CINXE.COM
Deep Learning Research Papers - Academia.edu
<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Deep Learning Research Papers - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "by_tag", 'action': "show_one", 'controller_action': 'by_tag#show_one', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="yxzuOvF2ed3WzXiSJr1kjJteHFUQpa6+MkNkHnsmzmrgtOoys7VoKZZIlFZr92sN+QIORpTB4y+UUQukzU5dyw==" /> <link href="/Documents/in/Deep_Learning?after=50%2C71965016" rel="next" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="description" content="View Deep Learning Research Papers on Academia.edu for free." /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'by_tag'; var $action_name = "show_one"; var $rails_env = 'production'; var $app_rev = '49879c2402910372f4abc62630a427bbe033d190'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15276,"monthly_visitors":"113 million","monthly_visitor_count":113468711,"monthly_visitor_count_in_millions":113,"user_count":277165324,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1732437065000); window.Aedu.timeDifference = new Date().getTime() - 1732437065000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-296162c7af6fd81dcdd76f1a94f1fad04fb5f647401337d136fe8b68742170b1.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-8d53a22151f33ab413d88fa1c02f979c3f8706d470fc1bced09852c72a9f3454.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-f8fe82512740391f81c9e8cc48220144024b425b359b08194e316f4de070b9e8.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://www.academia.edu/Documents/in/Deep_Learning" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-by_tag a-show_one logged_out u-bgColorWhite'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-by_tag a-show_one logged_out u-bgColorWhite'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&c2=26766707&cv=2.0&cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav no-sm no-md"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more <span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i> We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i> Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less <span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <div class="DesignSystem" style="margin-top:-40px"><div class="PageHeader"><div class="container"><div class="row"><style type="text/css">.sor-abstract { display: -webkit-box; overflow: hidden; text-overflow: ellipsis; -webkit-line-clamp: 3; -webkit-box-orient: vertical; }</style><div class="col-xs-12 clearfix"><div class="u-floatLeft"><h1 class="PageHeader-title u-m0x u-fs30">Deep Learning</h1><div class="u-tcGrayDark">48,958 Followers</div><div class="u-tcGrayDark u-mt2x">Recent papers in <b>Deep Learning</b></div></div></div></div></div></div><div class="TabbedNavigation"><div class="container"><div class="row"><div class="col-xs-12 clearfix"><ul class="nav u-m0x u-p0x list-inline u-displayFlex"><li class="active"><a href="https://www.academia.edu/Documents/in/Deep_Learning">Top Papers</a></li><li><a href="https://www.academia.edu/Documents/in/Deep_Learning/MostCited">Most Cited Papers</a></li><li><a href="https://www.academia.edu/Documents/in/Deep_Learning/MostDownloaded">Most Downloaded Papers</a></li><li><a href="https://www.academia.edu/Documents/in/Deep_Learning/MostRecent">Newest Papers</a></li><li><a class="" href="https://www.academia.edu/People/Deep_Learning">People</a></li></ul></div><style type="text/css">ul.nav{flex-direction:row}@media(max-width: 567px){ul.nav{flex-direction:column}.TabbedNavigation li{max-width:100%}.TabbedNavigation li.active{background-color:var(--background-grey, #dddde2)}.TabbedNavigation li.active:before,.TabbedNavigation li.active:after{display:none}}</style></div></div></div><div class="container"><div class="row"><div class="col-xs-12"><div class="u-displayFlex"><div class="u-flexGrow1"><div class="works"><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_27243687" data-work_id="27243687" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/27243687/Learning_Networks_of_Schools_The_key_enablers_of_successful_knowledge_communities">Learning Networks of Schools: The key enablers of successful knowledge communities</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/27243687" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="a19e7c0d37411914494da6d843a0046e" rel="nofollow" data-download="{"attachment_id":47502970,"asset_id":27243687,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/47502970/download_file?st=MTczMjQzNzA2NCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="10934091" href="https://ubc.academia.edu/LindaKaser">Linda Kaser</a><script data-card-contents-for-user="10934091" type="text/json">{"id":10934091,"first_name":"Linda","last_name":"Kaser","domain_name":"ubc","page_name":"LindaKaser","display_name":"Linda Kaser","profile_url":"https://ubc.academia.edu/LindaKaser?f_ri=81182","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_27243687 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="27243687"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 27243687, container: ".js-paper-rank-work_27243687", }); });</script></li><li class="js-percentile-work_27243687 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 27243687; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_27243687"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_27243687 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="27243687"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 27243687; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=27243687]").text(description); $(".js-view-count-work_27243687").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_27243687").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="27243687"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">6</a> </div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="49560" href="https://www.academia.edu/Documents/in/Knowledge_Creation">Knowledge Creation</a>, <script data-card-contents-for-ri="49560" type="text/json">{"id":49560,"name":"Knowledge Creation","url":"https://www.academia.edu/Documents/in/Knowledge_Creation?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="64592" href="https://www.academia.edu/Documents/in/Learning_theories">Learning theories</a>, <script data-card-contents-for-ri="64592" type="text/json">{"id":64592,"name":"Learning theories","url":"https://www.academia.edu/Documents/in/Learning_theories?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="81182" href="https://www.academia.edu/Documents/in/Deep_Learning">Deep Learning</a>, <script data-card-contents-for-ri="81182" type="text/json">{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="81504" href="https://www.academia.edu/Documents/in/Correlation">Correlation</a><script data-card-contents-for-ri="81504" type="text/json">{"id":81504,"name":"Correlation","url":"https://www.academia.edu/Documents/in/Correlation?f_ri=81182","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=27243687]'), work: {"id":27243687,"title":"Learning Networks of Schools: The key enablers of successful knowledge communities","created_at":"2016-07-25T07:34:46.498-07:00","url":"https://www.academia.edu/27243687/Learning_Networks_of_Schools_The_key_enablers_of_successful_knowledge_communities?f_ri=81182","dom_id":"work_27243687","summary":null,"downloadable_attachments":[{"id":47502970,"asset_id":27243687,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":10934091,"first_name":"Linda","last_name":"Kaser","domain_name":"ubc","page_name":"LindaKaser","display_name":"Linda Kaser","profile_url":"https://ubc.academia.edu/LindaKaser?f_ri=81182","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":49560,"name":"Knowledge Creation","url":"https://www.academia.edu/Documents/in/Knowledge_Creation?f_ri=81182","nofollow":false},{"id":64592,"name":"Learning theories","url":"https://www.academia.edu/Documents/in/Learning_theories?f_ri=81182","nofollow":false},{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182","nofollow":false},{"id":81504,"name":"Correlation","url":"https://www.academia.edu/Documents/in/Correlation?f_ri=81182","nofollow":false},{"id":124971,"name":"Education Systems","url":"https://www.academia.edu/Documents/in/Education_Systems?f_ri=81182"},{"id":149123,"name":"Organizational Theories","url":"https://www.academia.edu/Documents/in/Organizational_Theories?f_ri=81182"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_81312453 coauthored" data-work_id="81312453" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/81312453/Designing_a_High_Performance_Deep_Learning_Theoretical_Model_for_Biomedical_Image_Segmentation_by_Using_Key_Elements_of_the_Latest_U_Net_Based_Architectures">Designing a High-Performance Deep Learning Theoretical Model for Biomedical Image Segmentation by Using Key Elements of the Latest U-Net-Based Architectures</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/81312453" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="0527b453325bb8f5683eab3b22313890" rel="nofollow" data-download="{"attachment_id":87400007,"asset_id":81312453,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/87400007/download_file?st=MTczMjQzNzA2NCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="197471801" href="https://umfiasi.academia.edu/TudorFlorinUrsuleanu">Tudor Florin Ursuleanu</a><script data-card-contents-for-user="197471801" type="text/json">{"id":197471801,"first_name":"Tudor Florin","last_name":"Ursuleanu","domain_name":"umfiasi","page_name":"TudorFlorinUrsuleanu","display_name":"Tudor Florin Ursuleanu","profile_url":"https://umfiasi.academia.edu/TudorFlorinUrsuleanu?f_ri=81182","photo":"https://0.academia-photos.com/197471801/59894774/48192745/s65_tudor_florin.ursuleanu.jpg"}</script></span></span><span class="u-displayInlineBlock InlineList-item-text"> and <span class="u-textDecorationUnderline u-clickable InlineList-item-text js-work-more-authors-81312453">+1</span><div class="hidden js-additional-users-81312453"><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://wwwmumfiasi.academia.edu/LilianaGheorghe">Liliana Gheorghe</a></span></div></div></span><script>(function(){ var popoverSettings = { el: $('.js-work-more-authors-81312453'), placement: 'bottom', hide_delay: 200, html: true, content: function(){ return $('.js-additional-users-81312453').html(); } } new HoverPopover(popoverSettings); })();</script></li><li class="js-paper-rank-work_81312453 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="81312453"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 81312453, container: ".js-paper-rank-work_81312453", }); });</script></li><li class="js-percentile-work_81312453 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 81312453; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_81312453"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_81312453 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="81312453"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 81312453; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=81312453]").text(description); $(".js-view-count-work_81312453").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_81312453").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="81312453"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">11</a> </div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="422" href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a>, <script data-card-contents-for-ri="422" type="text/json">{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="465" href="https://www.academia.edu/Documents/in/Artificial_Intelligence">Artificial Intelligence</a>, <script data-card-contents-for-ri="465" type="text/json">{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="647" href="https://www.academia.edu/Documents/in/Surgery">Surgery</a>, <script data-card-contents-for-ri="647" type="text/json">{"id":647,"name":"Surgery","url":"https://www.academia.edu/Documents/in/Surgery?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="9351" href="https://www.academia.edu/Documents/in/Image_Analysis">Image Analysis</a><script data-card-contents-for-ri="9351" type="text/json">{"id":9351,"name":"Image Analysis","url":"https://www.academia.edu/Documents/in/Image_Analysis?f_ri=81182","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=81312453]'), work: {"id":81312453,"title":"Designing a High-Performance Deep Learning Theoretical Model for Biomedical Image Segmentation by Using Key Elements of the Latest U-Net-Based Architectures","created_at":"2022-06-12T10:30:03.278-07:00","url":"https://www.academia.edu/81312453/Designing_a_High_Performance_Deep_Learning_Theoretical_Model_for_Biomedical_Image_Segmentation_by_Using_Key_Elements_of_the_Latest_U_Net_Based_Architectures?f_ri=81182","dom_id":"work_81312453","summary":null,"downloadable_attachments":[{"id":87400007,"asset_id":81312453,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":197471801,"first_name":"Tudor Florin","last_name":"Ursuleanu","domain_name":"umfiasi","page_name":"TudorFlorinUrsuleanu","display_name":"Tudor Florin Ursuleanu","profile_url":"https://umfiasi.academia.edu/TudorFlorinUrsuleanu?f_ri=81182","photo":"https://0.academia-photos.com/197471801/59894774/48192745/s65_tudor_florin.ursuleanu.jpg"},{"id":43144687,"first_name":"Liliana","last_name":"Gheorghe","domain_name":"wwwmumfiasi","page_name":"LilianaGheorghe","display_name":"Liliana Gheorghe","profile_url":"https://wwwmumfiasi.academia.edu/LilianaGheorghe?f_ri=81182","photo":"https://0.academia-photos.com/43144687/52904611/41023002/s65_liliana.gheorghe.jpeg"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=81182","nofollow":false},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=81182","nofollow":false},{"id":647,"name":"Surgery","url":"https://www.academia.edu/Documents/in/Surgery?f_ri=81182","nofollow":false},{"id":9351,"name":"Image Analysis","url":"https://www.academia.edu/Documents/in/Image_Analysis?f_ri=81182","nofollow":false},{"id":40458,"name":"General Surgery","url":"https://www.academia.edu/Documents/in/General_Surgery?f_ri=81182"},{"id":54123,"name":"Artificial Neural Networks","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Networks?f_ri=81182"},{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182"},{"id":90763,"name":"Computer Communications","url":"https://www.academia.edu/Documents/in/Computer_Communications?f_ri=81182"},{"id":93217,"name":"Segmentation","url":"https://www.academia.edu/Documents/in/Segmentation?f_ri=81182"},{"id":195979,"name":"Colposcopy","url":"https://www.academia.edu/Documents/in/Colposcopy?f_ri=81182"},{"id":339107,"name":"Gynecology","url":"https://www.academia.edu/Documents/in/Gynecology?f_ri=81182"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_38565455" data-work_id="38565455" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/38565455/HATRNet_Human_Activity_Transition_Recognition_using_Deep_Neural_Networks">HATRNet: Human Activity/Transition Recognition using Deep Neural Networks</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Human activity recognition based on sensor data is a topic with great potential for customized healthcare. Here, an end-to-end deep learning architecture for human activity/transition recognition is developed, achieving an error rate of... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_38565455" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Human activity recognition based on sensor data is a topic with great potential for customized healthcare. Here, an end-to-end deep learning architecture for human activity/transition recognition is developed, achieving an error rate of 0.82%. Various deep learning models are analyzed, and a hyperparameter search is conducted to optimize our chosen model. First, an LSTM architecture is examined, which has the advantage of allowing variable-length input sequences for both training and inference. However, our best architecture (HATRNet) is a deep convolutional neural network with late sensor fusion i.e. separate processing pipelines for subsets of the input channels. We feed in zero-padded time sequences to our network, and achieve accuracy exceeding the state-of-the-art reported in literature--all without the use of hand-extracted features.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/38565455" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="b0886b8146c1d2f263f837f7ac9b04f4" rel="nofollow" data-download="{"attachment_id":58638176,"asset_id":38565455,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/58638176/download_file?st=MTczMjQzNzA2NCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="1220126" href="https://stanford.academia.edu/AkashLevy">Akash Levy</a><script data-card-contents-for-user="1220126" type="text/json">{"id":1220126,"first_name":"Akash","last_name":"Levy","domain_name":"stanford","page_name":"AkashLevy","display_name":"Akash Levy","profile_url":"https://stanford.academia.edu/AkashLevy?f_ri=81182","photo":"https://0.academia-photos.com/1220126/440822/130679130/s65_akash.levy.jpg"}</script></span></span></li><li class="js-paper-rank-work_38565455 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="38565455"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 38565455, container: ".js-paper-rank-work_38565455", }); });</script></li><li class="js-percentile-work_38565455 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 38565455; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_38565455"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_38565455 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="38565455"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 38565455; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=38565455]").text(description); $(".js-view-count-work_38565455").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_38565455").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="38565455"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">4</a> </div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="2008" href="https://www.academia.edu/Documents/in/Machine_Learning">Machine Learning</a>, <script data-card-contents-for-ri="2008" type="text/json">{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="54123" href="https://www.academia.edu/Documents/in/Artificial_Neural_Networks">Artificial Neural Networks</a>, <script data-card-contents-for-ri="54123" type="text/json">{"id":54123,"name":"Artificial Neural Networks","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Networks?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="81182" href="https://www.academia.edu/Documents/in/Deep_Learning">Deep Learning</a>, <script data-card-contents-for-ri="81182" type="text/json">{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="3105616" href="https://www.academia.edu/Documents/in/Personalized_Healthcare">Personalized Healthcare</a><script data-card-contents-for-ri="3105616" type="text/json">{"id":3105616,"name":"Personalized Healthcare","url":"https://www.academia.edu/Documents/in/Personalized_Healthcare?f_ri=81182","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=38565455]'), work: {"id":38565455,"title":"HATRNet: Human Activity/Transition Recognition using Deep Neural Networks","created_at":"2019-03-16T22:29:10.010-07:00","url":"https://www.academia.edu/38565455/HATRNet_Human_Activity_Transition_Recognition_using_Deep_Neural_Networks?f_ri=81182","dom_id":"work_38565455","summary":"Human activity recognition based on sensor data is a topic with great potential for customized healthcare. Here, an end-to-end deep learning architecture for human activity/transition recognition is developed, achieving an error rate of 0.82%. Various deep learning models are analyzed, and a hyperparameter search is conducted to optimize our chosen model. First, an LSTM architecture is examined, which has the advantage of allowing variable-length input sequences for both training and inference. However, our best architecture (HATRNet) is a deep convolutional neural network with late sensor fusion i.e. separate processing pipelines for subsets of the input channels. We feed in zero-padded time sequences to our network, and achieve accuracy exceeding the state-of-the-art reported in literature--all without the use of hand-extracted features.","downloadable_attachments":[{"id":58638176,"asset_id":38565455,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":1220126,"first_name":"Akash","last_name":"Levy","domain_name":"stanford","page_name":"AkashLevy","display_name":"Akash Levy","profile_url":"https://stanford.academia.edu/AkashLevy?f_ri=81182","photo":"https://0.academia-photos.com/1220126/440822/130679130/s65_akash.levy.jpg"}],"research_interests":[{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=81182","nofollow":false},{"id":54123,"name":"Artificial Neural Networks","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Networks?f_ri=81182","nofollow":false},{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182","nofollow":false},{"id":3105616,"name":"Personalized Healthcare","url":"https://www.academia.edu/Documents/in/Personalized_Healthcare?f_ri=81182","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_43477713" data-work_id="43477713" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/43477713/Computational_Intelligence_Intrusion_Detection_Techniques_in_Mobile_Cloud_Computing_Environments_Review_Taxonomy_and_Open_Research_Issues">Computational Intelligence Intrusion Detection Techniques in Mobile Cloud Computing Environments: Review, Taxonomy, and Open Research Issues</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">With the increasing utilization of the Internet and its provided services, an increase in cyber-attacks to exploit the information occurs. A technology to store and maintain user's information that is mostly used for its simplicity and... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_43477713" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">With the increasing utilization of the Internet and its provided services, an increase in cyber-attacks to exploit the information occurs. A technology to store and maintain user's information that is mostly used for its simplicity and low-cost services is cloud computing (CC). Also, a new model of computing that is noteworthy today is mobile cloud computing (MCC) that is used to reduce the limitations of mobile devices by allowing them to offload certain computations to the remote cloud. The cloud environment may consist of critical or essential information of an organization; therefore, to prevent this environment from possible attacks a security solution is needed. An intrusion detection system (IDS) is a solution to these security issues. An IDS is a hardware or software device that can examine all inside and outside network activities and recognize doubtful patterns that may demonstrate a network attack and automatically alert the network (or system) administrator. Because of the ability of an IDS to detect known/unknown (inside/outside) attacks, it is an excellent choice for securing cloud computing. Various methods are used in an intrusion detection system to recognize attacks more accurately. Unlike survey papers presented so far, this paper aims to present a comprehensive survey of intrusion detection systems that use computational intelligence (CI) methods in a (mobile) cloud environment. We firstly provide an overview of CC and MCC paradigms and service models, also reviewing security threats in these contexts. Previous literature is critically surveyed, highlighting the advantages and limitations of previous work. Then we define a taxonomy for IDS and classify CI-based techniques into single and hybrid methods. Finally, we highlight open issues and future directions for research on this topic.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/43477713" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="6b8bc6d093c03c497c02b06a82a208c3" rel="nofollow" data-download="{"attachment_id":64112208,"asset_id":43477713,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/64112208/download_file?st=MTczMjQzNzA2NCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="104646146" href="https://unina.academia.edu/AntonioMontieri">Antonio Montieri</a><script data-card-contents-for-user="104646146" type="text/json">{"id":104646146,"first_name":"Antonio","last_name":"Montieri","domain_name":"unina","page_name":"AntonioMontieri","display_name":"Antonio Montieri","profile_url":"https://unina.academia.edu/AntonioMontieri?f_ri=81182","photo":"https://0.academia-photos.com/104646146/23572292/22618934/s65_antonio.montieri.jpg"}</script></span></span></li><li class="js-paper-rank-work_43477713 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="43477713"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 43477713, container: ".js-paper-rank-work_43477713", }); });</script></li><li class="js-percentile-work_43477713 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 43477713; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_43477713"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_43477713 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="43477713"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 43477713; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=43477713]").text(description); $(".js-view-count-work_43477713").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_43477713").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="43477713"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">10</a> </div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="2008" href="https://www.academia.edu/Documents/in/Machine_Learning">Machine Learning</a>, <script data-card-contents-for-ri="2008" type="text/json">{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="3521" href="https://www.academia.edu/Documents/in/Computational_Intelligence">Computational Intelligence</a>, <script data-card-contents-for-ri="3521" type="text/json">{"id":3521,"name":"Computational Intelligence","url":"https://www.academia.edu/Documents/in/Computational_Intelligence?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="3703" href="https://www.academia.edu/Documents/in/Network_Security">Network Security</a>, <script data-card-contents-for-ri="3703" type="text/json">{"id":3703,"name":"Network Security","url":"https://www.academia.edu/Documents/in/Network_Security?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="4252" href="https://www.academia.edu/Documents/in/Computer_Networks">Computer Networks</a><script data-card-contents-for-ri="4252" type="text/json">{"id":4252,"name":"Computer Networks","url":"https://www.academia.edu/Documents/in/Computer_Networks?f_ri=81182","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=43477713]'), work: {"id":43477713,"title":"Computational Intelligence Intrusion Detection Techniques in Mobile Cloud Computing Environments: Review, Taxonomy, and Open Research Issues","created_at":"2020-06-30T03:31:31.455-07:00","url":"https://www.academia.edu/43477713/Computational_Intelligence_Intrusion_Detection_Techniques_in_Mobile_Cloud_Computing_Environments_Review_Taxonomy_and_Open_Research_Issues?f_ri=81182","dom_id":"work_43477713","summary":"With the increasing utilization of the Internet and its provided services, an increase in cyber-attacks to exploit the information occurs. A technology to store and maintain user's information that is mostly used for its simplicity and low-cost services is cloud computing (CC). Also, a new model of computing that is noteworthy today is mobile cloud computing (MCC) that is used to reduce the limitations of mobile devices by allowing them to offload certain computations to the remote cloud. The cloud environment may consist of critical or essential information of an organization; therefore, to prevent this environment from possible attacks a security solution is needed. An intrusion detection system (IDS) is a solution to these security issues. An IDS is a hardware or software device that can examine all inside and outside network activities and recognize doubtful patterns that may demonstrate a network attack and automatically alert the network (or system) administrator. Because of the ability of an IDS to detect known/unknown (inside/outside) attacks, it is an excellent choice for securing cloud computing. Various methods are used in an intrusion detection system to recognize attacks more accurately. Unlike survey papers presented so far, this paper aims to present a comprehensive survey of intrusion detection systems that use computational intelligence (CI) methods in a (mobile) cloud environment. We firstly provide an overview of CC and MCC paradigms and service models, also reviewing security threats in these contexts. Previous literature is critically surveyed, highlighting the advantages and limitations of previous work. Then we define a taxonomy for IDS and classify CI-based techniques into single and hybrid methods. Finally, we highlight open issues and future directions for research on this topic.","downloadable_attachments":[{"id":64112208,"asset_id":43477713,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":104646146,"first_name":"Antonio","last_name":"Montieri","domain_name":"unina","page_name":"AntonioMontieri","display_name":"Antonio Montieri","profile_url":"https://unina.academia.edu/AntonioMontieri?f_ri=81182","photo":"https://0.academia-photos.com/104646146/23572292/22618934/s65_antonio.montieri.jpg"}],"research_interests":[{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=81182","nofollow":false},{"id":3521,"name":"Computational Intelligence","url":"https://www.academia.edu/Documents/in/Computational_Intelligence?f_ri=81182","nofollow":false},{"id":3703,"name":"Network Security","url":"https://www.academia.edu/Documents/in/Network_Security?f_ri=81182","nofollow":false},{"id":4252,"name":"Computer Networks","url":"https://www.academia.edu/Documents/in/Computer_Networks?f_ri=81182","nofollow":false},{"id":15171,"name":"Intrusion Detection Systems","url":"https://www.academia.edu/Documents/in/Intrusion_Detection_Systems?f_ri=81182"},{"id":26860,"name":"Cloud Computing","url":"https://www.academia.edu/Documents/in/Cloud_Computing?f_ri=81182"},{"id":49613,"name":"Network Intrusion Detection \u0026 Prevention","url":"https://www.academia.edu/Documents/in/Network_Intrusion_Detection_and_Prevention?f_ri=81182"},{"id":78529,"name":"Malware Detection","url":"https://www.academia.edu/Documents/in/Malware_Detection?f_ri=81182"},{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182"},{"id":101534,"name":"Mobile Cloud Computing","url":"https://www.academia.edu/Documents/in/Mobile_Cloud_Computing?f_ri=81182"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_51551287" data-work_id="51551287" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/51551287/Call_for_Papers_3_rd_International_Conference_on_Data_Mining_and_Machine_Learning_DMML_2022_">Call for Papers - 3 rd International Conference on Data Mining & Machine Learning (DMML 2022)</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">3 rd International Conference on Data Mining & Machine Learning (DMML 2022) will act as a major forum for the presentation of innovative ideas, approaches, developments, and research projects in the areas of Data Mining and Machine... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_51551287" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">3<br />rd International Conference on Data Mining & Machine Learning (DMML 2022) will act as<br />a major forum for the presentation of innovative ideas, approaches, developments, and research<br />projects in the areas of Data Mining and Machine Learning. It will also serve to facilitate the<br />exchange of information between researchers and industry professionals to discuss the latest issues<br />and advancement in the area of Big Data and Machine Learning.<br />Authors are solicited to contribute to the conference by submitting articles that illustrate research<br />results, projects, surveying works and industrial experiences that describe significant advances in<br />Data Mining and Machine Learning.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/51551287" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="d7cd4611893f11616f64cf7b0f990845" rel="nofollow" data-download="{"attachment_id":83189779,"asset_id":51551287,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/83189779/download_file?st=MTczMjQzNzA2NCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="26196263" href="https://independent.academia.edu/journalijwest">International Journal of Web & Semantic Technology (IJWesT)</a><script data-card-contents-for-user="26196263" type="text/json">{"id":26196263,"first_name":"International Journal of Web \u0026 Semantic Technology","last_name":"(IJWesT)","domain_name":"independent","page_name":"journalijwest","display_name":"International Journal of Web \u0026 Semantic Technology (IJWesT)","profile_url":"https://independent.academia.edu/journalijwest?f_ri=81182","photo":"https://0.academia-photos.com/26196263/7208853/161117496/s65_international_journal_of_web_semantic_technology._ijwest_.jpg"}</script></span></span></li><li class="js-paper-rank-work_51551287 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="51551287"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 51551287, container: ".js-paper-rank-work_51551287", }); });</script></li><li class="js-percentile-work_51551287 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 51551287; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_51551287"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_51551287 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="51551287"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 51551287; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=51551287]").text(description); $(".js-view-count-work_51551287").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_51551287").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="51551287"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">20</a> </div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="146" href="https://www.academia.edu/Documents/in/Bioinformatics">Bioinformatics</a>, <script data-card-contents-for-ri="146" type="text/json">{"id":146,"name":"Bioinformatics","url":"https://www.academia.edu/Documents/in/Bioinformatics?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="442" href="https://www.academia.edu/Documents/in/Parallel_Computing">Parallel Computing</a>, <script data-card-contents-for-ri="442" type="text/json">{"id":442,"name":"Parallel Computing","url":"https://www.academia.edu/Documents/in/Parallel_Computing?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="447" href="https://www.academia.edu/Documents/in/Scientific_Visualization">Scientific Visualization</a>, <script data-card-contents-for-ri="447" type="text/json">{"id":447,"name":"Scientific Visualization","url":"https://www.academia.edu/Documents/in/Scientific_Visualization?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="2009" href="https://www.academia.edu/Documents/in/Data_Mining">Data Mining</a><script data-card-contents-for-ri="2009" type="text/json">{"id":2009,"name":"Data Mining","url":"https://www.academia.edu/Documents/in/Data_Mining?f_ri=81182","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=51551287]'), work: {"id":51551287,"title":"Call for Papers - 3 rd International Conference on Data Mining \u0026 Machine Learning (DMML 2022)","created_at":"2021-09-08T22:11:24.975-07:00","url":"https://www.academia.edu/51551287/Call_for_Papers_3_rd_International_Conference_on_Data_Mining_and_Machine_Learning_DMML_2022_?f_ri=81182","dom_id":"work_51551287","summary":"3\nrd International Conference on Data Mining \u0026 Machine Learning (DMML 2022) will act as\na major forum for the presentation of innovative ideas, approaches, developments, and research\nprojects in the areas of Data Mining and Machine Learning. It will also serve to facilitate the\nexchange of information between researchers and industry professionals to discuss the latest issues\nand advancement in the area of Big Data and Machine Learning.\nAuthors are solicited to contribute to the conference by submitting articles that illustrate research\nresults, projects, surveying works and industrial experiences that describe significant advances in\nData Mining and Machine Learning.","downloadable_attachments":[{"id":83189779,"asset_id":51551287,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":26196263,"first_name":"International Journal of Web \u0026 Semantic Technology","last_name":"(IJWesT)","domain_name":"independent","page_name":"journalijwest","display_name":"International Journal of Web \u0026 Semantic Technology (IJWesT)","profile_url":"https://independent.academia.edu/journalijwest?f_ri=81182","photo":"https://0.academia-photos.com/26196263/7208853/161117496/s65_international_journal_of_web_semantic_technology._ijwest_.jpg"}],"research_interests":[{"id":146,"name":"Bioinformatics","url":"https://www.academia.edu/Documents/in/Bioinformatics?f_ri=81182","nofollow":false},{"id":442,"name":"Parallel Computing","url":"https://www.academia.edu/Documents/in/Parallel_Computing?f_ri=81182","nofollow":false},{"id":447,"name":"Scientific Visualization","url":"https://www.academia.edu/Documents/in/Scientific_Visualization?f_ri=81182","nofollow":false},{"id":2009,"name":"Data Mining","url":"https://www.academia.edu/Documents/in/Data_Mining?f_ri=81182","nofollow":false},{"id":4278,"name":"Web Mining","url":"https://www.academia.edu/Documents/in/Web_Mining?f_ri=81182"},{"id":8270,"name":"Forecasting","url":"https://www.academia.edu/Documents/in/Forecasting?f_ri=81182"},{"id":9351,"name":"Image Analysis","url":"https://www.academia.edu/Documents/in/Image_Analysis?f_ri=81182"},{"id":12417,"name":"Multimedia Learning","url":"https://www.academia.edu/Documents/in/Multimedia_Learning?f_ri=81182"},{"id":15426,"name":"Spatial Data Mining (Data Mining)","url":"https://www.academia.edu/Documents/in/Spatial_Data_Mining_Data_Mining_?f_ri=81182"},{"id":17613,"name":"Forest biometrics","url":"https://www.academia.edu/Documents/in/Forest_biometrics?f_ri=81182"},{"id":23995,"name":"Educational Data Mining","url":"https://www.academia.edu/Documents/in/Educational_Data_Mining?f_ri=81182"},{"id":27360,"name":"Databases","url":"https://www.academia.edu/Documents/in/Databases?f_ri=81182"},{"id":39682,"name":"Graph Data Mining","url":"https://www.academia.edu/Documents/in/Graph_Data_Mining?f_ri=81182"},{"id":80870,"name":"Parallel \u0026 Distributed Computing","url":"https://www.academia.edu/Documents/in/Parallel_and_Distributed_Computing?f_ri=81182"},{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182"},{"id":84990,"name":"Clustering","url":"https://www.academia.edu/Documents/in/Clustering?f_ri=81182"},{"id":115676,"name":"Cyber Security","url":"https://www.academia.edu/Documents/in/Cyber_Security?f_ri=81182"},{"id":565185,"name":"Video to Text","url":"https://www.academia.edu/Documents/in/Video_to_Text?f_ri=81182"},{"id":1916214,"name":"Evaluating of Credit Demands","url":"https://www.academia.edu/Documents/in/Evaluating_of_Credit_Demands?f_ri=81182"},{"id":2923288,"name":"Pre-Processing Techniques","url":"https://www.academia.edu/Documents/in/Pre-Processing_Techniques?f_ri=81182"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_45605558" data-work_id="45605558" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/45605558/How_Artificial_Intelligence_and_Machine_Learning_can_help_rethink_Archives">How Artificial Intelligence and Machine Learning can help rethink Archives?</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Although artificial intelligence is the product of science-fiction literature, it currently represents a significant branch of computer science dealing with intelligent behavior, machine learning, and machine adaptation. It has become a... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_45605558" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Although artificial intelligence is the product of science-fiction literature, it currently represents a significant branch of computer science dealing with intelligent behavior, machine learning, and machine adaptation. It has become a discipline that attempts to answer real-world problems. Artificial intelligence systems are nowadays widely used in economics and medicine, design or military. The role of archives is changing worldwide. In this grandiose transformation, archives need to be at the forefront of their own future, so that they can steer, guide, and not lose out.<br />The vast masses of information in archives provide an excellent platform for the exploitation of artificial intelligence. The mass of data can be a great help not only for research but also for policy preparation and in some areas of public administration in the not too distant future.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/45605558" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="c5330cfcac637dc264a9aa9666a8b70f" rel="nofollow" data-download="{"attachment_id":66090524,"asset_id":45605558,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/66090524/download_file?st=MTczMjQzNzA2NCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="7448516" href="https://nationalarchives-hu.academia.edu/Istv%C3%A1nHeged%C5%B1s">István Hegedűs</a><script data-card-contents-for-user="7448516" type="text/json">{"id":7448516,"first_name":"István","last_name":"Hegedűs","domain_name":"nationalarchives-hu","page_name":"IstvánHegedűs","display_name":"István Hegedűs","profile_url":"https://nationalarchives-hu.academia.edu/Istv%C3%A1nHeged%C5%B1s?f_ri=81182","photo":"https://0.academia-photos.com/7448516/2723479/3171916/s65_istv_n.heged_s.jpg"}</script></span></span></li><li class="js-paper-rank-work_45605558 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="45605558"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 45605558, container: ".js-paper-rank-work_45605558", }); });</script></li><li class="js-percentile-work_45605558 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 45605558; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_45605558"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_45605558 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="45605558"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 45605558; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=45605558]").text(description); $(".js-view-count-work_45605558").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_45605558").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="45605558"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">10</a> </div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="465" href="https://www.academia.edu/Documents/in/Artificial_Intelligence">Artificial Intelligence</a>, <script data-card-contents-for-ri="465" type="text/json">{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="862" href="https://www.academia.edu/Documents/in/Archival_Studies">Archival Studies</a>, <script data-card-contents-for-ri="862" type="text/json">{"id":862,"name":"Archival Studies","url":"https://www.academia.edu/Documents/in/Archival_Studies?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="2008" href="https://www.academia.edu/Documents/in/Machine_Learning">Machine Learning</a>, <script data-card-contents-for-ri="2008" type="text/json">{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="7513" href="https://www.academia.edu/Documents/in/Archives">Archives</a><script data-card-contents-for-ri="7513" type="text/json">{"id":7513,"name":"Archives","url":"https://www.academia.edu/Documents/in/Archives?f_ri=81182","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=45605558]'), work: {"id":45605558,"title":"How Artificial Intelligence and Machine Learning can help rethink Archives?","created_at":"2021-03-24T03:15:11.112-07:00","url":"https://www.academia.edu/45605558/How_Artificial_Intelligence_and_Machine_Learning_can_help_rethink_Archives?f_ri=81182","dom_id":"work_45605558","summary":"Although artificial intelligence is the product of science-fiction literature, it currently represents a significant branch of computer science dealing with intelligent behavior, machine learning, and machine adaptation. It has become a discipline that attempts to answer real-world problems. Artificial intelligence systems are nowadays widely used in economics and medicine, design or military. The role of archives is changing worldwide. In this grandiose transformation, archives need to be at the forefront of their own future, so that they can steer, guide, and not lose out.\nThe vast masses of information in archives provide an excellent platform for the exploitation of artificial intelligence. The mass of data can be a great help not only for research but also for policy preparation and in some areas of public administration in the not too distant future.","downloadable_attachments":[{"id":66090524,"asset_id":45605558,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":7448516,"first_name":"István","last_name":"Hegedűs","domain_name":"nationalarchives-hu","page_name":"IstvánHegedűs","display_name":"István Hegedűs","profile_url":"https://nationalarchives-hu.academia.edu/Istv%C3%A1nHeged%C5%B1s?f_ri=81182","photo":"https://0.academia-photos.com/7448516/2723479/3171916/s65_istv_n.heged_s.jpg"}],"research_interests":[{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=81182","nofollow":false},{"id":862,"name":"Archival Studies","url":"https://www.academia.edu/Documents/in/Archival_Studies?f_ri=81182","nofollow":false},{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=81182","nofollow":false},{"id":7513,"name":"Archives","url":"https://www.academia.edu/Documents/in/Archives?f_ri=81182","nofollow":false},{"id":17813,"name":"Digital Archives","url":"https://www.academia.edu/Documents/in/Digital_Archives?f_ri=81182"},{"id":47980,"name":"Data Visualization","url":"https://www.academia.edu/Documents/in/Data_Visualization?f_ri=81182"},{"id":54462,"name":"Computational Social Science","url":"https://www.academia.edu/Documents/in/Computational_Social_Science?f_ri=81182"},{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182"},{"id":126300,"name":"Big Data","url":"https://www.academia.edu/Documents/in/Big_Data?f_ri=81182"},{"id":597612,"name":"Library and Archival Science","url":"https://www.academia.edu/Documents/in/Library_and_Archival_Science?f_ri=81182"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_44902106 coauthored" data-work_id="44902106" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/44902106/The_role_of_Artificial_Intelligence_in_architectural_design_conversation_with_designers_and_researchers">The role of Artificial Intelligence in architectural design: conversation with designers and researchers</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">The proliferation of data together with the increase of computing power in the last decade has triggered a new interest in artificial intelligence methods. Machine learning and in particular deep learning techniques, inspired by the... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_44902106" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">The proliferation of data together with the increase of computing power in the last decade has triggered a new interest in artificial intelligence methods. Machine learning and in particular deep learning techniques, inspired by the topological structure of neurons network in brains, are omnipresent in the IT discourse, and generated new enthusiasms and fears in our society. These methods have already shown great effectiveness in fields far from architecture and have long been exploited in software that we use every day. Many computing libraries are available for anyone with some programming skills and allow them to "train" a neural network based on several types of data. The world of architecture has not remained external to this phenomenon: many researchers are working on the applications of artificial intelligence to architectural design, a few design software allow exploiting machine learning algorithms, and some large architectural firms have begun to experiment with deep learning methods to put into practice data accumulated over years of profession, with a special interest in environmental sustainability and building performance. If on the one hand, these techniques promise great results, on the other we are still in an exploratory phase. It is then necessary, in our opinion, to understand what the roles of this technology could be within the architectural design process, and with which scopes they can facilitate such a complex profession as that of the architect. On this subject we made ten interviews with as many designers and researchers in the AEC industry, In the article we will report a summary of their testimonies, comparing and commenting on the responses of the designers, with the aim of understanding the potentials of using artificial intelligence methods within the design process, report their perceptions on how artificial intelligence techniques can affect the architect's approach to the project, concluding with some reflections on the critical issues identified during the interviews with the designers.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/44902106" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="887722f6d7becdb20addf840307baade" rel="nofollow" data-download="{"attachment_id":65421985,"asset_id":44902106,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/65421985/download_file?st=MTczMjQzNzA2NCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="17255448" href="https://unipa.academia.edu/GGallo">Giuseppe Gallo</a><script data-card-contents-for-user="17255448" type="text/json">{"id":17255448,"first_name":"Giuseppe","last_name":"Gallo","domain_name":"unipa","page_name":"GGallo","display_name":"Giuseppe Gallo","profile_url":"https://unipa.academia.edu/GGallo?f_ri=81182","photo":"https://0.academia-photos.com/17255448/4778222/37006661/s65_giuseppe.gallo.jpg"}</script></span></span><span class="u-displayInlineBlock InlineList-item-text"> and <span class="u-textDecorationUnderline u-clickable InlineList-item-text js-work-more-authors-44902106">+1</span><div class="hidden js-additional-users-44902106"><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://independent.academia.edu/fulviowirz">fulvio wirz</a></span></div></div></span><script>(function(){ var popoverSettings = { el: $('.js-work-more-authors-44902106'), placement: 'bottom', hide_delay: 200, html: true, content: function(){ return $('.js-additional-users-44902106').html(); } } new HoverPopover(popoverSettings); })();</script></li><li class="js-paper-rank-work_44902106 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="44902106"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 44902106, container: ".js-paper-rank-work_44902106", }); });</script></li><li class="js-percentile-work_44902106 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 44902106; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_44902106"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_44902106 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="44902106"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 44902106; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=44902106]").text(description); $(".js-view-count-work_44902106").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_44902106").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="44902106"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">13</a> </div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="465" href="https://www.academia.edu/Documents/in/Artificial_Intelligence">Artificial Intelligence</a>, <script data-card-contents-for-ri="465" type="text/json">{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="1372" href="https://www.academia.edu/Documents/in/Architecture">Architecture</a>, <script data-card-contents-for-ri="1372" type="text/json">{"id":1372,"name":"Architecture","url":"https://www.academia.edu/Documents/in/Architecture?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="2008" href="https://www.academia.edu/Documents/in/Machine_Learning">Machine Learning</a>, <script data-card-contents-for-ri="2008" type="text/json">{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="7264" href="https://www.academia.edu/Documents/in/Design_Process_Architecture_">Design Process (Architecture)</a><script data-card-contents-for-ri="7264" type="text/json">{"id":7264,"name":"Design Process (Architecture)","url":"https://www.academia.edu/Documents/in/Design_Process_Architecture_?f_ri=81182","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=44902106]'), work: {"id":44902106,"title":"The role of Artificial Intelligence in architectural design: conversation with designers and researchers","created_at":"2021-01-14T02:36:44.905-08:00","url":"https://www.academia.edu/44902106/The_role_of_Artificial_Intelligence_in_architectural_design_conversation_with_designers_and_researchers?f_ri=81182","dom_id":"work_44902106","summary":"The proliferation of data together with the increase of computing power in the last decade has triggered a new interest in artificial intelligence methods. Machine learning and in particular deep learning techniques, inspired by the topological structure of neurons network in brains, are omnipresent in the IT discourse, and generated new enthusiasms and fears in our society. These methods have already shown great effectiveness in fields far from architecture and have long been exploited in software that we use every day. Many computing libraries are available for anyone with some programming skills and allow them to \"train\" a neural network based on several types of data. The world of architecture has not remained external to this phenomenon: many researchers are working on the applications of artificial intelligence to architectural design, a few design software allow exploiting machine learning algorithms, and some large architectural firms have begun to experiment with deep learning methods to put into practice data accumulated over years of profession, with a special interest in environmental sustainability and building performance. If on the one hand, these techniques promise great results, on the other we are still in an exploratory phase. It is then necessary, in our opinion, to understand what the roles of this technology could be within the architectural design process, and with which scopes they can facilitate such a complex profession as that of the architect. On this subject we made ten interviews with as many designers and researchers in the AEC industry, In the article we will report a summary of their testimonies, comparing and commenting on the responses of the designers, with the aim of understanding the potentials of using artificial intelligence methods within the design process, report their perceptions on how artificial intelligence techniques can affect the architect's approach to the project, concluding with some reflections on the critical issues identified during the interviews with the designers.","downloadable_attachments":[{"id":65421985,"asset_id":44902106,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":17255448,"first_name":"Giuseppe","last_name":"Gallo","domain_name":"unipa","page_name":"GGallo","display_name":"Giuseppe Gallo","profile_url":"https://unipa.academia.edu/GGallo?f_ri=81182","photo":"https://0.academia-photos.com/17255448/4778222/37006661/s65_giuseppe.gallo.jpg"},{"id":102240406,"first_name":"fulvio","last_name":"wirz","domain_name":"independent","page_name":"fulviowirz","display_name":"fulvio wirz","profile_url":"https://independent.academia.edu/fulviowirz?f_ri=81182","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=81182","nofollow":false},{"id":1372,"name":"Architecture","url":"https://www.academia.edu/Documents/in/Architecture?f_ri=81182","nofollow":false},{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=81182","nofollow":false},{"id":7264,"name":"Design Process (Architecture)","url":"https://www.academia.edu/Documents/in/Design_Process_Architecture_?f_ri=81182","nofollow":false},{"id":11820,"name":"Modeling and Simulation","url":"https://www.academia.edu/Documents/in/Modeling_and_Simulation?f_ri=81182"},{"id":16693,"name":"Theory Of Architecture","url":"https://www.academia.edu/Documents/in/Theory_Of_Architecture?f_ri=81182"},{"id":61738,"name":"Architectural Design","url":"https://www.academia.edu/Documents/in/Architectural_Design?f_ri=81182"},{"id":61835,"name":"Urban Design","url":"https://www.academia.edu/Documents/in/Urban_Design?f_ri=81182"},{"id":71358,"name":"Design process","url":"https://www.academia.edu/Documents/in/Design_process?f_ri=81182"},{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182"},{"id":86542,"name":"History and theory of architecture","url":"https://www.academia.edu/Documents/in/History_and_theory_of_architecture?f_ri=81182"},{"id":111892,"name":"Generative Architectural Design","url":"https://www.academia.edu/Documents/in/Generative_Architectural_Design?f_ri=81182"},{"id":199700,"name":"Generative Design Research","url":"https://www.academia.edu/Documents/in/Generative_Design_Research?f_ri=81182"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_45125668" data-work_id="45125668" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/45125668/DEEPFAKE_EINE_KURZE_EINLEITUNG_Deepfake_Eine_kurze_Einleitung">DEEPFAKE -EINE KURZE EINLEITUNG Deepfake -Eine kurze Einleitung</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Deepfakes bezeichnen Videos mit gefälschten Inhalten. Hierfür nutzen sie Technologien der Künstlichen Intelligenz, um Stimmen und Ähnlichkeiten zu überlagern, und können buchstäblich die Worte einer fremden Person in den Mund eines... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_45125668" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Deepfakes bezeichnen Videos mit gefälschten Inhalten. Hierfür nutzen sie Technologien der Künstlichen Intelligenz, um Stimmen und Ähnlichkeiten zu überlagern, und können buchstäblich die Worte einer fremden Person in den Mund eines anderen legen. Deepfakes sind vor allem in sozialen Medien zu finden, und diese versuchen fieberhaft, die Verbreitung von diesen Inhalten auf ihren Plattformen zu steuern. In diesem Artikel wird vorgestellt, was Deepfakes sind, deren Typologien und Einsatzgebiete, sowie die Entstehung und Erkennung von Deepfakes.<br /><br />Seminararbeit - 1,0</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/45125668" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="c45615738df4c06555db284a1485a3ee" rel="nofollow" data-download="{"attachment_id":65694392,"asset_id":45125668,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/65694392/download_file?st=MTczMjQzNzA2NCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="98503286" href="https://uni-hamburg.academia.edu/JenniferTiaK%C3%B6tke">Jennifer-Tia Kötke</a><script data-card-contents-for-user="98503286" type="text/json">{"id":98503286,"first_name":"Jennifer-Tia","last_name":"Kötke","domain_name":"uni-hamburg","page_name":"JenniferTiaKötke","display_name":"Jennifer-Tia Kötke","profile_url":"https://uni-hamburg.academia.edu/JenniferTiaK%C3%B6tke?f_ri=81182","photo":"https://0.academia-photos.com/98503286/51384366/112856742/s65_jennifer-tia.k_tke.jpg"}</script></span></span></li><li class="js-paper-rank-work_45125668 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="45125668"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 45125668, container: ".js-paper-rank-work_45125668", }); });</script></li><li class="js-percentile-work_45125668 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 45125668; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_45125668"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_45125668 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="45125668"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 45125668; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=45125668]").text(description); $(".js-view-count-work_45125668").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_45125668").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="45125668"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">4</a> </div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="465" href="https://www.academia.edu/Documents/in/Artificial_Intelligence">Artificial Intelligence</a>, <script data-card-contents-for-ri="465" type="text/json">{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="54123" href="https://www.academia.edu/Documents/in/Artificial_Neural_Networks">Artificial Neural Networks</a>, <script data-card-contents-for-ri="54123" type="text/json">{"id":54123,"name":"Artificial Neural Networks","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Networks?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="81182" href="https://www.academia.edu/Documents/in/Deep_Learning">Deep Learning</a>, <script data-card-contents-for-ri="81182" type="text/json">{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="2922418" href="https://www.academia.edu/Documents/in/deepfakes">deepfakes</a><script data-card-contents-for-ri="2922418" type="text/json">{"id":2922418,"name":"deepfakes","url":"https://www.academia.edu/Documents/in/deepfakes?f_ri=81182","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=45125668]'), work: {"id":45125668,"title":"DEEPFAKE -EINE KURZE EINLEITUNG Deepfake -Eine kurze Einleitung","created_at":"2021-02-15T06:26:16.432-08:00","url":"https://www.academia.edu/45125668/DEEPFAKE_EINE_KURZE_EINLEITUNG_Deepfake_Eine_kurze_Einleitung?f_ri=81182","dom_id":"work_45125668","summary":"Deepfakes bezeichnen Videos mit gefälschten Inhalten. Hierfür nutzen sie Technologien der Künstlichen Intelligenz, um Stimmen und Ähnlichkeiten zu überlagern, und können buchstäblich die Worte einer fremden Person in den Mund eines anderen legen. Deepfakes sind vor allem in sozialen Medien zu finden, und diese versuchen fieberhaft, die Verbreitung von diesen Inhalten auf ihren Plattformen zu steuern. In diesem Artikel wird vorgestellt, was Deepfakes sind, deren Typologien und Einsatzgebiete, sowie die Entstehung und Erkennung von Deepfakes.\n\nSeminararbeit - 1,0","downloadable_attachments":[{"id":65694392,"asset_id":45125668,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":98503286,"first_name":"Jennifer-Tia","last_name":"Kötke","domain_name":"uni-hamburg","page_name":"JenniferTiaKötke","display_name":"Jennifer-Tia Kötke","profile_url":"https://uni-hamburg.academia.edu/JenniferTiaK%C3%B6tke?f_ri=81182","photo":"https://0.academia-photos.com/98503286/51384366/112856742/s65_jennifer-tia.k_tke.jpg"}],"research_interests":[{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=81182","nofollow":false},{"id":54123,"name":"Artificial Neural Networks","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Networks?f_ri=81182","nofollow":false},{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182","nofollow":false},{"id":2922418,"name":"deepfakes","url":"https://www.academia.edu/Documents/in/deepfakes?f_ri=81182","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_44192290" data-work_id="44192290" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/44192290/Stock_Price_Prediction_using_LSTM_Neural_Networks">Stock Price Prediction using LSTM Neural Networks</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">The stock market is known for its extreme complexity and volatility, and people are always looking for an accurate and effective way to guide stock trading. In addition, LSTM avoids long-term dependence issues due to its unique storage... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_44192290" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">The stock market is known for its extreme complexity and volatility, and people are always<br />looking for an accurate and effective way to guide stock trading. In addition, LSTM avoids<br />long-term dependence issues due to its unique storage unit structure, and it helps predict<br />financial time series. Based on LSTM and an attention mechanism, a wavelet transform is<br />used to denoise historical stock data, extract and train its features, and establish the prediction<br />model of a stock price. We have taken Apple Inc. dataset from Yahoo Finance API which<br />contains the closing stock prices of the company. The accuracy which we achieved is 91%<br />and the Mean Squared Error (MSE) which we got is 9%.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/44192290" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="e482439b2266bd51e4a45fc52d6f0d7c" rel="nofollow" data-download="{"attachment_id":64553926,"asset_id":44192290,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/64553926/download_file?st=MTczMjQzNzA2NCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="172300271" href="https://anjamma.academia.edu/SrikarGoudAilla">Srikar Goud Ailla</a><script data-card-contents-for-user="172300271" type="text/json">{"id":172300271,"first_name":"Srikar Goud","last_name":"Ailla","domain_name":"anjamma","page_name":"SrikarGoudAilla","display_name":"Srikar Goud Ailla","profile_url":"https://anjamma.academia.edu/SrikarGoudAilla?f_ri=81182","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_44192290 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="44192290"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 44192290, container: ".js-paper-rank-work_44192290", }); });</script></li><li class="js-percentile-work_44192290 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 44192290; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_44192290"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_44192290 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="44192290"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 44192290; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=44192290]").text(description); $(".js-view-count-work_44192290").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_44192290").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="44192290"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">3</a> </div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="465" href="https://www.academia.edu/Documents/in/Artificial_Intelligence">Artificial Intelligence</a>, <script data-card-contents-for-ri="465" type="text/json">{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="2008" href="https://www.academia.edu/Documents/in/Machine_Learning">Machine Learning</a>, <script data-card-contents-for-ri="2008" type="text/json">{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="81182" href="https://www.academia.edu/Documents/in/Deep_Learning">Deep Learning</a><script data-card-contents-for-ri="81182" type="text/json">{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=44192290]'), work: {"id":44192290,"title":"Stock Price Prediction using LSTM Neural Networks","created_at":"2020-09-29T08:03:49.191-07:00","url":"https://www.academia.edu/44192290/Stock_Price_Prediction_using_LSTM_Neural_Networks?f_ri=81182","dom_id":"work_44192290","summary":"The stock market is known for its extreme complexity and volatility, and people are always\nlooking for an accurate and effective way to guide stock trading. In addition, LSTM avoids\nlong-term dependence issues due to its unique storage unit structure, and it helps predict\nfinancial time series. Based on LSTM and an attention mechanism, a wavelet transform is\nused to denoise historical stock data, extract and train its features, and establish the prediction\nmodel of a stock price. We have taken Apple Inc. dataset from Yahoo Finance API which\ncontains the closing stock prices of the company. The accuracy which we achieved is 91%\nand the Mean Squared Error (MSE) which we got is 9%.","downloadable_attachments":[{"id":64553926,"asset_id":44192290,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":172300271,"first_name":"Srikar Goud","last_name":"Ailla","domain_name":"anjamma","page_name":"SrikarGoudAilla","display_name":"Srikar Goud Ailla","profile_url":"https://anjamma.academia.edu/SrikarGoudAilla?f_ri=81182","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=81182","nofollow":false},{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=81182","nofollow":false},{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_80130489 coauthored" data-work_id="80130489" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/80130489/On_Dropout_Overfitting_and_Interaction_Effects_in_Deep_Neural_Networks">On Dropout, Overfitting, and Interaction Effects in Deep Neural Networks</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">We examine Dropout through the perspective of interactions: learned effects that combine multiple input variables. Given $N$ variables, there are $O(N^2)$ possible pairwise interactions, $O(N^3)$ possible 3-way interactions, etc. We show... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_80130489" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">We examine Dropout through the perspective of interactions: learned effects that combine multiple input variables. Given $N$ variables, there are $O(N^2)$ possible pairwise interactions, $O(N^3)$ possible 3-way interactions, etc. We show that Dropout implicitly sets a learning rate for interaction effects that decays exponentially with the size of the interaction, corresponding to a regularizer that balances against the hypothesis space which grows exponentially with number of variables in the interaction. This understanding of Dropout has implications for the optimal Dropout rate: higher Dropout rates should be used when we need stronger regularization against spurious high-order interactions. This perspective also issues caution against using Dropout to measure term saliency because Dropout regularizes against terms for high-order interactions. Finally, this view of Dropout as a regularizer of interaction effects provides insight into the varying effectiveness of Dropout for diffe...</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/80130489" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="fb38756bf07b2cd082b4786b0ce71258" rel="nofollow" data-download="{"attachment_id":86615263,"asset_id":80130489,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/86615263/download_file?st=MTczMjQzNzA2NCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="33608027" href="https://mit.academia.edu/BenLengerich">Ben Lengerich</a><script data-card-contents-for-user="33608027" type="text/json">{"id":33608027,"first_name":"Ben","last_name":"Lengerich","domain_name":"mit","page_name":"BenLengerich","display_name":"Ben Lengerich","profile_url":"https://mit.academia.edu/BenLengerich?f_ri=81182","photo":"https://0.academia-photos.com/33608027/9914739/19104892/s65_ben.lengerich.jpg"}</script></span></span><span class="u-displayInlineBlock InlineList-item-text"> and <span class="u-textDecorationUnderline u-clickable InlineList-item-text js-work-more-authors-80130489">+1</span><div class="hidden js-additional-users-80130489"><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://independent.academia.edu/EricXing3">Eric Xing</a></span></div></div></span><script>(function(){ var popoverSettings = { el: $('.js-work-more-authors-80130489'), placement: 'bottom', hide_delay: 200, html: true, content: function(){ return $('.js-additional-users-80130489').html(); } } new HoverPopover(popoverSettings); })();</script></li><li class="js-paper-rank-work_80130489 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="80130489"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 80130489, container: ".js-paper-rank-work_80130489", }); });</script></li><li class="js-percentile-work_80130489 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 80130489; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_80130489"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_80130489 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="80130489"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 80130489; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=80130489]").text(description); $(".js-view-count-work_80130489").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_80130489").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="80130489"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">6</a> </div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="422" href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a>, <script data-card-contents-for-ri="422" type="text/json">{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="465" href="https://www.academia.edu/Documents/in/Artificial_Intelligence">Artificial Intelligence</a>, <script data-card-contents-for-ri="465" type="text/json">{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="81182" href="https://www.academia.edu/Documents/in/Deep_Learning">Deep Learning</a>, <script data-card-contents-for-ri="81182" type="text/json">{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="890015" href="https://www.academia.edu/Documents/in/Deep_Neural_Networks">Deep Neural Networks</a><script data-card-contents-for-ri="890015" type="text/json">{"id":890015,"name":"Deep Neural Networks","url":"https://www.academia.edu/Documents/in/Deep_Neural_Networks?f_ri=81182","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=80130489]'), work: {"id":80130489,"title":"On Dropout, Overfitting, and Interaction Effects in Deep Neural Networks","created_at":"2022-05-28T11:12:19.757-07:00","url":"https://www.academia.edu/80130489/On_Dropout_Overfitting_and_Interaction_Effects_in_Deep_Neural_Networks?f_ri=81182","dom_id":"work_80130489","summary":"We examine Dropout through the perspective of interactions: learned effects that combine multiple input variables. Given $N$ variables, there are $O(N^2)$ possible pairwise interactions, $O(N^3)$ possible 3-way interactions, etc. We show that Dropout implicitly sets a learning rate for interaction effects that decays exponentially with the size of the interaction, corresponding to a regularizer that balances against the hypothesis space which grows exponentially with number of variables in the interaction. This understanding of Dropout has implications for the optimal Dropout rate: higher Dropout rates should be used when we need stronger regularization against spurious high-order interactions. This perspective also issues caution against using Dropout to measure term saliency because Dropout regularizes against terms for high-order interactions. Finally, this view of Dropout as a regularizer of interaction effects provides insight into the varying effectiveness of Dropout for diffe...","downloadable_attachments":[{"id":86615263,"asset_id":80130489,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":33608027,"first_name":"Ben","last_name":"Lengerich","domain_name":"mit","page_name":"BenLengerich","display_name":"Ben Lengerich","profile_url":"https://mit.academia.edu/BenLengerich?f_ri=81182","photo":"https://0.academia-photos.com/33608027/9914739/19104892/s65_ben.lengerich.jpg"},{"id":226231561,"first_name":"Eric","last_name":"Xing","domain_name":"independent","page_name":"EricXing3","display_name":"Eric Xing","profile_url":"https://independent.academia.edu/EricXing3?f_ri=81182","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=81182","nofollow":false},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=81182","nofollow":false},{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182","nofollow":false},{"id":890015,"name":"Deep Neural Networks","url":"https://www.academia.edu/Documents/in/Deep_Neural_Networks?f_ri=81182","nofollow":false},{"id":1211304,"name":"Artificial Neural Network","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Network?f_ri=81182"},{"id":3193313,"name":"arXiv","url":"https://www.academia.edu/Documents/in/arXiv?f_ri=81182"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_78859338" data-work_id="78859338" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/78859338/Deep_Learning_Benchmarks_and_Datasets_for_Social_Media_Image_Classification_for_Disaster_Response">Deep Learning Benchmarks and Datasets for Social Media Image Classification for Disaster Response</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/78859338" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="668a22c5ada9210cf62f87713108ad3a" rel="nofollow" data-download="{"attachment_id":85754625,"asset_id":78859338,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/85754625/download_file?st=MTczMjQzNzA2NCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="163935627" href="https://independent.academia.edu/DRMDFIROJALAM">DR MD FIROJ ALAM</a><script data-card-contents-for-user="163935627" type="text/json">{"id":163935627,"first_name":"DR MD FIROJ","last_name":"ALAM","domain_name":"independent","page_name":"DRMDFIROJALAM","display_name":"DR MD FIROJ ALAM","profile_url":"https://independent.academia.edu/DRMDFIROJALAM?f_ri=81182","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_78859338 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="78859338"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 78859338, container: ".js-paper-rank-work_78859338", }); });</script></li><li class="js-percentile-work_78859338 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 78859338; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_78859338"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_78859338 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="78859338"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 78859338; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=78859338]").text(description); $(".js-view-count-work_78859338").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_78859338").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="78859338"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">8</a> </div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="422" href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a>, <script data-card-contents-for-ri="422" type="text/json">{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="465" href="https://www.academia.edu/Documents/in/Artificial_Intelligence">Artificial Intelligence</a>, <script data-card-contents-for-ri="465" type="text/json">{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="9246" href="https://www.academia.edu/Documents/in/Social_Media">Social Media</a>, <script data-card-contents-for-ri="9246" type="text/json">{"id":9246,"name":"Social Media","url":"https://www.academia.edu/Documents/in/Social_Media?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="24777" href="https://www.academia.edu/Documents/in/Benchmarking">Benchmarking</a><script data-card-contents-for-ri="24777" type="text/json">{"id":24777,"name":"Benchmarking","url":"https://www.academia.edu/Documents/in/Benchmarking?f_ri=81182","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=78859338]'), work: {"id":78859338,"title":"Deep Learning Benchmarks and Datasets for Social Media Image Classification for Disaster Response","created_at":"2022-05-09T07:15:22.855-07:00","url":"https://www.academia.edu/78859338/Deep_Learning_Benchmarks_and_Datasets_for_Social_Media_Image_Classification_for_Disaster_Response?f_ri=81182","dom_id":"work_78859338","summary":null,"downloadable_attachments":[{"id":85754625,"asset_id":78859338,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":163935627,"first_name":"DR MD FIROJ","last_name":"ALAM","domain_name":"independent","page_name":"DRMDFIROJALAM","display_name":"DR MD FIROJ ALAM","profile_url":"https://independent.academia.edu/DRMDFIROJALAM?f_ri=81182","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=81182","nofollow":false},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=81182","nofollow":false},{"id":9246,"name":"Social Media","url":"https://www.academia.edu/Documents/in/Social_Media?f_ri=81182","nofollow":false},{"id":24777,"name":"Benchmarking","url":"https://www.academia.edu/Documents/in/Benchmarking?f_ri=81182","nofollow":false},{"id":42234,"name":"Natural Disasters","url":"https://www.academia.edu/Documents/in/Natural_Disasters?f_ri=81182"},{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182"},{"id":1849102,"name":"Crisis Computing","url":"https://www.academia.edu/Documents/in/Crisis_Computing?f_ri=81182"},{"id":3825803,"name":"disaster image classification","url":"https://www.academia.edu/Documents/in/disaster_image_classification?f_ri=81182"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_77625372" data-work_id="77625372" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/77625372/Comparison_of_Deep_Learning_Techniques_for_Classification_of_the_Insects_in_Order_Level_With_Mobile_Software_Application">Comparison of Deep Learning Techniques for Classification of the Insects in Order Level With Mobile Software Application</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/77625372" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="b4d0913818736224889f12e70943dd19" rel="nofollow" data-download="{"attachment_id":84944612,"asset_id":77625372,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/84944612/download_file?st=MTczMjQzNzA2NCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="148315141" href="https://independent.academia.edu/SelmanKu">Selman Kunduraci</a><script data-card-contents-for-user="148315141" type="text/json">{"id":148315141,"first_name":"Selman","last_name":"Kunduraci","domain_name":"independent","page_name":"SelmanKu","display_name":"Selman Kunduraci","profile_url":"https://independent.academia.edu/SelmanKu?f_ri=81182","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_77625372 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="77625372"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 77625372, container: ".js-paper-rank-work_77625372", }); });</script></li><li class="js-percentile-work_77625372 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 77625372; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_77625372"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_77625372 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="77625372"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 77625372; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=77625372]").text(description); $(".js-view-count-work_77625372").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_77625372").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="77625372"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">5</a> </div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="2008" href="https://www.academia.edu/Documents/in/Machine_Learning">Machine Learning</a>, <script data-card-contents-for-ri="2008" type="text/json">{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="4198" href="https://www.academia.edu/Documents/in/Mobile_Technology">Mobile Technology</a>, <script data-card-contents-for-ri="4198" type="text/json">{"id":4198,"name":"Mobile Technology","url":"https://www.academia.edu/Documents/in/Mobile_Technology?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="81182" href="https://www.academia.edu/Documents/in/Deep_Learning">Deep Learning</a>, <script data-card-contents-for-ri="81182" type="text/json">{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="537085" href="https://www.academia.edu/Documents/in/Mobile_Software">Mobile Software</a><script data-card-contents-for-ri="537085" type="text/json">{"id":537085,"name":"Mobile Software","url":"https://www.academia.edu/Documents/in/Mobile_Software?f_ri=81182","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=77625372]'), work: {"id":77625372,"title":"Comparison of Deep Learning Techniques for Classification of the Insects in Order Level With Mobile Software Application","created_at":"2022-04-25T22:20:35.039-07:00","url":"https://www.academia.edu/77625372/Comparison_of_Deep_Learning_Techniques_for_Classification_of_the_Insects_in_Order_Level_With_Mobile_Software_Application?f_ri=81182","dom_id":"work_77625372","summary":null,"downloadable_attachments":[{"id":84944612,"asset_id":77625372,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":148315141,"first_name":"Selman","last_name":"Kunduraci","domain_name":"independent","page_name":"SelmanKu","display_name":"Selman Kunduraci","profile_url":"https://independent.academia.edu/SelmanKu?f_ri=81182","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=81182","nofollow":false},{"id":4198,"name":"Mobile Technology","url":"https://www.academia.edu/Documents/in/Mobile_Technology?f_ri=81182","nofollow":false},{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182","nofollow":false},{"id":537085,"name":"Mobile Software","url":"https://www.academia.edu/Documents/in/Mobile_Software?f_ri=81182","nofollow":false},{"id":3029652,"name":"Detection of Insects","url":"https://www.academia.edu/Documents/in/Detection_of_Insects?f_ri=81182"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_77458176" data-work_id="77458176" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/77458176/A_Comprehensive_Survey_of_Deep_Learning_for_Image_Captioning">A Comprehensive Survey of Deep Learning for Image Captioning</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Generating a description of an image is called image captioning. Image captioning requires to recognize the important objects, their attributes and their relationships in an image. It also needs to generate syntactically and semantically... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_77458176" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Generating a description of an image is called image captioning. Image captioning requires to recognize the important objects, their attributes and their relationships in an image. It also needs to generate syntactically and semantically correct sentences. Deep learning-based techniques are capable of handling the complexities and challenges of image captioning. In this survey paper, we aim to present a comprehensive review of existing deep learning-based image captioning techniques. We discuss the foundation of the techniques to analyze their performances, strengths and limitations. We also discuss the datasets and the evaluation metrics popularly used in deep learning based automatic image captioning.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/77458176" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="de116764343152846b16f9c3a603e992" rel="nofollow" data-download="{"attachment_id":84794836,"asset_id":77458176,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/84794836/download_file?st=MTczMjQzNzA2NCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="119711557" href="https://independent.academia.edu/MdZakirHossain38">Md. Zakir Hossain</a><script data-card-contents-for-user="119711557" type="text/json">{"id":119711557,"first_name":"Md. Zakir","last_name":"Hossain","domain_name":"independent","page_name":"MdZakirHossain38","display_name":"Md. Zakir Hossain","profile_url":"https://independent.academia.edu/MdZakirHossain38?f_ri=81182","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_77458176 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="77458176"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 77458176, container: ".js-paper-rank-work_77458176", }); });</script></li><li class="js-percentile-work_77458176 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 77458176; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_77458176"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_77458176 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="77458176"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 77458176; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=77458176]").text(description); $(".js-view-count-work_77458176").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_77458176").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="77458176"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">6</a> </div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="300" href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a>, <script data-card-contents-for-ri="300" type="text/json">{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="422" href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a>, <script data-card-contents-for-ri="422" type="text/json">{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="465" href="https://www.academia.edu/Documents/in/Artificial_Intelligence">Artificial Intelligence</a>, <script data-card-contents-for-ri="465" type="text/json">{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="81182" href="https://www.academia.edu/Documents/in/Deep_Learning">Deep Learning</a><script data-card-contents-for-ri="81182" type="text/json">{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=77458176]'), work: {"id":77458176,"title":"A Comprehensive Survey of Deep Learning for Image Captioning","created_at":"2022-04-24T07:58:29.751-07:00","url":"https://www.academia.edu/77458176/A_Comprehensive_Survey_of_Deep_Learning_for_Image_Captioning?f_ri=81182","dom_id":"work_77458176","summary":"Generating a description of an image is called image captioning. Image captioning requires to recognize the important objects, their attributes and their relationships in an image. It also needs to generate syntactically and semantically correct sentences. Deep learning-based techniques are capable of handling the complexities and challenges of image captioning. In this survey paper, we aim to present a comprehensive review of existing deep learning-based image captioning techniques. We discuss the foundation of the techniques to analyze their performances, strengths and limitations. We also discuss the datasets and the evaluation metrics popularly used in deep learning based automatic image captioning.","downloadable_attachments":[{"id":84794836,"asset_id":77458176,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":119711557,"first_name":"Md. Zakir","last_name":"Hossain","domain_name":"independent","page_name":"MdZakirHossain38","display_name":"Md. Zakir Hossain","profile_url":"https://independent.academia.edu/MdZakirHossain38?f_ri=81182","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics?f_ri=81182","nofollow":false},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=81182","nofollow":false},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=81182","nofollow":false},{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182","nofollow":false},{"id":283974,"name":"Closed Captioning","url":"https://www.academia.edu/Documents/in/Closed_Captioning?f_ri=81182"},{"id":439576,"name":"Acm","url":"https://www.academia.edu/Documents/in/Acm?f_ri=81182"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_76983049" data-work_id="76983049" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/76983049/Analysis_of_Railway_Accidents_Narratives_Using_Deep_Learning">Analysis of Railway Accidents' Narratives Using Deep Learning</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/76983049" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="fe1dd351b80d6875c9004ca5404646dc" rel="nofollow" data-download="{"attachment_id":84503435,"asset_id":76983049,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/84503435/download_file?st=MTczMjQzNzA2NCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="161035829" href="https://independent.academia.edu/DonaldBrown57">Donald Brown</a><script data-card-contents-for-user="161035829" type="text/json">{"id":161035829,"first_name":"Donald","last_name":"Brown","domain_name":"independent","page_name":"DonaldBrown57","display_name":"Donald Brown","profile_url":"https://independent.academia.edu/DonaldBrown57?f_ri=81182","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_76983049 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="76983049"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 76983049, container: ".js-paper-rank-work_76983049", }); });</script></li><li class="js-percentile-work_76983049 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 76983049; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_76983049"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_76983049 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="76983049"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 76983049; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=76983049]").text(description); $(".js-view-count-work_76983049").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_76983049").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="76983049"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">9</a> </div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="74" href="https://www.academia.edu/Documents/in/Transportation_Engineering">Transportation Engineering</a>, <script data-card-contents-for-ri="74" type="text/json">{"id":74,"name":"Transportation Engineering","url":"https://www.academia.edu/Documents/in/Transportation_Engineering?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="85" href="https://www.academia.edu/Documents/in/Safety_Engineering">Safety Engineering</a>, <script data-card-contents-for-ri="85" type="text/json">{"id":85,"name":"Safety Engineering","url":"https://www.academia.edu/Documents/in/Safety_Engineering?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="300" href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a>, <script data-card-contents-for-ri="300" type="text/json">{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="422" href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a><script data-card-contents-for-ri="422" type="text/json">{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=81182","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=76983049]'), work: {"id":76983049,"title":"Analysis of Railway Accidents' Narratives Using Deep Learning","created_at":"2022-04-19T11:20:01.541-07:00","url":"https://www.academia.edu/76983049/Analysis_of_Railway_Accidents_Narratives_Using_Deep_Learning?f_ri=81182","dom_id":"work_76983049","summary":null,"downloadable_attachments":[{"id":84503435,"asset_id":76983049,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":161035829,"first_name":"Donald","last_name":"Brown","domain_name":"independent","page_name":"DonaldBrown57","display_name":"Donald Brown","profile_url":"https://independent.academia.edu/DonaldBrown57?f_ri=81182","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":74,"name":"Transportation Engineering","url":"https://www.academia.edu/Documents/in/Transportation_Engineering?f_ri=81182","nofollow":false},{"id":85,"name":"Safety Engineering","url":"https://www.academia.edu/Documents/in/Safety_Engineering?f_ri=81182","nofollow":false},{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics?f_ri=81182","nofollow":false},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=81182","nofollow":false},{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=81182"},{"id":5639,"name":"Text Mining","url":"https://www.academia.edu/Documents/in/Text_Mining?f_ri=81182"},{"id":54123,"name":"Artificial Neural Networks","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Networks?f_ri=81182"},{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182"},{"id":1391897,"name":"Railway Accidents","url":"https://www.academia.edu/Documents/in/Railway_Accidents?f_ri=81182"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_64066127" data-work_id="64066127" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/64066127/The_Imitation_Game_in_Children_With_Tourette_Syndrome_A_Lack_of_Impulse_Control_to_Mirror_Environmental_Stimuli">The Imitation Game in Children With Tourette Syndrome: A Lack of Impulse Control to Mirror Environmental Stimuli</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">The learning process in humans requires continuous contacts with environmental stimuli, especially during neurodevelopmental growth. These functions are assisted by the coding potential of mirror neurons to serve social interactions. This... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_64066127" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">The learning process in humans requires continuous contacts with environmental stimuli, especially during neurodevelopmental growth. These functions are assisted by the coding potential of mirror neurons to serve social interactions. This ability to learn imitating the observed behavior is no longer necessary during adulthood, and control mechanisms prevent automatic mirroring. However, children with Gilles de la Tourette syndrome could encounter coding errors at the level of the mirror neurons system as these cortical regions are themselves the ones affected in the syndrome. Combined with impulsivity, the resulting sign would be a manifest echopraxia that persists throughout adulthood, averting these individuals from the appraisal of a spot-on motor control.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/64066127" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="dff34481f2deabedb1465b420f71d845" rel="nofollow" data-download="{"attachment_id":76276136,"asset_id":64066127,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/76276136/download_file?st=MTczMjQzNzA2NCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="144599556" href="https://grupposandonato.academia.edu/MatteoBriguglio">Matteo Briguglio</a><script data-card-contents-for-user="144599556" type="text/json">{"id":144599556,"first_name":"Matteo","last_name":"Briguglio","domain_name":"grupposandonato","page_name":"MatteoBriguglio","display_name":"Matteo Briguglio","profile_url":"https://grupposandonato.academia.edu/MatteoBriguglio?f_ri=81182","photo":"https://0.academia-photos.com/144599556/61185901/82366998/s65_matteo.briguglio.jpg"}</script></span></span></li><li class="js-paper-rank-work_64066127 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="64066127"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 64066127, container: ".js-paper-rank-work_64066127", }); });</script></li><li class="js-percentile-work_64066127 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 64066127; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_64066127"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_64066127 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="64066127"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 64066127; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=64066127]").text(description); $(".js-view-count-work_64066127").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_64066127").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="64066127"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">5</a> </div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="81182" href="https://www.academia.edu/Documents/in/Deep_Learning">Deep Learning</a>, <script data-card-contents-for-ri="81182" type="text/json">{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="132523" href="https://www.academia.edu/Documents/in/Mirror_Neuron">Mirror Neuron</a>, <script data-card-contents-for-ri="132523" type="text/json">{"id":132523,"name":"Mirror Neuron","url":"https://www.academia.edu/Documents/in/Mirror_Neuron?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="3842086" href="https://www.academia.edu/Documents/in/Echopraxia">Echopraxia</a>, <script data-card-contents-for-ri="3842086" type="text/json">{"id":3842086,"name":"Echopraxia","url":"https://www.academia.edu/Documents/in/Echopraxia?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="4065692" href="https://www.academia.edu/Documents/in/Motor_Tic">Motor Tic</a><script data-card-contents-for-ri="4065692" type="text/json">{"id":4065692,"name":"Motor Tic","url":"https://www.academia.edu/Documents/in/Motor_Tic?f_ri=81182","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=64066127]'), work: {"id":64066127,"title":"The Imitation Game in Children With Tourette Syndrome: A Lack of Impulse Control to Mirror Environmental Stimuli","created_at":"2021-12-14T05:46:18.021-08:00","url":"https://www.academia.edu/64066127/The_Imitation_Game_in_Children_With_Tourette_Syndrome_A_Lack_of_Impulse_Control_to_Mirror_Environmental_Stimuli?f_ri=81182","dom_id":"work_64066127","summary":"The learning process in humans requires continuous contacts with environmental stimuli, especially during neurodevelopmental growth. These functions are assisted by the coding potential of mirror neurons to serve social interactions. This ability to learn imitating the observed behavior is no longer necessary during adulthood, and control mechanisms prevent automatic mirroring. However, children with Gilles de la Tourette syndrome could encounter coding errors at the level of the mirror neurons system as these cortical regions are themselves the ones affected in the syndrome. Combined with impulsivity, the resulting sign would be a manifest echopraxia that persists throughout adulthood, averting these individuals from the appraisal of a spot-on motor control.","downloadable_attachments":[{"id":76276136,"asset_id":64066127,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":144599556,"first_name":"Matteo","last_name":"Briguglio","domain_name":"grupposandonato","page_name":"MatteoBriguglio","display_name":"Matteo Briguglio","profile_url":"https://grupposandonato.academia.edu/MatteoBriguglio?f_ri=81182","photo":"https://0.academia-photos.com/144599556/61185901/82366998/s65_matteo.briguglio.jpg"}],"research_interests":[{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182","nofollow":false},{"id":132523,"name":"Mirror Neuron","url":"https://www.academia.edu/Documents/in/Mirror_Neuron?f_ri=81182","nofollow":false},{"id":3842086,"name":"Echopraxia","url":"https://www.academia.edu/Documents/in/Echopraxia?f_ri=81182","nofollow":false},{"id":4065692,"name":"Motor Tic","url":"https://www.academia.edu/Documents/in/Motor_Tic?f_ri=81182","nofollow":false},{"id":4065693,"name":"Neurologic Manifestations","url":"https://www.academia.edu/Documents/in/Neurologic_Manifestations?f_ri=81182"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_44576753 coauthored" data-work_id="44576753" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/44576753/Deep_learning_in_gastric_tissue_diseases_a_systematic_review">Deep learning in gastric tissue diseases: a systematic review</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Background In recent years, deep learning has gained remarkable attention in medical image analysis due to its capacity to provide results comparable to specialists and, in some cases, surpass them. Despite the emergence of deep learning... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_44576753" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Background In recent years, deep learning has gained remarkable attention in medical image analysis due to its capacity to provide results comparable to specialists and, in some cases, surpass them. Despite the emergence of deep learning research on gastric tissues diseases, few intensive reviews are addressing this topic. Method We performed a systematic review related to applications of deep learning in gastric tissue disease analysis by digital histology, endoscopy and radiology images. Conclusions This review highlighted the high potential and shortcomings in deep learning research studies applied to gastric cancer, ulcer, gastritis and non-malignant diseases. Our results demonstrate the effectiveness of gastric tissue analysis by deep learning applications. Moreover, we also identified gaps of evaluation metrics, and image collection availability, therefore, impacting experimental reproducibility.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/44576753" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="7a910bbe02adfec149a8c4de6f8df923" rel="nofollow" data-download="{"attachment_id":65033809,"asset_id":44576753,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/65033809/download_file?st=MTczMjQzNzA2NCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="50563477" href="https://ufpa.academia.edu/WandersonGon%C3%A7alveseGon%C3%A7alves">Wanderson Gonçalves e Gonçalves</a><script data-card-contents-for-user="50563477" type="text/json">{"id":50563477,"first_name":"Wanderson Gonçalves e","last_name":"Gonçalves","domain_name":"ufpa","page_name":"WandersonGonçalveseGonçalves","display_name":"Wanderson Gonçalves e Gonçalves","profile_url":"https://ufpa.academia.edu/WandersonGon%C3%A7alveseGon%C3%A7alves?f_ri=81182","photo":"https://0.academia-photos.com/50563477/13344055/14584388/s65_wanderson_gon_alves_e.gon_alves.jpg"}</script></span></span><span class="u-displayInlineBlock InlineList-item-text"> and <span class="u-textDecorationUnderline u-clickable InlineList-item-text js-work-more-authors-44576753">+1</span><div class="hidden js-additional-users-44576753"><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://geape-ufpa.academia.edu/GilderlanioAra%C3%BAjo">Gilderlanio Araújo</a></span></div></div></span><script>(function(){ var popoverSettings = { el: $('.js-work-more-authors-44576753'), placement: 'bottom', hide_delay: 200, html: true, content: function(){ return $('.js-additional-users-44576753').html(); } } new HoverPopover(popoverSettings); })();</script></li><li class="js-paper-rank-work_44576753 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="44576753"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 44576753, container: ".js-paper-rank-work_44576753", }); });</script></li><li class="js-percentile-work_44576753 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 44576753; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_44576753"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_44576753 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="44576753"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 44576753; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=44576753]").text(description); $(".js-view-count-work_44576753").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_44576753").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="44576753"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">8</a> </div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="465" href="https://www.academia.edu/Documents/in/Artificial_Intelligence">Artificial Intelligence</a>, <script data-card-contents-for-ri="465" type="text/json">{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="2008" href="https://www.academia.edu/Documents/in/Machine_Learning">Machine Learning</a>, <script data-card-contents-for-ri="2008" type="text/json">{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="3274" href="https://www.academia.edu/Documents/in/Gastroenterology">Gastroenterology</a>, <script data-card-contents-for-ri="3274" type="text/json">{"id":3274,"name":"Gastroenterology","url":"https://www.academia.edu/Documents/in/Gastroenterology?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="3521" href="https://www.academia.edu/Documents/in/Computational_Intelligence">Computational Intelligence</a><script data-card-contents-for-ri="3521" type="text/json">{"id":3521,"name":"Computational Intelligence","url":"https://www.academia.edu/Documents/in/Computational_Intelligence?f_ri=81182","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=44576753]'), work: {"id":44576753,"title":"Deep learning in gastric tissue diseases: a systematic review","created_at":"2020-11-25T18:29:52.524-08:00","url":"https://www.academia.edu/44576753/Deep_learning_in_gastric_tissue_diseases_a_systematic_review?f_ri=81182","dom_id":"work_44576753","summary":"Background In recent years, deep learning has gained remarkable attention in medical image analysis due to its capacity to provide results comparable to specialists and, in some cases, surpass them. Despite the emergence of deep learning research on gastric tissues diseases, few intensive reviews are addressing this topic. Method We performed a systematic review related to applications of deep learning in gastric tissue disease analysis by digital histology, endoscopy and radiology images. Conclusions This review highlighted the high potential and shortcomings in deep learning research studies applied to gastric cancer, ulcer, gastritis and non-malignant diseases. Our results demonstrate the effectiveness of gastric tissue analysis by deep learning applications. Moreover, we also identified gaps of evaluation metrics, and image collection availability, therefore, impacting experimental reproducibility.","downloadable_attachments":[{"id":65033809,"asset_id":44576753,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":50563477,"first_name":"Wanderson Gonçalves e","last_name":"Gonçalves","domain_name":"ufpa","page_name":"WandersonGonçalveseGonçalves","display_name":"Wanderson Gonçalves e Gonçalves","profile_url":"https://ufpa.academia.edu/WandersonGon%C3%A7alveseGon%C3%A7alves?f_ri=81182","photo":"https://0.academia-photos.com/50563477/13344055/14584388/s65_wanderson_gon_alves_e.gon_alves.jpg"},{"id":32104413,"first_name":"Gilderlanio","last_name":"Araújo","domain_name":"geape-ufpa","page_name":"GilderlanioAraújo","display_name":"Gilderlanio Araújo","profile_url":"https://geape-ufpa.academia.edu/GilderlanioAra%C3%BAjo?f_ri=81182","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=81182","nofollow":false},{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=81182","nofollow":false},{"id":3274,"name":"Gastroenterology","url":"https://www.academia.edu/Documents/in/Gastroenterology?f_ri=81182","nofollow":false},{"id":3521,"name":"Computational Intelligence","url":"https://www.academia.edu/Documents/in/Computational_Intelligence?f_ri=81182","nofollow":false},{"id":16838,"name":"Medical Image Analysis","url":"https://www.academia.edu/Documents/in/Medical_Image_Analysis?f_ri=81182"},{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182"},{"id":101258,"name":"Gastric Cancer","url":"https://www.academia.edu/Documents/in/Gastric_Cancer?f_ri=81182"},{"id":1433808,"name":"Convolutional Neural Networks","url":"https://www.academia.edu/Documents/in/Convolutional_Neural_Networks?f_ri=81182"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_43830465" data-work_id="43830465" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/43830465/Determining_House_Price_Using_Regression">Determining House Price Using Regression</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">The purpose of this article is to estimate the purchasing and sale opportunities of houses on the market by Machine learning techniques. For financial stability, the housing sector is quite critical. People seeking to purchase a new house... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_43830465" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">The purpose of this article is to estimate the purchasing and sale opportunities of houses on the market by Machine learning techniques. For financial stability, the housing sector is quite critical. People seeking to purchase a new house appear to be more cautious in their expectations and sales tactics analyzing historical industry patterns and pricing levels, as well as potential changes. The index of our method consists of the price of the house and its efficiency metrics, such as the amount of renovation, the distance from the city center, the construction programs, the height of the property, the floor and the location of the apartment in the home, and there are several other criteria. Service includes a database that recognizes the preferences of its clients and then integrates machine learning software. The program will enable consumers invest in real estate without approaching brokers. It therefore reduces the uncertainties inherent with the deal. The program has a login ID and a pin. At the same time, when the user searches for an attribute, the value of the original attribute and the value of the predicted attribute are displayed.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/43830465" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="d3122939bf95fc872e1086cf914d01ba" rel="nofollow" data-download="{"attachment_id":64149734,"asset_id":43830465,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/64149734/download_file?st=MTczMjQzNzA2NCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="130782651" href="https://lovely-professional-university.academia.edu/AChakraborty">Anirban Chakraborty</a><script data-card-contents-for-user="130782651" type="text/json">{"id":130782651,"first_name":"Anirban","last_name":"Chakraborty","domain_name":"lovely-professional-university","page_name":"AChakraborty","display_name":"Anirban Chakraborty","profile_url":"https://lovely-professional-university.academia.edu/AChakraborty?f_ri=81182","photo":"https://0.academia-photos.com/130782651/45574508/39770208/s65_anirban.chakraborty.jpg"}</script></span></span></li><li class="js-paper-rank-work_43830465 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="43830465"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 43830465, container: ".js-paper-rank-work_43830465", }); });</script></li><li class="js-percentile-work_43830465 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 43830465; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_43830465"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_43830465 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="43830465"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 43830465; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=43830465]").text(description); $(".js-view-count-work_43830465").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_43830465").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="43830465"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">3</a> </div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="19120" href="https://www.academia.edu/Documents/in/Regression_Models">Regression Models</a>, <script data-card-contents-for-ri="19120" type="text/json">{"id":19120,"name":"Regression Models","url":"https://www.academia.edu/Documents/in/Regression_Models?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="54123" href="https://www.academia.edu/Documents/in/Artificial_Neural_Networks">Artificial Neural Networks</a>, <script data-card-contents-for-ri="54123" type="text/json">{"id":54123,"name":"Artificial Neural Networks","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Networks?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="81182" href="https://www.academia.edu/Documents/in/Deep_Learning">Deep Learning</a><script data-card-contents-for-ri="81182" type="text/json">{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=43830465]'), work: {"id":43830465,"title":"Determining House Price Using Regression","created_at":"2020-08-11T05:21:44.880-07:00","url":"https://www.academia.edu/43830465/Determining_House_Price_Using_Regression?f_ri=81182","dom_id":"work_43830465","summary":"The purpose of this article is to estimate the purchasing and sale opportunities of houses on the market by Machine learning techniques. For financial stability, the housing sector is quite critical. People seeking to purchase a new house appear to be more cautious in their expectations and sales tactics analyzing historical industry patterns and pricing levels, as well as potential changes. The index of our method consists of the price of the house and its efficiency metrics, such as the amount of renovation, the distance from the city center, the construction programs, the height of the property, the floor and the location of the apartment in the home, and there are several other criteria. Service includes a database that recognizes the preferences of its clients and then integrates machine learning software. The program will enable consumers invest in real estate without approaching brokers. It therefore reduces the uncertainties inherent with the deal. The program has a login ID and a pin. At the same time, when the user searches for an attribute, the value of the original attribute and the value of the predicted attribute are displayed.","downloadable_attachments":[{"id":64149734,"asset_id":43830465,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":130782651,"first_name":"Anirban","last_name":"Chakraborty","domain_name":"lovely-professional-university","page_name":"AChakraborty","display_name":"Anirban Chakraborty","profile_url":"https://lovely-professional-university.academia.edu/AChakraborty?f_ri=81182","photo":"https://0.academia-photos.com/130782651/45574508/39770208/s65_anirban.chakraborty.jpg"}],"research_interests":[{"id":19120,"name":"Regression Models","url":"https://www.academia.edu/Documents/in/Regression_Models?f_ri=81182","nofollow":false},{"id":54123,"name":"Artificial Neural Networks","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Networks?f_ri=81182","nofollow":false},{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_43674906" data-work_id="43674906" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/43674906/Classifying_Chest_Pathology_Images_Using_Deep_Learning_Techniques">Classifying Chest Pathology Images Using Deep Learning Techniques</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">In this review, the application of in-depth learning for medical diagnosis will be corrected. A thorough analysis of various scientific articles in the domain of deep neural network applications in the medical field has been implemented.... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_43674906" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">In this review, the application of in-depth learning for medical diagnosis will be corrected. A thorough analysis of various scientific articles in the domain of deep neural network applications in the medical field has been implemented. Has received more than 300 research articles and after several steps of selection, 46 articles have been presented in more detail The research found that the neural network (CNN) is the most prevalent agent when talking about deep learning and medical image analysis. In addition, from the findings of this article, it can be observed that the application of widespread learning technology is widespread. But most of the applications that focus on bioinformatics, medical diagnostics and other similar fields. In this work, we examine the strength of the deep learning method for pathological examination in chest radiography. Convolutional neural networks (CNN) The method of deep architectural classification is popular due to the ability to learn to represent medium and high level images. We explore CNN's ability to identify different types of diseases in chest X-ray images. Moreover, because of the very large training sets that are not available in the medical domain, we therefore explore the possibility of using deep learning methods based on non-medical learning. We tested our algorithm on 93 datasets. We use CNN that is trained with ImageNet, which is a well-known non-animated large image database. The best performance is due to the use of features pulled from CNN and low-level features.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/43674906" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="64d319da64cf326bea2f09d3402ac204" rel="nofollow" data-download="{"attachment_id":63976940,"asset_id":43674906,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/63976940/download_file?st=MTczMjQzNzA2NCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="118928009" href="https://unipune.academia.edu/vrushalidhanokar">Vrushali Dhanokar</a><script data-card-contents-for-user="118928009" type="text/json">{"id":118928009,"first_name":"Vrushali","last_name":"Dhanokar","domain_name":"unipune","page_name":"vrushalidhanokar","display_name":"Vrushali Dhanokar","profile_url":"https://unipune.academia.edu/vrushalidhanokar?f_ri=81182","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_43674906 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="43674906"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 43674906, container: ".js-paper-rank-work_43674906", }); });</script></li><li class="js-percentile-work_43674906 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 43674906; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_43674906"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_43674906 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="43674906"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 43674906; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=43674906]").text(description); $(".js-view-count-work_43674906").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_43674906").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="43674906"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">6</a> </div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="422" href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a>, <script data-card-contents-for-ri="422" type="text/json">{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="1185" href="https://www.academia.edu/Documents/in/Image_Processing">Image Processing</a>, <script data-card-contents-for-ri="1185" type="text/json">{"id":1185,"name":"Image Processing","url":"https://www.academia.edu/Documents/in/Image_Processing?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="2008" href="https://www.academia.edu/Documents/in/Machine_Learning">Machine Learning</a>, <script data-card-contents-for-ri="2008" type="text/json">{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="2009" href="https://www.academia.edu/Documents/in/Data_Mining">Data Mining</a><script data-card-contents-for-ri="2009" type="text/json">{"id":2009,"name":"Data Mining","url":"https://www.academia.edu/Documents/in/Data_Mining?f_ri=81182","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=43674906]'), work: {"id":43674906,"title":"Classifying Chest Pathology Images Using Deep Learning Techniques","created_at":"2020-07-20T20:35:15.982-07:00","url":"https://www.academia.edu/43674906/Classifying_Chest_Pathology_Images_Using_Deep_Learning_Techniques?f_ri=81182","dom_id":"work_43674906","summary":"In this review, the application of in-depth learning for medical diagnosis will be corrected. A thorough analysis of various scientific articles in the domain of deep neural network applications in the medical field has been implemented. Has received more than 300 research articles and after several steps of selection, 46 articles have been presented in more detail The research found that the neural network (CNN) is the most prevalent agent when talking about deep learning and medical image analysis. In addition, from the findings of this article, it can be observed that the application of widespread learning technology is widespread. But most of the applications that focus on bioinformatics, medical diagnostics and other similar fields. In this work, we examine the strength of the deep learning method for pathological examination in chest radiography. Convolutional neural networks (CNN) The method of deep architectural classification is popular due to the ability to learn to represent medium and high level images. We explore CNN's ability to identify different types of diseases in chest X-ray images. Moreover, because of the very large training sets that are not available in the medical domain, we therefore explore the possibility of using deep learning methods based on non-medical learning. We tested our algorithm on 93 datasets. We use CNN that is trained with ImageNet, which is a well-known non-animated large image database. The best performance is due to the use of features pulled from CNN and low-level features.","downloadable_attachments":[{"id":63976940,"asset_id":43674906,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":118928009,"first_name":"Vrushali","last_name":"Dhanokar","domain_name":"unipune","page_name":"vrushalidhanokar","display_name":"Vrushali Dhanokar","profile_url":"https://unipune.academia.edu/vrushalidhanokar?f_ri=81182","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=81182","nofollow":false},{"id":1185,"name":"Image Processing","url":"https://www.academia.edu/Documents/in/Image_Processing?f_ri=81182","nofollow":false},{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=81182","nofollow":false},{"id":2009,"name":"Data Mining","url":"https://www.academia.edu/Documents/in/Data_Mining?f_ri=81182","nofollow":false},{"id":54123,"name":"Artificial Neural Networks","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Networks?f_ri=81182"},{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_74166045" data-work_id="74166045" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/74166045/Hybrid_Deep_Learning_hDL_Based_Brain_Computer_Interface_BCI_Systems_A_Systematic_Review">Hybrid Deep Learning (hDL)-Based Brain-Computer Interface (BCI) Systems: A Systematic Review</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Background: Brain-Computer Interface (BCI) is becoming more reliable, thanks to the advantages of Artificial Intelligence (AI). Recently, hybrid Deep Learning (hDL), which combines different DL algorithms, has gained momentum over the... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_74166045" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Background: Brain-Computer Interface (BCI) is becoming more reliable, thanks to the advantages of Artificial Intelligence (AI). Recently, hybrid Deep Learning (hDL), which combines different DL algorithms, has gained momentum over the past five years. In this work, we proposed a review on hDL-based BCI starting from the seminal studies in 2015. Objectives: We have reviewed 47 papers that apply hDL to the BCI system published between 2015 and 2020 extracting trends and highlighting relevant aspects to the topic. Methods: We have queried four scientific search engines (Google Scholar, PubMed, IEEE Xplore and Elsevier Science Direct) and different data items were extracted from each paper such as the database used, kind of application, online/offline training, tasks used for the BCI, pre-processing methodology adopted, type of normalization used, which kind of features were extracted, type of DL architecture used, number of layers implemented and which optimization approach were used a...</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/74166045" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="a9a80a704ba8f96a609179ac956407d7" rel="nofollow" data-download="{"attachment_id":82413124,"asset_id":74166045,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/82413124/download_file?st=MTczMjQzNzA2NCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="54691029" href="https://univpm.academia.edu/NibrasAboAlzahab">Nibras Abo Alzahab</a><script data-card-contents-for-user="54691029" type="text/json">{"id":54691029,"first_name":"Nibras","last_name":"Abo Alzahab","domain_name":"univpm","page_name":"NibrasAboAlzahab","display_name":"Nibras Abo Alzahab","profile_url":"https://univpm.academia.edu/NibrasAboAlzahab?f_ri=81182","photo":"https://0.academia-photos.com/54691029/18914852/37478979/s65_nibras.abo_alzahab.jpg"}</script></span></span></li><li class="js-paper-rank-work_74166045 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="74166045"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 74166045, container: ".js-paper-rank-work_74166045", }); });</script></li><li class="js-percentile-work_74166045 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 74166045; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_74166045"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_74166045 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="74166045"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 74166045; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=74166045]").text(description); $(".js-view-count-work_74166045").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_74166045").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="74166045"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">6</a> </div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="11882" href="https://www.academia.edu/Documents/in/Non-Invasive_BCI">Non-Invasive BCI</a>, <script data-card-contents-for-ri="11882" type="text/json">{"id":11882,"name":"Non-Invasive BCI","url":"https://www.academia.edu/Documents/in/Non-Invasive_BCI?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="26327" href="https://www.academia.edu/Documents/in/Medicine">Medicine</a>, <script data-card-contents-for-ri="26327" type="text/json">{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="47558" href="https://www.academia.edu/Documents/in/BCI">BCI</a>, <script data-card-contents-for-ri="47558" type="text/json">{"id":47558,"name":"BCI","url":"https://www.academia.edu/Documents/in/BCI?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="76071" href="https://www.academia.edu/Documents/in/EEG_Signal_Processing">EEG Signal Processing</a><script data-card-contents-for-ri="76071" type="text/json">{"id":76071,"name":"EEG Signal Processing","url":"https://www.academia.edu/Documents/in/EEG_Signal_Processing?f_ri=81182","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=74166045]'), work: {"id":74166045,"title":"Hybrid Deep Learning (hDL)-Based Brain-Computer Interface (BCI) Systems: A Systematic Review","created_at":"2022-03-20T15:41:26.016-07:00","url":"https://www.academia.edu/74166045/Hybrid_Deep_Learning_hDL_Based_Brain_Computer_Interface_BCI_Systems_A_Systematic_Review?f_ri=81182","dom_id":"work_74166045","summary":"Background: Brain-Computer Interface (BCI) is becoming more reliable, thanks to the advantages of Artificial Intelligence (AI). Recently, hybrid Deep Learning (hDL), which combines different DL algorithms, has gained momentum over the past five years. In this work, we proposed a review on hDL-based BCI starting from the seminal studies in 2015. Objectives: We have reviewed 47 papers that apply hDL to the BCI system published between 2015 and 2020 extracting trends and highlighting relevant aspects to the topic. Methods: We have queried four scientific search engines (Google Scholar, PubMed, IEEE Xplore and Elsevier Science Direct) and different data items were extracted from each paper such as the database used, kind of application, online/offline training, tasks used for the BCI, pre-processing methodology adopted, type of normalization used, which kind of features were extracted, type of DL architecture used, number of layers implemented and which optimization approach were used a...","downloadable_attachments":[{"id":82413124,"asset_id":74166045,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":54691029,"first_name":"Nibras","last_name":"Abo Alzahab","domain_name":"univpm","page_name":"NibrasAboAlzahab","display_name":"Nibras Abo Alzahab","profile_url":"https://univpm.academia.edu/NibrasAboAlzahab?f_ri=81182","photo":"https://0.academia-photos.com/54691029/18914852/37478979/s65_nibras.abo_alzahab.jpg"}],"research_interests":[{"id":11882,"name":"Non-Invasive BCI","url":"https://www.academia.edu/Documents/in/Non-Invasive_BCI?f_ri=81182","nofollow":false},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine?f_ri=81182","nofollow":false},{"id":47558,"name":"BCI","url":"https://www.academia.edu/Documents/in/BCI?f_ri=81182","nofollow":false},{"id":76071,"name":"EEG Signal Processing","url":"https://www.academia.edu/Documents/in/EEG_Signal_Processing?f_ri=81182","nofollow":false},{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182"},{"id":1005921,"name":"Brain Sciences","url":"https://www.academia.edu/Documents/in/Brain_Sciences?f_ri=81182"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_81422743 coauthored" data-work_id="81422743" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/81422743/A_Survey_on_the_Wireless_Network_Technology_Classification_Using_Machine_Learning">A Survey on the Wireless Network Technology Classification Using Machine Learning</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">With the rapid development of numerous wireless network technologies and the growing number of wireless devices in use around the world, gaining access to the radio frequency spectrum has become a challenge that must be solved as soon as... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_81422743" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">With the rapid development of numerous wireless network technologies and the growing number of wireless devices in use around the world, gaining access to the radio frequency spectrum has become a challenge that must be solved as soon as possible. The ever-increasing wireless traffic and shortage of accessible spectrum necessitate smart spectrum management. Machine learning (ML) is gaining popularity, and its capacity to spot patterns and aid decision-making has found applications in a variety of disciplines. Machine learning approaches have been applied to wireless networking difficulties, such as spectrum efficiency, and have showed superior performance compared to traditional methods. Spectrum sensing enables dynamic spectrum sharing, which improves spectrum efficiency by allowing coexistence of wireless technologies within the same frequency range. This involves the accurate detection and identification of multiple wireless signals sent in the same radio spectrum range. The current state of machine learning algorithms for identifying and classifying radio signals depending on their access technologies, such as Wi-Fi and LTE, is examined in this work. Classifying the RF signals based on their wireless network technologies as opposed to their modulation schemes, especially using machine learning, is an emerging area of study and is becoming a popular research topic. This survey will assist readers to become familiar with the current literature and enable further research in this domain.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/81422743" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="0a51c4545ee51a50523581c52d0cd768" rel="nofollow" data-download="{"attachment_id":87470926,"asset_id":81422743,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/87470926/download_file?st=MTczMjQzNzA2NCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="226510728" href="https://independent.academia.edu/SiddharthaSubray">Siddhartha Subray</a><script data-card-contents-for-user="226510728" type="text/json">{"id":226510728,"first_name":"Siddhartha","last_name":"Subray","domain_name":"independent","page_name":"SiddharthaSubray","display_name":"Siddhartha Subray","profile_url":"https://independent.academia.edu/SiddharthaSubray?f_ri=81182","photo":"/images/s65_no_pic.png"}</script></span></span><span class="u-displayInlineBlock InlineList-item-text"> and <span class="u-textDecorationUnderline u-clickable InlineList-item-text js-work-more-authors-81422743">+1</span><div class="hidden js-additional-users-81422743"><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://independent.academia.edu/KevinGifford3">Kevin Gifford</a></span></div></div></span><script>(function(){ var popoverSettings = { el: $('.js-work-more-authors-81422743'), placement: 'bottom', hide_delay: 200, html: true, content: function(){ return $('.js-additional-users-81422743').html(); } } new HoverPopover(popoverSettings); })();</script></li><li class="js-paper-rank-work_81422743 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="81422743"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 81422743, container: ".js-paper-rank-work_81422743", }); });</script></li><li class="js-percentile-work_81422743 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 81422743; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_81422743"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_81422743 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="81422743"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 81422743; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=81422743]").text(description); $(".js-view-count-work_81422743").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_81422743").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="81422743"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">5</a> </div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="2008" href="https://www.academia.edu/Documents/in/Machine_Learning">Machine Learning</a>, <script data-card-contents-for-ri="2008" type="text/json">{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="81182" href="https://www.academia.edu/Documents/in/Deep_Learning">Deep Learning</a>, <script data-card-contents-for-ri="81182" type="text/json">{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="175772" href="https://www.academia.edu/Documents/in/Signal_Processing_for_Wireless_Communication_cognitive_Radio_Compressive_Sensing_Applications_to_Wi">Signal Processing for Wireless Communication,cognitive Radio, Compressive Sensing Applications to Wirelss Communications</a>, <script data-card-contents-for-ri="175772" type="text/json">{"id":175772,"name":"Signal Processing for Wireless Communication,cognitive Radio, Compressive Sensing Applications to Wirelss Communications","url":"https://www.academia.edu/Documents/in/Signal_Processing_for_Wireless_Communication_cognitive_Radio_Compressive_Sensing_Applications_to_Wi?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="341822" href="https://www.academia.edu/Documents/in/Cognitive_Radio-Spectrum_Sensing">Cognitive Radio-Spectrum Sensing</a><script data-card-contents-for-ri="341822" type="text/json">{"id":341822,"name":"Cognitive Radio-Spectrum Sensing","url":"https://www.academia.edu/Documents/in/Cognitive_Radio-Spectrum_Sensing?f_ri=81182","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=81422743]'), work: {"id":81422743,"title":"A Survey on the Wireless Network Technology Classification Using Machine Learning","created_at":"2022-06-13T16:26:40.326-07:00","url":"https://www.academia.edu/81422743/A_Survey_on_the_Wireless_Network_Technology_Classification_Using_Machine_Learning?f_ri=81182","dom_id":"work_81422743","summary":"With the rapid development of numerous wireless network technologies and the growing number of wireless devices in use around the world, gaining access to the radio frequency spectrum has become a challenge that must be solved as soon as possible. The ever-increasing wireless traffic and shortage of accessible spectrum necessitate smart spectrum management. Machine learning (ML) is gaining popularity, and its capacity to spot patterns and aid decision-making has found applications in a variety of disciplines. Machine learning approaches have been applied to wireless networking difficulties, such as spectrum efficiency, and have showed superior performance compared to traditional methods. Spectrum sensing enables dynamic spectrum sharing, which improves spectrum efficiency by allowing coexistence of wireless technologies within the same frequency range. This involves the accurate detection and identification of multiple wireless signals sent in the same radio spectrum range. The current state of machine learning algorithms for identifying and classifying radio signals depending on their access technologies, such as Wi-Fi and LTE, is examined in this work. Classifying the RF signals based on their wireless network technologies as opposed to their modulation schemes, especially using machine learning, is an emerging area of study and is becoming a popular research topic. This survey will assist readers to become familiar with the current literature and enable further research in this domain.","downloadable_attachments":[{"id":87470926,"asset_id":81422743,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":226510728,"first_name":"Siddhartha","last_name":"Subray","domain_name":"independent","page_name":"SiddharthaSubray","display_name":"Siddhartha Subray","profile_url":"https://independent.academia.edu/SiddharthaSubray?f_ri=81182","photo":"/images/s65_no_pic.png"},{"id":227331718,"first_name":"Kevin","last_name":"Gifford","domain_name":"independent","page_name":"KevinGifford3","display_name":"Kevin Gifford","profile_url":"https://independent.academia.edu/KevinGifford3?f_ri=81182","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=81182","nofollow":false},{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182","nofollow":false},{"id":175772,"name":"Signal Processing for Wireless Communication,cognitive Radio, Compressive Sensing Applications to Wirelss Communications","url":"https://www.academia.edu/Documents/in/Signal_Processing_for_Wireless_Communication_cognitive_Radio_Compressive_Sensing_Applications_to_Wi?f_ri=81182","nofollow":false},{"id":341822,"name":"Cognitive Radio-Spectrum Sensing","url":"https://www.academia.edu/Documents/in/Cognitive_Radio-Spectrum_Sensing?f_ri=81182","nofollow":false},{"id":460181,"name":"Signal and Image Processing, Pattern Recognition, Machine learning, Feature Extraction and Classification of Biomedical signals, Brain Machine Interface (BMI), and Computational Neuroscience","url":"https://www.academia.edu/Documents/in/Signal_and_Image_Processing_Pattern_Recognition_Machine_learning_Feature_Extraction_and_Classific?f_ri=81182"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_80065271" data-work_id="80065271" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/80065271/Comparative_analysis_of_deep_learning_image_detection_algorithms">Comparative analysis of deep learning image detection algorithms</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">A computer views all kinds of visual media as an array of numerical values. As a consequence of this approach, they require image processing algorithms to inspect contents of images. This project compares 3 major image processing... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_80065271" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">A computer views all kinds of visual media as an array of numerical values. As a consequence of this approach, they require image processing algorithms to inspect contents of images. This project compares 3 major image processing algorithms: Single Shot Detection (SSD), Faster Region based Convolutional Neural Networks (Faster R-CNN), and You Only Look Once (YOLO) to find the fastest and most efficient of three. In this comparative analysis, using the Microsoft COCO (Common Object in Context) dataset, the performance of these three algorithms is evaluated and their strengths and limitations are analysed based on parameters such as accuracy, precision and F1 score. From the results of the analysis, it can be concluded that the suitability of any of the algorithms over the other two is dictated to a great extent by the use cases they are applied in. In an identical testing environment, YOLO-v3 outperforms SSD and Faster R-CNN, making it the best of the three algorithms.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/80065271" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="de4a6015f643958d49d39ff7d1db2de3" rel="nofollow" data-download="{"attachment_id":86570965,"asset_id":80065271,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/86570965/download_file?st=MTczMjQzNzA2NCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="215016473" href="https://independent.academia.edu/VedKulkarni5">Ved Kulkarni</a><script data-card-contents-for-user="215016473" type="text/json">{"id":215016473,"first_name":"Ved","last_name":"Kulkarni","domain_name":"independent","page_name":"VedKulkarni5","display_name":"Ved Kulkarni","profile_url":"https://independent.academia.edu/VedKulkarni5?f_ri=81182","photo":"https://gravatar.com/avatar/6a1bebbb54012e47c62195c7e4d393b7?s=65"}</script></span></span></li><li class="js-paper-rank-work_80065271 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="80065271"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 80065271, container: ".js-paper-rank-work_80065271", }); });</script></li><li class="js-percentile-work_80065271 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 80065271; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_80065271"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_80065271 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="80065271"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 80065271; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=80065271]").text(description); $(".js-view-count-work_80065271").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_80065271").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="80065271"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">4</a> </div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="422" href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a>, <script data-card-contents-for-ri="422" type="text/json">{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="465" href="https://www.academia.edu/Documents/in/Artificial_Intelligence">Artificial Intelligence</a>, <script data-card-contents-for-ri="465" type="text/json">{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="81182" href="https://www.academia.edu/Documents/in/Deep_Learning">Deep Learning</a>, <script data-card-contents-for-ri="81182" type="text/json">{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="126300" href="https://www.academia.edu/Documents/in/Big_Data">Big Data</a><script data-card-contents-for-ri="126300" type="text/json">{"id":126300,"name":"Big Data","url":"https://www.academia.edu/Documents/in/Big_Data?f_ri=81182","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=80065271]'), work: {"id":80065271,"title":"Comparative analysis of deep learning image detection algorithms","created_at":"2022-05-27T11:38:08.974-07:00","url":"https://www.academia.edu/80065271/Comparative_analysis_of_deep_learning_image_detection_algorithms?f_ri=81182","dom_id":"work_80065271","summary":"A computer views all kinds of visual media as an array of numerical values. As a consequence of this approach, they require image processing algorithms to inspect contents of images. This project compares 3 major image processing algorithms: Single Shot Detection (SSD), Faster Region based Convolutional Neural Networks (Faster R-CNN), and You Only Look Once (YOLO) to find the fastest and most efficient of three. In this comparative analysis, using the Microsoft COCO (Common Object in Context) dataset, the performance of these three algorithms is evaluated and their strengths and limitations are analysed based on parameters such as accuracy, precision and F1 score. From the results of the analysis, it can be concluded that the suitability of any of the algorithms over the other two is dictated to a great extent by the use cases they are applied in. In an identical testing environment, YOLO-v3 outperforms SSD and Faster R-CNN, making it the best of the three algorithms.","downloadable_attachments":[{"id":86570965,"asset_id":80065271,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":215016473,"first_name":"Ved","last_name":"Kulkarni","domain_name":"independent","page_name":"VedKulkarni5","display_name":"Ved Kulkarni","profile_url":"https://independent.academia.edu/VedKulkarni5?f_ri=81182","photo":"https://gravatar.com/avatar/6a1bebbb54012e47c62195c7e4d393b7?s=65"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=81182","nofollow":false},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=81182","nofollow":false},{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182","nofollow":false},{"id":126300,"name":"Big Data","url":"https://www.academia.edu/Documents/in/Big_Data?f_ri=81182","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_79737796" data-work_id="79737796" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/79737796/TX_CNN_Detecting_tuberculosis_in_chest_X_ray_images_using_convolutional_neural_network">TX-CNN: Detecting tuberculosis in chest X-ray images using convolutional neural network</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/79737796" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="35296418588392ddea2f0a3de8225259" rel="nofollow" data-download="{"attachment_id":86351416,"asset_id":79737796,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/86351416/download_file?st=MTczMjQzNzA2NCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="54310470" href="https://independent.academia.edu/JesusPeinadoRodriguez">Jesús Peinado-Rodriguez</a><script data-card-contents-for-user="54310470" type="text/json">{"id":54310470,"first_name":"Jesús","last_name":"Peinado-Rodriguez","domain_name":"independent","page_name":"JesusPeinadoRodriguez","display_name":"Jesús Peinado-Rodriguez","profile_url":"https://independent.academia.edu/JesusPeinadoRodriguez?f_ri=81182","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_79737796 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="79737796"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 79737796, container: ".js-paper-rank-work_79737796", }); });</script></li><li class="js-percentile-work_79737796 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 79737796; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_79737796"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_79737796 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="79737796"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 79737796; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=79737796]").text(description); $(".js-view-count-work_79737796").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_79737796").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="79737796"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">7</a> </div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="422" href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a>, <script data-card-contents-for-ri="422" type="text/json">{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="465" href="https://www.academia.edu/Documents/in/Artificial_Intelligence">Artificial Intelligence</a>, <script data-card-contents-for-ri="465" type="text/json">{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="1249" href="https://www.academia.edu/Documents/in/Medical_Imaging">Medical Imaging</a>, <script data-card-contents-for-ri="1249" type="text/json">{"id":1249,"name":"Medical Imaging","url":"https://www.academia.edu/Documents/in/Medical_Imaging?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="56368" href="https://www.academia.edu/Documents/in/Image_Classification">Image Classification</a><script data-card-contents-for-ri="56368" type="text/json">{"id":56368,"name":"Image Classification","url":"https://www.academia.edu/Documents/in/Image_Classification?f_ri=81182","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=79737796]'), work: {"id":79737796,"title":"TX-CNN: Detecting tuberculosis in chest X-ray images using convolutional neural network","created_at":"2022-05-23T05:46:47.861-07:00","url":"https://www.academia.edu/79737796/TX_CNN_Detecting_tuberculosis_in_chest_X_ray_images_using_convolutional_neural_network?f_ri=81182","dom_id":"work_79737796","summary":null,"downloadable_attachments":[{"id":86351416,"asset_id":79737796,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":54310470,"first_name":"Jesús","last_name":"Peinado-Rodriguez","domain_name":"independent","page_name":"JesusPeinadoRodriguez","display_name":"Jesús Peinado-Rodriguez","profile_url":"https://independent.academia.edu/JesusPeinadoRodriguez?f_ri=81182","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=81182","nofollow":false},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=81182","nofollow":false},{"id":1249,"name":"Medical Imaging","url":"https://www.academia.edu/Documents/in/Medical_Imaging?f_ri=81182","nofollow":false},{"id":56368,"name":"Image Classification","url":"https://www.academia.edu/Documents/in/Image_Classification?f_ri=81182","nofollow":false},{"id":62235,"name":"Tuberculosis","url":"https://www.academia.edu/Documents/in/Tuberculosis?f_ri=81182"},{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182"},{"id":1568111,"name":"Convolutional Neural Network","url":"https://www.academia.edu/Documents/in/Convolutional_Neural_Network?f_ri=81182"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_67602100 coauthored" data-work_id="67602100" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/67602100/A_new_approach_for_traffic_matrix_estimation_in_high_load_computer_networks_based_on_graph_embedding_and_convolutional_neural_network">A new approach for traffic matrix estimation in high load computer networks based on graph embedding and convolutional neural network</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">In computer networks, transmitted traffic between origin-destination nodes has been considered a crucial factor in traffic engineering applications. To date, measuring the traffic directly in high load networks is difficult due to high... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_67602100" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">In computer networks, transmitted traffic between origin-destination nodes has been considered a crucial factor in traffic engineering applications. To date, measuring the traffic directly in high load networks is difficult due to high computational costs. On the other hand, accurate estimation of network traffic by means of link load measurements and routing information is currently a challenging problem. In this paper, we propose a new approach to estimate end-to-end traffic, inspired by graph embedding. In the proposed approach, we consider a computer network as a time-varying graph. Our model provides explicit routing information to a convolutional neural network (ConvNet) estimator via link load measurements and network topological structure. When explicit routing information is provided, the learning model is only expected to embed the relations between link loads into a traffic estimation vector, instead of figuring out the routing paths. The experimental results showed that the proposed approach outperforms similar estimators in terms of lower estimation error and better tracking the fluctuations.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/67602100" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="26320177" href="https://independent.academia.edu/AliZamani8">Ali Zamani</a><script data-card-contents-for-user="26320177" type="text/json">{"id":26320177,"first_name":"Ali","last_name":"Zamani","domain_name":"independent","page_name":"AliZamani8","display_name":"Ali Zamani","profile_url":"https://independent.academia.edu/AliZamani8?f_ri=81182","photo":"/images/s65_no_pic.png"}</script></span></span><span class="u-displayInlineBlock InlineList-item-text"> and <span class="u-textDecorationUnderline u-clickable InlineList-item-text js-work-more-authors-67602100">+1</span><div class="hidden js-additional-users-67602100"><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://independent.academia.edu/MohsenEmami12">Mohsen Emami</a></span></div></div></span><script>(function(){ var popoverSettings = { el: $('.js-work-more-authors-67602100'), placement: 'bottom', hide_delay: 200, html: true, content: function(){ return $('.js-additional-users-67602100').html(); } } new HoverPopover(popoverSettings); })();</script></li><li class="js-paper-rank-work_67602100 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="67602100"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 67602100, container: ".js-paper-rank-work_67602100", }); });</script></li><li class="js-percentile-work_67602100 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 67602100; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_67602100"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_67602100 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="67602100"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 67602100; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=67602100]").text(description); $(".js-view-count-work_67602100").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_67602100").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="67602100"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">6</a> </div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="422" href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a>, <script data-card-contents-for-ri="422" type="text/json">{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="2008" href="https://www.academia.edu/Documents/in/Machine_Learning">Machine Learning</a>, <script data-card-contents-for-ri="2008" type="text/json">{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="81182" href="https://www.academia.edu/Documents/in/Deep_Learning">Deep Learning</a>, <script data-card-contents-for-ri="81182" type="text/json">{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="301936" href="https://www.academia.edu/Documents/in/Traffic_Matrix">Traffic Matrix</a><script data-card-contents-for-ri="301936" type="text/json">{"id":301936,"name":"Traffic Matrix","url":"https://www.academia.edu/Documents/in/Traffic_Matrix?f_ri=81182","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=67602100]'), work: {"id":67602100,"title":"A new approach for traffic matrix estimation in high load computer networks based on graph embedding and convolutional neural network","created_at":"2022-01-08T04:20:53.883-08:00","url":"https://www.academia.edu/67602100/A_new_approach_for_traffic_matrix_estimation_in_high_load_computer_networks_based_on_graph_embedding_and_convolutional_neural_network?f_ri=81182","dom_id":"work_67602100","summary":"In computer networks, transmitted traffic between origin-destination nodes has been considered a crucial factor in traffic engineering applications. To date, measuring the traffic directly in high load networks is difficult due to high computational costs. On the other hand, accurate estimation of network traffic by means of link load measurements and routing information is currently a challenging problem. In this paper, we propose a new approach to estimate end-to-end traffic, inspired by graph embedding. In the proposed approach, we consider a computer network as a time-varying graph. Our model provides explicit routing information to a convolutional neural network (ConvNet) estimator via link load measurements and network topological structure. When explicit routing information is provided, the learning model is only expected to embed the relations between link loads into a traffic estimation vector, instead of figuring out the routing paths. The experimental results showed that the proposed approach outperforms similar estimators in terms of lower estimation error and better tracking the fluctuations.","downloadable_attachments":[],"ordered_authors":[{"id":26320177,"first_name":"Ali","last_name":"Zamani","domain_name":"independent","page_name":"AliZamani8","display_name":"Ali Zamani","profile_url":"https://independent.academia.edu/AliZamani8?f_ri=81182","photo":"/images/s65_no_pic.png"},{"id":212677677,"first_name":"Mohsen","last_name":"Emami","domain_name":"independent","page_name":"MohsenEmami12","display_name":"Mohsen Emami","profile_url":"https://independent.academia.edu/MohsenEmami12?f_ri=81182","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=81182","nofollow":false},{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=81182","nofollow":false},{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182","nofollow":false},{"id":301936,"name":"Traffic Matrix","url":"https://www.academia.edu/Documents/in/Traffic_Matrix?f_ri=81182","nofollow":false},{"id":543701,"name":"Network Traffic Analysis","url":"https://www.academia.edu/Documents/in/Network_Traffic_Analysis?f_ri=81182"},{"id":1433808,"name":"Convolutional Neural Networks","url":"https://www.academia.edu/Documents/in/Convolutional_Neural_Networks?f_ri=81182"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_56154562" data-work_id="56154562" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/56154562/Activity_recognition_framework_in_sports_videos">Activity recognition framework in sports videos</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Recent advancements in activity recognition from sports videos have attracted wide scientific interest of the Computer Vision community. However, the activity recognition problem from cricket video sequences is largely under-represented... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_56154562" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Recent advancements in activity recognition from sports videos have attracted wide scientific interest of the Computer Vision community. However, the activity recognition problem from cricket video sequences is largely under-represented in the literature. This paper aims to devise a convolutional neural network (CNN) based model for sports activity recognition. The model is trained on the pre-trained VGG16, VGG19, ResNet50, and Inception V3 Models and tested on the clustered cricket videos frames extracted from the data set especially prepared for this research. The clustering of the frames is done by using K-Mean clustering algorithm. K-Fold cross validation is done which gave an accuracy of 99% on clustered data and 91% on un-clustered data. The accuracy and time complexity of the proposed method is better as compared to the state of the art methods used for activity recognition from videos.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/56154562" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="83346268c64412990eb63b29734c41a3" rel="nofollow" data-download="{"attachment_id":71680008,"asset_id":56154562,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/71680008/download_file?st=MTczMjQzNzA2NCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="12511763" href="https://ciitisb.academia.edu/MalikTabish">Malik Tabish</a><script data-card-contents-for-user="12511763" type="text/json">{"id":12511763,"first_name":"Malik","last_name":"Tabish","domain_name":"ciitisb","page_name":"MalikTabish","display_name":"Malik Tabish","profile_url":"https://ciitisb.academia.edu/MalikTabish?f_ri=81182","photo":"https://0.academia-photos.com/12511763/119498115/108817100/s65_malik.tabish.jpeg"}</script></span></span></li><li class="js-paper-rank-work_56154562 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="56154562"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 56154562, container: ".js-paper-rank-work_56154562", }); });</script></li><li class="js-percentile-work_56154562 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 56154562; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_56154562"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_56154562 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="56154562"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 56154562; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=56154562]").text(description); $(".js-view-count-work_56154562").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_56154562").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="56154562"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">4</a> </div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="1185" href="https://www.academia.edu/Documents/in/Image_Processing">Image Processing</a>, <script data-card-contents-for-ri="1185" type="text/json">{"id":1185,"name":"Image Processing","url":"https://www.academia.edu/Documents/in/Image_Processing?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="2008" href="https://www.academia.edu/Documents/in/Machine_Learning">Machine Learning</a>, <script data-card-contents-for-ri="2008" type="text/json">{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="15665" href="https://www.academia.edu/Documents/in/Video_Processing">Video Processing</a>, <script data-card-contents-for-ri="15665" type="text/json">{"id":15665,"name":"Video Processing","url":"https://www.academia.edu/Documents/in/Video_Processing?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="81182" href="https://www.academia.edu/Documents/in/Deep_Learning">Deep Learning</a><script data-card-contents-for-ri="81182" type="text/json">{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=56154562]'), work: {"id":56154562,"title":"Activity recognition framework in sports videos","created_at":"2021-10-06T22:40:38.720-07:00","url":"https://www.academia.edu/56154562/Activity_recognition_framework_in_sports_videos?f_ri=81182","dom_id":"work_56154562","summary":"Recent advancements in activity recognition from sports videos have attracted wide scientific interest of the Computer Vision community. However, the activity recognition problem from cricket video sequences is largely under-represented in the literature. This paper aims to devise a convolutional neural network (CNN) based model for sports activity recognition. The model is trained on the pre-trained VGG16, VGG19, ResNet50, and Inception V3 Models and tested on the clustered cricket videos frames extracted from the data set especially prepared for this research. The clustering of the frames is done by using K-Mean clustering algorithm. K-Fold cross validation is done which gave an accuracy of 99% on clustered data and 91% on un-clustered data. The accuracy and time complexity of the proposed method is better as compared to the state of the art methods used for activity recognition from videos.","downloadable_attachments":[{"id":71680008,"asset_id":56154562,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":12511763,"first_name":"Malik","last_name":"Tabish","domain_name":"ciitisb","page_name":"MalikTabish","display_name":"Malik Tabish","profile_url":"https://ciitisb.academia.edu/MalikTabish?f_ri=81182","photo":"https://0.academia-photos.com/12511763/119498115/108817100/s65_malik.tabish.jpeg"}],"research_interests":[{"id":1185,"name":"Image Processing","url":"https://www.academia.edu/Documents/in/Image_Processing?f_ri=81182","nofollow":false},{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=81182","nofollow":false},{"id":15665,"name":"Video Processing","url":"https://www.academia.edu/Documents/in/Video_Processing?f_ri=81182","nofollow":false},{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_49367895" data-work_id="49367895" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/49367895/Why_Does_Unsupervised_Pre_training_Help_Deep_Learning">Why Does Unsupervised Pre-training Help Deep Learning?</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Much recent research has been devoted to learning algorithms for deep architectures such as Deep Belief Networks and stacks of auto-encoder variants, with impressive results obtained in several areas, mostly on vision and language data... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_49367895" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Much recent research has been devoted to learning algorithms for deep architectures such as Deep Belief Networks and stacks of auto-encoder variants, with impressive results obtained in several areas, mostly on vision and language data sets. The best results obtained on supervised learning tasks involve an unsupervised learning component, usually in an unsupervised pre-training phase. Even though these new algorithms</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/49367895" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="a30fb20dad7b7e42cdda686020a336a7" rel="nofollow" data-download="{"attachment_id":67743047,"asset_id":49367895,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/67743047/download_file?st=MTczMjQzNzA2NCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="62546631" href="https://independent.academia.edu/YBengio">Yoshua Bengio</a><script data-card-contents-for-user="62546631" type="text/json">{"id":62546631,"first_name":"Yoshua","last_name":"Bengio","domain_name":"independent","page_name":"YBengio","display_name":"Yoshua Bengio","profile_url":"https://independent.academia.edu/YBengio?f_ri=81182","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_49367895 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="49367895"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 49367895, container: ".js-paper-rank-work_49367895", }); });</script></li><li class="js-percentile-work_49367895 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 49367895; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_49367895"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_49367895 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="49367895"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 49367895; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=49367895]").text(description); $(".js-view-count-work_49367895").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_49367895").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="49367895"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">10</a> </div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="2008" href="https://www.academia.edu/Documents/in/Machine_Learning">Machine Learning</a>, <script data-card-contents-for-ri="2008" type="text/json">{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="10928" href="https://www.academia.edu/Documents/in/Non-convex_optimization">Non-convex optimization</a>, <script data-card-contents-for-ri="10928" type="text/json">{"id":10928,"name":"Non-convex optimization","url":"https://www.academia.edu/Documents/in/Non-convex_optimization?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="16439" href="https://www.academia.edu/Documents/in/Learning_problems">Learning problems</a>, <script data-card-contents-for-ri="16439" type="text/json">{"id":16439,"name":"Learning problems","url":"https://www.academia.edu/Documents/in/Learning_problems?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="81182" href="https://www.academia.edu/Documents/in/Deep_Learning">Deep Learning</a><script data-card-contents-for-ri="81182" type="text/json">{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=49367895]'), work: {"id":49367895,"title":"Why Does Unsupervised Pre-training Help Deep Learning?","created_at":"2021-06-25T14:26:21.831-07:00","url":"https://www.academia.edu/49367895/Why_Does_Unsupervised_Pre_training_Help_Deep_Learning?f_ri=81182","dom_id":"work_49367895","summary":"Much recent research has been devoted to learning algorithms for deep architectures such as Deep Belief Networks and stacks of auto-encoder variants, with impressive results obtained in several areas, mostly on vision and language data sets. The best results obtained on supervised learning tasks involve an unsupervised learning component, usually in an unsupervised pre-training phase. Even though these new algorithms","downloadable_attachments":[{"id":67743047,"asset_id":49367895,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":62546631,"first_name":"Yoshua","last_name":"Bengio","domain_name":"independent","page_name":"YBengio","display_name":"Yoshua Bengio","profile_url":"https://independent.academia.edu/YBengio?f_ri=81182","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=81182","nofollow":false},{"id":10928,"name":"Non-convex optimization","url":"https://www.academia.edu/Documents/in/Non-convex_optimization?f_ri=81182","nofollow":false},{"id":16439,"name":"Learning problems","url":"https://www.academia.edu/Documents/in/Learning_problems?f_ri=81182","nofollow":false},{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182","nofollow":false},{"id":95069,"name":"Supervised Learning","url":"https://www.academia.edu/Documents/in/Supervised_Learning?f_ri=81182"},{"id":119456,"name":"Unsupervised Learning","url":"https://www.academia.edu/Documents/in/Unsupervised_Learning?f_ri=81182"},{"id":663297,"name":"Bayesian Belief Network","url":"https://www.academia.edu/Documents/in/Bayesian_Belief_Network?f_ri=81182"},{"id":970735,"name":"Basin of Attraction","url":"https://www.academia.edu/Documents/in/Basin_of_Attraction?f_ri=81182"},{"id":2821309,"name":"learning algorithm","url":"https://www.academia.edu/Documents/in/learning_algorithm?f_ri=81182"},{"id":2922956,"name":"Psychology and Cognitive Sciences","url":"https://www.academia.edu/Documents/in/Psychology_and_Cognitive_Sciences?f_ri=81182"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_44721976" data-work_id="44721976" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/44721976/Evaluation_of_deep_learning_based_myocardial_infarction_quantification_using_Segment_CMR_software">Evaluation of deep learning-based myocardial infarction quantification using Segment CMR software</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">This work evaluates deep learning-based myocardial infarction (MI) quantification using Segment cardiovascular magnetic resonance (CMR) software. Segment CMR software incorporates the expectation-maximization, weighted intensity, a priori... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_44721976" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">This work evaluates deep learning-based myocardial infarction (MI) quantification using Segment cardiovascular magnetic resonance (CMR) software. Segment CMR software incorporates the expectation-maximization, weighted intensity, a priori information (EWA) algorithm used to generate the infarct scar volume, infarct scar percentage, and microvascular obstruction percentage. Here, Segment CMR software segmentation algorithm is updated with semantic segmentation with U-net to achieve and evaluate fully automated or deep learning-based MI quantification. The direct observation of graphs and the number of infarcted and contoured myocardium are two options used to estimate the relationship between deep learning-based MI quantification and medical exper-based results.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/44721976" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="5cf51bcb9a18f869ddb6e86a5bb84efe" rel="nofollow" data-download="{"attachment_id":68990784,"asset_id":44721976,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/68990784/download_file?st=MTczMjQzNzA2NCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="5811863" href="https://meduniwien.academia.edu/OlivierRukundo">Olivier Rukundo, Ph.D.</a><script data-card-contents-for-user="5811863" type="text/json">{"id":5811863,"first_name":"Olivier","last_name":"Rukundo, Ph.D.","domain_name":"meduniwien","page_name":"OlivierRukundo","display_name":"Olivier Rukundo, Ph.D.","profile_url":"https://meduniwien.academia.edu/OlivierRukundo?f_ri=81182","photo":"https://0.academia-photos.com/5811863/2498667/3309540/s65_olivier.rukundo.jpg"}</script></span></span></li><li class="js-paper-rank-work_44721976 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="44721976"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 44721976, container: ".js-paper-rank-work_44721976", }); });</script></li><li class="js-percentile-work_44721976 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 44721976; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_44721976"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_44721976 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="44721976"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 44721976; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=44721976]").text(description); $(".js-view-count-work_44721976").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_44721976").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="44721976"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">5</a> </div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="465" href="https://www.academia.edu/Documents/in/Artificial_Intelligence">Artificial Intelligence</a>, <script data-card-contents-for-ri="465" type="text/json">{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="4998" href="https://www.academia.edu/Documents/in/Medical_Image_Processing">Medical Image Processing</a>, <script data-card-contents-for-ri="4998" type="text/json">{"id":4998,"name":"Medical Image Processing","url":"https://www.academia.edu/Documents/in/Medical_Image_Processing?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="8928" href="https://www.academia.edu/Documents/in/MRI">MRI</a>, <script data-card-contents-for-ri="8928" type="text/json">{"id":8928,"name":"MRI","url":"https://www.academia.edu/Documents/in/MRI?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="81182" href="https://www.academia.edu/Documents/in/Deep_Learning">Deep Learning</a><script data-card-contents-for-ri="81182" type="text/json">{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=44721976]'), work: {"id":44721976,"title":"Evaluation of deep learning-based myocardial infarction quantification using Segment CMR software","created_at":"2020-12-17T00:01:58.872-08:00","url":"https://www.academia.edu/44721976/Evaluation_of_deep_learning_based_myocardial_infarction_quantification_using_Segment_CMR_software?f_ri=81182","dom_id":"work_44721976","summary":"This work evaluates deep learning-based myocardial infarction (MI) quantification using Segment cardiovascular magnetic resonance (CMR) software. Segment CMR software incorporates the expectation-maximization, weighted intensity, a priori information (EWA) algorithm used to generate the infarct scar volume, infarct scar percentage, and microvascular obstruction percentage. Here, Segment CMR software segmentation algorithm is updated with semantic segmentation with U-net to achieve and evaluate fully automated or deep learning-based MI quantification. The direct observation of graphs and the number of infarcted and contoured myocardium are two options used to estimate the relationship between deep learning-based MI quantification and medical exper-based results.","downloadable_attachments":[{"id":68990784,"asset_id":44721976,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":5811863,"first_name":"Olivier","last_name":"Rukundo, Ph.D.","domain_name":"meduniwien","page_name":"OlivierRukundo","display_name":"Olivier Rukundo, Ph.D.","profile_url":"https://meduniwien.academia.edu/OlivierRukundo?f_ri=81182","photo":"https://0.academia-photos.com/5811863/2498667/3309540/s65_olivier.rukundo.jpg"}],"research_interests":[{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=81182","nofollow":false},{"id":4998,"name":"Medical Image Processing","url":"https://www.academia.edu/Documents/in/Medical_Image_Processing?f_ri=81182","nofollow":false},{"id":8928,"name":"MRI","url":"https://www.academia.edu/Documents/in/MRI?f_ri=81182","nofollow":false},{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182","nofollow":false},{"id":99614,"name":"Image and Video Processing","url":"https://www.academia.edu/Documents/in/Image_and_Video_Processing?f_ri=81182"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_43727059" data-work_id="43727059" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/43727059/Implementation_of_deep_neural_networks_DNN_with_batch_normalization_for_batik_pattern_recognition">Implementation of deep neural networks (DNN) with batch normalization for batik pattern recognition</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">One of the most famous cultural heritages in Indonesia is batik. Batik is a specially made drawing cloth by writing Malam (wax) on the cloth, then processed in a certain way. The diversity of motifs both in Indonesia and the allied... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_43727059" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">One of the most famous cultural heritages in Indonesia is batik. Batik is a specially made drawing cloth by writing Malam (wax) on the cloth, then processed in a certain way. The diversity of motifs both in Indonesia and the allied countries raises new research topics in the field of information technology, both for conservation, storage, publication and the creation of new batik motifs. In computer science research area, studies about Batik pattern have been done by researchers and some algorithms have been successfully applied in Batik pattern recognition. This study was focused on Batik motif recognition using texture fusion feature which is Gabor, Log-Gabor, and GLCM; and using PCA feature reduction to improve the classification accuracy and reduce the computational time. To improve the accuracy, we proposed a Deep Neural Network model to recognise batik pattern and used batch normalisation as a regularises to generalise the model and to reduce time complexity. From the experiments, the feature extraction, selection, and reduction gave better accuracy than the raw dataset. The feature selection and reduction also reduce time complexity. The DNN+BN significantly improve the accuracy of the classification model from 65.36% to 83.15%. BN as a regularization has successfully made the model more general, hence improve the accuracy of the model. The parameters tuning also improved accuracy from 83.15% to 85.57%.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/43727059" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="538bb82409df891f044553c07ce3d265" rel="nofollow" data-download="{"attachment_id":64036015,"asset_id":43727059,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/64036015/download_file?st=MTczMjQzNzA2NCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="163474776" href="https://independent.academia.edu/JournalIJECE">International Journal of Electrical and Computer Engineering (IJECE)</a><script data-card-contents-for-user="163474776" type="text/json">{"id":163474776,"first_name":"International Journal of Electrical and Computer Engineering","last_name":"(IJECE)","domain_name":"independent","page_name":"JournalIJECE","display_name":"International Journal of Electrical and Computer Engineering (IJECE)","profile_url":"https://independent.academia.edu/JournalIJECE?f_ri=81182","photo":"https://0.academia-photos.com/163474776/123357473/112705609/s65_international_journal_of_electrical_and_computer_engineering._ijece_.jpg"}</script></span></span></li><li class="js-paper-rank-work_43727059 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="43727059"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 43727059, container: ".js-paper-rank-work_43727059", }); });</script></li><li class="js-percentile-work_43727059 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 43727059; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_43727059"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_43727059 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="43727059"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 43727059; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=43727059]").text(description); $(".js-view-count-work_43727059").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_43727059").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="43727059"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">5</a> </div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="5109" href="https://www.academia.edu/Documents/in/Pattern_Recognition">Pattern Recognition</a>, <script data-card-contents-for-ri="5109" type="text/json">{"id":5109,"name":"Pattern Recognition","url":"https://www.academia.edu/Documents/in/Pattern_Recognition?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="81182" href="https://www.academia.edu/Documents/in/Deep_Learning">Deep Learning</a>, <script data-card-contents-for-ri="81182" type="text/json">{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="890015" href="https://www.academia.edu/Documents/in/Deep_Neural_Networks">Deep Neural Networks</a>, <script data-card-contents-for-ri="890015" type="text/json">{"id":890015,"name":"Deep Neural Networks","url":"https://www.academia.edu/Documents/in/Deep_Neural_Networks?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="3724784" href="https://www.academia.edu/Documents/in/Batch_normalization">Batch normalization </a><script data-card-contents-for-ri="3724784" type="text/json">{"id":3724784,"name":"Batch normalization ","url":"https://www.academia.edu/Documents/in/Batch_normalization?f_ri=81182","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=43727059]'), work: {"id":43727059,"title":"Implementation of deep neural networks (DNN) with batch normalization for batik pattern recognition","created_at":"2020-07-28T00:08:12.135-07:00","url":"https://www.academia.edu/43727059/Implementation_of_deep_neural_networks_DNN_with_batch_normalization_for_batik_pattern_recognition?f_ri=81182","dom_id":"work_43727059","summary":"One of the most famous cultural heritages in Indonesia is batik. Batik is a specially made drawing cloth by writing Malam (wax) on the cloth, then processed in a certain way. The diversity of motifs both in Indonesia and the allied countries raises new research topics in the field of information technology, both for conservation, storage, publication and the creation of new batik motifs. In computer science research area, studies about Batik pattern have been done by researchers and some algorithms have been successfully applied in Batik pattern recognition. This study was focused on Batik motif recognition using texture fusion feature which is Gabor, Log-Gabor, and GLCM; and using PCA feature reduction to improve the classification accuracy and reduce the computational time. To improve the accuracy, we proposed a Deep Neural Network model to recognise batik pattern and used batch normalisation as a regularises to generalise the model and to reduce time complexity. From the experiments, the feature extraction, selection, and reduction gave better accuracy than the raw dataset. The feature selection and reduction also reduce time complexity. The DNN+BN significantly improve the accuracy of the classification model from 65.36% to 83.15%. BN as a regularization has successfully made the model more general, hence improve the accuracy of the model. The parameters tuning also improved accuracy from 83.15% to 85.57%.","downloadable_attachments":[{"id":64036015,"asset_id":43727059,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":163474776,"first_name":"International Journal of Electrical and Computer Engineering","last_name":"(IJECE)","domain_name":"independent","page_name":"JournalIJECE","display_name":"International Journal of Electrical and Computer Engineering (IJECE)","profile_url":"https://independent.academia.edu/JournalIJECE?f_ri=81182","photo":"https://0.academia-photos.com/163474776/123357473/112705609/s65_international_journal_of_electrical_and_computer_engineering._ijece_.jpg"}],"research_interests":[{"id":5109,"name":"Pattern Recognition","url":"https://www.academia.edu/Documents/in/Pattern_Recognition?f_ri=81182","nofollow":false},{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182","nofollow":false},{"id":890015,"name":"Deep Neural Networks","url":"https://www.academia.edu/Documents/in/Deep_Neural_Networks?f_ri=81182","nofollow":false},{"id":3724784,"name":"Batch normalization ","url":"https://www.academia.edu/Documents/in/Batch_normalization?f_ri=81182","nofollow":false},{"id":3724785,"name":"Indonesian batik ","url":"https://www.academia.edu/Documents/in/Indonesian_batik?f_ri=81182"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_36912302" data-work_id="36912302" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/36912302/How_to_Install_Python_on_Linux">How to Install Python on Linux</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest">Setup Python on your system in 5 minutes.</div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/36912302" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="377660b59773a71b42b98d1333dd3190" rel="nofollow" data-download="{"attachment_id":56863185,"asset_id":36912302,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/56863185/download_file?st=MTczMjQzNzA2NCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="67350943" href="https://independent.academia.edu/VinitaSilaparasetty">Vinita Silaparasetty</a><script data-card-contents-for-user="67350943" type="text/json">{"id":67350943,"first_name":"Vinita","last_name":"Silaparasetty","domain_name":"independent","page_name":"VinitaSilaparasetty","display_name":"Vinita Silaparasetty","profile_url":"https://independent.academia.edu/VinitaSilaparasetty?f_ri=81182","photo":"https://0.academia-photos.com/67350943/17519777/18245267/s65_vinita.silaparasetty.jpg"}</script></span></span></li><li class="js-paper-rank-work_36912302 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="36912302"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 36912302, container: ".js-paper-rank-work_36912302", }); });</script></li><li class="js-percentile-work_36912302 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 36912302; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_36912302"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_36912302 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="36912302"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 36912302; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=36912302]").text(description); $(".js-view-count-work_36912302").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_36912302").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="36912302"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">6</a> </div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="60" href="https://www.academia.edu/Documents/in/Mechanical_Engineering">Mechanical Engineering</a>, <script data-card-contents-for-ri="60" type="text/json">{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="465" href="https://www.academia.edu/Documents/in/Artificial_Intelligence">Artificial Intelligence</a>, <script data-card-contents-for-ri="465" type="text/json">{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="4205" href="https://www.academia.edu/Documents/in/Data_Analysis">Data Analysis</a>, <script data-card-contents-for-ri="4205" type="text/json">{"id":4205,"name":"Data Analysis","url":"https://www.academia.edu/Documents/in/Data_Analysis?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="54123" href="https://www.academia.edu/Documents/in/Artificial_Neural_Networks">Artificial Neural Networks</a><script data-card-contents-for-ri="54123" type="text/json">{"id":54123,"name":"Artificial Neural Networks","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Networks?f_ri=81182","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=36912302]'), work: {"id":36912302,"title":"How to Install Python on Linux","created_at":"2018-06-25T03:11:01.064-07:00","url":"https://www.academia.edu/36912302/How_to_Install_Python_on_Linux?f_ri=81182","dom_id":"work_36912302","summary":"Setup Python on your system in 5 minutes.","downloadable_attachments":[{"id":56863185,"asset_id":36912302,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":67350943,"first_name":"Vinita","last_name":"Silaparasetty","domain_name":"independent","page_name":"VinitaSilaparasetty","display_name":"Vinita Silaparasetty","profile_url":"https://independent.academia.edu/VinitaSilaparasetty?f_ri=81182","photo":"https://0.academia-photos.com/67350943/17519777/18245267/s65_vinita.silaparasetty.jpg"}],"research_interests":[{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering?f_ri=81182","nofollow":false},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=81182","nofollow":false},{"id":4205,"name":"Data Analysis","url":"https://www.academia.edu/Documents/in/Data_Analysis?f_ri=81182","nofollow":false},{"id":54123,"name":"Artificial Neural Networks","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Networks?f_ri=81182","nofollow":false},{"id":69100,"name":"Data Science","url":"https://www.academia.edu/Documents/in/Data_Science?f_ri=81182"},{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_35125091" data-work_id="35125091" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/35125091/Training_a_Deep_Learning_Model">Training a Deep Learning Model</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest">Benha University<br /><a href="http://bu.edu.eg" rel="nofollow">http://bu.edu.eg</a><br /><a href="http://www.bu.edu.eg/staff/mloey" rel="nofollow">http://www.bu.edu.eg/staff/mloey</a></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/35125091" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="65ae65654902d2885344dab9311c7c89" rel="nofollow" data-download="{"attachment_id":54986313,"asset_id":35125091,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/54986313/download_file?st=MTczMjQzNzA2NCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="5700752" href="https://benha.academia.edu/mloey">Mohamed Loey</a><script data-card-contents-for-user="5700752" type="text/json">{"id":5700752,"first_name":"Mohamed","last_name":"Loey","domain_name":"benha","page_name":"mloey","display_name":"Mohamed Loey","profile_url":"https://benha.academia.edu/mloey?f_ri=81182","photo":"https://0.academia-photos.com/5700752/2799752/3264866/s65_mohamed.loey.jpg"}</script></span></span></li><li class="js-paper-rank-work_35125091 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="35125091"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 35125091, container: ".js-paper-rank-work_35125091", }); });</script></li><li class="js-percentile-work_35125091 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 35125091; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_35125091"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_35125091 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="35125091"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 35125091; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=35125091]").text(description); $(".js-view-count-work_35125091").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_35125091").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="35125091"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i></div><span class="InlineList-item-text u-textTruncate u-pl6x"><a class="InlineList-item-text" data-has-card-for-ri="81182" href="https://www.academia.edu/Documents/in/Deep_Learning">Deep Learning</a><script data-card-contents-for-ri="81182" type="text/json">{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182","nofollow":false}</script></span></li><script>(function(){ if (false) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=35125091]'), work: {"id":35125091,"title":"Training a Deep Learning Model","created_at":"2017-11-12T09:01:41.281-08:00","url":"https://www.academia.edu/35125091/Training_a_Deep_Learning_Model?f_ri=81182","dom_id":"work_35125091","summary":"Benha University\nhttp://bu.edu.eg\nhttp://www.bu.edu.eg/staff/mloey\n","downloadable_attachments":[{"id":54986313,"asset_id":35125091,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":5700752,"first_name":"Mohamed","last_name":"Loey","domain_name":"benha","page_name":"mloey","display_name":"Mohamed Loey","profile_url":"https://benha.academia.edu/mloey?f_ri=81182","photo":"https://0.academia-photos.com/5700752/2799752/3264866/s65_mohamed.loey.jpg"}],"research_interests":[{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_82421102" data-work_id="82421102" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/82421102/Cross_Racial_Automatic_Age_Estimation_from_Facial_Images_using_Deep_Learning">Cross-Racial Automatic Age Estimation from Facial Images using Deep Learning</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">This paper presents a deep learning approach for age estimation of human beings using their facial images. The different racial groups based on skin colour have been incorporated in the annotations of the images in the dataset, while... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_82421102" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">This paper presents a deep learning approach for age estimation of human beings using their facial images. The different racial groups based on skin colour have been incorporated in the annotations of the images in the dataset, while ensuring an adequate distribution of subjects across the racial groups so as to achieve an accurate Automatic Facial Age Estimation (AFAE). The principle of transfer learning is applied to the ResNet50 Convolutional Neural Network (CNN) initially pretrained for the task of object classification and finetuning it’s hyperparameters to propose an AFAE system that can be used to automate ages of humans across multiple racial groups. The mean absolute error of 4.25 years is obtained at the end of the research which proved the effectiveness and superiority of the proposed method.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/82421102" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="c6d52014876cd6dd6564cf9d0def3072" rel="nofollow" data-download="{"attachment_id":88135680,"asset_id":82421102,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/88135680/download_file?st=MTczMjQzNzA2NCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="204668629" href="https://independent.academia.edu/abhusoses">Abhulimen V Osekhonmen</a><script data-card-contents-for-user="204668629" type="text/json">{"id":204668629,"first_name":"Abhulimen","last_name":"Osekhonmen","domain_name":"independent","page_name":"abhusoses","display_name":"Abhulimen V Osekhonmen","profile_url":"https://independent.academia.edu/abhusoses?f_ri=81182","photo":"https://0.academia-photos.com/204668629/65391337/53726868/s65_abhulimen.osekhonmen.jpg"}</script></span></span></li><li class="js-paper-rank-work_82421102 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="82421102"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 82421102, container: ".js-paper-rank-work_82421102", }); });</script></li><li class="js-percentile-work_82421102 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 82421102; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_82421102"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_82421102 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="82421102"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 82421102; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=82421102]").text(description); $(".js-view-count-work_82421102").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_82421102").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="82421102"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">7</a> </div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="854" href="https://www.academia.edu/Documents/in/Computer_Vision">Computer Vision</a>, <script data-card-contents-for-ri="854" type="text/json">{"id":854,"name":"Computer Vision","url":"https://www.academia.edu/Documents/in/Computer_Vision?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="81182" href="https://www.academia.edu/Documents/in/Deep_Learning">Deep Learning</a>, <script data-card-contents-for-ri="81182" type="text/json">{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="119118" href="https://www.academia.edu/Documents/in/Age_Estimation">Age Estimation</a>, <script data-card-contents-for-ri="119118" type="text/json">{"id":119118,"name":"Age Estimation","url":"https://www.academia.edu/Documents/in/Age_Estimation?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="457721" href="https://www.academia.edu/Documents/in/Computer_Science_Engineering">Computer Science Engineering</a><script data-card-contents-for-ri="457721" type="text/json">{"id":457721,"name":"Computer Science Engineering","url":"https://www.academia.edu/Documents/in/Computer_Science_Engineering?f_ri=81182","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=82421102]'), work: {"id":82421102,"title":"Cross-Racial Automatic Age Estimation from Facial Images using Deep Learning","created_at":"2022-06-30T12:02:21.699-07:00","url":"https://www.academia.edu/82421102/Cross_Racial_Automatic_Age_Estimation_from_Facial_Images_using_Deep_Learning?f_ri=81182","dom_id":"work_82421102","summary":"This paper presents a deep learning approach for age estimation of human beings using their facial images. The different racial groups based on skin colour have been incorporated in the annotations of the images in the dataset, while ensuring an adequate distribution of subjects across the racial groups so as to achieve an accurate Automatic Facial Age Estimation (AFAE). The principle of transfer learning is applied to the ResNet50 Convolutional Neural Network (CNN) initially pretrained for the task of object classification and finetuning it’s hyperparameters to propose an AFAE system that can be used to automate ages of humans across multiple racial groups. The mean absolute error of 4.25 years is obtained at the end of the research which proved the effectiveness and superiority of the proposed method.","downloadable_attachments":[{"id":88135680,"asset_id":82421102,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":204668629,"first_name":"Abhulimen","last_name":"Osekhonmen","domain_name":"independent","page_name":"abhusoses","display_name":"Abhulimen V Osekhonmen","profile_url":"https://independent.academia.edu/abhusoses?f_ri=81182","photo":"https://0.academia-photos.com/204668629/65391337/53726868/s65_abhulimen.osekhonmen.jpg"}],"research_interests":[{"id":854,"name":"Computer Vision","url":"https://www.academia.edu/Documents/in/Computer_Vision?f_ri=81182","nofollow":false},{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182","nofollow":false},{"id":119118,"name":"Age Estimation","url":"https://www.academia.edu/Documents/in/Age_Estimation?f_ri=81182","nofollow":false},{"id":457721,"name":"Computer Science Engineering","url":"https://www.academia.edu/Documents/in/Computer_Science_Engineering?f_ri=81182","nofollow":false},{"id":489279,"name":"Race and Skin Colour","url":"https://www.academia.edu/Documents/in/Race_and_Skin_Colour?f_ri=81182"},{"id":1552543,"name":"Automatic Face Recognition","url":"https://www.academia.edu/Documents/in/Automatic_Face_Recognition?f_ri=81182"},{"id":2058532,"name":"Convolutional Neural Network [CNN]","url":"https://www.academia.edu/Documents/in/Convolutional_Neural_Network_CNN_?f_ri=81182"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_76513971" data-work_id="76513971" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/76513971/Transformative_Effects_of_IoT_Blockchain_and_Artificial_Intelligence_on_Cloud_Computing_Evolution_Vision_Trends_and_Open_Challenges">Transformative Effects of IoT, Blockchain and Artificial Intelligence on Cloud Computing: Evolution, Vision, Trends and Open Challenges</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/76513971" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="327489d5262f2cf832e8ca52bcf9f942" rel="nofollow" data-download="{"attachment_id":84199627,"asset_id":76513971,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/84199627/download_file?st=MTczMjQzNzA2NCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="68206210" href="https://imperial.academia.edu/ShreshthTuli">Shreshth Tuli</a><script data-card-contents-for-user="68206210" type="text/json">{"id":68206210,"first_name":"Shreshth","last_name":"Tuli","domain_name":"imperial","page_name":"ShreshthTuli","display_name":"Shreshth Tuli","profile_url":"https://imperial.academia.edu/ShreshthTuli?f_ri=81182","photo":"https://0.academia-photos.com/68206210/18810174/18769738/s65_shreshth.tuli.jpg"}</script></span></span></li><li class="js-paper-rank-work_76513971 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="76513971"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 76513971, container: ".js-paper-rank-work_76513971", }); });</script></li><li class="js-percentile-work_76513971 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 76513971; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_76513971"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_76513971 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="76513971"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 76513971; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=76513971]").text(description); $(".js-view-count-work_76513971").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_76513971").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="76513971"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">20</a> </div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="422" href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a>, <script data-card-contents-for-ri="422" type="text/json">{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="449" href="https://www.academia.edu/Documents/in/Software_Engineering">Software Engineering</a>, <script data-card-contents-for-ri="449" type="text/json">{"id":449,"name":"Software Engineering","url":"https://www.academia.edu/Documents/in/Software_Engineering?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="1512" href="https://www.academia.edu/Documents/in/Climate_Change">Climate Change</a>, <script data-card-contents-for-ri="1512" type="text/json">{"id":1512,"name":"Climate Change","url":"https://www.academia.edu/Documents/in/Climate_Change?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="2008" href="https://www.academia.edu/Documents/in/Machine_Learning">Machine Learning</a><script data-card-contents-for-ri="2008" type="text/json">{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=81182","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=76513971]'), work: {"id":76513971,"title":"Transformative Effects of IoT, Blockchain and Artificial Intelligence on Cloud Computing: Evolution, Vision, Trends and Open Challenges","created_at":"2022-04-15T04:28:37.656-07:00","url":"https://www.academia.edu/76513971/Transformative_Effects_of_IoT_Blockchain_and_Artificial_Intelligence_on_Cloud_Computing_Evolution_Vision_Trends_and_Open_Challenges?f_ri=81182","dom_id":"work_76513971","summary":null,"downloadable_attachments":[{"id":84199627,"asset_id":76513971,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":68206210,"first_name":"Shreshth","last_name":"Tuli","domain_name":"imperial","page_name":"ShreshthTuli","display_name":"Shreshth Tuli","profile_url":"https://imperial.academia.edu/ShreshthTuli?f_ri=81182","photo":"https://0.academia-photos.com/68206210/18810174/18769738/s65_shreshth.tuli.jpg"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=81182","nofollow":false},{"id":449,"name":"Software Engineering","url":"https://www.academia.edu/Documents/in/Software_Engineering?f_ri=81182","nofollow":false},{"id":1512,"name":"Climate Change","url":"https://www.academia.edu/Documents/in/Climate_Change?f_ri=81182","nofollow":false},{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=81182","nofollow":false},{"id":3480,"name":"AI Planning (Artificial Intelligence)","url":"https://www.academia.edu/Documents/in/AI_Planning_Artificial_Intelligence_?f_ri=81182"},{"id":4370,"name":"Security","url":"https://www.academia.edu/Documents/in/Security?f_ri=81182"},{"id":5412,"name":"Energy","url":"https://www.academia.edu/Documents/in/Energy?f_ri=81182"},{"id":9135,"name":"The Internet of Things","url":"https://www.academia.edu/Documents/in/The_Internet_of_Things?f_ri=81182"},{"id":10882,"name":"Evolution","url":"https://www.academia.edu/Documents/in/Evolution?f_ri=81182"},{"id":14725,"name":"Internet of Things","url":"https://www.academia.edu/Documents/in/Internet_of_Things?f_ri=81182"},{"id":26860,"name":"Cloud Computing","url":"https://www.academia.edu/Documents/in/Cloud_Computing?f_ri=81182"},{"id":42558,"name":"Artifical Intelligence","url":"https://www.academia.edu/Documents/in/Artifical_Intelligence?f_ri=81182"},{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182"},{"id":170630,"name":"Cloud","url":"https://www.academia.edu/Documents/in/Cloud?f_ri=81182"},{"id":472546,"name":"IOT","url":"https://www.academia.edu/Documents/in/IOT?f_ri=81182"},{"id":853685,"name":"Cloud Computing and Virtualization","url":"https://www.academia.edu/Documents/in/Cloud_Computing_and_Virtualization?f_ri=81182"},{"id":897823,"name":"Elsevier","url":"https://www.academia.edu/Documents/in/Elsevier?f_ri=81182"},{"id":1450126,"name":"Blockchains","url":"https://www.academia.edu/Documents/in/Blockchains?f_ri=81182"},{"id":1591774,"name":"Fog Computing","url":"https://www.academia.edu/Documents/in/Fog_Computing?f_ri=81182"},{"id":2199949,"name":"Blockchain","url":"https://www.academia.edu/Documents/in/Blockchain?f_ri=81182"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_69593026" data-work_id="69593026" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/69593026/Modeling_Surface_Water_Quality_Using_the_Adaptive_Neuro_Fuzzy_Inference_System_Aided_by_Input_Optimization">Modeling Surface Water Quality Using the Adaptive Neuro-Fuzzy Inference System Aided by Input Optimization</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Modeling surface water quality using soft computing techniques is essential for the effective management of scarce water resources and environmental protection. The development of accurate predictive models with significant input... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_69593026" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Modeling surface water quality using soft computing techniques is essential for the effective management of scarce water resources and environmental protection. The development of accurate predictive models with significant input parameters and inconsistent datasets is still a challenge. Therefore, further research is needed to improve the performance of the predictive models. This study presents a methodology for dataset pre-processing and input optimization for reducing the modeling complexity. The objective of this study was achieved by employing a two-sided detection approach for outlier removal and an exhaustive search method for selecting essential modeling inputs. Thereafter, the adaptive neuro-fuzzy inference system (ANFIS) was applied for modeling electrical conductivity (EC) and total dissolved solids (TDS) in the upper Indus River. A larger dataset of a 30-year historical period, measured monthly, was utilized in the modeling process. The prediction capacity of the develo...</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/69593026" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="ec8e2bca3830e373ac9b6991ac6bfc7a" rel="nofollow" data-download="{"attachment_id":79628852,"asset_id":69593026,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/79628852/download_file?st=MTczMjQzNzA2NCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="33927779" href="https://independent.academia.edu/TaherAbunama">Taher Abunama</a><script data-card-contents-for-user="33927779" type="text/json">{"id":33927779,"first_name":"Taher","last_name":"Abunama","domain_name":"independent","page_name":"TaherAbunama","display_name":"Taher Abunama","profile_url":"https://independent.academia.edu/TaherAbunama?f_ri=81182","photo":"https://0.academia-photos.com/33927779/23200033/22299092/s65_taher.abunama.jpg"}</script></span></span></li><li class="js-paper-rank-work_69593026 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="69593026"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 69593026, container: ".js-paper-rank-work_69593026", }); });</script></li><li class="js-percentile-work_69593026 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 69593026; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_69593026"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_69593026 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="69593026"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 69593026; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=69593026]").text(description); $(".js-view-count-work_69593026").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_69593026").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="69593026"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">8</a> </div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="422" href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a>, <script data-card-contents-for-ri="422" type="text/json">{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="465" href="https://www.academia.edu/Documents/in/Artificial_Intelligence">Artificial Intelligence</a>, <script data-card-contents-for-ri="465" type="text/json">{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="2008" href="https://www.academia.edu/Documents/in/Machine_Learning">Machine Learning</a>, <script data-card-contents-for-ri="2008" type="text/json">{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="2549" href="https://www.academia.edu/Documents/in/Hydrology">Hydrology</a><script data-card-contents-for-ri="2549" type="text/json">{"id":2549,"name":"Hydrology","url":"https://www.academia.edu/Documents/in/Hydrology?f_ri=81182","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=69593026]'), work: {"id":69593026,"title":"Modeling Surface Water Quality Using the Adaptive Neuro-Fuzzy Inference System Aided by Input Optimization","created_at":"2022-01-27T01:24:19.649-08:00","url":"https://www.academia.edu/69593026/Modeling_Surface_Water_Quality_Using_the_Adaptive_Neuro_Fuzzy_Inference_System_Aided_by_Input_Optimization?f_ri=81182","dom_id":"work_69593026","summary":"Modeling surface water quality using soft computing techniques is essential for the effective management of scarce water resources and environmental protection. The development of accurate predictive models with significant input parameters and inconsistent datasets is still a challenge. Therefore, further research is needed to improve the performance of the predictive models. This study presents a methodology for dataset pre-processing and input optimization for reducing the modeling complexity. The objective of this study was achieved by employing a two-sided detection approach for outlier removal and an exhaustive search method for selecting essential modeling inputs. Thereafter, the adaptive neuro-fuzzy inference system (ANFIS) was applied for modeling electrical conductivity (EC) and total dissolved solids (TDS) in the upper Indus River. A larger dataset of a 30-year historical period, measured monthly, was utilized in the modeling process. The prediction capacity of the develo...","downloadable_attachments":[{"id":79628852,"asset_id":69593026,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":33927779,"first_name":"Taher","last_name":"Abunama","domain_name":"independent","page_name":"TaherAbunama","display_name":"Taher Abunama","profile_url":"https://independent.academia.edu/TaherAbunama?f_ri=81182","photo":"https://0.academia-photos.com/33927779/23200033/22299092/s65_taher.abunama.jpg"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=81182","nofollow":false},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=81182","nofollow":false},{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=81182","nofollow":false},{"id":2549,"name":"Hydrology","url":"https://www.academia.edu/Documents/in/Hydrology?f_ri=81182","nofollow":false},{"id":54123,"name":"Artificial Neural Networks","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Networks?f_ri=81182"},{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182"},{"id":126300,"name":"Big Data","url":"https://www.academia.edu/Documents/in/Big_Data?f_ri=81182"},{"id":1208617,"name":"Sustainability","url":"https://www.academia.edu/Documents/in/Sustainability?f_ri=81182"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_66322176" data-work_id="66322176" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/66322176/Exploring_Transfer_Learning_for_Low_Resource_Emotional_TTS">Exploring Transfer Learning for Low Resource Emotional TTS</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">During the last few years, spoken language technologies have known a big improvement thanks to Deep Learning. However Deep Learning-based algorithms require amounts of data that are often difficult and costly to gather. Particularly,... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_66322176" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">During the last few years, spoken language technologies have known a big improvement thanks to Deep Learning. However Deep Learning-based algorithms require amounts of data that are often difficult and costly to gather. Particularly, modeling the variability in speech of different speakers, different styles or different emotions with few data remains challenging. In this paper, we investigate how to leverage fine-tuning on a pre-trained Deep Learning-based TTS model to synthesize speech with a small dataset of another speaker. Then we investigate the possibility to adapt this model to have emotional TTS by fine-tuning the neutral TTS model with a small emotional dataset.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/66322176" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="dbfede392c965472540b6c99db8b06cb" rel="nofollow" data-download="{"attachment_id":77561526,"asset_id":66322176,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/77561526/download_file?st=MTczMjQzNzA2NCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="31471716" href="https://umons.academia.edu/KevinElHaddad">Kevin El Haddad</a><script data-card-contents-for-user="31471716" type="text/json">{"id":31471716,"first_name":"Kevin","last_name":"El Haddad","domain_name":"umons","page_name":"KevinElHaddad","display_name":"Kevin El Haddad","profile_url":"https://umons.academia.edu/KevinElHaddad?f_ri=81182","photo":"https://0.academia-photos.com/31471716/15297832/15956455/s65_kevin.el_haddad.jpg"}</script></span></span></li><li class="js-paper-rank-work_66322176 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="66322176"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 66322176, container: ".js-paper-rank-work_66322176", }); });</script></li><li class="js-percentile-work_66322176 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 66322176; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_66322176"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_66322176 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="66322176"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 66322176; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=66322176]").text(description); $(".js-view-count-work_66322176").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_66322176").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="66322176"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">9</a> </div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="254" href="https://www.academia.edu/Documents/in/Emotion">Emotion</a>, <script data-card-contents-for-ri="254" type="text/json">{"id":254,"name":"Emotion","url":"https://www.academia.edu/Documents/in/Emotion?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="465" href="https://www.academia.edu/Documents/in/Artificial_Intelligence">Artificial Intelligence</a>, <script data-card-contents-for-ri="465" type="text/json">{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="472" href="https://www.academia.edu/Documents/in/Human_Computer_Interaction">Human Computer Interaction</a>, <script data-card-contents-for-ri="472" type="text/json">{"id":472,"name":"Human Computer Interaction","url":"https://www.academia.edu/Documents/in/Human_Computer_Interaction?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="2008" href="https://www.academia.edu/Documents/in/Machine_Learning">Machine Learning</a><script data-card-contents-for-ri="2008" type="text/json">{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=81182","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=66322176]'), work: {"id":66322176,"title":"Exploring Transfer Learning for Low Resource Emotional TTS","created_at":"2021-12-29T00:44:13.580-08:00","url":"https://www.academia.edu/66322176/Exploring_Transfer_Learning_for_Low_Resource_Emotional_TTS?f_ri=81182","dom_id":"work_66322176","summary":"During the last few years, spoken language technologies have known a big improvement thanks to Deep Learning. However Deep Learning-based algorithms require amounts of data that are often difficult and costly to gather. Particularly, modeling the variability in speech of different speakers, different styles or different emotions with few data remains challenging. In this paper, we investigate how to leverage fine-tuning on a pre-trained Deep Learning-based TTS model to synthesize speech with a small dataset of another speaker. Then we investigate the possibility to adapt this model to have emotional TTS by fine-tuning the neutral TTS model with a small emotional dataset.","downloadable_attachments":[{"id":77561526,"asset_id":66322176,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":31471716,"first_name":"Kevin","last_name":"El Haddad","domain_name":"umons","page_name":"KevinElHaddad","display_name":"Kevin El Haddad","profile_url":"https://umons.academia.edu/KevinElHaddad?f_ri=81182","photo":"https://0.academia-photos.com/31471716/15297832/15956455/s65_kevin.el_haddad.jpg"}],"research_interests":[{"id":254,"name":"Emotion","url":"https://www.academia.edu/Documents/in/Emotion?f_ri=81182","nofollow":false},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=81182","nofollow":false},{"id":472,"name":"Human Computer Interaction","url":"https://www.academia.edu/Documents/in/Human_Computer_Interaction?f_ri=81182","nofollow":false},{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=81182","nofollow":false},{"id":2671,"name":"Emotional intelligence","url":"https://www.academia.edu/Documents/in/Emotional_intelligence?f_ri=81182"},{"id":9038,"name":"Digital Signal Processing","url":"https://www.academia.edu/Documents/in/Digital_Signal_Processing?f_ri=81182"},{"id":15817,"name":"Speech Communication","url":"https://www.academia.edu/Documents/in/Speech_Communication?f_ri=81182"},{"id":36835,"name":"Speech Processing","url":"https://www.academia.edu/Documents/in/Speech_Processing?f_ri=81182"},{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_63696019" data-work_id="63696019" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/63696019/VISUAL_SPEECH_RECOGNITION_BY_USING_MACHINE_LEARNING_AND_DEEP_LEARNING_A_CASE_STUDY_OF_SOME_RULES_OF_TAJWEED">VISUAL SPEECH RECOGNITION BY USING MACHINE LEARNING AND DEEP LEARNING A CASE STUDY OF SOME RULES OF TAJWEED</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Visual speech information plays an important role in lip-reading under noisy conditions or for listeners with a hearing impairment. Correct utterances to read Quran for beginners, there are rules of utterances to learn Quran and we need a... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_63696019" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Visual speech information plays an important role in lip-reading under noisy conditions or for listeners with a hearing impairment. Correct utterances to read Quran for beginners, there are rules of utterances to learn Quran and we need a software system to tell us if we utter correctly. For that, we built lip-reading model, the model localizes the lips efficiently.<br />We present in this study a classification model for some al-tajweed rules as we depended on Machine Learning - Cascade Object Detector (Viola-Jones Algorithm), HOG features, a multiclass SVM classifier and Aggregate Channel Features (ACF) object detector for features extraction. We uses Matlab to train a classifiers using a pre-trained convolutional neural network (CNN) for classifying images from the video stream of four different Rules of Holy Quran Allah Elevating (mufakhum), Allah Lowering (moureqeq), sunny لام and moonyلام . CNN acquires multiple convolutional filters, used to extract visual features essential for recognizing phoneme. CNNs produce</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/63696019" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="727ae8ecd1aa3ad3142e16bddbaef799" rel="nofollow" data-download="{"attachment_id":76040367,"asset_id":63696019,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/76040367/download_file?st=MTczMjQzNzA2NCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="43612592" href="https://sustech.academia.edu/safaaomer">safaa omer</a><script data-card-contents-for-user="43612592" type="text/json">{"id":43612592,"first_name":"safaa","last_name":"omer","domain_name":"sustech","page_name":"safaaomer","display_name":"safaa omer","profile_url":"https://sustech.academia.edu/safaaomer?f_ri=81182","photo":"https://0.academia-photos.com/43612592/34114842/30116971/s65_safaa.omer.jpg"}</script></span></span></li><li class="js-paper-rank-work_63696019 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="63696019"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 63696019, container: ".js-paper-rank-work_63696019", }); });</script></li><li class="js-percentile-work_63696019 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 63696019; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_63696019"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_63696019 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="63696019"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 63696019; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=63696019]").text(description); $(".js-view-count-work_63696019").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_63696019").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="63696019"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">4</a> </div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="465" href="https://www.academia.edu/Documents/in/Artificial_Intelligence">Artificial Intelligence</a>, <script data-card-contents-for-ri="465" type="text/json">{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="1185" href="https://www.academia.edu/Documents/in/Image_Processing">Image Processing</a>, <script data-card-contents-for-ri="1185" type="text/json">{"id":1185,"name":"Image Processing","url":"https://www.academia.edu/Documents/in/Image_Processing?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="2008" href="https://www.academia.edu/Documents/in/Machine_Learning">Machine Learning</a>, <script data-card-contents-for-ri="2008" type="text/json">{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="81182" href="https://www.academia.edu/Documents/in/Deep_Learning">Deep Learning</a><script data-card-contents-for-ri="81182" type="text/json">{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=63696019]'), work: {"id":63696019,"title":"VISUAL SPEECH RECOGNITION BY USING MACHINE LEARNING AND DEEP LEARNING A CASE STUDY OF SOME RULES OF TAJWEED","created_at":"2021-12-09T21:49:06.686-08:00","url":"https://www.academia.edu/63696019/VISUAL_SPEECH_RECOGNITION_BY_USING_MACHINE_LEARNING_AND_DEEP_LEARNING_A_CASE_STUDY_OF_SOME_RULES_OF_TAJWEED?f_ri=81182","dom_id":"work_63696019","summary":"Visual speech information plays an important role in lip-reading under noisy conditions or for listeners with a hearing impairment. Correct utterances to read Quran for beginners, there are rules of utterances to learn Quran and we need a software system to tell us if we utter correctly. For that, we built lip-reading model, the model localizes the lips efficiently.\nWe present in this study a classification model for some al-tajweed rules as we depended on Machine Learning - Cascade Object Detector (Viola-Jones Algorithm), HOG features, a multiclass SVM classifier and Aggregate Channel Features (ACF) object detector for features extraction. We uses Matlab to train a classifiers using a pre-trained convolutional neural network (CNN) for classifying images from the video stream of four different Rules of Holy Quran Allah Elevating (mufakhum), Allah Lowering (moureqeq), sunny لام and moonyلام . CNN acquires multiple convolutional filters, used to extract visual features essential for recognizing phoneme. CNNs produce","downloadable_attachments":[{"id":76040367,"asset_id":63696019,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":43612592,"first_name":"safaa","last_name":"omer","domain_name":"sustech","page_name":"safaaomer","display_name":"safaa omer","profile_url":"https://sustech.academia.edu/safaaomer?f_ri=81182","photo":"https://0.academia-photos.com/43612592/34114842/30116971/s65_safaa.omer.jpg"}],"research_interests":[{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=81182","nofollow":false},{"id":1185,"name":"Image Processing","url":"https://www.academia.edu/Documents/in/Image_Processing?f_ri=81182","nofollow":false},{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=81182","nofollow":false},{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_63298664" data-work_id="63298664" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/63298664/Classification_of_Gender_from_Human_Facial_Images_using_Convolutional_Neural_Networks">Classification of Gender from Human Facial Images using Convolutional Neural Networks</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">It&#39;s a fairly simple task for humans to determine the gender of an individual using certain facial features, although it is difficult for machines to perform an equivalent task. Within the past decade, unimaginable steps have been... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_63298664" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">It&#39;s a fairly simple task for humans to determine the gender of an individual using certain facial features, although it is difficult for machines to perform an equivalent task. Within the past decade, unimaginable steps have been taken to automatically predict the gender from a face image. The human face has certain distinctive features such as eyes, nose, lips, etc., which can be analyzed to classify humans into two basic genders: Male and Female. This project aims at achieving a similar goal of detecting gender from face images. The basic tool used in the project is Convolutional Neural Network (CNN) along with the use of the Programming language Python. In recent years, face detection has achieved considerable attention from researchers in biometrics, pattern recognition, and computer vision groups. There are countless security and forensic applications requiring the use of face recognition technologies which have motivated us to explore this area and start with this ...</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/63298664" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="83551a13c66ec5b6fc6352a9f0507cff" rel="nofollow" data-download="{"attachment_id":75774329,"asset_id":63298664,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/75774329/download_file?st=MTczMjQzNzA2NCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="112667642" href="https://independent.academia.edu/devjyotisaha">Devjyoti Saha</a><script data-card-contents-for-user="112667642" type="text/json">{"id":112667642,"first_name":"Devjyoti","last_name":"Saha","domain_name":"independent","page_name":"devjyotisaha","display_name":"Devjyoti Saha","profile_url":"https://independent.academia.edu/devjyotisaha?f_ri=81182","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_63298664 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="63298664"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 63298664, container: ".js-paper-rank-work_63298664", }); });</script></li><li class="js-percentile-work_63298664 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 63298664; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_63298664"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_63298664 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="63298664"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 63298664; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=63298664]").text(description); $(".js-view-count-work_63298664").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_63298664").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="63298664"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">3</a> </div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="854" href="https://www.academia.edu/Documents/in/Computer_Vision">Computer Vision</a>, <script data-card-contents-for-ri="854" type="text/json">{"id":854,"name":"Computer Vision","url":"https://www.academia.edu/Documents/in/Computer_Vision?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="81182" href="https://www.academia.edu/Documents/in/Deep_Learning">Deep Learning</a>, <script data-card-contents-for-ri="81182" type="text/json">{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="2058532" href="https://www.academia.edu/Documents/in/Convolutional_Neural_Network_CNN_">Convolutional Neural Network [CNN]</a><script data-card-contents-for-ri="2058532" type="text/json">{"id":2058532,"name":"Convolutional Neural Network [CNN]","url":"https://www.academia.edu/Documents/in/Convolutional_Neural_Network_CNN_?f_ri=81182","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=63298664]'), work: {"id":63298664,"title":"Classification of Gender from Human Facial Images using Convolutional Neural Networks","created_at":"2021-12-05T21:49:47.201-08:00","url":"https://www.academia.edu/63298664/Classification_of_Gender_from_Human_Facial_Images_using_Convolutional_Neural_Networks?f_ri=81182","dom_id":"work_63298664","summary":"It\u0026#39;s a fairly simple task for humans to determine the gender of an individual using certain facial features, although it is difficult for machines to perform an equivalent task. Within the past decade, unimaginable steps have been taken to automatically predict the gender from a face image. The human face has certain distinctive features such as eyes, nose, lips, etc., which can be analyzed to classify humans into two basic genders: Male and Female. This project aims at achieving a similar goal of detecting gender from face images. The basic tool used in the project is Convolutional Neural Network (CNN) along with the use of the Programming language Python. In recent years, face detection has achieved considerable attention from researchers in biometrics, pattern recognition, and computer vision groups. There are countless security and forensic applications requiring the use of face recognition technologies which have motivated us to explore this area and start with this ...","downloadable_attachments":[{"id":75774329,"asset_id":63298664,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":112667642,"first_name":"Devjyoti","last_name":"Saha","domain_name":"independent","page_name":"devjyotisaha","display_name":"Devjyoti Saha","profile_url":"https://independent.academia.edu/devjyotisaha?f_ri=81182","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":854,"name":"Computer Vision","url":"https://www.academia.edu/Documents/in/Computer_Vision?f_ri=81182","nofollow":false},{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182","nofollow":false},{"id":2058532,"name":"Convolutional Neural Network [CNN]","url":"https://www.academia.edu/Documents/in/Convolutional_Neural_Network_CNN_?f_ri=81182","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_45450615" data-work_id="45450615" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/45450615/call_for_papers_Machine_Learning_and_Applications_An_International_Journal_MLAIJ_">call for papers - Machine Learning and Applications: An International Journal (MLAIJ)</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Machine Learning and Applications: An International Journal (MLAIJ) is a quarterly open access peer-reviewed journal that publishes articles which contribute new results in all areas of the machine learning. The journal is devoted to the... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_45450615" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Machine Learning and Applications: An International Journal (MLAIJ) is a quarterly open access peer-reviewed journal that publishes articles which contribute new results in all areas of the machine learning. The journal is devoted to the publication of high quality papers on theoretical and practical aspects of machine learning and applications. The goal of this journal is to bring together researchers and practitioners from academia and industry to focus on machine learning advancements, and establishing new collaborations in these areas. Original research papers, state-of-the-art reviews are invited for publication in all areas of machine learning.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/45450615" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="3711abcbab8a2e6ae02354345d58e516" rel="nofollow" data-download="{"attachment_id":66128164,"asset_id":45450615,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/66128164/download_file?st=MTczMjQzNzA2NCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="21109123" href="https://independent.academia.edu/ijscaijournal">International Journal on Soft Computing, Artificial Intelligence and Applications (IJSCAI)</a><script data-card-contents-for-user="21109123" type="text/json">{"id":21109123,"first_name":"International Journal on Soft Computing, Artificial Intelligence and Applications","last_name":"(IJSCAI)","domain_name":"independent","page_name":"ijscaijournal","display_name":"International Journal on Soft Computing, Artificial Intelligence and Applications (IJSCAI)","profile_url":"https://independent.academia.edu/ijscaijournal?f_ri=81182","photo":"https://0.academia-photos.com/21109123/9710763/110171411/s65_international_journal_on_soft_computing_artificial_intelligence_and_applications._ijscai_.jpg"}</script></span></span></li><li class="js-paper-rank-work_45450615 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="45450615"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 45450615, container: ".js-paper-rank-work_45450615", }); });</script></li><li class="js-percentile-work_45450615 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 45450615; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_45450615"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_45450615 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="45450615"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 45450615; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=45450615]").text(description); $(".js-view-count-work_45450615").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_45450615").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="45450615"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">10</a> </div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="854" href="https://www.academia.edu/Documents/in/Computer_Vision">Computer Vision</a>, <script data-card-contents-for-ri="854" type="text/json">{"id":854,"name":"Computer Vision","url":"https://www.academia.edu/Documents/in/Computer_Vision?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="2008" href="https://www.academia.edu/Documents/in/Machine_Learning">Machine Learning</a>, <script data-card-contents-for-ri="2008" type="text/json">{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="2009" href="https://www.academia.edu/Documents/in/Data_Mining">Data Mining</a>, <script data-card-contents-for-ri="2009" type="text/json">{"id":2009,"name":"Data Mining","url":"https://www.academia.edu/Documents/in/Data_Mining?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="10005" href="https://www.academia.edu/Documents/in/Applications_of_Machine_Learning">Applications of Machine Learning</a><script data-card-contents-for-ri="10005" type="text/json">{"id":10005,"name":"Applications of Machine Learning","url":"https://www.academia.edu/Documents/in/Applications_of_Machine_Learning?f_ri=81182","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=45450615]'), work: {"id":45450615,"title":"call for papers - Machine Learning and Applications: An International Journal (MLAIJ)","created_at":"2021-03-10T03:47:46.463-08:00","url":"https://www.academia.edu/45450615/call_for_papers_Machine_Learning_and_Applications_An_International_Journal_MLAIJ_?f_ri=81182","dom_id":"work_45450615","summary":"Machine Learning and Applications: An International Journal (MLAIJ) is a quarterly open access peer-reviewed journal that publishes articles which contribute new results in all areas of the machine learning. The journal is devoted to the publication of high quality papers on theoretical and practical aspects of machine learning and applications. The goal of this journal is to bring together researchers and practitioners from academia and industry to focus on machine learning advancements, and establishing new collaborations in these areas. Original research papers, state-of-the-art reviews are invited for publication in all areas of machine learning.","downloadable_attachments":[{"id":66128164,"asset_id":45450615,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":21109123,"first_name":"International Journal on Soft Computing, Artificial Intelligence and Applications","last_name":"(IJSCAI)","domain_name":"independent","page_name":"ijscaijournal","display_name":"International Journal on Soft Computing, Artificial Intelligence and Applications (IJSCAI)","profile_url":"https://independent.academia.edu/ijscaijournal?f_ri=81182","photo":"https://0.academia-photos.com/21109123/9710763/110171411/s65_international_journal_on_soft_computing_artificial_intelligence_and_applications._ijscai_.jpg"}],"research_interests":[{"id":854,"name":"Computer Vision","url":"https://www.academia.edu/Documents/in/Computer_Vision?f_ri=81182","nofollow":false},{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=81182","nofollow":false},{"id":2009,"name":"Data Mining","url":"https://www.academia.edu/Documents/in/Data_Mining?f_ri=81182","nofollow":false},{"id":10005,"name":"Applications of Machine Learning","url":"https://www.academia.edu/Documents/in/Applications_of_Machine_Learning?f_ri=81182","nofollow":false},{"id":11598,"name":"Neural Networks","url":"https://www.academia.edu/Documents/in/Neural_Networks?f_ri=81182"},{"id":21066,"name":"Artficial Neural Networks","url":"https://www.academia.edu/Documents/in/Artficial_Neural_Networks?f_ri=81182"},{"id":44389,"name":"Artificial Neural Networks for modeling purposes","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Networks_for_modeling_purposes?f_ri=81182"},{"id":54123,"name":"Artificial Neural Networks","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Networks?f_ri=81182"},{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182"},{"id":118377,"name":"3D Computer Vision","url":"https://www.academia.edu/Documents/in/3D_Computer_Vision?f_ri=81182"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_44503138" data-work_id="44503138" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/44503138/Improving_Laser_Mark_Detection_for_Retinal_Images_based_on_the_AlexNet_Model">Improving Laser Mark Detection for Retinal Images based on the AlexNet Model</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Recently, the field of deep learning has received increased attention due to its high accuracy. A common deep learning technique is Convolutional Neural Networks (CNN), which is as a construction of trainable multi-stages using multiple... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_44503138" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Recently, the field of deep learning has received increased attention due to its high accuracy. A common deep learning technique is Convolutional Neural Networks (CNN), which is as a construction of trainable multi-stages using multiple phases. In this paper, we use a type of CNN called AlexNet to classify human retinal images into 'normal' or 'have been treated using photocoagulation laser treatments' classes. Indeed, this classification technique will help experts to examine any case and make the examination process faster and more efficient. The study was conducted through several experiments using 730 images of human retina that were either treated by laser or not treated. An average accuracy rate of more than 97% was obtained. Additionally, possible improvements and destiny traits are suggested to summarize this study.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/44503138" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="e5af7fb6a0c7dc20f74597f00b977887" rel="nofollow" data-download="{"attachment_id":64939950,"asset_id":44503138,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/64939950/download_file?st=MTczMjQzNzA2NCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="9817460" href="https://uum.academia.edu/MustafaAbuzaraida">Mustafa Abuzaraida</a><script data-card-contents-for-user="9817460" type="text/json">{"id":9817460,"first_name":"Mustafa","last_name":"Abuzaraida","domain_name":"uum","page_name":"MustafaAbuzaraida","display_name":"Mustafa Abuzaraida","profile_url":"https://uum.academia.edu/MustafaAbuzaraida?f_ri=81182","photo":"https://0.academia-photos.com/9817460/6459446/18073232/s65_mustafa.abuzaraida.jpg"}</script></span></span></li><li class="js-paper-rank-work_44503138 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="44503138"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 44503138, container: ".js-paper-rank-work_44503138", }); });</script></li><li class="js-percentile-work_44503138 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 44503138; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_44503138"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_44503138 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="44503138"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 44503138; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=44503138]").text(description); $(".js-view-count-work_44503138").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_44503138").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="44503138"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">3</a> </div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="1185" href="https://www.academia.edu/Documents/in/Image_Processing">Image Processing</a>, <script data-card-contents-for-ri="1185" type="text/json">{"id":1185,"name":"Image Processing","url":"https://www.academia.edu/Documents/in/Image_Processing?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="2008" href="https://www.academia.edu/Documents/in/Machine_Learning">Machine Learning</a>, <script data-card-contents-for-ri="2008" type="text/json">{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="81182" href="https://www.academia.edu/Documents/in/Deep_Learning">Deep Learning</a><script data-card-contents-for-ri="81182" type="text/json">{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=44503138]'), work: {"id":44503138,"title":"Improving Laser Mark Detection for Retinal Images based on the AlexNet Model","created_at":"2020-11-15T01:21:28.207-08:00","url":"https://www.academia.edu/44503138/Improving_Laser_Mark_Detection_for_Retinal_Images_based_on_the_AlexNet_Model?f_ri=81182","dom_id":"work_44503138","summary":"Recently, the field of deep learning has received increased attention due to its high accuracy. A common deep learning technique is Convolutional Neural Networks (CNN), which is as a construction of trainable multi-stages using multiple phases. In this paper, we use a type of CNN called AlexNet to classify human retinal images into 'normal' or 'have been treated using photocoagulation laser treatments' classes. Indeed, this classification technique will help experts to examine any case and make the examination process faster and more efficient. The study was conducted through several experiments using 730 images of human retina that were either treated by laser or not treated. An average accuracy rate of more than 97% was obtained. Additionally, possible improvements and destiny traits are suggested to summarize this study.","downloadable_attachments":[{"id":64939950,"asset_id":44503138,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":9817460,"first_name":"Mustafa","last_name":"Abuzaraida","domain_name":"uum","page_name":"MustafaAbuzaraida","display_name":"Mustafa Abuzaraida","profile_url":"https://uum.academia.edu/MustafaAbuzaraida?f_ri=81182","photo":"https://0.academia-photos.com/9817460/6459446/18073232/s65_mustafa.abuzaraida.jpg"}],"research_interests":[{"id":1185,"name":"Image Processing","url":"https://www.academia.edu/Documents/in/Image_Processing?f_ri=81182","nofollow":false},{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=81182","nofollow":false},{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_43402870" data-work_id="43402870" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/43402870/Tree_Extraction_of_Airborne_LiDAR_Data_Based_on_Coordinates_of_Deep_Learning_Object_Detection_from_Orthophoto_over_Complex_Mangrove_Forest">Tree Extraction of Airborne LiDAR Data Based on Coordinates of Deep Learning Object Detection from Orthophoto over Complex Mangrove Forest</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Knowing rainforest environments is rendered challenging by distance, vegetation intensity, and coverage; however, knowing the complexity and sustainability of these landscapes is important for ecologists and conservationists. The airborne... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_43402870" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Knowing rainforest environments is rendered challenging by distance, vegetation intensity, and coverage; however, knowing the complexity and sustainability of these landscapes is important for ecologists and conservationists. The airborne light detection and ranging (LiDAR) system has made dramatic improvements to forest data collection and management especially on the forest inventory aspect. LiDAR can reliably calculate tree-level characteristics such as crown scale and tree height as well as derived measures such as breast height diameter (DBH). To do this, an exact tree extraction method is needed inside LiDAR data. Within LiDAR data, tree extraction often starts by locating the treetops via local maxima (LM). Wide-ranging efforts have been developed to extract individual trees from LiDAR data by starting to localize treetops through LM within LiDAR data. Throughout this research, a demonstration of a new tree extraction framework inside LiDAR Point Cloud by incorporating a new tree extraction method using the bounding-box coordinates provided by deep learning-based object detection. Tree extraction inside the LiDAR point cloud using the bounding-box coordinates was successful and feasible.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/43402870" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="b2e67e965fce9df58f77c23be2a1fb15" rel="nofollow" data-download="{"attachment_id":63701064,"asset_id":43402870,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/63701064/download_file?st=MTczMjQzNzA2NCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="161796317" href="https://batstate-u.academia.edu/AlvinSarragaAlon">Alvin Sarraga Alon</a><script data-card-contents-for-user="161796317" type="text/json">{"id":161796317,"first_name":"Alvin Sarraga","last_name":"Alon","domain_name":"batstate-u","page_name":"AlvinSarragaAlon","display_name":"Alvin Sarraga Alon","profile_url":"https://batstate-u.academia.edu/AlvinSarragaAlon?f_ri=81182","photo":"https://0.academia-photos.com/161796317/45390557/35411764/s65_alvin_sarraga.alon.jpeg"}</script></span></span></li><li class="js-paper-rank-work_43402870 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="43402870"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 43402870, container: ".js-paper-rank-work_43402870", }); });</script></li><li class="js-percentile-work_43402870 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 43402870; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_43402870"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_43402870 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="43402870"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 43402870; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=43402870]").text(description); $(".js-view-count-work_43402870").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_43402870").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="43402870"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">6</a> </div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="465" href="https://www.academia.edu/Documents/in/Artificial_Intelligence">Artificial Intelligence</a>, <script data-card-contents-for-ri="465" type="text/json">{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="1252" href="https://www.academia.edu/Documents/in/Remote_Sensing">Remote Sensing</a>, <script data-card-contents-for-ri="1252" type="text/json">{"id":1252,"name":"Remote Sensing","url":"https://www.academia.edu/Documents/in/Remote_Sensing?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="2008" href="https://www.academia.edu/Documents/in/Machine_Learning">Machine Learning</a>, <script data-card-contents-for-ri="2008" type="text/json">{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="5473" href="https://www.academia.edu/Documents/in/Embedded_Systems">Embedded Systems</a><script data-card-contents-for-ri="5473" type="text/json">{"id":5473,"name":"Embedded Systems","url":"https://www.academia.edu/Documents/in/Embedded_Systems?f_ri=81182","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=43402870]'), work: {"id":43402870,"title":"Tree Extraction of Airborne LiDAR Data Based on Coordinates of Deep Learning Object Detection from Orthophoto over Complex Mangrove Forest","created_at":"2020-06-21T23:05:50.808-07:00","url":"https://www.academia.edu/43402870/Tree_Extraction_of_Airborne_LiDAR_Data_Based_on_Coordinates_of_Deep_Learning_Object_Detection_from_Orthophoto_over_Complex_Mangrove_Forest?f_ri=81182","dom_id":"work_43402870","summary":"Knowing rainforest environments is rendered challenging by distance, vegetation intensity, and coverage; however, knowing the complexity and sustainability of these landscapes is important for ecologists and conservationists. The airborne light detection and ranging (LiDAR) system has made dramatic improvements to forest data collection and management especially on the forest inventory aspect. LiDAR can reliably calculate tree-level characteristics such as crown scale and tree height as well as derived measures such as breast height diameter (DBH). To do this, an exact tree extraction method is needed inside LiDAR data. Within LiDAR data, tree extraction often starts by locating the treetops via local maxima (LM). Wide-ranging efforts have been developed to extract individual trees from LiDAR data by starting to localize treetops through LM within LiDAR data. Throughout this research, a demonstration of a new tree extraction framework inside LiDAR Point Cloud by incorporating a new tree extraction method using the bounding-box coordinates provided by deep learning-based object detection. Tree extraction inside the LiDAR point cloud using the bounding-box coordinates was successful and feasible.","downloadable_attachments":[{"id":63701064,"asset_id":43402870,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":161796317,"first_name":"Alvin Sarraga","last_name":"Alon","domain_name":"batstate-u","page_name":"AlvinSarragaAlon","display_name":"Alvin Sarraga Alon","profile_url":"https://batstate-u.academia.edu/AlvinSarragaAlon?f_ri=81182","photo":"https://0.academia-photos.com/161796317/45390557/35411764/s65_alvin_sarraga.alon.jpeg"}],"research_interests":[{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=81182","nofollow":false},{"id":1252,"name":"Remote Sensing","url":"https://www.academia.edu/Documents/in/Remote_Sensing?f_ri=81182","nofollow":false},{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=81182","nofollow":false},{"id":5473,"name":"Embedded Systems","url":"https://www.academia.edu/Documents/in/Embedded_Systems?f_ri=81182","nofollow":false},{"id":9038,"name":"Digital Signal Processing","url":"https://www.academia.edu/Documents/in/Digital_Signal_Processing?f_ri=81182"},{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_42970676" data-work_id="42970676" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/42970676/Shortest_Route_Analysis_for_Road_Accident_Emergency_using_Dijkstra_Algorithm_and_Fuzzy_Logic">Shortest Route Analysis for Road Accident Emergency using Dijkstra Algorithm and Fuzzy Logic</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Victims of road traffic accidents face severe health problems on-site or after the event when they arrive at hospital lately in their emergency cycle. Road traffic accident has negative effect on the physical, social and emotional... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_42970676" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Victims of road traffic accidents face severe health problems on-site or after the event when they arrive at hospital lately in their emergency cycle. Road traffic accident has negative effect on the physical, social and emotional security of human lives which often lead to mortality, illness, pain, grief and even disability. This paper proposes a scheme that reduces the severity of road traffic accidents given its inevitable occurrence. The rational is to search for nearest hospitals to the accident location using Dijkstra algorithm and Fuzzy logic to recommend suitable hospitals out of list of nearest hospitals to timely attend to the emergency situation considering factors such as distance, severity of the accident, available facilities in the hospitals and other factors. The obtained results showed the practicability of the system to recommendation of quick solution to accident emergencies.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/42970676" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="6d4f9459d0b74d8901981c89b51bad1b" rel="nofollow" data-download="{"attachment_id":63228656,"asset_id":42970676,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/63228656/download_file?st=MTczMjQzNzA2NCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="157171415" href="https://independent.academia.edu/TaiwoGabrielOmomule">Taiwo Gabriel Omomule</a><script data-card-contents-for-user="157171415" type="text/json">{"id":157171415,"first_name":"Taiwo Gabriel","last_name":"Omomule","domain_name":"independent","page_name":"TaiwoGabrielOmomule","display_name":"Taiwo Gabriel Omomule","profile_url":"https://independent.academia.edu/TaiwoGabrielOmomule?f_ri=81182","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_42970676 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="42970676"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 42970676, container: ".js-paper-rank-work_42970676", }); });</script></li><li class="js-percentile-work_42970676 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 42970676; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_42970676"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_42970676 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="42970676"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 42970676; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=42970676]").text(description); $(".js-view-count-work_42970676").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_42970676").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="42970676"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">12</a> </div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="465" href="https://www.academia.edu/Documents/in/Artificial_Intelligence">Artificial Intelligence</a>, <script data-card-contents-for-ri="465" type="text/json">{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="1688" href="https://www.academia.edu/Documents/in/Reinforcement_Learning">Reinforcement Learning</a>, <script data-card-contents-for-ri="1688" type="text/json">{"id":1688,"name":"Reinforcement Learning","url":"https://www.academia.edu/Documents/in/Reinforcement_Learning?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="2008" href="https://www.academia.edu/Documents/in/Machine_Learning">Machine Learning</a>, <script data-card-contents-for-ri="2008" type="text/json">{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="2009" href="https://www.academia.edu/Documents/in/Data_Mining">Data Mining</a><script data-card-contents-for-ri="2009" type="text/json">{"id":2009,"name":"Data Mining","url":"https://www.academia.edu/Documents/in/Data_Mining?f_ri=81182","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=42970676]'), work: {"id":42970676,"title":"Shortest Route Analysis for Road Accident Emergency using Dijkstra Algorithm and Fuzzy Logic","created_at":"2020-05-07T06:49:29.527-07:00","url":"https://www.academia.edu/42970676/Shortest_Route_Analysis_for_Road_Accident_Emergency_using_Dijkstra_Algorithm_and_Fuzzy_Logic?f_ri=81182","dom_id":"work_42970676","summary":"Victims of road traffic accidents face severe health problems on-site or after the event when they arrive at hospital lately in their emergency cycle. Road traffic accident has negative effect on the physical, social and emotional security of human lives which often lead to mortality, illness, pain, grief and even disability. This paper proposes a scheme that reduces the severity of road traffic accidents given its inevitable occurrence. The rational is to search for nearest hospitals to the accident location using Dijkstra algorithm and Fuzzy logic to recommend suitable hospitals out of list of nearest hospitals to timely attend to the emergency situation considering factors such as distance, severity of the accident, available facilities in the hospitals and other factors. The obtained results showed the practicability of the system to recommendation of quick solution to accident emergencies.","downloadable_attachments":[{"id":63228656,"asset_id":42970676,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":157171415,"first_name":"Taiwo Gabriel","last_name":"Omomule","domain_name":"independent","page_name":"TaiwoGabrielOmomule","display_name":"Taiwo Gabriel Omomule","profile_url":"https://independent.academia.edu/TaiwoGabrielOmomule?f_ri=81182","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=81182","nofollow":false},{"id":1688,"name":"Reinforcement Learning","url":"https://www.academia.edu/Documents/in/Reinforcement_Learning?f_ri=81182","nofollow":false},{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=81182","nofollow":false},{"id":2009,"name":"Data Mining","url":"https://www.academia.edu/Documents/in/Data_Mining?f_ri=81182","nofollow":false},{"id":4803,"name":"Active Learning","url":"https://www.academia.edu/Documents/in/Active_Learning?f_ri=81182"},{"id":12512,"name":"Data Quality (Computer Science)","url":"https://www.academia.edu/Documents/in/Data_Quality_Computer_Science_?f_ri=81182"},{"id":15084,"name":"Statistical machine learning","url":"https://www.academia.edu/Documents/in/Statistical_machine_learning?f_ri=81182"},{"id":49339,"name":"Data Streams","url":"https://www.academia.edu/Documents/in/Data_Streams?f_ri=81182"},{"id":69100,"name":"Data Science","url":"https://www.academia.edu/Documents/in/Data_Science?f_ri=81182"},{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182"},{"id":126300,"name":"Big Data","url":"https://www.academia.edu/Documents/in/Big_Data?f_ri=81182"},{"id":413148,"name":"Big Data / Analytics / Data Mining","url":"https://www.academia.edu/Documents/in/Big_Data_Analytics_Data_Mining?f_ri=81182"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_42617615" data-work_id="42617615" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/42617615/Detection_of_Human_Face_by_Thermal_Infrared_Camera_Using_MPI_model_and_Feature_Extraction_Method">Detection of Human Face by Thermal Infrared Camera Using MPI model and Feature Extraction Method</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Thermal imagery is a substitute of visible imagery for face detection due to its property of illumination invariance with the variation of facial appearances. This paper presents an effective method for human face detection in thermal... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_42617615" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Thermal imagery is a substitute of visible imagery for face detection due to its property of illumination invariance with the variation of facial appearances. This paper presents an effective method for human face detection in thermal imaging. The concept of histogram plot has been used in the feature extraction process and later in face detection. Techniques like thresholding, object boundary analysis, morphological operation etc. have been performed on the images to ease the process of detection. In order to enhance the performance of the algorithm and to reduce the computation time, parallelism has been achieved using Message Passing Interface (MPI) model. Overall, the proposed algorithm showed a higher level of accuracy and less complexity time of 0.11 seconds in the parallel environment as compared to 0.20 seconds in a serial environment.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/42617615" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="51a0c9e30491507fd649cc2793b1ccc5" rel="nofollow" data-download="{"attachment_id":62822568,"asset_id":42617615,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/62822568/download_file?st=MTczMjQzNzA2NCw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="152654141" href="https://nist-odisha.academia.edu/ChiragKyal">Chirag Kyal</a><script data-card-contents-for-user="152654141" type="text/json">{"id":152654141,"first_name":"Chirag","last_name":"Kyal","domain_name":"nist-odisha","page_name":"ChiragKyal","display_name":"Chirag Kyal","profile_url":"https://nist-odisha.academia.edu/ChiragKyal?f_ri=81182","photo":"https://0.academia-photos.com/152654141/42438816/34053517/s65_chirag.kyal.jpg"}</script></span></span></li><li class="js-paper-rank-work_42617615 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="42617615"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 42617615, container: ".js-paper-rank-work_42617615", }); });</script></li><li class="js-percentile-work_42617615 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 42617615; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_42617615"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_42617615 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="42617615"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 42617615; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=42617615]").text(description); $(".js-view-count-work_42617615").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_42617615").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="42617615"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">10</a> </div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="442" href="https://www.academia.edu/Documents/in/Parallel_Computing">Parallel Computing</a>, <script data-card-contents-for-ri="442" type="text/json">{"id":442,"name":"Parallel Computing","url":"https://www.academia.edu/Documents/in/Parallel_Computing?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="854" href="https://www.academia.edu/Documents/in/Computer_Vision">Computer Vision</a>, <script data-card-contents-for-ri="854" type="text/json">{"id":854,"name":"Computer Vision","url":"https://www.academia.edu/Documents/in/Computer_Vision?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="1185" href="https://www.academia.edu/Documents/in/Image_Processing">Image Processing</a>, <script data-card-contents-for-ri="1185" type="text/json">{"id":1185,"name":"Image Processing","url":"https://www.academia.edu/Documents/in/Image_Processing?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="2008" href="https://www.academia.edu/Documents/in/Machine_Learning">Machine Learning</a><script data-card-contents-for-ri="2008" type="text/json">{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=81182","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=42617615]'), work: {"id":42617615,"title":"Detection of Human Face by Thermal Infrared Camera Using MPI model and Feature Extraction Method","created_at":"2020-04-04T12:16:44.863-07:00","url":"https://www.academia.edu/42617615/Detection_of_Human_Face_by_Thermal_Infrared_Camera_Using_MPI_model_and_Feature_Extraction_Method?f_ri=81182","dom_id":"work_42617615","summary":"Thermal imagery is a substitute of visible imagery for face detection due to its property of illumination invariance with the variation of facial appearances. This paper presents an effective method for human face detection in thermal imaging. The concept of histogram plot has been used in the feature extraction process and later in face detection. Techniques like thresholding, object boundary analysis, morphological operation etc. have been performed on the images to ease the process of detection. In order to enhance the performance of the algorithm and to reduce the computation time, parallelism has been achieved using Message Passing Interface (MPI) model. Overall, the proposed algorithm showed a higher level of accuracy and less complexity time of 0.11 seconds in the parallel environment as compared to 0.20 seconds in a serial environment.","downloadable_attachments":[{"id":62822568,"asset_id":42617615,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":152654141,"first_name":"Chirag","last_name":"Kyal","domain_name":"nist-odisha","page_name":"ChiragKyal","display_name":"Chirag Kyal","profile_url":"https://nist-odisha.academia.edu/ChiragKyal?f_ri=81182","photo":"https://0.academia-photos.com/152654141/42438816/34053517/s65_chirag.kyal.jpg"}],"research_interests":[{"id":442,"name":"Parallel Computing","url":"https://www.academia.edu/Documents/in/Parallel_Computing?f_ri=81182","nofollow":false},{"id":854,"name":"Computer Vision","url":"https://www.academia.edu/Documents/in/Computer_Vision?f_ri=81182","nofollow":false},{"id":1185,"name":"Image Processing","url":"https://www.academia.edu/Documents/in/Image_Processing?f_ri=81182","nofollow":false},{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=81182","nofollow":false},{"id":5110,"name":"Face Recognition","url":"https://www.academia.edu/Documents/in/Face_Recognition?f_ri=81182"},{"id":43971,"name":"Face Detection","url":"https://www.academia.edu/Documents/in/Face_Detection?f_ri=81182"},{"id":75768,"name":"MPI","url":"https://www.academia.edu/Documents/in/MPI?f_ri=81182"},{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182"},{"id":98643,"name":"Thermal Imaging","url":"https://www.academia.edu/Documents/in/Thermal_Imaging?f_ri=81182"},{"id":1212649,"name":"Thermal Face","url":"https://www.academia.edu/Documents/in/Thermal_Face?f_ri=81182"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_42546664" data-work_id="42546664" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/42546664/Women_Safety_System_Using_Emotional_VGGNet_">Women Safety System Using Emotional VGGNet</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">In today's world women safety is one of the most important issues to be addressed in our country. When a women needs urgent help at the time of harassment or molestation, proper reachability is not present for them. Apart from being aware... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_42546664" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">In today's world women safety is one of the most important issues to be addressed in our country. When a women needs urgent help at the time of harassment or molestation, proper reachability is not present for them. Apart from being aware about the significance of women's safety, it is essential that they are provided with protection during those crucial times. The earlier existing system are helpful in detecting the women's location after the crime has been committed. In this project we will be using the women's handbag in which we will be fixing camera lenses and which will be carried anywhere they go. Whenever she comes in contact with any person outside, an image of that person is taken and the activities of the person can be monitored continuously. If the person behaves normally the image can be of no use and can be deleted. But if the activities of the person varies resulting in any harmful action then our system will detect it and process the captured image and it will send to the police and family members with GPS location tracked from IP address. Thus our project helps in saving the life of a women and safeguarding her in the present situation.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/42546664" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="5eca47408123176f9da12554d50d7927" rel="nofollow" data-download="{"attachment_id":62736114,"asset_id":42546664,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/62736114/download_file?st=MTczMjQzNzA2NSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="2902340" href="https://ijcsmc.academia.edu/IJCSMCJournal">IJCSMC Journal</a><script data-card-contents-for-user="2902340" type="text/json">{"id":2902340,"first_name":"IJCSMC","last_name":"Journal","domain_name":"ijcsmc","page_name":"IJCSMCJournal","display_name":"IJCSMC Journal","profile_url":"https://ijcsmc.academia.edu/IJCSMCJournal?f_ri=81182","photo":"https://0.academia-photos.com/2902340/955759/1197349/s65_ijcsmc.journal.jpg"}</script></span></span></li><li class="js-paper-rank-work_42546664 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="42546664"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 42546664, container: ".js-paper-rank-work_42546664", }); });</script></li><li class="js-percentile-work_42546664 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 42546664; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_42546664"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_42546664 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="42546664"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 42546664; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=42546664]").text(description); $(".js-view-count-work_42546664").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_42546664").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="42546664"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">10</a> </div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="300" href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a>, <script data-card-contents-for-ri="300" type="text/json">{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="491" href="https://www.academia.edu/Documents/in/Information_Technology">Information Technology</a>, <script data-card-contents-for-ri="491" type="text/json">{"id":491,"name":"Information Technology","url":"https://www.academia.edu/Documents/in/Information_Technology?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="923" href="https://www.academia.edu/Documents/in/Technology">Technology</a>, <script data-card-contents-for-ri="923" type="text/json">{"id":923,"name":"Technology","url":"https://www.academia.edu/Documents/in/Technology?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="11598" href="https://www.academia.edu/Documents/in/Neural_Networks">Neural Networks</a><script data-card-contents-for-ri="11598" type="text/json">{"id":11598,"name":"Neural Networks","url":"https://www.academia.edu/Documents/in/Neural_Networks?f_ri=81182","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=42546664]'), work: {"id":42546664,"title":"Women Safety System Using Emotional VGGNet","created_at":"2020-04-02T06:39:04.489-07:00","url":"https://www.academia.edu/42546664/Women_Safety_System_Using_Emotional_VGGNet_?f_ri=81182","dom_id":"work_42546664","summary":"In today's world women safety is one of the most important issues to be addressed in our country. When a women needs urgent help at the time of harassment or molestation, proper reachability is not present for them. Apart from being aware about the significance of women's safety, it is essential that they are provided with protection during those crucial times. The earlier existing system are helpful in detecting the women's location after the crime has been committed. In this project we will be using the women's handbag in which we will be fixing camera lenses and which will be carried anywhere they go. Whenever she comes in contact with any person outside, an image of that person is taken and the activities of the person can be monitored continuously. If the person behaves normally the image can be of no use and can be deleted. But if the activities of the person varies resulting in any harmful action then our system will detect it and process the captured image and it will send to the police and family members with GPS location tracked from IP address. Thus our project helps in saving the life of a women and safeguarding her in the present situation.","downloadable_attachments":[{"id":62736114,"asset_id":42546664,"asset_type":"Work","always_allow_download":false},{"id":62735719,"asset_id":42546664,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":2902340,"first_name":"IJCSMC","last_name":"Journal","domain_name":"ijcsmc","page_name":"IJCSMCJournal","display_name":"IJCSMC Journal","profile_url":"https://ijcsmc.academia.edu/IJCSMCJournal?f_ri=81182","photo":"https://0.academia-photos.com/2902340/955759/1197349/s65_ijcsmc.journal.jpg"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics?f_ri=81182","nofollow":false},{"id":491,"name":"Information Technology","url":"https://www.academia.edu/Documents/in/Information_Technology?f_ri=81182","nofollow":false},{"id":923,"name":"Technology","url":"https://www.academia.edu/Documents/in/Technology?f_ri=81182","nofollow":false},{"id":11598,"name":"Neural Networks","url":"https://www.academia.edu/Documents/in/Neural_Networks?f_ri=81182","nofollow":false},{"id":54123,"name":"Artificial Neural Networks","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Networks?f_ri=81182"},{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182"},{"id":247096,"name":"Engineering and Computer Science","url":"https://www.academia.edu/Documents/in/Engineering_and_Computer_Science?f_ri=81182"},{"id":328538,"name":"Computer Science And Engineering","url":"https://www.academia.edu/Documents/in/Computer_Science_And_Engineering?f_ri=81182"},{"id":890015,"name":"Deep Neural Networks","url":"https://www.academia.edu/Documents/in/Deep_Neural_Networks?f_ri=81182"},{"id":1226904,"name":"Computer Science and Engineering","url":"https://www.academia.edu/Documents/in/Computer_Science_and_Engineering-1?f_ri=81182"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_40969161" data-work_id="40969161" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/40969161/Curiosity_Driven_Reinforcement_Learning_for_Dialogue_Management">Curiosity-Driven Reinforcement Learning for Dialogue Management</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">Obtaining an effective reward signal for dialogue management is a non trivial problem. Real user feedback is inconsistent and often even absent. This thesis investigates the use of intrinsic rewards for a reinforcement learning based... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_40969161" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">Obtaining an effective reward signal for dialogue management is a non trivial problem. Real user feedback is inconsistent and often even absent. This thesis investigates the use of intrinsic rewards for a reinforcement learning based dialogue manager in order to improve policy learning in an environment with sparse rewards and to move away from inefficient random ε-greedy exploration. In addition to rewards given by a user simulator for successful dialogues, intrinsic curiosity rewards are given in the form of belief-state prediction errors generated by an intrinsic curiosity module within the dialogue manager. We investigate two main settings for this method: (1) predicting the raw next belief-state, and (2) predicting belief-states in a learned feature space. In order to meet the right difficulty level for the system to be able to learn a feature space, the model is pre-trained on a small pool of dialogue transitions. For both settings, results comparable to and better than simple ε-greedy exploration are achieved. (1) is able to learn faster, but (2) achieves higher final results and has more potential for improvements and to be successful in larger state-action spaces, where feature encodings and generalization are beneficial.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/40969161" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="2fc181a69b24d5fd945c2b2839d26b4f" rel="nofollow" data-download="{"attachment_id":61251965,"asset_id":40969161,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/61251965/download_file?st=MTczMjQzNzA2NSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="128533122" href="https://independent.academia.edu/NicolasParisi1">Michael Chinkers</a><script data-card-contents-for-user="128533122" type="text/json">{"id":128533122,"first_name":"Michael","last_name":"Chinkers","domain_name":"independent","page_name":"NicolasParisi1","display_name":"Michael Chinkers","profile_url":"https://independent.academia.edu/NicolasParisi1?f_ri=81182","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_40969161 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="40969161"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 40969161, container: ".js-paper-rank-work_40969161", }); });</script></li><li class="js-percentile-work_40969161 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 40969161; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_40969161"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_40969161 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="40969161"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 40969161; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=40969161]").text(description); $(".js-view-count-work_40969161").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_40969161").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="40969161"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">5</a> </div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="77" href="https://www.academia.edu/Documents/in/Robotics">Robotics</a>, <script data-card-contents-for-ri="77" type="text/json">{"id":77,"name":"Robotics","url":"https://www.academia.edu/Documents/in/Robotics?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="465" href="https://www.academia.edu/Documents/in/Artificial_Intelligence">Artificial Intelligence</a>, <script data-card-contents-for-ri="465" type="text/json">{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="1688" href="https://www.academia.edu/Documents/in/Reinforcement_Learning">Reinforcement Learning</a>, <script data-card-contents-for-ri="1688" type="text/json">{"id":1688,"name":"Reinforcement Learning","url":"https://www.academia.edu/Documents/in/Reinforcement_Learning?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="5175" href="https://www.academia.edu/Documents/in/Dialogue">Dialogue</a><script data-card-contents-for-ri="5175" type="text/json">{"id":5175,"name":"Dialogue","url":"https://www.academia.edu/Documents/in/Dialogue?f_ri=81182","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=40969161]'), work: {"id":40969161,"title":"Curiosity-Driven Reinforcement Learning for Dialogue Management","created_at":"2019-11-18T03:28:15.449-08:00","url":"https://www.academia.edu/40969161/Curiosity_Driven_Reinforcement_Learning_for_Dialogue_Management?f_ri=81182","dom_id":"work_40969161","summary":"Obtaining an effective reward signal for dialogue management is a non trivial problem. Real user feedback is inconsistent and often even absent. This thesis investigates the use of intrinsic rewards for a reinforcement learning based dialogue manager in order to improve policy learning in an environment with sparse rewards and to move away from inefficient random ε-greedy exploration. In addition to rewards given by a user simulator for successful dialogues, intrinsic curiosity rewards are given in the form of belief-state prediction errors generated by an intrinsic curiosity module within the dialogue manager. We investigate two main settings for this method: (1) predicting the raw next belief-state, and (2) predicting belief-states in a learned feature space. In order to meet the right difficulty level for the system to be able to learn a feature space, the model is pre-trained on a small pool of dialogue transitions. For both settings, results comparable to and better than simple ε-greedy exploration are achieved. (1) is able to learn faster, but (2) achieves higher final results and has more potential for improvements and to be successful in larger state-action spaces, where feature encodings and generalization are beneficial.","downloadable_attachments":[{"id":61251965,"asset_id":40969161,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":128533122,"first_name":"Michael","last_name":"Chinkers","domain_name":"independent","page_name":"NicolasParisi1","display_name":"Michael Chinkers","profile_url":"https://independent.academia.edu/NicolasParisi1?f_ri=81182","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":77,"name":"Robotics","url":"https://www.academia.edu/Documents/in/Robotics?f_ri=81182","nofollow":false},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=81182","nofollow":false},{"id":1688,"name":"Reinforcement Learning","url":"https://www.academia.edu/Documents/in/Reinforcement_Learning?f_ri=81182","nofollow":false},{"id":5175,"name":"Dialogue","url":"https://www.academia.edu/Documents/in/Dialogue?f_ri=81182","nofollow":false},{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_38339618" data-work_id="38339618" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/38339618/Quantum_Enhanced_Machine_Learning">Quantum-Enhanced Machine Learning</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">The emerging field of quantum machine learning has the potential to substantially aid in the problems and scope of artificial intelligence. This is only enhanced by recent successes in the field of classical machine learning. In this work... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_38339618" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">The emerging field of quantum machine learning has the potential to substantially aid in the problems and scope of artificial intelligence. This is only enhanced by recent successes in the field of classical machine learning. In this work we propose an approach for the systematic treatment of machine learning, from the perspective of quantum information. Our approach is general and covers all three main branches of machine learning: supervised, unsupervised, and reinforcement learning. While quantum improvements in supervised and unsupervised learning have been reported, reinforcement learning has received much less attention. Within our approach, we tackle the problem of quantum enhancements in reinforcement learning as well, and propose a systematic scheme for providing improvements. As an example, we show that quadratic improvements in learning efficiency, and exponential improvements in performance over limited time periods, can be obtained for a broad class of learning problems.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/38339618" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="2420dbe3cd067cd47589aa2ce37788af" rel="nofollow" data-download="{"attachment_id":58391313,"asset_id":38339618,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/58391313/download_file?st=MTczMjQzNzA2NSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="81180478" href="https://independent.academia.edu/JesseMauck">Jesse Mauck</a><script data-card-contents-for-user="81180478" type="text/json">{"id":81180478,"first_name":"Jesse","last_name":"Mauck","domain_name":"independent","page_name":"JesseMauck","display_name":"Jesse Mauck","profile_url":"https://independent.academia.edu/JesseMauck?f_ri=81182","photo":"https://0.academia-photos.com/81180478/19639552/19518066/s65_satoshi.papi.jpg"}</script></span></span></li><li class="js-paper-rank-work_38339618 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="38339618"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 38339618, container: ".js-paper-rank-work_38339618", }); });</script></li><li class="js-percentile-work_38339618 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 38339618; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_38339618"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_38339618 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="38339618"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 38339618; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=38339618]").text(description); $(".js-view-count-work_38339618").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_38339618").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="38339618"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">16</a> </div><span class="InlineList-item-text u-textTruncate u-pl10x"><a class="InlineList-item-text" data-has-card-for-ri="37" href="https://www.academia.edu/Documents/in/Information_Systems">Information Systems</a>, <script data-card-contents-for-ri="37" type="text/json">{"id":37,"name":"Information Systems","url":"https://www.academia.edu/Documents/in/Information_Systems?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="444" href="https://www.academia.edu/Documents/in/Quantum_Computing">Quantum Computing</a>, <script data-card-contents-for-ri="444" type="text/json">{"id":444,"name":"Quantum Computing","url":"https://www.academia.edu/Documents/in/Quantum_Computing?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="465" href="https://www.academia.edu/Documents/in/Artificial_Intelligence">Artificial Intelligence</a>, <script data-card-contents-for-ri="465" type="text/json">{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="491" href="https://www.academia.edu/Documents/in/Information_Technology">Information Technology</a><script data-card-contents-for-ri="491" type="text/json">{"id":491,"name":"Information Technology","url":"https://www.academia.edu/Documents/in/Information_Technology?f_ri=81182","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=38339618]'), work: {"id":38339618,"title":"Quantum-Enhanced Machine Learning","created_at":"2019-02-12T20:24:24.018-08:00","url":"https://www.academia.edu/38339618/Quantum_Enhanced_Machine_Learning?f_ri=81182","dom_id":"work_38339618","summary":"The emerging field of quantum machine learning has the potential to substantially aid in the problems and scope of artificial intelligence. This is only enhanced by recent successes in the field of classical machine learning. In this work we propose an approach for the systematic treatment of machine learning, from the perspective of quantum information. Our approach is general and covers all three main branches of machine learning: supervised, unsupervised, and reinforcement learning. While quantum improvements in supervised and unsupervised learning have been reported, reinforcement learning has received much less attention. Within our approach, we tackle the problem of quantum enhancements in reinforcement learning as well, and propose a systematic scheme for providing improvements. As an example, we show that quadratic improvements in learning efficiency, and exponential improvements in performance over limited time periods, can be obtained for a broad class of learning problems.","downloadable_attachments":[{"id":58391313,"asset_id":38339618,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":81180478,"first_name":"Jesse","last_name":"Mauck","domain_name":"independent","page_name":"JesseMauck","display_name":"Jesse Mauck","profile_url":"https://independent.academia.edu/JesseMauck?f_ri=81182","photo":"https://0.academia-photos.com/81180478/19639552/19518066/s65_satoshi.papi.jpg"}],"research_interests":[{"id":37,"name":"Information Systems","url":"https://www.academia.edu/Documents/in/Information_Systems?f_ri=81182","nofollow":false},{"id":444,"name":"Quantum Computing","url":"https://www.academia.edu/Documents/in/Quantum_Computing?f_ri=81182","nofollow":false},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=81182","nofollow":false},{"id":491,"name":"Information Technology","url":"https://www.academia.edu/Documents/in/Information_Technology?f_ri=81182","nofollow":false},{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=81182"},{"id":2640,"name":"Quantum Information","url":"https://www.academia.edu/Documents/in/Quantum_Information?f_ri=81182"},{"id":3703,"name":"Network Security","url":"https://www.academia.edu/Documents/in/Network_Security?f_ri=81182"},{"id":4199,"name":"Quantum Information Processing","url":"https://www.academia.edu/Documents/in/Quantum_Information_Processing?f_ri=81182"},{"id":4252,"name":"Computer Networks","url":"https://www.academia.edu/Documents/in/Computer_Networks?f_ri=81182"},{"id":28422,"name":"Quantum Computation","url":"https://www.academia.edu/Documents/in/Quantum_Computation?f_ri=81182"},{"id":54123,"name":"Artificial Neural Networks","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Networks?f_ri=81182"},{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182"},{"id":247799,"name":"Internet of Things (IoT)","url":"https://www.academia.edu/Documents/in/Internet_of_Things_IoT_?f_ri=81182"},{"id":522782,"name":"Information Technology and System Integration","url":"https://www.academia.edu/Documents/in/Information_Technology_and_System_Integration?f_ri=81182"},{"id":659228,"name":"Quantum Computing and Information","url":"https://www.academia.edu/Documents/in/Quantum_Computing_and_Information?f_ri=81182"},{"id":992306,"name":"Topological Quantum Computing","url":"https://www.academia.edu/Documents/in/Topological_Quantum_Computing?f_ri=81182"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_35012744" data-work_id="35012744" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/35012744/Ground_rules">Ground rules</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest">Benha University<br /><br /><br /><a href="http://www.bu.edu.eg/staff/mloey" rel="nofollow">http://www.bu.edu.eg/staff/mloey</a><br /><br /><br /><a href="http://www.bu.edu.eg" rel="nofollow">http://www.bu.edu.eg</a></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/35012744" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="8bcda706637317c7e81af6aa4cbc686e" rel="nofollow" data-download="{"attachment_id":54876879,"asset_id":35012744,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/54876879/download_file?st=MTczMjQzNzA2NSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="5700752" href="https://benha.academia.edu/mloey">Mohamed Loey</a><script data-card-contents-for-user="5700752" type="text/json">{"id":5700752,"first_name":"Mohamed","last_name":"Loey","domain_name":"benha","page_name":"mloey","display_name":"Mohamed Loey","profile_url":"https://benha.academia.edu/mloey?f_ri=81182","photo":"https://0.academia-photos.com/5700752/2799752/3264866/s65_mohamed.loey.jpg"}</script></span></span></li><li class="js-paper-rank-work_35012744 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="35012744"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 35012744, container: ".js-paper-rank-work_35012744", }); });</script></li><li class="js-percentile-work_35012744 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 35012744; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_35012744"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_35012744 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="35012744"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 35012744; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=35012744]").text(description); $(".js-view-count-work_35012744").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_35012744").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="35012744"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i></div><span class="InlineList-item-text u-textTruncate u-pl6x"><a class="InlineList-item-text" data-has-card-for-ri="81182" href="https://www.academia.edu/Documents/in/Deep_Learning">Deep Learning</a><script data-card-contents-for-ri="81182" type="text/json">{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182","nofollow":false}</script></span></li><script>(function(){ if (false) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=35012744]'), work: {"id":35012744,"title":"Ground rules","created_at":"2017-10-31T12:01:36.429-07:00","url":"https://www.academia.edu/35012744/Ground_rules?f_ri=81182","dom_id":"work_35012744","summary":"Benha University\n\n\nhttp://www.bu.edu.eg/staff/mloey\n\n\nhttp://www.bu.edu.eg","downloadable_attachments":[{"id":54876879,"asset_id":35012744,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":5700752,"first_name":"Mohamed","last_name":"Loey","domain_name":"benha","page_name":"mloey","display_name":"Mohamed Loey","profile_url":"https://benha.academia.edu/mloey?f_ri=81182","photo":"https://0.academia-photos.com/5700752/2799752/3264866/s65_mohamed.loey.jpg"}],"research_interests":[{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_71155770 coauthored" data-work_id="71155770" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/71155770/Smart_Surveillance_and_Tracking_System_using_Resnet_and_Tesseract_OCR">Smart Surveillance and Tracking System using Resnet and Tesseract-OCR</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">In recent times the field of computer vision and deep learning has seen many advancements that have helped in efficient and accurate face and object detection, resulting in many security and surveillance applications. Furthermore, with... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_71155770" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">In recent times the field of computer vision and deep learning has seen many advancements that have helped in efficient and accurate face and object detection, resulting in many security and surveillance applications. Furthermore, with the increase in localized cameras monitoring every human action, every vehicle tracked it only seemed logical to use these camera's video feeds more efficiently and smartly. Present security systems include manual surveillance or a single smart camera setup. In this paper, we propose a smart multi-camera system using a Resnet-34 model for face recognition and Tesseract-based Optical Character Recognition for vehicle number plate recognition. The individuals and vehicles captured in the multiple cameras are traced out on a map which will graphically show when and where they were detected. This security and surveillance system will be beneficial in large organizations such as offices, banks, shopping malls, residential areas, etc.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/71155770" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="c9c88180cd4e4293cd63e16935ab11d7" rel="nofollow" data-download="{"attachment_id":85844754,"asset_id":71155770,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/85844754/download_file?st=MTczMjQzNzA2NSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="162569920" href="https://unipune.academia.edu/ChaitanyaSonavane">Chaitanya Sonavane</a><script data-card-contents-for-user="162569920" type="text/json">{"id":162569920,"first_name":"Chaitanya","last_name":"Sonavane","domain_name":"unipune","page_name":"ChaitanyaSonavane","display_name":"Chaitanya Sonavane","profile_url":"https://unipune.academia.edu/ChaitanyaSonavane?f_ri=81182","photo":"https://0.academia-photos.com/162569920/80722519/69305765/s65_chaitanya.sonavane.jpeg"}</script></span></span><span class="u-displayInlineBlock InlineList-item-text"> and <span class="u-textDecorationUnderline u-clickable InlineList-item-text js-work-more-authors-71155770">+2</span><div class="hidden js-additional-users-71155770"><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://independent.academia.edu/omkarPodey">omkar Podey</a></span></div><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://independent.academia.edu/PRewane">Pranay Rewane</a></span></div></div></span><script>(function(){ var popoverSettings = { el: $('.js-work-more-authors-71155770'), placement: 'bottom', hide_delay: 200, html: true, content: function(){ return $('.js-additional-users-71155770').html(); } } new HoverPopover(popoverSettings); })();</script></li><li class="js-paper-rank-work_71155770 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="71155770"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 71155770, container: ".js-paper-rank-work_71155770", }); });</script></li><li class="js-percentile-work_71155770 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 71155770; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_71155770"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_71155770 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="71155770"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 71155770; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=71155770]").text(description); $(".js-view-count-work_71155770").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_71155770").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="71155770"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">7</a> </div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="2008" href="https://www.academia.edu/Documents/in/Machine_Learning">Machine Learning</a>, <script data-card-contents-for-ri="2008" type="text/json">{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="69100" href="https://www.academia.edu/Documents/in/Data_Science">Data Science</a>, <script data-card-contents-for-ri="69100" type="text/json">{"id":69100,"name":"Data Science","url":"https://www.academia.edu/Documents/in/Data_Science?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="81182" href="https://www.academia.edu/Documents/in/Deep_Learning">Deep Learning</a>, <script data-card-contents-for-ri="81182" type="text/json">{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="214585" href="https://www.academia.edu/Documents/in/Smart_surveillance">Smart surveillance</a><script data-card-contents-for-ri="214585" type="text/json">{"id":214585,"name":"Smart surveillance","url":"https://www.academia.edu/Documents/in/Smart_surveillance?f_ri=81182","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=71155770]'), work: {"id":71155770,"title":"Smart Surveillance and Tracking System using Resnet and Tesseract-OCR","created_at":"2022-02-11T22:14:44.459-08:00","url":"https://www.academia.edu/71155770/Smart_Surveillance_and_Tracking_System_using_Resnet_and_Tesseract_OCR?f_ri=81182","dom_id":"work_71155770","summary":"In recent times the field of computer vision and deep learning has seen many advancements that have helped in efficient and accurate face and object detection, resulting in many security and surveillance applications. Furthermore, with the increase in localized cameras monitoring every human action, every vehicle tracked it only seemed logical to use these camera's video feeds more efficiently and smartly. Present security systems include manual surveillance or a single smart camera setup. In this paper, we propose a smart multi-camera system using a Resnet-34 model for face recognition and Tesseract-based Optical Character Recognition for vehicle number plate recognition. The individuals and vehicles captured in the multiple cameras are traced out on a map which will graphically show when and where they were detected. This security and surveillance system will be beneficial in large organizations such as offices, banks, shopping malls, residential areas, etc.","downloadable_attachments":[{"id":85844754,"asset_id":71155770,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":162569920,"first_name":"Chaitanya","last_name":"Sonavane","domain_name":"unipune","page_name":"ChaitanyaSonavane","display_name":"Chaitanya Sonavane","profile_url":"https://unipune.academia.edu/ChaitanyaSonavane?f_ri=81182","photo":"https://0.academia-photos.com/162569920/80722519/69305765/s65_chaitanya.sonavane.jpeg"},{"id":224315179,"first_name":"omkar","last_name":"Podey","domain_name":"independent","page_name":"omkarPodey","display_name":"omkar Podey","profile_url":"https://independent.academia.edu/omkarPodey?f_ri=81182","photo":"https://gravatar.com/avatar/c0ac4d4dc5ae43f165766878b59c4ddf?s=65"},{"id":303594314,"first_name":"Pranay","last_name":"Rewane","domain_name":"independent","page_name":"PRewane","display_name":"Pranay Rewane","profile_url":"https://independent.academia.edu/PRewane?f_ri=81182","photo":"https://0.academia-photos.com/303594314/148634077/138196809/s65_pranay.rewane.jpeg"}],"research_interests":[{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning?f_ri=81182","nofollow":false},{"id":69100,"name":"Data Science","url":"https://www.academia.edu/Documents/in/Data_Science?f_ri=81182","nofollow":false},{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182","nofollow":false},{"id":214585,"name":"Smart surveillance","url":"https://www.academia.edu/Documents/in/Smart_surveillance?f_ri=81182","nofollow":false},{"id":1815859,"name":"Tracking system","url":"https://www.academia.edu/Documents/in/Tracking_system?f_ri=81182"},{"id":3984054,"name":"tesseract-OCR","url":"https://www.academia.edu/Documents/in/tesseract_OCR?f_ri=81182"},{"id":3987877,"name":"ResNets","url":"https://www.academia.edu/Documents/in/ResNets?f_ri=81182"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_79542941 coauthored" data-work_id="79542941" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/79542941/Cross_Deep_Learning_Method_for_Effectively_Detecting_the_Propagation_of_IoT_Botnet">Cross Deep Learning Method for Effectively Detecting the Propagation of IoT Botnet</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">In recent times, organisations in a variety of businesses, such as healthcare, education, and others, have been using the Internet of Things (IoT) to produce more competent and improved services. The widespread use of IoT devices makes... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_79542941" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">In recent times, organisations in a variety of businesses, such as healthcare, education, and others, have been using the Internet of Things (IoT) to produce more competent and improved services. The widespread use of IoT devices makes our lives easier. On the other hand, the IoT devices that we use suffer vulnerabilities that may impact our lives. These unsafe devices accelerate and ease cybersecurity attacks, specifically when using a botnet. Moreover, restrictions on IoT device resources, such as limitations in power consumption and the central processing unit and memory, intensify this issue because they limit the security techniques that can be used to protect IoT devices. Fortunately, botnets go through different stages before they can start attacks, and they can be detected in the early stage. This research paper proposes a framework focusing on detecting an IoT botnet in the early stage. An empirical experiment was conducted to investigate the behaviour of the early stage of the botnet, and then a baseline machine learning model was implemented for early detection. Furthermore, the authors developed an effective detection method, namely, Cross CNN_LSTM, to detect the IoT botnet based on using fusion deep learning models of a convolutional neural network (CNN) and long short-term memory (LSTM). According to the conducted experiments, the results show that the suggested model is accurate and outperforms some of the state-of-the-art methods, and it achieves 99.7 accuracy. Finally, the authors developed a kill chain model to prevent IoT botnet attacks in the early stage.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/79542941" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="f3c15810e463361869363c638503f1f0" rel="nofollow" data-download="{"attachment_id":86222472,"asset_id":79542941,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/86222472/download_file?st=MTczMjQzNzA2NSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="63701" href="https://kau.academia.edu/DaniyalAlGhazzawi">Daniyal Alghazzawi</a><script data-card-contents-for-user="63701" type="text/json">{"id":63701,"first_name":"Daniyal","last_name":"Alghazzawi","domain_name":"kau","page_name":"DaniyalAlGhazzawi","display_name":"Daniyal Alghazzawi","profile_url":"https://kau.academia.edu/DaniyalAlGhazzawi?f_ri=81182","photo":"https://0.academia-photos.com/63701/17934/20234596/s65_daniyal.alghazzawi.jpg"}</script></span></span><span class="u-displayInlineBlock InlineList-item-text"> and <span class="u-textDecorationUnderline u-clickable InlineList-item-text js-work-more-authors-79542941">+1</span><div class="hidden js-additional-users-79542941"><div><span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a href="https://independent.academia.edu/%D8%A3%D8%B3%D8%A7%D9%85%D8%A9%D8%B1%D8%A8%D9%8A%D8%B91">أسامة ربيع</a></span></div></div></span><script>(function(){ var popoverSettings = { el: $('.js-work-more-authors-79542941'), placement: 'bottom', hide_delay: 200, html: true, content: function(){ return $('.js-additional-users-79542941').html(); } } new HoverPopover(popoverSettings); })();</script></li><li class="js-paper-rank-work_79542941 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="79542941"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 79542941, container: ".js-paper-rank-work_79542941", }); });</script></li><li class="js-percentile-work_79542941 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 79542941; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_79542941"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_79542941 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="79542941"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 79542941; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=79542941]").text(description); $(".js-view-count-work_79542941").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_79542941").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="79542941"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">2</a> </div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="81182" href="https://www.academia.edu/Documents/in/Deep_Learning">Deep Learning</a>, <script data-card-contents-for-ri="81182" type="text/json">{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="119771" href="https://www.academia.edu/Documents/in/Botnets">Botnets</a><script data-card-contents-for-ri="119771" type="text/json">{"id":119771,"name":"Botnets","url":"https://www.academia.edu/Documents/in/Botnets?f_ri=81182","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=79542941]'), work: {"id":79542941,"title":"Cross Deep Learning Method for Effectively Detecting the Propagation of IoT Botnet","created_at":"2022-05-20T14:01:15.060-07:00","url":"https://www.academia.edu/79542941/Cross_Deep_Learning_Method_for_Effectively_Detecting_the_Propagation_of_IoT_Botnet?f_ri=81182","dom_id":"work_79542941","summary":"In recent times, organisations in a variety of businesses, such as healthcare, education, and others, have been using the Internet of Things (IoT) to produce more competent and improved services. The widespread use of IoT devices makes our lives easier. On the other hand, the IoT devices that we use suffer vulnerabilities that may impact our lives. These unsafe devices accelerate and ease cybersecurity attacks, specifically when using a botnet. Moreover, restrictions on IoT device resources, such as limitations in power consumption and the central processing unit and memory, intensify this issue because they limit the security techniques that can be used to protect IoT devices. Fortunately, botnets go through different stages before they can start attacks, and they can be detected in the early stage. This research paper proposes a framework focusing on detecting an IoT botnet in the early stage. An empirical experiment was conducted to investigate the behaviour of the early stage of the botnet, and then a baseline machine learning model was implemented for early detection. Furthermore, the authors developed an effective detection method, namely, Cross CNN_LSTM, to detect the IoT botnet based on using fusion deep learning models of a convolutional neural network (CNN) and long short-term memory (LSTM). According to the conducted experiments, the results show that the suggested model is accurate and outperforms some of the state-of-the-art methods, and it achieves 99.7 accuracy. Finally, the authors developed a kill chain model to prevent IoT botnet attacks in the early stage.","downloadable_attachments":[{"id":86222472,"asset_id":79542941,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":63701,"first_name":"Daniyal","last_name":"Alghazzawi","domain_name":"kau","page_name":"DaniyalAlGhazzawi","display_name":"Daniyal Alghazzawi","profile_url":"https://kau.academia.edu/DaniyalAlGhazzawi?f_ri=81182","photo":"https://0.academia-photos.com/63701/17934/20234596/s65_daniyal.alghazzawi.jpg"},{"id":224968797,"first_name":"أسامة","last_name":"ربيع","domain_name":"independent","page_name":"أسامةربيع1","display_name":"أسامة ربيع","profile_url":"https://independent.academia.edu/%D8%A3%D8%B3%D8%A7%D9%85%D8%A9%D8%B1%D8%A8%D9%8A%D8%B91?f_ri=81182","photo":"https://gravatar.com/avatar/9585711b48599fbb1e0fa2ee97c2d12c?s=65"}],"research_interests":[{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182","nofollow":false},{"id":119771,"name":"Botnets","url":"https://www.academia.edu/Documents/in/Botnets?f_ri=81182","nofollow":false}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_72991201" data-work_id="72991201" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/72991201/Visualization_and_Interpretation_of_Latent_Spaces_for_Controlling_Expressive_Speech_Synthesis_Through_Audio_Analysis">Visualization and Interpretation of Latent Spaces for Controlling Expressive Speech Synthesis Through Audio Analysis</a></div></div><div class="u-pb4x u-mt3x"></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/72991201" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="8ecd6694f5de5964f338f5e09a6cde34" rel="nofollow" data-download="{"attachment_id":81692094,"asset_id":72991201,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/81692094/download_file?st=MTczMjQzNzA2NSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="355536" href="https://vub-be.academia.edu/FengnaWang">Fengna Wang</a><script data-card-contents-for-user="355536" type="text/json">{"id":355536,"first_name":"Fengna","last_name":"Wang","domain_name":"vub-be","page_name":"FengnaWang","display_name":"Fengna Wang","profile_url":"https://vub-be.academia.edu/FengnaWang?f_ri=81182","photo":"/images/s65_no_pic.png"}</script></span></span></li><li class="js-paper-rank-work_72991201 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="72991201"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 72991201, container: ".js-paper-rank-work_72991201", }); });</script></li><li class="js-percentile-work_72991201 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 72991201; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_72991201"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_72991201 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="72991201"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 72991201; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=72991201]").text(description); $(".js-view-count-work_72991201").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_72991201").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="72991201"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">8</a> </div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="465" href="https://www.academia.edu/Documents/in/Artificial_Intelligence">Artificial Intelligence</a>, <script data-card-contents-for-ri="465" type="text/json">{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="2342" href="https://www.academia.edu/Documents/in/Speech_Synthesis">Speech Synthesis</a>, <script data-card-contents-for-ri="2342" type="text/json">{"id":2342,"name":"Speech Synthesis","url":"https://www.academia.edu/Documents/in/Speech_Synthesis?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="2671" href="https://www.academia.edu/Documents/in/Emotional_intelligence">Emotional intelligence</a>, <script data-card-contents-for-ri="2671" type="text/json">{"id":2671,"name":"Emotional intelligence","url":"https://www.academia.edu/Documents/in/Emotional_intelligence?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="4148" href="https://www.academia.edu/Documents/in/Audio_Signal_Processing">Audio Signal Processing</a><script data-card-contents-for-ri="4148" type="text/json">{"id":4148,"name":"Audio Signal Processing","url":"https://www.academia.edu/Documents/in/Audio_Signal_Processing?f_ri=81182","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=72991201]'), work: {"id":72991201,"title":"Visualization and Interpretation of Latent Spaces for Controlling Expressive Speech Synthesis Through Audio Analysis","created_at":"2022-03-03T22:56:36.224-08:00","url":"https://www.academia.edu/72991201/Visualization_and_Interpretation_of_Latent_Spaces_for_Controlling_Expressive_Speech_Synthesis_Through_Audio_Analysis?f_ri=81182","dom_id":"work_72991201","summary":null,"downloadable_attachments":[{"id":81692094,"asset_id":72991201,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":355536,"first_name":"Fengna","last_name":"Wang","domain_name":"vub-be","page_name":"FengnaWang","display_name":"Fengna Wang","profile_url":"https://vub-be.academia.edu/FengnaWang?f_ri=81182","photo":"/images/s65_no_pic.png"}],"research_interests":[{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence?f_ri=81182","nofollow":false},{"id":2342,"name":"Speech Synthesis","url":"https://www.academia.edu/Documents/in/Speech_Synthesis?f_ri=81182","nofollow":false},{"id":2671,"name":"Emotional intelligence","url":"https://www.academia.edu/Documents/in/Emotional_intelligence?f_ri=81182","nofollow":false},{"id":4148,"name":"Audio Signal Processing","url":"https://www.academia.edu/Documents/in/Audio_Signal_Processing?f_ri=81182","nofollow":false},{"id":9038,"name":"Digital Signal Processing","url":"https://www.academia.edu/Documents/in/Digital_Signal_Processing?f_ri=81182"},{"id":15817,"name":"Speech Communication","url":"https://www.academia.edu/Documents/in/Speech_Communication?f_ri=81182"},{"id":36835,"name":"Speech Processing","url":"https://www.academia.edu/Documents/in/Speech_Processing?f_ri=81182"},{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182"}]}, }) } })();</script></ul></li></ul></div></div><div class="u-borderBottom1 u-borderColorGrayLighter"><div class="clearfix u-pv7x u-mb0x js-work-card work_71965016" data-work_id="71965016" itemscope="itemscope" itemtype="https://schema.org/ScholarlyArticle"><div class="header"><div class="title u-fontSerif u-fs22 u-lineHeight1_3"><a class="u-tcGrayDarkest js-work-link" href="https://www.academia.edu/71965016/Deep_Analysis_in_Aggressive_Mexican_Tweets">Deep Analysis in Aggressive Mexican Tweets</a></div></div><div class="u-pb4x u-mt3x"><div class="summary u-fs14 u-fw300 u-lineHeight1_5 u-tcGrayDarkest"><div class="summarized">The importance of the detection of aggressiveness in social media is due to real effects of violence provoked by negative behavior online. Indeed, this kind of legal cases are increasing in the last years. For this reason, the necessity... <a class="more_link u-tcGrayDark u-linkUnstyled" data-container=".work_71965016" data-show=".complete" data-hide=".summarized" data-more-link-behavior="true" href="#">more</a></div><div class="complete hidden">The importance of the detection of aggressiveness in social media is due to real effects of violence provoked by negative behavior online. Indeed, this kind of legal cases are increasing in the last years. For this reason, the necessity of controlling user-generated contents has become one of the priorities for many Internet companies, although current methodologies are far from solving this problem. Therefore, in this work we propose an innovative approach that combines deep learning framework with linguistic features specific for this issue. This approach has been evaluated and compared with other ones in the framework of the MEX-A3T shared task at IberEval on aggressiveness analysis in Spanish Mexican tweets. In spite of our novel approach, we obtained low results.</div></div></div><ul class="InlineList u-ph0x u-fs13"><li class="InlineList-item logged_in_only"><div class="share_on_academia_work_button"><a class="academia_share Button Button--inverseBlue Button--sm js-bookmark-button" data-academia-share="Work/71965016" data-share-source="work_strip" data-spinner="small_white_hide_contents"><i class="fa fa-plus"></i><span class="work-strip-link-text u-ml1x" data-content="button_text">Bookmark</span></a></div></li><li class="InlineList-item"><div class="download"><a id="8169ad6ec58dbbe5da07bd154b2196fd" rel="nofollow" data-download="{"attachment_id":81090888,"asset_id":71965016,"asset_type":"Work","always_allow_download":false,"track":null,"button_location":"work_strip","source":null,"hide_modal":null}" class="Button Button--sm Button--inverseGreen js-download-button prompt_button doc_download" href="https://www.academia.edu/attachments/81090888/download_file?st=MTczMjQzNzA2NSw4LjIyMi4yMDguMTQ2&s=work_strip"><i class="fa fa-arrow-circle-o-down fa-lg"></i><span class="u-textUppercase u-ml1x" data-content="button_text">Download</span></a></div></li><li class="InlineList-item"><ul class="InlineList InlineList--bordered u-ph0x"><li class="InlineList-item InlineList-item--bordered"><span class="InlineList-item-text">by <span itemscope="itemscope" itemprop="author" itemtype="https://schema.org/Person"><a class="u-tcGrayDark u-fw700" data-has-card-for-user="16060706" href="https://unito.academia.edu/SimonaFrenda">Simona Frenda</a><script data-card-contents-for-user="16060706" type="text/json">{"id":16060706,"first_name":"Simona","last_name":"Frenda","domain_name":"unito","page_name":"SimonaFrenda","display_name":"Simona Frenda","profile_url":"https://unito.academia.edu/SimonaFrenda?f_ri=81182","photo":"https://0.academia-photos.com/16060706/4359705/16015054/s65_simona.frenda.jpg"}</script></span></span></li><li class="js-paper-rank-work_71965016 InlineList-item InlineList-item--bordered hidden"><span class="js-paper-rank-view hidden u-tcGrayDark" data-paper-rank-work-id="71965016"><i class="u-m1x fa fa-bar-chart"></i><strong class="js-paper-rank"></strong></span><script>$(function() { new Works.PaperRankView({ workId: 71965016, container: ".js-paper-rank-work_71965016", }); });</script></li><li class="js-percentile-work_71965016 InlineList-item InlineList-item--bordered hidden u-tcGrayDark"><span class="percentile-widget hidden"><span class="u-mr2x percentile-widget" style="display: none">•</span><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 71965016; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-percentile-work_71965016"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></li><li class="js-view-count-work_71965016 InlineList-item InlineList-item--bordered hidden"><div><span><span class="js-view-count view-count u-mr2x" data-work-id="71965016"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 71965016; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=71965016]").text(description); $(".js-view-count-work_71965016").attr('title', description).tooltip(); }); });</script></span><script>$(function() { $(".js-view-count-work_71965016").removeClass('hidden') })</script></div></li><li class="InlineList-item u-positionRelative" style="max-width: 250px"><div class="u-positionAbsolute" data-has-card-for-ri-list="71965016"><i class="fa fa-tag InlineList-item-icon u-positionRelative"></i> <a class="InlineList-item-text u-positionRelative">6</a> </div><span class="InlineList-item-text u-textTruncate u-pl9x"><a class="InlineList-item-text" data-has-card-for-ri="422" href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a>, <script data-card-contents-for-ri="422" type="text/json">{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="9086" href="https://www.academia.edu/Documents/in/Hate_Speech">Hate Speech</a>, <script data-card-contents-for-ri="9086" type="text/json">{"id":9086,"name":"Hate Speech","url":"https://www.academia.edu/Documents/in/Hate_Speech?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="49267" href="https://www.academia.edu/Documents/in/Computational_Linguistics_and_NLP">Computational Linguistics & NLP</a>, <script data-card-contents-for-ri="49267" type="text/json">{"id":49267,"name":"Computational Linguistics \u0026 NLP","url":"https://www.academia.edu/Documents/in/Computational_Linguistics_and_NLP?f_ri=81182","nofollow":false}</script><a class="InlineList-item-text" data-has-card-for-ri="81182" href="https://www.academia.edu/Documents/in/Deep_Learning">Deep Learning</a><script data-card-contents-for-ri="81182" type="text/json">{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182","nofollow":false}</script></span></li><script>(function(){ if (true) { new Aedu.ResearchInterestListCard({ el: $('*[data-has-card-for-ri-list=71965016]'), work: {"id":71965016,"title":"Deep Analysis in Aggressive Mexican Tweets","created_at":"2022-02-20T07:24:58.511-08:00","url":"https://www.academia.edu/71965016/Deep_Analysis_in_Aggressive_Mexican_Tweets?f_ri=81182","dom_id":"work_71965016","summary":"The importance of the detection of aggressiveness in social media is due to real effects of violence provoked by negative behavior online. Indeed, this kind of legal cases are increasing in the last years. For this reason, the necessity of controlling user-generated contents has become one of the priorities for many Internet companies, although current methodologies are far from solving this problem. Therefore, in this work we propose an innovative approach that combines deep learning framework with linguistic features specific for this issue. This approach has been evaluated and compared with other ones in the framework of the MEX-A3T shared task at IberEval on aggressiveness analysis in Spanish Mexican tweets. In spite of our novel approach, we obtained low results.","downloadable_attachments":[{"id":81090888,"asset_id":71965016,"asset_type":"Work","always_allow_download":false}],"ordered_authors":[{"id":16060706,"first_name":"Simona","last_name":"Frenda","domain_name":"unito","page_name":"SimonaFrenda","display_name":"Simona Frenda","profile_url":"https://unito.academia.edu/SimonaFrenda?f_ri=81182","photo":"https://0.academia-photos.com/16060706/4359705/16015054/s65_simona.frenda.jpg"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science?f_ri=81182","nofollow":false},{"id":9086,"name":"Hate Speech","url":"https://www.academia.edu/Documents/in/Hate_Speech?f_ri=81182","nofollow":false},{"id":49267,"name":"Computational Linguistics \u0026 NLP","url":"https://www.academia.edu/Documents/in/Computational_Linguistics_and_NLP?f_ri=81182","nofollow":false},{"id":81182,"name":"Deep Learning","url":"https://www.academia.edu/Documents/in/Deep_Learning?f_ri=81182","nofollow":false},{"id":200170,"name":"Mass Media and Aggressiveness","url":"https://www.academia.edu/Documents/in/Mass_Media_and_Aggressiveness?f_ri=81182"},{"id":2645990,"name":"Mexican languages","url":"https://www.academia.edu/Documents/in/Mexican_languages?f_ri=81182"}]}, }) } })();</script></ul></li></ul></div></div></div><div class="u-taCenter Pagination"><ul class="pagination"><li class="next_page"><a href="/Documents/in/Deep_Learning?after=50%2C71965016" rel="next">Next</a></li><li class="last next"><a href="/Documents/in/Deep_Learning?page=last">Last »</a></li></ul></div></div><div class="hidden-xs hidden-sm"><div class="u-pl6x"><div style="width: 300px;"><div class="panel panel-flat u-mt7x"><div class="panel-heading u-p5x"><div class="u-tcGrayDark u-taCenter u-fw700 u-textUppercase">Related Topics</div></div><ul class="list-group"><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" href="https://www.academia.edu/Documents/in/Machine_Learning">Machine Learning</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="2008">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="2008">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" href="https://www.academia.edu/Documents/in/RoboCup">RoboCup</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="143105">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="143105">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" href="https://www.academia.edu/Documents/in/Cognitive_Robotics">Cognitive Robotics</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="11136">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="11136">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" href="https://www.academia.edu/Documents/in/Artificial_Neural_Networks">Artificial Neural Networks</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="54123">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="54123">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" href="https://www.academia.edu/Documents/in/Computer_Vision">Computer Vision</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="854">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="854">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" href="https://www.academia.edu/Documents/in/Artificial_Intelligence">Artificial Intelligence</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="465">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="465">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" href="https://www.academia.edu/Documents/in/Statistical_machine_learning">Statistical machine learning</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="15084">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="15084">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" href="https://www.academia.edu/Documents/in/Humanoid_Robotics">Humanoid Robotics</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="4893">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="4893">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" href="https://www.academia.edu/Documents/in/Convolutional_Neural_Networks">Convolutional Neural Networks</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="1433808">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="1433808">Following</a></div></li><li class="list-group-item media_v2 u-mt0x u-p3x"><div class="media-body"><div class="u-tcGrayDarker u-fw700"><a class="u-tcGrayDarker" href="https://www.academia.edu/Documents/in/Natural_Language_Processing">Natural Language Processing</a></div></div><div class="media-right media-middle"><a class="u-tcGreen u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-follow-ri-id="1432">Follow</a><a class="u-tcGray u-textDecorationNone u-linkUnstyled u-fw500 hidden" data-unfollow-ri-id="1432">Following</a></div></li></ul></div></div></div></div></div></div><script>// MIT License // Copyright © 2011 Sebastian Tschan, https://blueimp.net // Permission is hereby granted, free of charge, to any person obtaining a copy of // this software and associated documentation files (the "Software"), to deal in // the Software without restriction, including without limitation the rights to // use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of // the Software, and to permit persons to whom the Software is furnished to do so, // subject to the following conditions: // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS // FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR // COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER // IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN // CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. !function(n){"use strict";function d(n,t){var r=(65535&n)+(65535&t);return(n>>16)+(t>>16)+(r>>16)<<16|65535&r}function f(n,t,r,e,o,u){return d((c=d(d(t,n),d(e,u)))<<(f=o)|c>>>32-f,r);var c,f}function l(n,t,r,e,o,u,c){return f(t&r|~t&e,n,t,o,u,c)}function v(n,t,r,e,o,u,c){return f(t&e|r&~e,n,t,o,u,c)}function g(n,t,r,e,o,u,c){return f(t^r^e,n,t,o,u,c)}function m(n,t,r,e,o,u,c){return f(r^(t|~e),n,t,o,u,c)}function i(n,t){var r,e,o,u;n[t>>5]|=128<<t%32,n[14+(t+64>>>9<<4)]=t;for(var c=1732584193,f=-271733879,i=-1732584194,a=271733878,h=0;h<n.length;h+=16)c=l(r=c,e=f,o=i,u=a,n[h],7,-680876936),a=l(a,c,f,i,n[h+1],12,-389564586),i=l(i,a,c,f,n[h+2],17,606105819),f=l(f,i,a,c,n[h+3],22,-1044525330),c=l(c,f,i,a,n[h+4],7,-176418897),a=l(a,c,f,i,n[h+5],12,1200080426),i=l(i,a,c,f,n[h+6],17,-1473231341),f=l(f,i,a,c,n[h+7],22,-45705983),c=l(c,f,i,a,n[h+8],7,1770035416),a=l(a,c,f,i,n[h+9],12,-1958414417),i=l(i,a,c,f,n[h+10],17,-42063),f=l(f,i,a,c,n[h+11],22,-1990404162),c=l(c,f,i,a,n[h+12],7,1804603682),a=l(a,c,f,i,n[h+13],12,-40341101),i=l(i,a,c,f,n[h+14],17,-1502002290),c=v(c,f=l(f,i,a,c,n[h+15],22,1236535329),i,a,n[h+1],5,-165796510),a=v(a,c,f,i,n[h+6],9,-1069501632),i=v(i,a,c,f,n[h+11],14,643717713),f=v(f,i,a,c,n[h],20,-373897302),c=v(c,f,i,a,n[h+5],5,-701558691),a=v(a,c,f,i,n[h+10],9,38016083),i=v(i,a,c,f,n[h+15],14,-660478335),f=v(f,i,a,c,n[h+4],20,-405537848),c=v(c,f,i,a,n[h+9],5,568446438),a=v(a,c,f,i,n[h+14],9,-1019803690),i=v(i,a,c,f,n[h+3],14,-187363961),f=v(f,i,a,c,n[h+8],20,1163531501),c=v(c,f,i,a,n[h+13],5,-1444681467),a=v(a,c,f,i,n[h+2],9,-51403784),i=v(i,a,c,f,n[h+7],14,1735328473),c=g(c,f=v(f,i,a,c,n[h+12],20,-1926607734),i,a,n[h+5],4,-378558),a=g(a,c,f,i,n[h+8],11,-2022574463),i=g(i,a,c,f,n[h+11],16,1839030562),f=g(f,i,a,c,n[h+14],23,-35309556),c=g(c,f,i,a,n[h+1],4,-1530992060),a=g(a,c,f,i,n[h+4],11,1272893353),i=g(i,a,c,f,n[h+7],16,-155497632),f=g(f,i,a,c,n[h+10],23,-1094730640),c=g(c,f,i,a,n[h+13],4,681279174),a=g(a,c,f,i,n[h],11,-358537222),i=g(i,a,c,f,n[h+3],16,-722521979),f=g(f,i,a,c,n[h+6],23,76029189),c=g(c,f,i,a,n[h+9],4,-640364487),a=g(a,c,f,i,n[h+12],11,-421815835),i=g(i,a,c,f,n[h+15],16,530742520),c=m(c,f=g(f,i,a,c,n[h+2],23,-995338651),i,a,n[h],6,-198630844),a=m(a,c,f,i,n[h+7],10,1126891415),i=m(i,a,c,f,n[h+14],15,-1416354905),f=m(f,i,a,c,n[h+5],21,-57434055),c=m(c,f,i,a,n[h+12],6,1700485571),a=m(a,c,f,i,n[h+3],10,-1894986606),i=m(i,a,c,f,n[h+10],15,-1051523),f=m(f,i,a,c,n[h+1],21,-2054922799),c=m(c,f,i,a,n[h+8],6,1873313359),a=m(a,c,f,i,n[h+15],10,-30611744),i=m(i,a,c,f,n[h+6],15,-1560198380),f=m(f,i,a,c,n[h+13],21,1309151649),c=m(c,f,i,a,n[h+4],6,-145523070),a=m(a,c,f,i,n[h+11],10,-1120210379),i=m(i,a,c,f,n[h+2],15,718787259),f=m(f,i,a,c,n[h+9],21,-343485551),c=d(c,r),f=d(f,e),i=d(i,o),a=d(a,u);return[c,f,i,a]}function a(n){for(var t="",r=32*n.length,e=0;e<r;e+=8)t+=String.fromCharCode(n[e>>5]>>>e%32&255);return t}function h(n){var t=[];for(t[(n.length>>2)-1]=void 0,e=0;e<t.length;e+=1)t[e]=0;for(var r=8*n.length,e=0;e<r;e+=8)t[e>>5]|=(255&n.charCodeAt(e/8))<<e%32;return t}function e(n){for(var t,r="0123456789abcdef",e="",o=0;o<n.length;o+=1)t=n.charCodeAt(o),e+=r.charAt(t>>>4&15)+r.charAt(15&t);return e}function r(n){return unescape(encodeURIComponent(n))}function o(n){return a(i(h(t=r(n)),8*t.length));var t}function u(n,t){return function(n,t){var r,e,o=h(n),u=[],c=[];for(u[15]=c[15]=void 0,16<o.length&&(o=i(o,8*n.length)),r=0;r<16;r+=1)u[r]=909522486^o[r],c[r]=1549556828^o[r];return e=i(u.concat(h(t)),512+8*t.length),a(i(c.concat(e),640))}(r(n),r(t))}function t(n,t,r){return t?r?u(t,n):e(u(t,n)):r?o(n):e(o(n))}"function"==typeof define&&define.amd?define(function(){return t}):"object"==typeof module&&module.exports?module.exports=t:n.md5=t}(this);</script><script>window.AbTest = (function() { return { 'ab_test': (uniqueId, test_name, buckets) => { let override = new URLSearchParams(window.location.search).get(`ab_test[${test_name}]`); if ( override ) { return override; } const bucketNames = buckets.map((bucket) => { return typeof bucket === 'string' ? bucket : Object.keys(bucket)[0]; }); const weights = buckets.map((bucket) => { return typeof bucket === 'string' ? 1 : Object.values(bucket)[0]; }); const total = weights.reduce((sum, weight) => sum + weight); const hash = md5(`${uniqueId}${test_name}`); const hashNum = parseInt(hash.slice(-12), 16); let bucketPoint = total * (hashNum % 100000) / 100000; const bucket = bucketNames.find((_, i) => { if (weights[i] > bucketPoint) { return true; } bucketPoint -= weights[i]; return false; }); return bucket; } }; })();</script><div data-auto_select="false" data-client_id="331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b" data-landing_url="https://www.academia.edu/Documents/in/Deep_Learning" data-login_uri="https://www.academia.edu/registrations/google_one_tap" data-moment_callback="onGoogleOneTapEvent" id="g_id_onload"></div><script>function onGoogleOneTapEvent(event) { var momentType = event.getMomentType(); var momentReason = null; if (event.isNotDisplayed()) { momentReason = event.getNotDisplayedReason(); } else if (event.isSkippedMoment()) { momentReason = event.getSkippedReason(); } else if (event.isDismissedMoment()) { momentReason = event.getDismissedReason(); } Aedu.arbitraryEvents.write('GoogleOneTapEvent', { moment_type: momentType, moment_reason: momentReason, }); }</script><script>(function() { var auvid = unescape( document.cookie .split(/; ?/) .find((s) => s.startsWith('auvid')) .substring(6)); var bucket = AbTest.ab_test(auvid, 'lo_ri_one_tap_google_sign_on', ['control', 'one_tap_google_sign_on']); if (bucket === 'control') return; var oneTapTag = document.createElement('script') oneTapTag.async = true oneTapTag.defer = true oneTapTag.src = 'https://accounts.google.com/gsi/client' document.body.appendChild(oneTapTag) })();</script></div></div></div> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "67bb7673d0c3e4a7f0e923b34da4af6b9a97807e1eface1010f9bc92052ead04", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="y17t6xpml5VDA6llgCu9H0//ndJvjaFgvLZB01HLg//g9unjWKWGYQOGRaHNYbKeLaOPwevp7PEapC5p56MQXg==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://www.academia.edu/Documents/in/Deep_Learning" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="KABO8+E1QFR0xxPXOLY0M3aNxdlqVFiXgzAgXD5ee6ADqEr7o/ZRoDRC/xN1/DuyFNHXyu4wFQYlIk/miDboAQ==" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>