CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 138 results for author: <span class="mathjax">Chen, Y</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/hep-lat" aria-role="search"> Searching in archive <strong>hep-lat</strong>. <a href="/search/?searchtype=author&query=Chen%2C+Y">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Chen, Y"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Chen%2C+Y&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Chen, Y"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Chen%2C+Y&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Chen%2C+Y&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Chen%2C+Y&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Chen%2C+Y&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08461">arXiv:2411.08461</a> <span> [<a href="https://arxiv.org/pdf/2411.08461">pdf</a>, <a href="https://arxiv.org/ps/2411.08461">ps</a>, <a href="https://arxiv.org/format/2411.08461">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Use QUDA for lattice QCD calculation with Python </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Jiang%2C+X">Xiangyu Jiang</a>, <a href="/search/hep-lat?searchtype=author&query=Shi%2C+C">Chunjiang Shi</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08461v1-abstract-short" style="display: inline;"> We developed PyQUDA, a Python wrapper for QUDA written in Cython, designed to facilitate lattice QCD calculations using the Python programming language. PyQUDA leverages the optimized linear algebra capabilities of NumPy/CuPy/PyTorch, along with the highly optimized lattice QCD operations provided by QUDA to accelerate research. This integration simplifies the process of writing calculation codes,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08461v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08461v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08461v1-abstract-full" style="display: none;"> We developed PyQUDA, a Python wrapper for QUDA written in Cython, designed to facilitate lattice QCD calculations using the Python programming language. PyQUDA leverages the optimized linear algebra capabilities of NumPy/CuPy/PyTorch, along with the highly optimized lattice QCD operations provided by QUDA to accelerate research. This integration simplifies the process of writing calculation codes, enabling researchers to build more complex Python packages like EasyDistillation for specific physics objectives. PyQUDA supports a range of lattice QCD operations, including hybrid Monte Carlo (HMC) with N-flavor clover/HISQ fermions and inversion for the Wilson/clover/HISQ fermion action with the multigrid solver. It also includes utility functions for reading lattice QCD data stored in Chroma, MILC, and $蠂$QCD formats. Type hints are supported by stub files and multi-GPU support is provided through mpi4py. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08461v1-abstract-full').style.display = 'none'; document.getElementById('2411.08461v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 3 listings</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13515">arXiv:2410.13515</a> <span> [<a href="https://arxiv.org/pdf/2410.13515">pdf</a>, <a href="https://arxiv.org/format/2410.13515">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Observation of a rare beta decay of the charmed baryon with a Graph Neural Network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/hep-lat?searchtype=author&query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/hep-lat?searchtype=author&query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/hep-lat?searchtype=author&query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/hep-lat?searchtype=author&query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/hep-lat?searchtype=author&query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/hep-lat?searchtype=author&query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/hep-lat?searchtype=author&query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/hep-lat?searchtype=author&query=An%2C+Q">Q. An</a>, <a href="/search/hep-lat?searchtype=author&query=Bai%2C+Y">Y. Bai</a>, <a href="/search/hep-lat?searchtype=author&query=Bakina%2C+O">O. Bakina</a>, <a href="/search/hep-lat?searchtype=author&query=Balossino%2C+I">I. Balossino</a>, <a href="/search/hep-lat?searchtype=author&query=Ban%2C+Y">Y. Ban</a>, <a href="/search/hep-lat?searchtype=author&query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/hep-lat?searchtype=author&query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/hep-lat?searchtype=author&query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/hep-lat?searchtype=author&query=Berger%2C+N">N. Berger</a>, <a href="/search/hep-lat?searchtype=author&query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/hep-lat?searchtype=author&query=Bertani%2C+M">M. Bertani</a>, <a href="/search/hep-lat?searchtype=author&query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/hep-lat?searchtype=author&query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/hep-lat?searchtype=author&query=Bianco%2C+E">E. Bianco</a>, <a href="/search/hep-lat?searchtype=author&query=Bortone%2C+A">A. Bortone</a>, <a href="/search/hep-lat?searchtype=author&query=Boyko%2C+I">I. Boyko</a>, <a href="/search/hep-lat?searchtype=author&query=Briere%2C+R+A">R. A. Briere</a> , et al. (637 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13515v1-abstract-short" style="display: inline;"> The study of beta decay of the charmed baryon provides unique insights into the fundamental mechanism of the strong and electro-weak interactions. The $螞_c^+$, being the lightest charmed baryon, undergoes disintegration solely through the charm quark weak decay. Its beta decay provides an ideal laboratory for investigating non-perturbative effects in quantum chromodynamics and for constraining the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13515v1-abstract-full').style.display = 'inline'; document.getElementById('2410.13515v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13515v1-abstract-full" style="display: none;"> The study of beta decay of the charmed baryon provides unique insights into the fundamental mechanism of the strong and electro-weak interactions. The $螞_c^+$, being the lightest charmed baryon, undergoes disintegration solely through the charm quark weak decay. Its beta decay provides an ideal laboratory for investigating non-perturbative effects in quantum chromodynamics and for constraining the fundamental parameters of the Cabibbo-Kobayashi-Maskawa matrix in weak interaction theory. This article presents the first observation of the Cabibbo-suppressed $螞_c^+$ beta decay into a neutron $螞_c^+ \rightarrow n e^+ 谓_{e}$, based on $4.5~\mathrm{fb}^{-1}$ of electron-positron annihilation data collected with the BESIII detector in the energy region above the $螞^+_c\bar螞^-_c$ threshold. A novel machine learning technique, leveraging Graph Neural Networks, has been utilized to effectively separate signals from dominant backgrounds, particularly $螞_c^+ \rightarrow 螞e^+ 谓_{e}$. This approach has yielded a statistical significance of more than $10蟽$. The absolute branching fraction of $螞_c^+ \rightarrow n e^+ 谓_{e}$ is measured to be $(3.57\pm0.34_{\mathrm{stat}}\pm0.14_{\mathrm{syst}})\times 10^{-3}$. For the first time, the CKM matrix element $\left|V_{cd}\right|$ is extracted via a charmed baryon decay to be $0.208\pm0.011_{\rm exp.}\pm0.007_{\rm LQCD}\pm0.001_{蟿_{螞_c^+}}$. This study provides a new probe to further understand fundamental interactions in the charmed baryon sector, and demonstrates the power of modern machine learning techniques in enhancing experimental capability in high energy physics research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13515v1-abstract-full').style.display = 'none'; document.getElementById('2410.13515v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.06557">arXiv:2410.06557</a> <span> [<a href="https://arxiv.org/pdf/2410.06557">pdf</a>, <a href="https://arxiv.org/format/2410.06557">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Observation of disorder-free localization and efficient disorder averaging on a quantum processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Gyawali%2C+G">Gaurav Gyawali</a>, <a href="/search/hep-lat?searchtype=author&query=Cochran%2C+T">Tyler Cochran</a>, <a href="/search/hep-lat?searchtype=author&query=Lensky%2C+Y">Yuri Lensky</a>, <a href="/search/hep-lat?searchtype=author&query=Rosenberg%2C+E">Eliott Rosenberg</a>, <a href="/search/hep-lat?searchtype=author&query=Karamlou%2C+A+H">Amir H. Karamlou</a>, <a href="/search/hep-lat?searchtype=author&query=Kechedzhi%2C+K">Kostyantyn Kechedzhi</a>, <a href="/search/hep-lat?searchtype=author&query=Berndtsson%2C+J">Julia Berndtsson</a>, <a href="/search/hep-lat?searchtype=author&query=Westerhout%2C+T">Tom Westerhout</a>, <a href="/search/hep-lat?searchtype=author&query=Asfaw%2C+A">Abraham Asfaw</a>, <a href="/search/hep-lat?searchtype=author&query=Abanin%2C+D">Dmitry Abanin</a>, <a href="/search/hep-lat?searchtype=author&query=Acharya%2C+R">Rajeev Acharya</a>, <a href="/search/hep-lat?searchtype=author&query=Beni%2C+L+A">Laleh Aghababaie Beni</a>, <a href="/search/hep-lat?searchtype=author&query=Andersen%2C+T+I">Trond I. Andersen</a>, <a href="/search/hep-lat?searchtype=author&query=Ansmann%2C+M">Markus Ansmann</a>, <a href="/search/hep-lat?searchtype=author&query=Arute%2C+F">Frank Arute</a>, <a href="/search/hep-lat?searchtype=author&query=Arya%2C+K">Kunal Arya</a>, <a href="/search/hep-lat?searchtype=author&query=Astrakhantsev%2C+N">Nikita Astrakhantsev</a>, <a href="/search/hep-lat?searchtype=author&query=Atalaya%2C+J">Juan Atalaya</a>, <a href="/search/hep-lat?searchtype=author&query=Babbush%2C+R">Ryan Babbush</a>, <a href="/search/hep-lat?searchtype=author&query=Ballard%2C+B">Brian Ballard</a>, <a href="/search/hep-lat?searchtype=author&query=Bardin%2C+J+C">Joseph C. Bardin</a>, <a href="/search/hep-lat?searchtype=author&query=Bengtsson%2C+A">Andreas Bengtsson</a>, <a href="/search/hep-lat?searchtype=author&query=Bilmes%2C+A">Alexander Bilmes</a>, <a href="/search/hep-lat?searchtype=author&query=Bortoli%2C+G">Gina Bortoli</a>, <a href="/search/hep-lat?searchtype=author&query=Bourassa%2C+A">Alexandre Bourassa</a> , et al. (195 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.06557v1-abstract-short" style="display: inline;"> One of the most challenging problems in the computational study of localization in quantum manybody systems is to capture the effects of rare events, which requires sampling over exponentially many disorder realizations. We implement an efficient procedure on a quantum processor, leveraging quantum parallelism, to efficiently sample over all disorder realizations. We observe localization without d… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06557v1-abstract-full').style.display = 'inline'; document.getElementById('2410.06557v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.06557v1-abstract-full" style="display: none;"> One of the most challenging problems in the computational study of localization in quantum manybody systems is to capture the effects of rare events, which requires sampling over exponentially many disorder realizations. We implement an efficient procedure on a quantum processor, leveraging quantum parallelism, to efficiently sample over all disorder realizations. We observe localization without disorder in quantum many-body dynamics in one and two dimensions: perturbations do not diffuse even though both the generator of evolution and the initial states are fully translationally invariant. The disorder strength as well as its density can be readily tuned using the initial state. Furthermore, we demonstrate the versatility of our platform by measuring Renyi entropies. Our method could also be extended to higher moments of the physical observables and disorder learning. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06557v1-abstract-full').style.display = 'none'; document.getElementById('2410.06557v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.17142">arXiv:2409.17142</a> <span> [<a href="https://arxiv.org/pdf/2409.17142">pdf</a>, <a href="https://arxiv.org/format/2409.17142">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Visualizing Dynamics of Charges and Strings in (2+1)D Lattice Gauge Theories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/hep-lat?searchtype=author&query=Jobst%2C+B">Bernhard Jobst</a>, <a href="/search/hep-lat?searchtype=author&query=Rosenberg%2C+E">Eliott Rosenberg</a>, <a href="/search/hep-lat?searchtype=author&query=Lensky%2C+Y+D">Yuri D. Lensky</a>, <a href="/search/hep-lat?searchtype=author&query=Gyawali%2C+G">Gaurav Gyawali</a>, <a href="/search/hep-lat?searchtype=author&query=Eassa%2C+N">Norhan Eassa</a>, <a href="/search/hep-lat?searchtype=author&query=Will%2C+M">Melissa Will</a>, <a href="/search/hep-lat?searchtype=author&query=Abanin%2C+D">Dmitry Abanin</a>, <a href="/search/hep-lat?searchtype=author&query=Acharya%2C+R">Rajeev Acharya</a>, <a href="/search/hep-lat?searchtype=author&query=Beni%2C+L+A">Laleh Aghababaie Beni</a>, <a href="/search/hep-lat?searchtype=author&query=Andersen%2C+T+I">Trond I. Andersen</a>, <a href="/search/hep-lat?searchtype=author&query=Ansmann%2C+M">Markus Ansmann</a>, <a href="/search/hep-lat?searchtype=author&query=Arute%2C+F">Frank Arute</a>, <a href="/search/hep-lat?searchtype=author&query=Arya%2C+K">Kunal Arya</a>, <a href="/search/hep-lat?searchtype=author&query=Asfaw%2C+A">Abraham Asfaw</a>, <a href="/search/hep-lat?searchtype=author&query=Atalaya%2C+J">Juan Atalaya</a>, <a href="/search/hep-lat?searchtype=author&query=Babbush%2C+R">Ryan Babbush</a>, <a href="/search/hep-lat?searchtype=author&query=Ballard%2C+B">Brian Ballard</a>, <a href="/search/hep-lat?searchtype=author&query=Bardin%2C+J+C">Joseph C. Bardin</a>, <a href="/search/hep-lat?searchtype=author&query=Bengtsson%2C+A">Andreas Bengtsson</a>, <a href="/search/hep-lat?searchtype=author&query=Bilmes%2C+A">Alexander Bilmes</a>, <a href="/search/hep-lat?searchtype=author&query=Bourassa%2C+A">Alexandre Bourassa</a>, <a href="/search/hep-lat?searchtype=author&query=Bovaird%2C+J">Jenna Bovaird</a>, <a href="/search/hep-lat?searchtype=author&query=Broughton%2C+M">Michael Broughton</a>, <a href="/search/hep-lat?searchtype=author&query=Browne%2C+D+A">David A. Browne</a> , et al. (167 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.17142v1-abstract-short" style="display: inline;"> Lattice gauge theories (LGTs) can be employed to understand a wide range of phenomena, from elementary particle scattering in high-energy physics to effective descriptions of many-body interactions in materials. Studying dynamical properties of emergent phases can be challenging as it requires solving many-body problems that are generally beyond perturbative limits. We investigate the dynamics of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17142v1-abstract-full').style.display = 'inline'; document.getElementById('2409.17142v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.17142v1-abstract-full" style="display: none;"> Lattice gauge theories (LGTs) can be employed to understand a wide range of phenomena, from elementary particle scattering in high-energy physics to effective descriptions of many-body interactions in materials. Studying dynamical properties of emergent phases can be challenging as it requires solving many-body problems that are generally beyond perturbative limits. We investigate the dynamics of local excitations in a $\mathbb{Z}_2$ LGT using a two-dimensional lattice of superconducting qubits. We first construct a simple variational circuit which prepares low-energy states that have a large overlap with the ground state; then we create particles with local gates and simulate their quantum dynamics via a discretized time evolution. As the effective magnetic field is increased, our measurements show signatures of transitioning from deconfined to confined dynamics. For confined excitations, the magnetic field induces a tension in the string connecting them. Our method allows us to experimentally image string dynamics in a (2+1)D LGT from which we uncover two distinct regimes inside the confining phase: for weak confinement the string fluctuates strongly in the transverse direction, while for strong confinement transverse fluctuations are effectively frozen. In addition, we demonstrate a resonance condition at which dynamical string breaking is facilitated. Our LGT implementation on a quantum processor presents a novel set of techniques for investigating emergent particle and string dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17142v1-abstract-full').style.display = 'none'; document.getElementById('2409.17142v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.14410">arXiv:2409.14410</a> <span> [<a href="https://arxiv.org/pdf/2409.14410">pdf</a>, <a href="https://arxiv.org/format/2409.14410">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Decay properties of light $1^{-+}$ hybrids from $N_f=2$ lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Liang%2C+J">Juzheng Liang</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+S">Siyang Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Shi%2C+C">Chunjiang Shi</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+W">Wei Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.14410v1-abstract-short" style="display: inline;"> We explore the decay properties of the isovector and isoscalar $1^{-+}$ light hybrids, $蟺_1$ and $畏_1$, in $N_f=2$ lattice QCD at a pion mass $m_蟺\approx 417~\mathrm{MeV}$. The McNeile and Michael method is adopted to extract the effective couplings for individual decay modes, which are used to estimate the partial decay widths of $蟺_1(1600)$ and $畏_1(1855)$ by assuming SU(3) symmetry. The partial… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14410v1-abstract-full').style.display = 'inline'; document.getElementById('2409.14410v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.14410v1-abstract-full" style="display: none;"> We explore the decay properties of the isovector and isoscalar $1^{-+}$ light hybrids, $蟺_1$ and $畏_1$, in $N_f=2$ lattice QCD at a pion mass $m_蟺\approx 417~\mathrm{MeV}$. The McNeile and Michael method is adopted to extract the effective couplings for individual decay modes, which are used to estimate the partial decay widths of $蟺_1(1600)$ and $畏_1(1855)$ by assuming SU(3) symmetry. The partial decay widths of $蟺_1(1600)$ are predicted to be $(螕_{b_1蟺}, 螕_{f_1(1285)蟺}, 螕_{蟻蟺}, 螕_{K^*\bar{K}}) = (323 \pm 72, \mathcal{O}(10), 48 \pm 7, 7.9 \pm 1.3)~\mathrm{MeV}$, and the total width is estimated to be $390 \pm 88~\mathrm{MeV}$, considering only statistical errors. If $畏_1(1855)$ and the $4.4蟽$ signal observed by BESIII (labeled as $畏_1(2200)$) are taken as the two mass eigenstates of the isoscalar $1^{-+}$ light hybrids in SU(3), then the dominant decay channel(s) of $畏_1(1855)$ ($畏_1(2200)$) is $K_1(1270)\bar{K}$ ($K_1(1270)\bar{K}$ and $K_1(1400)\bar{K}$) through the $1^{+(-)}0^{-(+)}$ mode. The vector-vector decay modes are also significant for the two $畏_1$ states. Using the mixing angle $伪\approx 22.7^\circ$ obtained from lattice QCD for the two $畏_1$ states, the total widths are estimated to be $螕_{畏_1(1855)}=268(91)~\mathrm{MeV}$ and $螕_{畏_1(2200)}=435(154)~\mathrm{MeV}$. The former is compatible with the experimental width of $畏_1(1855)$. Although many systematic uncertainties are not well controlled, these results are qualitatively informative for the experimental search for light hybrids. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14410v1-abstract-full').style.display = 'none'; document.getElementById('2409.14410v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.03373">arXiv:2409.03373</a> <span> [<a href="https://arxiv.org/pdf/2409.03373">pdf</a>, <a href="https://arxiv.org/format/2409.03373">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.110.094041">10.1103/PhysRevD.110.094041 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Doubly heavy tetraquark bound and resonant states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Wu%2C+W">Wei-Lin Wu</a>, <a href="/search/hep-lat?searchtype=author&query=Ma%2C+Y">Yao Ma</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Yan-Ke Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Meng%2C+L">Lu Meng</a>, <a href="/search/hep-lat?searchtype=author&query=Zhu%2C+S">Shi-Lin Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.03373v2-abstract-short" style="display: inline;"> We calculate the energy spectrum of the S-wave doubly heavy tetraquark systems, including the $ QQ^{(\prime)}\bar q\bar q$, $QQ^{(\prime)}\bar s\bar q$, and $ QQ^{(\prime)}\bar s\bar s$ ($Q^{(\prime)}=b,c$ and $q=u,d$) systems within the constituent quark model. We use the complex scaling method to obtain bound states and resonant states simultaneously, and the Gaussian expansion method to solve t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03373v2-abstract-full').style.display = 'inline'; document.getElementById('2409.03373v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.03373v2-abstract-full" style="display: none;"> We calculate the energy spectrum of the S-wave doubly heavy tetraquark systems, including the $ QQ^{(\prime)}\bar q\bar q$, $QQ^{(\prime)}\bar s\bar q$, and $ QQ^{(\prime)}\bar s\bar s$ ($Q^{(\prime)}=b,c$ and $q=u,d$) systems within the constituent quark model. We use the complex scaling method to obtain bound states and resonant states simultaneously, and the Gaussian expansion method to solve the complex-scaled four-body Schr枚dinger equation. With a novel definition of the root-mean-square radii, we are able to distinguish between meson molecules and compact tetraquark states. The compact tetraquarks are further classified into three different types with distinct spatial configurations: compact even tetraquarks, compact diquark-antidiquark tetraquarks and compact diquark-centered tetraquarks. In the $ I(J^P)=0(1^+) $ $QQ\bar q\bar q$ system, there exists the $ D^*D $ molecular bound state with a binding energy of $ -14 $ MeV, which is the candidate for $ T_{cc}(3875)^+ $. The shallow $\bar B^*\bar B$ molecular bound state is the bottom analog of $T_{cc}(3875)^+$. Moreover, we identify two resonant states near the $D^*D^*$ and $\bar B^*\bar B^*$ thresholds. In the $ J^P=1^+ $ $bb\bar q\bar q\,(I=0)$ and $bb\bar s\bar q$ systems, we obtain deeply bound states with a compact diquark-centered tetraquark configuration and a dominant $蠂_{\bar 3_c\otimes 3_c}$ component, along with resonant states with similar configurations as their radial excitations. These states are the QCD analog of the helium atom. We also obtain some other bound states and resonant states with ``QCD hydrogen molecule" configurations. Moreover, we investigate the heavy quark mass dependence of the $ I(J^P)=0(1^+) $ $ QQ\bar q\bar q $ bound states. We strongly urge the experimental search for the predicted states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03373v2-abstract-full').style.display = 'none'; document.getElementById('2409.03373v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 13 figures, version accepted by PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PhysRevD.110.094041 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.12641">arXiv:2408.12641</a> <span> [<a href="https://arxiv.org/pdf/2408.12641">pdf</a>, <a href="https://arxiv.org/format/2408.12641">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Surrogate Constructed Scalable Circuits ADAPT-VQE in the Schwinger model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Gustafson%2C+E">Erik Gustafson</a>, <a href="/search/hep-lat?searchtype=author&query=Sherbert%2C+K">Kyle Sherbert</a>, <a href="/search/hep-lat?searchtype=author&query=Florio%2C+A">Adrien Florio</a>, <a href="/search/hep-lat?searchtype=author&query=Shirali%2C+K">Karunya Shirali</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Yanzhu Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Lamm%2C+H">Henry Lamm</a>, <a href="/search/hep-lat?searchtype=author&query=Valgushev%2C+S">Semeon Valgushev</a>, <a href="/search/hep-lat?searchtype=author&query=Weichselbaum%2C+A">Andreas Weichselbaum</a>, <a href="/search/hep-lat?searchtype=author&query=Economou%2C+S+E">Sophia E. Economou</a>, <a href="/search/hep-lat?searchtype=author&query=Pisarski%2C+R+D">Robert D. Pisarski</a>, <a href="/search/hep-lat?searchtype=author&query=Tubman%2C+N+M">Norm M. Tubman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.12641v1-abstract-short" style="display: inline;"> Inspired by recent advancements of simulating periodic systems on quantum computers, we develop a new approach, (SC)$^2$-ADAPT-VQE, to further advance the simulation of these systems. Our approach extends the scalable circuits ADAPT-VQE framework, which builds an ansatz from a pool of coordinate-invariant operators defined for arbitrarily large, though not arbitrarily small, volumes. Our method us… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12641v1-abstract-full').style.display = 'inline'; document.getElementById('2408.12641v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.12641v1-abstract-full" style="display: none;"> Inspired by recent advancements of simulating periodic systems on quantum computers, we develop a new approach, (SC)$^2$-ADAPT-VQE, to further advance the simulation of these systems. Our approach extends the scalable circuits ADAPT-VQE framework, which builds an ansatz from a pool of coordinate-invariant operators defined for arbitrarily large, though not arbitrarily small, volumes. Our method uses a classically tractable ``Surrogate Constructed'' method to remove irrelevant operators from the pool, reducing the minimum size for which the scalable circuits are defined. Bringing together the scalable circuits and the surrogate constructed approaches forms the core of the (SC)$^2$ methodology. Our approach allows for a wider set of classical computations, on small volumes, which can be used for a more robust extrapolation protocol. While developed in the context of lattice models, the surrogate construction portion is applicable to a wide variety of problems where information about the relative importance of operators in the pool is available. As an example, we use it to compute properties of the Schwinger model - quantum electrodynamics for a single, massive fermion in $1+1$ dimensions - and show that our method can be used to accurately extrapolate to the continuum limit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12641v1-abstract-full').style.display = 'none'; document.getElementById('2408.12641v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0456-SQMS-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.03548">arXiv:2408.03548</a> <span> [<a href="https://arxiv.org/pdf/2408.03548">pdf</a>, <a href="https://arxiv.org/format/2408.03548">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Charmed meson masses and decay constants in the continuum from the tadpole improved clover ensembles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Du%2C+H">Hai-Yang Du</a>, <a href="/search/hep-lat?searchtype=author&query=Hu%2C+B">Bolun Hu</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Ding%2C+H">Heng-Tong Ding</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+L">Liuming Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Meng%2C+Y">Yu Meng</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+P">Peng Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+J">Ji-Hao Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhao%2C+D">Dian-Jun Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.03548v2-abstract-short" style="display: inline;"> We present the determination of the charm quark mass, the masses and decay constants of charmed mesons using thirteen 2+1 flavor full-QCD gauge ensembles at five different lattice spacings $a\in[0.05,0.11]$ fm, 8 pion masses $m_蟺\in(130,360)$ MeV, and several values of the strange quark mass, which facilitate us to do the chiral and continuum extrapolation. These ensembles are generated through th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03548v2-abstract-full').style.display = 'inline'; document.getElementById('2408.03548v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.03548v2-abstract-full" style="display: none;"> We present the determination of the charm quark mass, the masses and decay constants of charmed mesons using thirteen 2+1 flavor full-QCD gauge ensembles at five different lattice spacings $a\in[0.05,0.11]$ fm, 8 pion masses $m_蟺\in(130,360)$ MeV, and several values of the strange quark mass, which facilitate us to do the chiral and continuum extrapolation. These ensembles are generated through the stout smeared clover fermion action and Symanzik gauge actions with the tadpole improvement. Using QED-subtracted $D_s$ meson mass and non-perturbative renormalization, we predict the charm quark mass in the continuum with physical light and strange quark masses to be {$m_c(m_c)=1.289(17)$} GeV in $\overline{\textrm{MS}}$ scheme, with the systematic uncertainties from lattice spacing determination, renormalization constant, {and fit ansatz} included. Predictions of the open and close charm mesons using this charm quark mass agree with the experimental value at 0.3\% level uncertainty. We obtained {$D_{(s)}$ decay constants and also by far the most precise $D_{(s)}^*$ decay constants $f_{D^*}=0.2321(43)$ GeV and $f_{D^*_s}=0.2743(34)$ GeV}, with the charm quark improved vector current normalization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03548v2-abstract-full').style.display = 'none'; document.getElementById('2408.03548v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.00503">arXiv:2408.00503</a> <span> [<a href="https://arxiv.org/pdf/2408.00503">pdf</a>, <a href="https://arxiv.org/format/2408.00503">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.110.074026">10.1103/PhysRevD.110.074026 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fully strange tetraquark resonant states as the cousins of $X(6900)$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Ma%2C+Y">Yao Ma</a>, <a href="/search/hep-lat?searchtype=author&query=Wu%2C+W">Wei-Lin Wu</a>, <a href="/search/hep-lat?searchtype=author&query=Meng%2C+L">Lu Meng</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Yan-Ke Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Zhu%2C+S">Shi-Lin Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.00503v1-abstract-short" style="display: inline;"> We conduct systematic calculations of the S-wave fully strange systems with ``normal" $\left(J^{P C}=0^{++}, 1^{+-}, 2^{++}\right)$ and ``exotic" $\left(J^{P C}=0^{+-}, 1^{++}, 2^{+-}\right)$ C-parities, which are the strange analogue of the fully charmed tetraquark state $X(6900)$. Within a constituent quark potential model, we employ the Gaussian expansion method to solve the four-body Schr枚ding… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00503v1-abstract-full').style.display = 'inline'; document.getElementById('2408.00503v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.00503v1-abstract-full" style="display: none;"> We conduct systematic calculations of the S-wave fully strange systems with ``normal" $\left(J^{P C}=0^{++}, 1^{+-}, 2^{++}\right)$ and ``exotic" $\left(J^{P C}=0^{+-}, 1^{++}, 2^{+-}\right)$ C-parities, which are the strange analogue of the fully charmed tetraquark state $X(6900)$. Within a constituent quark potential model, we employ the Gaussian expansion method to solve the four-body Schr枚dinger equation and the complex scaling method to identify resonant states. We obtain a series of resonant states and zero-width states in the mass range of 2.7 to 3.3 GeV, with their widths ranging from less than 1 MeV to about 50 MeV. Their rms radii strongly indicate that they are compact tetraquark states. Among these states, the $T_{4s,2^{++}}(2714)$ may be the most likely one to be observed experimentally. We urge the experimental exploration of the $2^{++}$ $s s \bar{s} \bar{s}$ state around 2.7 GeV in the $蠁蠁$ channel. Since the lowest S-wave $s s \bar{s} \bar{s}$ state is around 2.7 GeV, the compact P-wave $s s \bar{s} \bar{s}$ states are expected to be heavier. Hence, $蠁(2170)$ and $X(2370)$ are unlikely to be compact tetraquark states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00503v1-abstract-full').style.display = 'none'; document.getElementById('2408.00503v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 2 figures. Comments are welcomed</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 110, 074026 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.03697">arXiv:2407.03697</a> <span> [<a href="https://arxiv.org/pdf/2407.03697">pdf</a>, <a href="https://arxiv.org/format/2407.03697">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Charm physics with overlap fermions on 2+1-flavor domain wall fermion configurations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Li%2C+D">Donghao Li</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+K">Keh-Fei Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhaofeng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+T">Tingxiao Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.03697v3-abstract-short" style="display: inline;"> Decay constants of pseudoscalar mesons $D$, $D_s$, $畏_c$ and vector mesons $D^*$, $D_s^*$, $J/蠄$ are determined from $N_f=2+1$ lattice QCD at a lattice spacing $a\sim0.08$ fm. For vector mesons, the decay constants defined by tensor currents are given in the $\overline{\rm MS}$ scheme at $2$ GeV. The calculation is performed on domain wall fermion configurations generated by the RBC-UKQCD Collabor… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03697v3-abstract-full').style.display = 'inline'; document.getElementById('2407.03697v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.03697v3-abstract-full" style="display: none;"> Decay constants of pseudoscalar mesons $D$, $D_s$, $畏_c$ and vector mesons $D^*$, $D_s^*$, $J/蠄$ are determined from $N_f=2+1$ lattice QCD at a lattice spacing $a\sim0.08$ fm. For vector mesons, the decay constants defined by tensor currents are given in the $\overline{\rm MS}$ scheme at $2$ GeV. The calculation is performed on domain wall fermion configurations generated by the RBC-UKQCD Collaborations and the overlap fermion action is used for the valence quarks. Comparing the current results with our previous ones at a coarser lattice spacing $a\sim0.11$ fm gives us a better understanding of the discretization error. We obtain $f_{D_s^*}^T(\overline{\rm MS},\text{2 GeV})/f_{D_s^*}=0.907(20)$ with a better precision than our previous result. Combining our $f_{D_s^*}=277(11)$ MeV with the total width of $D_s^*$ determined in a recent work gives a branching fraction $4.26(52)\times10^{-5}$ for $D_s^*$ leptonic decay. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03697v3-abstract-full').style.display = 'none'; document.getElementById('2407.03697v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 7 figures, 12 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.17824">arXiv:2406.17824</a> <span> [<a href="https://arxiv.org/pdf/2406.17824">pdf</a>, <a href="https://arxiv.org/format/2406.17824">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.110.034030">10.1103/PhysRevD.110.034030 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fully heavy tetraquark resonant states with different flavors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Wu%2C+W">Wei-Lin Wu</a>, <a href="/search/hep-lat?searchtype=author&query=Ma%2C+Y">Yao Ma</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Yan-Ke Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Meng%2C+L">Lu Meng</a>, <a href="/search/hep-lat?searchtype=author&query=Zhu%2C+S">Shi-Lin Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.17824v2-abstract-short" style="display: inline;"> We use the quark potential model to calculate the mass spectrum of the S-wave fully heavy tetraquark systems with different flavors, including the $ bc\bar b\bar c, bb\bar c\bar c, cc\bar c\bar b $ and $ bb\bar b\bar c $ systems. We employ the Gaussian expansion method to solve the four-body Schr枚dinger equation, and the complex scaling method to identify resonant states. The… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17824v2-abstract-full').style.display = 'inline'; document.getElementById('2406.17824v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.17824v2-abstract-full" style="display: none;"> We use the quark potential model to calculate the mass spectrum of the S-wave fully heavy tetraquark systems with different flavors, including the $ bc\bar b\bar c, bb\bar c\bar c, cc\bar c\bar b $ and $ bb\bar b\bar c $ systems. We employ the Gaussian expansion method to solve the four-body Schr枚dinger equation, and the complex scaling method to identify resonant states. The $ bc\bar b\bar c, bb\bar c\bar c, cc\bar c\bar b $ and $ bb\bar b\bar c $ resonant states are obtained in the mass regions of $ (13.2,13.5) $, $ (13.3,13.6) $, $ (10.0,10.3) $, $ (16.5,16.7) $ GeV, respectively. Among these states, the $ bc\bar b\bar c $ tetraquark states are the most promising ones to be discovered in the near future. We recommend the experimental exploration of the $ 1^{++} $ and $ 2^{++} $ $ bc\bar b\bar c $ states with masses near $ 13.3 $ GeV in the $ J/蠄违$ channel. From the root-mean-square radii, we find that all the resonant states we have identified are compact tetraquark states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17824v2-abstract-full').style.display = 'none'; document.getElementById('2406.17824v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages,7 figures,8 tables. arXiv admin note: text overlap with arXiv:2401.14899</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D 110,034030 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.16575">arXiv:2404.16575</a> <span> [<a href="https://arxiv.org/pdf/2404.16575">pdf</a>, <a href="https://arxiv.org/format/2404.16575">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Probing the pole origin of $X(3872)$ with the coupled-channel dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Wang%2C+J">Jun-Zhang Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+Z">Zi-Yang Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Yan-Ke Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Meng%2C+L">Lu Meng</a>, <a href="/search/hep-lat?searchtype=author&query=Zhu%2C+S">Shi-Lin Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.16575v1-abstract-short" style="display: inline;"> The $X(3872)$, as the first and the most crucial member in the exotic charmoniumlike $XYZ$ family, has been studied for a long time. However, its dynamical origin, whether stemming from a $D\bar{D}^*$ hadronic molecule or the first excited $P$-wave charmonium $蠂_{c1}(2P)$, remains controversial. In this Letter, we demonstrate that the $X(3872)$ definitely does not result from the mass shift of the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.16575v1-abstract-full').style.display = 'inline'; document.getElementById('2404.16575v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.16575v1-abstract-full" style="display: none;"> The $X(3872)$, as the first and the most crucial member in the exotic charmoniumlike $XYZ$ family, has been studied for a long time. However, its dynamical origin, whether stemming from a $D\bar{D}^*$ hadronic molecule or the first excited $P$-wave charmonium $蠂_{c1}(2P)$, remains controversial. In this Letter, we demonstrate that the $X(3872)$ definitely does not result from the mass shift of the higher bare $蠂_{c1}(2P)$ resonance pole in the coupled-channel dynamics involving a short-distance $c\bar{c}$ core and the long-distance $D\bar{D}^*$ channels. Instead, it originates from either the $D\bar{D}^*$ molecular pole or the shadow pole associated with the $P$-wave charmonium, which depends on the concrete coupling mode between the $c\bar{c}$ and $D\bar{D}^*$. In order to further exploit the nature of $X(3872)$, we carefully investigate potential mechanisms that contribute to its pole width, which suggests that the coupled-channel dynamics plays a critical role in causing a noticeable discrepancy between the pole widths of $X(3872)$ and $T_{cc}^+$. Interestingly, we bridge the quantitative connection among the dynamics origin of $X(3872)$, its pole width and the properties of the predicted new resonance. The precise measurement of the pole width of $X(3872)$ and the search for the new charmoniumlike resonance become highly significant and can be anticipated in future LHCb, BESIII and Belle II experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.16575v1-abstract-full').style.display = 'none'; document.getElementById('2404.16575v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.01564">arXiv:2404.01564</a> <span> [<a href="https://arxiv.org/pdf/2404.01564">pdf</a>, <a href="https://arxiv.org/format/2404.01564">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11433-024-2451-5">10.1007/s11433-024-2451-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The radiative decay of scalar glueball from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Zou%2C+J">Jintao Zou</a>, <a href="/search/hep-lat?searchtype=author&query=Gui%2C+L">Long-Cheng Gui</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Liang%2C+J">Jian Liang</a>, <a href="/search/hep-lat?searchtype=author&query=Jiang%2C+X">Xiangyu Jiang</a>, <a href="/search/hep-lat?searchtype=author&query=Qin%2C+W">Wen Qin</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.01564v4-abstract-short" style="display: inline;"> We perform the first lattice QCD study on the radiative decay of the scalar glueball to the vector meson $蠁$ in the quenched approximation. The calculations are carried out on three gauge ensembles with different lattice spacings, which enable us to do the continuum extrapolation. We first revisit the radiative $J/蠄$ decay into the scalar glueball $G$ and obtain the partial decay width… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.01564v4-abstract-full').style.display = 'inline'; document.getElementById('2404.01564v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.01564v4-abstract-full" style="display: none;"> We perform the first lattice QCD study on the radiative decay of the scalar glueball to the vector meson $蠁$ in the quenched approximation. The calculations are carried out on three gauge ensembles with different lattice spacings, which enable us to do the continuum extrapolation. We first revisit the radiative $J/蠄$ decay into the scalar glueball $G$ and obtain the partial decay width $螕(J/蠄\to 纬G)=0.578(86)~\text{keV}$ and the branching fraction $\text{Br}(J/蠄\to 纬G) = 6.2(9)\times 10^{-3}$. We then extend the similar calculation to the process $G\to 纬蠁$ and get the partial decay width $螕(G \to 纬蠁)= 0.074(47)~\text{keV}$, which implies that the combined branching fraction of $J/蠄\to纬G\to 纬纬蠁$ is as small as $\mathcal{O}(10^{-9})$ such that this process is hardly detected by the BESIII experiment even with the large $J/蠄$ sample of $\mathcal{O}(10^{10})$. With the vector meson dominance model, the two-photon decay width of the scalar glueball is estimated to be $螕(G\to纬纬)=0.53(46)~\text{eV}$, which results in a large stickiness $S(G)\sim \mathcal{O}(10^4)$ of the scalar glueball by assuming the stickiness of $f_2(1270)$ to be one. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.01564v4-abstract-full').style.display = 'none'; document.getElementById('2404.01564v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages,11 figures. This version is to be published in SCPMA</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> SCIENCE CHINA Physics, Mechanics & Astronomy , Volume 67, Issue 11: 111012 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.11842">arXiv:2403.11842</a> <span> [<a href="https://arxiv.org/pdf/2403.11842">pdf</a>, <a href="https://arxiv.org/format/2403.11842">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Form factor for Dalitz decays from $J/蠄$ to light pseudoscalars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Shi%2C+C">Chunjiang Shi</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Jiang%2C+X">Xiangyu Jiang</a>, <a href="/search/hep-lat?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhaofeng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+W">Wei Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.11842v1-abstract-short" style="display: inline;"> We calculate the form factor $M(q^2)$ for the Dalitz decay $J/蠄\to 纬^*(q^2)畏_{(N_f=1)}$ with $畏_{(N_f)}$ being the SU($N_f$) flavor singlet pseudoscalar meson. The difference among the partial widths $螕(J/蠄\to 纬畏_{(N_f)})$ at different $N_f$ can be attributed in part to the $\mathbf{U}_A(1)$ anomaly that induces a $N_f$ scaling. $M(q^2)$'s in $N_f=1,2$ are both well described by the single pole mo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.11842v1-abstract-full').style.display = 'inline'; document.getElementById('2403.11842v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.11842v1-abstract-full" style="display: none;"> We calculate the form factor $M(q^2)$ for the Dalitz decay $J/蠄\to 纬^*(q^2)畏_{(N_f=1)}$ with $畏_{(N_f)}$ being the SU($N_f$) flavor singlet pseudoscalar meson. The difference among the partial widths $螕(J/蠄\to 纬畏_{(N_f)})$ at different $N_f$ can be attributed in part to the $\mathbf{U}_A(1)$ anomaly that induces a $N_f$ scaling. $M(q^2)$'s in $N_f=1,2$ are both well described by the single pole model $M(q^2)=M(0)/(1-q^2/螞^2)$. Combined with the known experimental results of the Dalitz decays $J/蠄\to Pe^+e^-$, the pseudoscalar mass $m_P$ dependence of the pole parameter $螞$ is approximated by $螞(m_P^2)=螞_1(1-m_P^2/螞_2^2)$ with $螞_1=2.64(4)~\mathrm{GeV}$ and $螞_2=2.97(33)~\mathrm{GeV}$. These results provide inputs for future theoretical and experimental studies on the Dalitz decays $J/蠄\to Pe^+e^-$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.11842v1-abstract-full').style.display = 'none'; document.getElementById('2403.11842v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.14541">arXiv:2402.14541</a> <span> [<a href="https://arxiv.org/pdf/2402.14541">pdf</a>, <a href="https://arxiv.org/format/2402.14541">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> $X(3872)$ Relevant $D\bar{D}^*$ Scattering in $N_f=2$ Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Li%2C+H">Haozheng Li</a>, <a href="/search/hep-lat?searchtype=author&query=Shi%2C+C">Chunjiang Shi</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&query=Liang%2C+J">Juzheng Liang</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhaofeng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+W">Wei Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.14541v2-abstract-short" style="display: inline;"> We study the $S$-wave $D\bar{D}^*(I=0)$ scattering at four different pion masses $m_蟺$ ranging from 250 MeV to 417 MeV from $N_f=2$ lattice QCD. Three energy levels $E_{2,3,4}$ are extracted at each $m_蟺$. The analysis of $E_{2,3}$ using the effective range expansion (ERE) comes out with a shallow bound state below the $D\bar{D}^*$ threshold, and the phase shifts at $E_{3,4}$ indicate the possible… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.14541v2-abstract-full').style.display = 'inline'; document.getElementById('2402.14541v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.14541v2-abstract-full" style="display: none;"> We study the $S$-wave $D\bar{D}^*(I=0)$ scattering at four different pion masses $m_蟺$ ranging from 250 MeV to 417 MeV from $N_f=2$ lattice QCD. Three energy levels $E_{2,3,4}$ are extracted at each $m_蟺$. The analysis of $E_{2,3}$ using the effective range expansion (ERE) comes out with a shallow bound state below the $D\bar{D}^*$ threshold, and the phase shifts at $E_{3,4}$ indicate the possible existence of a resonance near 4.0 GeV. We also perform a joint analysis to $E_{2,3,4}$ through the $K$-matrix parameterization of the scattering amplitude. In this way, we observe a $D\bar{D}^*$ bound state whose properties are almost the same as that from the ERE analysis. At each $m_蟺$, this joint analysis also results in a resonance pole with a mass slightly above 4.0 GeV and a width around 40-60 MeV, which are compatible with the properties of the newly observed $蠂_{c1}(4010)$ by LHCb. More scrutinized lattice QCD calculations are desired to check the existence of this resonance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.14541v2-abstract-full').style.display = 'none'; document.getElementById('2402.14541v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 14 figures. Substantially revised. A section is added to address the joint analysis of the $E_{2,3,4}$ based on the $K$-matrix parameterization of scattering amplitude. A resonance pole is observed with a mass slightly $> 4.0$ GeV and width around 40-60 MeV, compatible with the newly observed $蠂_{c1}(4010)$ by LHCb. The conclusion on the existence of a bound state does not change</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.14899">arXiv:2401.14899</a> <span> [<a href="https://arxiv.org/pdf/2401.14899">pdf</a>, <a href="https://arxiv.org/format/2401.14899">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.109.054034">10.1103/PhysRevD.109.054034 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Benchmark calculations of fully heavy compact and molecular tetraquark states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Wu%2C+W">Wei-Lin Wu</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Yan-Ke Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Meng%2C+L">Lu Meng</a>, <a href="/search/hep-lat?searchtype=author&query=Zhu%2C+S">Shi-Lin Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.14899v3-abstract-short" style="display: inline;"> We calculate the mass spectrum of the S-wave fully heavy tetraquark systems $ QQ\bar Q\bar Q~(Q=c,b) $ with both normal $ (J^{PC}=0^{++},1^{+-},2^{++}) $ and exotic $ (J^{PC}=0^{+-},1^{++},2^{+-}) $ C-parities using three different quark potential models (AL1, AP1, BGS). The exotic C-parity systems refer to the ones that cannot be composed of two S-wave ground heavy quarkonia. We incorporate the m… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.14899v3-abstract-full').style.display = 'inline'; document.getElementById('2401.14899v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.14899v3-abstract-full" style="display: none;"> We calculate the mass spectrum of the S-wave fully heavy tetraquark systems $ QQ\bar Q\bar Q~(Q=c,b) $ with both normal $ (J^{PC}=0^{++},1^{+-},2^{++}) $ and exotic $ (J^{PC}=0^{+-},1^{++},2^{+-}) $ C-parities using three different quark potential models (AL1, AP1, BGS). The exotic C-parity systems refer to the ones that cannot be composed of two S-wave ground heavy quarkonia. We incorporate the molecular dimeson and compact diquark-antidiquark spatial correlations simultaneously, thereby discerning the actual configurations of the states. We employ the Gaussian expansion method to solve the four-body Schr枚dinger equation, and the complex scaling method to identify the resonant states. The mass spectra in three different models qualitatively agree with each other. We obtain several resonant states with $ J^{PC} = 0^{++}, 1^{+-}, 2^{++}, 1^{++} $ in the mass region $(6.92,7.30)\, \mathrm{GeV}$, some of which are good candidates of the experimentally observed $X(6900)$ and $X(7200)$. We also obtain several exotic C-parity zero-width states with $ J^{PC}=0^{+-} $ and $ 2^{+-} $. These zero-width states have no corresponding S-wave diquarkonium threshold and can only decay strongly to final states with P-wave quarkonia. With the notation $T_{4Q,J(C)}(M)$, we deduce from the root mean square radii that the $ X(7200) $ candidates $ T_{4c,0(+)}(7173), T_{4c,2(+)}(7214) $ and the state $ T_{4c,1(-)}(7191) $ look like molecular states although most of the resonant and zero-width states are compact states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.14899v3-abstract-full').style.display = 'none'; document.getElementById('2401.14899v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 6 figures, 10 tables. Version accepted by PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 109, 054034 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.19853">arXiv:2310.19853</a> <span> [<a href="https://arxiv.org/pdf/2310.19853">pdf</a>, <a href="https://arxiv.org/format/2310.19853">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Soft modes in hot QCD matter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Braun%2C+J">Jens Braun</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Yong-rui Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Fu%2C+W">Wei-jie Fu</a>, <a href="/search/hep-lat?searchtype=author&query=Gao%2C+F">Fei Gao</a>, <a href="/search/hep-lat?searchtype=author&query=Huang%2C+C">Chuang Huang</a>, <a href="/search/hep-lat?searchtype=author&query=Ihssen%2C+F">Friederike Ihssen</a>, <a href="/search/hep-lat?searchtype=author&query=Pawlowski%2C+J+M">Jan M. Pawlowski</a>, <a href="/search/hep-lat?searchtype=author&query=Rennecke%2C+F">Fabian Rennecke</a>, <a href="/search/hep-lat?searchtype=author&query=Sattler%2C+F+R">Franz R. Sattler</a>, <a href="/search/hep-lat?searchtype=author&query=Tan%2C+Y">Yang-yang Tan</a>, <a href="/search/hep-lat?searchtype=author&query=Wen%2C+R">Rui Wen</a>, <a href="/search/hep-lat?searchtype=author&query=Yin%2C+S">Shi Yin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.19853v1-abstract-short" style="display: inline;"> The chiral crossover of QCD at finite temperature and vanishing baryon density turns into a second order phase transition if lighter than physical quark masses are considered. If this transition occurs sufficiently close to the physical point, its universal critical behaviour would largely control the physics of the QCD phase transition. We quantify the size of this region in QCD using functional… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.19853v1-abstract-full').style.display = 'inline'; document.getElementById('2310.19853v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.19853v1-abstract-full" style="display: none;"> The chiral crossover of QCD at finite temperature and vanishing baryon density turns into a second order phase transition if lighter than physical quark masses are considered. If this transition occurs sufficiently close to the physical point, its universal critical behaviour would largely control the physics of the QCD phase transition. We quantify the size of this region in QCD using functional approaches, both Dyson-Schwinger equations and the functional renormalisation group. The latter allows us to study both critical and non-critical effects on an equal footing, facilitating a precise determination of the scaling regime. We find that the physical point is far away from the critical region. Importantly, we show that the physics of the chiral crossover is dominated by soft modes even far beyond the critical region. While scaling functions determine all thermodynamic properties of the system in the critical region, the order parameter potential is the relevant quantity away from it. We compute this potential in QCD using the functional renormalisation group and Dyson-Schwinger equations and provide a simple parametrisation for phenomenological applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.19853v1-abstract-full').style.display = 'none'; document.getElementById('2310.19853v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7+8 pages, 5+4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.14597">arXiv:2310.14597</a> <span> [<a href="https://arxiv.org/pdf/2310.14597">pdf</a>, <a href="https://arxiv.org/format/2310.14597">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.109.014010">10.1103/PhysRevD.109.014010 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unified description of the $Qs \bar q \bar q$ molecular bound states, molecular resonances and compact tetraquark states in the quark potential model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Yan-Ke Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Wu%2C+W">Wei-Lin Wu</a>, <a href="/search/hep-lat?searchtype=author&query=Meng%2C+L">Lu Meng</a>, <a href="/search/hep-lat?searchtype=author&query=Zhu%2C+S">Shi-Lin Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.14597v2-abstract-short" style="display: inline;"> We calculate the mass spectrum of the $Qs\bar q \bar q$ $(Q=c, b)$ tetraquark states with $J^P=(0,1,2)^+$ using the AL1 quark potential model, which successfully describes the conventional hadron spectrum. We employ the Gaussian expansion method to solve the four-body Schr枚dinger equation, and use the complex scaling method to identify the resonances. With the notation… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.14597v2-abstract-full').style.display = 'inline'; document.getElementById('2310.14597v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.14597v2-abstract-full" style="display: none;"> We calculate the mass spectrum of the $Qs\bar q \bar q$ $(Q=c, b)$ tetraquark states with $J^P=(0,1,2)^+$ using the AL1 quark potential model, which successfully describes the conventional hadron spectrum. We employ the Gaussian expansion method to solve the four-body Schr枚dinger equation, and use the complex scaling method to identify the resonances. With the notation $T_{Q s, I(J)}^{\text {Theo. }}(M)$, we find several near-threshold bound states and resonances, including $T_{cs,0(0)}^{\mathrm{Theo.}}(2350)$, $T_{cs,0(0)}^{\mathrm{Theo.}}(2906)$, $T_{bs,0(0)}^{\mathrm{Theo.}}(5781)$, $T_{bs,0(1)}^{\mathrm{Theo.}}(5840)$, and $T_{bs,0(0)}^{\mathrm{Theo.}}(6240)$ which are close to the $D\bar{K}$, $D^*\bar{K}^*$, $\bar{B}\bar{K}$, $\bar{B}^*\bar{K}$ and $\bar{B}^*\bar{K}^*$ thresholds, respectively. Furthermore, their spatial structures clearly support their molecular natures. The resonance $T_{cs,0(0)}^{\mathrm{Theo.}}(2906)$ has a mass of $2906$ MeV, a width of $20$ MeV, and quantum numbers $I(J^P)=0(0^+)$, which may serve as a good candidate for the experimental $T_{cs0}(2900)$ state. We strongly urge the experimental search of the predicted states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.14597v2-abstract-full').style.display = 'none'; document.getElementById('2310.14597v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures, 3 tables. Version accepted by PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D 109, 014010 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.13354">arXiv:2310.13354</a> <span> [<a href="https://arxiv.org/pdf/2310.13354">pdf</a>, <a href="https://arxiv.org/format/2310.13354">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.108.114016">10.1103/PhysRevD.108.114016 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tetraquark bound states in constituent quark models: benchmark test calculations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Meng%2C+L">Lu Meng</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Yan-Ke Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Ma%2C+Y">Yao Ma</a>, <a href="/search/hep-lat?searchtype=author&query=Zhu%2C+S">Shi-Lin Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.13354v2-abstract-short" style="display: inline;"> We investigate the tetraquark bound states that are manifestly exotic using three distinct few-body methods: Gaussian Expansion Method (GEM), Resonating Group Method (RGM), and Diffusion Monte Carlo (DMC). We refer to manifestly exotic states that do not involve a mixture with the conventional mesons through the creation and annihilation of $n\bar{n}$, where $n=u, d$. Our calculations are conducte… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.13354v2-abstract-full').style.display = 'inline'; document.getElementById('2310.13354v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.13354v2-abstract-full" style="display: none;"> We investigate the tetraquark bound states that are manifestly exotic using three distinct few-body methods: Gaussian Expansion Method (GEM), Resonating Group Method (RGM), and Diffusion Monte Carlo (DMC). We refer to manifestly exotic states that do not involve a mixture with the conventional mesons through the creation and annihilation of $n\bar{n}$, where $n=u, d$. Our calculations are conducted with two types of quark models: the pure constituent quark model featuring one-gluon-exchange interactions and confinement interactions, and the chiral constituent quark model, supplemented by extra one-boson-exchange interactions. This study represents a comprehensive benchmark test of various few-body methods and quark models. Our findings reveal the superiority of GEM over RGM and DMC methods based on present implements for the tetraquark bound states. Additionally, we observe a tendency for the chiral quark model to overestimate the binding energies. We systematically explore the fully, triply, doubly, and singly heavy tetraquark states with $J^P=0^+,1^+,2^+$, encompassing over 150 states in total. We successfully identify several bound states, including $[cc\bar{n}\bar{n}]_{J^{P}=1^{+}}^{I=0}$, $[bb\bar{n}\bar{n}]_{J^{P}=1^{+}}^{I=0}$, $[bc\bar{n}\bar{n}]_{J^{P}=0^{+},1^{+},2^{+}}^{I=0}$, $[bs\bar{n}\bar{n}]_{J^{P}=0^{+},1^{+}}^{I=0}$, $[cs\bar{n}\bar{n}]_{J^{P}=0^{+}}^{I=0}$, and $[bb\bar{n}\bar{s}]_{J^{P}=1^{+}}$, all found to be bound states below the dimeson thresholds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.13354v2-abstract-full').style.display = 'none'; document.getElementById('2310.13354v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 7 figures and 5 Tables. Version accepted by PRD</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.17068">arXiv:2309.17068</a> <span> [<a href="https://arxiv.org/pdf/2309.17068">pdf</a>, <a href="https://arxiv.org/format/2309.17068">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.109.074001">10.1103/PhysRevD.109.074001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Doubly heavy tetraquark states in the constituent quark model using diffusion Monte Carlo method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Ma%2C+Y">Yao Ma</a>, <a href="/search/hep-lat?searchtype=author&query=Meng%2C+L">Lu Meng</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Yan-Ke Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Zhu%2C+S">Shi-Lin Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.17068v2-abstract-short" style="display: inline;"> We use the diffusion Monte Carlo method to calculate the doubly heavy tetraquark $T_{cc}$ system in two kinds of constituent quark models, the pure constituent quark model AL1/AP1 and the chiral constituent quark model. When the discrete configurations are complete and no spatial clustering is preseted, the AL1/AP1 model gives an energy of $T_{cc}$ close to the $DD^*$ threshold, and the chiral con… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.17068v2-abstract-full').style.display = 'inline'; document.getElementById('2309.17068v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.17068v2-abstract-full" style="display: none;"> We use the diffusion Monte Carlo method to calculate the doubly heavy tetraquark $T_{cc}$ system in two kinds of constituent quark models, the pure constituent quark model AL1/AP1 and the chiral constituent quark model. When the discrete configurations are complete and no spatial clustering is preseted, the AL1/AP1 model gives an energy of $T_{cc}$ close to the $DD^*$ threshold, and the chiral constituent quark model yields a deeply bound state. We further calculate all doubly heavy tetraquark systems with $J^P=0^+,1^+,2^+$, and provide the binding energies of systems with bound states. The $I(J^P)=0(0^+)$ $bc\bar{n}\bar{n}$, $0(1^+)$ $bb\bar{n}\bar{n}$, $0(1^+)$ $bc\bar{n}\bar{n}$, $\frac{1}{2}(1^+)$ $bb\bar{s}\bar{n}$ systems have bound states in all three models. Since the DMC method has almost no restriction on the spatial part, the resulting bound states have greater binding energies than those obtained in previous works. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.17068v2-abstract-full').style.display = 'none'; document.getElementById('2309.17068v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 1 figure. Comments are welcomed</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 109, 074001 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.09662">arXiv:2309.09662</a> <span> [<a href="https://arxiv.org/pdf/2309.09662">pdf</a>, <a href="https://arxiv.org/format/2309.09662">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Radiative transition decay width of $蠄_2(3823)\rightarrow纬蠂_{c1}$ from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Li%2C+N">Ning Li</a>, <a href="/search/hep-lat?searchtype=author&query=Gao%2C+Y">Yan Gao</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+F">Feiyu Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Jiang%2C+X">Xiangyu Jiang</a>, <a href="/search/hep-lat?searchtype=author&query=Shi%2C+C">Chunjiang Shi</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+W">Wei Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.09662v1-abstract-short" style="display: inline;"> We present an exploratory $N_f=2$ lattice QCD study of $蠄_2(3823)\to 纬蠂_{c1}$ at a pion mass $m_蟺\approx 350$~MeV. The related two-point and three-piont functions are calculated using the distillation method. The electromagnetic multipole form factor $\hat{V}(0)=2.083(11)$ for $J/蠄\to纬畏_c$ is consistent with previous lattice results, the form factors $\hat{E}_1(0)$, $\hat{M}_2(0)$ and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.09662v1-abstract-full').style.display = 'inline'; document.getElementById('2309.09662v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.09662v1-abstract-full" style="display: none;"> We present an exploratory $N_f=2$ lattice QCD study of $蠄_2(3823)\to 纬蠂_{c1}$ at a pion mass $m_蟺\approx 350$~MeV. The related two-point and three-piont functions are calculated using the distillation method. The electromagnetic multipole form factor $\hat{V}(0)=2.083(11)$ for $J/蠄\to纬畏_c$ is consistent with previous lattice results, the form factors $\hat{E}_1(0)$, $\hat{M}_2(0)$ and $\hat{E}_3(0)$ for $螕(蠂_{c2}\to纬J/蠄)$ have the same hierarchy as that derived from experiments and the predicted decay width $螕(蠂_{c2}\to纬J/蠄)=368(5)~\text{keV}$ is in excellent agreement with the PDG value $374(10)~\text{keV}$ and previous lattice QCD results in the quenched approximation. The same strategy is applied to the study of the process $蠄_2(3823)\to 纬蠂_{c1}$ and the partial decay width is predicted to be $337(27)~\text{keV}$. According to the BESIII constraints on the $蠄_2(3823)$ decay channels and some phenomenological results, we estimate the total width $螕(蠄_2(3823))=520(100)~\text{keV}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.09662v1-abstract-full').style.display = 'none'; document.getElementById('2309.09662v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.12424">arXiv:2308.12424</a> <span> [<a href="https://arxiv.org/pdf/2308.12424">pdf</a>, <a href="https://arxiv.org/format/2308.12424">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.109.034006">10.1103/PhysRevD.109.034006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Virtual states in the coupled-channel problems with an improved complex scaling method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Yan-Ke Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Meng%2C+L">Lu Meng</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+Z">Zi-Yang Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Zhu%2C+S">Shi-Lin Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.12424v2-abstract-short" style="display: inline;"> We improve the complex scaling method (CSM) to obtain virtual states, which were previously challenging in the conventional CSM. Our approach solves the Schr枚dinger equation in the momentum space as an eigenvalue problem by choosing the flexible contours. It proves to be highly effective in identifying the poles across the different Riemann sheets in the multichannel scatterings. It is more straig… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.12424v2-abstract-full').style.display = 'inline'; document.getElementById('2308.12424v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.12424v2-abstract-full" style="display: none;"> We improve the complex scaling method (CSM) to obtain virtual states, which were previously challenging in the conventional CSM. Our approach solves the Schr枚dinger equation in the momentum space as an eigenvalue problem by choosing the flexible contours. It proves to be highly effective in identifying the poles across the different Riemann sheets in the multichannel scatterings. It is more straightforward and efficient than searching for the zeros of the Fredholm determinant of the Lippmann-Schwinger equation using the root-finding algorithms. This advancement significantly extends the capabilities of the CSM in accurately characterizing the resonances and virtual states in quantum systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.12424v2-abstract-full').style.display = 'none'; document.getElementById('2308.12424v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 14 figures, 2 tables. Version accepted by PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D 109, 034006 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.12884">arXiv:2306.12884</a> <span> [<a href="https://arxiv.org/pdf/2306.12884">pdf</a>, <a href="https://arxiv.org/format/2306.12884">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Decays of $1^{-+}$ Charmoniumlike Hybrid </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Shi%2C+C">Chunjiang Shi</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&query=Jiang%2C+X">Xiangyu Jiang</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhaofeng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+W">Wei Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.12884v2-abstract-short" style="display: inline;"> By extracting the transition amplitudes, we give the first lattice QCD prediction of the two-body decay partial widths of the $1^{-+}$ charmoniumlike hybrid $畏_{c1}$. Given the calculated mass value $m_{畏_{c1}}=4.329(36)$ GeV, the $畏_{c1}$ decay is dominated by the open charm modes $D_1\bar{D}$, $D^*\bar{D}$ and $D^*\bar{D}^*$ with partial widths of $258(133)$ MeV, $88(18)$ MeV and $150(118)$ MeV,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.12884v2-abstract-full').style.display = 'inline'; document.getElementById('2306.12884v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.12884v2-abstract-full" style="display: none;"> By extracting the transition amplitudes, we give the first lattice QCD prediction of the two-body decay partial widths of the $1^{-+}$ charmoniumlike hybrid $畏_{c1}$. Given the calculated mass value $m_{畏_{c1}}=4.329(36)$ GeV, the $畏_{c1}$ decay is dominated by the open charm modes $D_1\bar{D}$, $D^*\bar{D}$ and $D^*\bar{D}^*$ with partial widths of $258(133)$ MeV, $88(18)$ MeV and $150(118)$ MeV, respectively. The coupling of $畏_{c1}$ to $蠂_{c1}$ plus a flavor singlet pseudoscalar is not small, but $蠂_{c1}畏$ decay is suppressed by the small $畏-畏'$ mixing angle. The partial width of $畏_{c1}\to 畏_c畏'$ is estimated to be around 1 MeV. We suggest experiments to search for $畏_{c1}$ in the $P$-wave $D^*\bar{D}$ and $D^*\bar{D}^*$ systems. Especially, the polarization of $D^*\bar{D}^*$ can be used to distinguish the $1^{-+}$ product (total spin $S=1$) from $1^{--}$ products ($S=0$). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.12884v2-abstract-full').style.display = 'none'; document.getElementById('2306.12884v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 7 figures. Revised to article format</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.01659">arXiv:2302.01659</a> <span> [<a href="https://arxiv.org/pdf/2302.01659">pdf</a>, <a href="https://arxiv.org/format/2302.01659">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.108.054506">10.1103/PhysRevD.108.054506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> RI/(S)MOM renormalizations of overlap quark bilinears with different levels of hypercubic smearing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Bi%2C+Y">Yujiang Bi</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&query=He%2C+F">Fangcheng He</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+K">Keh-Fei Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhaofeng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhao%2C+D">Dian-Jun Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.01659v2-abstract-short" style="display: inline;"> On configurations with 2+1-flavor dynamical domain-wall fermions, we calculate the RI/(S)MOM renormalization constants (RC) of overlap quark bilinears. Hypercubic (HYP) smearing is used to construct the overlap Dirac operator. We investigate the possible effects of the smearing on discretization errors in the RCs by varying the level of smearing from 0 to 1 and 2. The lattice is of size… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.01659v2-abstract-full').style.display = 'inline'; document.getElementById('2302.01659v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.01659v2-abstract-full" style="display: none;"> On configurations with 2+1-flavor dynamical domain-wall fermions, we calculate the RI/(S)MOM renormalization constants (RC) of overlap quark bilinears. Hypercubic (HYP) smearing is used to construct the overlap Dirac operator. We investigate the possible effects of the smearing on discretization errors in the RCs by varying the level of smearing from 0 to 1 and 2. The lattice is of size $32^3\times64$ and with lattice spacing $1/a=2.383(9)$ GeV. The RCs in the $\overline{\rm MS}$ scheme at 2 GeV are given at the end, with the uncertainty of $Z_T$ reaching $\le1$% for the tensor current. Results of the renormalized quark masses and hadron matrix elements show that the renormalization procedure suppresses the $\sim$ 30% difference of the bare quantities with or without HYP smearing into the 3%-5% level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.01659v2-abstract-full').style.display = 'none'; document.getElementById('2302.01659v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages, 14 figures. Statistics increased for computing $Z_A$. Two graphs added for illustration. Main results not changed. References and acknowledgements added. Match the version published on Phys. Rev. D</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D 108 (2023) 5, 054506 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.09021">arXiv:2211.09021</a> <span> [<a href="https://arxiv.org/pdf/2211.09021">pdf</a>, <a href="https://arxiv.org/format/2211.09021">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.054035">10.1103/PhysRevD.107.054035 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ground state baryons in the flux-tube three-body confinement model using Diffusion Monte Carlo </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Ma%2C+Y">Yao Ma</a>, <a href="/search/hep-lat?searchtype=author&query=Meng%2C+L">Lu Meng</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Yan-Ke Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Zhu%2C+S">Shi-Lin Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.09021v2-abstract-short" style="display: inline;"> We make a systematical diffusion Monte Carlo (DMC) calculation for all ground state baryons in two confinement scenarios, the pairwise confinement and the three-body flux-tube confinement. With the baryons as an example, we illustrate a feasible procedure to investigate the few-quark states with possible few-body confinement mechanisms, which can be extended to the multiquark states easily. For ea… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.09021v2-abstract-full').style.display = 'inline'; document.getElementById('2211.09021v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.09021v2-abstract-full" style="display: none;"> We make a systematical diffusion Monte Carlo (DMC) calculation for all ground state baryons in two confinement scenarios, the pairwise confinement and the three-body flux-tube confinement. With the baryons as an example, we illustrate a feasible procedure to investigate the few-quark states with possible few-body confinement mechanisms, which can be extended to the multiquark states easily. For each baryon, we extract the mass, mean-square radius, charge radius, and the quark distributions. We use the Jackknife resampling method to estimate the statistical uncertainties of masses to be less than 1 MeV. To determine the baryon charge radii, we include the constituent quark size effect, which is fixed by the experimental and lattice QCD results. Our results show that both two-body and three-body confinement mechanisms can give a good description of the experimental data if the parameters are chosen properly. In the flux-tube confinement, introducing different tension parameters for the baryons and mesons are necessary, specifically, $蟽_Y= 0.9204 蟽_{Q\bar{Q}}$. The lesson from the calculation of the nucleon mass with the DMC method is that the improper pre-assignment of the channels may prevent us from obtaining the real ground state. With this experience, we obtain the real ground state (the $畏_c 畏_c$ threshold with the di-meson configuration) of the $cc\bar{c}\bar{c}$ system with $J^{PC}=0^{++}$ starting from the diquark-antidiquark spin-color channels alone, which is hard to achieve in the variational method and was not obtained in the previous DMC calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.09021v2-abstract-full').style.display = 'none'; document.getElementById('2211.09021v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 18 figures. The Supplement material is attached in the source code of LaTeX. Comments are welcomed</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 107, 054035 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.02184">arXiv:2210.02184</a> <span> [<a href="https://arxiv.org/pdf/2210.02184">pdf</a>, <a href="https://arxiv.org/format/2210.02184">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/ad3b9c">10.1088/1674-1137/ad3b9c <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Rediscovery of Numerical L眉scher's Formula from the Neural Network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Lu%2C+Y">Yu Lu</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+Y">Yi-Jia Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Wu%2C+J">Jia-Jun Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.02184v2-abstract-short" style="display: inline;"> We present that by predicting the spectrum in discrete space from the phase shift in continuous space, the neural network can remarkably reproduce the numerical L眉scher's formula to a high precision. The model-independent property of the L眉scher's formula is naturally realized by the generalizability of the neural network. This exhibits the great potential of the neural network to extract model-in… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.02184v2-abstract-full').style.display = 'inline'; document.getElementById('2210.02184v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.02184v2-abstract-full" style="display: none;"> We present that by predicting the spectrum in discrete space from the phase shift in continuous space, the neural network can remarkably reproduce the numerical L眉scher's formula to a high precision. The model-independent property of the L眉scher's formula is naturally realized by the generalizability of the neural network. This exhibits the great potential of the neural network to extract model-independent relation between model-dependent quantities, and this data-driven approach could greatly facilitate the discovery of the physical principles underneath the intricate data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.02184v2-abstract-full').style.display = 'none'; document.getElementById('2210.02184v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 figures, accepted by Chinese Physics C</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.08464">arXiv:2209.08464</a> <span> [<a href="https://arxiv.org/pdf/2209.08464">pdf</a>, <a href="https://arxiv.org/ps/2209.08464">ps</a>, <a href="https://arxiv.org/format/2209.08464">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP12(2022)033">10.1007/JHEP12(2022)033 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Partial wave analysis of the charmed baryon hadronic decay $螞_c^+\to螞蟺^+蟺^0$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/hep-lat?searchtype=author&query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/hep-lat?searchtype=author&query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/hep-lat?searchtype=author&query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/hep-lat?searchtype=author&query=Albrecht%2C+M">M. Albrecht</a>, <a href="/search/hep-lat?searchtype=author&query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/hep-lat?searchtype=author&query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/hep-lat?searchtype=author&query=An%2C+M+R">M. R. An</a>, <a href="/search/hep-lat?searchtype=author&query=An%2C+Q">Q. An</a>, <a href="/search/hep-lat?searchtype=author&query=Bai%2C+X+H">X. H. Bai</a>, <a href="/search/hep-lat?searchtype=author&query=Bai%2C+Y">Y. Bai</a>, <a href="/search/hep-lat?searchtype=author&query=Bakina%2C+O">O. Bakina</a>, <a href="/search/hep-lat?searchtype=author&query=Ferroli%2C+R+B">R. Baldini Ferroli</a>, <a href="/search/hep-lat?searchtype=author&query=Balossino%2C+I">I. Balossino</a>, <a href="/search/hep-lat?searchtype=author&query=Ban%2C+Y">Y. Ban</a>, <a href="/search/hep-lat?searchtype=author&query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/hep-lat?searchtype=author&query=Becker%2C+D">D. Becker</a>, <a href="/search/hep-lat?searchtype=author&query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/hep-lat?searchtype=author&query=Berger%2C+N">N. Berger</a>, <a href="/search/hep-lat?searchtype=author&query=Bertani%2C+M">M. Bertani</a>, <a href="/search/hep-lat?searchtype=author&query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/hep-lat?searchtype=author&query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/hep-lat?searchtype=author&query=Bloms%2C+J">J. Bloms</a>, <a href="/search/hep-lat?searchtype=author&query=Bortone%2C+A">A. Bortone</a>, <a href="/search/hep-lat?searchtype=author&query=Boyko%2C+I">I. Boyko</a> , et al. (555 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.08464v3-abstract-short" style="display: inline;"> Based on $e^+e^-$ collision samples corresponding to an integrated luminosity of 4.4 $\mbox{fb$^{-1}$}$ collected with the BESIII detector at center-of-mass energies between $4.6\,\,\mathrm{GeV}$ and $4.7\,\,\mathrm{GeV}$, a partial wave analysis of the charmed baryon hadronic decay $螞_c^+\to螞蟺^+蟺^0$ is performed, and the decays $螞_c^+\to螞蟻(770)^{+}$ and $螞_c^+\to危(1385)蟺$ are studied for the firs… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.08464v3-abstract-full').style.display = 'inline'; document.getElementById('2209.08464v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.08464v3-abstract-full" style="display: none;"> Based on $e^+e^-$ collision samples corresponding to an integrated luminosity of 4.4 $\mbox{fb$^{-1}$}$ collected with the BESIII detector at center-of-mass energies between $4.6\,\,\mathrm{GeV}$ and $4.7\,\,\mathrm{GeV}$, a partial wave analysis of the charmed baryon hadronic decay $螞_c^+\to螞蟺^+蟺^0$ is performed, and the decays $螞_c^+\to螞蟻(770)^{+}$ and $螞_c^+\to危(1385)蟺$ are studied for the first time. Making use of the world-average branching fraction $\mathcal{B}(螞_c^+\to螞蟺^+蟺^0)$, their branching fractions are determined to be \begin{eqnarray*} \begin{aligned} \mathcal{B}(螞_c^+\to螞蟻(770)^+)=&(4.06\pm0.30\pm0.35\pm0.23)\times10^{-2},\\ \mathcal{B}(螞_c^+\to危(1385)^+蟺^0)=&(5.86\pm0.49\pm0.52\pm0.35)\times10^{-3},\\ \mathcal{B}(螞_c^+\to危(1385)^0蟺^+)=&(6.47\pm0.59\pm0.66\pm0.38)\times10^{-3},\\ \end{aligned} \end{eqnarray*} where the first uncertainties are statistical, the second are systematic, and the third are from the uncertainties of the branching fractions $\mathcal{B}(螞_c^+\to螞蟺^+蟺^0)$ and $\mathcal{B}(危(1385)\to螞蟺)$. In addition, %according to amplitudes determined from the partial wave analysis, the decay asymmetry parameters are measured to be $伪_{螞蟻(770)^+}=-0.763\pm0.053\pm0.045$, $伪_{危(1385)^{+}蟺^0}=-0.917\pm0.069\pm0.056$, and $伪_{危(1385)^{0}蟺^+}=-0.789\pm0.098\pm0.056$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.08464v3-abstract-full').style.display = 'none'; document.getElementById('2209.08464v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.08041">arXiv:2209.08041</a> <span> [<a href="https://arxiv.org/pdf/2209.08041">pdf</a>, <a href="https://arxiv.org/format/2209.08041">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Fundamental Physics in Small Experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Blum%2C+T">T. Blum</a>, <a href="/search/hep-lat?searchtype=author&query=Winter%2C+P">P. Winter</a>, <a href="/search/hep-lat?searchtype=author&query=Bhattacharya%2C+T">T. Bhattacharya</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+T+Y">T. Y. Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Cirigliano%2C+V">V. Cirigliano</a>, <a href="/search/hep-lat?searchtype=author&query=DeMille%2C+D">D. DeMille</a>, <a href="/search/hep-lat?searchtype=author&query=Gerarci%2C+A">A. Gerarci</a>, <a href="/search/hep-lat?searchtype=author&query=Hutzler%2C+N+R">N. R. Hutzler</a>, <a href="/search/hep-lat?searchtype=author&query=Ito%2C+T+M">T. M. Ito</a>, <a href="/search/hep-lat?searchtype=author&query=Kim%2C+O">O. Kim</a>, <a href="/search/hep-lat?searchtype=author&query=Lehnert%2C+R">R. Lehnert</a>, <a href="/search/hep-lat?searchtype=author&query=Morse%2C+W+M">W. M. Morse</a>, <a href="/search/hep-lat?searchtype=author&query=Semertzidis%2C+Y+K">Y. K. Semertzidis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.08041v2-abstract-short" style="display: inline;"> High energy physics aims to understand the fundamental laws of particles and their interactions at both the largest and smallest scales of the universe. This typically means probing very high energies or large distances or using high-intensity beams, which often requires large-scale experiments. A complementary approach is offered through high-precision measurements in small- and mid-scale size ex… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.08041v2-abstract-full').style.display = 'inline'; document.getElementById('2209.08041v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.08041v2-abstract-full" style="display: none;"> High energy physics aims to understand the fundamental laws of particles and their interactions at both the largest and smallest scales of the universe. This typically means probing very high energies or large distances or using high-intensity beams, which often requires large-scale experiments. A complementary approach is offered through high-precision measurements in small- and mid-scale size experiments, often at lower energies. The field of such high-precision experiments has seen tremendous progress and importance for particle physics for at least two reasons. First, they exploit synergies to adjacent areas of particle physics and benefit by many recent advances in experimental techniques. Together with intensified phenomenological explorations, these advances led to the realization that challenges associated with weak couplings or the expected suppression factors from the mass scale of new physics can be overcome with such methods. Second, many of these measurements add a new set of particle physics phenomena and observables that can be reached compared to the more conventional methodologies using high energies. Combining high-precision, smaller-scale measurements with the large-scale efforts therefore casts a wider and tighter net for possible effects originating from physics beyond the Standard Model. This report presents a broad set of small-scale research projects that could provide key new precision measurements in the areas of electric dipole moments, magnetic dipole moments, fermion flavor violation, tests of spacetime symmetries, and tests with gravity. The growing impact of these high-precision studies in high energy physics and the complementary input they provide compared to large-scale efforts warrants strong support over the next decades. In particular, EDM searches are expected to improve sensitivities by four or more orders of magnitude in the next decade or two. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.08041v2-abstract-full').style.display = 'none'; document.getElementById('2209.08041v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Snowmass 2021 Community Study on the Future of Particle Physics, Rare Processes and Precision Measurements Frontier, Topical Group RF3 Report v2: 3 additional references and one co-author added</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.04694">arXiv:2207.04694</a> <span> [<a href="https://arxiv.org/pdf/2207.04694">pdf</a>, <a href="https://arxiv.org/format/2207.04694">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.054511">10.1103/PhysRevD.107.054511 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $1^{-+}$ Hybrid in $J/蠄$ Radiative Decays from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chen%2C+F">Feiyu Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Jiang%2C+X">Xiangyu Jiang</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhaofeng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Shi%2C+C">Chunjiang Shi</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+W">Wei Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.04694v3-abstract-short" style="display: inline;"> We present the first theoretical prediction of the production rate of $1^{-+}$ light hybrid meson $畏_1$ in $J/蠄$ radiative decays. In the $N_f=2$ lattice QCD formalism with the pion mass $m_蟺\approx 350$ MeV, the related electromagnetic multipole form factors are extracted from the three-point functions that involve necessarily quark annihilation diagrams, which are calculated through the distilla… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.04694v3-abstract-full').style.display = 'inline'; document.getElementById('2207.04694v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.04694v3-abstract-full" style="display: none;"> We present the first theoretical prediction of the production rate of $1^{-+}$ light hybrid meson $畏_1$ in $J/蠄$ radiative decays. In the $N_f=2$ lattice QCD formalism with the pion mass $m_蟺\approx 350$ MeV, the related electromagnetic multipole form factors are extracted from the three-point functions that involve necessarily quark annihilation diagrams, which are calculated through the distillation method. The partial width of $J/蠄\to 纬畏_1$ is determined to be $2.29(77)~\mathrm{eV}$ at the $畏_1$ mass $m_{畏_1}=2.23(4)$ GeV. If $畏_1$ corresponds to the recently observed $畏_1(1855)$ in the process $J/蠄\to 纬畏_1(1855)\to 纬畏畏'$ by BESIII, then the branching fraction $\mathrm{Br}(J/蠄\to 纬畏_1(1855))$ is estimated to be $6.2(2.2)\times 10^{-5}$, which implies $\mathrm{Br}(畏_1(1855)\to 畏畏')\sim 4.3\%$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.04694v3-abstract-full').style.display = 'none'; document.getElementById('2207.04694v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">v2: Published in prd</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.01819">arXiv:2207.01819</a> <span> [<a href="https://arxiv.org/pdf/2207.01819">pdf</a>, <a href="https://arxiv.org/format/2207.01819">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.4.043153">10.1103/PhysRevResearch.4.043153 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Variational Tensor Network Operator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Yu-Hsueh Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Hsu%2C+K">Ke Hsu</a>, <a href="/search/hep-lat?searchtype=author&query=Tu%2C+W">Wei-Lin Tu</a>, <a href="/search/hep-lat?searchtype=author&query=Lee%2C+H">Hyun-Yong Lee</a>, <a href="/search/hep-lat?searchtype=author&query=Kao%2C+Y">Ying-Jer Kao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.01819v1-abstract-short" style="display: inline;"> We propose a simple and generic construction of the variational tensor network operators to study the quantum spin systems by the synergy of ideas from the imaginary-time evolution and variational optimization of trial wave functions. By applying these operators to simple initial states, accurate variational ground state wave functions with extremely few parameters can be obtained. Furthermore, th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.01819v1-abstract-full').style.display = 'inline'; document.getElementById('2207.01819v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.01819v1-abstract-full" style="display: none;"> We propose a simple and generic construction of the variational tensor network operators to study the quantum spin systems by the synergy of ideas from the imaginary-time evolution and variational optimization of trial wave functions. By applying these operators to simple initial states, accurate variational ground state wave functions with extremely few parameters can be obtained. Furthermore, the framework can be applied to study spontaneously symmetry breaking, symmetry protected topological, and intrinsic topologically ordered phases, and we show that symmetries of the local tensors associated with these phases can emerge directly after the optimization without any gauge fixing. This provides a universal way to identify quantum phase transitions without prior knowledge of the system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.01819v1-abstract-full').style.display = 'none'; document.getElementById('2207.01819v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 4, 043153 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.06185">arXiv:2206.06185</a> <span> [<a href="https://arxiv.org/pdf/2206.06185">pdf</a>, <a href="https://arxiv.org/format/2206.06185">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2022.137391">10.1016/j.physletb.2022.137391 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $T_{cc}^{+}(3875)$ relevant $DD^*$ scattering from $N_f=2$ lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chen%2C+S">Siyang Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Shi%2C+C">Chunjiang Shi</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhaofeng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+W">Wei Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+R">Renqiang Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.06185v3-abstract-short" style="display: inline;"> The $S$-wave $DD^*$ scattering in the isospin $I=0,1$ channels is studied in $N_f=2$ lattice QCD at $m_蟺\approx 350$ MeV. It is observed that the $DD^*$ interaction is repulsive in the $I=1$ channel when the $DD^*$ energy is near the $DD^*$ threshold. In contrast, the $DD^*$ interaction in the $I=0$ channel is definitely attractive in a wide range of the $DD^*$ energy. This is consistent with the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.06185v3-abstract-full').style.display = 'inline'; document.getElementById('2206.06185v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.06185v3-abstract-full" style="display: none;"> The $S$-wave $DD^*$ scattering in the isospin $I=0,1$ channels is studied in $N_f=2$ lattice QCD at $m_蟺\approx 350$ MeV. It is observed that the $DD^*$ interaction is repulsive in the $I=1$ channel when the $DD^*$ energy is near the $DD^*$ threshold. In contrast, the $DD^*$ interaction in the $I=0$ channel is definitely attractive in a wide range of the $DD^*$ energy. This is consistent with the isospin assignment $I=0$ for $T_{cc}^+(3875)$. By analyzing the components of the $DD^*$ correlation functions, it turns out that the quark diagram responsible for the different properties of $I=0,1$ $DD^*$ interactions can be understood as the charged $蟻$ meson exchange effect. This observation provides direct information on the internal dynamics of $T_{cc}^+(3875)$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.06185v3-abstract-full').style.display = 'none'; document.getElementById('2206.06185v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 14 figures, version to appear in Physics Letters B</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.02724">arXiv:2206.02724</a> <span> [<a href="https://arxiv.org/pdf/2206.02724">pdf</a>, <a href="https://arxiv.org/format/2206.02724">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.130.061901">10.1103/PhysRevLett.130.061901 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Radiative Decay Width of $J/蠄\to 纬畏_{(2)}$ from $N_f=2$ Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Jiang%2C+X">Xiangyu Jiang</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+F">Feiyu Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&query=Li%2C+N">Ning Li</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhaofeng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+W">Wei Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+R">Renqiang Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.02724v2-abstract-short" style="display: inline;"> The large radiative production rate for pseudoscalar mesons in the $J/蠄$ radiative decay remains elusive. We present the first lattice QCD calculation of partial decay width of $J/蠄$ radiatively decaying into $畏_{(2)}$, the $\mathrm{SU(2)}$ flavor singlet pseudoscalar meson, which confirms QCD $\mathrm{U_A(1)}$ anomaly enhancement to the coupling of gluons with flavor singlet pseudoscalar mesons.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.02724v2-abstract-full').style.display = 'inline'; document.getElementById('2206.02724v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.02724v2-abstract-full" style="display: none;"> The large radiative production rate for pseudoscalar mesons in the $J/蠄$ radiative decay remains elusive. We present the first lattice QCD calculation of partial decay width of $J/蠄$ radiatively decaying into $畏_{(2)}$, the $\mathrm{SU(2)}$ flavor singlet pseudoscalar meson, which confirms QCD $\mathrm{U_A(1)}$ anomaly enhancement to the coupling of gluons with flavor singlet pseudoscalar mesons. The lattice simulation is carried out using $N_f=2$ lattice QCD gauge configurations at the pion mass $m_蟺 \approx 350$ MeV. In particular, the distillation method has been utilized to calculate light quark loops. The results are reported here with the mass $m_{畏_{(2)}}= 718(8)$ MeV and the decay width $螕(J/蠄\to纬畏_{(2)})=0.385(45)$ keV. By assuming the dominance of $\mathrm{U_A(1)}$ anomaly and flavor singlet-octet mixing angle $胃=-24.5^\circ$, the production rates for the physical $畏$ and $畏'$ in $J/蠄$ radiative decay are predicted to be $1.15(14)\times 10^{-3}$ and $4.49(53)\times 10^{-3}$, respectively, which agree well with the experimental measurement data. Our study manifests the potential of lattice QCD studies on the light hadron production in $J/蠄$ radiative decays. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.02724v2-abstract-full').style.display = 'none'; document.getElementById('2206.02724v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures, 2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 130, 061901 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.12541">arXiv:2205.12541</a> <span> [<a href="https://arxiv.org/pdf/2205.12541">pdf</a>, <a href="https://arxiv.org/format/2205.12541">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.094510">10.1103/PhysRevD.107.094510 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $畏$-glueball mixing from $N_f=2$ lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Jiang%2C+X">Xiangyu Jiang</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+W">Wei Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+F">Feiyu Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhaofeng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+R">Renqiang Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.12541v2-abstract-short" style="display: inline;"> We perform the first lattice study on the mixing of the isoscalar pseudoscalar meson $畏$ and the pseudoscalar glueball $G$ in the $N_f=2$ QCD at the pion mass $m_蟺\approx 350$ MeV. The $畏$ mass is determined to be $m_畏=714(6)(16)$ MeV. Through the Witten-Veneziano relation, this value can be matched to a mass value of $\sim 981$ MeV for the $\mathrm{SU(3)}$ counterpart of $畏$. Based on a large gau… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.12541v2-abstract-full').style.display = 'inline'; document.getElementById('2205.12541v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.12541v2-abstract-full" style="display: none;"> We perform the first lattice study on the mixing of the isoscalar pseudoscalar meson $畏$ and the pseudoscalar glueball $G$ in the $N_f=2$ QCD at the pion mass $m_蟺\approx 350$ MeV. The $畏$ mass is determined to be $m_畏=714(6)(16)$ MeV. Through the Witten-Veneziano relation, this value can be matched to a mass value of $\sim 981$ MeV for the $\mathrm{SU(3)}$ counterpart of $畏$. Based on a large gauge ensemble, the $畏-G$ mixing energy and the mixing angle are determined to be $|x|=107(15)(2)$ MeV and $|胃|=3.46(46)^\circ$ from the $畏-G$ correlators that are calculated using the distillation method. We conclude that the $畏-G$ mixing is tiny and the topology induced interaction contributes most of $畏$ mass owing to the QCD $\mathrm{U_A(1)}$ anomaly. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.12541v2-abstract-full').style.display = 'none'; document.getElementById('2205.12541v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 107, 094510 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.01556">arXiv:2204.01556</a> <span> [<a href="https://arxiv.org/pdf/2204.01556">pdf</a>, <a href="https://arxiv.org/format/2204.01556">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.074501">10.1103/PhysRevD.106.074501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topological susceptibility in finite temperature QCD with physical $(u/d, s, c)$ domain-wall quarks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Yu-Chih Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Chiu%2C+T">Ting-Wai Chiu</a>, <a href="/search/hep-lat?searchtype=author&query=Hsieh%2C+T">Tung-Han Hsieh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.01556v2-abstract-short" style="display: inline;"> We perform hybrid Monte-Carlo (HMC) simulation of lattice QCD with $N_f=2+1+1$ domain-wall quarks at the physical point, on the $64^3 \times (64,20,16,12,10,8,6)$ lattices, each with three lattice spacings. The lattice spacings and the bare quark masses are determined on the $64^4$ lattices. The resulting gauge ensembles provide a basis for studying finite temperature QCD with $N_f=2+1+1 $ domain-… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.01556v2-abstract-full').style.display = 'inline'; document.getElementById('2204.01556v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.01556v2-abstract-full" style="display: none;"> We perform hybrid Monte-Carlo (HMC) simulation of lattice QCD with $N_f=2+1+1$ domain-wall quarks at the physical point, on the $64^3 \times (64,20,16,12,10,8,6)$ lattices, each with three lattice spacings. The lattice spacings and the bare quark masses are determined on the $64^4$ lattices. The resulting gauge ensembles provide a basis for studying finite temperature QCD with $N_f=2+1+1 $ domain-wall quarks at the physical point. In this paper, we determine the topological susceptibility of the QCD vacuum for $T > T_c \sim 150 $ MeV. The topological charge of each gauge configuration is measured by the clover charge in the Wilson flow at the same flow time in physical units, and the topological susceptibility $ 蠂_t(a,T) $ is determined for each ensemble with lattice spacing $a$ and temperature $T$. Using the topological susceptibility $蠂_t(a,T) $ of 15 gauge ensembles with three lattice spacings and different temperatures in the range $T \sim 155-516 $ MeV, we extract the topological susceptibility $蠂_t(T)$ in the continuum limit. To compare our results with others, we survey the continuum extrapolated $蠂_t(T)$ in lattice QCD with $N_f=2+1(+1)$ dynamical quarks at/near the physical point, and discuss their discrepancies. Moreover, a detailed discussion on the reweighting method for domain-wall fermion is presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.01556v2-abstract-full').style.display = 'none'; document.getElementById('2204.01556v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">47 pages, 7 figures, v2: add a section on comparison with other lattice results and an appendix on renormalized chiral condensate, accepted for publication in PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> NTUTH-22-505A </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 106, 074501 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.02266">arXiv:2112.02266</a> <span> [<a href="https://arxiv.org/pdf/2112.02266">pdf</a>, <a href="https://arxiv.org/ps/2112.02266">ps</a>, <a href="https://arxiv.org/format/2112.02266">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Finite temperature QCD with physical $(u/d, s, c)$ domain-wall quarks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Yu-Chih Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Chiu%2C+T">Ting-Wai Chiu</a>, <a href="/search/hep-lat?searchtype=author&query=Hsieh%2C+T">Tung-Han Hsieh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.02266v2-abstract-short" style="display: inline;"> In order to understand the role of QCD in the early universe, we perform hybrid Monte-Carlo simulation of lattice QCD with $N_f=2+1+1$ optimal domain-wall quarks at the physical point, on the $64^3 \times (6,8,10,12,16,20,64)$ lattices, each with three lattice spacings. The lattice spacings and the bare quark masses are determined on the $64^4$ lattices. The resulting gauge ensembles provide a bas… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.02266v2-abstract-full').style.display = 'inline'; document.getElementById('2112.02266v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.02266v2-abstract-full" style="display: none;"> In order to understand the role of QCD in the early universe, we perform hybrid Monte-Carlo simulation of lattice QCD with $N_f=2+1+1$ optimal domain-wall quarks at the physical point, on the $64^3 \times (6,8,10,12,16,20,64)$ lattices, each with three lattice spacings. The lattice spacings and the bare quark masses are determined on the $64^4$ lattices. The resulting gauge ensembles provide a basis for studying finite temperature QCD with $N_f=2+1+1 $ domain-wall quarks at the physical point. In this Proceeding, we present our first result on the topological susceptibility of the QCD vacuum. The topological charge of each gauge configuration is measured by the clover charge in the Wilson flow at the same flow time in physical units, and the topological susceptibility $ 蠂_t(a,T) $ is determined for each ensemble with lattice spacing $a$ and temperature $T$. Using the topological susceptibility $蠂_t(a,T) $ of 15 gauge ensembles with three lattice spacings and different temperatures in the range $T \sim 155-516 $~MeV, we extract the topological susceptibility $蠂_t(T)$ in the continuum limit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.02266v2-abstract-full').style.display = 'none'; document.getElementById('2112.02266v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 1 figure, Proceedings of the 38th International Symposium on Lattice Field Theory, LATTICE 2021, 26th-30th July, 2021, Zoom/Gather@Massachusetts Institute of Technology</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> NTUTH-21-505A </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS LATTICE2021 (2022) 574 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.11929">arXiv:2111.11929</a> <span> [<a href="https://arxiv.org/pdf/2111.11929">pdf</a>, <a href="https://arxiv.org/format/2111.11929">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/accc1c">10.1088/1674-1137/accc1c <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Glueballs at Physical Pion Mass </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chen%2C+F">Feiyu Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Jiang%2C+X">Xiangyu Jiang</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+K">Keh-Fei Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+W">Wei Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.11929v1-abstract-short" style="display: inline;"> We study glueballs on two $N_f=2+1$ RBC/UKQCD gauge ensembles with physical quark masses at two lattice spacings. The statistical uncertainties of the glueball correlation functions are considerably reduced through the cluster decomposition error reduction (CDER) method. The Bethe-Salpeter wave functions are obtained for the scalar, tensor and pseudoscalar glueballs by using spatially extended glu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.11929v1-abstract-full').style.display = 'inline'; document.getElementById('2111.11929v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.11929v1-abstract-full" style="display: none;"> We study glueballs on two $N_f=2+1$ RBC/UKQCD gauge ensembles with physical quark masses at two lattice spacings. The statistical uncertainties of the glueball correlation functions are considerably reduced through the cluster decomposition error reduction (CDER) method. The Bethe-Salpeter wave functions are obtained for the scalar, tensor and pseudoscalar glueballs by using spatially extended glueball operators defined through the gauge potential $A_渭(x)$ in the Coulomb gauge. These wave functions show similar features of non-relativistic two-gluon systems, and they are used to optimize the signals of the related correlation functions at the early time regions. Consequently, the ground state masses can be extracted precisely. To the extent that the excited state contamination is not important, our calculation gives glueball masses at the physical pion mass for the first time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.11929v1-abstract-full').style.display = 'none'; document.getElementById('2111.11929v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.01755">arXiv:2110.01755</a> <span> [<a href="https://arxiv.org/pdf/2110.01755">pdf</a>, <a href="https://arxiv.org/format/2110.01755">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/ac3d8c">10.1088/1674-1137/ac3d8c <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Annihilation diagram contribution to charmonium masses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+R">Renqiang Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+W">Wei Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+F">Feiyu Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&query=Jiang%2C+X">Xiangyu Jiang</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhaofeng Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.01755v2-abstract-short" style="display: inline;"> In this work, we generate gauge configurations with $N_f=2$ dynamical charm quarks on anisotropic lattices. The mass shift of $1S$ and $1P$ charmonia owing to the charm quark annihilation effect can be investigated directly in a manner of unitary theory. The distillation method is adopted to treat the charm quark annihilation diagrams at a very precise level. For $1S$ charmonia, the charm quark an… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.01755v2-abstract-full').style.display = 'inline'; document.getElementById('2110.01755v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.01755v2-abstract-full" style="display: none;"> In this work, we generate gauge configurations with $N_f=2$ dynamical charm quarks on anisotropic lattices. The mass shift of $1S$ and $1P$ charmonia owing to the charm quark annihilation effect can be investigated directly in a manner of unitary theory. The distillation method is adopted to treat the charm quark annihilation diagrams at a very precise level. For $1S$ charmonia, the charm quark annihilation effect almost does not change the $J/蠄$ mass, but lifts the $畏_c$ mass by approximately 3-4 MeV. For $1P$ charmonia, this effect results in positive mass shifts of approximately 1 MeV for $蠂_{c1}$ and $h_c$, but decreases the $蠂_{c2}$ mass by approximately 3 MeV. We have not obtain a reliable result for the mass shift of $蠂_{c0}$. In addition, it is observed that the spin averaged mass of the spin-triplet $1P$ charmonia is in a good agreement with the $h_c$, as expected by the non-relativistic quark model and measured by experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.01755v2-abstract-full').style.display = 'none'; document.getElementById('2110.01755v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chinese Phys. C 46(2022) 043102 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.12749">arXiv:2107.12749</a> <span> [<a href="https://arxiv.org/pdf/2107.12749">pdf</a>, <a href="https://arxiv.org/format/2107.12749">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2022.136960">10.1016/j.physletb.2022.136960 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Glueball content of $畏_c$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+R">Renqiang Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+W">Wei Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&query=Gui%2C+L">Long-Cheng Gui</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhaofeng Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.12749v2-abstract-short" style="display: inline;"> We carry out the first lattice QCD derivation of the mixing energy and the mixing angle of the pseudoscalar charmonium and glueball on two gauge ensembles with $N_f=2$ degenerate dynamical charm quarks. The mixing energy is determined to be $49(6)$ MeV on the near physical charm ensemble, which seems insensitive to charm quark mass. By the assumption that $X(2370)$ is predominantly a pseudoscalar… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.12749v2-abstract-full').style.display = 'inline'; document.getElementById('2107.12749v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.12749v2-abstract-full" style="display: none;"> We carry out the first lattice QCD derivation of the mixing energy and the mixing angle of the pseudoscalar charmonium and glueball on two gauge ensembles with $N_f=2$ degenerate dynamical charm quarks. The mixing energy is determined to be $49(6)$ MeV on the near physical charm ensemble, which seems insensitive to charm quark mass. By the assumption that $X(2370)$ is predominantly a pseudoscalar glueball, the mixing angle is determined to be approximately $4.6(6)^\circ$, which results in a $+3.9(9)$ MeV mass shift of the ground state pseudoscalar charmonium. In the mean time, the mixing can raise the total width of the pseudoscalar charmonium by 7.2(8) MeV, which explains to some extent the relative large total width of the $畏_c$ meson. As a result, the branching fraction of $畏_c\to 纬纬$ can be understood in this $c\bar{c}$-glueball mixing framework. On the other hand, the possible discrepancy of the theoretical predictions and the experimental results of the partial width of $J/蠄\to纬畏_c$ cannot be alleviated by the $c\bar{c}$-glueball mixing picture yet, which demands future precise experimental measurements of this partial width. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.12749v2-abstract-full').style.display = 'none'; document.getElementById('2107.12749v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 9 figures;v2: accepted by Physics Letter B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 81T25 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Lett. B, 827(2022)136960 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.09131">arXiv:2104.09131</a> <span> [<a href="https://arxiv.org/pdf/2104.09131">pdf</a>, <a href="https://arxiv.org/ps/2104.09131">ps</a>, <a href="https://arxiv.org/format/2104.09131">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.012006">10.1103/PhysRevD.104.012006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Study of the decay $D^+\to K^*(892)^+ K_S^0$ in $D^+\to K^+ K_S^0 蟺^0$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/hep-lat?searchtype=author&query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/hep-lat?searchtype=author&query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/hep-lat?searchtype=author&query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/hep-lat?searchtype=author&query=Ahmed%2C+S">S. Ahmed</a>, <a href="/search/hep-lat?searchtype=author&query=Albrecht%2C+M">M. Albrecht</a>, <a href="/search/hep-lat?searchtype=author&query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/hep-lat?searchtype=author&query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/hep-lat?searchtype=author&query=An%2C+M+R">M. R. An</a>, <a href="/search/hep-lat?searchtype=author&query=An%2C+Q">Q. An</a>, <a href="/search/hep-lat?searchtype=author&query=Bai%2C+X+H">X. H. Bai</a>, <a href="/search/hep-lat?searchtype=author&query=Bai%2C+Y">Y. Bai</a>, <a href="/search/hep-lat?searchtype=author&query=Bakina%2C+O">O. Bakina</a>, <a href="/search/hep-lat?searchtype=author&query=Ferroli%2C+R+B">R. Baldini Ferroli</a>, <a href="/search/hep-lat?searchtype=author&query=Balossino%2C+I">I. Balossino</a>, <a href="/search/hep-lat?searchtype=author&query=Ban%2C+Y">Y. Ban</a>, <a href="/search/hep-lat?searchtype=author&query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/hep-lat?searchtype=author&query=Berger%2C+N">N. Berger</a>, <a href="/search/hep-lat?searchtype=author&query=Bertani%2C+M">M. Bertani</a>, <a href="/search/hep-lat?searchtype=author&query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/hep-lat?searchtype=author&query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/hep-lat?searchtype=author&query=Bloms%2C+J">J. Bloms</a>, <a href="/search/hep-lat?searchtype=author&query=Bortone%2C+A">A. Bortone</a>, <a href="/search/hep-lat?searchtype=author&query=Boyko%2C+I">I. Boyko</a>, <a href="/search/hep-lat?searchtype=author&query=Briere%2C+R+A">R. A. Briere</a> , et al. (492 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.09131v3-abstract-short" style="display: inline;"> Based on an $e^{+}e^{-}$ collision data sample corresponding to an integrated luminosity of 2.93 $\mathrm{fb}^{-1}$ collected with the BESIII detector at $\sqrt{s}=3.773 \mathrm{GeV}$, the first amplitude analysis of the singly Cabibbo-suppressed decay $D^{+}\to K^+ K_S^0 蟺^0$ is performed. From the amplitude analysis, the $K^*(892)^+ K_S^0$ component is found to be dominant with a fraction of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.09131v3-abstract-full').style.display = 'inline'; document.getElementById('2104.09131v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.09131v3-abstract-full" style="display: none;"> Based on an $e^{+}e^{-}$ collision data sample corresponding to an integrated luminosity of 2.93 $\mathrm{fb}^{-1}$ collected with the BESIII detector at $\sqrt{s}=3.773 \mathrm{GeV}$, the first amplitude analysis of the singly Cabibbo-suppressed decay $D^{+}\to K^+ K_S^0 蟺^0$ is performed. From the amplitude analysis, the $K^*(892)^+ K_S^0$ component is found to be dominant with a fraction of $(57.1\pm2.6\pm4.2)\%$, where the first uncertainty is statistical and the second systematic. In combination with the absolute branching fraction $\mathcal{B}(D^+\to K^+ K_S^0 蟺^0)$ measured by BESIII, we obtain $\mathcal{B}(D^+\to K^*(892)^+ K_S^0)=(8.69\pm0.40\pm0.64\pm0.51)\times10^{-3}$, where the third uncertainty is due to the branching fraction $\mathcal{B}(D^+\to K^+ K_S^0 蟺^0)$. The precision of this result is significantly improved compared to the previous measurement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.09131v3-abstract-full').style.display = 'none'; document.getElementById('2104.09131v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 15 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 104, 012006 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.06228">arXiv:2012.06228</a> <span> [<a href="https://arxiv.org/pdf/2012.06228">pdf</a>, <a href="https://arxiv.org/format/2012.06228">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.094503">10.1103/PhysRevD.103.094503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gluons in charmoniumlike states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Sun%2C+W">Wei Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+P">Peng Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.06228v2-abstract-short" style="display: inline;"> The mass components of charmoniumlike states are investigated through the decomposition of QCD energy-momentum tensor (EMT) on lattice. The quark mass contribution $\langle H_m\rangle$ and the momentum fraction $\langle x\rangle$ of valence charm quark and antiquark are calculated for conventional $1S,1P,1D$ charmonia and the exotic $1^{-+}$ charmoniumlike state, based on the $N_f=2+1$ gauge confi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.06228v2-abstract-full').style.display = 'inline'; document.getElementById('2012.06228v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.06228v2-abstract-full" style="display: none;"> The mass components of charmoniumlike states are investigated through the decomposition of QCD energy-momentum tensor (EMT) on lattice. The quark mass contribution $\langle H_m\rangle$ and the momentum fraction $\langle x\rangle$ of valence charm quark and antiquark are calculated for conventional $1S,1P,1D$ charmonia and the exotic $1^{-+}$ charmoniumlike state, based on the $N_f=2+1$ gauge configurations generated by the RBC/UKQCD collaboration. It is found that $\langle H_m\rangle$ is close to each other and around 2.0 to 2.2 GeV for these states, which implies that the mass splittings among these states come almost from the gluon contribution of QCD trace anomaly. The $\langle x\rangle$ of the $1^{-+}$ state is only around 0.55, while that in conventional charmonia is around 0.7 to 0.8. This difference manifests that the proportion of light quarks and gluons in the $1^{-+}$ charmoniumlike state is significantly larger than conventional states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.06228v2-abstract-full').style.display = 'none'; document.getElementById('2012.06228v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures; v2: match the published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 094503 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.00431">arXiv:2010.00431</a> <span> [<a href="https://arxiv.org/pdf/2010.00431">pdf</a>, <a href="https://arxiv.org/format/2010.00431">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/abde2e">10.1088/1674-1137/abde2e <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Confinement and the Global $SU(3)$ Color Symmetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.00431v2-abstract-short" style="display: inline;"> The global $SU(3)$ color symmetry and its physical consequences are discussed. The N枚ther current is actually governed by the conserved matter current of color charges if the color field generated by this charge is properly polarized. The color field strength of a charge can have a uniform part due to the nontrivial QCD vacuum field and the nonzero gluon condensate, which implies that the self-ene… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.00431v2-abstract-full').style.display = 'inline'; document.getElementById('2010.00431v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.00431v2-abstract-full" style="display: none;"> The global $SU(3)$ color symmetry and its physical consequences are discussed. The N枚ther current is actually governed by the conserved matter current of color charges if the color field generated by this charge is properly polarized. The color field strength of a charge can have a uniform part due to the nontrivial QCD vacuum field and the nonzero gluon condensate, which implies that the self-energy of a system with a net color charge is infinite and thereby cannot exist as a free state. This is precisely what the color confinement means. Accordingly, the Cornell type potential with the feature of the Casimir scaling is derived for a color singlet system composed of a static color charge and an anti-charge. The uniform color field also implies that a hadron has a minimal size and a minimal energy. Furthermore, the global $SU(3)$ color symmetry requires that the minimal irreducible color singlet systems can only be $q\bar{q}$, $qqq$, $gg$, $ggg$, $q\bar{q}g$, $qqqg$ and $\bar{q}\bar{q}\bar{q}g$, etc., as such a multi-quark systems can only exist as a molecular configurations if there are no other binding mechanisms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.00431v2-abstract-full').style.display = 'none'; document.getElementById('2010.00431v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures. Comments are welcome. Typos corrected. Submitted to Chin. Phys. C</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.07630">arXiv:2008.07630</a> <span> [<a href="https://arxiv.org/pdf/2008.07630">pdf</a>, <a href="https://arxiv.org/format/2008.07630">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.ppnp.2020.103835">10.1016/j.ppnp.2020.103835 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Diquark Correlations in Hadron Physics: Origin, Impact and Evidence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Barabanov%2C+M+Y">M. Yu. Barabanov</a>, <a href="/search/hep-lat?searchtype=author&query=Bedolla%2C+M+A">M. A. Bedolla</a>, <a href="/search/hep-lat?searchtype=author&query=Brooks%2C+W+K">W. K. Brooks</a>, <a href="/search/hep-lat?searchtype=author&query=Cates%2C+G+D">G. D. Cates</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+C">C. Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Y. Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Cisbani%2C+E">E. Cisbani</a>, <a href="/search/hep-lat?searchtype=author&query=Ding%2C+M">M. Ding</a>, <a href="/search/hep-lat?searchtype=author&query=Eichmann%2C+G">G. Eichmann</a>, <a href="/search/hep-lat?searchtype=author&query=Ent%2C+R">R. Ent</a>, <a href="/search/hep-lat?searchtype=author&query=Ferretti%2C+J">J. Ferretti</a>, <a href="/search/hep-lat?searchtype=author&query=Gothe%2C+R+W">R. W. Gothe</a>, <a href="/search/hep-lat?searchtype=author&query=Horn%2C+T">T. Horn</a>, <a href="/search/hep-lat?searchtype=author&query=Liuti%2C+S">S. Liuti</a>, <a href="/search/hep-lat?searchtype=author&query=Mezrag%2C+C">C. Mezrag</a>, <a href="/search/hep-lat?searchtype=author&query=Pilloni%2C+A">A. Pilloni</a>, <a href="/search/hep-lat?searchtype=author&query=Puckett%2C+A+J+R">A. J. R. Puckett</a>, <a href="/search/hep-lat?searchtype=author&query=Roberts%2C+C+D">C. D. Roberts</a>, <a href="/search/hep-lat?searchtype=author&query=Rossi%2C+P">P. Rossi</a>, <a href="/search/hep-lat?searchtype=author&query=Salme%2C+G">G. Salme</a>, <a href="/search/hep-lat?searchtype=author&query=Santopinto%2C+E">E. Santopinto</a>, <a href="/search/hep-lat?searchtype=author&query=Segovia%2C+J">J. Segovia</a>, <a href="/search/hep-lat?searchtype=author&query=Syritsyn%2C+S+N">S. N. Syritsyn</a>, <a href="/search/hep-lat?searchtype=author&query=Takizawa%2C+M">M. Takizawa</a>, <a href="/search/hep-lat?searchtype=author&query=Tomasi-Gustafsson%2C+E">E. Tomasi-Gustafsson</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.07630v1-abstract-short" style="display: inline;"> The last decade has seen a marked shift in how the internal structure of hadrons is understood. Modern experimental facilities, new theoretical techniques for the continuum bound-state problem and progress with lattice-regularised QCD have provided strong indications that soft quark+quark (diquark) correlations play a crucial role in hadron physics. For example, theory indicates that the appearanc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.07630v1-abstract-full').style.display = 'inline'; document.getElementById('2008.07630v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.07630v1-abstract-full" style="display: none;"> The last decade has seen a marked shift in how the internal structure of hadrons is understood. Modern experimental facilities, new theoretical techniques for the continuum bound-state problem and progress with lattice-regularised QCD have provided strong indications that soft quark+quark (diquark) correlations play a crucial role in hadron physics. For example, theory indicates that the appearance of such correlations is a necessary consequence of dynamical chiral symmetry breaking, viz. a corollary of emergent hadronic mass that is responsible for almost all visible mass in the universe; experiment has uncovered signals for such correlations in the flavour-separation of the proton's electromagnetic form factors; and phenomenology suggests that diquark correlations might be critical to the formation of exotic tetra- and penta-quark hadrons. A broad spectrum of such information is evaluated herein, with a view to consolidating the facts and therefrom moving toward a coherent, unified picture of hadron structure and the role that diquark correlations might play. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.07630v1-abstract-full').style.display = 'none'; document.getElementById('2008.07630v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">113 pages, 41 figures, 8 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> NJU-INP 024/20 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.05208">arXiv:2008.05208</a> <span> [<a href="https://arxiv.org/pdf/2008.05208">pdf</a>, <a href="https://arxiv.org/format/2008.05208">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/abcd8f">10.1088/1674-1137/abcd8f <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charmed and $蠁$ meson decay constants from 2+1-flavor lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Chiu%2C+W">Wei-Feng Chiu</a>, <a href="/search/hep-lat?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhaofeng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Ma%2C+Y">Yunheng Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.05208v3-abstract-short" style="display: inline;"> On a lattice with 2+1-flavor dynamical domain-wall fermions at the physical pion mass, we calculate the decay constants of $D_{s}^{(*)}$, $D^{(*)}$ and $蠁$. The lattice size is $48^3\times96$, which corresponds to a spatial extension of $\sim5.5$ fm with the lattice spacing $a\approx 0.114$ fm. For the valence light, strange and charm quarks, we use overlap fermions at several mass points close to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.05208v3-abstract-full').style.display = 'inline'; document.getElementById('2008.05208v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.05208v3-abstract-full" style="display: none;"> On a lattice with 2+1-flavor dynamical domain-wall fermions at the physical pion mass, we calculate the decay constants of $D_{s}^{(*)}$, $D^{(*)}$ and $蠁$. The lattice size is $48^3\times96$, which corresponds to a spatial extension of $\sim5.5$ fm with the lattice spacing $a\approx 0.114$ fm. For the valence light, strange and charm quarks, we use overlap fermions at several mass points close to their physical values. Our results at the physical point are $f_D=213(5)$ MeV, $f_{D_s}=249(7)$ MeV, $f_{D^*}=234(6)$ MeV, $f_{D_s^*}=274(7)$ MeV, and $f_蠁=241(9)$ MeV. The couplings of $D^*$ and $D_s^*$ to the tensor current ($f_V^T$) can be derived, respectively, from the ratios $f_{D^*}^T/f_{D^*}=0.91(4)$ and $f_{D_s^*}^T/f_{D_s^*}=0.92(4)$, which are the first lattice QCD results. We also obtain the ratios $f_{D^*}/f_D=1.10(3)$ and $f_{D_s^*}/f_{D_s}=1.10(4)$, which reflect the size of heavy quark symmetry breaking in charmed mesons. The ratios $f_{D_s}/f_{D}=1.16(3)$ and $f_{D_s^*}/f_{D^*}=1.17(3)$ can be taken as a measure of SU(3) flavor symmetry breaking. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.05208v3-abstract-full').style.display = 'none'; document.getElementById('2008.05208v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 5 figures, 10 tables; references and acknowledgements added; minor changes, version to be published in Chinese Physics C</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chin. Phys. C45, No. 2 (2021) 023109 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.14893">arXiv:2007.14893</a> <span> [<a href="https://arxiv.org/pdf/2007.14893">pdf</a>, <a href="https://arxiv.org/format/2007.14893">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/abc241">10.1088/1674-1137/abc241 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strangeonium-like hybrids on the lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Ma%2C+Y">Yunheng Ma</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhaofeng Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.14893v1-abstract-short" style="display: inline;"> The strangeonium-like $s\bar{s}g$ hybrids are investigated from lattice QCD in the quenched approximation. In the Coulomb gauge, spatially extended operators are constructed for $1^{--}$ and $(0,1,2)^{-+}$ states with the color octet $s\bar{s}$ component being separated from the chromomagnetic field strength by spatial distances $r$, whose matrix elements between the vacuum and the corresponding s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.14893v1-abstract-full').style.display = 'inline'; document.getElementById('2007.14893v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.14893v1-abstract-full" style="display: none;"> The strangeonium-like $s\bar{s}g$ hybrids are investigated from lattice QCD in the quenched approximation. In the Coulomb gauge, spatially extended operators are constructed for $1^{--}$ and $(0,1,2)^{-+}$ states with the color octet $s\bar{s}$ component being separated from the chromomagnetic field strength by spatial distances $r$, whose matrix elements between the vacuum and the corresponding states are interpreted as Bethe-Salpeter (BS) wave functions. In each of the $(1,2)^{-+}$ channels, the masses and the BS wave functions are reliably derived. The $1^{-+}$ ground state mass is around 2.1-2.2 GeV, and that of $2^{-+}$ is around 2.3-2.4 GeV, while the masses of the first excited states are roughly 1.4 GeV higher. This mass splitting is much larger than the expectation of the phenomenological flux-tube model or constituent gluon model for hybrids, which is usually a few hundred MeV. The BS wave functions with respect to $r$ show clear radial nodal structures of non-relativistic two-body system, which imply that $r$ is a meaningful dynamical variable for these hybrids and motivate a color halo picture of hybrids that the color octet $s\bar{s}$ is surrounded by gluonic degrees of freedom. In the $1^{--}$ channel, the properties of the lowest two states comply with those of $蠁(1020)$ and $蠁(1680)$. We have not obtained convincing information relevant to $蠁(2170)$ yet, however, we argue that whether $蠁(2170)$ is a conventional $s\bar{s}$ meson or a $s\bar{s}g$ hybrid within the color halo scenario, the ratio of partial decay widths $螕(蠁畏)$ and $螕(蠁畏')$ observed by BESIII can be understood by the mechanism of hadronic transition of a strangeonium-like meson along with the $畏-畏'$ mixing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.14893v1-abstract-full').style.display = 'none'; document.getElementById('2007.14893v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures, to be submitted to Chin. Phys. C</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.09817">arXiv:2003.09817</a> <span> [<a href="https://arxiv.org/pdf/2003.09817">pdf</a>, <a href="https://arxiv.org/format/2003.09817">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/44/8/083108">10.1088/1674-1137/44/8/083108 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Lattice Study of the Two-photon Decay Widths for Scalar and Pseudo-scalar Charmonium </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&query=Li%2C+N">Ning Li</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yu-Bin Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhaofeng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Ma%2C+J">Jian-Ping Ma</a>, <a href="/search/hep-lat?searchtype=author&query=Meng%2C+Y">Yu Meng</a>, <a href="/search/hep-lat?searchtype=author&query=Xiong%2C+C">Chao Xiong</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+K">Ke-Long Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.09817v2-abstract-short" style="display: inline;"> In this exploratory study, two photon decay widths of pseudo-scalar ($畏_c$) and scalar ($蠂_{c0}$) charmonium are computed using two ensembles of $N_f=2$ twisted mass lattice QCD gauge configurations. The simulation is performed two lattice ensembles with lattice spacings $a=0.067$ fm with size $32^3\times{64}$ and $a=0.085$ fm with size $24^3\times{48}$, respectively. The results for the decay wid… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.09817v2-abstract-full').style.display = 'inline'; document.getElementById('2003.09817v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.09817v2-abstract-full" style="display: none;"> In this exploratory study, two photon decay widths of pseudo-scalar ($畏_c$) and scalar ($蠂_{c0}$) charmonium are computed using two ensembles of $N_f=2$ twisted mass lattice QCD gauge configurations. The simulation is performed two lattice ensembles with lattice spacings $a=0.067$ fm with size $32^3\times{64}$ and $a=0.085$ fm with size $24^3\times{48}$, respectively. The results for the decay widths for the two charmonia are obtained which are in the right ballpark however smaller than the experimental ones. Possible reasons for these discrepancies are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.09817v2-abstract-full').style.display = 'none'; document.getElementById('2003.09817v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">version accepted by Chinese Physics C</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.02635">arXiv:1911.02635</a> <span> [<a href="https://arxiv.org/pdf/1911.02635">pdf</a>, <a href="https://arxiv.org/format/1911.02635">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.101.054511">10.1103/PhysRevD.101.054511 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Roper State from Overlap Fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Sun%2C+M">Mingyang Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+G">Gen Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Alexandru%2C+A">Andrei Alexandru</a>, <a href="/search/hep-lat?searchtype=author&query=Dong%2C+S">Shao-Jing Dong</a>, <a href="/search/hep-lat?searchtype=author&query=Draper%2C+T">Terrence Draper</a>, <a href="/search/hep-lat?searchtype=author&query=Fallica%2C+J">Jacob Fallica</a>, <a href="/search/hep-lat?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&query=Lee%2C+F+X">Frank X. Lee</a>, <a href="/search/hep-lat?searchtype=author&query=Li%2C+A">Anyi Li</a>, <a href="/search/hep-lat?searchtype=author&query=Liang%2C+J">Jian Liang</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+K">Keh-Fei Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Mathur%2C+N">Nilmani Mathur</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.02635v2-abstract-short" style="display: inline;"> The Roper state is extracted with valence overlap fermions on a $2+1$-flavor domain-wall fermion lattice (spacing $a = 0.114$ fm and $m_蟺 = 330$ MeV) using both the Sequential Empirical Bayes (SEB) method and the variational method. The results are consistent, provided that a large smearing-size interpolation operator is included in the variational calculation to have better overlap with the lowes… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.02635v2-abstract-full').style.display = 'inline'; document.getElementById('1911.02635v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.02635v2-abstract-full" style="display: none;"> The Roper state is extracted with valence overlap fermions on a $2+1$-flavor domain-wall fermion lattice (spacing $a = 0.114$ fm and $m_蟺 = 330$ MeV) using both the Sequential Empirical Bayes (SEB) method and the variational method. The results are consistent, provided that a large smearing-size interpolation operator is included in the variational calculation to have better overlap with the lowest radial excitation. Similar calculations carried out for an anisotropic clover lattice with similar parameters find the Roper $\approx 280$ MeV higher than that of the overlap fermion. The fact that the prediction of the Roper state by overlap fermions is consistently lower than those of clover fermions, chirally improved fermions, and twisted-mass fermions over a wide range of pion masses has been dubbed a "Roper puzzle." To understand the origin of this difference, we study the hairpin $Z$-diagram in the isovector scalar meson ($a_0$) correlator in the quenched approximation. Comparing the $a_0$ correlators for clover and overlap fermions, at a pion mass of 290 MeV, we find that the spectral weight of the ghost state with clover fermions is smaller than that of the overlap at $a = 0.12$ fm and $0.09$ fm, whereas the whole $a_0$ correlators of clover and overlap at $a = 0.06$ fm coincide within errors. This suggests that chiral symmetry is restored for clover at $a \le 0.06$ fm and that the Roper should come down at and below this $a$. We conclude that this work supports a resolution of the "Roper puzzle" due to $Z$-graph type chiral dynamics. This entails coupling to higher components in the Fock space (e.g. $N蟺$, $N蟺蟺$ states) to induce the effective flavor-spin interaction between quarks as prescribed in the chiral quark model, resulting in the parity-reversal pattern as observed in the experimental excited states of $N, 螖$ and $螞$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.02635v2-abstract-full').style.display = 'none'; document.getElementById('1911.02635v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 16 figures, revised manuscript accepted for publication in Phys. Rev. D</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> INT-PUB-19-005 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 101, 054511 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.09819">arXiv:1910.09819</a> <span> [<a href="https://arxiv.org/pdf/1910.09819">pdf</a>, <a href="https://arxiv.org/format/1910.09819">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/ac0ee2">10.1088/1674-1137/ac0ee2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Color halo scenario of charmonium-like hybrids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Ma%2C+Y">Yunheng Ma</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+W">Wei Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhaofeng Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.09819v2-abstract-short" style="display: inline;"> The internal structures of $J^{PC}=1^{--}, (0,1,2)^{-+}$ charmonium-like hybrids are investigated under lattice QCD in the quenched approximation. We define the Bethe-Salpeter wave function $桅_n(r)$ in the Coulomb gauge as the matrix element of a spatially extended hybrid-like operator $\bar{c}{c}g$ between the vacuum and $n$-th state for each $J^{PC}$ with $r$ being the spatial separation between… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.09819v2-abstract-full').style.display = 'inline'; document.getElementById('1910.09819v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.09819v2-abstract-full" style="display: none;"> The internal structures of $J^{PC}=1^{--}, (0,1,2)^{-+}$ charmonium-like hybrids are investigated under lattice QCD in the quenched approximation. We define the Bethe-Salpeter wave function $桅_n(r)$ in the Coulomb gauge as the matrix element of a spatially extended hybrid-like operator $\bar{c}{c}g$ between the vacuum and $n$-th state for each $J^{PC}$ with $r$ being the spatial separation between a localized $\bar{c}c$ component and the chromomagnetic strength tensor. These wave functions exhibit some similarities for states with the aforementioned different quantum numbers, and their $r$-behaviors (no node for the ground states and one node for the first excited states) imply that $r$ can be a meaningful dynamical variable for these states. Additionally, the mass splittings of the ground states and first excited states of charmonium-like hybrids in these channels are obtained for the first time to be approximately 1.2-1.4 GeV. These results do not support the flux-tube description of heavy-quarkonium-like hybrids in the Born-Oppenheimer approximation. In contrast, a charmonium-like hybrid can be viewed as a "color halo" charmonium for which a relatively localized color octet $\bar{c}c$ is surrounded by gluonic degrees of freedom, which can readily decay into a charmonium state along with one or more light hadrons. The color halo picture is compatible with the decay properties of $Y(4260)$ and suggests LHCb and BelleII to search for $(0,1,2)^{-+}$ charmonium-like hybrids in $蠂_{c0,1,2}畏$ and $J/蠄蠅(蠁)$ final states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.09819v2-abstract-full').style.display = 'none'; document.getElementById('1910.09819v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 9 figures. The contents are considerably enriched, more references are added. Match the publication version in Chin. Phys. C (in press)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chinese Physics C 45, No. 9 (2021) 093111 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.03371">arXiv:1907.03371</a> <span> [<a href="https://arxiv.org/pdf/1907.03371">pdf</a>, <a href="https://arxiv.org/format/1907.03371">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/43/10/103103">10.1088/1674-1137/43/10/103103 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A coupled-channel lattice study on the resonance-like structure $Z_c(3900)$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chen%2C+T">Ting Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C">Chuan Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+L">Liuming Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yu-Bin Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Z">Zhaofeng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Ma%2C+J">Jian-Ping Ma</a>, <a href="/search/hep-lat?searchtype=author&query=Werner%2C+M">Markus Werner</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Bo Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.03371v2-abstract-short" style="display: inline;"> In this exploratory study, near-threshold scattering of $D$ and $\bar{D}^*$ meson is investigated using lattice QCD with $N_f=2+1+1$ twisted mass fermion configurations. The calculation is performed within the coupled-channel L眉scher's finite-size formalism. The study focuses on the channel with $I^G(J^{PC})=1^+(1^{+-})$ where the resonance-like structure $Z_c(3900)$ was discovered. We first ident… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.03371v2-abstract-full').style.display = 'inline'; document.getElementById('1907.03371v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.03371v2-abstract-full" style="display: none;"> In this exploratory study, near-threshold scattering of $D$ and $\bar{D}^*$ meson is investigated using lattice QCD with $N_f=2+1+1$ twisted mass fermion configurations. The calculation is performed within the coupled-channel L眉scher's finite-size formalism. The study focuses on the channel with $I^G(J^{PC})=1^+(1^{+-})$ where the resonance-like structure $Z_c(3900)$ was discovered. We first identify the most relevant two channels of the problem and the lattice study is performed within the two-channel scattering model. Combined with a two-channel Ross-Shaw theory, scattering parameters are extracted from the energy levels by solving the generalized eigenvalue problem. Our results on the scattering length parameters suggest that, at the particular lattice parameters that we studied, the best fitted parameters do not correspond to a peak behavior in the elastic scattering cross section near the threshold. Furthermore, within the zero-range Ross-Shaw theory, the scenario of a narrow resonance close to the threshold is disfavored beyond $3蟽$ level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.03371v2-abstract-full').style.display = 'none'; document.getElementById('1907.03371v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 6 figures, minor changes. Version accepted by Chinese Physics C</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chin.Phys. C43 (2019) no.10, 103103 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.03212">arXiv:1907.03212</a> <span> [<a href="https://arxiv.org/pdf/1907.03212">pdf</a>, <a href="https://arxiv.org/ps/1907.03212">ps</a>, <a href="https://arxiv.org/format/1907.03212">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.100.054513">10.1103/PhysRevD.100.054513 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> New $N_f=2$ Pseudofermion Action for Monte-Carlo Simulation of Lattice Field Theory with Domain-Wall Fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Yu-Chih Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Chiu%2C+T">Ting-Wai Chiu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.03212v1-abstract-short" style="display: inline;"> We construct a novel $ N_f = 2 $ pseudofermion action for Monte-Carlo simulation of lattice gauge theory with domain-wall fermions (DWF), of which the effective four-dimensional lattice Dirac operator is equal to the overlap-Dirac operator with the argument of the sign function equal to $ H = c 纬_5 D_w (1 + d D_w)^{-1} $, where $ c $ and $ d $ are parameters, and $D_w$ is the standard Wilson-Dirac… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.03212v1-abstract-full').style.display = 'inline'; document.getElementById('1907.03212v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.03212v1-abstract-full" style="display: none;"> We construct a novel $ N_f = 2 $ pseudofermion action for Monte-Carlo simulation of lattice gauge theory with domain-wall fermions (DWF), of which the effective four-dimensional lattice Dirac operator is equal to the overlap-Dirac operator with the argument of the sign function equal to $ H = c 纬_5 D_w (1 + d D_w)^{-1} $, where $ c $ and $ d $ are parameters, and $D_w$ is the standard Wilson-Dirac operator plus a negative parameter $-m_0 \; (0 < m_0 < 2)$. This new action is particularly useful for the challenging simulations of lattice gauge theories with large $N_f = 2n $ DWF, on the large lattices, and in the strong-coupling regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.03212v1-abstract-full').style.display = 'none'; document.getElementById('1907.03212v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 3 EPS figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> NTUTH-19-505A </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 100, 054513 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.05766">arXiv:1906.05766</a> <span> [<a href="https://arxiv.org/pdf/1906.05766">pdf</a>, <a href="https://arxiv.org/format/1906.05766">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.100.054035">10.1103/PhysRevD.100.054035 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chromopolarizabilities of bottomonia from the $违(2S,3S,4S) \to 违(1S,2S)蟺蟺$ transitions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Yun-Hua Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Guo%2C+F">Feng-Kun Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.05766v3-abstract-short" style="display: inline;"> The dipion transitions $违(2S,3S,4S) \to 违(1S,2S)蟺蟺$ are systematically studied by considering the mechanisms of the hadronization of soft gluons, exchanging the bottomoniumlike $Z_b$ states, and the bottom-meson loops. The strong pion-pion final-state interaction, especially including the channel coupling to $K\bar{K}$ in the $S$-wave, is taken into account in a model-independent way using the dis… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.05766v3-abstract-full').style.display = 'inline'; document.getElementById('1906.05766v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.05766v3-abstract-full" style="display: none;"> The dipion transitions $违(2S,3S,4S) \to 违(1S,2S)蟺蟺$ are systematically studied by considering the mechanisms of the hadronization of soft gluons, exchanging the bottomoniumlike $Z_b$ states, and the bottom-meson loops. The strong pion-pion final-state interaction, especially including the channel coupling to $K\bar{K}$ in the $S$-wave, is taken into account in a model-independent way using the dispersion theory. Through fitting to the available experimental data, we extract values of the transition chromopolarizabilities $|伪_{违(mS)违(nS)}|$, which measure the chromoelectric couplings of the bottomonia with soft gluons. It is found that the $Z_b$ exchange has a slight impact on the extracted chromopolarizablity values, and the obtained $|伪_{违(2S)违(1S)}|$ considering the $Z_b$ exchange is $(0.29\pm 0.20)~\text{GeV}^{-3}$. Our results could be useful in studying the interactions of bottomonium with light hadrons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.05766v3-abstract-full').style.display = 'none'; document.getElementById('1906.05766v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 3 figures, more discussions added</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 100, 054035 (2019) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Chen%2C+Y&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Chen%2C+Y&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Chen%2C+Y&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Chen%2C+Y&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>