}}}.}"></span> </p><p>The expression involving the square root symbol appears very frequently in relativity, and one over the expression is called the Lorentz factor, denoted by the Greek letter gamma <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.176ex;" alt="{\displaystyle \gamma }"></span>:<sup id="cite_ref-Forshaw_51-0" class="reference"><a href="#cite_note-Forshaw-51"><span class="cite-bracket">[</span>42<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma ={\frac {1}{\sqrt {1-v^{2}/c^{2}}}}={\frac {1}{\sqrt {1-\beta ^{2}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>1</mn> <mo>−<!-- − --></mo> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>1</mn> <mo>−<!-- − --></mo> <msup> <mi>β<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma ={\frac {1}{\sqrt {1-v^{2}/c^{2}}}}={\frac {1}{\sqrt {1-\beta ^{2}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85b3904812811a2a9b4239ec5aaa1bcd2d611d7b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:29.581ex; height:6.509ex;" alt="{\displaystyle \gamma ={\frac {1}{\sqrt {1-v^{2}/c^{2}}}}={\frac {1}{\sqrt {1-\beta ^{2}}}}}"></span></dd></dl> <p>If <i>v</i> is greater than or equal to <i>c</i>, the expression for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.176ex;" alt="{\displaystyle \gamma }"></span> becomes physically meaningless, implying that <i>c</i> is the maximum possible speed in nature. For any <i>v</i> greater than zero, the Lorentz factor will be greater than one, although the shape of the curve is such that for low speeds, the Lorentz factor is extremely close to one. </p><p>In Fig. 3-3b, segments <i>OA</i> and <i>OK</i> represent equal spacetime intervals. Length contraction is represented by the ratio <i>OB</i>/<i>OK</i>. The invariant hyperbola has the equation <span class="nowrap"><span class="texhtml"><i>x</i> = <span class="nowrap">√<span style="border-top:1px solid; padding:0 0.1em;"><i>w</i><sup>2</sup> + <i>k</i><sup>2</sup></span></span></span></span>, where <i>k</i> = <i>OK</i>, and the edges of the blue band representing the world lines of the endpoints of a rod in motion have slope 1/<i>β</i> = <i>c</i>/<i>v</i>. Event A has coordinates (<i>x</i>, <i>w</i>) = (<i>γk</i>, <i>γβk</i>). Since the tangent line through A and B has the equation <i>w</i> = (<i>x</i> − <i>OB</i>)/<i>β</i>, we have <i>γβk</i> = (<i>γk</i> − <i>OB</i>)/<i>β</i> and </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle OB/OK=\gamma (1-\beta ^{2})={\frac {1}{\gamma }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>O</mi> <mi>K</mi> <mo>=</mo> <mi>γ<!-- γ --></mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <msup> <mi>β<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>γ<!-- γ --></mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle OB/OK=\gamma (1-\beta ^{2})={\frac {1}{\gamma }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6933aa6fead2003e02a720200cf44d262ad97ad1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:26.3ex; height:5.676ex;" alt="{\displaystyle OB/OK=\gamma (1-\beta ^{2})={\frac {1}{\gamma }}}"></span></dd></dl> <p><span class="anchor" id="Lorentz_transformations"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Lorentz_transformations">Lorentz transformations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spacetime&action=edit&section=19" title="Edit section: Lorentz transformations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Lorentz_transformation" title="Lorentz transformation">Lorentz transformation</a> and <a href="/wiki/Lorentz_group" title="Lorentz group">Lorentz group</a></div> <p>The Galilean transformations and their consequent commonsense law of addition of velocities work well in our ordinary low-speed world of planes, cars and balls. Beginning in the mid-1800s, however, sensitive scientific instrumentation began finding anomalies that did not fit well with the ordinary addition of velocities. </p><p>Lorentz transformations are used to transform the coordinates of an event from one frame to another in special relativity. </p><p>The Lorentz factor appears in the Lorentz transformations: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}t'&=\gamma \left(t-{\frac {vx}{c^{2}}}\right)\\x'&=\gamma \left(x-vt\right)\\y'&=y\\z'&=z\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mi>t</mi> <mo>′</mo> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>γ<!-- γ --></mi> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>v</mi> <mi>x</mi> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msup> <mi>x</mi> <mo>′</mo> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>γ<!-- γ --></mi> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−<!-- − --></mo> <mi>v</mi> <mi>t</mi> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msup> <mi>y</mi> <mo>′</mo> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>y</mi> </mtd> </mtr> <mtr> <mtd> <msup> <mi>z</mi> <mo>′</mo> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>z</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}t'&=\gamma \left(t-{\frac {vx}{c^{2}}}\right)\\x'&=\gamma \left(x-vt\right)\\y'&=y\\z'&=z\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26b4b07b6c0633966abf0b498fa806d067903a8b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -7.171ex; width:17.908ex; height:15.343ex;" alt="{\displaystyle {\begin{aligned}t'&=\gamma \left(t-{\frac {vx}{c^{2}}}\right)\\x'&=\gamma \left(x-vt\right)\\y'&=y\\z'&=z\end{aligned}}}"></span></dd></dl> <p>The inverse Lorentz transformations are: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}t&=\gamma \left(t'+{\frac {vx'}{c^{2}}}\right)\\x&=\gamma \left(x'+vt'\right)\\y&=y'\\z&=z'\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>t</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>γ<!-- γ --></mi> <mrow> <mo>(</mo> <mrow> <msup> <mi>t</mi> <mo>′</mo> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>v</mi> <msup> <mi>x</mi> <mo>′</mo> </msup> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>x</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>γ<!-- γ --></mi> <mrow> <mo>(</mo> <mrow> <msup> <mi>x</mi> <mo>′</mo> </msup> <mo>+</mo> <mi>v</mi> <msup> <mi>t</mi> <mo>′</mo> </msup> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>y</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>y</mi> <mo>′</mo> </msup> </mtd> </mtr> <mtr> <mtd> <mi>z</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>z</mi> <mo>′</mo> </msup> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}t&=\gamma \left(t'+{\frac {vx'}{c^{2}}}\right)\\x&=\gamma \left(x'+vt'\right)\\y&=y'\\z&=z'\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/514aec3562987ebdcf7822cbab9309787273cf52" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -7.171ex; width:18.593ex; height:15.343ex;" alt="{\displaystyle {\begin{aligned}t&=\gamma \left(t'+{\frac {vx'}{c^{2}}}\right)\\x&=\gamma \left(x'+vt'\right)\\y&=y'\\z&=z'\end{aligned}}}"></span></dd></dl> <p>When <i>v</i> ≪ <i>c</i> and <i>x</i> is small enough, the <i>v</i><sup>2</sup>/<i>c</i><sup>2</sup> and <i>vx</i>/<i>c</i><sup>2</sup> terms approach zero, and the Lorentz transformations approximate to the Galilean transformations. </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t'=\gamma (t-vx/c^{2}),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>t</mi> <mo>′</mo> </msup> <mo>=</mo> <mi>γ<!-- γ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>−<!-- − --></mo> <mi>v</mi> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t'=\gamma (t-vx/c^{2}),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a858a123c2a5c8e8bc337e4f9aaf8993961dcb28" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.702ex; height:3.176ex;" alt="{\displaystyle t'=\gamma (t-vx/c^{2}),}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x'=\gamma (x-vt)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mo>′</mo> </msup> <mo>=</mo> <mi>γ<!-- γ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>v</mi> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x'=\gamma (x-vt)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da9e804ace6269a28b55b2610d72f9cb93f0e476" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.322ex; height:3.009ex;" alt="{\displaystyle x'=\gamma (x-vt)}"></span> etc., most often really mean <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta t'=\gamma (\Delta t-v\Delta x/c^{2}),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>t</mi> <mo>′</mo> </msup> <mo>=</mo> <mi>γ<!-- γ --></mi> <mo stretchy="false">(</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>t</mi> <mo>−<!-- − --></mo> <mi>v</mi> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta t'=\gamma (\Delta t-v\Delta x/c^{2}),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0e688bc0a8a63a1582327f284c8f53dac1867fae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.51ex; height:3.176ex;" alt="{\displaystyle \Delta t'=\gamma (\Delta t-v\Delta x/c^{2}),}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta x'=\gamma (\Delta x-v\Delta t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msup> <mi>x</mi> <mo>′</mo> </msup> <mo>=</mo> <mi>γ<!-- γ --></mi> <mo stretchy="false">(</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>x</mi> <mo>−<!-- − --></mo> <mi>v</mi> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta x'=\gamma (\Delta x-v\Delta t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/56c285af8ec87cf4416f7131532ac7cf7bc3e835" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.129ex; height:3.009ex;" alt="{\displaystyle \Delta x'=\gamma (\Delta x-v\Delta t)}"></span> etc. Although for brevity the Lorentz transformation equations are written without deltas, <i>x</i> means Δ<i>x</i>, etc. We are, in general, always concerned with the space and time <i>differences</i> between events. </p><p>Calling one set of transformations the normal Lorentz transformations and the other the inverse transformations is misleading, since there is no intrinsic difference between the frames. Different authors call one or the other set of transformations the "inverse" set. The forwards and inverse transformations are trivially related to each other, since the <i>S</i> frame can only be moving forwards or reverse with respect to <i>S</i><span class="nowrap" style="padding-left:0.1em;">′</span>. So inverting the equations simply entails switching the primed and unprimed variables and replacing <i>v</i> with −<i>v</i>.<sup id="cite_ref-Morin_52-0" class="reference"><a href="#cite_note-Morin-52"><span class="cite-bracket">[</span>43<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 71–79">: 71–79 </span></sup> </p><p><small><b>Example:</b> Terence and Stella are at an Earth-to-Mars space race. Terence is an official at the starting line, while Stella is a participant. At time <span class="texhtml"><i>t</i> = <i>t</i><span class="nowrap" style="padding-left:0.1em;">′</span> = 0</span>, Stella's spaceship accelerates instantaneously to a speed of 0.5 <i>c</i>. The distance from Earth to Mars is 300 light-seconds (about <span class="nowrap"><span data-sort-value="7010900000000000000♠"></span>90.0<span style="margin-left:0.25em;margin-right:0.15em;">×</span>10<sup>6</sup> km</span>). Terence observes Stella crossing the finish-line clock at <span class="texhtml"><i>t</i> = 600.00 s</span>. But Stella observes the time on her ship chronometer to be <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t^{\prime }=\gamma \left(t-vx/c^{2}\right)=519.62\ {\text{s}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">′<!-- ′ --></mi> </mrow> </msup> <mo>=</mo> <mi>γ<!-- γ --></mi> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>−<!-- − --></mo> <mi>v</mi> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>519.62</mn> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mtext>s</mtext> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t^{\prime }=\gamma \left(t-vx/c^{2}\right)=519.62\ {\text{s}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f33ffa6457f4b639e14b7ea75e53ca9dee7f9749" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:28.817ex; height:3.343ex;" alt="{\displaystyle t^{\prime }=\gamma \left(t-vx/c^{2}\right)=519.62\ {\text{s}}}"></span>⁠</span> as she passes the finish line, and she calculates the distance between the starting and finish lines, as measured in her frame, to be 259.81 light-seconds (about <span class="nowrap"><span data-sort-value="7010779000000000000♠"></span>77.9<span style="margin-left:0.25em;margin-right:0.15em;">×</span>10<sup>6</sup> km</span>).</small> 1). </p> <div class="mw-heading mw-heading4"><h4 id="Deriving_the_Lorentz_transformations">Deriving the Lorentz transformations</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spacetime&action=edit&section=20" title="Edit section: Deriving the Lorentz transformations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Derivations_of_the_Lorentz_transformations" title="Derivations of the Lorentz transformations">Derivations of the Lorentz transformations</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Derivation_of_Lorentz_Transformation.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Derivation_of_Lorentz_Transformation.svg/220px-Derivation_of_Lorentz_Transformation.svg.png" decoding="async" width="220" height="222" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Derivation_of_Lorentz_Transformation.svg/330px-Derivation_of_Lorentz_Transformation.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Derivation_of_Lorentz_Transformation.svg/440px-Derivation_of_Lorentz_Transformation.svg.png 2x" data-file-width="476" data-file-height="481" /></a><figcaption>Figure 3–5. Derivation of Lorentz Transformation</figcaption></figure> <p>There have been many dozens of <a href="/wiki/Derivations_of_the_Lorentz_transformations" title="Derivations of the Lorentz transformations">derivations of the Lorentz transformations</a> since Einstein's original work in 1905, each with its particular focus. Although Einstein's derivation was based on the invariance of the speed of light, there are other physical principles that may serve as starting points. Ultimately, these alternative starting points can be considered different expressions of the underlying <a href="/wiki/Principle_of_locality" title="Principle of locality">principle of locality</a>, which states that the influence that one particle exerts on another can not be transmitted instantaneously.<sup id="cite_ref-53" class="reference"><a href="#cite_note-53"><span class="cite-bracket">[</span>44<span class="cite-bracket">]</span></a></sup> </p><p>The derivation given here and illustrated in Fig. 3-5 is based on one presented by Bais<sup id="cite_ref-Bais_50-3" class="reference"><a href="#cite_note-Bais-50"><span class="cite-bracket">[</span>41<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 64–66">: 64–66 </span></sup> and makes use of previous results from the Relativistic Composition of Velocities, Time Dilation, and Length Contraction sections. Event P has coordinates (<i>w</i>, <i>x</i>) in the black "rest system" and coordinates <span class="texhtml">(<i>w</i><span class="nowrap" style="padding-left:0.1em;">′</span>, <i>x</i><span class="nowrap" style="padding-left:0.1em;">′</span>)</span> in the red frame that is moving with velocity parameter <span class="texhtml"><i>β</i> = <i>v</i>/<i>c</i></span>. To determine <i>w</i><span class="nowrap" style="padding-left:0.1em;">′</span> and <i>x</i><span class="nowrap" style="padding-left:0.1em;">′</span> in terms of <i>w</i> and <i>x</i> (or the other way around) it is easier at first to derive the <i>inverse</i> Lorentz transformation. </p> <ol><li>There can be no such thing as length expansion/contraction in the transverse directions. <i>y<span class="nowrap" style="padding-left:0.1em;">'</span></i> must equal <i>y</i> and <i>z</i><span class="nowrap" style="padding-left:0.1em;">′</span> must equal <i>z</i>, otherwise whether a fast moving 1 m ball could fit through a 1 m circular hole would depend on the observer. The first postulate of relativity states that all inertial frames are equivalent, and transverse expansion/contraction would violate this law.<sup id="cite_ref-Morin_52-1" class="reference"><a href="#cite_note-Morin-52"><span class="cite-bracket">[</span>43<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 27–28">: 27–28 </span></sup></li> <li>From the drawing, <i>w</i> = <i>a</i> + <i>b</i> and <span class="texhtml"><i>x</i> = <i>r</i> + <i>s</i></span></li> <li>From previous results using similar triangles, we know that <span class="texhtml"><i>s</i>/<i>a</i> = <i>b</i>/<i>r</i> = <i>v</i>/<i>c</i> = <i>β</i></span>.</li> <li>Because of time dilation, <span class="texhtml"><i>a</i> = <i>γw<span class="nowrap" style="padding-left:0.05em;">′</span></i></span></li> <li>Substituting equation (4) into <span class="texhtml"><i>s</i>/<i>a</i> = <i>β</i></span> yields <span class="texhtml"><i>s</i> = <i>γw<span class="nowrap" style="padding-left:0.05em;">′</span>β</i></span>.</li> <li>Length contraction and similar triangles give us <span class="texhtml"><i>r</i> = <i>γx<span class="nowrap" style="padding-left:0.05em;">′</span></i></span> and <span class="texhtml"><i>b</i> = <i>βr</i> = <i>βγx<span class="nowrap" style="padding-left:0.05em;">′</span></i></span></li> <li>Substituting the expressions for <i>s</i>, <i>a</i>, <i>r</i> and <i>b</i> into the equations in Step 2 immediately yield <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w=\gamma w'+\beta \gamma x'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>w</mi> <mo>=</mo> <mi>γ<!-- γ --></mi> <msup> <mi>w</mi> <mo>′</mo> </msup> <mo>+</mo> <mi>β<!-- β --></mi> <mi>γ<!-- γ --></mi> <msup> <mi>x</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle w=\gamma w'+\beta \gamma x'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/759c9eaf539e880282501ec65ed2962f4d565dee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.823ex; height:3.009ex;" alt="{\displaystyle w=\gamma w'+\beta \gamma x'}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=\gamma x'+\beta \gamma w'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mi>γ<!-- γ --></mi> <msup> <mi>x</mi> <mo>′</mo> </msup> <mo>+</mo> <mi>β<!-- β --></mi> <mi>γ<!-- γ --></mi> <msup> <mi>w</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=\gamma x'+\beta \gamma w'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d1b678a422648595721f0496c4258679f96d759" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.488ex; height:3.009ex;" alt="{\displaystyle x=\gamma x'+\beta \gamma w'}"></span></dd></dl></li></ol> <p>The above equations are alternate expressions for the t and x equations of the inverse Lorentz transformation, as can be seen by substituting <i>ct</i> for <i>w</i>, <i>ct</i><span class="nowrap" style="padding-left:0.1em;">′</span> for <i>w</i><span class="nowrap" style="padding-left:0.1em;">′</span>, and <i>v</i>/<i>c</i> for <i>β</i>. From the inverse transformation, the equations of the forwards transformation can be derived by solving for <i>t</i><span class="nowrap" style="padding-left:0.1em;">′</span> and <i>x</i><span class="nowrap" style="padding-left:0.1em;">′</span>. </p> <div class="mw-heading mw-heading4"><h4 id="Linearity_of_the_Lorentz_transformations">Linearity of the Lorentz transformations</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spacetime&action=edit&section=21" title="Edit section: Linearity of the Lorentz transformations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Lorentz transformations have a mathematical property called linearity, since <i>x</i><span class="nowrap" style="padding-left:0.1em;">′</span> and <i>t</i><span class="nowrap" style="padding-left:0.1em;">′</span> are obtained as linear combinations of <i>x</i> and <i>t</i>, with no higher powers involved. The linearity of the transformation reflects a fundamental property of spacetime that was tacitly assumed in the derivation, namely, that the properties of inertial frames of reference are independent of location and time. In the absence of gravity, spacetime looks the same everywhere.<sup id="cite_ref-Bais_50-4" class="reference"><a href="#cite_note-Bais-50"><span class="cite-bracket">[</span>41<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 67">: 67 </span></sup> All inertial observers will agree on what constitutes accelerating and non-accelerating motion.<sup id="cite_ref-Morin_52-2" class="reference"><a href="#cite_note-Morin-52"><span class="cite-bracket">[</span>43<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 72–73">: 72–73 </span></sup> Any one observer can use her own measurements of space and time, but there is nothing absolute about them. Another observer's conventions will do just as well.<sup id="cite_ref-Schutz_3-13" class="reference"><a href="#cite_note-Schutz-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 190">: 190 </span></sup> </p><p>A result of linearity is that if two Lorentz transformations are applied sequentially, the result is also a Lorentz transformation. </p><p><small><b>Example:</b> Terence observes Stella speeding away from him at 0.500 <i>c</i>, and he can use the Lorentz transformations with <span class="texhtml"><i>β</i> = 0.500</span> to relate Stella's measurements to his own. Stella, in her frame, observes Ursula traveling away from her at 0.250 <i>c</i>, and she can use the Lorentz transformations with <span class="texhtml"><i>β</i> = 0.250</span> to relate Ursula's measurements with her own. Because of the linearity of the transformations and the relativistic composition of velocities, Terence can use the Lorentz transformations with <span class="texhtml"><i>β</i> = 0.666</span> to relate Ursula's measurements with his own.</small> </p><p><span class="anchor" id="Doppler_effect"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Doppler_effect">Doppler effect</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spacetime&action=edit&section=22" title="Edit section: Doppler effect"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Doppler_effect" title="Doppler effect">Doppler effect</a> and <a href="/wiki/Relativistic_Doppler_effect" title="Relativistic Doppler effect">Relativistic Doppler effect</a></div> <p>The <a href="/wiki/Doppler_effect" title="Doppler effect">Doppler effect</a> is the change in frequency or wavelength of a wave for a receiver and source in relative motion. For simplicity, we consider here two basic scenarios: (1) The motions of the source and/or receiver are exactly along the line connecting them (longitudinal Doppler effect), and (2) the motions are at right angles to the said line (<a href="/wiki/Transverse_Doppler_effect" class="mw-redirect" title="Transverse Doppler effect">transverse Doppler effect</a>). We are ignoring scenarios where they move along intermediate angles. </p> <div class="mw-heading mw-heading4"><h4 id="Longitudinal_Doppler_effect">Longitudinal Doppler effect</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spacetime&action=edit&section=23" title="Edit section: Longitudinal Doppler effect"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The classical Doppler analysis deals with waves that are propagating in a medium, such as sound waves or water ripples, and which are transmitted between sources and receivers that are moving towards or away from each other. The analysis of such waves depends on whether the source, the receiver, or both are moving relative to the medium. Given the scenario where the receiver is stationary with respect to the medium, and the source is moving directly away from the receiver at a speed of <i>v<sub>s</sub></i> for a velocity parameter of <i>β<sub>s</sub></i>, the wavelength is increased, and the observed frequency <i>f</i> is given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f={\frac {1}{1+\beta _{s}}}f_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>β<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f={\frac {1}{1+\beta _{s}}}f_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/241594bc08a31e02bca12f29adedcbe31e421755" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:13.729ex; height:5.676ex;" alt="{\displaystyle f={\frac {1}{1+\beta _{s}}}f_{0}}"></span></dd></dl> <p>On the other hand, given the scenario where source is stationary, and the receiver is moving directly away from the source at a speed of <i>v<sub>r</sub></i> for a velocity parameter of <i>β<sub>r</sub></i>, the wavelength is <i>not</i> changed, but the transmission velocity of the waves relative to the receiver is decreased, and the observed frequency <i>f</i> is given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f=(1-\beta _{r})f_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <msub> <mi>β<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f=(1-\beta _{r})f_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/943af2e488bdc3c08e8c351c2e82c85265bafcc0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.672ex; height:2.843ex;" alt="{\displaystyle f=(1-\beta _{r})f_{0}}"></span></dd></dl> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Spacetime_Diagram_of_Relativistic_Doppler_Effect.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/01/Spacetime_Diagram_of_Relativistic_Doppler_Effect.svg/220px-Spacetime_Diagram_of_Relativistic_Doppler_Effect.svg.png" decoding="async" width="220" height="210" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/01/Spacetime_Diagram_of_Relativistic_Doppler_Effect.svg/330px-Spacetime_Diagram_of_Relativistic_Doppler_Effect.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/01/Spacetime_Diagram_of_Relativistic_Doppler_Effect.svg/440px-Spacetime_Diagram_of_Relativistic_Doppler_Effect.svg.png 2x" data-file-width="466" data-file-height="445" /></a><figcaption>Figure 3–6. Spacetime diagram of relativistic Doppler effect</figcaption></figure> <p>Light, unlike sound or water ripples, does not propagate through a medium, and there is no distinction between a source moving away from the receiver or a receiver moving away from the source. Fig. 3-6 illustrates a relativistic spacetime diagram showing a source separating from the receiver with a velocity parameter <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>β<!-- β --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beta ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59ab677d974cccb0132cac08bd67fc8ac765627e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.979ex; height:2.509ex;" alt="{\displaystyle \beta ,}"></span> so that the separation between source and receiver at time <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>w</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle w}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88b1e0c8e1be5ebe69d18a8010676fa42d7961e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.664ex; height:1.676ex;" alt="{\displaystyle w}"></span> is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta w}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>β<!-- β --></mi> <mi>w</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beta w}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/911b92d31efb19ed2119bdf233ddd8f5c1c4588e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.996ex; height:2.509ex;" alt="{\displaystyle \beta w}"></span>. Because of time dilation, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w=\gamma w'.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>w</mi> <mo>=</mo> <mi>γ<!-- γ --></mi> <msup> <mi>w</mi> <mo>′</mo> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle w=\gamma w'.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e7dd20e3b4e7cdefb61aecc8f1ef5f83855ff528" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.021ex; height:3.009ex;" alt="{\displaystyle w=\gamma w'.}"></span> Since the slope of the green light ray is −1, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T=w+\beta w=\gamma w'(1+\beta ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>=</mo> <mi>w</mi> <mo>+</mo> <mi>β<!-- β --></mi> <mi>w</mi> <mo>=</mo> <mi>γ<!-- γ --></mi> <msup> <mi>w</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>β<!-- β --></mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T=w+\beta w=\gamma w'(1+\beta ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3219fca2b7e02222bad2204b5620ab8158d599a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.736ex; height:3.009ex;" alt="{\displaystyle T=w+\beta w=\gamma w'(1+\beta ).}"></span> Hence, the <a href="/wiki/Relativistic_Doppler_effect" title="Relativistic Doppler effect">relativistic Doppler effect</a> is given by<sup id="cite_ref-Bais_50-5" class="reference"><a href="#cite_note-Bais-50"><span class="cite-bracket">[</span>41<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 58–59">: 58–59 </span></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f={\sqrt {\frac {1-\beta }{1+\beta }}}\,f_{0}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mi>β<!-- β --></mi> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>β<!-- β --></mi> </mrow> </mfrac> </msqrt> </mrow> <mspace width="thinmathspace" /> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f={\sqrt {\frac {1-\beta }{1+\beta }}}\,f_{0}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/825111fb3df780a97218101db96738c8b74d7286" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:16.099ex; height:7.509ex;" alt="{\displaystyle f={\sqrt {\frac {1-\beta }{1+\beta }}}\,f_{0}.}"></span></dd></dl> <div class="mw-heading mw-heading4"><h4 id="Transverse_Doppler_effect">Transverse Doppler effect</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spacetime&action=edit&section=24" title="Edit section: Transverse Doppler effect"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Transverse_Doppler_effect_scenarios_2.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fb/Transverse_Doppler_effect_scenarios_2.svg/310px-Transverse_Doppler_effect_scenarios_2.svg.png" decoding="async" width="310" height="318" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fb/Transverse_Doppler_effect_scenarios_2.svg/465px-Transverse_Doppler_effect_scenarios_2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fb/Transverse_Doppler_effect_scenarios_2.svg/620px-Transverse_Doppler_effect_scenarios_2.svg.png 2x" data-file-width="536" data-file-height="550" /></a><figcaption>Figure 3–7. Transverse Doppler effect scenarios</figcaption></figure> <p>Suppose that a source and a receiver, both approaching each other in uniform inertial motion along non-intersecting lines, are at their closest approach to each other. It would appear that the classical analysis predicts that the receiver detects no Doppler shift. Due to subtleties in the analysis, that expectation is not necessarily true. Nevertheless, when appropriately defined, transverse Doppler shift is a relativistic effect that has no classical analog. The subtleties are these:<sup id="cite_ref-Morin2008_54-0" class="reference"><a href="#cite_note-Morin2008-54"><span class="cite-bracket">[</span>45<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 541–543">: 541–543 </span></sup> </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"><div class="plainlist"> <ul><li>Fig. 3-7a. What is the frequency measurement when the receiver is geometrically at its closest approach to the source? This scenario is most easily analyzed from the frame S′ of the source.<sup id="cite_ref-55" class="reference"><a href="#cite_note-55"><span class="cite-bracket">[</span>note 10<span class="cite-bracket">]</span></a></sup></li> <li>Fig. 3-7b. What is the frequency measurement when the receiver <i>sees</i> the source as being closest to it? This scenario is most easily analyzed from the frame S of the receiver.</li></ul> <p>Two other scenarios are commonly examined in discussions of transverse Doppler shift: </p> <ul><li>Fig. 3-7c. If the receiver is moving in a circle around the source, what frequency does the receiver measure?</li> <li>Fig. 3-7d. If the source is moving in a circle around the receiver, what frequency does the receiver measure?</li></ul> </div><p><!—end plainlist—> </p><p>In scenario (a), the point of closest approach is frame-independent and represents the moment where there is no change in distance versus time (i.e. dr/dt = 0 where <i>r</i> is the distance between receiver and source) and hence no longitudinal Doppler shift. The source observes the receiver as being illuminated by light of frequency <i>f</i><span class="nowrap" style="padding-left:0.1em;">′</span>, but also observes the receiver as having a time-dilated clock. In frame S, the receiver is therefore illuminated by <a href="/wiki/Blueshifted" class="mw-redirect" title="Blueshifted">blueshifted</a> light of frequency </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f=f'\gamma =f'/{\sqrt {1-\beta ^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>=</mo> <msup> <mi>f</mi> <mo>′</mo> </msup> <mi>γ<!-- γ --></mi> <mo>=</mo> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>−<!-- − --></mo> <msup> <mi>β<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f=f'\gamma =f'/{\sqrt {1-\beta ^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/44c4a06f61fb2a70ce3d112d007df5deaf49c799" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:22.629ex; height:4.843ex;" alt="{\displaystyle f=f'\gamma =f'/{\sqrt {1-\beta ^{2}}}}"></span></dd></dl> <p>In scenario (b) the illustration shows the receiver being illuminated by light from when the source was closest to the receiver, even though the source has moved on. Because the source's clocks are time dilated as measured in frame S, and since dr/dt was equal to zero at this point, the light from the source, emitted from this closest point, is <a href="/wiki/Redshifted" class="mw-redirect" title="Redshifted">redshifted</a> with frequency </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f=f'/\gamma =f'{\sqrt {1-\beta ^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>=</mo> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>γ<!-- γ --></mi> <mo>=</mo> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>−<!-- − --></mo> <msup> <mi>β<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f=f'/\gamma =f'{\sqrt {1-\beta ^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86220234bb45eb2fb4a2709fa915e5f2ae679aba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:22.629ex; height:4.843ex;" alt="{\displaystyle f=f'/\gamma =f'{\sqrt {1-\beta ^{2}}}}"></span></dd></dl> <p>Scenarios (c) and (d) can be analyzed by simple time dilation arguments. In (c), the receiver observes light from the source as being blueshifted by a factor of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.176ex;" alt="{\displaystyle \gamma }"></span>, and in (d), the light is redshifted. The only seeming complication is that the orbiting objects are in accelerated motion. However, if an inertial observer looks at an accelerating clock, only the clock's instantaneous speed is important when computing time dilation. (The converse, however, is not true.)<sup id="cite_ref-Morin2008_54-1" class="reference"><a href="#cite_note-Morin2008-54"><span class="cite-bracket">[</span>45<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 541–543">: 541–543 </span></sup> Most reports of transverse Doppler shift refer to the effect as a redshift and analyze the effect in terms of scenarios (b) or (d).<sup id="cite_ref-56" class="reference"><a href="#cite_note-56"><span class="cite-bracket">[</span>note 11<span class="cite-bracket">]</span></a></sup> </p><p><span class="anchor" id="Energy_and_momentum"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Energy_and_momentum">Energy and momentum</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spacetime&action=edit&section=25" title="Edit section: Energy and momentum"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Four-momentum" title="Four-momentum">Four-momentum</a>, <a href="/wiki/Momentum" title="Momentum">Momentum</a>, and <a href="/wiki/Mass%E2%80%93energy_equivalence" title="Mass–energy equivalence">Mass–energy equivalence</a></div> <div class="mw-heading mw-heading4"><h4 id="Extending_momentum_to_four_dimensions">Extending momentum to four dimensions</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spacetime&action=edit&section=26" title="Edit section: Extending momentum to four dimensions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Relativistic_spacetime_momentum_vector.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0a/Relativistic_spacetime_momentum_vector.svg/330px-Relativistic_spacetime_momentum_vector.svg.png" decoding="async" width="330" height="196" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0a/Relativistic_spacetime_momentum_vector.svg/495px-Relativistic_spacetime_momentum_vector.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0a/Relativistic_spacetime_momentum_vector.svg/660px-Relativistic_spacetime_momentum_vector.svg.png 2x" data-file-width="675" data-file-height="400" /></a><figcaption>Figure 3–8. Relativistic spacetime momentum vector. The coordinate axes of the rest frame are: momentum, p, and mass * c. For comparison, we have overlaid a spacetime coordinate system with axes: position, and time * c.</figcaption></figure> <p>In classical mechanics, the state of motion of a particle is characterized by its mass and its velocity. <a href="/wiki/Linear_momentum" class="mw-redirect" title="Linear momentum">Linear momentum</a>, the product of a particle's mass and velocity, is a <a href="/wiki/Euclidean_vector" title="Euclidean vector">vector</a> quantity, possessing the same direction as the velocity: <span class="texhtml"><i><b>p</b></i> = <i>m<b>v</b></i></span>. It is a <i>conserved</i> quantity, meaning that if a <a href="/wiki/Closed_system" title="Closed system">closed system</a> is not affected by external forces, its total linear momentum cannot change. </p><p>In relativistic mechanics, the momentum vector is extended to four dimensions. Added to the momentum vector is a time component that allows the spacetime momentum vector to transform like the spacetime position vector <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x,t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x,t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/baa3647f3b8798f94f0f2ac249637b0b709f3718" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.013ex; height:2.843ex;" alt="{\displaystyle (x,t)}"></span>⁠</span>. In exploring the properties of the spacetime momentum, we start, in Fig. 3-8a, by examining what a particle looks like at rest. In the rest frame, the spatial component of the momentum is zero, i.e. <span class="texhtml"><i>p</i> = 0</span>, but the time component equals <i>mc</i>. </p><p>We can obtain the transformed components of this vector in the moving frame by using the Lorentz transformations, or we can read it directly from the figure because we know that <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (mc)^{\prime }=\gamma mc}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>m</mi> <mi>c</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">′<!-- ′ --></mi> </mrow> </msup> <mo>=</mo> <mi>γ<!-- γ --></mi> <mi>m</mi> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (mc)^{\prime }=\gamma mc}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23ac19a67e8001d7b4d2c3747a9843491107103b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.949ex; height:3.009ex;" alt="{\displaystyle (mc)^{\prime }=\gamma mc}"></span>⁠</span> and <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p^{\prime }=-\beta \gamma mc}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">′<!-- ′ --></mi> </mrow> </msup> <mo>=</mo> <mo>−<!-- − --></mo> <mi>β<!-- β --></mi> <mi>γ<!-- γ --></mi> <mi>m</mi> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p^{\prime }=-\beta \gamma mc}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6906243645000fb44c03e44a5d87e5ae09d3e6af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:12.492ex; height:3.009ex;" alt="{\displaystyle p^{\prime }=-\beta \gamma mc}"></span>⁠</span>, since the red axes are rescaled by gamma. Fig. 3-8b illustrates the situation as it appears in the moving frame. It is apparent that the space and time components of the four-momentum go to infinity as the velocity of the moving frame approaches <i>c</i>.<sup id="cite_ref-Bais_50-6" class="reference"><a href="#cite_note-Bais-50"><span class="cite-bracket">[</span>41<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 84–87">: 84–87 </span></sup> </p><p>We will use this information shortly to obtain an expression for the <a href="/wiki/Four-momentum" title="Four-momentum">four-momentum</a>. </p> <div class="mw-heading mw-heading4"><h4 id="Momentum_of_light">Momentum of light</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spacetime&action=edit&section=27" title="Edit section: Momentum of light"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Calculating_the_energy_of_light_in_different_inertial_frames.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Calculating_the_energy_of_light_in_different_inertial_frames.svg/220px-Calculating_the_energy_of_light_in_different_inertial_frames.svg.png" decoding="async" width="220" height="214" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Calculating_the_energy_of_light_in_different_inertial_frames.svg/330px-Calculating_the_energy_of_light_in_different_inertial_frames.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Calculating_the_energy_of_light_in_different_inertial_frames.svg/440px-Calculating_the_energy_of_light_in_different_inertial_frames.svg.png 2x" data-file-width="455" data-file-height="442" /></a><figcaption>Figure 3–9. Energy and momentum of light in different inertial frames</figcaption></figure> <p>Light particles, or photons, travel at the speed of <i>c</i>, the constant that is conventionally known as the <i>speed of light</i>. This statement is not a tautology, since many modern formulations of relativity do not start with constant speed of light as a postulate. Photons therefore propagate along a lightlike world line and, in appropriate units, have equal space and time components for every observer. </p><p>A consequence of <a href="/wiki/Maxwell%27s_theory" class="mw-redirect" title="Maxwell's theory">Maxwell's theory</a> of electromagnetism is that light carries energy and momentum, and that their ratio is a constant: <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E/p=c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>p</mi> <mo>=</mo> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E/p=c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/216fce2ed68560dd3a343118dca5902cef52f66a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.213ex; height:2.843ex;" alt="{\displaystyle E/p=c}"></span>⁠</span>. Rearranging, <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E/c=p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>c</mi> <mo>=</mo> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E/c=p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4090bc1b9d85103b649d3424d955b60f7be0dbea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.213ex; height:2.843ex;" alt="{\displaystyle E/c=p}"></span>⁠</span>, and since for photons, the space and time components are equal, <i>E</i>/<i>c</i> must therefore be equated with the time component of the spacetime momentum vector. </p><p>Photons travel at the speed of light, yet have finite momentum and energy. For this to be so, the mass term in <i>γmc</i> must be zero, meaning that photons are <a href="/wiki/Massless_particle" title="Massless particle">massless particles</a>. Infinity times zero is an ill-defined quantity, but <i>E</i>/<i>c</i> is well-defined. </p><p>By this analysis, if the energy of a photon equals <i>E</i> in the rest frame, it equals <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E^{\prime }=(1-\beta )\gamma E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">′<!-- ′ --></mi> </mrow> </msup> <mo>=</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>β<!-- β --></mi> <mo stretchy="false">)</mo> <mi>γ<!-- γ --></mi> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E^{\prime }=(1-\beta )\gamma E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/50489f9370be6e36bf63c09a02763f7d84f4904f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.759ex; height:3.009ex;" alt="{\displaystyle E^{\prime }=(1-\beta )\gamma E}"></span>⁠</span> in a moving frame. This result can be derived by inspection of Fig. 3-9 or by application of the Lorentz transformations, and is consistent with the analysis of Doppler effect given previously.<sup id="cite_ref-Bais_50-7" class="reference"><a href="#cite_note-Bais-50"><span class="cite-bracket">[</span>41<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 88">: 88 </span></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Mass–energy_relationship"><span id="Mass.E2.80.93energy_relationship"></span>Mass–energy relationship</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spacetime&action=edit&section=28" title="Edit section: Mass–energy relationship"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Consideration of the interrelationships between the various components of the relativistic momentum vector led Einstein to several important conclusions. </p> <ul><li>In the low speed limit as <span class="texhtml"><i>β</i> = <i>v</i>/<i>c</i></span> approaches zero, <span class="texhtml mvar" style="font-style:italic;">γ</span> approaches 1, so the spatial component of the relativistic momentum <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta \gamma mc=\gamma mv}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>β<!-- β --></mi> <mi>γ<!-- γ --></mi> <mi>m</mi> <mi>c</mi> <mo>=</mo> <mi>γ<!-- γ --></mi> <mi>m</mi> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beta \gamma mc=\gamma mv}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4e1493f64ff55cf05bca8ce8a0aefd9768a77f28" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.17ex; height:2.676ex;" alt="{\displaystyle \beta \gamma mc=\gamma mv}"></span>⁠</span> approaches <i>mv</i>, the classical term for momentum. Following this perspective, <i>γm</i> can be interpreted as a relativistic generalization of <i>m</i>. Einstein proposed that the <i><a href="/wiki/Relativistic_mass" class="mw-redirect" title="Relativistic mass">relativistic mass</a></i> of an object increases with velocity according to the formula <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{\text{rel}}=\gamma m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>rel</mtext> </mrow> </msub> <mo>=</mo> <mi>γ<!-- γ --></mi> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{\text{rel}}=\gamma m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1396fa68e91592f1405a9dcc4eeecba97fe5adf5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.506ex; height:2.176ex;" alt="{\displaystyle m_{\text{rel}}=\gamma m}"></span>⁠</span>.</li> <li>Likewise, comparing the time component of the relativistic momentum with that of the photon, <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma mc=m_{\text{rel}}c=E/c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> <mi>m</mi> <mi>c</mi> <mo>=</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>rel</mtext> </mrow> </msub> <mi>c</mi> <mo>=</mo> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma mc=m_{\text{rel}}c=E/c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c7ad03f3d53898c33dae7545caa652b57b583db3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.563ex; height:2.843ex;" alt="{\displaystyle \gamma mc=m_{\text{rel}}c=E/c}"></span>⁠</span>, so that Einstein arrived at the relationship <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E=m_{\text{rel}}c^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>=</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>rel</mtext> </mrow> </msub> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E=m_{\text{rel}}c^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fda4b4a68aafc6c72a394939997028c2ce717640" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.04ex; height:3.009ex;" alt="{\displaystyle E=m_{\text{rel}}c^{2}}"></span>⁠</span>. Simplified to the case of zero velocity, this is Einstein's equation relating energy and mass.</li></ul> <p>Another way of looking at the relationship between mass and energy is to consider a series expansion of <span class="texhtml"><i>γmc</i><sup>2</sup></span> at low velocity: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E=\gamma mc^{2}={\frac {mc^{2}}{\sqrt {1-\beta ^{2}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>=</mo> <mi>γ<!-- γ --></mi> <mi>m</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>m</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <msqrt> <mn>1</mn> <mo>−<!-- − --></mo> <msup> <mi>β<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E=\gamma mc^{2}={\frac {mc^{2}}{\sqrt {1-\beta ^{2}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06b287e31123ca521e414e50a5bcbce55ddd897c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:22.89ex; height:7.009ex;" alt="{\displaystyle E=\gamma mc^{2}={\frac {mc^{2}}{\sqrt {1-\beta ^{2}}}}}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \approx mc^{2}+{\frac {1}{2}}mv^{2}...}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>≈<!-- ≈ --></mo> <mi>m</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mi>m</mi> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \approx mc^{2}+{\frac {1}{2}}mv^{2}...}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c774a5081fc0a642815f08ba11d1ac380ecff09" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:18.331ex; height:5.176ex;" alt="{\displaystyle \approx mc^{2}+{\frac {1}{2}}mv^{2}...}"></span></dd></dl> <p>The second term is just an expression for the kinetic energy of the particle. Mass indeed appears to be another form of energy.<sup id="cite_ref-Bais_50-8" class="reference"><a href="#cite_note-Bais-50"><span class="cite-bracket">[</span>41<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 90–92">: 90–92 </span></sup><sup id="cite_ref-Morin_52-3" class="reference"><a href="#cite_note-Morin-52"><span class="cite-bracket">[</span>43<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 129–130, 180">: 129–130, 180 </span></sup> </p><p>The concept of relativistic mass that Einstein introduced in 1905, <i>m</i><sub>rel</sub>, although amply validated every day in particle accelerators around the globe (or indeed in any instrumentation whose use depends on high velocity particles, such as electron microscopes,<sup id="cite_ref-57" class="reference"><a href="#cite_note-57"><span class="cite-bracket">[</span>46<span class="cite-bracket">]</span></a></sup> old-fashioned color television sets, etc.), has nevertheless not proven to be a <i>fruitful</i> concept in physics in the sense that it is not a concept that has served as a basis for other theoretical development. Relativistic mass, for instance, plays no role in general relativity. </p><p>For this reason, as well as for pedagogical concerns, most physicists currently prefer a different terminology when referring to the relationship between mass and energy.<sup id="cite_ref-58" class="reference"><a href="#cite_note-58"><span class="cite-bracket">[</span>47<span class="cite-bracket">]</span></a></sup> "Relativistic mass" is a deprecated term. The term "mass" by itself refers to the rest mass or <a href="/wiki/Invariant_mass" title="Invariant mass">invariant mass</a>, and is equal to the invariant length of the relativistic momentum vector. Expressed as a formula, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E^{2}-p^{2}c^{2}=m_{\text{rest}}^{2}c^{4}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msubsup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>rest</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E^{2}-p^{2}c^{2}=m_{\text{rest}}^{2}c^{4}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8f296292da0b4e8f6f5d13c2330ebe8b3a0c337" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.068ex; height:3.176ex;" alt="{\displaystyle E^{2}-p^{2}c^{2}=m_{\text{rest}}^{2}c^{4}}"></span></dd></dl> <p>This formula applies to all particles, massless as well as massive. For photons where <i>m</i><sub>rest</sub> equals zero, it yields, <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E=\pm pc}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>=</mo> <mo>±<!-- ± --></mo> <mi>p</mi> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E=\pm pc}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/96597d488b851e205ef9edecdac8207aecf865ad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.858ex; height:2.509ex;" alt="{\displaystyle E=\pm pc}"></span>⁠</span>.<sup id="cite_ref-Bais_50-9" class="reference"><a href="#cite_note-Bais-50"><span class="cite-bracket">[</span>41<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 90–92">: 90–92 </span></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Four-momentum">Four-momentum</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spacetime&action=edit&section=29" title="Edit section: Four-momentum"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Because of the close relationship between mass and energy, the four-momentum (also called 4-momentum) is also called the energy–momentum 4-vector. Using an uppercase <i>P</i> to represent the four-momentum and a lowercase <i><b>p</b></i> to denote the spatial momentum, the four-momentum may be written as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P\equiv (E/c,{\vec {p}})=(E/c,p_{x},p_{y},p_{z})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo>≡<!-- ≡ --></mo> <mo stretchy="false">(</mo> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>c</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>c</mi> <mo>,</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P\equiv (E/c,{\vec {p}})=(E/c,p_{x},p_{y},p_{z})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ea11788251b3afe169700725c8da2a385069b49" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:31.643ex; height:3.009ex;" alt="{\displaystyle P\equiv (E/c,{\vec {p}})=(E/c,p_{x},p_{y},p_{z})}"></span> or alternatively,</dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P\equiv (E,{\vec {p}})=(E,p_{x},p_{y},p_{z})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo>≡<!-- ≡ --></mo> <mo stretchy="false">(</mo> <mi>E</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>E</mi> <mo>,</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P\equiv (E,{\vec {p}})=(E,p_{x},p_{y},p_{z})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/77c39f5c628cde1c12e7e86effd2ff39eea5d264" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:27.305ex; height:3.009ex;" alt="{\displaystyle P\equiv (E,{\vec {p}})=(E,p_{x},p_{y},p_{z})}"></span> using the convention that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c=1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>=</mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c=1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d36c299a0acdbc74dd3fa29bd2846392c83214ea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.915ex; height:2.176ex;" alt="{\displaystyle c=1.}"></span><sup id="cite_ref-Morin_52-4" class="reference"><a href="#cite_note-Morin-52"><span class="cite-bracket">[</span>43<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 129–130, 180">: 129–130, 180 </span></sup></dd></dl> <p><span class="anchor" id="Conservation_laws"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Conservation_laws">Conservation laws</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spacetime&action=edit&section=30" title="Edit section: Conservation laws"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Conservation_law" title="Conservation law">Conservation law</a></div> <p>In physics, conservation laws state that certain particular measurable properties of an isolated physical system do not change as the system evolves over time. In 1915, <a href="/wiki/Emmy_Noether" title="Emmy Noether">Emmy Noether</a> discovered that underlying each conservation law is a fundamental symmetry of nature.<sup id="cite_ref-59" class="reference"><a href="#cite_note-59"><span class="cite-bracket">[</span>48<span class="cite-bracket">]</span></a></sup> The fact that physical processes do not care <i>where</i> in space they take place (<a href="/wiki/Space_translation_symmetry" class="mw-redirect" title="Space translation symmetry">space translation symmetry</a>) yields <a href="/wiki/Conservation_of_momentum" class="mw-redirect" title="Conservation of momentum">conservation of momentum</a>, the fact that such processes do not care <i>when</i> they take place (<a href="/wiki/Time_translation_symmetry" class="mw-redirect" title="Time translation symmetry">time translation symmetry</a>) yields <a href="/wiki/Conservation_of_energy" title="Conservation of energy">conservation of energy</a>, and so on. In this section, we examine the Newtonian views of conservation of mass, momentum and energy from a relativistic perspective. </p> <div class="mw-heading mw-heading4"><h4 id="Total_momentum">Total momentum</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spacetime&action=edit&section=31" title="Edit section: Total momentum"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Relativistic_conservation_of_momentum.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fc/Relativistic_conservation_of_momentum.png/220px-Relativistic_conservation_of_momentum.png" decoding="async" width="220" height="200" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fc/Relativistic_conservation_of_momentum.png/330px-Relativistic_conservation_of_momentum.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fc/Relativistic_conservation_of_momentum.png/440px-Relativistic_conservation_of_momentum.png 2x" data-file-width="500" data-file-height="455" /></a><figcaption>Figure 3–10. Relativistic conservation of momentum</figcaption></figure> <p>To understand how the Newtonian view of conservation of momentum needs to be modified in a relativistic context, we examine the problem of two colliding bodies limited to a single dimension. </p><p>In Newtonian mechanics, two extreme cases of this problem may be distinguished yielding mathematics of minimum complexity: </p> <dl><dd>(1) The two bodies rebound from each other in a completely elastic collision.</dd> <dd>(2) The two bodies stick together and continue moving as a single particle. This second case is the case of completely inelastic collision.</dd></dl> <p>For both cases (1) and (2), momentum, mass, and total energy are conserved. However, kinetic energy is not conserved in cases of inelastic collision. A certain fraction of the initial kinetic energy is converted to heat. </p><p>In case (2), two masses with momentums <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {p}}_{\boldsymbol {1}}=m_{1}{\boldsymbol {v}}_{\boldsymbol {1}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {p}}_{\boldsymbol {1}}=m_{1}{\boldsymbol {v}}_{\boldsymbol {1}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1aa6c9e84f9c2919c0be64c9cd2fef9047108929" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.052ex; width:11.315ex; height:2.176ex;" alt="{\displaystyle {\boldsymbol {p}}_{\boldsymbol {1}}=m_{1}{\boldsymbol {v}}_{\boldsymbol {1}}}"></span>⁠</span> and <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {p}}_{\boldsymbol {2}}=m_{2}{\boldsymbol {v}}_{\boldsymbol {2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">2</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {p}}_{\boldsymbol {2}}=m_{2}{\boldsymbol {v}}_{\boldsymbol {2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4cb41993376a8a892168bb8de4a643e3774f57bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.052ex; width:11.315ex; height:2.176ex;" alt="{\displaystyle {\boldsymbol {p}}_{\boldsymbol {2}}=m_{2}{\boldsymbol {v}}_{\boldsymbol {2}}}"></span>⁠</span> collide to produce a single particle of conserved mass <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m=m_{1}+m_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>=</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m=m_{1}+m_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40c6e7632a3693dd8aeb14c8a9a77d13b2bd7d8b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.169ex; height:2.343ex;" alt="{\displaystyle m=m_{1}+m_{2}}"></span>⁠</span> traveling at the <a href="/wiki/Center_of_mass" title="Center of mass">center of mass</a> velocity of the original system, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {v_{cm}}}=\left(m_{1}{\boldsymbol {v_{1}}}+m_{2}{\boldsymbol {v_{2}}}\right)/\left(m_{1}+m_{2}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold-italic">v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">c</mi> <mi mathvariant="bold-italic">m</mi> </mrow> </msub> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold-italic">v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">1</mn> </mrow> </msub> </mrow> <mo>+</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold-italic">v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">2</mn> </mrow> </msub> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {v_{cm}}}=\left(m_{1}{\boldsymbol {v_{1}}}+m_{2}{\boldsymbol {v_{2}}}\right)/\left(m_{1}+m_{2}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a06684f3218b36db83d8ce79613daecb026a2405" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:35.793ex; height:2.843ex;" alt="{\displaystyle {\boldsymbol {v_{cm}}}=\left(m_{1}{\boldsymbol {v_{1}}}+m_{2}{\boldsymbol {v_{2}}}\right)/\left(m_{1}+m_{2}\right)}"></span>. The total momentum <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {p=p_{1}+p_{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">p</mi> <mo mathvariant="bold">=</mo> <msub> <mi mathvariant="bold-italic">p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">1</mn> </mrow> </msub> <mo mathvariant="bold">+</mo> <msub> <mi mathvariant="bold-italic">p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">2</mn> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {p=p_{1}+p_{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/813c2f05d9d9ddff212a8a23cc3df7307a024da9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.052ex; width:13.076ex; height:2.343ex;" alt="{\displaystyle {\boldsymbol {p=p_{1}+p_{2}}}}"></span>⁠</span> is conserved. </p><p>Fig. 3-10 illustrates the inelastic collision of two particles from a relativistic perspective. The time components <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{1}/c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{1}/c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29b510040570d7b742a904ec6645a47d6640440f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.939ex; height:2.843ex;" alt="{\displaystyle E_{1}/c}"></span>⁠</span> and <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{2}/c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{2}/c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d522843987f87704f6c3499be361cfc07cfc7e3d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.939ex; height:2.843ex;" alt="{\displaystyle E_{2}/c}"></span>⁠</span> add up to total <i>E/c</i> of the resultant vector, meaning that energy is conserved. Likewise, the space components <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {p_{1}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold-italic">p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">1</mn> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {p_{1}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc5e6c780745088ebee414e41ab9d39e272d3046" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.052ex; width:2.627ex; height:2.009ex;" alt="{\displaystyle {\boldsymbol {p_{1}}}}"></span>⁠</span> and <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {p_{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold-italic">p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">2</mn> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {p_{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b952deb0054021f1ae7dd20fe0e578c75abc4acc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.052ex; width:2.627ex; height:2.009ex;" alt="{\displaystyle {\boldsymbol {p_{2}}}}"></span>⁠</span> add up to form <i>p</i> of the resultant vector. The four-momentum is, as expected, a conserved quantity. However, the invariant mass of the fused particle, given by the point where the invariant hyperbola of the total momentum intersects the energy axis, is not equal to the sum of the invariant masses of the individual particles that collided. Indeed, it is larger than the sum of the individual masses: <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m>m_{1}+m_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>></mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m>m_{1}+m_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffa1c448955bfa04450e152c63462699b995193f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.169ex; height:2.343ex;" alt="{\displaystyle m>m_{1}+m_{2}}"></span>⁠</span>.<sup id="cite_ref-Bais_50-10" class="reference"><a href="#cite_note-Bais-50"><span class="cite-bracket">[</span>41<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 94–97">: 94–97 </span></sup> </p><p>Looking at the events of this scenario in reverse sequence, we see that non-conservation of mass is a common occurrence: when an unstable <a href="/wiki/Elementary_particle" title="Elementary particle">elementary particle</a> spontaneously decays into two lighter particles, total energy is conserved, but the mass is not. Part of the mass is converted into kinetic energy.<sup id="cite_ref-Morin_52-5" class="reference"><a href="#cite_note-Morin-52"><span class="cite-bracket">[</span>43<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 134–138">: 134–138 </span></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Choice_of_reference_frames">Choice of reference frames</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spacetime&action=edit&section=32" title="Edit section: Choice of reference frames"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1273380762/mw-parser-output/.tmulti"><div class="thumb tmulti tright"><div class="thumbinner multiimageinner" style="width:228px;max-width:228px"><div class="trow"><div class="tsingle" style="width:117px;max-width:117px"><div class="thumbimage"><span typeof="mw:File"><a href="/wiki/File:2-body_Particle_Decay-Lab.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/a/ab/2-body_Particle_Decay-Lab.svg/115px-2-body_Particle_Decay-Lab.svg.png" decoding="async" width="115" height="108" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/ab/2-body_Particle_Decay-Lab.svg/173px-2-body_Particle_Decay-Lab.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/ab/2-body_Particle_Decay-Lab.svg/230px-2-body_Particle_Decay-Lab.svg.png 2x" data-file-width="160" data-file-height="150" /></a></span></div><div class="thumbcaption">Figure 3-11. <br />(above) <b>Lab Frame</b>.<br />(right) <b>Center of Momentum Frame</b>.</div></div><div class="tsingle" style="width:107px;max-width:107px"><div class="thumbimage"><span typeof="mw:File"><a href="/wiki/File:2-body_Particle_Decay-CoM.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/7d/2-body_Particle_Decay-CoM.svg/105px-2-body_Particle_Decay-CoM.svg.png" decoding="async" width="105" height="195" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/7d/2-body_Particle_Decay-CoM.svg/158px-2-body_Particle_Decay-CoM.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/7d/2-body_Particle_Decay-CoM.svg/210px-2-body_Particle_Decay-CoM.svg.png 2x" data-file-width="140" data-file-height="260" /></a></span></div></div></div></div></div> <p>The freedom to choose any frame in which to perform an analysis allows us to pick one which may be particularly convenient. For analysis of momentum and energy problems, the most convenient frame is usually the "<a href="/wiki/Center-of-momentum_frame" title="Center-of-momentum frame">center-of-momentum frame</a>" (also called the zero-momentum frame, or COM frame). This is the frame in which the space component of the system's total momentum is zero. Fig. 3-11 illustrates the breakup of a high speed particle into two daughter particles. In the lab frame, the daughter particles are preferentially emitted in a direction oriented along the original particle's trajectory. In the COM frame, however, the two daughter particles are emitted in opposite directions, although their masses and the magnitude of their velocities are generally not the same.<sup id="cite_ref-Idema_2022_60-0" class="reference"><a href="#cite_note-Idema_2022-60"><span class="cite-bracket">[</span>49<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Energy_and_momentum_conservation">Energy and momentum conservation</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spacetime&action=edit&section=33" title="Edit section: Energy and momentum conservation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In a Newtonian analysis of interacting particles, transformation between frames is simple because all that is necessary is to apply the Galilean transformation to all velocities. Since <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v'=v-u}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>v</mi> <mo>′</mo> </msup> <mo>=</mo> <mi>v</mi> <mo>−<!-- − --></mo> <mi>u</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v'=v-u}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6a54c89561e3b42162cfb39892057cfd27ecef2d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.208ex; height:2.676ex;" alt="{\displaystyle v'=v-u}"></span>⁠</span>, the momentum <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p'=p-mu}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>p</mi> <mo>′</mo> </msup> <mo>=</mo> <mi>p</mi> <mo>−<!-- − --></mo> <mi>m</mi> <mi>u</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p'=p-mu}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d140ed9eb3e8d8f9fd41d686b18c1ea6b8ada5eb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:12.422ex; height:2.843ex;" alt="{\displaystyle p'=p-mu}"></span>⁠</span>. If the total momentum of an interacting system of particles is observed to be conserved in one frame, it will likewise be observed to be conserved in any other frame.<sup id="cite_ref-Morin_52-6" class="reference"><a href="#cite_note-Morin-52"><span class="cite-bracket">[</span>43<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 241–245">: 241–245 </span></sup> </p><p>Conservation of momentum in the COM frame amounts to the requirement that <span class="texhtml"><i>p</i> = 0</span> both before and after collision. In the Newtonian analysis, conservation of mass dictates that <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m=m_{1}+m_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>=</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m=m_{1}+m_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40c6e7632a3693dd8aeb14c8a9a77d13b2bd7d8b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.169ex; height:2.343ex;" alt="{\displaystyle m=m_{1}+m_{2}}"></span>⁠</span>. In the simplified, one-dimensional scenarios that we have been considering, only one additional constraint is necessary before the outgoing momenta of the particles can be determined—an energy condition. In the one-dimensional case of a completely elastic collision with no loss of kinetic energy, the outgoing velocities of the rebounding particles in the COM frame will be precisely equal and opposite to their incoming velocities. In the case of a completely inelastic collision with total loss of kinetic energy, the outgoing velocities of the rebounding particles will be zero.<sup id="cite_ref-Morin_52-7" class="reference"><a href="#cite_note-Morin-52"><span class="cite-bracket">[</span>43<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 241–245">: 241–245 </span></sup> </p><p>Newtonian momenta, calculated as <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p=mv}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>=</mo> <mi>m</mi> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p=mv}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2acbe7154884d4dbe30b9a0b399e43cefd8654c7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:7.525ex; height:2.009ex;" alt="{\displaystyle p=mv}"></span>⁠</span>, fail to behave properly under Lorentzian transformation. The linear transformation of velocities <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v'=v-u}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>v</mi> <mo>′</mo> </msup> <mo>=</mo> <mi>v</mi> <mo>−<!-- − --></mo> <mi>u</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v'=v-u}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6a54c89561e3b42162cfb39892057cfd27ecef2d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.208ex; height:2.676ex;" alt="{\displaystyle v'=v-u}"></span>⁠</span> is replaced by the highly nonlinear <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v^{\prime }=(v-u)/(1-{vu}/{c^{2}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">′<!-- ′ --></mi> </mrow> </msup> <mo>=</mo> <mo stretchy="false">(</mo> <mi>v</mi> <mo>−<!-- − --></mo> <mi>u</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> <mi>u</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v^{\prime }=(v-u)/(1-{vu}/{c^{2}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d0ec6af5ebc314c6c2ca159f4351fd81aa6d435a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.673ex; height:3.176ex;" alt="{\displaystyle v^{\prime }=(v-u)/(1-{vu}/{c^{2}})}"></span>⁠</span> so that a calculation demonstrating conservation of momentum in one frame will be invalid in other frames. Einstein was faced with either having to give up conservation of momentum, or to change the definition of momentum. This second option was what he chose.<sup id="cite_ref-Bais_50-11" class="reference"><a href="#cite_note-Bais-50"><span class="cite-bracket">[</span>41<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 104">: 104 </span></sup> </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1273380762/mw-parser-output/.tmulti"><div class="thumb tmulti tright"><div class="thumbinner multiimageinner" style="width:254px;max-width:254px"><div class="trow"><div class="tsingle" style="width:252px;max-width:252px"><div class="thumbimage"><span typeof="mw:File"><a href="/wiki/File:Energy-momentum_diagram_for_pion_decay_(A).png" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/91/Energy-momentum_diagram_for_pion_decay_%28A%29.png/250px-Energy-momentum_diagram_for_pion_decay_%28A%29.png" decoding="async" width="250" height="250" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/91/Energy-momentum_diagram_for_pion_decay_%28A%29.png/375px-Energy-momentum_diagram_for_pion_decay_%28A%29.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/91/Energy-momentum_diagram_for_pion_decay_%28A%29.png/500px-Energy-momentum_diagram_for_pion_decay_%28A%29.png 2x" data-file-width="640" data-file-height="640" /></a></span></div><div class="thumbcaption">Figure 3-12a. Energy–momentum diagram for decay of a charged pion.</div></div></div><div class="trow"><div class="tsingle" style="width:252px;max-width:252px"><div class="thumbimage"><span typeof="mw:File"><a href="/wiki/File:Energy-momentum_diagram_for_pion_decay_(B).png" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/7a/Energy-momentum_diagram_for_pion_decay_%28B%29.png/250px-Energy-momentum_diagram_for_pion_decay_%28B%29.png" decoding="async" width="250" height="157" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/7a/Energy-momentum_diagram_for_pion_decay_%28B%29.png/375px-Energy-momentum_diagram_for_pion_decay_%28B%29.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/7a/Energy-momentum_diagram_for_pion_decay_%28B%29.png/500px-Energy-momentum_diagram_for_pion_decay_%28B%29.png 2x" data-file-width="649" data-file-height="407" /></a></span></div><div class="thumbcaption">Figure 3-12b. Graphing calculator analysis of charged pion decay.</div></div></div></div></div> <p>The relativistic conservation law for energy and momentum replaces the three classical conservation laws for energy, momentum and mass. Mass is no longer conserved independently, because it has been subsumed into the total relativistic energy. This makes the relativistic conservation of energy a simpler concept than in nonrelativistic mechanics, because the total energy is conserved without any qualifications. Kinetic energy converted into heat or internal potential energy shows up as an increase in mass.<sup id="cite_ref-Morin_52-8" class="reference"><a href="#cite_note-Morin-52"><span class="cite-bracket">[</span>43<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 127">: 127 </span></sup> </p> <div style="font-size:85%;"><b>Example:</b> Because of the equivalence of mass and energy, elementary particle masses are customarily stated in energy units, where <span class="nowrap">1 MeV = 10<sup>6</sup></span> electron volts. A charged pion is a particle of mass 139.57 MeV (approx. 273 times the electron mass). It is unstable, and decays into a muon of mass 105.66 MeV (approx. 207 times the electron mass) and an antineutrino, which has an almost negligible mass. The difference between the pion mass and the muon mass is 33.91 MeV. <dl><dd><span style="white-space:nowrap;"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.8em;line-height:1.0em;font-size:80%;text-align:right"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>π<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.8em;line-height:1.0em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">−</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span></span> → <span style="white-space:nowrap;"><a href="/wiki/Muon" title="Muon"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.8em;line-height:1.0em;font-size:80%;text-align:right"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>μ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.8em;line-height:1.0em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">−</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span></a></span> + <span style="white-space:nowrap;"><a href="/wiki/Muon_antineutrino" class="mw-redirect" title="Muon antineutrino"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.8em;line-height:1.0em;font-size:80%;text-align:right"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span><span style="text-decoration:overline;">ν</span><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.0em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">μ</sub></span></span></a></span></dd></dl> <p>Fig. 3-12a illustrates the energy–momentum diagram for this decay reaction in the rest frame of the pion. Because of its negligible mass, a neutrino travels at very nearly the speed of light. The relativistic expression for its energy, like that of the photon, is <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{v}=pc,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> </msub> <mo>=</mo> <mi>p</mi> <mi>c</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{v}=pc,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4a902b4d2cee563d7cde22f7b5d4b586dc68b415" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.666ex; height:2.509ex;" alt="{\displaystyle E_{v}=pc,}"></span>⁠</span> which is also the value of the space component of its momentum. To conserve momentum, the muon has the same value of the space component of the neutrino's momentum, but in the opposite direction. </p> Algebraic analyses of the energetics of this decay reaction are available online,<sup id="cite_ref-61" class="reference"><a href="#cite_note-61"><span class="cite-bracket">[</span>50<span class="cite-bracket">]</span></a></sup> so Fig. 3-12b presents instead a graphing calculator solution. The energy of the neutrino is 29.79 MeV, and the energy of the muon is <span class="nowrap">33.91 MeV − 29.79 MeV = 4.12 MeV</span>. Most of the energy is carried off by the near-zero-mass neutrino.</div> <div class="mw-heading mw-heading2"><h2 id="Introduction_to_curved_spacetime">Introduction to curved spacetime</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spacetime&action=edit&section=34" title="Edit section: Introduction to curved spacetime"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><span class="anchor" id="Basic_propositions"></span> </p> <div class="excerpt-block"><style data-mw-deduplicate="TemplateStyles:r1066933788">.mw-parser-output .excerpt-hat .mw-editsection-like{font-style:normal}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable dablink excerpt-hat selfref">This section is an excerpt from <a href="/wiki/Curved_spacetime#Introduction" title="Curved spacetime">Curved spacetime § Introduction</a>.<span class="mw-editsection-like plainlinks"><span class="mw-editsection-bracket">[</span><a class="external text" href="https://en.wikipedia.org/w/index.php?title=Curved_spacetime&action=edit">edit</a><span class="mw-editsection-bracket">]</span></span></div><div class="excerpt"> <p>Newton's theories assumed that motion takes place against the backdrop of a rigid Euclidean <a href="/wiki/Reference_frame" class="mw-redirect" title="Reference frame">reference frame</a> that extends throughout all space and all time. Gravity is mediated by a mysterious force, acting instantaneously across a distance, whose actions are independent of the intervening space.<sup id="cite_ref-62" class="reference"><a href="#cite_note-62"><span class="cite-bracket">[</span>note 12<span class="cite-bracket">]</span></a></sup> In contrast, Einstein denied that there is any background Euclidean reference frame that extends throughout space. Nor is there any such thing as a force of gravitation, only the structure of spacetime itself.<sup id="cite_ref-Curved_spacetime_Taylor_63-0" class="reference"><a href="#cite_note-Curved_spacetime_Taylor-63"><span class="cite-bracket">[</span>51<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 175–190">: 175–190 </span></sup> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Principle_of_the_tidal_force.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Principle_of_the_tidal_force.svg/220px-Principle_of_the_tidal_force.svg.png" decoding="async" width="220" height="202" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Principle_of_the_tidal_force.svg/330px-Principle_of_the_tidal_force.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Principle_of_the_tidal_force.svg/440px-Principle_of_the_tidal_force.svg.png 2x" data-file-width="98" data-file-height="90" /></a><figcaption>Figure 5–1. Tidal effects.</figcaption></figure> <p>In spacetime terms, the path of a satellite orbiting the Earth is not dictated by the distant influences of the Earth, Moon and Sun. Instead, the satellite moves through space only in response to local conditions. Since spacetime is everywhere locally flat when considered on a sufficiently small scale, the satellite is always following a straight line in its local inertial frame. We say that the satellite always follows along the path of a <a href="/wiki/Geodesics_in_general_relativity" title="Geodesics in general relativity">geodesic</a>. No evidence of gravitation can be discovered following alongside the motions of a single particle.<sup id="cite_ref-Curved_spacetime_Taylor_63-1" class="reference"><a href="#cite_note-Curved_spacetime_Taylor-63"><span class="cite-bracket">[</span>51<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 175–190">: 175–190 </span></sup> </p><p>In any analysis of spacetime, evidence of gravitation requires that one observe the relative accelerations of <i>two</i> bodies or two separated particles. In Fig. 5-1, two separated particles, free-falling in the gravitational field of the Earth, exhibit tidal accelerations due to local inhomogeneities in the gravitational field such that each particle follows a different path through spacetime. The tidal accelerations that these particles exhibit with respect to each other do not require forces for their explanation. Rather, Einstein described them in terms of the geometry of spacetime, i.e. the curvature of spacetime. These tidal accelerations are strictly local. It is the cumulative total effect of many local manifestations of curvature that result in the <i>appearance</i> of a gravitational force acting at a long range from Earth.<sup id="cite_ref-Curved_spacetime_Taylor_63-2" class="reference"><a href="#cite_note-Curved_spacetime_Taylor-63"><span class="cite-bracket">[</span>51<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 175–190">: 175–190 </span></sup> </p> <dl><dd><small>Different observers viewing the scenarios presented in this figure interpret the scenarios differently depending on their knowledge of the situation. (i) A first observer, at the center of mass of particles 2 and 3 but unaware of the large mass 1, concludes that a force of repulsion exists between the particles in scenario A while a force of attraction exists between the particles in scenario B. (ii) A second observer, aware of the large mass 1, smiles at the first reporter's naiveté. This second observer knows that in reality, the apparent forces between particles 2 and 3 really represent tidal effects resulting from their differential attraction by mass 1. (iii) A third observer, trained in general relativity, knows that there are, in fact, no forces at all acting between the three objects. Rather, all three objects move along geodesics in spacetime.</small></dd></dl> <p>Two central propositions underlie general relativity. </p> <ul><li>The first crucial concept is coordinate independence: The laws of physics cannot depend on what coordinate system one uses. This is a major extension of the principle of relativity from the version used in special relativity, which states that the laws of physics must be the same for every observer moving in non-accelerated (inertial) reference frames. In general relativity, to use Einstein's own (translated) words, "the laws of physics must be of such a nature that they apply to systems of reference in any kind of motion."<sup id="cite_ref-Curved_spacetime_PrincipleOfRelativity_64-0" class="reference"><a href="#cite_note-Curved_spacetime_PrincipleOfRelativity-64"><span class="cite-bracket">[</span>52<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 113">: 113 </span></sup> This leads to an immediate issue: In accelerated frames, one feels forces that seemingly would enable one to assess one's state of acceleration in an absolute sense. Einstein resolved this problem through the principle of equivalence.<sup id="cite_ref-Curved_spacetime_Mook_65-0" class="reference"><a href="#cite_note-Curved_spacetime_Mook-65"><span class="cite-bracket">[</span>53<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 137–149">: 137–149 </span></sup></li></ul> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Elevator_gravity.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/11/Elevator_gravity.svg/220px-Elevator_gravity.svg.png" decoding="async" width="220" height="147" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/11/Elevator_gravity.svg/330px-Elevator_gravity.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/11/Elevator_gravity.svg/440px-Elevator_gravity.svg.png 2x" data-file-width="600" data-file-height="400" /></a><figcaption>Figure 5–2. Equivalence principle</figcaption></figure> <ul><li>The <a href="/wiki/Equivalence_principle" title="Equivalence principle">equivalence principle</a> states that in any sufficiently small region of space, the effects of gravitation are the same as those from acceleration.<br /> In Fig. 5-2, person A is in a spaceship, far from any massive objects, that undergoes a uniform acceleration of <i>g</i>. Person B is in a box resting on Earth. Provided that the spaceship is sufficiently small so that tidal effects are non-measurable (given the sensitivity of current gravity measurement instrumentation, A and B presumably should be <a href="/wiki/Lilliputian" class="mw-redirect" title="Lilliputian">Lilliputians</a>), there are no experiments that A and B can perform which will enable them to tell which setting they are in.<sup id="cite_ref-Curved_spacetime_Mook_65-1" class="reference"><a href="#cite_note-Curved_spacetime_Mook-65"><span class="cite-bracket">[</span>53<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 141–149">: 141–149 </span></sup><br /> An alternative expression of the equivalence principle is to note that in Newton's universal law of gravitation, <span class="nowrap"><i>F = GMm</i><sub>g</sub><i>/r</i><sup>2</sup> =</span> <i>m</i><sub>g</sub><i>g</i> and in Newton's second law, <span class="nowrap"><i>F = m</i><sub>i</sub><i>a</i>,</span> there is no <i>a priori</i> reason why the <a href="/wiki/Gravitational_mass" class="mw-redirect" title="Gravitational mass">gravitational mass</a> <i>m</i><sub>g</sub> should be equal to the <a href="/wiki/Mass#Inertial_mass" title="Mass">inertial mass</a> <i>m</i><sub>i</sub>. The equivalence principle states that these two masses are identical.<sup id="cite_ref-Curved_spacetime_Mook_65-2" class="reference"><a href="#cite_note-Curved_spacetime_Mook-65"><span class="cite-bracket">[</span>53<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 141–149">: 141–149 </span></sup></li></ul> To go from the elementary description above of curved spacetime to a complete description of gravitation requires tensor calculus and differential geometry, topics both requiring considerable study. Without these mathematical tools, it is possible to write <i>about</i> general relativity, but it is not possible to demonstrate any non-trivial derivations.</div></div> <div class="mw-heading mw-heading2"><h2 id="Technical_topics">Technical topics</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spacetime&action=edit&section=35" title="Edit section: Technical topics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Is_spacetime_really_curved?"><span id="Is_spacetime_really_curved.3F"></span>Is spacetime really curved?</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spacetime&action=edit&section=36" title="Edit section: Is spacetime really curved?"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In Poincaré's <a href="/wiki/Conventionalist" class="mw-redirect" title="Conventionalist">conventionalist</a> views, the essential criteria according to which one should select a Euclidean versus non-Euclidean geometry would be economy and simplicity. A realist would say that Einstein discovered spacetime to be non-Euclidean. A conventionalist would say that Einstein merely found it <i>more convenient</i> to use non-Euclidean geometry. The conventionalist would maintain that Einstein's analysis said nothing about what the geometry of spacetime <i>really</i> is.<sup id="cite_ref-Murzi_66-0" class="reference"><a href="#cite_note-Murzi-66"><span class="cite-bracket">[</span>54<span class="cite-bracket">]</span></a></sup> </p><p>Such being said, </p> <dl><dd><ol><li>Is it possible to represent general relativity in terms of flat spacetime?</li> <li>Are there any situations where a flat spacetime interpretation of general relativity may be <i>more convenient</i> than the usual curved spacetime interpretation?</li></ol></dd></dl> <p>In response to the first question, a number of authors including Deser, Grishchuk, Rosen, Weinberg, etc. have provided various formulations of gravitation as a field in a flat manifold. Those theories are variously called "<a href="/wiki/Bimetric_gravity" title="Bimetric gravity">bimetric gravity</a>", the "field-theoretical approach to general relativity", and so forth.<sup id="cite_ref-Deser1970_67-0" class="reference"><a href="#cite_note-Deser1970-67"><span class="cite-bracket">[</span>55<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Grishchuk1984_68-0" class="reference"><a href="#cite_note-Grishchuk1984-68"><span class="cite-bracket">[</span>56<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Rosen1940_69-0" class="reference"><a href="#cite_note-Rosen1940-69"><span class="cite-bracket">[</span>57<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Weinberg1964_70-0" class="reference"><a href="#cite_note-Weinberg1964-70"><span class="cite-bracket">[</span>58<span class="cite-bracket">]</span></a></sup> Kip Thorne has provided a popular review of these theories.<sup id="cite_ref-Thorne1995_71-0" class="reference"><a href="#cite_note-Thorne1995-71"><span class="cite-bracket">[</span>59<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 397–403">: 397–403 </span></sup> </p><p>The flat spacetime paradigm posits that matter creates a gravitational field that causes rulers to shrink when they are turned from circumferential orientation to radial, and that causes the ticking rates of clocks to dilate. The flat spacetime paradigm is fully equivalent to the curved spacetime paradigm in that they both represent the same physical phenomena. However, their mathematical formulations are entirely different. Working physicists routinely switch between using curved and flat spacetime techniques depending on the requirements of the problem. The flat spacetime paradigm is convenient when performing approximate calculations in weak fields. Hence, flat spacetime techniques tend be used when solving gravitational wave problems, while curved spacetime techniques tend be used in the analysis of black holes.<sup id="cite_ref-Thorne1995_71-1" class="reference"><a href="#cite_note-Thorne1995-71"><span class="cite-bracket">[</span>59<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 397–403">: 397–403 </span></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Asymptotic_symmetries">Asymptotic symmetries</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spacetime&action=edit&section=37" title="Edit section: Asymptotic symmetries"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Bondi%E2%80%93Metzner%E2%80%93Sachs_group" title="Bondi–Metzner–Sachs group">Bondi–Metzner–Sachs group</a></div> <p>The spacetime symmetry group for <a href="/wiki/Special_Relativity" class="mw-redirect" title="Special Relativity">Special Relativity</a> is the <a href="/wiki/Poincar%C3%A9_group" title="Poincaré group">Poincaré group</a>, which is a ten-dimensional group of three Lorentz boosts, three rotations, and four spacetime translations. It is logical to ask what symmetries if any might apply in <a href="/wiki/General_Relativity" class="mw-redirect" title="General Relativity">General Relativity</a>. A tractable case might be to consider the symmetries of spacetime as seen by observers located far away from all sources of the gravitational field. The naive expectation for asymptotically flat spacetime symmetries might be simply to extend and reproduce the symmetries of flat spacetime of special relativity, <i>viz.</i>, the Poincaré group. </p><p>In 1962 <a href="/wiki/Hermann_Bondi" title="Hermann Bondi">Hermann Bondi</a>, M. G. van der Burg, A. W. Metzner<sup id="cite_ref-bondi_etal_1962_72-0" class="reference"><a href="#cite_note-bondi_etal_1962-72"><span class="cite-bracket">[</span>60<span class="cite-bracket">]</span></a></sup> and <a href="/wiki/Rainer_K._Sachs" title="Rainer K. Sachs">Rainer K. Sachs</a><sup id="cite_ref-sachs1962_73-0" class="reference"><a href="#cite_note-sachs1962-73"><span class="cite-bracket">[</span>61<span class="cite-bracket">]</span></a></sup> addressed this <a href="/wiki/Bondi%E2%80%93Metzner%E2%80%93Sachs_group" title="Bondi–Metzner–Sachs group">asymptotic symmetry</a> problem in order to investigate the flow of energy at infinity due to propagating <a href="/wiki/Gravitational_wave" title="Gravitational wave">gravitational waves</a>. Their first step was to decide on some physically sensible boundary conditions to place on the gravitational field at lightlike infinity to characterize what it means to say a metric is asymptotically flat, making no <i>a priori</i> assumptions about the nature of the asymptotic symmetry group—not even the assumption that such a group exists. Then after designing what they considered to be the most sensible boundary conditions, they investigated the nature of the resulting asymptotic symmetry transformations that leave invariant the form of the boundary conditions appropriate for asymptotically flat gravitational fields.<sup id="cite_ref-strominger2017_74-0" class="reference"><a href="#cite_note-strominger2017-74"><span class="cite-bracket">[</span>62<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 35">: 35 </span></sup> </p><p>What they found was that the asymptotic symmetry transformations actually do form a group and the structure of this group does not depend on the particular gravitational field that happens to be present. This means that, as expected, one can separate the kinematics of spacetime from the dynamics of the gravitational field at least at spatial infinity. The puzzling surprise in 1962 was their discovery of a rich infinite-dimensional group (the so-called BMS group) as the asymptotic symmetry group, instead of the finite-dimensional Poincaré group, which is a subgroup of the BMS group. Not only are the Lorentz transformations asymptotic symmetry transformations, there are also additional transformations that are not Lorentz transformations but are asymptotic symmetry transformations. In fact, they found an additional infinity of transformation generators known as <i>supertranslations</i>. This implies the conclusion that General Relativity (GR) does <i>not</i> reduce to special relativity in the case of weak fields at long distances.<sup id="cite_ref-strominger2017_74-1" class="reference"><a href="#cite_note-strominger2017-74"><span class="cite-bracket">[</span>62<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 35">: 35 </span></sup> </p><p><span class="anchor" id="Riemannian_geometry"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Riemannian_geometry">Riemannian geometry</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spacetime&action=edit&section=38" title="Edit section: Riemannian geometry"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="excerpt-block"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1066933788"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable dablink excerpt-hat selfref">This section is an excerpt from <a href="/wiki/Riemannian_geometry" title="Riemannian geometry">Riemannian geometry</a>.<span class="mw-editsection-like plainlinks"><span class="mw-editsection-bracket">[</span><a class="external text" href="https://en.wikipedia.org/w/index.php?title=Riemannian_geometry&action=edit">edit</a><span class="mw-editsection-bracket">]</span></span></div><div class="excerpt"> <p><a href="/wiki/Riemannian_geometry" title="Riemannian geometry">Riemannian geometry</a> is the branch of <a href="/wiki/Differential_geometry" title="Differential geometry">differential geometry</a> that studies <a href="/wiki/Riemannian_manifold" title="Riemannian manifold">Riemannian manifolds</a>, defined as <a href="/wiki/Manifold" title="Manifold">smooth manifolds</a> with a <i>Riemannian metric</i> (an <a href="/wiki/Inner_product" class="mw-redirect" title="Inner product">inner product</a> on the <a href="/wiki/Tangent_space" title="Tangent space">tangent space</a> at each point that varies <a href="/wiki/Smooth_function" class="mw-redirect" title="Smooth function">smoothly</a> from point to point). This gives, in particular, local notions of <a href="/wiki/Angle" title="Angle">angle</a>, <a href="/wiki/Arc_length" title="Arc length">length of curves</a>, <a href="/wiki/Surface_area" title="Surface area">surface area</a> and <a href="/wiki/Volume" title="Volume">volume</a>. From those, some other global quantities can be derived by <a href="/wiki/Integral" title="Integral">integrating</a> local contributions. </p> Riemannian geometry originated with the vision of <a href="/wiki/Bernhard_Riemann" title="Bernhard Riemann">Bernhard Riemann</a> expressed in his inaugural lecture "<span title="German-language text"><i lang="de">Ueber die Hypothesen, welche der Geometrie zu Grunde liegen</i></span>" ("On the Hypotheses on which Geometry is Based").<sup id="cite_ref-75" class="reference"><a href="#cite_note-75"><span class="cite-bracket">[</span>63<span class="cite-bracket">]</span></a></sup> It is a very broad and abstract generalization of the <a href="/wiki/Differential_geometry_of_surfaces" title="Differential geometry of surfaces">differential geometry of surfaces</a> in <a href="/wiki/Three-dimensional_space" title="Three-dimensional space">R<sup>3</sup></a>. Development of Riemannian geometry resulted in synthesis of diverse results concerning the geometry of surfaces and the behavior of <a href="/wiki/Geodesic" title="Geodesic">geodesics</a> on them, with techniques that can be applied to the study of <a href="/wiki/Differentiable_manifold" title="Differentiable manifold">differentiable manifolds</a> of higher dimensions. It enabled the formulation of <a href="/wiki/Albert_Einstein" title="Albert Einstein">Einstein</a>'s <a href="/wiki/General_theory_of_relativity" class="mw-redirect" title="General theory of relativity">general theory of relativity</a>, made profound impact on <a href="/wiki/Group_theory" title="Group theory">group theory</a> and <a href="/wiki/Representation_theory" title="Representation theory">representation theory</a>, as well as <a href="/wiki/Global_analytic_function" title="Global analytic function">analysis</a>, and spurred the development of <a href="/wiki/Algebraic_topology" title="Algebraic topology">algebraic</a> and <a href="/wiki/Differential_topology" title="Differential topology">differential topology</a>.</div></div> <p><span class="anchor" id="Curved_manifolds"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Curved_manifolds">Curved manifolds</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spacetime&action=edit&section=39" title="Edit section: Curved manifolds"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Manifold" title="Manifold">Manifold</a>, <a href="/wiki/Lorentzian_manifold" class="mw-redirect" title="Lorentzian manifold">Lorentzian manifold</a>, and <a href="/wiki/Differentiable_manifold" title="Differentiable manifold">Differentiable manifold</a></div> <p>For physical reasons, a spacetime continuum is mathematically defined as a four-dimensional, smooth, connected <a href="/wiki/Lorentzian_manifold" class="mw-redirect" title="Lorentzian manifold">Lorentzian manifold</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (M,g)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>M</mi> <mo>,</mo> <mi>g</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (M,g)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68e27d2e539fd0c3a9a7efab6257abd17de7fc57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.401ex; height:2.843ex;" alt="{\displaystyle (M,g)}"></span>. This means the smooth <a href="/wiki/Lorentz_metric" class="mw-redirect" title="Lorentz metric">Lorentz metric</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span> has <a href="/wiki/Metric_signature" title="Metric signature">signature</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (3,1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>3</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (3,1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a8933db1c87b5fefc8d54c6e2d157e4b343bb8b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.168ex; height:2.843ex;" alt="{\displaystyle (3,1)}"></span>. The metric determines the <i><style data-mw-deduplicate="TemplateStyles:r1238216509">.mw-parser-output .vanchor>:target~.vanchor-text{background-color:#b1d2ff}@media screen{html.skin-theme-clientpref-night .mw-parser-output .vanchor>:target~.vanchor-text{background-color:#0f4dc9}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .vanchor>:target~.vanchor-text{background-color:#0f4dc9}}</style><span class="vanchor"><span id="geometry_of_spacetime"></span><span id="SPACETIME_GEOMETRY"></span><span class="vanchor-text">geometry of spacetime</span></span></i>, as well as determining the <a href="/wiki/Geodesic" title="Geodesic">geodesics</a> of particles and light beams. About each point (event) on this manifold, <a href="/wiki/Coordinate_charts" class="mw-redirect" title="Coordinate charts">coordinate charts</a> are used to represent observers in reference frames. Usually, Cartesian coordinates <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x,y,z,t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x,y,z,t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6167b5ade60932159390fbe64f2690daea4f7697" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.324ex; height:2.843ex;" alt="{\displaystyle (x,y,z,t)}"></span> are used. Moreover, for simplicity's sake, units of measurement are usually chosen such that the speed of light <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span> is equal to 1.<sup id="cite_ref-Pfaffle_76-0" class="reference"><a href="#cite_note-Pfaffle-76"><span class="cite-bracket">[</span>64<span class="cite-bracket">]</span></a></sup> </p><p>A reference frame (observer) can be identified with one of these coordinate charts; any such observer can describe any event <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span>. Another reference frame may be identified by a second coordinate chart about <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span>. Two observers (one in each reference frame) may describe the same event <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> but obtain different descriptions.<sup id="cite_ref-Pfaffle_76-1" class="reference"><a href="#cite_note-Pfaffle-76"><span class="cite-bracket">[</span>64<span class="cite-bracket">]</span></a></sup> </p><p>Usually, many overlapping coordinate charts are needed to cover a manifold. Given two coordinate charts, one containing <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> (representing an observer) and another containing <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span> (representing another observer), the intersection of the charts represents the region of spacetime in which both observers can measure physical quantities and hence compare results. The relation between the two sets of measurements is given by a <a href="/wiki/Singularity_(mathematics)" title="Singularity (mathematics)">non-singular</a> coordinate transformation on this intersection. The idea of coordinate charts as local observers who can perform measurements in their vicinity also makes good physical sense, as this is how one actually collects physical data—locally.<sup id="cite_ref-Pfaffle_76-2" class="reference"><a href="#cite_note-Pfaffle-76"><span class="cite-bracket">[</span>64<span class="cite-bracket">]</span></a></sup> </p><p>For example, two observers, one of whom is on Earth, but the other one who is on a fast rocket to Jupiter, may observe a comet crashing into Jupiter (this is the event <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span>). In general, they will disagree about the exact location and timing of this impact, i.e., they will have different 4-tuples <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x,y,z,t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x,y,z,t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6167b5ade60932159390fbe64f2690daea4f7697" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.324ex; height:2.843ex;" alt="{\displaystyle (x,y,z,t)}"></span> (as they are using different coordinate systems). Although their kinematic descriptions will differ, dynamical (physical) laws, such as momentum conservation and the first law of thermodynamics, will still hold. In fact, relativity theory requires more than this in the sense that it stipulates these (and all other physical) laws must take the same form in all coordinate systems. This introduces <a href="/wiki/Tensors" class="mw-redirect" title="Tensors">tensors</a> into relativity, by which all physical quantities are represented. </p><p>Geodesics are said to be timelike, null, or spacelike if the tangent vector to one point of the geodesic is of this nature. Paths of particles and light beams in spacetime are represented by timelike and null (lightlike) geodesics, respectively.<sup id="cite_ref-Pfaffle_76-3" class="reference"><a href="#cite_note-Pfaffle-76"><span class="cite-bracket">[</span>64<span class="cite-bracket">]</span></a></sup> </p><p><span class="anchor" id="Privileged_character_of_3+1_spacetime"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Privileged_character_of_3+1_spacetime"><span id="Privileged_character_of_3.2B1_spacetime"></span>Privileged character of 3+1 spacetime</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spacetime&action=edit&section=40" title="Edit section: Privileged character of 3+1 spacetime"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="excerpt-block"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1066933788"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable dablink excerpt-hat selfref">This section is an excerpt from <a href="/wiki/Anthropic_principle#Dimensions_of_spacetime" title="Anthropic principle">Anthropic principle § Dimensions of spacetime</a>.<span class="mw-editsection-like plainlinks"><span class="mw-editsection-bracket">[</span><a class="external text" href="https://en.wikipedia.org/w/index.php?title=Anthropic_principle&action=edit">edit</a><span class="mw-editsection-bracket">]</span></span></div><div class="excerpt"> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Spacetime_dimensionality.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/56/Spacetime_dimensionality.svg/300px-Spacetime_dimensionality.svg.png" decoding="async" width="300" height="300" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/56/Spacetime_dimensionality.svg/450px-Spacetime_dimensionality.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/56/Spacetime_dimensionality.svg/600px-Spacetime_dimensionality.svg.png 2x" data-file-width="295" data-file-height="295" /></a><figcaption>Properties of <span class="nowrap">(<i>n</i> + <i>m</i>)</span>-dimensional spacetimes<sup id="cite_ref-77" class="reference"><a href="#cite_note-77"><span class="cite-bracket">[</span>65<span class="cite-bracket">]</span></a></sup></figcaption></figure> <p>There are two kinds of dimensions: <a href="/wiki/Spatial_dimension" class="mw-redirect" title="Spatial dimension">spatial</a> (bidirectional) and <a href="/wiki/Temporal_dimension" class="mw-redirect" title="Temporal dimension">temporal</a> (unidirectional).<sup id="cite_ref-Anthropic_principle_Skow2007_78-0" class="reference"><a href="#cite_note-Anthropic_principle_Skow2007-78"><span class="cite-bracket">[</span>66<span class="cite-bracket">]</span></a></sup> Let the number of spatial dimensions be <i>N</i> and the number of temporal dimensions be <i>T</i>. That <span class="nowrap"><i>N</i> = 3</span> and <span class="nowrap"><i>T</i> = 1</span>, setting aside the compactified dimensions invoked by <a href="/wiki/String_theory" title="String theory">string theory</a> and undetectable to date, can be explained by appealing to the physical consequences of letting <i>N</i> differ from 3 and <i>T</i> differ from 1. The argument is often of an anthropic character and possibly the first of its kind, albeit before the complete concept came into vogue. </p><p>The implicit notion that the dimensionality of the universe is special is first attributed to <a href="/wiki/Gottfried_Wilhelm_Leibniz" title="Gottfried Wilhelm Leibniz">Gottfried Wilhelm Leibniz</a>, who in the <a href="/wiki/Discourse_on_Metaphysics" title="Discourse on Metaphysics">Discourse on Metaphysics</a> suggested that the world is "<a href="https://en.wikiquote.org/wiki/Gottfried_Leibniz" class="extiw" title="wikiquote:Gottfried Leibniz">the one which is at the same time the simplest in hypothesis and the richest in phenomena</a>".<sup id="cite_ref-Anthropic_principle_Leibniz1686_79-0" class="reference"><a href="#cite_note-Anthropic_principle_Leibniz1686-79"><span class="cite-bracket">[</span>67<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Immanuel_Kant" title="Immanuel Kant">Immanuel Kant</a> argued that 3-dimensional space was a consequence of the inverse square <a href="/wiki/Law_of_universal_gravitation" class="mw-redirect" title="Law of universal gravitation">law of universal gravitation</a>. While Kant's argument is historically important, <a href="/wiki/John_D._Barrow" title="John D. Barrow">John D. Barrow</a> said that it "gets the punch-line back to front: it is the three-dimensionality of space that explains why we see inverse-square force laws in Nature, not vice-versa" (Barrow 2002:204).<sup id="cite_ref-80" class="reference"><a href="#cite_note-80"><span class="cite-bracket">[</span>note 13<span class="cite-bracket">]</span></a></sup> </p><p>In 1920, <a href="/wiki/Paul_Ehrenfest" title="Paul Ehrenfest">Paul Ehrenfest</a> showed that if there is only a single time dimension and more than three spatial dimensions, the <a href="/wiki/Orbit" title="Orbit">orbit</a> of a <a href="/wiki/Planet" title="Planet">planet</a> about its Sun cannot remain stable. The same is true of a star's orbit around the center of its <a href="/wiki/Galaxy" title="Galaxy">galaxy</a>.<sup id="cite_ref-81" class="reference"><a href="#cite_note-81"><span class="cite-bracket">[</span>68<span class="cite-bracket">]</span></a></sup> Ehrenfest also showed that if there are an even number of spatial dimensions, then the different parts of a <a href="/wiki/Wave" title="Wave">wave</a> impulse will travel at different speeds. If there are <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 5+2k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>5</mn> <mo>+</mo> <mn>2</mn> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 5+2k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0945a62cecb4c99c430370454518490958207ec3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.377ex; height:2.343ex;" alt="{\displaystyle 5+2k}"></span> spatial dimensions, where <i>k</i> is a positive whole number, then wave impulses become distorted. In 1922, <a href="/wiki/Hermann_Weyl" title="Hermann Weyl">Hermann Weyl</a> claimed that <a href="/wiki/James_Clerk_Maxwell" title="James Clerk Maxwell">Maxwell</a>'s theory of <a href="/wiki/Electromagnetism" title="Electromagnetism">electromagnetism</a> can be expressed in terms of an action only for a four-dimensional manifold.<sup id="cite_ref-82" class="reference"><a href="#cite_note-82"><span class="cite-bracket">[</span>69<span class="cite-bracket">]</span></a></sup> Finally, Tangherlini showed in 1963 that when there are more than three spatial dimensions, electron <a href="/wiki/Atomic_orbital" title="Atomic orbital">orbitals</a> around nuclei cannot be stable; electrons would either fall into the <a href="/wiki/Atomic_nucleus" title="Atomic nucleus">nucleus</a> or disperse.<sup id="cite_ref-83" class="reference"><a href="#cite_note-83"><span class="cite-bracket">[</span>70<span class="cite-bracket">]</span></a></sup> </p><p><a href="/wiki/Max_Tegmark" title="Max Tegmark">Max Tegmark</a> expands on the preceding argument in the following anthropic manner.<sup id="cite_ref-Anthropic_principle_tegmark-dim_84-0" class="reference"><a href="#cite_note-Anthropic_principle_tegmark-dim-84"><span class="cite-bracket">[</span>71<span class="cite-bracket">]</span></a></sup> If <i>T</i> differs from 1, the behavior of physical systems could not be predicted reliably from knowledge of the relevant <a href="/wiki/Partial_differential_equation" title="Partial differential equation">partial differential equations</a>. In such a universe, intelligent life capable of manipulating technology could not emerge. Moreover, if <span class="nowrap"><i>T</i> > 1</span>, Tegmark maintains that <a href="/wiki/Proton" title="Proton">protons</a> and <a href="/wiki/Electron" title="Electron">electrons</a> would be unstable and could decay into particles having greater mass than themselves. (This is not a problem if the particles have a sufficiently low temperature.)<sup id="cite_ref-Anthropic_principle_tegmark-dim_84-1" class="reference"><a href="#cite_note-Anthropic_principle_tegmark-dim-84"><span class="cite-bracket">[</span>71<span class="cite-bracket">]</span></a></sup> Lastly, if <span class="nowrap"><i>N</i> < 3</span>, gravitation of any kind becomes problematic, and the universe would probably be too simple to contain observers. For example, when <span class="nowrap"><i>N</i> < 3</span>, <a href="/wiki/Nerve" title="Nerve">nerves</a> cannot cross without intersecting.<sup id="cite_ref-Anthropic_principle_tegmark-dim_84-2" class="reference"><a href="#cite_note-Anthropic_principle_tegmark-dim-84"><span class="cite-bracket">[</span>71<span class="cite-bracket">]</span></a></sup> Hence anthropic and other arguments rule out all cases except <span class="nowrap"><i>N</i> = 3</span> and <span class="nowrap"><i>T</i> = 1</span>, which describes the world around us. </p><p>On the other hand, in view of creating <a href="/wiki/Black_hole" title="Black hole">black holes</a> from an ideal <a href="/wiki/Monatomic_gas" title="Monatomic gas">monatomic gas</a> under its self-gravity, Wei-Xiang Feng showed that <span class="nowrap">(3 + 1)</span>-dimensional spacetime is the marginal dimensionality. Moreover, it is the unique <a href="/wiki/Dimensionality" class="mw-redirect" title="Dimensionality">dimensionality</a> that can afford a "stable" gas sphere with a "positive" <a href="/wiki/Cosmological_constant" title="Cosmological constant">cosmological constant</a>. However, a self-gravitating gas cannot be stably bound if the mass sphere is larger than ~10<sup>21</sup> solar masses, due to the small positivity of the cosmological constant observed.<sup id="cite_ref-85" class="reference"><a href="#cite_note-85"><span class="cite-bracket">[</span>72<span class="cite-bracket">]</span></a></sup> </p> In 2019, James Scargill argued that complex life may be possible with two spatial dimensions. According to Scargill, a purely scalar theory of gravity may enable a local gravitational force, and 2D networks may be sufficient for complex neural networks.<sup id="cite_ref-86" class="reference"><a href="#cite_note-86"><span class="cite-bracket">[</span>73<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-87" class="reference"><a href="#cite_note-87"><span class="cite-bracket">[</span>74<span class="cite-bracket">]</span></a></sup></div></div> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spacetime&action=edit&section=41" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1184024115">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col"> <ul><li><a href="/wiki/Basic_introduction_to_the_mathematics_of_curved_spacetime" class="mw-redirect" title="Basic introduction to the mathematics of curved spacetime">Basic introduction to the mathematics of curved spacetime</a></li> <li><a href="/wiki/Complex_spacetime" title="Complex spacetime">Complex spacetime</a></li> <li><a href="/wiki/Einstein%27s_thought_experiments" title="Einstein's thought experiments">Einstein's thought experiments</a></li> <li><a href="/wiki/Four-dimensionalism" title="Four-dimensionalism">Four-dimensionalism</a></li> <li><a href="/wiki/Geography" title="Geography">Geography</a></li> <li><a href="/wiki/Global_spacetime_structure" class="mw-redirect" title="Global spacetime structure">Global spacetime structure</a></li> <li><a href="/wiki/List_of_spacetimes" title="List of spacetimes">List of spacetimes</a></li> <li><a href="/wiki/Metric_space" title="Metric space">Metric space</a></li> <li><a href="/wiki/Philosophy_of_space_and_time" title="Philosophy of space and time">Philosophy of space and time</a></li> <li><a href="/wiki/Present" title="Present">Present</a></li> <li><a href="/wiki/Time_geography" title="Time geography">Time geography</a></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spacetime&action=edit&section=42" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width" style="column-width: 30em;"> <ol class="references"> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><i>luminiferous</i> from the Latin <i>lumen</i>, light, + <i>ferens</i>, carrying; <i>aether</i> from the Greek αἰθήρ (<i>aithēr</i>), pure air, clear sky</span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text">By stating that simultaneity is a matter of convention, Poincaré meant that to talk about time at all, one must have synchronized clocks, and the synchronization of clocks must be established by a specified, operational procedure (convention). This stance represented a fundamental philosophical break from Newton, who conceived of an absolute, true time that was independent of the workings of the inaccurate clocks of his day. This stance also represented a direct attack against the influential philosopher <a href="/wiki/Henri_Bergson" title="Henri Bergson">Henri Bergson</a>, who argued that time, simultaneity, and duration were matters of intuitive understanding.<sup id="cite_ref-Galison2003_20-1" class="reference"><a href="#cite_note-Galison2003-20"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text">The operational procedure adopted by Poincaré was essentially identical to what is known as <a href="/wiki/Einstein_synchronization" class="mw-redirect" title="Einstein synchronization">Einstein synchronization</a>, even though a variant of it was already a widely used procedure by telegraphers in the middle 19th century. Basically, to synchronize two clocks, one flashes a light signal from one to the other, and adjusts for the time that the flash takes to arrive.<sup id="cite_ref-Galison2003_20-2" class="reference"><a href="#cite_note-Galison2003-20"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup></span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text">A hallmark of Einstein's career, in fact, was his use of visualized <a href="/wiki/Thought_experiment" title="Thought experiment">thought experiments</a> (Gedanken–Experimente) as a fundamental tool for understanding physical issues. For special relativity, he employed moving trains and flashes of lightning for his most penetrating insights. For curved spacetime, he considered a painter falling off a roof, accelerating elevators, blind beetles crawling on curved surfaces and the like. In his great <a href="/wiki/Bohr%E2%80%93Einstein_debates" title="Bohr–Einstein debates">Solvay Debates</a> with <a href="/wiki/Niels_Bohr" title="Niels Bohr">Bohr</a> on the nature of reality (1927 and 1930), he devised multiple imaginary contraptions intended to show, at least in concept, means whereby the <a href="/wiki/Heisenberg_uncertainty_principle" class="mw-redirect" title="Heisenberg uncertainty principle">Heisenberg uncertainty principle</a> might be evaded. Finally, in a profound contribution to the literature on quantum mechanics, Einstein considered two particles briefly interacting and then flying apart so that their states are correlated, anticipating the phenomenon known as <a href="/wiki/Quantum_entanglement" title="Quantum entanglement">quantum entanglement</a>.<sup id="cite_ref-Isaacson2007_27-0" class="reference"><a href="#cite_note-Isaacson2007-27"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup></span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text">In the original version of this lecture, Minkowski continued to use such obsolescent terms as the ether, but the posthumous publication in 1915 of this lecture in the <i>Annals of Physics</i> (<i>Annalen der Physik</i>) was edited by Sommerfeld to remove this term. Sommerfeld also edited the published form of this lecture to revise Minkowski's judgement of Einstein from being a mere clarifier of the principle of relativity, to being its chief expositor.<sup id="cite_ref-Weinstein_29-1" class="reference"><a href="#cite_note-Weinstein-29"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup></span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text"><i>(In the following, the group</i> <b><i>G</i><sub>∞</sub></b> <i>is the Galilean group and the group</i> <b><i>G</i><sub>c</sub></b> <i>the Lorentz group.)</i> "With respect to this it is clear that the group <b><i>G</i><sub>c</sub></b> in the limit for <span class="nowrap"><b><i>c</i> = ∞</b></span>, i.e. as group <b><i>G</i><sub>∞</sub></b>, exactly becomes the full group belonging to Newtonian Mechanics. In this state of affairs, and since <b><i>G</i><sub>c</sub></b> is mathematically more intelligible than <b><i>G</i><sub>∞</sub></b>, a mathematician may, by a free play of imagination, hit upon the thought that natural phenomena actually possess an invariance, not for the group <b><i>G</i><sub>∞</sub></b>, but rather for a group <b><i>G</i><sub>c</sub></b>, where <i><b>c</b></i> is definitely finite, and only exceedingly large using the ordinary measuring units."<sup id="cite_ref-Minkowski_Raum_und_Zeit_32-1" class="reference"><a href="#cite_note-Minkowski_Raum_und_Zeit-32"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup></span> </li> <li id="cite_note-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-37">^</a></b></span> <span class="reference-text">For instance, the Lorentz group is a subgroup of the <a href="/wiki/Spherical_wave_transformation" title="Spherical wave transformation">conformal group in four dimensions</a>.<sup id="cite_ref-cartan_34-0" class="reference"><a href="#cite_note-cartan-34"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 41–42">: 41–42 </span></sup> The Lorentz group is isomorphic to the <a href="/wiki/Spherical_wave_transformation#Laguerre_group_isomorphic_to_Lorentz_group" title="Spherical wave transformation">Laguerre group</a> transforming planes into planes,<sup id="cite_ref-cartan_34-1" class="reference"><a href="#cite_note-cartan-34"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 39–42">: 39–42 </span></sup> it is isomorphic to the <a href="/wiki/M%C3%B6bius_group" class="mw-redirect" title="Möbius group">Möbius group</a> of the plane,<sup id="cite_ref-35" class="reference"><a href="#cite_note-35"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 22">: 22 </span></sup> and is isomorphic to the group of isometries in <a href="/wiki/Hyperbolic_space" title="Hyperbolic space">hyperbolic space</a> which is often expressed in terms of the <a href="/wiki/Hyperboloid_model" title="Hyperboloid model">hyperboloid model</a>.<sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 3.2.3">: 3.2.3 </span></sup> </span> </li> <li id="cite_note-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-44">^</a></b></span> <span class="reference-text">In a <a href="/wiki/Cartesian_plane" class="mw-redirect" title="Cartesian plane">Cartesian plane</a>, ordinary rotation leaves a circle unchanged. In spacetime, hyperbolic rotation preserves the <a href="/wiki/Hyperbolic_metric" class="mw-redirect" title="Hyperbolic metric">hyperbolic metric</a>.</span> </li> <li id="cite_note-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-47">^</a></b></span> <span class="reference-text">Even with no (de)acceleration i.e. using one inertial frame O for constant, high-velocity outward journey and another inertial frame I for constant, high-velocity inward journey – the sum of the elapsed time in those frames (O and I) is shorter than the elapsed time in the stationary inertial frame S. Thus acceleration and deceleration is not the cause of shorter elapsed time during the outward and inward journey. Instead the use of two different constant, high-velocity inertial frames for outward and inward journey is really the cause of shorter elapsed time total. Granted, if the same twin has to travel outward and inward leg of the journey and safely switch from outward to inward leg of the journey, the acceleration and deceleration is required. If the travelling twin could ride the high-velocity outward inertial frame and instantaneously switch to high-velocity inward inertial frame the example would still work. The point is that real reason should be stated clearly. The asymmetry is because of the comparison of sum of elapsed times in two different inertial frames (O and I) to the elapsed time in a single inertial frame S.</span> </li> <li id="cite_note-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-55">^</a></b></span> <span class="reference-text">The ease of analyzing a relativistic scenario often depends on the frame in which one chooses to perform the analysis. <b><a href="/wiki/File:Transverse_Doppler_effect_scenarios_3.svg" title="File:Transverse Doppler effect scenarios 3.svg">In this linked image</a></b>, we present alternative views of the transverse Doppler shift scenario where source and receiver are at their closest approach to each other. (a) If we analyze the scenario in the frame of the receiver, we find that the analysis is more complicated than it should be. The apparent position of a celestial object is displaced from its true position (or geometric position) because of the object's motion during the time it takes its light to reach an observer. The source would be time-dilated relative to the receiver, but the redshift implied by this time dilation would be offset by a blueshift due to the longitudinal component of the relative motion between the receiver and the apparent position of the source. (b) It is much easier if, instead, we analyze the scenario from the frame of the source. An observer situated at the source knows, from the problem statement, that the receiver is at its closest point to him. That means that the receiver has no longitudinal component of motion to complicate the analysis. Since the receiver's clocks are time-dilated relative to the source, the light that the receiver receives is therefore blue-shifted by a factor of <i>gamma</i>.</span> </li> <li id="cite_note-56"><span class="mw-cite-backlink"><b><a href="#cite_ref-56">^</a></b></span> <span class="reference-text">Not all experiments characterize the effect in terms of a redshift. For example, the <a href="/wiki/Ives%E2%80%93Stilwell_experiment#Relativistic_Doppler_effect" title="Ives–Stilwell experiment">Kündig experiment</a> measures transverse blueshift using a Mössbauer source setup at the center of a centrifuge rotor and an absorber at the rim.</span> </li> <li id="cite_note-62"><span class="mw-cite-backlink"><b><a href="#cite_ref-62">^</a></b></span> <span class="reference-text">Newton himself was acutely aware of the inherent difficulties with these assumptions, but as a practical matter, making these assumptions was the only way that he could make progress. In 1692, he wrote to his friend Richard Bentley: "That Gravity should be innate, inherent and essential to Matter, so that one body may act upon another at a distance thro' a Vacuum, without the Mediation of any thing else, by and through which their Action and Force may be conveyed from one to another, is to me so great an Absurdity that I believe no Man who has in philosophical Matters a competent Faculty of thinking can ever fall into it."</span> </li> <li id="cite_note-80"><span class="mw-cite-backlink"><b><a href="#cite_ref-80">^</a></b></span> <span class="reference-text">This is because the law of gravitation (or any other <a href="/wiki/Inverse-square_law" title="Inverse-square law">inverse-square law</a>) follows from the concept of <a href="/wiki/Flux" title="Flux">flux</a> and the proportional relationship of flux density and field strength. If <span class="nowrap"><i>N</i> = 3</span>, then 3-dimensional solid objects have surface areas proportional to the square of their size in any selected spatial dimension. In particular, a sphere of <a href="/wiki/Radius" title="Radius">radius</a> <i>r</i> has a surface area of 4<i>πr</i><sup>2</sup>. More generally, in a space of <i>N</i> dimensions, the strength of the gravitational attraction between two bodies separated by a distance of <i>r</i> would be inversely proportional to <i>r</i><sup><i>N</i>−1</sup>.</span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="Additional_details">Additional details</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spacetime&action=edit&section=43" title="Edit section: Additional details"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist reflist-columns references-column-width" style="column-width: 30em;"> </div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spacetime&action=edit&section=44" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFRynasiewicz2004" class="citation web cs1">Rynasiewicz, Robert (12 August 2004). <a rel="nofollow" class="external text" href="https://plato.stanford.edu/entries/newton-stm/">"Newton's Views on Space, Time, and Motion"</a>. <i>Stanford Encyclopedia of Philosophy</i>. Metaphysics Research Lab, Stanford University. <a rel="nofollow" class="external text" href="https://archive.today/20120716191122/http://plato.stanford.edu/entries/newton-stm/">Archived</a> from the original on 16 July 2012<span class="reference-accessdate">. Retrieved <span class="nowrap">24 March</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Stanford+Encyclopedia+of+Philosophy&rft.atitle=Newton%27s+Views+on+Space%2C+Time%2C+and+Motion&rft.date=2004-08-12&rft.aulast=Rynasiewicz&rft.aufirst=Robert&rft_id=https%3A%2F%2Fplato.stanford.edu%2Fentries%2Fnewton-stm%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDavis2006" class="citation book cs1">Davis, Philip J. (2006). <i>Mathematics & Common Sense: A Case of Creative Tension</i>. Wellesley, Massachusetts: A.K. Peters. p. 86. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4398-6432-6" title="Special:BookSources/978-1-4398-6432-6"><bdi>978-1-4398-6432-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Mathematics+%26+Common+Sense%3A+A+Case+of+Creative+Tension&rft.place=Wellesley%2C+Massachusetts&rft.pages=86&rft.pub=A.K.+Peters&rft.date=2006&rft.isbn=978-1-4398-6432-6&rft.aulast=Davis&rft.aufirst=Philip+J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-Schutz-3"><span class="mw-cite-backlink">^ <a href="#cite_ref-Schutz_3-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Schutz_3-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Schutz_3-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Schutz_3-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Schutz_3-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Schutz_3-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-Schutz_3-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-Schutz_3-7"><sup><i><b>h</b></i></sup></a> <a href="#cite_ref-Schutz_3-8"><sup><i><b>i</b></i></sup></a> <a href="#cite_ref-Schutz_3-9"><sup><i><b>j</b></i></sup></a> <a href="#cite_ref-Schutz_3-10"><sup><i><b>k</b></i></sup></a> <a href="#cite_ref-Schutz_3-11"><sup><i><b>l</b></i></sup></a> <a href="#cite_ref-Schutz_3-12"><sup><i><b>m</b></i></sup></a> <a href="#cite_ref-Schutz_3-13"><sup><i><b>n</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchutz2004" class="citation book cs1">Schutz, Bernard (2004). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=P_T0xxhDcsIC"><i>Gravity from the Ground Up: An Introductory Guide to Gravity and General Relativity</i></a> (Reprint ed.). Cambridge: <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-521-45506-5" title="Special:BookSources/0-521-45506-5"><bdi>0-521-45506-5</bdi></a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230117023501/https://books.google.com/books?id=P_T0xxhDcsIC">Archived</a> from the original on 17 January 2023<span class="reference-accessdate">. Retrieved <span class="nowrap">24 May</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Gravity+from+the+Ground+Up%3A+An+Introductory+Guide+to+Gravity+and+General+Relativity&rft.place=Cambridge&rft.edition=Reprint&rft.pub=Cambridge+University+Press&rft.date=2004&rft.isbn=0-521-45506-5&rft.aulast=Schutz&rft.aufirst=Bernard&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DP_T0xxhDcsIC&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-Fock_1966-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-Fock_1966_4-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFock1966" class="citation book cs1">Fock, V. (1966). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=X7A3BQAAQBAJ&q=Fock,+v+the+theory+of+space,+time+and+gravitation"><i>The Theory of Space, Time and Gravitation</i></a> (2nd ed.). New York: Pergamon Press Ltd. p. 33. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-08-010061-9" title="Special:BookSources/0-08-010061-9"><bdi>0-08-010061-9</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">14 October</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Theory+of+Space%2C+Time+and+Gravitation&rft.place=New+York&rft.pages=33&rft.edition=2nd&rft.pub=Pergamon+Press+Ltd.&rft.date=1966&rft.isbn=0-08-010061-9&rft.aulast=Fock&rft.aufirst=V.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DX7A3BQAAQBAJ%26q%3DFock%2C%2Bv%2Bthe%2Btheory%2Bof%2Bspace%2C%2Btime%2Band%2Bgravitation&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-Lawden_1982-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-Lawden_1982_5-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLawden1982" class="citation book cs1">Lawden, D. F. (1982). <a rel="nofollow" class="external text" href="https://www.researchgate.net/publication/41167745"><i>Introduction to Tensor Calculus, Relativity and Cosmology</i></a> (3rd ed.). Mineola, New York: Dover Publications. p. 7. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-486-42540-5" title="Special:BookSources/978-0-486-42540-5"><bdi>978-0-486-42540-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Introduction+to+Tensor+Calculus%2C+Relativity+and+Cosmology&rft.place=Mineola%2C+New+York&rft.pages=7&rft.edition=3rd&rft.pub=Dover+Publications&rft.date=1982&rft.isbn=978-0-486-42540-5&rft.aulast=Lawden&rft.aufirst=D.+F.&rft_id=https%3A%2F%2Fwww.researchgate.net%2Fpublication%2F41167745&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-Collier-6"><span class="mw-cite-backlink">^ <a href="#cite_ref-Collier_6-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Collier_6-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Collier_6-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Collier_6-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Collier_6-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCollier2017" class="citation book cs1">Collier, Peter (2017). <i>A Most Incomprehensible Thing: Notes Towards a Very Gentle Introduction to the Mathematics of Relativity</i> (3rd ed.). Incomprehensible Books. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-9573894-6-5" title="Special:BookSources/978-0-9573894-6-5"><bdi>978-0-9573894-6-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=A+Most+Incomprehensible+Thing%3A+Notes+Towards+a+Very+Gentle+Introduction+to+the+Mathematics+of+Relativity&rft.edition=3rd&rft.pub=Incomprehensible+Books&rft.date=2017&rft.isbn=978-0-9573894-6-5&rft.aulast=Collier&rft.aufirst=Peter&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRowland" class="citation web cs1">Rowland, Todd. <a rel="nofollow" class="external text" href="http://mathworld.wolfram.com/Manifold.html">"Manifold"</a>. <i>Wolfram Mathworld</i>. Wolfram Research. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170313111306/http://mathworld.wolfram.com/Manifold.html">Archived</a> from the original on 13 March 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">24 March</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Wolfram+Mathworld&rft.atitle=Manifold&rft.aulast=Rowland&rft.aufirst=Todd&rft_id=http%3A%2F%2Fmathworld.wolfram.com%2FManifold.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-French-8"><span class="mw-cite-backlink">^ <a href="#cite_ref-French_8-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-French_8-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFrench1968" class="citation book cs1">French, A. P. (1968). <i>Special Relativity</i>. <a href="/wiki/Boca_Raton,_Florida" title="Boca Raton, Florida">Boca Raton, Florida</a>: <a href="/wiki/CRC_Press" title="CRC Press">CRC Press</a>. pp. <span class="nowrap">35–</span>60. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-7487-6422-4" title="Special:BookSources/0-7487-6422-4"><bdi>0-7487-6422-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Special+Relativity&rft.place=Boca+Raton%2C+Florida&rft.pages=%3Cspan+class%3D%22nowrap%22%3E35-%3C%2Fspan%3E60&rft.pub=CRC+Press&rft.date=1968&rft.isbn=0-7487-6422-4&rft.aulast=French&rft.aufirst=A.+P.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-Taylor-9"><span class="mw-cite-backlink">^ <a href="#cite_ref-Taylor_9-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Taylor_9-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Taylor_9-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTaylorWheeler1992" class="citation book cs1">Taylor, Edwin F.; Wheeler, John Archibald (1992). <a rel="nofollow" class="external text" href="https://archive.org/details/spacetime_physics/"><i>Spacetime Physics: Introduction to Special Relativity</i></a> (2nd ed.). San Francisco, California: Freeman. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-7167-0336-X" title="Special:BookSources/0-7167-0336-X"><bdi>0-7167-0336-X</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">14 April</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Spacetime+Physics%3A+Introduction+to+Special+Relativity&rft.place=San+Francisco%2C+California&rft.edition=2nd&rft.pub=Freeman&rft.date=1992&rft.isbn=0-7167-0336-X&rft.aulast=Taylor&rft.aufirst=Edwin+F.&rft.au=Wheeler%2C+John+Archibald&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fspacetime_physics%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFScherrShafferVokos2001" class="citation journal cs1"><a href="/wiki/Rachel_Scherr" title="Rachel Scherr">Scherr, Rachel E.</a>; Shaffer, Peter S.; Vokos, Stamatis (July 2001). <a rel="nofollow" class="external text" href="https://arxiv.org/ftp/physics/papers/0207/0207109.pdf">"Student understanding of time in special relativity: Simultaneity and reference frames"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/American_Journal_of_Physics" title="American Journal of Physics">American Journal of Physics</a></i>. <b>69</b> (S1). College Park, Maryland: <a href="/wiki/American_Association_of_Physics_Teachers" title="American Association of Physics Teachers">American Association of Physics Teachers</a>: <span class="nowrap">S24 –</span> <span class="nowrap">S35</span>. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/physics/0207109">physics/0207109</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2001AmJPh..69S..24S">2001AmJPh..69S..24S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1119%2F1.1371254">10.1119/1.1371254</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:8146369">8146369</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180928122701/https://arxiv.org/ftp/physics/papers/0207/0207109.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 28 September 2018<span class="reference-accessdate">. Retrieved <span class="nowrap">11 April</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=American+Journal+of+Physics&rft.atitle=Student+understanding+of+time+in+special+relativity%3A+Simultaneity+and+reference+frames&rft.volume=69&rft.issue=S1&rft.pages=%3Cspan+class%3D%22nowrap%22%3ES24+-%3C%2Fspan%3E+%3Cspan+class%3D%22nowrap%22%3ES35%3C%2Fspan%3E&rft.date=2001-07&rft_id=info%3Aarxiv%2Fphysics%2F0207109&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A8146369%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1119%2F1.1371254&rft_id=info%3Abibcode%2F2001AmJPh..69S..24S&rft.aulast=Scherr&rft.aufirst=Rachel+E.&rft.au=Shaffer%2C+Peter+S.&rft.au=Vokos%2C+Stamatis&rft_id=https%3A%2F%2Farxiv.org%2Fftp%2Fphysics%2Fpapers%2F0207%2F0207109.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHughes2013" class="citation book cs1">Hughes, Stefan (2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=iZk5OOf7fVYC"><i>Catchers of the Light: Catching Space: Origins, Lunar, Solar, Solar System and Deep Space</i></a>. Paphos, Cyprus: ArtDeCiel Publishing. pp. <span class="nowrap">202–</span>233. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4675-7992-6" title="Special:BookSources/978-1-4675-7992-6"><bdi>978-1-4675-7992-6</bdi></a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230117023500/https://books.google.com/books?id=iZk5OOf7fVYC">Archived</a> from the original on 17 January 2023<span class="reference-accessdate">. Retrieved <span class="nowrap">7 April</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Catchers+of+the+Light%3A+Catching+Space%3A+Origins%2C+Lunar%2C+Solar%2C+Solar+System+and+Deep+Space&rft.place=Paphos%2C+Cyprus&rft.pages=%3Cspan+class%3D%22nowrap%22%3E202-%3C%2Fspan%3E233&rft.pub=ArtDeCiel+Publishing&rft.date=2013&rft.isbn=978-1-4675-7992-6&rft.aulast=Hughes&rft.aufirst=Stefan&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DiZk5OOf7fVYC&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWilliams2022" class="citation web cs1">Williams, Matt (28 January 2022). <a rel="nofollow" class="external text" href="https://www.universetoday.com/45484/einsteins-theory-of-relativity-1/">"What is Einstein's Theory of Relativity?"</a>. <i>Universe Today</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220803084231/https://www.universetoday.com/45484/einsteins-theory-of-relativity-1/">Archived</a> from the original on 3 August 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">13 August</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Universe+Today&rft.atitle=What+is+Einstein%27s+Theory+of+Relativity%3F&rft.date=2022-01-28&rft.aulast=Williams&rft.aufirst=Matt&rft_id=https%3A%2F%2Fwww.universetoday.com%2F45484%2Feinsteins-theory-of-relativity-1%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-Stachel-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-Stachel_14-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStachel2005" class="citation book cs1">Stachel, John (2005). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170415200532/http://www.bu.edu/cphs/files/2015/04/2005_Fresnel.pdf">"Fresnel's (Dragging) Coefficient as a Challenge to 19th Century Optics of Moving Bodies."</a> <span class="cs1-format">(PDF)</span>. In Kox, A. J.; Eisenstaedt, Jean (eds.). <i>The Universe of General Relativity</i>. Boston, Massachusetts: Birkhäuser. pp. <span class="nowrap">1–</span>13. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-8176-4380-X" title="Special:BookSources/0-8176-4380-X"><bdi>0-8176-4380-X</bdi></a>. Archived from <a rel="nofollow" class="external text" href="http://www.bu.edu/cphs/files/2015/04/2005_Fresnel.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 15 April 2017.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Fresnel%27s+%28Dragging%29+Coefficient+as+a+Challenge+to+19th+Century+Optics+of+Moving+Bodies.&rft.btitle=The+Universe+of+General+Relativity&rft.place=Boston%2C+Massachusetts&rft.pages=%3Cspan+class%3D%22nowrap%22%3E1-%3C%2Fspan%3E13&rft.pub=Birkh%C3%A4user&rft.date=2005&rft.isbn=0-8176-4380-X&rft.aulast=Stachel&rft.aufirst=John&rft_id=http%3A%2F%2Fwww.bu.edu%2Fcphs%2Ffiles%2F2015%2F04%2F2005_Fresnel.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.lindahall.org/about/news/scientist-of-the-day/george-francis-fitzgerald">"George Francis FitzGerald"</a>. <i>The Linda Hall Library</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230117023441/https://www.lindahall.org/about/news/scientist-of-the-day/george-francis-fitzgerald">Archived</a> from the original on 17 January 2023<span class="reference-accessdate">. Retrieved <span class="nowrap">13 August</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=The+Linda+Hall+Library&rft.atitle=George+Francis+FitzGerald&rft_id=https%3A%2F%2Fwww.lindahall.org%2Fabout%2Fnews%2Fscientist-of-the-day%2Fgeorge-francis-fitzgerald&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.nobelprize.org/prizes/physics/1902/lorentz/biographical/">"The Nobel Prize in Physics 1902"</a>. <i>NobelPrize.org</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170623231447/http://www.nobelprize.org/nobel_prizes/physics/laureates/1902/lorentz-bio.html">Archived</a> from the original on 23 June 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">13 August</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=NobelPrize.org&rft.atitle=The+Nobel+Prize+in+Physics+1902&rft_id=https%3A%2F%2Fwww.nobelprize.org%2Fprizes%2Fphysics%2F1902%2Florentz%2Fbiographical%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-Pais-17"><span class="mw-cite-backlink">^ <a href="#cite_ref-Pais_17-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Pais_17-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Pais_17-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPais1982" class="citation book cs1">Pais, Abraham (1982). <a rel="nofollow" class="external text" href="https://archive.org/details/subtleislordscie00pais"><i><span></span>'Subtle is the Lord–': The Science and the Life of Albert Einstein</i></a> (11th ed.). Oxford: Oxford University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-19-853907-X" title="Special:BookSources/0-19-853907-X"><bdi>0-19-853907-X</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=%27Subtle+is+the+Lord%E2%80%93%27%3A+The+Science+and+the+Life+of+Albert+Einstein&rft.place=Oxford&rft.edition=11th&rft.pub=Oxford+University+Press&rft.date=1982&rft.isbn=0-19-853907-X&rft.aulast=Pais&rft.aufirst=Abraham&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fsubtleislordscie00pais&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDarrigol,_O.2005" class="citation cs2">Darrigol, O. (2005), <a rel="nofollow" class="external text" href="http://www.bourbaphy.fr/darrigol2.pdf">"The Genesis of the theory of relativity"</a> <span class="cs1-format">(PDF)</span>, <i>Séminaire Poincaré</i>, <b>1</b>: <span class="nowrap">1–</span>22, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2006eins.book....1D">2006eins.book....1D</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F3-7643-7436-5_1">10.1007/3-7643-7436-5_1</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-7643-7435-8" title="Special:BookSources/978-3-7643-7435-8"><bdi>978-3-7643-7435-8</bdi></a>, <a rel="nofollow" class="external text" href="https://web.archive.org/web/20080228124558/http://www.bourbaphy.fr/darrigol2.pdf">archived</a> <span class="cs1-format">(PDF)</span> from the original on 28 February 2008<span class="reference-accessdate">, retrieved <span class="nowrap">17 July</span> 2017</span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=S%C3%A9minaire+Poincar%C3%A9&rft.atitle=The+Genesis+of+the+theory+of+relativity&rft.volume=1&rft.pages=%3Cspan+class%3D%22nowrap%22%3E1-%3C%2Fspan%3E22&rft.date=2005&rft_id=info%3Adoi%2F10.1007%2F3-7643-7436-5_1&rft_id=info%3Abibcode%2F2006eins.book....1D&rft.isbn=978-3-7643-7435-8&rft.au=Darrigol%2C+O.&rft_id=http%3A%2F%2Fwww.bourbaphy.fr%2Fdarrigol2.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-Miller-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-Miller_19-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMiller1998" class="citation book cs1">Miller, Arthur I. (1998). <i>Albert Einstein's Special Theory of Relativity</i>. New York: Springer-Verlag. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-387-94870-8" title="Special:BookSources/0-387-94870-8"><bdi>0-387-94870-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Albert+Einstein%27s+Special+Theory+of+Relativity&rft.place=New+York&rft.pub=Springer-Verlag&rft.date=1998&rft.isbn=0-387-94870-8&rft.aulast=Miller&rft.aufirst=Arthur+I.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-Galison2003-20"><span class="mw-cite-backlink">^ <a href="#cite_ref-Galison2003_20-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Galison2003_20-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Galison2003_20-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGalison2003" class="citation book cs1">Galison, Peter (2003). <a rel="nofollow" class="external text" href="https://archive.org/details/einsteinsclocksp00gali/page/13"><i>Einstein's Clocks, Poincaré's Maps: Empires of Time</i></a>. New York: W. W. Norton & Company, Inc. pp. <a rel="nofollow" class="external text" href="https://archive.org/details/einsteinsclocksp00gali/page/13">13–47</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-393-02001-0" title="Special:BookSources/0-393-02001-0"><bdi>0-393-02001-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Einstein%27s+Clocks%2C+Poincar%C3%A9%27s+Maps%3A+Empires+of+Time&rft.place=New+York&rft.pages=13-47&rft.pub=W.+W.+Norton+%26+Company%2C+Inc.&rft.date=2003&rft.isbn=0-393-02001-0&rft.aulast=Galison&rft.aufirst=Peter&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Feinsteinsclocksp00gali%2Fpage%2F13&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPoincare1906" class="citation journal cs1">Poincare, Henri (1906). <a class="external text" href="https://en.wikisource.org/wiki/Translation:On_the_Dynamics_of_the_Electron_(July)#.C2.A7_9._.E2.80.94_Hypotheses_on_gravitation">"On the Dynamics of the Electron (Sur la dynamique de l'électron)"</a>. <i>Rendiconti del Circolo Matematico di Palermo</i>. <b>21</b>: <span class="nowrap">129–</span>176. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1906RCMP...21..129P">1906RCMP...21..129P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fbf03013466">10.1007/bf03013466</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/2027%2Fuiug.30112063899089">2027/uiug.30112063899089</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:120211823">120211823</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170711124425/https://en.wikisource.org/wiki/Translation:On_the_Dynamics_of_the_Electron_(July)#.C2.A7_9._.E2.80.94_Hypotheses_on_gravitation">Archived</a> from the original on 11 July 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">15 July</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Rendiconti+del+Circolo+Matematico+di+Palermo&rft.atitle=On+the+Dynamics+of+the+Electron+%28Sur+la+dynamique+de+l%27%C3%A9lectron%29&rft.volume=21&rft.pages=%3Cspan+class%3D%22nowrap%22%3E129-%3C%2Fspan%3E176&rft.date=1906&rft_id=info%3Ahdl%2F2027%2Fuiug.30112063899089&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A120211823%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2Fbf03013466&rft_id=info%3Abibcode%2F1906RCMP...21..129P&rft.aulast=Poincare&rft.aufirst=Henri&rft_id=https%3A%2F%2Fen.wikisource.org%2Fwiki%2FTranslation%3AOn_the_Dynamics_of_the_Electron_%28July%29%23.C2.A7_9._.E2.80.94_Hypotheses_on_gravitation&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZahar1989" class="citation cs2">Zahar, Elie (1989) [1983], "Poincaré's Independent Discovery of the relativity principle", <i>Einstein's Revolution: A Study in Heuristic</i>, Chicago, Illinois: Open Court Publishing Company, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-8126-9067-2" title="Special:BookSources/0-8126-9067-2"><bdi>0-8126-9067-2</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Poincar%C3%A9%27s+Independent+Discovery+of+the+relativity+principle&rft.btitle=Einstein%27s+Revolution%3A+A+Study+in+Heuristic&rft.place=Chicago%2C+Illinois&rft.pub=Open+Court+Publishing+Company&rft.date=1989&rft.isbn=0-8126-9067-2&rft.aulast=Zahar&rft.aufirst=Elie&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-Walter-25"><span class="mw-cite-backlink">^ <a href="#cite_ref-Walter_25-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Walter_25-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWalter2007" class="citation book cs1">Walter, Scott A. (2007). <a rel="nofollow" class="external text" href="https://archive.today/20240528051526/https://www.webcitation.org/6rxvbrr7g?url=http://scottwalter.free.fr/papers/2007-genesis-walter.html">"Breaking in the 4-vectors: the four-dimensional movement in gravitation, 1905–1910"</a>. In Renn, Jürgen; Schemmel, Matthias (eds.). <i>The Genesis of General Relativity, Volume 3</i>. Berlin, Germany: Springer. pp. <span class="nowrap">193–</span>252. Archived from <a rel="nofollow" class="external text" href="http://scottwalter.free.fr/papers/2007-genesis-walter.html">the original</a> on 28 May 2024<span class="reference-accessdate">. Retrieved <span class="nowrap">15 July</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Breaking+in+the+4-vectors%3A+the+four-dimensional+movement+in+gravitation%2C+1905%E2%80%931910&rft.btitle=The+Genesis+of+General+Relativity%2C+Volume+3&rft.place=Berlin%2C+Germany&rft.pages=%3Cspan+class%3D%22nowrap%22%3E193-%3C%2Fspan%3E252&rft.pub=Springer&rft.date=2007&rft.aulast=Walter&rft.aufirst=Scott+A.&rft_id=http%3A%2F%2Fscottwalter.free.fr%2Fpapers%2F2007-genesis-walter.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-Einstein1905-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-Einstein1905_26-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEinstein1905" class="citation journal cs1">Einstein, Albert (1905). <a class="external text" href="https://en.wikisource.org/wiki/On_the_Electrodynamics_of_Moving_Bodies_(1920_edition)">"On the Electrodynamics of Moving Bodies ( Zur Elektrodynamik bewegter Körper)"</a>. <i>Annalen der Physik</i>. <b>322</b> (10): <span class="nowrap">891–</span>921. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1905AnP...322..891E">1905AnP...322..891E</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fandp.19053221004">10.1002/andp.19053221004</a></span>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20181106132340/https://en.wikisource.org/wiki/On_the_Electrodynamics_of_Moving_Bodies_(1920_edition)">Archived</a> from the original on 6 November 2018<span class="reference-accessdate">. Retrieved <span class="nowrap">7 April</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annalen+der+Physik&rft.atitle=On+the+Electrodynamics+of+Moving+Bodies+%28+Zur+Elektrodynamik+bewegter+K%C3%B6rper%29&rft.volume=322&rft.issue=10&rft.pages=%3Cspan+class%3D%22nowrap%22%3E891-%3C%2Fspan%3E921&rft.date=1905&rft_id=info%3Adoi%2F10.1002%2Fandp.19053221004&rft_id=info%3Abibcode%2F1905AnP...322..891E&rft.aulast=Einstein&rft.aufirst=Albert&rft_id=https%3A%2F%2Fen.wikisource.org%2Fwiki%2FOn_the_Electrodynamics_of_Moving_Bodies_%281920_edition%29&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-Isaacson2007-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-Isaacson2007_27-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIsaacson2007" class="citation book cs1">Isaacson, Walter (2007). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/einsteinhislifeu0000isaa"><i>Einstein: His Life and Universe</i></a></span>. Simon & Schuster. pp. <span class="nowrap">26–</span>27, <span class="nowrap">122–</span>127, <span class="nowrap">145–</span>146, <span class="nowrap">345–</span>349, <span class="nowrap">448–</span>460. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-7432-6473-0" title="Special:BookSources/978-0-7432-6473-0"><bdi>978-0-7432-6473-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Einstein%3A+His+Life+and+Universe&rft.pages=%3Cspan+class%3D%22nowrap%22%3E26-%3C%2Fspan%3E27%2C+%3Cspan+class%3D%22nowrap%22%3E122-%3C%2Fspan%3E127%2C+%3Cspan+class%3D%22nowrap%22%3E145-%3C%2Fspan%3E146%2C+%3Cspan+class%3D%22nowrap%22%3E345-%3C%2Fspan%3E349%2C+%3Cspan+class%3D%22nowrap%22%3E448-%3C%2Fspan%3E460&rft.pub=Simon+%26+Schuster&rft.date=2007&rft.isbn=978-0-7432-6473-0&rft.aulast=Isaacson&rft.aufirst=Walter&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Feinsteinhislifeu0000isaa&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-Weinstein-29"><span class="mw-cite-backlink">^ <a href="#cite_ref-Weinstein_29-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Weinstein_29-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeinstein2012" class="citation arxiv cs1">Weinstein, Galina (2012). "Max Born, Albert Einstein and Hermann Minkowski's Space–Time Formalism of Special Relativity". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1210.6929">1210.6929</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/physics.hist-ph">physics.hist-ph</a>].</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=preprint&rft.jtitle=arXiv&rft.atitle=Max+Born%2C+Albert+Einstein+and+Hermann+Minkowski%27s+Space%E2%80%93Time+Formalism+of+Special+Relativity&rft.date=2012&rft_id=info%3Aarxiv%2F1210.6929&rft.aulast=Weinstein&rft.aufirst=Galina&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-Galison-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-Galison_30-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGalison1979" class="citation journal cs1">Galison, Peter Louis (1979). "Minkowski's space–time: From visual thinking to the absolute world". <i>Historical Studies in the Physical Sciences</i>. <b>10</b>: <span class="nowrap">85–</span>121. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F27757388">10.2307/27757388</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/27757388">27757388</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Historical+Studies+in+the+Physical+Sciences&rft.atitle=Minkowski%27s+space%E2%80%93time%3A+From+visual+thinking+to+the+absolute+world&rft.volume=10&rft.pages=%3Cspan+class%3D%22nowrap%22%3E85-%3C%2Fspan%3E121&rft.date=1979&rft_id=info%3Adoi%2F10.2307%2F27757388&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F27757388%23id-name%3DJSTOR&rft.aulast=Galison&rft.aufirst=Peter+Louis&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-Minkowski_Raum_und_Zeit-32"><span class="mw-cite-backlink">^ <a href="#cite_ref-Minkowski_Raum_und_Zeit_32-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Minkowski_Raum_und_Zeit_32-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMinkowski1909" class="citation journal cs1">Minkowski, Hermann (1909). <a class="external text" href="https://en.wikisource.org/wiki/Translation:Space_and_Time">"Raum und Zeit"</a> [Space and Time]. <i>Jahresbericht der Deutschen Mathematiker-Vereinigung</i>. B. G. Teubner: <span class="nowrap">1–</span>14. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170728154753/https://en.wikisource.org/wiki/Translation:Space_and_Time">Archived</a> from the original on 28 July 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">17 July</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Jahresbericht+der+Deutschen+Mathematiker-Vereinigung&rft.atitle=Raum+und+Zeit&rft.pages=%3Cspan+class%3D%22nowrap%22%3E1-%3C%2Fspan%3E14&rft.date=1909&rft.aulast=Minkowski&rft.aufirst=Hermann&rft_id=https%3A%2F%2Fen.wikisource.org%2Fwiki%2FTranslation%3ASpace_and_Time&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-cartan-34"><span class="mw-cite-backlink">^ <a href="#cite_ref-cartan_34-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-cartan_34-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCartan,_É.Fano,_G.1955" class="citation journal cs1">Cartan, É.; Fano, G. (1955) [1915]. <a rel="nofollow" class="external text" href="http://gallica.bnf.fr/ark:/12148/bpt6k29100t/f194.image">"La théorie des groupes continus et la géométrie"</a>. <i>Encyclopédie des Sciences Mathématiques Pures et Appliquées</i>. <b>3</b> (1): <span class="nowrap">39–</span>43. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180323032943/http://gallica.bnf.fr/ark:/12148/bpt6k29100t/f194.image">Archived</a> from the original on 23 March 2018<span class="reference-accessdate">. Retrieved <span class="nowrap">6 April</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Encyclop%C3%A9die+des+Sciences+Math%C3%A9matiques+Pures+et+Appliqu%C3%A9es&rft.atitle=La+th%C3%A9orie+des+groupes+continus+et+la+g%C3%A9om%C3%A9trie&rft.volume=3&rft.issue=1&rft.pages=%3Cspan+class%3D%22nowrap%22%3E39-%3C%2Fspan%3E43&rft.date=1955&rft.au=Cartan%2C+%C3%89.&rft.au=Fano%2C+G.&rft_id=http%3A%2F%2Fgallica.bnf.fr%2Fark%3A%2F12148%2Fbpt6k29100t%2Ff194.image&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span> (Only pages 1–21 were published in 1915, the entire article including pp. 39–43 concerning the groups of Laguerre and Lorentz was posthumously published in 1955 in Cartan's collected papers, and was reprinted in the Encyclopédie in 1991.)</span> </li> <li id="cite_note-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-35">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKastrup,_H._A.2008" class="citation journal cs1">Kastrup, H. A. (2008). "On the advancements of conformal transformations and their associated symmetries in geometry and theoretical physics". <i>Annalen der Physik</i>. <b>520</b> (<span class="nowrap">9–</span>10): <span class="nowrap">631–</span>690. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0808.2730">0808.2730</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2008AnP...520..631K">2008AnP...520..631K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fandp.200810324">10.1002/andp.200810324</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:12020510">12020510</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annalen+der+Physik&rft.atitle=On+the+advancements+of+conformal+transformations+and+their+associated+symmetries+in+geometry+and+theoretical+physics&rft.volume=520&rft.issue=%3Cspan+class%3D%22nowrap%22%3E9%E2%80%93%3C%2Fspan%3E10&rft.pages=%3Cspan+class%3D%22nowrap%22%3E631-%3C%2Fspan%3E690&rft.date=2008&rft_id=info%3Aarxiv%2F0808.2730&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A12020510%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1002%2Fandp.200810324&rft_id=info%3Abibcode%2F2008AnP...520..631K&rft.au=Kastrup%2C+H.+A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRatcliffe,_J._G.1994" class="citation book cs1">Ratcliffe, J. G. (1994). <a rel="nofollow" class="external text" href="https://archive.org/details/foundationsofhyp0000ratc/page/56">"Hyperbolic geometry"</a>. <i>Foundations of Hyperbolic Manifolds</i>. New York. pp. <a rel="nofollow" class="external text" href="https://archive.org/details/foundationsofhyp0000ratc/page/56">56–104</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-387-94348-X" title="Special:BookSources/0-387-94348-X"><bdi>0-387-94348-X</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Hyperbolic+geometry&rft.btitle=Foundations+of+Hyperbolic+Manifolds&rft.place=New+York&rft.pages=56-104&rft.date=1994&rft.isbn=0-387-94348-X&rft.au=Ratcliffe%2C+J.+G.&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Ffoundationsofhyp0000ratc%2Fpage%2F56&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_book" title="Template:Cite book">cite book</a>}}</code>: CS1 maint: location missing publisher (<a href="/wiki/Category:CS1_maint:_location_missing_publisher" title="Category:CS1 maint: location missing publisher">link</a>)</span></span> </li> <li id="cite_note-Kogut_2001-38"><span class="mw-cite-backlink">^ <a href="#cite_ref-Kogut_2001_38-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Kogut_2001_38-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Kogut_2001_38-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Kogut_2001_38-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Kogut_2001_38-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKogut2001" class="citation book cs1">Kogut, John B. (2001). <i>Introduction to Relativity</i>. Massachusetts: Harcourt/Academic Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-12-417561-9" title="Special:BookSources/0-12-417561-9"><bdi>0-12-417561-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Introduction+to+Relativity&rft.place=Massachusetts&rft.pub=Harcourt%2FAcademic+Press&rft.date=2001&rft.isbn=0-12-417561-9&rft.aulast=Kogut&rft.aufirst=John+B.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-D'Inverno_1002-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-D'Inverno_1002_39-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRay_d'InvernoJames_Vickers2022" class="citation book cs1">Ray d'Inverno; James Vickers (2022). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=LGxvEAAAQBAJ"><i>Introducing Einstein's Relativity: A Deeper Understanding</i></a> (illustrated ed.). Oxford University Press. pp. <span class="nowrap">26–</span>28. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-19-886202-4" title="Special:BookSources/978-0-19-886202-4"><bdi>978-0-19-886202-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Introducing+Einstein%27s+Relativity%3A+A+Deeper+Understanding&rft.pages=%3Cspan+class%3D%22nowrap%22%3E26-%3C%2Fspan%3E28&rft.edition=illustrated&rft.pub=Oxford+University+Press&rft.date=2022&rft.isbn=978-0-19-886202-4&rft.au=Ray+d%27Inverno&rft.au=James+Vickers&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DLGxvEAAAQBAJ&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span> <a rel="nofollow" class="external text" href="https://books.google.com/books?id=LGxvEAAAQBAJ&pg=PA27">Extract of page 27</a></span> </li> <li id="cite_note-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-40">^</a></b></span> <span class="reference-text">Landau, L. D., and Lifshitz, E. M. (2013). The classical theory of fields (Vol. 2).</span> </li> <li id="cite_note-Carroll_2022-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-Carroll_2022_41-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCarroll2022" class="citation book cs1">Carroll, Sean (2022). <i>The Biggest Ideas in the Universe</i>. New York: Penguin Random House LLC. pp. <span class="nowrap">155–</span>156. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9780593186589" title="Special:BookSources/9780593186589"><bdi>9780593186589</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Biggest+Ideas+in+the+Universe&rft.place=New+York&rft.pages=%3Cspan+class%3D%22nowrap%22%3E155-%3C%2Fspan%3E156&rft.pub=Penguin+Random+House+LLC&rft.date=2022&rft.isbn=9780593186589&rft.aulast=Carroll&rft.aufirst=Sean&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-42">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCurielBokulich" class="citation web cs1">Curiel, Erik; Bokulich, Peter. <a rel="nofollow" class="external text" href="https://plato.stanford.edu/entries/spacetime-singularities/lightcone.html">"Lightcones and Causal Structure"</a>. <i>Stanford Encyclopedia of Philosophy</i>. Metaphysics Research Lab, Stanford University. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20190517122738/https://plato.stanford.edu/entries/spacetime-singularities/lightcone.html">Archived</a> from the original on 17 May 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">26 March</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Stanford+Encyclopedia+of+Philosophy&rft.atitle=Lightcones+and+Causal+Structure&rft.aulast=Curiel&rft.aufirst=Erik&rft.au=Bokulich%2C+Peter&rft_id=https%3A%2F%2Fplato.stanford.edu%2Fentries%2Fspacetime-singularities%2Flightcone.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-plato.stanford.edu-43"><span class="mw-cite-backlink">^ <a href="#cite_ref-plato.stanford.edu_43-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-plato.stanford.edu_43-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSavitt" class="citation web cs1">Savitt, Steven. <a rel="nofollow" class="external text" href="https://plato.stanford.edu/entries/spacetime-bebecome/#Spec">"Being and Becoming in Modern Physics. 3. The Special Theory of Relativity"</a>. <i>The Stanford Encyclopedia of Philosophy</i>. Metaphysics Research Lab, Stanford University. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170311015404/https://plato.stanford.edu/entries/spacetime-bebecome/#Spec">Archived</a> from the original on 11 March 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">26 March</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=The+Stanford+Encyclopedia+of+Philosophy&rft.atitle=Being+and+Becoming+in+Modern+Physics.+3.+The+Special+Theory+of+Relativity&rft.aulast=Savitt&rft.aufirst=Steven&rft_id=https%3A%2F%2Fplato.stanford.edu%2Fentries%2Fspacetime-bebecome%2F%23Spec&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-Schutz1985-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-Schutz1985_45-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchutz1985" class="citation book cs1">Schutz, Bernard F. (1985). <i>A first course in general relativity</i>. Cambridge, UK: Cambridge University Press. p. 26. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-521-27703-5" title="Special:BookSources/0-521-27703-5"><bdi>0-521-27703-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=A+first+course+in+general+relativity&rft.place=Cambridge%2C+UK&rft.pages=26&rft.pub=Cambridge+University+Press&rft.date=1985&rft.isbn=0-521-27703-5&rft.aulast=Schutz&rft.aufirst=Bernard+F.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-Weiss-46"><span class="mw-cite-backlink">^ <a href="#cite_ref-Weiss_46-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Weiss_46-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Weiss_46-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Weiss_46-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Weiss_46-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Weiss_46-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-Weiss_46-6"><sup><i><b>g</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeiss" class="citation web cs1">Weiss, Michael. <a rel="nofollow" class="external text" href="http://math.ucr.edu/home/baez/physics/Relativity/SR/TwinParadox/twin_paradox.html">"The Twin Paradox"</a>. <i>The Physics and Relativity FAQ</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170427202915/http://www.math.ucr.edu/home/baez/physics/Relativity/SR/TwinParadox/twin_paradox.html">Archived</a> from the original on 27 April 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">10 April</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=The+Physics+and+Relativity+FAQ&rft.atitle=The+Twin+Paradox&rft.aulast=Weiss&rft.aufirst=Michael&rft_id=http%3A%2F%2Fmath.ucr.edu%2Fhome%2Fbaez%2Fphysics%2FRelativity%2FSR%2FTwinParadox%2Ftwin_paradox.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-48">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMould1994" class="citation book cs1">Mould, Richard A. (1994). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=lfGE-wyJYIUC&pg=PA42"><i>Basic Relativity</i></a> (1st ed.). Springer. p. 42. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-95210-9" title="Special:BookSources/978-0-387-95210-9"><bdi>978-0-387-95210-9</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">22 April</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Basic+Relativity&rft.pages=42&rft.edition=1st&rft.pub=Springer&rft.date=1994&rft.isbn=978-0-387-95210-9&rft.aulast=Mould&rft.aufirst=Richard+A.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DlfGE-wyJYIUC%26pg%3DPA42&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-49">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLerner1997" class="citation book cs1">Lerner, Lawrence S. (1997). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=B8K_ym9rS6UC&pg=PA1047"><i>Physics for Scientists and Engineers, Volume 2</i></a> (1st ed.). Jones & Bartlett Pub. p. 1047. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-7637-0460-5" title="Special:BookSources/978-0-7637-0460-5"><bdi>978-0-7637-0460-5</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">22 April</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Physics+for+Scientists+and+Engineers%2C+Volume+2&rft.pages=1047&rft.edition=1st&rft.pub=Jones+%26+Bartlett+Pub&rft.date=1997&rft.isbn=978-0-7637-0460-5&rft.aulast=Lerner&rft.aufirst=Lawrence+S.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DB8K_ym9rS6UC%26pg%3DPA1047&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-Bais-50"><span class="mw-cite-backlink">^ <a href="#cite_ref-Bais_50-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Bais_50-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Bais_50-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Bais_50-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Bais_50-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Bais_50-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-Bais_50-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-Bais_50-7"><sup><i><b>h</b></i></sup></a> <a href="#cite_ref-Bais_50-8"><sup><i><b>i</b></i></sup></a> <a href="#cite_ref-Bais_50-9"><sup><i><b>j</b></i></sup></a> <a href="#cite_ref-Bais_50-10"><sup><i><b>k</b></i></sup></a> <a href="#cite_ref-Bais_50-11"><sup><i><b>l</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBais2007" class="citation book cs1">Bais, Sander (2007). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/veryspecialrelat0000bais"><i>Very Special Relativity: An Illustrated Guide</i></a></span>. Cambridge, Massachusetts: Harvard University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-674-02611-7" title="Special:BookSources/978-0-674-02611-7"><bdi>978-0-674-02611-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Very+Special+Relativity%3A+An+Illustrated+Guide&rft.place=Cambridge%2C+Massachusetts&rft.pub=Harvard+University+Press&rft.date=2007&rft.isbn=978-0-674-02611-7&rft.aulast=Bais&rft.aufirst=Sander&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fveryspecialrelat0000bais&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-Forshaw-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-Forshaw_51-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFForshawSmith2014" class="citation book cs1">Forshaw, Jeffrey; Smith, Gavin (2014). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=5TaiAwAAQBAJ"><i>Dynamics and Relativity</i></a>. John Wiley & Sons. p. 118. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-118-93329-9" title="Special:BookSources/978-1-118-93329-9"><bdi>978-1-118-93329-9</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">24 April</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Dynamics+and+Relativity&rft.pages=118&rft.pub=John+Wiley+%26+Sons&rft.date=2014&rft.isbn=978-1-118-93329-9&rft.aulast=Forshaw&rft.aufirst=Jeffrey&rft.au=Smith%2C+Gavin&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D5TaiAwAAQBAJ&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-Morin-52"><span class="mw-cite-backlink">^ <a href="#cite_ref-Morin_52-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Morin_52-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Morin_52-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Morin_52-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Morin_52-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Morin_52-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-Morin_52-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-Morin_52-7"><sup><i><b>h</b></i></sup></a> <a href="#cite_ref-Morin_52-8"><sup><i><b>i</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMorin2017" class="citation book cs1">Morin, David (2017). <i>Special Relativity for the Enthusiastic Beginner</i>. CreateSpace Independent Publishing Platform. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-5423-2351-2" title="Special:BookSources/978-1-5423-2351-2"><bdi>978-1-5423-2351-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Special+Relativity+for+the+Enthusiastic+Beginner&rft.pub=CreateSpace+Independent+Publishing+Platform&rft.date=2017&rft.isbn=978-1-5423-2351-2&rft.aulast=Morin&rft.aufirst=David&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-53"><span class="mw-cite-backlink"><b><a href="#cite_ref-53">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLandauLifshitz2006" class="citation book cs1">Landau, L. D.; Lifshitz, E. M. (2006). <i>The Classical Theory of Fields, Course of Theoretical Physics, Volume 2</i> (4th ed.). Amsterdam: Elsevier. pp. <span class="nowrap">1–</span>24. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-7506-2768-9" title="Special:BookSources/978-0-7506-2768-9"><bdi>978-0-7506-2768-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Classical+Theory+of+Fields%2C+Course+of+Theoretical+Physics%2C+Volume+2&rft.place=Amsterdam&rft.pages=%3Cspan+class%3D%22nowrap%22%3E1-%3C%2Fspan%3E24&rft.edition=4th&rft.pub=Elsevier&rft.date=2006&rft.isbn=978-0-7506-2768-9&rft.aulast=Landau&rft.aufirst=L.+D.&rft.au=Lifshitz%2C+E.+M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-Morin2008-54"><span class="mw-cite-backlink">^ <a href="#cite_ref-Morin2008_54-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Morin2008_54-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMorin2008" class="citation book cs1">Morin, David (2008). <a rel="nofollow" class="external text" href="https://archive.org/details/introductiontocl00mori"><i>Introduction to Classical Mechanics: With Problems and Solutions</i></a>. Cambridge University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-87622-3" title="Special:BookSources/978-0-521-87622-3"><bdi>978-0-521-87622-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Introduction+to+Classical+Mechanics%3A+With+Problems+and+Solutions&rft.pub=Cambridge+University+Press&rft.date=2008&rft.isbn=978-0-521-87622-3&rft.aulast=Morin&rft.aufirst=David&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fintroductiontocl00mori&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-57"><span class="mw-cite-backlink"><b><a href="#cite_ref-57">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRose2008" class="citation journal cs1">Rose, H. H. (21 April 2008). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5099802">"Optics of high-performance electron microscopes"</a>. <i>Science and Technology of Advanced Materials</i>. <b>9</b> (1): 014107. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2008STAdM...9a4107R">2008STAdM...9a4107R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0031-8949%2F9%2F1%2F014107">10.1088/0031-8949/9/1/014107</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5099802">5099802</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/27877933">27877933</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science+and+Technology+of+Advanced+Materials&rft.atitle=Optics+of+high-performance+electron+microscopes&rft.volume=9&rft.issue=1&rft.pages=014107&rft.date=2008-04-21&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5099802%23id-name%3DPMC&rft_id=info%3Apmid%2F27877933&rft_id=info%3Adoi%2F10.1088%2F0031-8949%2F9%2F1%2F014107&rft_id=info%3Abibcode%2F2008STAdM...9a4107R&rft.aulast=Rose&rft.aufirst=H.+H.&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5099802&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-58"><span class="mw-cite-backlink"><b><a href="#cite_ref-58">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGriffiths2013" class="citation book cs1">Griffiths, David J. (2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Tv8cz-kN2z0C&pg=PA60"><i>Revolutions in Twentieth-Century Physics</i></a>. Cambridge: Cambridge University Press. p. 60. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-107-60217-5" title="Special:BookSources/978-1-107-60217-5"><bdi>978-1-107-60217-5</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">24 May</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Revolutions+in+Twentieth-Century+Physics&rft.place=Cambridge&rft.pages=60&rft.pub=Cambridge+University+Press&rft.date=2013&rft.isbn=978-1-107-60217-5&rft.aulast=Griffiths&rft.aufirst=David+J.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DTv8cz-kN2z0C%26pg%3DPA60&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-59"><span class="mw-cite-backlink"><b><a href="#cite_ref-59">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFByers1998" class="citation arxiv cs1">Byers, Nina (1998). "E. Noether's Discovery of the Deep Connection Between Symmetries and Conservation Laws". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/physics/9807044">physics/9807044</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=preprint&rft.jtitle=arXiv&rft.atitle=E.+Noether%27s+Discovery+of+the+Deep+Connection+Between+Symmetries+and+Conservation+Laws&rft.date=1998&rft_id=info%3Aarxiv%2Fphysics%2F9807044&rft.aulast=Byers&rft.aufirst=Nina&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-Idema_2022-60"><span class="mw-cite-backlink"><b><a href="#cite_ref-Idema_2022_60-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIdema2019" class="citation web cs1">Idema, Timon (17 April 2019). <a rel="nofollow" class="external text" href="https://phys.libretexts.org/Bookshelves/University_Physics/Mechanics_and_Relativity_(Idema)/04%3A_Momentum/4.03%3A_Reference_Frames">"Mechanics and Relativity. Chapter 4.3: Reference Frames"</a>. <i>LibreTexts Physics</i>. California State University Affordable Learning Solutions Program<span class="reference-accessdate">. Retrieved <span class="nowrap">6 July</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=LibreTexts+Physics&rft.atitle=Mechanics+and+Relativity.+Chapter+4.3%3A+Reference+Frames&rft.date=2019-04-17&rft.aulast=Idema&rft.aufirst=Timon&rft_id=https%3A%2F%2Fphys.libretexts.org%2FBookshelves%2FUniversity_Physics%2FMechanics_and_Relativity_%28Idema%29%2F04%253A_Momentum%2F4.03%253A_Reference_Frames&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-61"><span class="mw-cite-backlink"><b><a href="#cite_ref-61">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNave" class="citation web cs1">Nave, R. <a rel="nofollow" class="external text" href="http://hyperphysics.phy-astr.gsu.edu/hbase/Particles/piondec.html">"Energetics of Charged Pion Decay"</a>. <i>Hyperphysics</i>. Department of Physics and Astronomy, Georgia State University. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170521075304/http://hyperphysics.phy-astr.gsu.edu/hbase/Particles/piondec.html">Archived</a> from the original on 21 May 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">27 May</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Hyperphysics&rft.atitle=Energetics+of+Charged+Pion+Decay&rft.aulast=Nave&rft.aufirst=R.&rft_id=http%3A%2F%2Fhyperphysics.phy-astr.gsu.edu%2Fhbase%2FParticles%2Fpiondec.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-Curved_spacetime_Taylor-63"><span class="mw-cite-backlink">^ <a href="#cite_ref-Curved_spacetime_Taylor_63-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Curved_spacetime_Taylor_63-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Curved_spacetime_Taylor_63-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTaylorWheeler1992" class="citation book cs1">Taylor, Edwin F.; Wheeler, John Archibald (1992). <a rel="nofollow" class="external text" href="https://archive.org/details/spacetime_physics/"><i>Spacetime Physics: Introduction to Special Relativity</i></a> (2nd ed.). San Francisco, California: Freeman. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-7167-0336-X" title="Special:BookSources/0-7167-0336-X"><bdi>0-7167-0336-X</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">14 April</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Spacetime+Physics%3A+Introduction+to+Special+Relativity&rft.place=San+Francisco%2C+California&rft.edition=2nd&rft.pub=Freeman&rft.date=1992&rft.isbn=0-7167-0336-X&rft.aulast=Taylor&rft.aufirst=Edwin+F.&rft.au=Wheeler%2C+John+Archibald&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fspacetime_physics%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-Curved_spacetime_PrincipleOfRelativity-64"><span class="mw-cite-backlink"><b><a href="#cite_ref-Curved_spacetime_PrincipleOfRelativity_64-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLorentzEinsteinMinkowskiWeyl1952" class="citation book cs1">Lorentz, H. A.; Einstein, A.; Minkowski, H.; Weyl, H. (1952). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/principleofrelat00lore"><i>The Principle of Relativity: A Collection of Original Memoirs on the Special and General Theory of Relativity</i></a></span>. Dover Publications. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-486-60081-5" title="Special:BookSources/0-486-60081-5"><bdi>0-486-60081-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Principle+of+Relativity%3A+A+Collection+of+Original+Memoirs+on+the+Special+and+General+Theory+of+Relativity&rft.pub=Dover+Publications&rft.date=1952&rft.isbn=0-486-60081-5&rft.aulast=Lorentz&rft.aufirst=H.+A.&rft.au=Einstein%2C+A.&rft.au=Minkowski%2C+H.&rft.au=Weyl%2C+H.&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fprincipleofrelat00lore&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-Curved_spacetime_Mook-65"><span class="mw-cite-backlink">^ <a href="#cite_ref-Curved_spacetime_Mook_65-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Curved_spacetime_Mook_65-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Curved_spacetime_Mook_65-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMookVargish1987" class="citation book cs1">Mook, Delo E.; Vargish, Thoma s (1987). <a rel="nofollow" class="external text" href="https://archive.org/details/insiderelativity0000mook"><i>Inside Relativity</i></a>. Princeton, New Jersey: Princeton University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-691-08472-6" title="Special:BookSources/0-691-08472-6"><bdi>0-691-08472-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Inside+Relativity&rft.place=Princeton%2C+New+Jersey&rft.pub=Princeton+University+Press&rft.date=1987&rft.isbn=0-691-08472-6&rft.aulast=Mook&rft.aufirst=Delo+E.&rft.au=Vargish%2C+Thoma+s&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Finsiderelativity0000mook&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-Murzi-66"><span class="mw-cite-backlink"><b><a href="#cite_ref-Murzi_66-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMurzi" class="citation web cs1">Murzi, Mauro. <a rel="nofollow" class="external text" href="http://www.iep.utm.edu/poincare/#H4">"Jules Henri Poincaré (1854–1912)"</a>. Internet Encyclopedia of Philosophy (ISSN 2161-0002). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20201223123326/http://www.iep.utm.edu/poincare/#H4">Archived</a> from the original on 23 December 2020<span class="reference-accessdate">. Retrieved <span class="nowrap">9 April</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Jules+Henri+Poincar%C3%A9+%281854%E2%80%931912%29&rft.pub=Internet+Encyclopedia+of+Philosophy+%28ISSN+2161-0002%29&rft.aulast=Murzi&rft.aufirst=Mauro&rft_id=http%3A%2F%2Fwww.iep.utm.edu%2Fpoincare%2F%23H4&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-Deser1970-67"><span class="mw-cite-backlink"><b><a href="#cite_ref-Deser1970_67-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDeser1970" class="citation journal cs1">Deser, S. (1970). "Self-Interaction and Gauge Invariance". <i>General Relativity and Gravitation</i>. <b>1</b> (18): <span class="nowrap">9–</span>8. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/gr-qc/0411023">gr-qc/0411023</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1970GReGr...1....9D">1970GReGr...1....9D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF00759198">10.1007/BF00759198</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:14295121">14295121</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=General+Relativity+and+Gravitation&rft.atitle=Self-Interaction+and+Gauge+Invariance&rft.volume=1&rft.issue=18&rft.pages=%3Cspan+class%3D%22nowrap%22%3E9-%3C%2Fspan%3E8&rft.date=1970&rft_id=info%3Aarxiv%2Fgr-qc%2F0411023&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A14295121%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2FBF00759198&rft_id=info%3Abibcode%2F1970GReGr...1....9D&rft.aulast=Deser&rft.aufirst=S.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-Grishchuk1984-68"><span class="mw-cite-backlink"><b><a href="#cite_ref-Grishchuk1984_68-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGrishchukPetrovPopova1984" class="citation journal cs1">Grishchuk, L. P.; Petrov, A. N.; Popova, A. D. (1984). <a rel="nofollow" class="external text" href="https://projecteuclid.org/download/pdf_1/euclid.cmp/1103941358">"Exact Theory of the (Einstein) Gravitational Field in an Arbitrary Background Space–Time"</a>. <i>Communications in Mathematical Physics</i>. <b>94</b> (3): <span class="nowrap">379–</span>396. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1984CMaPh..94..379G">1984CMaPh..94..379G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01224832">10.1007/BF01224832</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:120021772">120021772</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20210225061922/https://projecteuclid.org/download/pdf_1/euclid.cmp/1103941358">Archived</a> from the original on 25 February 2021<span class="reference-accessdate">. Retrieved <span class="nowrap">9 April</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Communications+in+Mathematical+Physics&rft.atitle=Exact+Theory+of+the+%28Einstein%29+Gravitational+Field+in+an+Arbitrary+Background+Space%E2%80%93Time&rft.volume=94&rft.issue=3&rft.pages=%3Cspan+class%3D%22nowrap%22%3E379-%3C%2Fspan%3E396&rft.date=1984&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A120021772%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2FBF01224832&rft_id=info%3Abibcode%2F1984CMaPh..94..379G&rft.aulast=Grishchuk&rft.aufirst=L.+P.&rft.au=Petrov%2C+A.+N.&rft.au=Popova%2C+A.+D.&rft_id=https%3A%2F%2Fprojecteuclid.org%2Fdownload%2Fpdf_1%2Feuclid.cmp%2F1103941358&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-Rosen1940-69"><span class="mw-cite-backlink"><b><a href="#cite_ref-Rosen1940_69-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRosen1940" class="citation journal cs1">Rosen, N. (1940). "General Relativity and Flat Space I". <i>Physical Review</i>. <b>57</b> (2): <span class="nowrap">147–</span>150. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1940PhRv...57..147R">1940PhRv...57..147R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRev.57.147">10.1103/PhysRev.57.147</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review&rft.atitle=General+Relativity+and+Flat+Space+I&rft.volume=57&rft.issue=2&rft.pages=%3Cspan+class%3D%22nowrap%22%3E147-%3C%2Fspan%3E150&rft.date=1940&rft_id=info%3Adoi%2F10.1103%2FPhysRev.57.147&rft_id=info%3Abibcode%2F1940PhRv...57..147R&rft.aulast=Rosen&rft.aufirst=N.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-Weinberg1964-70"><span class="mw-cite-backlink"><b><a href="#cite_ref-Weinberg1964_70-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeinberg1964" class="citation journal cs1">Weinberg, S. (1964). "Derivation of Gauge Invariance and the Equivalence Principle from Lorentz Invariance of the S-Matrix". <i>Physics Letters</i>. <b>9</b> (4): <span class="nowrap">357–</span>359. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1964PhL.....9..357W">1964PhL.....9..357W</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0031-9163%2864%2990396-8">10.1016/0031-9163(64)90396-8</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physics+Letters&rft.atitle=Derivation+of+Gauge+Invariance+and+the+Equivalence+Principle+from+Lorentz+Invariance+of+the+S-Matrix&rft.volume=9&rft.issue=4&rft.pages=%3Cspan+class%3D%22nowrap%22%3E357-%3C%2Fspan%3E359&rft.date=1964&rft_id=info%3Adoi%2F10.1016%2F0031-9163%2864%2990396-8&rft_id=info%3Abibcode%2F1964PhL.....9..357W&rft.aulast=Weinberg&rft.aufirst=S.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-Thorne1995-71"><span class="mw-cite-backlink">^ <a href="#cite_ref-Thorne1995_71-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Thorne1995_71-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFThorne1995" class="citation book cs1">Thorne, Kip (1995). <i>Black Holes & Time Warps: Einstein's Outrageous Legacy</i>. W. W. Norton & Company. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-393-31276-8" title="Special:BookSources/978-0-393-31276-8"><bdi>978-0-393-31276-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Black+Holes+%26+Time+Warps%3A+Einstein%27s+Outrageous+Legacy&rft.pub=W.+W.+Norton+%26+Company&rft.date=1995&rft.isbn=978-0-393-31276-8&rft.aulast=Thorne&rft.aufirst=Kip&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-bondi_etal_1962-72"><span class="mw-cite-backlink"><b><a href="#cite_ref-bondi_etal_1962_72-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBondiVan_der_BurgMetzner1962" class="citation journal cs1">Bondi, H.; Van der Burg, M. G. J.; Metzner, A. (1962). "Gravitational waves in general relativity: VII. Waves from axisymmetric isolated systems". <i>Proceedings of the Royal Society of London A</i>. <b>A269</b> (1336): <span class="nowrap">21–</span>52. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1962RSPSA.269...21B">1962RSPSA.269...21B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frspa.1962.0161">10.1098/rspa.1962.0161</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:120125096">120125096</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+Royal+Society+of+London+A&rft.atitle=Gravitational+waves+in+general+relativity%3A+VII.+Waves+from+axisymmetric+isolated+systems&rft.volume=A269&rft.issue=1336&rft.pages=%3Cspan+class%3D%22nowrap%22%3E21-%3C%2Fspan%3E52&rft.date=1962&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A120125096%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1098%2Frspa.1962.0161&rft_id=info%3Abibcode%2F1962RSPSA.269...21B&rft.aulast=Bondi&rft.aufirst=H.&rft.au=Van+der+Burg%2C+M.+G.+J.&rft.au=Metzner%2C+A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-sachs1962-73"><span class="mw-cite-backlink"><b><a href="#cite_ref-sachs1962_73-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSachs1962" class="citation journal cs1">Sachs, Rainer K. (1962). "Asymptotic symmetries in gravitational theory". <i>Physical Review</i>. <b>128</b> (6): <span class="nowrap">2851–</span>2864. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1962PhRv..128.2851S">1962PhRv..128.2851S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRev.128.2851">10.1103/PhysRev.128.2851</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review&rft.atitle=Asymptotic+symmetries+in+gravitational+theory&rft.volume=128&rft.issue=6&rft.pages=%3Cspan+class%3D%22nowrap%22%3E2851-%3C%2Fspan%3E2864&rft.date=1962&rft_id=info%3Adoi%2F10.1103%2FPhysRev.128.2851&rft_id=info%3Abibcode%2F1962PhRv..128.2851S&rft.aulast=Sachs&rft.aufirst=Rainer+K.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-strominger2017-74"><span class="mw-cite-backlink">^ <a href="#cite_ref-strominger2017_74-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-strominger2017_74-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStrominger2017" class="citation arxiv cs1">Strominger, Andrew (2017). "Lectures on the Infrared Structure of Gravity and Gauge Theory". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1703.05448">1703.05448</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/hep-th">hep-th</a>]. <q>...redacted transcript of a course given by the author at Harvard in spring semester 2016. It contains a pedagogical overview of recent developments connecting the subjects of soft theorems, the memory effect and asymptotic symmetries in four-dimensional QED, nonabelian gauge theory and gravity with applications to black holes. To be published Princeton University Press, 158 pages.</q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=preprint&rft.jtitle=arXiv&rft.atitle=Lectures+on+the+Infrared+Structure+of+Gravity+and+Gauge+Theory&rft.date=2017&rft_id=info%3Aarxiv%2F1703.05448&rft.aulast=Strominger&rft.aufirst=Andrew&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-75"><span class="mw-cite-backlink"><b><a href="#cite_ref-75">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.maths.tcd.ie/pub/HistMath/People/Riemann/Geom/">maths.tcd.ie</a></span> </li> <li id="cite_note-Pfaffle-76"><span class="mw-cite-backlink">^ <a href="#cite_ref-Pfaffle_76-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Pfaffle_76-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Pfaffle_76-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Pfaffle_76-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBärFredenhagen2009" class="citation book cs1">Bär, Christian; Fredenhagen, Klaus (2009). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170415201236/http://www.springer.com/cda/content/document/cda_downloaddocument/9783642027796-c1.pdf?SGWID=0-0-45-800045-p173910618">"Lorentzian Manifolds"</a> <span class="cs1-format">(PDF)</span>. <i>Quantum Field Theory on Curved Spacetimes: Concepts and Mathematical Foundations</i>. Dordrecht: Springer. pp. <span class="nowrap">39–</span>58. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-642-02779-6" title="Special:BookSources/978-3-642-02779-6"><bdi>978-3-642-02779-6</bdi></a>. Archived from <a rel="nofollow" class="external text" href="https://www.springer.com/cda/content/document/cda_downloaddocument/9783642027796-c1.pdf?SGWID=0-0-45-800045-p173910618">the original</a> <span class="cs1-format">(PDF)</span> on 15 April 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">14 April</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Lorentzian+Manifolds&rft.btitle=Quantum+Field+Theory+on+Curved+Spacetimes%3A+Concepts+and+Mathematical+Foundations&rft.place=Dordrecht&rft.pages=%3Cspan+class%3D%22nowrap%22%3E39-%3C%2Fspan%3E58&rft.pub=Springer&rft.date=2009&rft.isbn=978-3-642-02779-6&rft.aulast=B%C3%A4r&rft.aufirst=Christian&rft.au=Fredenhagen%2C+Klaus&rft_id=https%3A%2F%2Fwww.springer.com%2Fcda%2Fcontent%2Fdocument%2Fcda_downloaddocument%2F9783642027796-c1.pdf%3FSGWID%3D0-0-45-800045-p173910618&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-77"><span class="mw-cite-backlink"><b><a href="#cite_ref-77">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTegmark1997" class="citation journal cs1">Tegmark, Max (1 April 1997). "On the dimensionality of spacetime". <i>Classical and Quantum Gravity</i>. <b>14</b> (4): <span class="nowrap">L69 –</span> <span class="nowrap">L75</span>. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/gr-qc/9702052">gr-qc/9702052</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1997CQGra..14L..69T">1997CQGra..14L..69T</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0264-9381%2F14%2F4%2F002">10.1088/0264-9381/14/4/002</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0264-9381">0264-9381</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:250904081">250904081</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Classical+and+Quantum+Gravity&rft.atitle=On+the+dimensionality+of+spacetime&rft.volume=14&rft.issue=4&rft.pages=%3Cspan+class%3D%22nowrap%22%3EL69+-%3C%2Fspan%3E+%3Cspan+class%3D%22nowrap%22%3EL75%3C%2Fspan%3E&rft.date=1997-04-01&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A250904081%23id-name%3DS2CID&rft_id=info%3Abibcode%2F1997CQGra..14L..69T&rft_id=info%3Aarxiv%2Fgr-qc%2F9702052&rft.issn=0264-9381&rft_id=info%3Adoi%2F10.1088%2F0264-9381%2F14%2F4%2F002&rft.aulast=Tegmark&rft.aufirst=Max&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-Anthropic_principle_Skow2007-78"><span class="mw-cite-backlink"><b><a href="#cite_ref-Anthropic_principle_Skow2007_78-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSkow2007" class="citation journal cs1"><a href="/wiki/Bradford_Skow" title="Bradford Skow">Skow, Bradford</a> (2007). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160824025031/http://web.mit.edu/bskow/www/research/temporality.pdf">"What makes time different from space?"</a> <span class="cs1-format">(PDF)</span>. <i>Noûs</i>. <b>41</b> (2): <span class="nowrap">227–</span>252. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.404.7853">10.1.1.404.7853</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fj.1468-0068.2007.00645.x">10.1111/j.1468-0068.2007.00645.x</a>. Archived from <a rel="nofollow" class="external text" href="http://web.mit.edu/bskow/www/research/temporality.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 24 August 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">13 April</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=No%C3%BBs&rft.atitle=What+makes+time+different+from+space%3F&rft.volume=41&rft.issue=2&rft.pages=%3Cspan+class%3D%22nowrap%22%3E227-%3C%2Fspan%3E252&rft.date=2007&rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.404.7853%23id-name%3DCiteSeerX&rft_id=info%3Adoi%2F10.1111%2Fj.1468-0068.2007.00645.x&rft.aulast=Skow&rft.aufirst=Bradford&rft_id=http%3A%2F%2Fweb.mit.edu%2Fbskow%2Fwww%2Fresearch%2Ftemporality.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-Anthropic_principle_Leibniz1686-79"><span class="mw-cite-backlink"><b><a href="#cite_ref-Anthropic_principle_Leibniz1686_79-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLeibniz1880" class="citation book cs1">Leibniz, Gottfried (1880). <a class="external text" href="https://en.wikisource.org/wiki/Discourse_on_Metaphysics">"Discourse on metaphysics"</a>. <i>Die philosophischen schriften von Gottfried Wilhelm Leibniz</i>. Vol. 4. Weidmann. pp. <span class="nowrap">427–</span>463<span class="reference-accessdate">. Retrieved <span class="nowrap">13 April</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Discourse+on+metaphysics&rft.btitle=Die+philosophischen+schriften+von+Gottfried+Wilhelm+Leibniz&rft.pages=%3Cspan+class%3D%22nowrap%22%3E427-%3C%2Fspan%3E463&rft.pub=Weidmann&rft.date=1880&rft.aulast=Leibniz&rft.aufirst=Gottfried&rft_id=https%3A%2F%2Fen.wikisource.org%2Fwiki%2FDiscourse_on_Metaphysics&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-81"><span class="mw-cite-backlink"><b><a href="#cite_ref-81">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEhrenfest1920" class="citation journal cs1"><a href="/wiki/Paul_Ehrenfest" title="Paul Ehrenfest">Ehrenfest, Paul</a> (1920). <a rel="nofollow" class="external text" href="https://zenodo.org/record/1424351">"Welche Rolle spielt die Dreidimensionalität des Raumes in den Grundgesetzen der Physik?"</a> [How do the fundamental laws of physics make manifest that space has 3 dimensions?]. <i>Annalen der Physik</i>. <b>61</b> (5): <span class="nowrap">440–</span>446. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1920AnP...366..440E">1920AnP...366..440E</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fandp.19203660503">10.1002/andp.19203660503</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annalen+der+Physik&rft.atitle=Welche+Rolle+spielt+die+Dreidimensionalit%C3%A4t+des+Raumes+in+den+Grundgesetzen+der+Physik%3F&rft.volume=61&rft.issue=5&rft.pages=%3Cspan+class%3D%22nowrap%22%3E440-%3C%2Fspan%3E446&rft.date=1920&rft_id=info%3Adoi%2F10.1002%2Fandp.19203660503&rft_id=info%3Abibcode%2F1920AnP...366..440E&rft.aulast=Ehrenfest&rft.aufirst=Paul&rft_id=https%3A%2F%2Fzenodo.org%2Frecord%2F1424351&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span>. Also see Ehrenfest, P. (1917) "In what way does it become manifest in the fundamental laws of physics that space has three dimensions?" <i>Proceedings of the Amsterdam academy</i> 20:200.</span> </li> <li id="cite_note-82"><span class="mw-cite-backlink"><b><a href="#cite_ref-82">^</a></b></span> <span class="reference-text">Weyl, H. (1922). <i>Space, time, and matter</i>. Dover reprint: 284.</span> </li> <li id="cite_note-83"><span class="mw-cite-backlink"><b><a href="#cite_ref-83">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTangherlini1963" class="citation journal cs1">Tangherlini, F. R. (1963). "Schwarzschild field in <i>n</i> dimensions and the dimensionality of space problem". <i>Nuovo Cimento</i>. <b>27</b> (3): <span class="nowrap">636–</span>651. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1963NCim...27..636T">1963NCim...27..636T</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF02784569">10.1007/BF02784569</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119683293">119683293</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nuovo+Cimento&rft.atitle=Schwarzschild+field+in+n+dimensions+and+the+dimensionality+of+space+problem&rft.volume=27&rft.issue=3&rft.pages=%3Cspan+class%3D%22nowrap%22%3E636-%3C%2Fspan%3E651&rft.date=1963&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119683293%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2FBF02784569&rft_id=info%3Abibcode%2F1963NCim...27..636T&rft.aulast=Tangherlini&rft.aufirst=F.+R.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-Anthropic_principle_tegmark-dim-84"><span class="mw-cite-backlink">^ <a href="#cite_ref-Anthropic_principle_tegmark-dim_84-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Anthropic_principle_tegmark-dim_84-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Anthropic_principle_tegmark-dim_84-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTegmark1997" class="citation journal cs1"><a href="/wiki/Max_Tegmark" title="Max Tegmark">Tegmark, Max</a> (April 1997). <a rel="nofollow" class="external text" href="https://space.mit.edu/home/tegmark/dimensions.pdf">"On the dimensionality of spacetime"</a> <span class="cs1-format">(PDF)</span>. <i>Classical and Quantum Gravity</i>. <b>14</b> (4): <span class="nowrap">L69 –</span> <span class="nowrap">L75</span>. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/gr-qc/9702052">gr-qc/9702052</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1997CQGra..14L..69T">1997CQGra..14L..69T</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0264-9381%2F14%2F4%2F002">10.1088/0264-9381/14/4/002</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:15694111">15694111</a><span class="reference-accessdate">. Retrieved <span class="nowrap">16 December</span> 2006</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Classical+and+Quantum+Gravity&rft.atitle=On+the+dimensionality+of+spacetime&rft.volume=14&rft.issue=4&rft.pages=%3Cspan+class%3D%22nowrap%22%3EL69+-%3C%2Fspan%3E+%3Cspan+class%3D%22nowrap%22%3EL75%3C%2Fspan%3E&rft.date=1997-04&rft_id=info%3Aarxiv%2Fgr-qc%2F9702052&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A15694111%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1088%2F0264-9381%2F14%2F4%2F002&rft_id=info%3Abibcode%2F1997CQGra..14L..69T&rft.aulast=Tegmark&rft.aufirst=Max&rft_id=https%3A%2F%2Fspace.mit.edu%2Fhome%2Ftegmark%2Fdimensions.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-85"><span class="mw-cite-backlink"><b><a href="#cite_ref-85">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFeng2022" class="citation journal cs1">Feng, W.X. (3 August 2022). <a rel="nofollow" class="external text" href="https://journals.aps.org/prd/abstract/10.1103/PhysRevD.106.L041501">"Gravothermal phase transition, black holes and space dimensionality"</a>. <i>Physical Review D</i>. <b>106</b> (4): L041501. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2207.14317">2207.14317</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022PhRvD.106d1501F">2022PhRvD.106d1501F</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevD.106.L041501">10.1103/PhysRevD.106.L041501</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:251196731">251196731</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+D&rft.atitle=Gravothermal+phase+transition%2C+black+holes+and+space+dimensionality&rft.volume=106&rft.issue=4&rft.pages=L041501&rft.date=2022-08-03&rft_id=info%3Aarxiv%2F2207.14317&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A251196731%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1103%2FPhysRevD.106.L041501&rft_id=info%3Abibcode%2F2022PhRvD.106d1501F&rft.aulast=Feng&rft.aufirst=W.X.&rft_id=https%3A%2F%2Fjournals.aps.org%2Fprd%2Fabstract%2F10.1103%2FPhysRevD.106.L041501&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-86"><span class="mw-cite-backlink"><b><a href="#cite_ref-86">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFScargill2020" class="citation journal cs1">Scargill, J. H. C. (26 February 2020). <a rel="nofollow" class="external text" href="https://link.aps.org/doi/10.1103/PhysRevResearch.2.013217">"Existence of life in 2 + 1 dimensions"</a>. <i>Physical Review Research</i>. <b>2</b> (1): 013217. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1906.05336">1906.05336</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020PhRvR...2a3217S">2020PhRvR...2a3217S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevResearch.2.013217">10.1103/PhysRevResearch.2.013217</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:211734117">211734117</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+Research&rft.atitle=Existence+of+life+in+2+%2B+1+dimensions&rft.volume=2&rft.issue=1&rft.pages=013217&rft.date=2020-02-26&rft_id=info%3Aarxiv%2F1906.05336&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A211734117%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1103%2FPhysRevResearch.2.013217&rft_id=info%3Abibcode%2F2020PhRvR...2a3217S&rft.aulast=Scargill&rft.aufirst=J.+H.+C.&rft_id=https%3A%2F%2Flink.aps.org%2Fdoi%2F10.1103%2FPhysRevResearch.2.013217&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> <li id="cite_note-87"><span class="mw-cite-backlink"><b><a href="#cite_ref-87">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.technologyreview.com/2019/06/20/102942/life-could-exists-in-a-2d-universe-according-to-physics-anyway/">"Life could exist in a 2D universe (according to physics, anyway)"</a>. <i>technologyreview.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">16 June</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=technologyreview.com&rft.atitle=Life+could+exist+in+a+2D+universe+%28according+to+physics%2C+anyway%29&rft_id=https%3A%2F%2Fwww.technologyreview.com%2F2019%2F06%2F20%2F102942%2Flife-could-exists-in-a-2d-universe-according-to-physics-anyway%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spacetime&action=edit&section=45" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBarrowTipler1986" class="citation book cs1"><a href="/wiki/John_D._Barrow" title="John D. Barrow">Barrow, John D.</a>; <a href="/wiki/Frank_J._Tipler" title="Frank J. Tipler">Tipler, Frank J.</a> (1986). <i><a href="/wiki/The_Anthropic_Cosmological_Principle" class="mw-redirect" title="The Anthropic Cosmological Principle">The Anthropic Cosmological Principle</a></i> (1st ed.). <a href="/wiki/Oxford_University_Press" title="Oxford University Press">Oxford University Press</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-19-282147-8" title="Special:BookSources/978-0-19-282147-8"><bdi>978-0-19-282147-8</bdi></a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a> <a rel="nofollow" class="external text" href="https://lccn.loc.gov/87028148">87028148</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Anthropic+Cosmological+Principle&rft.edition=1st&rft.pub=Oxford+University+Press&rft.date=1986&rft_id=info%3Alccn%2F87028148&rft.isbn=978-0-19-282147-8&rft.aulast=Barrow&rft.aufirst=John+D.&rft.au=Tipler%2C+Frank+J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></li> <li><a href="/wiki/George_F._Ellis" title="George F. Ellis">George F. Ellis</a> and Ruth M. Williams (1992) <i>Flat and curved space–times</i>. Oxford University Press. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-19-851164-7" title="Special:BookSources/0-19-851164-7">0-19-851164-7</a></li> <li><a href="/wiki/Hendrik_Lorentz" title="Hendrik Lorentz">Lorentz, H. A.</a>, <a href="/wiki/Albert_Einstein" title="Albert Einstein">Einstein, Albert</a>, <a href="/wiki/Hermann_Minkowski" title="Hermann Minkowski">Minkowski, Hermann</a>, and <a href="/wiki/Hermann_Weyl" title="Hermann Weyl">Weyl, Hermann</a> (1952) <i>The Principle of Relativity: A Collection of Original Memoirs</i>. Dover.</li> <li><a href="/wiki/John_Lucas_(philosopher)" title="John Lucas (philosopher)">Lucas, John Randolph</a> (1973) <i>A Treatise on Time and Space</i>. London: Methuen.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPenrose2004" class="citation book cs1"><a href="/wiki/Roger_Penrose" title="Roger Penrose">Penrose, Roger</a> (2004). <a href="/wiki/The_Road_to_Reality" title="The Road to Reality"><i>The Road to Reality</i></a>. Oxford: Oxford University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-679-45443-8" title="Special:BookSources/0-679-45443-8"><bdi>0-679-45443-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Road+to+Reality&rft.place=Oxford&rft.pub=Oxford+University+Press&rft.date=2004&rft.isbn=0-679-45443-8&rft.aulast=Penrose&rft.aufirst=Roger&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span> Chapters 17–18.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTaylorWheeler,_John_A.1992" class="citation book cs1">Taylor, E. F.; <a href="/wiki/John_A._Wheeler" class="mw-redirect" title="John A. Wheeler">Wheeler, John A.</a> (1992). <a rel="nofollow" class="external text" href="https://archive.org/details/spacetime_physics/"><i>Spacetime Physics, Second Edition</i></a>. Internet Archive: W. H. Freeman. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-7167-2327-1" title="Special:BookSources/0-7167-2327-1"><bdi>0-7167-2327-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Spacetime+Physics%2C+Second+Edition&rft.place=Internet+Archive&rft.pub=W.+H.+Freeman&rft.date=1992&rft.isbn=0-7167-2327-1&rft.aulast=Taylor&rft.aufirst=E.+F.&rft.au=Wheeler%2C+John+A.&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fspacetime_physics%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFArkani-Hamed2017" class="citation speech cs1"><a href="/wiki/Nima_Arkani-Hamed" title="Nima Arkani-Hamed">Arkani-Hamed, Nima</a> (1 December 2017). <a rel="nofollow" class="external text" href="https://pswscience.org/meeting/the-doom-of-spacetime/"><i>The Doom of Spacetime: Why It Must Dissolve Into More Fundamental Structures</i></a> (Speech). The 2,384th Meeting Of The Society. Washington, D.C<span class="reference-accessdate">. Retrieved <span class="nowrap">16 July</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=The+Doom+of+Spacetime%3A+Why+It+Must+Dissolve+Into+More+Fundamental+Structures&rft.place=Washington%2C+D.C.&rft.date=2017-12-01&rft.aulast=Arkani-Hamed&rft.aufirst=Nima&rft_id=https%3A%2F%2Fpswscience.org%2Fmeeting%2Fthe-doom-of-spacetime%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASpacetime" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spacetime&action=edit&section=46" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Wikiquote-logo.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/34px-Wikiquote-logo.svg.png" decoding="async" width="34" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/51px-Wikiquote-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/68px-Wikiquote-logo.svg.png 2x" data-file-width="300" data-file-height="355" /></a></span></div> <div class="side-box-text plainlist">Wikiquote has quotations related to <i><b><a href="https://en.wikiquote.org/wiki/Special:Search/Spacetime" class="extiw" title="q:Special:Search/Spacetime">Spacetime</a></b></i>.</div></div> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1235681985"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1237033735"><div class="side-box side-box-right plainlinks sistersitebox"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Wikibooks-logo-en-noslogan.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/40px-Wikibooks-logo-en-noslogan.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/60px-Wikibooks-logo-en-noslogan.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/80px-Wikibooks-logo-en-noslogan.svg.png 2x" data-file-width="400" data-file-height="400" /></a></span></div> <div class="side-box-text plainlist">Wikibooks has a book on the topic of: <i><b><a href="https://en.wikibooks.org/wiki/Special_Relativity" class="extiw" title="wikibooks:Special Relativity">Special Relativity</a></b></i></div></div> </div> <ul><li><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Commons-logo.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" decoding="async" width="12" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></a></span> Media related to <a href="https://commons.wikimedia.org/wiki/Category:Spacetime" class="extiw" title="commons:Category:Spacetime">Spacetime</a> at Wikimedia Commons</li> <li><a rel="nofollow" class="external text" href="http://www.britannica.com/topic/Albert-Einstein-on-Space-Time-1987141">Albert Einstein on space–time</a> 13th edition <a href="/wiki/Encyclop%C3%A6dia_Britannica" title="Encyclopædia Britannica">Encyclopædia Britannica</a> Historical: Albert Einstein's 1926 article</li> <li><a rel="nofollow" class="external text" href="http://www.scholarpedia.org/article/Encyclopedia_of_Space-time_and_gravitation">Encyclopedia of Space–time and gravitation</a> <a href="/wiki/Scholarpedia" title="Scholarpedia">Scholarpedia</a> Expert articles</li> <li><a href="/wiki/Stanford_Encyclopedia_of_Philosophy" title="Stanford Encyclopedia of Philosophy">Stanford Encyclopedia of Philosophy</a>: "<a rel="nofollow" class="external text" href="http://plato.stanford.edu/entries/spacetime-iframes/">Space and Time: Inertial Frames</a>" by Robert DiSalle.</li></ul> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Dimension155" style="padding:3px"><table class="nowraplinks mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="3"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Dimension_topics" title="Template:Dimension topics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Dimension_topics" title="Template talk:Dimension topics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Dimension_topics" title="Special:EditPage/Template:Dimension topics"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Dimension155" style="font-size:114%;margin:0 4em"><a href="/wiki/Dimension" title="Dimension">Dimension</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Dimensional spaces</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Dimension_(vector_space)" title="Dimension (vector space)">Vector space</a></li> <li><a href="/wiki/Euclidean_space" title="Euclidean space">Euclidean space</a></li> <li><a href="/wiki/Affine_space" title="Affine space">Affine space</a></li> <li><a href="/wiki/Projective_space" title="Projective space">Projective space</a></li> <li><a href="/wiki/Free_module" title="Free module">Free module</a></li> <li><a href="/wiki/Manifold" title="Manifold">Manifold</a></li> <li><a href="/wiki/Dimension_of_an_algebraic_variety" title="Dimension of an algebraic variety">Algebraic variety</a></li> <li><a class="mw-selflink selflink">Spacetime</a></li></ul> </div></td><td class="noviewer navbox-image" rowspan="6" style="width:1px;padding:0 0 0 2px"><div><span typeof="mw:File"><a href="/wiki/File:Tesseract.gif" class="mw-file-description" title="Animated tesseract"><img alt="Animated tesseract" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/55/Tesseract.gif/75px-Tesseract.gif" decoding="async" width="75" height="75" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/55/Tesseract.gif/113px-Tesseract.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/55/Tesseract.gif/150px-Tesseract.gif 2x" data-file-width="256" data-file-height="256" /></a></span></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Other dimensions</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Krull_dimension" title="Krull dimension">Krull</a></li> <li><a href="/wiki/Lebesgue_covering_dimension" title="Lebesgue covering dimension">Lebesgue covering</a></li> <li><a href="/wiki/Inductive_dimension" title="Inductive dimension">Inductive</a></li> <li><a href="/wiki/Hausdorff_dimension" title="Hausdorff dimension">Hausdorff</a></li> <li><a href="/wiki/Minkowski%E2%80%93Bouligand_dimension" title="Minkowski–Bouligand dimension">Minkowski</a></li> <li><a href="/wiki/Fractal_dimension" title="Fractal dimension">Fractal</a></li> <li><a href="/wiki/Degrees_of_freedom" title="Degrees of freedom">Degrees of freedom</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Polytope" title="Polytope">Polytopes</a> and <a href="/wiki/Shape" title="Shape">shapes</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Hyperplane" title="Hyperplane">Hyperplane</a></li> <li><a href="/wiki/Hypersurface" title="Hypersurface">Hypersurface</a></li> <li><a href="/wiki/Hypercube" title="Hypercube">Hypercube</a></li> <li><a href="/wiki/Hyperrectangle" title="Hyperrectangle">Hyperrectangle</a></li> <li><a href="/wiki/Demihypercube" title="Demihypercube">Demihypercube</a></li> <li><a href="/wiki/N-sphere" title="N-sphere">Hypersphere</a></li> <li><a href="/wiki/Cross-polytope" title="Cross-polytope">Cross-polytope</a></li> <li><a href="/wiki/Simplex" title="Simplex">Simplex</a></li> <li><a href="/wiki/Hyperpyramid" title="Hyperpyramid">Hyperpyramid</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Number systems</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Hypercomplex_number" title="Hypercomplex number">Hypercomplex numbers</a></li> <li><a href="/wiki/Cayley%E2%80%93Dickson_construction" title="Cayley–Dickson construction">Cayley–Dickson construction</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Dimensions by number</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Zero-dimensional_space" title="Zero-dimensional space">Zero</a></li> <li><a href="/wiki/One-dimensional_space" title="One-dimensional space">One</a></li> <li><a href="/wiki/Two-dimensional_space" title="Two-dimensional space">Two</a></li> <li><a href="/wiki/Three-dimensional_space" title="Three-dimensional space">Three</a></li> <li><a href="/wiki/Four-dimensional_space" title="Four-dimensional space">Four</a></li> <li><a href="/wiki/Five-dimensional_space" title="Five-dimensional space">Five</a></li> <li><a href="/wiki/Six-dimensional_space" title="Six-dimensional space">Six</a></li> <li><a href="/wiki/Seven-dimensional_space" title="Seven-dimensional space">Seven</a></li> <li><a href="/wiki/Eight-dimensional_space" title="Eight-dimensional space">Eight</a></li> <li><a href="/wiki/Dimension" title="Dimension"><i>n</i>-dimensions</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">See also</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Hyperspace" title="Hyperspace">Hyperspace</a></li> <li><a href="/wiki/Codimension" title="Codimension">Codimension</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="3"><div><b><a href="/wiki/Category:Dimension" title="Category:Dimension">Category</a></b></div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"></div><div role="navigation" class="navbox" aria-labelledby="Time758" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Time_topics" title="Template:Time topics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Time_topics" title="Template talk:Time topics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Time_topics" title="Special:EditPage/Template:Time topics"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Time758" style="font-size:114%;margin:0 4em"><a href="/wiki/Time" title="Time">Time</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Key concepts</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Past" title="Past">Past</a></li> <li><a href="/wiki/Present" title="Present">Present</a></li> <li><a href="/wiki/Future" title="Future">Future</a></li> <li><a href="/wiki/Eternity" title="Eternity">Eternity</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Horology" class="mw-redirect" title="Horology">Measurement</a><br />and <a href="/wiki/Time_standard" title="Time standard">standards</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:6.5em;font-weight:normal; text-align:center;"><a href="/wiki/Chronometry" title="Chronometry">Chronometry</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Coordinated_Universal_Time" title="Coordinated Universal Time">UTC</a></li> <li><a href="/wiki/Universal_Time" title="Universal Time">UT</a></li> <li><a href="/wiki/International_Atomic_Time" title="International Atomic Time">TAI</a></li> <li><a href="/wiki/Unit_of_time" title="Unit of time">Unit of time</a></li> <li><a href="/wiki/Orders_of_magnitude_(time)" title="Orders of magnitude (time)">Orders of magnitude (time)</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:6.5em;font-weight:normal; text-align:center;"><a href="/wiki/System_of_measurement" class="mw-redirect" title="System of measurement">Measurement<br />systems</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Italian_six-hour_clock" title="Italian six-hour clock">Italian six-hour clock</a></li> <li><a href="/wiki/Thai_six-hour_clock" title="Thai six-hour clock">Thai six-hour clock</a></li> <li><a href="/wiki/12-hour_clock" title="12-hour clock">12-hour clock</a></li> <li><a href="/wiki/24-hour_clock" title="24-hour clock">24-hour clock</a></li> <li><a href="/wiki/Relative_hour" title="Relative hour">Relative hour</a></li> <li><a href="/wiki/Daylight_saving_time" title="Daylight saving time">Daylight saving time</a></li> <li><a href="/wiki/Traditional_Chinese_timekeeping" title="Traditional Chinese timekeeping">Chinese</a></li> <li><a href="/wiki/Decimal_time" title="Decimal time">Decimal</a></li> <li><a href="/wiki/Hexadecimal_time" title="Hexadecimal time">Hexadecimal</a></li> <li><a href="/wiki/Hindu_units_of_time" title="Hindu units of time">Hindu</a></li> <li><a href="/wiki/Metric_time" title="Metric time">Metric</a></li> <li><a href="/wiki/Roman_timekeeping" title="Roman timekeeping">Roman</a></li> <li><a href="/wiki/Sidereal_time" title="Sidereal time">Sidereal</a></li> <li><a href="/wiki/Solar_time" title="Solar time">Solar</a></li> <li><a href="/wiki/Time_zone" title="Time zone">Time zone</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:6.5em;font-weight:normal; text-align:center;"><a href="/wiki/Calendar" title="Calendar">Calendars</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Calendar#Systems" title="Calendar">Main types</a> <ul><li><a href="/wiki/Solar_calendar" title="Solar calendar">Solar</a></li> <li><a href="/wiki/Lunar_calendar" title="Lunar calendar">Lunar</a></li> <li><a href="/wiki/Lunisolar_calendar" title="Lunisolar calendar">Lunisolar</a></li></ul></li> <li><a href="/wiki/Gregorian_calendar" title="Gregorian calendar">Gregorian</a></li> <li><a href="/wiki/Julian_calendar" title="Julian calendar">Julian</a></li> <li><a href="/wiki/Hebrew_calendar" title="Hebrew calendar">Hebrew</a></li> <li><a href="/wiki/Islamic_calendar" title="Islamic calendar">Islamic</a></li> <li><a href="/wiki/Solar_Hijri_calendar" title="Solar Hijri calendar">Solar Hijri</a></li> <li><a href="/wiki/Chinese_calendar" title="Chinese calendar">Chinese</a></li> <li><a href="/wiki/Hindu_calendar" title="Hindu calendar">Hindu Panchang</a></li> <li><a href="/wiki/Maya_calendar" title="Maya calendar">Maya</a></li> <li><i><a href="/wiki/List_of_calendars" title="List of calendars">List</a></i></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:6.5em;font-weight:normal; text-align:center;"><a href="/wiki/Clock" title="Clock">Clocks</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Clock#Types" title="Clock">Main types</a> <ul><li><a href="/wiki/Astronomical_clock" title="Astronomical clock">astronomical</a> <ul><li><a href="/wiki/Astrarium" title="Astrarium">astrarium</a></li></ul></li> <li><a href="/wiki/Atomic_clock" title="Atomic clock">atomic</a> <ul><li><a href="/wiki/Quantum_clock" class="mw-redirect" title="Quantum clock">quantum</a></li></ul></li> <li><a href="/wiki/Hourglass" title="Hourglass">hourglass</a></li> <li><a href="/wiki/Marine_chronometer" title="Marine chronometer">marine</a></li> <li><a href="/wiki/Sundial" title="Sundial">sundial</a></li> <li><a href="/wiki/Watch" title="Watch">watch</a> <ul><li><a href="/wiki/Mechanical_watch" title="Mechanical watch">mechanical</a></li> <li><a href="/wiki/Stopwatch" title="Stopwatch">stopwatch</a></li></ul></li> <li><a href="/wiki/Water_clock" title="Water clock">water-based</a></li></ul></li> <li><a href="/wiki/Cuckoo_clock" title="Cuckoo clock">Cuckoo clock</a></li> <li><a href="/wiki/Digital_clock" title="Digital clock">Digital clock</a></li> <li><a href="/wiki/Grandfather_clock" title="Grandfather clock">Grandfather clock</a></li> <li><i><a href="/wiki/History_of_timekeeping_devices" title="History of timekeeping devices">History</a></i> <ul><li><i><a href="/wiki/Timeline_of_time_measurement_inventions" title="Timeline of time measurement inventions">Timeline</a></i></li></ul></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><div class="hlist"><ul><li><a href="/wiki/Chronology" title="Chronology">Chronology</a></li><li><a href="/wiki/History" title="History">History</a></li></ul></div></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Astronomical_chronology" title="Astronomical chronology">Astronomical chronology</a></li> <li><a href="/wiki/Big_History" title="Big History">Big History</a></li> <li><a href="/wiki/Calendar_era" title="Calendar era">Calendar era</a></li> <li><a href="/wiki/Deep_time" title="Deep time">Deep time</a></li> <li><a href="/wiki/Periodization" title="Periodization">Periodization</a></li> <li><a href="/wiki/Regnal_year" title="Regnal year">Regnal year</a></li> <li><a href="/wiki/Timeline" title="Timeline">Timeline</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Philosophy_of_space_and_time" title="Philosophy of space and time">Philosophy of time</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/A_series_and_B_series" title="A series and B series">A series and B series</a></li> <li><a href="/wiki/B-theory_of_time" title="B-theory of time">B-theory of time</a></li> <li><a href="/wiki/Chronocentrism" title="Chronocentrism">Chronocentrism</a></li> <li><a href="/wiki/Duration_(philosophy)" title="Duration (philosophy)">Duration</a></li> <li><a href="/wiki/Endurantism" title="Endurantism">Endurantism</a></li> <li><a href="/wiki/Eternal_return" title="Eternal return">Eternal return</a></li> <li><a href="/wiki/Eternalism_(philosophy_of_time)" title="Eternalism (philosophy of time)">Eternalism</a></li> <li><a href="/wiki/Event_(philosophy)" title="Event (philosophy)">Event</a></li> <li><a href="/wiki/Perdurantism" title="Perdurantism">Perdurantism</a></li> <li><a href="/wiki/Philosophical_presentism" title="Philosophical presentism">Presentism</a></li> <li><a href="/wiki/Temporal_finitism" title="Temporal finitism">Temporal finitism</a></li> <li><a href="/wiki/Temporal_parts" title="Temporal parts">Temporal parts</a></li> <li><i><a href="/wiki/The_Unreality_of_Time" title="The Unreality of Time">The Unreality of Time</a></i></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><div class="hlist"><ul><li><a href="/wiki/Category:Time_in_religion" title="Category:Time in religion">Religion</a></li><li><a href="/wiki/Template:Time_in_religion_and_mythology" title="Template:Time in religion and mythology">Mythology</a></li></ul></div></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Ages_of_Man" title="Ages of Man">Ages of Man</a></li> <li><a href="/wiki/Destiny" title="Destiny">Destiny</a></li> <li><a href="/wiki/Immortality" title="Immortality">Immortality</a></li> <li><a href="/wiki/The_Dreaming" title="The Dreaming">Dreamtime</a></li> <li><a href="/wiki/K%C4%81la" title="Kāla">Kāla</a></li> <li><a href="/wiki/Time_and_fate_deities" title="Time and fate deities">Time and fate deities</a> <ul><li><a href="/wiki/Father_Time" title="Father Time">Father Time</a></li></ul></li> <li><a href="/wiki/Wheel_of_time" title="Wheel of time">Wheel of time</a> <ul><li><a href="/wiki/Kalachakra" title="Kalachakra">Kalachakra</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Time_perception" title="Time perception">Human experience</a><br />and <a href="/wiki/Time-use_research" title="Time-use research">use of time</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Chronemics" title="Chronemics">Chronemics</a></li> <li><a href="/wiki/Generation_time" title="Generation time">Generation time</a></li> <li><a href="/wiki/Mental_chronometry" title="Mental chronometry">Mental chronometry</a></li> <li><a href="/wiki/Duration_(music)" title="Duration (music)">Music</a> <ul><li><a href="/wiki/Tempo" title="Tempo">tempo</a></li> <li><a href="/wiki/Time_signature" title="Time signature">time signature</a></li></ul></li> <li><a href="/wiki/Rosy_retrospection" title="Rosy retrospection">Rosy retrospection</a></li> <li><a href="/wiki/Tense%E2%80%93aspect%E2%80%93mood" title="Tense–aspect–mood">Tense–aspect–mood</a></li> <li><a href="/wiki/Time_management" title="Time management">Time management</a></li> <li><a href="/wiki/Yesterday_(time)" title="Yesterday (time)">Yesterday</a> – <a href="/wiki/Present" title="Present">Today</a> – <a href="/wiki/Tomorrow_(time)" title="Tomorrow (time)">Tomorrow</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Time in <a href="/wiki/Science" title="Science">science</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:6.5em;font-weight:normal; text-align:center;"><a href="/wiki/Geology" title="Geology">Geology</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Geologic_time_scale" title="Geologic time scale">Geological time</a> <ul><li><a href="/wiki/Age_(geology)" class="mw-redirect" title="Age (geology)">age</a></li> <li><a href="/wiki/Chronozone" title="Chronozone">chron</a></li> <li><a href="/wiki/Eon_(geology)" class="mw-redirect" title="Eon (geology)">eon</a></li> <li><a href="/wiki/Epoch_(geology)" class="mw-redirect" title="Epoch (geology)">epoch</a></li> <li><a href="/wiki/Era_(geology)" class="mw-redirect" title="Era (geology)">era</a></li> <li><a href="/wiki/Geological_period" class="mw-redirect" title="Geological period">period</a></li></ul></li> <li><a href="/wiki/Geochronology" title="Geochronology">Geochronology</a></li> <li><a href="/wiki/Geological_history_of_Earth" title="Geological history of Earth">Geological history of Earth</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:6.5em;font-weight:normal; text-align:center;"><a href="/wiki/Time_in_physics" title="Time in physics">Physics</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Absolute_space_and_time" title="Absolute space and time">Absolute space and time</a></li> <li><a href="/wiki/Arrow_of_time" title="Arrow of time">Arrow of time</a></li> <li><a href="/wiki/Chronon" title="Chronon">Chronon</a></li> <li><a href="/wiki/Coordinate_time" title="Coordinate time">Coordinate time</a></li> <li><a href="/wiki/Instant" title="Instant">Instant</a></li> <li><a href="/wiki/Proper_time" title="Proper time">Proper time</a></li> <li><a class="mw-selflink selflink">Spacetime</a></li> <li><a href="/wiki/Theory_of_relativity" title="Theory of relativity">Theory of relativity</a></li> <li><a href="/wiki/Time_domain" title="Time domain">Time domain</a></li> <li><a href="/wiki/Time_translation_symmetry" class="mw-redirect" title="Time translation symmetry">Time translation symmetry</a></li> <li><a href="/wiki/T-symmetry" title="T-symmetry">Time reversal symmetry</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:6.5em;font-weight:normal; text-align:center;">Other fields</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Chronological_dating" title="Chronological dating">Chronological dating</a></li> <li><a href="/wiki/Chronobiology" title="Chronobiology">Chronobiology</a> <ul><li><a href="/wiki/Circadian_rhythm" title="Circadian rhythm">Circadian rhythms</a></li></ul></li> <li><a href="/wiki/Chemical_clock" title="Chemical clock">Clock reaction</a></li> <li><a href="/wiki/Glottochronology" title="Glottochronology">Glottochronology</a></li> <li><a href="/wiki/Time_geography" title="Time geography">Time geography</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Related</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Leap_year" title="Leap year">Leap year</a></li> <li><a href="/wiki/Memory" title="Memory">Memory</a></li> <li><a href="/wiki/Moment_(unit)" title="Moment (unit)">Moment</a></li> <li><a href="/wiki/Space" title="Space">Space</a></li> <li><a href="/wiki/System_time" title="System time">System time</a></li> <li><i><a href="/wiki/Tempus_fugit" title="Tempus fugit">Tempus fugit</a></i></li> <li><a href="/wiki/Time_capsule" title="Time capsule">Time capsule</a></li> <li><a href="/wiki/Time_immemorial" title="Time immemorial">Time immemorial</a></li> <li><a href="/wiki/Time_travel" title="Time travel">Time travel</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:Time" title="Category:Time">Category</a></li> <li><span class="noviewer" typeof="mw:File"><span title="Commons page"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" decoding="async" width="12" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span> <a href="https://commons.wikimedia.org/wiki/Category:Time" class="extiw" title="commons:Category:Time">Commons</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Time_measurement_and_standards342" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="3"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Time_measurement_and_standards" title="Template:Time measurement and standards"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Time_measurement_and_standards" title="Template talk:Time measurement and standards"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Time_measurement_and_standards" title="Special:EditPage/Template:Time measurement and standards"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Time_measurement_and_standards342" style="font-size:114%;margin:0 4em"><a href="/wiki/Time" title="Time">Time measurement</a> and <a href="/wiki/Time_standard" title="Time standard">standards</a></div></th></tr><tr><td class="navbox-abovebelow" colspan="3"><div> <ul><li><a href="/wiki/Chronometry" title="Chronometry">Chronometry</a></li> <li><a href="/wiki/Orders_of_magnitude_(time)" title="Orders of magnitude (time)">Orders of magnitude</a></li> <li><a href="/wiki/Time_metrology" class="mw-redirect" title="Time metrology">Metrology</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">International standards</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Coordinated_Universal_Time" title="Coordinated Universal Time">Coordinated Universal Time</a> <ul><li><a href="/wiki/UTC_offset" title="UTC offset">offset</a></li></ul></li> <li><a href="/wiki/Universal_Time" title="Universal Time">UT</a></li> <li><a href="/wiki/%CE%94T_(timekeeping)" title="ΔT (timekeeping)">ΔT</a></li> <li><a href="/wiki/DUT1" title="DUT1">DUT1</a></li> <li><a href="/wiki/International_Earth_Rotation_and_Reference_Systems_Service" title="International Earth Rotation and Reference Systems Service">International Earth Rotation and Reference Systems Service</a></li> <li><a href="/wiki/ISO_31-1" title="ISO 31-1">ISO 31-1</a></li> <li><a href="/wiki/ISO_8601" title="ISO 8601">ISO 8601</a></li> <li><a href="/wiki/International_Atomic_Time" title="International Atomic Time">International Atomic Time</a></li> <li><a href="/wiki/12-hour_clock" title="12-hour clock">12-hour clock</a></li> <li><a href="/wiki/24-hour_clock" title="24-hour clock">24-hour clock</a></li> <li><a href="/wiki/Barycentric_Coordinate_Time" title="Barycentric Coordinate Time">Barycentric Coordinate Time</a></li> <li><a href="/wiki/Barycentric_Dynamical_Time" title="Barycentric Dynamical Time">Barycentric Dynamical Time</a></li> <li><a href="/wiki/Civil_time" title="Civil time">Civil time</a></li> <li><a href="/wiki/Daylight_saving_time" title="Daylight saving time">Daylight saving time</a></li> <li><a href="/wiki/Geocentric_Coordinate_Time" title="Geocentric Coordinate Time">Geocentric Coordinate Time</a></li> <li><a href="/wiki/International_Date_Line" title="International Date Line">International Date Line</a></li> <li><a href="/wiki/IERS_Reference_Meridian" title="IERS Reference Meridian">IERS Reference Meridian</a></li> <li><a href="/wiki/Leap_second" title="Leap second">Leap second</a></li> <li><a href="/wiki/Solar_time" title="Solar time">Solar time</a></li> <li><a href="/wiki/Terrestrial_Time" title="Terrestrial Time">Terrestrial Time</a></li> <li><a href="/wiki/Time_zone" title="Time zone">Time zone</a></li> <li><a href="/wiki/180th_meridian" title="180th meridian">180th meridian</a></li></ul> </div></td><td class="noviewer navbox-image" rowspan="9" style="width:1px;padding:0 0 0 2px"><div><span typeof="mw:File"><a href="/wiki/Hourglass" title="Hourglass"><img alt="template illustration" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/70/Marine_sandglass_MMM.jpg/75px-Marine_sandglass_MMM.jpg" decoding="async" width="75" height="175" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/70/Marine_sandglass_MMM.jpg/113px-Marine_sandglass_MMM.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/70/Marine_sandglass_MMM.jpg/150px-Marine_sandglass_MMM.jpg 2x" data-file-width="1637" data-file-height="3819" /></a></span><br /><span typeof="mw:File"><a href="/wiki/Time_zone" title="Time zone"><img alt="template illustration" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/63/Aleutian_Islands_with_180th_meridian_and_International_Date_Line_%28cropped%29.png/75px-Aleutian_Islands_with_180th_meridian_and_International_Date_Line_%28cropped%29.png" decoding="async" width="75" height="152" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/63/Aleutian_Islands_with_180th_meridian_and_International_Date_Line_%28cropped%29.png/113px-Aleutian_Islands_with_180th_meridian_and_International_Date_Line_%28cropped%29.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/63/Aleutian_Islands_with_180th_meridian_and_International_Date_Line_%28cropped%29.png/150px-Aleutian_Islands_with_180th_meridian_and_International_Date_Line_%28cropped%29.png 2x" data-file-width="496" data-file-height="1007" /></a></span></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Obsolete standards</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Ephemeris_time" title="Ephemeris time">Ephemeris time</a></li> <li><a href="/wiki/Greenwich_Mean_Time" title="Greenwich Mean Time">Greenwich Mean Time</a></li> <li><a href="/wiki/Prime_meridian" title="Prime meridian">Prime meridian</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Time_in_physics" title="Time in physics">Time in physics</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Absolute_space_and_time" title="Absolute space and time">Absolute space and time</a></li> <li><a class="mw-selflink selflink">Spacetime</a></li> <li><a href="/wiki/Chronon" title="Chronon">Chronon</a></li> <li><a href="/wiki/Continuous_signal" class="mw-redirect" title="Continuous signal">Continuous signal</a></li> <li><a href="/wiki/Coordinate_time" title="Coordinate time">Coordinate time</a></li> <li><a href="/wiki/Cosmological_decade" class="mw-redirect" title="Cosmological decade">Cosmological decade</a></li> <li><a href="/wiki/Discrete_time_and_continuous_time" title="Discrete time and continuous time">Discrete time and continuous time</a></li> <li><a href="/wiki/Proper_time" title="Proper time">Proper time</a></li> <li><a href="/wiki/Theory_of_relativity" title="Theory of relativity">Theory of relativity</a></li> <li><a href="/wiki/Time_dilation" title="Time dilation">Time dilation</a></li> <li><a href="/wiki/Gravitational_time_dilation" title="Gravitational time dilation">Gravitational time dilation</a></li> <li><a href="/wiki/Time_domain" title="Time domain">Time domain</a></li> <li><a href="/wiki/Time-translation_symmetry" title="Time-translation symmetry">Time-translation symmetry</a></li> <li><a href="/wiki/T-symmetry" title="T-symmetry">T-symmetry</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Horology" class="mw-redirect" title="Horology">Horology</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Clock" title="Clock">Clock</a></li> <li><a href="/wiki/Astrarium" title="Astrarium">Astrarium</a></li> <li><a href="/wiki/Atomic_clock" title="Atomic clock">Atomic clock</a></li> <li><a href="/wiki/Complication_(horology)" title="Complication (horology)">Complication</a></li> <li><a href="/wiki/History_of_timekeeping_devices" title="History of timekeeping devices">History of timekeeping devices</a></li> <li><a href="/wiki/Hourglass" title="Hourglass">Hourglass</a></li> <li><a href="/wiki/Marine_chronometer" title="Marine chronometer">Marine chronometer</a></li> <li><a href="/wiki/Marine_sandglass" title="Marine sandglass">Marine sandglass</a></li> <li><a href="/wiki/Radio_clock" title="Radio clock">Radio clock</a></li> <li><a href="/wiki/Watch" title="Watch">Watch</a> <ul><li><a href="/wiki/Stopwatch" title="Stopwatch">stopwatch</a></li></ul></li> <li><a href="/wiki/Water_clock" title="Water clock">Water clock</a></li> <li><a href="/wiki/Sundial" title="Sundial">Sundial</a></li> <li><a href="/wiki/Dialing_scales" title="Dialing scales">Dialing scales</a></li> <li><a href="/wiki/Equation_of_time" title="Equation of time">Equation of time</a></li> <li><a href="/wiki/History_of_sundials" title="History of sundials">History of sundials</a></li> <li><a href="/wiki/Schema_for_horizontal_dials" title="Schema for horizontal dials">Sundial markup schema</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Calendar" title="Calendar">Calendar</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Gregorian_calendar" title="Gregorian calendar">Gregorian</a></li> <li><a href="/wiki/Hebrew_calendar" title="Hebrew calendar">Hebrew</a></li> <li><a href="/wiki/Hindu_calendar" title="Hindu calendar">Hindu</a></li> <li><a href="/wiki/Holocene_calendar" title="Holocene calendar">Holocene</a></li> <li><a href="/wiki/Islamic_calendar" title="Islamic calendar">Islamic</a> (lunar Hijri)</li> <li><a href="/wiki/Julian_calendar" title="Julian calendar">Julian</a></li> <li><a href="/wiki/Solar_Hijri_calendar" title="Solar Hijri calendar">Solar Hijri</a></li> <li><a href="/wiki/Astronomical_year_numbering" title="Astronomical year numbering">Astronomical</a></li> <li><a href="/wiki/Dominical_letter" title="Dominical letter">Dominical letter</a></li> <li><a href="/wiki/Epact" title="Epact">Epact</a></li> <li><a href="/wiki/Equinox" title="Equinox">Equinox</a></li> <li><a href="/wiki/Intercalation_(timekeeping)" title="Intercalation (timekeeping)">Intercalation</a></li> <li><a href="/wiki/Julian_day" title="Julian day">Julian day</a></li> <li><a href="/wiki/Leap_year" title="Leap year">Leap year</a></li> <li><a href="/wiki/Lunar_calendar" title="Lunar calendar">Lunar</a></li> <li><a href="/wiki/Lunisolar_calendar" title="Lunisolar calendar">Lunisolar</a></li> <li><a href="/wiki/Solar_calendar" title="Solar calendar">Solar</a></li> <li><a href="/wiki/Solstice" title="Solstice">Solstice</a></li> <li><a href="/wiki/Tropical_year" title="Tropical year">Tropical year</a></li> <li><a href="/wiki/Determination_of_the_day_of_the_week" title="Determination of the day of the week">Weekday determination</a></li> <li><a href="/wiki/Names_of_the_days_of_the_week" title="Names of the days of the week">Weekday names</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Archaeology and geology</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Chronological_dating" title="Chronological dating">Chronological dating</a></li> <li><a href="/wiki/Geologic_time_scale" title="Geologic time scale">Geologic time scale</a></li> <li><a href="/wiki/International_Commission_on_Stratigraphy" title="International Commission on Stratigraphy">International Commission on Stratigraphy</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Astronomical_chronology" title="Astronomical chronology">Astronomical chronology</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Galactic_year" title="Galactic year">Galactic year</a></li> <li><a href="/wiki/Nuclear_timescale" title="Nuclear timescale">Nuclear timescale</a></li> <li><a href="/wiki/Precession" title="Precession">Precession</a></li> <li><a href="/wiki/Sidereal_time" title="Sidereal time">Sidereal time</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Other <a href="/wiki/Unit_of_time" title="Unit of time">units of time</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Instant" title="Instant">Instant</a></li> <li><a href="/wiki/Flick_(time)" title="Flick (time)">Flick</a></li> <li><a href="/wiki/Shake_(unit)" title="Shake (unit)">Shake</a></li> <li><a href="/wiki/Jiffy_(time)" title="Jiffy (time)">Jiffy</a></li> <li><a href="/wiki/Second" title="Second">Second</a></li> <li><a href="/wiki/Minute" title="Minute">Minute</a></li> <li><a href="/wiki/Moment_(unit)" title="Moment (unit)">Moment</a></li> <li><a href="/wiki/Hour" title="Hour">Hour</a></li> <li><a href="/wiki/Day" title="Day">Day</a></li> <li><a href="/wiki/Week" title="Week">Week</a></li> <li><a href="/wiki/Fortnight" title="Fortnight">Fortnight</a></li> <li><a href="/wiki/Month" title="Month">Month</a></li> <li><a href="/wiki/Year" title="Year">Year</a></li> <li><a href="/wiki/Olympiad" title="Olympiad">Olympiad</a></li> <li><a href="/wiki/Lustrum" title="Lustrum">Lustrum</a></li> <li><a href="/wiki/Decade" title="Decade">Decade</a></li> <li><a href="/wiki/Century" title="Century">Century</a></li> <li><a href="/wiki/Saeculum" title="Saeculum">Saeculum</a></li> <li><a href="/wiki/Millennium" title="Millennium">Millennium</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Related topics</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Chronology" title="Chronology">Chronology</a></li> <li><a href="/wiki/Duration_(philosophy)" title="Duration (philosophy)">Duration</a> <ul><li><a href="/wiki/Duration_(music)" title="Duration (music)">music</a></li></ul></li> <li><a href="/wiki/Mental_chronometry" title="Mental chronometry">Mental chronometry</a></li> <li><a href="/wiki/Decimal_time" title="Decimal time">Decimal time</a></li> <li><a href="/wiki/Metric_time" title="Metric time">Metric time</a></li> <li><a href="/wiki/System_time" title="System time">System time</a></li> <li><a href="/wiki/Time_metrology" class="mw-redirect" title="Time metrology">Time metrology</a></li> <li><a href="/wiki/Time_value_of_money" title="Time value of money">Time value of money</a></li> <li><a href="/wiki/Timekeeper" title="Timekeeper">Timekeeper</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Relativity254" style="padding:3px"><table class="nowraplinks mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2" style="text-align:center;"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Relativity" title="Template:Relativity"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Relativity" title="Template talk:Relativity"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Relativity" title="Special:EditPage/Template:Relativity"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Relativity254" style="font-size:114%;margin:0 4em"><a href="/wiki/Theory_of_relativity" title="Theory of relativity">Relativity</a></div></th></tr><tr><th scope="row" class="navbox-group" style="text-align:center;;width:1%"><a href="/wiki/Special_relativity" title="Special relativity">Special<br />relativity</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:6em;text-align:center;">Background</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Principle_of_relativity" title="Principle of relativity">Principle of relativity</a> (<a href="/wiki/Galilean_invariance" title="Galilean invariance">Galilean relativity</a></li> <li><a href="/wiki/Galilean_transformation" title="Galilean transformation">Galilean transformation</a>)</li> <li><a href="/wiki/Special_relativity" title="Special relativity">Special relativity</a></li> <li><a href="/wiki/Doubly_special_relativity" title="Doubly special relativity">Doubly special relativity</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:6em;text-align:center;">Fundamental<br />concepts</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Frame_of_reference" title="Frame of reference">Frame of reference</a></li> <li><a href="/wiki/Speed_of_light" title="Speed of light">Speed of light</a></li> <li><a href="/wiki/Hyperbolic_orthogonality" title="Hyperbolic orthogonality">Hyperbolic orthogonality</a></li> <li><a href="/wiki/Rapidity" title="Rapidity">Rapidity</a></li> <li><a href="/wiki/Maxwell%27s_equations" title="Maxwell's equations">Maxwell's equations</a></li> <li><a href="/wiki/Proper_length" title="Proper length">Proper length</a></li> <li><a href="/wiki/Proper_time" title="Proper time">Proper time</a></li> <li><a href="/wiki/Proper_acceleration" title="Proper acceleration">Proper acceleration</a></li> <li><a href="/wiki/Mass_in_special_relativity" title="Mass in special relativity">Relativistic mass</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:6em;text-align:center;">Formulation</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Lorentz_transformation" title="Lorentz transformation">Lorentz transformation</a></li> <li><a href="/wiki/List_of_textbooks_on_relativity" title="List of textbooks on relativity">Textbooks</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:6em;text-align:center;">Phenomena</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Time_dilation" title="Time dilation">Time dilation</a></li> <li><a href="/wiki/Mass%E2%80%93energy_equivalence" title="Mass–energy equivalence">Mass–energy equivalence (E=mc<sup>2</sup>)</a></li> <li><a href="/wiki/Length_contraction" title="Length contraction">Length contraction</a></li> <li><a href="/wiki/Relativity_of_simultaneity" title="Relativity of simultaneity">Relativity of simultaneity</a></li> <li><a href="/wiki/Relativistic_Doppler_effect" title="Relativistic Doppler effect">Relativistic Doppler effect</a></li> <li><a href="/wiki/Thomas_precession" title="Thomas precession">Thomas precession</a></li> <li><a href="/wiki/Ladder_paradox" title="Ladder paradox">Ladder paradox</a></li> <li><a href="/wiki/Twin_paradox" title="Twin paradox">Twin paradox</a></li> <li><a href="/wiki/Terrell_rotation" title="Terrell rotation">Terrell rotation</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:6em;text-align:center;"><a class="mw-selflink selflink">Spacetime</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Light_cone" title="Light cone">Light cone</a></li> <li><a href="/wiki/World_line" title="World line">World line</a></li> <li><a href="/wiki/Minkowski_diagram" class="mw-redirect" title="Minkowski diagram">Minkowski diagram</a></li> <li><a href="/wiki/Biquaternion" title="Biquaternion">Biquaternions</a></li> <li><a href="/wiki/Minkowski_space" title="Minkowski space">Minkowski space</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="text-align:center;;width:1%"><a href="/wiki/General_relativity" title="General relativity">General<br />relativity</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:6em;text-align:center;">Background</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Introduction_to_general_relativity" title="Introduction to general relativity">Introduction</a></li> <li><a href="/wiki/Mathematics_of_general_relativity" title="Mathematics of general relativity">Mathematical formulation</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:6em;text-align:center;">Fundamental<br />concepts</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Equivalence_principle" title="Equivalence principle">Equivalence principle</a></li> <li><a href="/wiki/Riemannian_geometry" title="Riemannian geometry">Riemannian geometry</a></li> <li><a href="/wiki/Penrose_diagram" title="Penrose diagram">Penrose diagram</a></li> <li><a href="/wiki/Geodesics_in_general_relativity" title="Geodesics in general relativity">Geodesics</a></li> <li><a href="/wiki/Mach%27s_principle" title="Mach's principle">Mach's principle</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:6em;text-align:center;">Formulation</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/ADM_formalism" title="ADM formalism">ADM formalism</a></li> <li><a href="/wiki/BSSN_formalism" title="BSSN formalism">BSSN formalism</a></li> <li><a href="/wiki/Einstein_field_equations" title="Einstein field equations">Einstein field equations</a></li> <li><a href="/wiki/Linearized_gravity" title="Linearized gravity">Linearized gravity</a></li> <li><a href="/wiki/Parameterized_post-Newtonian_formalism" title="Parameterized post-Newtonian formalism">Post-Newtonian formalism</a></li> <li><a href="/wiki/Raychaudhuri_equation" title="Raychaudhuri equation">Raychaudhuri equation</a></li> <li><a href="/wiki/Hamilton%E2%80%93Jacobi%E2%80%93Einstein_equation" title="Hamilton–Jacobi–Einstein equation">Hamilton–Jacobi–Einstein equation</a></li> <li><a href="/wiki/Ernst_equation" title="Ernst equation">Ernst equation</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:6em;text-align:center;">Phenomena</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Black_hole" title="Black hole">Black hole</a></li> <li><a href="/wiki/Event_horizon" title="Event horizon">Event horizon</a></li> <li><a href="/wiki/Gravitational_singularity" title="Gravitational singularity">Singularity</a></li> <li><a href="/wiki/Two-body_problem_in_general_relativity" title="Two-body problem in general relativity">Two-body problem</a></li></ul> <ul><li><a href="/wiki/Gravitational_wave" title="Gravitational wave">Gravitational waves</a>: <a href="/wiki/Gravitational-wave_astronomy" title="Gravitational-wave astronomy">astronomy</a></li> <li><a href="/wiki/Gravitational-wave_observatory" title="Gravitational-wave observatory">detectors</a> (<a href="/wiki/LIGO" title="LIGO">LIGO</a> and <a href="/wiki/LIGO_Scientific_Collaboration" title="LIGO Scientific Collaboration">collaboration</a></li> <li><a href="/wiki/Virgo_interferometer" title="Virgo interferometer">Virgo</a></li> <li><a href="/wiki/LISA_Pathfinder" title="LISA Pathfinder">LISA Pathfinder</a></li> <li><a href="/wiki/GEO600" title="GEO600">GEO</a>)</li> <li><a href="/wiki/Hulse%E2%80%93Taylor_binary" class="mw-redirect" title="Hulse–Taylor binary">Hulse–Taylor binary</a></li></ul> <ul><li><a href="/wiki/Tests_of_general_relativity" title="Tests of general relativity">Other tests</a>: <a href="/wiki/Apsidal_precession" title="Apsidal precession">precession</a> of Mercury</li> <li><a href="/wiki/Gravitational_lens" title="Gravitational lens">lensing</a> (together with <a href="/wiki/Einstein_cross" class="mw-redirect" title="Einstein cross">Einstein cross</a> and <a href="/wiki/Einstein_rings" class="mw-redirect" title="Einstein rings">Einstein rings</a>)</li> <li><a href="/wiki/Gravitational_redshift" title="Gravitational redshift">redshift</a></li> <li><a href="/wiki/Shapiro_time_delay" title="Shapiro time delay">Shapiro delay</a></li> <li><a href="/wiki/Frame-dragging" title="Frame-dragging">frame-dragging</a> / <a href="/wiki/Geodetic_effect" title="Geodetic effect">geodetic effect</a> (<a href="/wiki/Lense%E2%80%93Thirring_precession" title="Lense–Thirring precession">Lense–Thirring precession</a>)</li> <li><a href="/wiki/Pulsar_timing_array" title="Pulsar timing array">pulsar timing arrays</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:6em;text-align:center;">Advanced<br />theories</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Brans%E2%80%93Dicke_theory" title="Brans–Dicke theory">Brans–Dicke theory</a></li> <li><a href="/wiki/Kaluza%E2%80%93Klein_theory" title="Kaluza–Klein theory">Kaluza–Klein</a></li> <li><a href="/wiki/Quantum_gravity" title="Quantum gravity">Quantum gravity</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:6em;text-align:center;"><a href="/wiki/Exact_solutions_in_general_relativity" title="Exact solutions in general relativity">Solutions</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li>Cosmological: <a href="/wiki/Friedmann%E2%80%93Lema%C3%AEtre%E2%80%93Robertson%E2%80%93Walker_metric" title="Friedmann–Lemaître–Robertson–Walker metric">Friedmann–Lemaître–Robertson–Walker</a> (<a href="/wiki/Friedmann_equations" title="Friedmann equations">Friedmann equations</a>)</li> <li><a href="/wiki/Lema%C3%AEtre%E2%80%93Tolman_metric" title="Lemaître–Tolman metric">Lemaître–Tolman</a></li> <li><a href="/wiki/Kasner_metric" title="Kasner metric">Kasner</a></li> <li><a href="/wiki/BKL_singularity" title="BKL singularity">BKL singularity</a></li> <li><a href="/wiki/G%C3%B6del_metric" title="Gödel metric">Gödel</a></li> <li><a href="/wiki/Milne_model" title="Milne model">Milne</a></li></ul> <ul><li>Spherical: <a href="/wiki/Schwarzschild_metric" title="Schwarzschild metric">Schwarzschild</a> (<a href="/wiki/Interior_Schwarzschild_metric" title="Interior Schwarzschild metric">interior</a></li> <li><a href="/wiki/Tolman%E2%80%93Oppenheimer%E2%80%93Volkoff_equation" title="Tolman–Oppenheimer–Volkoff equation">Tolman–Oppenheimer–Volkoff equation</a>)</li> <li><a href="/wiki/Reissner%E2%80%93Nordstr%C3%B6m_metric" title="Reissner–Nordström metric">Reissner–Nordström</a></li></ul> <ul><li>Axisymmetric: <a href="/wiki/Kerr_metric" title="Kerr metric">Kerr</a> (<a href="/wiki/Kerr%E2%80%93Newman_metric" title="Kerr–Newman metric">Kerr–Newman</a>)</li> <li><a href="/wiki/Weyl%E2%88%92Lewis%E2%88%92Papapetrou_coordinates" class="mw-redirect" title="Weyl−Lewis−Papapetrou coordinates">Weyl−Lewis−Papapetrou</a></li> <li><a href="/wiki/Taub%E2%80%93NUT_space" title="Taub–NUT space">Taub–NUT</a></li> <li><a href="/wiki/Van_Stockum_dust" title="Van Stockum dust">van Stockum dust</a></li> <li><a href="/wiki/Relativistic_disk" title="Relativistic disk">discs</a></li></ul> <ul><li>Others: <a href="/wiki/Pp-wave_spacetime" title="Pp-wave spacetime">pp-wave</a></li> <li><a href="/wiki/Ozsv%C3%A1th%E2%80%93Sch%C3%BCcking_metric" title="Ozsváth–Schücking metric">Ozsváth–Schücking</a></li> <li><a href="/wiki/Alcubierre_drive" title="Alcubierre drive">Alcubierre</a></li></ul> <ul><li>In computational physics: <a href="/wiki/Numerical_relativity" title="Numerical relativity">Numerical relativity</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="text-align:center;;width:1%">Scientists</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Henri_Poincar%C3%A9" title="Henri Poincaré">Poincaré</a></li> <li><a href="/wiki/Hendrik_Lorentz" title="Hendrik Lorentz">Lorentz</a></li> <li><a href="/wiki/Albert_Einstein" title="Albert Einstein">Einstein</a></li> <li><a href="/wiki/David_Hilbert" title="David Hilbert">Hilbert</a></li> <li><a href="/wiki/Karl_Schwarzschild" title="Karl Schwarzschild">Schwarzschild</a></li> <li><a href="/wiki/Willem_de_Sitter" title="Willem de Sitter">de Sitter</a></li> <li><a href="/wiki/Hermann_Weyl" title="Hermann Weyl">Weyl</a></li> <li><a href="/wiki/Arthur_Eddington" title="Arthur Eddington">Eddington</a></li> <li><a href="/wiki/Alexander_Friedmann" title="Alexander Friedmann">Friedmann</a></li> <li><a href="/wiki/Georges_Lema%C3%AEtre" title="Georges Lemaître">Lemaître</a></li> <li><a href="/wiki/Edward_Arthur_Milne" title="Edward Arthur Milne">Milne</a></li> <li><a href="/wiki/Howard_P._Robertson" title="Howard P. Robertson">Robertson</a></li> <li><a href="/wiki/Subrahmanyan_Chandrasekhar" title="Subrahmanyan Chandrasekhar">Chandrasekhar</a></li> <li><a href="/wiki/Fritz_Zwicky" title="Fritz Zwicky">Zwicky</a></li> <li><a href="/wiki/John_Archibald_Wheeler" title="John Archibald Wheeler">Wheeler</a></li> <li><a href="/wiki/Yvonne_Choquet-Bruhat" title="Yvonne Choquet-Bruhat">Choquet-Bruhat</a></li> <li><a href="/wiki/Roy_Kerr" title="Roy Kerr">Kerr</a></li> <li><a href="/wiki/Yakov_Zeldovich" title="Yakov Zeldovich">Zel'dovich</a></li> <li><a href="/wiki/Igor_Dmitriyevich_Novikov" title="Igor Dmitriyevich Novikov">Novikov</a></li> <li><a href="/wiki/J%C3%BCrgen_Ehlers" title="Jürgen Ehlers">Ehlers</a></li> <li><a href="/wiki/Robert_Geroch" title="Robert Geroch">Geroch</a></li> <li><a href="/wiki/Roger_Penrose" title="Roger Penrose">Penrose</a></li> <li><a href="/wiki/Stephen_Hawking" title="Stephen Hawking">Hawking</a></li> <li><a href="/wiki/Joseph_Hooton_Taylor_Jr." title="Joseph Hooton Taylor Jr.">Taylor</a></li> <li><a href="/wiki/Russell_Alan_Hulse" title="Russell Alan Hulse">Hulse</a></li> <li><a href="/wiki/Hermann_Bondi" title="Hermann Bondi">Bondi</a></li> <li><a href="/wiki/Charles_W._Misner" title="Charles W. Misner">Misner</a></li> <li><a href="/wiki/Shing-Tung_Yau" title="Shing-Tung Yau">Yau</a></li> <li><a href="/wiki/Kip_Thorne" title="Kip Thorne">Thorne</a></li> <li><a href="/wiki/Rainer_Weiss" title="Rainer Weiss">Weiss</a></li> <li><a href="/wiki/List_of_contributors_to_general_relativity" title="List of contributors to general relativity"><i>others</i></a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2" style="text-align:center;"><div><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:Theory_of_relativity" title="Category:Theory of relativity">Category</a></div></td></tr></tbody></table></div> <style data-mw-deduplicate="TemplateStyles:r1130092004">.mw-parser-output .portal-bar{font-size:88%;font-weight:bold;display:flex;justify-content:center;align-items:baseline}.mw-parser-output .portal-bar-bordered{padding:0 2em;background-color:#fdfdfd;border:1px solid #a2a9b1;clear:both;margin:1em auto 0}.mw-parser-output .portal-bar-related{font-size:100%;justify-content:flex-start}.mw-parser-output .portal-bar-unbordered{padding:0 1.7em;margin-left:0}.mw-parser-output .portal-bar-header{margin:0 1em 0 0.5em;flex:0 0 auto;min-height:24px}.mw-parser-output .portal-bar-content{display:flex;flex-flow:row wrap;flex:0 1 auto;padding:0.15em 0;column-gap:1em;align-items:baseline;margin:0;list-style:none}.mw-parser-output .portal-bar-content-related{margin:0;list-style:none}.mw-parser-output .portal-bar-item{display:inline-block;margin:0.15em 0.2em;min-height:24px;line-height:24px}@media screen and (max-width:768px){.mw-parser-output .portal-bar{font-size:88%;font-weight:bold;display:flex;flex-flow:column wrap;align-items:baseline}.mw-parser-output .portal-bar-header{text-align:center;flex:0;padding-left:0.5em;margin:0 auto}.mw-parser-output .portal-bar-related{font-size:100%;align-items:flex-start}.mw-parser-output .portal-bar-content{display:flex;flex-flow:row wrap;align-items:center;flex:0;column-gap:1em;border-top:1px solid #a2a9b1;margin:0 auto;list-style:none}.mw-parser-output .portal-bar-content-related{border-top:none;margin:0;list-style:none}}.mw-parser-output .navbox+link+.portal-bar,.mw-parser-output .navbox+style+.portal-bar,.mw-parser-output .navbox+link+.portal-bar-bordered,.mw-parser-output .navbox+style+.portal-bar-bordered,.mw-parser-output .sister-bar+link+.portal-bar,.mw-parser-output .sister-bar+style+.portal-bar,.mw-parser-output .portal-bar+.navbox-styles+.navbox,.mw-parser-output .portal-bar+.navbox-styles+.sister-bar{margin-top:-1px}</style><div class="portal-bar noprint metadata noviewer portal-bar-bordered" role="navigation" aria-label="Portals"><span class="portal-bar-header"><a href="/wiki/Wikipedia:Contents/Portals" title="Wikipedia:Contents/Portals">Portals</a>:</span><ul class="portal-bar-content"><li class="portal-bar-item"><span class="nowrap"><span typeof="mw:File"><a href="/wiki/File:Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg/17px-Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg.png" decoding="async" width="17" height="19" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg/26px-Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg/34px-Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg.png 2x" data-file-width="530" data-file-height="600" /></a></span> </span><a href="/wiki/Portal:Physics" title="Portal:Physics">Physics</a></li><li class="portal-bar-item"><span class="nowrap"><span typeof="mw:File"><a href="/wiki/File:Nuvola_apps_edu_mathematics_blue-p.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/19px-Nuvola_apps_edu_mathematics_blue-p.svg.png" decoding="async" width="19" height="19" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/29px-Nuvola_apps_edu_mathematics_blue-p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/38px-Nuvola_apps_edu_mathematics_blue-p.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span> </span><a href="/wiki/Portal:Mathematics" title="Portal:Mathematics">Mathematics</a></li><li class="portal-bar-item"><span class="nowrap"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/0/00/Crab_Nebula.jpg/19px-Crab_Nebula.jpg" decoding="async" width="19" height="19" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/00/Crab_Nebula.jpg/29px-Crab_Nebula.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/00/Crab_Nebula.jpg/38px-Crab_Nebula.jpg 2x" data-file-width="3864" data-file-height="3864" /></span></span> </span><a href="/wiki/Portal:Astronomy" title="Portal:Astronomy">Astronomy</a></li><li class="portal-bar-item"><span class="nowrap"><span typeof="mw:File"><a href="/wiki/File:He1523a.jpg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/5f/He1523a.jpg/16px-He1523a.jpg" decoding="async" width="16" height="19" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/5f/He1523a.jpg/25px-He1523a.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/5f/He1523a.jpg/33px-He1523a.jpg 2x" data-file-width="180" data-file-height="207" /></a></span> </span><a href="/wiki/Portal:Stars" title="Portal:Stars">Stars</a></li><li class="portal-bar-item"><span class="nowrap"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/5c/Earth-moon.jpg/21px-Earth-moon.jpg" decoding="async" width="21" height="17" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/5c/Earth-moon.jpg/32px-Earth-moon.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/5c/Earth-moon.jpg/42px-Earth-moon.jpg 2x" data-file-width="3000" data-file-height="2400" /></span></span> </span><a href="/wiki/Portal:Outer_space" title="Portal:Outer space">Outer space</a></li></ul></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"><style data-mw-deduplicate="TemplateStyles:r1038841319">.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}</style></div><div role="navigation" class="navbox authority-control" aria-labelledby="Authority_control_databases_frameless&#124;text-top&#124;10px&#124;alt=Edit_this_at_Wikidata&#124;link=https&#58;//www.wikidata.org/wiki/Q133327#identifiers&#124;class=noprint&#124;Edit_this_at_Wikidata1335" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Authority_control_databases_frameless&#124;text-top&#124;10px&#124;alt=Edit_this_at_Wikidata&#124;link=https&#58;//www.wikidata.org/wiki/Q133327#identifiers&#124;class=noprint&#124;Edit_this_at_Wikidata1335" style="font-size:114%;margin:0 4em"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q133327#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">National</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4302626-6">Germany</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh85125911">United States</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb13319358m">France</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb13319358m">BnF data</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.ndl.go.jp/auth/ndlna/00574722">Japan</a></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="časoprostor"><a rel="nofollow" class="external text" href="https://aleph.nkp.cz/F/?func=find-c&local_base=aut&ccl_term=ica=ph128086&CON_LNG=ENG">Czech Republic</a></span></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="http://catalogo.bne.es/uhtbin/authoritybrowse.cgi?action=display&authority_id=XX527285">Spain</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://www.nli.org.il/en/authorities/987007563383905171">Israel</a></span></li></ul></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Other</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://www.idref.fr/028669657">IdRef</a></span></li></ul></div></td></tr></tbody></table></div> <p class="mw-empty-elt"> </p> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐844794d8c9‐lh7kq Cached time: 20250205131958 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 2.069 seconds Real time usage: 2.608 seconds Preprocessor visited node count: 33299/1000000 Post‐expand include size: 433143/2097152 bytes Template argument size: 34849/2097152 bytes Highest expansion depth: 21/100 Expensive parser function count: 40/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 405410/5000000 bytes Lua time usage: 1.112/10.000 seconds Lua memory usage: 19006015/52428800 bytes Lua Profile: ? 440 ms 32.8% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::callParserFunction 160 ms 11.9% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::getExpandedArgument 80 ms 6.0% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::find 80 ms 6.0% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::match 80 ms 6.0% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::sub 60 ms 4.5% <mw.lua:694> 60 ms 4.5% recursiveClone <mwInit.lua:45> 60 ms 4.5% citation0 <Module:Citation/CS1:2615> 40 ms 3.0% chunk <Module:Citation/CS1> 40 ms 3.0% [others] 240 ms 17.9% Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 2009.708 1 -total 23.80% 478.369 3 Template:Reflist 18.77% 377.198 3 Template:Excerpt 15.36% 308.657 69 Template:Rp 14.60% 293.432 69 Template:R/superscript 7.41% 148.989 12 Template:Cite_web 7.34% 147.508 207 Template:R/where 7.29% 146.518 36 Template:Cite_book 5.64% 113.417 1 Template:Lang 5.53% 111.160 1 Template:Spacetime --> <!-- Saved in parser cache with key enwiki:pcache:28758:|#|:idhash:canonical and timestamp 20250205131958 and revision id 1270412209. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?useformat=desktop&type=1x1&usesul3=0" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Spacetime&oldid=1270412209">https://en.wikipedia.org/w/index.php?title=Spacetime&oldid=1270412209</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Spacetime" title="Category:Spacetime">Spacetime</a></li><li><a href="/wiki/Category:Concepts_in_physics" title="Category:Concepts in physics">Concepts in physics</a></li><li><a href="/wiki/Category:Theoretical_physics" title="Category:Theoretical physics">Theoretical physics</a></li><li><a href="/wiki/Category:Theory_of_relativity" title="Category:Theory of relativity">Theory of relativity</a></li><li><a href="/wiki/Category:Time" title="Category:Time">Time</a></li><li><a href="/wiki/Category:Time_in_physics" title="Category:Time in physics">Time in physics</a></li><li><a href="/wiki/Category:Conceptual_models" title="Category:Conceptual models">Conceptual models</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_maint:_location_missing_publisher" title="Category:CS1 maint: location missing publisher">CS1 maint: location missing publisher</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Pages_using_multiple_image_with_manual_scaled_images" title="Category:Pages using multiple image with manual scaled images">Pages using multiple image with manual scaled images</a></li><li><a href="/wiki/Category:Articles_needing_additional_references_from_March_2024" title="Category:Articles needing additional references from March 2024">Articles needing additional references from March 2024</a></li><li><a href="/wiki/Category:All_articles_needing_additional_references" title="Category:All articles needing additional references">All articles needing additional references</a></li><li><a href="/wiki/Category:Articles_with_excerpts" title="Category:Articles with excerpts">Articles with excerpts</a></li><li><a href="/wiki/Category:Commons_category_link_from_Wikidata" title="Category:Commons category link from Wikidata">Commons category link from Wikidata</a></li><li><a href="/wiki/Category:Use_dmy_dates_from_April_2019" title="Category:Use dmy dates from April 2019">Use dmy dates from April 2019</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 19 January 2025, at 12:00<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Spacetime&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" lang="en" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-header-container vector-sticky-header-container"> <div id="vector-sticky-header" class="vector-sticky-header"> <div class="vector-sticky-header-start"> <div class="vector-sticky-header-icon-start vector-button-flush-left vector-button-flush-right" aria-hidden="true"> <button class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-sticky-header-search-toggle" tabindex="-1" data-event-name="ui.vector-sticky-search-form.icon"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </button> </div> <div role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box"> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail"> <form action="/w/index.php" id="vector-sticky-search-form" class="cdx-search-input cdx-search-input--has-end-button"> <div class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia"> <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <div class="vector-sticky-header-context-bar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-sticky-header-toc" class="vector-dropdown mw-portlet mw-portlet-sticky-header-toc vector-sticky-header-toc vector-button-flush-left" > <input type="checkbox" id="vector-sticky-header-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-sticky-header-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-sticky-header-toc-label" for="vector-sticky-header-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-sticky-header-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div class="vector-sticky-header-context-bar-primary" aria-hidden="true" ><span class="mw-page-title-main">Spacetime</span></div> </div> </div> <div class="vector-sticky-header-end" aria-hidden="true"> <div class="vector-sticky-header-icons"> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-talk-sticky-header" tabindex="-1" data-event-name="talk-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbles mw-ui-icon-wikimedia-speechBubbles"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-subject-sticky-header" tabindex="-1" data-event-name="subject-sticky-header"><span class="vector-icon mw-ui-icon-article mw-ui-icon-wikimedia-article"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-history-sticky-header" tabindex="-1" data-event-name="history-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-history mw-ui-icon-wikimedia-wikimedia-history"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only mw-watchlink" id="ca-watchstar-sticky-header" tabindex="-1" data-event-name="watch-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-star mw-ui-icon-wikimedia-wikimedia-star"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-edit-sticky-header" tabindex="-1" data-event-name="wikitext-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-wikiText mw-ui-icon-wikimedia-wikimedia-wikiText"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-ve-edit-sticky-header" tabindex="-1" data-event-name="ve-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-edit mw-ui-icon-wikimedia-wikimedia-edit"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-viewsource-sticky-header" tabindex="-1" data-event-name="ve-edit-protected-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-editLock mw-ui-icon-wikimedia-wikimedia-editLock"></span> <span></span> </a> </div> <div class="vector-sticky-header-buttons"> <button class="cdx-button cdx-button--weight-quiet mw-interlanguage-selector" id="p-lang-btn-sticky-header" tabindex="-1" data-event-name="ui.dropdown-p-lang-btn-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-language mw-ui-icon-wikimedia-wikimedia-language"></span> <span>89 languages</span> </button> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive" id="ca-addsection-sticky-header" tabindex="-1" data-event-name="addsection-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbleAdd-progressive mw-ui-icon-wikimedia-speechBubbleAdd-progressive"></span> <span>Add topic</span> </a> </div> <div class="vector-sticky-header-icon-end"> <div class="vector-user-links"> </div> </div> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-844794d8c9-zc22j","wgBackendResponseTime":167,"wgPageParseReport":{"limitreport":{"cputime":"2.069","walltime":"2.608","ppvisitednodes":{"value":33299,"limit":1000000},"postexpandincludesize":{"value":433143,"limit":2097152},"templateargumentsize":{"value":34849,"limit":2097152},"expansiondepth":{"value":21,"limit":100},"expensivefunctioncount":{"value":40,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":405410,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 2009.708 1 -total"," 23.80% 478.369 3 Template:Reflist"," 18.77% 377.198 3 Template:Excerpt"," 15.36% 308.657 69 Template:Rp"," 14.60% 293.432 69 Template:R/superscript"," 7.41% 148.989 12 Template:Cite_web"," 7.34% 147.508 207 Template:R/where"," 7.29% 146.518 36 Template:Cite_book"," 5.64% 113.417 1 Template:Lang"," 5.53% 111.160 1 Template:Spacetime"]},"scribunto":{"limitreport-timeusage":{"value":"1.112","limit":"10.000"},"limitreport-memusage":{"value":19006015,"limit":52428800},"limitreport-logs":"table#1 {\n [\"size\"] = \"tiny\",\n}\n","limitreport-profile":[["?","440","32.8"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::callParserFunction","160","11.9"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::getExpandedArgument","80","6.0"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::find","80","6.0"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::match","80","6.0"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::sub","60","4.5"],["\u003Cmw.lua:694\u003E","60","4.5"],["recursiveClone \u003CmwInit.lua:45\u003E","60","4.5"],["citation0 \u003CModule:Citation/CS1:2615\u003E","40","3.0"],["chunk \u003CModule:Citation/CS1\u003E","40","3.0"],["[others]","240","17.9"]]},"cachereport":{"origin":"mw-web.codfw.main-844794d8c9-lh7kq","timestamp":"20250205131958","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Spacetime","url":"https:\/\/en.wikipedia.org\/wiki\/Spacetime","sameAs":"http:\/\/www.wikidata.org\/entity\/Q133327","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q133327","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2001-11-04T06:31:26Z","dateModified":"2025-01-19T12:00:09Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/d\/d1\/GPB_circling_earth.jpg","headline":"a four-dimensional extent within which entities exist and have physical relationships to each other"}</script> </body> </html>