CINXE.COM
Search results for: bonding mechanisms
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: bonding mechanisms</title> <meta name="description" content="Search results for: bonding mechanisms"> <meta name="keywords" content="bonding mechanisms"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="bonding mechanisms" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="bonding mechanisms"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2925</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: bonding mechanisms</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2925</span> A Study on Temperature and Drawing Speed for Diffusion Bonding Enhancement in Drawing of Hot Lined Pipes by FEM Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20T.%20Ahn">M. T. Ahn</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20H.%20Park"> J. H. Park</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20H.%20Park"> S. H. Park</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20H.%20Ha"> S. H. Ha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diffusion bonding has been continuously studied. Temperature and pressure are the most important factors to increase the strength between diffusion bonded interfaces. Diffusion bonding is an important factor affecting the bonding strength of the lined pipe. The increase of the diffusion bonding force results in a high formability clad pipe. However, in the case of drawing, it is difficult to obtain a high pressure between materials due to a relatively small reduction in cross-section, and it is difficult to prevent elongation or to tear of material in hot drawing even if the reduction in the section is increased. In this paper, to increase the diffusion bonding force, we derive optimal temperature and pressure to suppress material stretching and realize precise thickness precision. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diffusion%20bonding" title="diffusion bonding">diffusion bonding</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure" title=" pressure"> pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=drawing%20speed" title=" drawing speed"> drawing speed</a> </p> <a href="https://publications.waset.org/abstracts/71481/a-study-on-temperature-and-drawing-speed-for-diffusion-bonding-enhancement-in-drawing-of-hot-lined-pipes-by-fem-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71481.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2924</span> Carbon Fiber Manufacturing Conditions to Improve Interfacial Adhesion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Filip%20Stojcevski">Filip Stojcevski</a>, <a href="https://publications.waset.org/abstracts/search?q=Tim%20Hilditch"> Tim Hilditch</a>, <a href="https://publications.waset.org/abstracts/search?q=Luke%20Henderson"> Luke Henderson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although carbon fibre composites are becoming ever more prominent in the engineering industry, interfacial failure still remains one of the most common limitations to material performance. Carbon fiber surface treatments have played a major role in advancing composite properties however research into the influence of manufacturing variables on a fiber manufacturing line is lacking. This project investigates the impact of altering carbon fiber manufacturing conditions on a production line (specifically electrochemical oxidization and sizing variables) to assess fiber-matrix adhesion. Pristine virgin fibers were manufactured and interfacial adhesion systematically assessed from a microscale (single fiber) to a mesoscale (12k tow), and ultimately a macroscale (laminate). Correlations between interfacial shear strength (IFSS) at each level is explored as a function of known interfacial bonding mechanisms; namely mechanical interlocking, chemical adhesion and fiber wetting. Impact of these bonding mechanisms is assessed through extensive mechanical, topological and chemical characterisation. They are correlated to performance as a function of IFSS. Ultimately this study provides a bottoms up approach to improving composite laminates. By understanding the scaling effects from a singular fiber to a composite laminate and linking this knowledge to specific bonding mechanisms, material scientists can make an informed decision on the manufacturing conditions most beneficial for interfacial adhesion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20fibers" title="carbon fibers">carbon fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=interfacial%20adhesion" title=" interfacial adhesion"> interfacial adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20treatment" title=" surface treatment"> surface treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=sizing" title=" sizing"> sizing</a> </p> <a href="https://publications.waset.org/abstracts/85487/carbon-fiber-manufacturing-conditions-to-improve-interfacial-adhesion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2923</span> Influence of Vacuum Pressure on the Thermal Bonding Energy of Water in Wood</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aleksandar%20Dedic">Aleksandar Dedic</a>, <a href="https://publications.waset.org/abstracts/search?q=Dusko%20Salemovic"> Dusko Salemovic</a>, <a href="https://publications.waset.org/abstracts/search?q=Milorad%20Danilovic"> Milorad Danilovic</a>, <a href="https://publications.waset.org/abstracts/search?q=Radomir%20Kuzmanovic"> Radomir Kuzmanovic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper takes into consideration the influence of bonding energy of water on energy demand of vacuum wood drying using the specific method of obtaining sorption isotherms. The experiment was carried out on oak wood at vacuum pressures of: 0.7 bar, 0.5bar and 0.3bar. The experimental work was done to determine a mathematical equation between the moisture content and energy of water-bonding. This equation helps in finding the average amount of energy of water-bonding necessary in calculation of energy consumption by use of the equation of heat balance in real drying chambers. It is concluded that the energy of water-bonding is large enough to be included into consideration. This energy increases at lower values of moisture content, when drying process approaches to the end, and its average values are lower on lower pressure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bonding%20energy" title="bonding energy">bonding energy</a>, <a href="https://publications.waset.org/abstracts/search?q=drying" title=" drying"> drying</a>, <a href="https://publications.waset.org/abstracts/search?q=isosters" title=" isosters"> isosters</a>, <a href="https://publications.waset.org/abstracts/search?q=oak" title=" oak"> oak</a>, <a href="https://publications.waset.org/abstracts/search?q=vacuum" title=" vacuum"> vacuum</a> </p> <a href="https://publications.waset.org/abstracts/69758/influence-of-vacuum-pressure-on-the-thermal-bonding-energy-of-water-in-wood" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69758.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2922</span> Parental Bonding and Cognitive Emotion Regulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fariea%20Bakul">Fariea Bakul</a>, <a href="https://publications.waset.org/abstracts/search?q=Chhanda%20Karmaker"> Chhanda Karmaker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study was designed to investigate the effects of parental bonding on adult’s cognitive emotion regulation and also to investigate gender differences in parental bonding and cognitive emotion regulation. Data were collected by using convenience sampling technique from 100 adult students (50 males and 50 females) of different universities of Dhaka city, ages between 20 to 25 years, using Bengali version of Parental Bonding Inventory and Bengali version of Cognitive Emotion Regulation Questionnaire. The obtained data were analyzed by using multiple regression analysis and independent samples t-test. The results revealed that fathers care (β =0.317, p < 0.05) was only significantly positively associated with adult’s cognitive emotion regulation. Adjusted R² indicated that the model explained 30% of the variance in adult’s adaptive cognitive emotion regulation. No significant association was found between parental bonding and less adaptive cognitive emotion regulations. Results from independent samples t-test also revealed that there was no significant gender difference in both parental bonding and cognitive emotion regulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cognitive%20emotion%20regulation" title="cognitive emotion regulation">cognitive emotion regulation</a>, <a href="https://publications.waset.org/abstracts/search?q=parental%20bonding" title=" parental bonding"> parental bonding</a>, <a href="https://publications.waset.org/abstracts/search?q=parental%20care" title=" parental care"> parental care</a>, <a href="https://publications.waset.org/abstracts/search?q=parental%20over-protection" title=" parental over-protection"> parental over-protection</a> </p> <a href="https://publications.waset.org/abstracts/66673/parental-bonding-and-cognitive-emotion-regulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66673.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2921</span> A Study on the Relationship between Shear Strength and Surface Roughness of Lined Pipes by Cold Drawing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mok-Tan%20Ahn">Mok-Tan Ahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Joon-Hong%20Park"> Joon-Hong Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Yeon-Jong%20Jeong"> Yeon-Jong Jeong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diffusion bonding has been continuously studied. Temperature and pressure are the most important factors to increase the strength between diffusion bonded interfaces. Diffusion bonding is an important factor affecting the bonding strength of the lined pipe. The increase of the diffusion bonding force results in a high formability clad pipe. However, in the case of drawing, it is difficult to obtain a high pressure between materials due to a relatively small reduction in cross-section, and it is difficult to prevent elongation or to tear of material in heat drawing even if the reduction in section is increased. In this paper, to increase the diffusion bonding force, we derive optimal temperature and pressure to suppress material stretching and realize precise thickness precision. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drawing%20speed" title="drawing speed">drawing speed</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM%20%28Finite%20Element%20Method%29" title=" FEM (Finite Element Method)"> FEM (Finite Element Method)</a>, <a href="https://publications.waset.org/abstracts/search?q=diffusion%20bonding" title=" diffusion bonding"> diffusion bonding</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20drawing" title=" heat drawing"> heat drawing</a>, <a href="https://publications.waset.org/abstracts/search?q=lined%20pipe" title=" lined pipe"> lined pipe</a> </p> <a href="https://publications.waset.org/abstracts/71502/a-study-on-the-relationship-between-shear-strength-and-surface-roughness-of-lined-pipes-by-cold-drawing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71502.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2920</span> The Influence of Fiber Fillers on the Bonding Safety of Wood-Adhesive Interfaces: A Fracture Energetic Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Brandtner-Hafner">M. H. Brandtner-Hafner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Adhesives have established themselves as an innovative joining technology in the wood industry. The strengths of adhesive bonding lie in the realization of lightweight designs, the avoidance of material weakening, and the joining of different types of materials. There is now a number of ways to positively influence the properties of bonded joints. One way is to add fiber fillers. This leads to an improvement in adhesion, structural integrity, and fracture toughness. In this study, the effectiveness of fiber-modified adhesives for bonding wooden joints is reviewed. A series of experimental tests were performed using the fracture analytical GF-principle to study the adhesive bonding safety and performance of the wood-adhesive interface. Two different construction adhesives based on epoxy and PUR were modified with different fiber materials and applied to bond wooden joints. The results show that bonding efficiency by adding fibrous materials to the bonding matrix leads to significant improvements in structural material properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fiber-modified%20adhesives" title="fiber-modified adhesives">fiber-modified adhesives</a>, <a href="https://publications.waset.org/abstracts/search?q=bonding%20safety" title=" bonding safety"> bonding safety</a>, <a href="https://publications.waset.org/abstracts/search?q=wood-adhesive%20interfaces" title=" wood-adhesive interfaces"> wood-adhesive interfaces</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20analysis" title=" fracture analysis"> fracture analysis</a> </p> <a href="https://publications.waset.org/abstracts/137969/the-influence-of-fiber-fillers-on-the-bonding-safety-of-wood-adhesive-interfaces-a-fracture-energetic-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2919</span> Numerical Modeling Analysis for the Double-Layered Asphalt Pavement Structure Behavior with Interface Bonding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Minh%20Tu%20Le">Minh Tu Le</a>, <a href="https://publications.waset.org/abstracts/search?q=Quang%20Huy%20Nguyen"> Quang Huy Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Mai%20Lan%20Nguyen"> Mai Lan Nguyen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bonding characteristics between pavement layers have an important influence on responses of pavement structures. This paper deals with analytical solution for the stresses, strains, and deflections of double-layered asphalt pavement structure. This solution is based on the homogeneous half-space of layered theory developed by Burmister (1943). The partial interaction between the layers is taken into account by considering an interface bonding behavior which is obtained by push-out shear test. Numerical applications considering three cases of bonding (unbonded, partially bonded, and fully bonded overlays) are carried out to the influence of the interface bonding on the structural behavior of asphalt pavement under static loading. Further, it was observed that numerical results indicate that the horizontal shear reaction modulus at the interface (Ks) will significantly affect pavement structure behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analytical%20solution" title="analytical solution">analytical solution</a>, <a href="https://publications.waset.org/abstracts/search?q=interface%20bonding" title=" interface bonding"> interface bonding</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20test%20keyword" title=" shear test keyword"> shear test keyword</a>, <a href="https://publications.waset.org/abstracts/search?q=double-layered%20asphalt" title=" double-layered asphalt"> double-layered asphalt</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20reaction%20modulus" title=" shear reaction modulus"> shear reaction modulus</a> </p> <a href="https://publications.waset.org/abstracts/83012/numerical-modeling-analysis-for-the-double-layered-asphalt-pavement-structure-behavior-with-interface-bonding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83012.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2918</span> Comparison of Microleakage of Composite Restorations Using Fifth and Seventh Generation of Bonding Agents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karina%20Nabilla">Karina Nabilla</a>, <a href="https://publications.waset.org/abstracts/search?q=Dedi%20Sumantri"> Dedi Sumantri</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurul%20T.%20Rizal"> Nurul T. Rizal</a>, <a href="https://publications.waset.org/abstracts/search?q=Siti%20H.%20Yavitha"> Siti H. Yavitha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Composite resin is the most frequently used material for restoring teeth, but still failure cases are seen which leading to microleakage. Microleakage might be attributed to various factors, one of them is bonding agent. Various generations of bonding agents have been introduced to overcome the microleakage. The aim of this study was to evaluate the microleakage of composite restorations using the fifth and seventh bonding agent. Methods: Class I cavities (3X2X2 mm) were prepared on the occlusal surfaces of 32 human upper premolars. Teeth were classified into two groups according to the type of bonding agent used (n =16). Group I: Fifth Generation of Bonding Agent-Adper Single Bond2. Group II: Seventh Generation of Bonding Agent-Single Bond Universal. All cavities were restored with Filtek Z250 XT composite resin, stored in sterile aquades water at 370C for 24 h. The root apices were sealed with sticky wax, and all the surfaces, except for 2 mm from the margins, were coated with nail varnish. The teeth were immersed in a 1% methylene blue dye solution for 24 h, and then rinsed in running water, blot-dried and sectioned longitudinally through the center of restorations from the buccal to palatal surface. The sections were blindly assessed for microleakage of dye penetration by using a stereomicroscope. Dye penetration along margin was measured in µm then calculated into the percentage and classified into scoring system 1 to 3. Data were collected and statistically analyzed by Chi-Square test. Result: There was no significant difference (p > 0,05) between two groups. Conclusion: Fifth generation of bonding agent revealed less leakage compared to the seventh generation even statistically there was no significant difference. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20restoration" title="composite restoration">composite restoration</a>, <a href="https://publications.waset.org/abstracts/search?q=fifth%20generation%20of%20bonding%20agent" title=" fifth generation of bonding agent"> fifth generation of bonding agent</a>, <a href="https://publications.waset.org/abstracts/search?q=microleakage" title=" microleakage"> microleakage</a>, <a href="https://publications.waset.org/abstracts/search?q=seventh%20generation%20of%20bonding%20agent" title=" seventh generation of bonding agent"> seventh generation of bonding agent</a> </p> <a href="https://publications.waset.org/abstracts/73965/comparison-of-microleakage-of-composite-restorations-using-fifth-and-seventh-generation-of-bonding-agents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73965.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2917</span> The Influence of Fiber Fillers on the Bonding Safety of Structural Adhesives: A Fracture Analytical Evaluation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brandtner-Hafner%20Martin">Brandtner-Hafner Martin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Adhesives have established themselves as an innovative joining technology in the industry. Their strengths lie in joining different materials, avoiding structural weakening as in welding or screwing, and enabling lightweight construction methods. Now there are a variety of ways to improve the efficiency and effectiveness of bonded joints. One way is to add fiber fillers. This leads to an improvement in adhesion and cohesion (structural integrity). In this study, the effectiveness of fiber-modified adhesives for bonding different construction materials is reviewed. A series of experimental tests were performed using the fracture analytical GF principle to study the adhesive bonding safety and performance of the joint. Three different structural adhesive systems based on epoxy, CA/A hybrid, and PUR were modified with different fiber materials on different substrates. The results show that significant performance improvements can be achieved and that bonding reliability can be sustainably increased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fiber-modified%20adhesives" title="fiber-modified adhesives">fiber-modified adhesives</a>, <a href="https://publications.waset.org/abstracts/search?q=bonding%20safety" title=" bonding safety"> bonding safety</a>, <a href="https://publications.waset.org/abstracts/search?q=GF-principle" title=" GF-principle"> GF-principle</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20analysis" title=" fracture analysis"> fracture analysis</a> </p> <a href="https://publications.waset.org/abstracts/137880/the-influence-of-fiber-fillers-on-the-bonding-safety-of-structural-adhesives-a-fracture-analytical-evaluation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137880.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2916</span> Association between Maternal Personality and Postnatal Mother-to-Infant Bonding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tessa%20Sellis">Tessa Sellis</a>, <a href="https://publications.waset.org/abstracts/search?q=Marike%20A.%20Wierda"> Marike A. Wierda</a>, <a href="https://publications.waset.org/abstracts/search?q=Elke%20Tichelman"> Elke Tichelman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mirjam%20T.%20Van%20Lohuizen"> Mirjam T. Van Lohuizen</a>, <a href="https://publications.waset.org/abstracts/search?q=Marjolein%20Berger"> Marjolein Berger</a>, <a href="https://publications.waset.org/abstracts/search?q=Fran%C3%A7ois%20Schellevis"> François Schellevis</a>, <a href="https://publications.waset.org/abstracts/search?q=Claudi%20Bockting"> Claudi Bockting</a>, <a href="https://publications.waset.org/abstracts/search?q=Lilian%20Peters"> Lilian Peters</a>, <a href="https://publications.waset.org/abstracts/search?q=Huib%20Burger"> Huib Burger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Most women develop a healthy bond with their children, however, adequate mother-to-infant bonding cannot be taken for granted. Mother-to-infant bonding refers to the feelings and emotions experienced by the mother towards her child. It is an ongoing process that starts during pregnancy and develops during the first year postpartum and likely throughout early childhood. The prevalence of inadequate bonding ranges from 7 to 11% in the first weeks postpartum. An impaired mother-to-infant bond can cause long-term complications for both mother and child. Very little research has been conducted on the direct relationship between the personality of the mother and mother-to-infant bonding. This study explores the associations between maternal personality and postnatal mother-to-infant bonding. The main hypothesis is that there is a relationship between neuroticism and mother-to-infant bonding. Methods: Data for this study were used from the Pregnancy Anxiety and Depression Study (2010-2014), which examined symptoms of and risk factors for anxiety or depression during pregnancy and the first year postpartum of 6220 pregnant women who received primary, secondary or tertiary care in the Netherlands. The study was expanded in 2015 to investigate postnatal mother-to-infant bonding. For the current research 3836 participants were included. During the first trimester of gestation, baseline characteristics, as well as personality, were measured through online questionnaires. Personality was measured by the NEO Five Factor Inventory (NEO-FFI), which covers the big five of personality (neuroticism, extraversion, openness, altruism and conscientiousness). Mother-to-infant bonding was measured postpartum by the Postpartum Bonding Questionnaire (PBQ). Univariate linear regression analysis was performed to estimate the associations. Results: 5% of the PBQ-respondents reported impaired bonding. A statistically significant association was found between neuroticism and mother-to-infant bonding (p < .001): mothers scoring higher on neuroticism, reported a lower score on mother-to-infant bonding. In addition, a positive correlation was found between the personality traits extraversion (b: -.081), openness (b: -.014), altruism (b: -.067), conscientiousness (b: -.060) and mother-to-infant bonding. Discussion: This study is one of the first to demonstrate a direct association between the personality of the mother and mother-to-infant bonding. A statistically significant relationship has been found between neuroticism and mother-to-infant bonding, however, the percentage of variance predictable by a personality dimension is very small. This study has examined one part of the multi-factorial topic of mother-to-infant bonding and offers more insight into the rarely investigated and complex matter of mother-to-infant bonding. For midwives, it is important recognize the risks for impaired bonding and subsequently improve policy for women at risk. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mother-to-infant%20bonding" title="mother-to-infant bonding">mother-to-infant bonding</a>, <a href="https://publications.waset.org/abstracts/search?q=personality" title=" personality"> personality</a>, <a href="https://publications.waset.org/abstracts/search?q=postpartum" title=" postpartum"> postpartum</a>, <a href="https://publications.waset.org/abstracts/search?q=pregnancy" title=" pregnancy"> pregnancy</a> </p> <a href="https://publications.waset.org/abstracts/65415/association-between-maternal-personality-and-postnatal-mother-to-infant-bonding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65415.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2915</span> Simulation of the Effect of Sea Water using Ground Tank to the Flexural Capacity of GFRP Sheet Reinforced Concrete Beams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rudy%20Djamaluddin">Rudy Djamaluddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Arbain%20Tata"> Arbain Tata</a>, <a href="https://publications.waset.org/abstracts/search?q=Rita%20Irmawaty"> Rita Irmawaty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study conducted a simulation of the effect of sea water to the bonding capacity of GFRP sheet on the concrete beams using a simulation tank. As it well known that, fiber reinforced polymer (FRP) has been applied to many purposes for civil engineering structures not only for new structures but also for strengthening of the deteriorated structures. The FRP has advantages such as its corrosion resistance, as well as high tensile strength, to weight ratio. Glass composed FRP (GFRP) sheet is most commonly used due to its relatively lower cost compared to the other FRP materials. GFRP sheet is applied externally by bonding it on the concrete surface. Many studies have been done to investigate the bonding of GFRP sheet. However, it is still very rarely studies on the effect of sea water to the bonding capacity of GFRP sheet on the strengthened beams due to flexural loadings. This is important to be clarified for the wider application of GFRP sheet especially on the flexural structure that directly contact to the sea environment. To achieve the objective of the study, a series of concrete beams strengthened with GFRP sheet on extreme tension surface were prepared. The beams then were stored on the sea water tank for six months. Results indicated the bonding capacity decreased after six months exposed to the sea water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GFRP%20sheet" title="GFRP sheet">GFRP sheet</a>, <a href="https://publications.waset.org/abstracts/search?q=sea%20water" title=" sea water"> sea water</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20beams" title=" concrete beams"> concrete beams</a>, <a href="https://publications.waset.org/abstracts/search?q=bonding" title=" bonding"> bonding</a> </p> <a href="https://publications.waset.org/abstracts/32243/simulation-of-the-effect-of-sea-water-using-ground-tank-to-the-flexural-capacity-of-gfrp-sheet-reinforced-concrete-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32243.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2914</span> Maternal-Fetal Bonding for African American Mothers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tracey%20Estriplet-Adams">Tracey Estriplet-Adams</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focuses on the influence of maternal-fetal bonding by examining attachment theory, psycho-social-cultural influences/adaptations, and maternal well-being. A systematic review methodology was used to synthesize research results to summarize current evidence that can contribute to evidence-based practices. It explores the relationship between attachment styles, prenatal attachment, and perceptions of maternal-infant bonding/attachment six weeks postpartum. It also examines the protective factors of maternal-fetal attachment development. The research explores Bowlby's attachment theory and its relevance to maternal-fetal bonding with a Black Feminist Theory lens. Additionally, it discusses the impact of perceived stress, social support, and ecological models on maternal-fetal attachment. The relationship between maternal well-being, maternal-fetal attachment, and early postpartum bonding is reviewed. Moreover, the paper specifically addresses black mothers and maternal-fetal bonding, exploring the intersectionality of race, ethnicity, class, geographic location, cultural identities, and immigration status. It considers the role of familial and partner support, as well as the relationship between maternal attachment style and maternal-fetal bonding, within the framework of attachment theory and black feminist theory. Therefore, it is imperative to center Black women's voices in research, policy, and healthcare practices. Black women are experts in their own experiences and advocate for their autonomy in decision-making regarding maternal-fetal health. By amplifying their voices, we can ensure that interventions are grounded in their lived experiences. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=maternal-fetal%20bonding" title="maternal-fetal bonding">maternal-fetal bonding</a>, <a href="https://publications.waset.org/abstracts/search?q=infant%20well-being" title=" infant well-being"> infant well-being</a>, <a href="https://publications.waset.org/abstracts/search?q=maternal-infant%20attachment" title=" maternal-infant attachment"> maternal-infant attachment</a>, <a href="https://publications.waset.org/abstracts/search?q=black%20mothers" title=" black mothers"> black mothers</a> </p> <a href="https://publications.waset.org/abstracts/172819/maternal-fetal-bonding-for-african-american-mothers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172819.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2913</span> Bonding Capacity of GFRP Sheet on Strengthen Concrete Beams After Influenced the Marine Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mufti%20Amir%20Sultan">Mufti Amir Sultan</a>, <a href="https://publications.waset.org/abstracts/search?q=Rudy%20Djamaluddin"> Rudy Djamaluddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Rita%20Irmawaty"> Rita Irmawaty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Structures built in aggressive environments such as in the sea/marine environment need to be carefully designed, due to the possibility of chloride ion penetration into the concrete. One way to reduce the strength degradation in such environment is to use FRP, which is attached to the surface of reinforced concrete using epoxy. A series of the specimen of reinforced concrete beams with dimension 100×120×600 mm were casted. Beams were immersed in the sea for 3 months (BL3), 6 months (BL6), and 12 months (BL12). Three specimens were prepared control beam without immersion to the sea (B0). The study presented is focused on determining the effect of the marine environment to the capacity of GFRP as flexural external reinforcement elements. The result indicated that the bonding capacity of BL3, BL6, and BL12 compared to B0 decreased for 7.91%, 11.99%, and 37.83%, respectively. The decreasing was caused by the weakening of the bonding capacity GFRP due to the influence of the marine environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flexural" title="flexural">flexural</a>, <a href="https://publications.waset.org/abstracts/search?q=GFRP" title=" GFRP"> GFRP</a>, <a href="https://publications.waset.org/abstracts/search?q=marine%20environment" title=" marine environment"> marine environment</a>, <a href="https://publications.waset.org/abstracts/search?q=bonding%20capacity" title=" bonding capacity "> bonding capacity </a> </p> <a href="https://publications.waset.org/abstracts/33803/bonding-capacity-of-gfrp-sheet-on-strengthen-concrete-beams-after-influenced-the-marine-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33803.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2912</span> Effect of Loose Bonding and Corrugated Boundary Surface on Propagation of Rayleigh-Type Wave</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kshitish%20Ch.%20Mistri">Kshitish Ch. Mistri</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhishek%20Kumar%20Singh"> Abhishek Kumar Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of undulatory boundary surface of a medium as well as the degree of bonding between two consecutive mediums, on the propagation of surface waves is an unavoidable matter of fact. Therefore, this paper investigates the propagation of Rayleigh-type wave in a corrugated fibre-reinforced layer overlying an initially stressed orthotropic half-space under gravity. Also, the two mediums are assumed to be loosely (or imperfectly) bonded. Numerical computation of the obtained frequency equation has been carried out which aids to analyze the influence of corrugation, loose bonding, initial stress and gravity on the phase velocity of Rayleigh-type wave. Moreover, the presence and absence of corrugation, loose bonding and initial stress are also discussed in a comparative manner. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrugated%20boundary%20surface" title="corrugated boundary surface">corrugated boundary surface</a>, <a href="https://publications.waset.org/abstracts/search?q=fibre-reinforced%20layer" title=" fibre-reinforced layer"> fibre-reinforced layer</a>, <a href="https://publications.waset.org/abstracts/search?q=initial%20stress" title=" initial stress"> initial stress</a>, <a href="https://publications.waset.org/abstracts/search?q=loose%20bonding" title=" loose bonding"> loose bonding</a>, <a href="https://publications.waset.org/abstracts/search?q=orthotropic%20half-space" title=" orthotropic half-space"> orthotropic half-space</a>, <a href="https://publications.waset.org/abstracts/search?q=Rayleigh-type%20wave" title=" Rayleigh-type wave"> Rayleigh-type wave</a> </p> <a href="https://publications.waset.org/abstracts/60386/effect-of-loose-bonding-and-corrugated-boundary-surface-on-propagation-of-rayleigh-type-wave" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60386.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2911</span> About the Interface Bonding Safety of Adhesively Bonded Concrete Joints Under Cracking: A Fracture Energetic Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brandtner-Hafner%20Martin">Brandtner-Hafner Martin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Adhesives are increasingly being used in the construction sector. On the one hand, this concerns dowel reinforcements using chemical anchors. On the other hand, the sealing and repair of cracks in structural concrete components are still on the rise. In the field of bonding, the interface between the joined materials is the most critical area. Therefore, it is of immense importance to characterize and investigate this section sufficiently by fracture analysis. Since standardized mechanical test methods are not sufficiently capable of doing this, recourse is made to an innovative concept based on fracture energy. Therefore, a series of experimental tests were performed using the so-called GF-principle to study the interface bonding safety of adhesively bonded concrete joints. Several different structural adhesive systems based on epoxy, CA/A hybrid, PUR, MS polymer, dispersion, and acrylate were selected for bonding concrete substrates. The results show that stable crack propagation and prevention of uncontrolled failure in bonded concrete joints depend very much on the adhesive system used, and only fracture analytical evaluation methods can provide empirical information on this. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interface%20bonding%20safety" title="interface bonding safety">interface bonding safety</a>, <a href="https://publications.waset.org/abstracts/search?q=adhesively%20bonded%20concrete%20joints" title=" adhesively bonded concrete joints"> adhesively bonded concrete joints</a>, <a href="https://publications.waset.org/abstracts/search?q=GF-principle" title=" GF-principle"> GF-principle</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20analysis" title=" fracture analysis"> fracture analysis</a> </p> <a href="https://publications.waset.org/abstracts/137943/about-the-interface-bonding-safety-of-adhesively-bonded-concrete-joints-under-cracking-a-fracture-energetic-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137943.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2910</span> Silicon-To-Silicon Anodic Bonding via Intermediate Borosilicate Layer for Passive Flow Control Valves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luc%20Conti">Luc Conti</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitry%20Dumont-Fillon"> Dimitry Dumont-Fillon</a>, <a href="https://publications.waset.org/abstracts/search?q=Harald%20van%20Lintel"> Harald van Lintel</a>, <a href="https://publications.waset.org/abstracts/search?q=Eric%20Chappel"> Eric Chappel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flow control valves comprise a silicon flexible membrane that deflects against a substrate, usually made of glass, containing pillars, an outlet hole, and anti-stiction features. However, there is a strong interest in using silicon instead of glass as substrate material, as it would simplify the process flow by allowing the use of well controlled anisotropic etching. Moreover, specific devices demanding a bending of the substrate would also benefit from the inherent outstanding mechanical strength of monocrystalline silicon. Unfortunately, direct Si-Si bonding is not easily achieved with highly structured wafers since residual stress may prevent the good adhesion between wafers. Using a thermoplastic polymer, such as parylene, as intermediate layer is not well adapted to this design as the wafer-to-wafer alignment is critical. An alternative anodic bonding method using an intermediate borosilicate layer has been successfully tested. This layer has been deposited onto the silicon substrate. The bonding recipe has been adapted to account for the presence of the SOI buried oxide and intermediate glass layer in order not to exceed the breakdown voltage. Flow control valves dedicated to infusion of viscous fluids at very high pressure have been made and characterized. The results are compared to previous data obtained using the standard anodic bonding method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anodic%20bonding" title="anodic bonding">anodic bonding</a>, <a href="https://publications.waset.org/abstracts/search?q=evaporated%20glass" title=" evaporated glass"> evaporated glass</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20control%20valve" title=" flow control valve"> flow control valve</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20delivery" title=" drug delivery"> drug delivery</a> </p> <a href="https://publications.waset.org/abstracts/84030/silicon-to-silicon-anodic-bonding-via-intermediate-borosilicate-layer-for-passive-flow-control-valves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84030.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2909</span> The Effect of Size, Thickness, and Type of the Bonding Interlayer on Bullet Proof Glass as per EN 1063</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rabinder%20Singh%20Bharj">Rabinder Singh Bharj</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandeep%20Kumar"> Sandeep Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This investigation presents preparation of sample and analysis of results of ballistic impact test as per EN 1063 on the size, thickness, number, position, and type of the bonding interlayer Polyvinyl Butyral, Poly Carbonate and Poly Urethane on bullet proof glass. It was observed that impact energy absorbed by bullet proof glass increases with the increase of the total thickness from 33mm to 42mm to 51mm for all the three samples respectively. Absorption impact energy is greater for samples with more number of bonding interlayers than with the number of glass layers for uniform increase in total sample thickness. There is no effect on the absorption impact energy with the change in position of the bonding interlayer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorbed%20energy" title="absorbed energy">absorbed energy</a>, <a href="https://publications.waset.org/abstracts/search?q=bullet%20proof%20glass" title=" bullet proof glass"> bullet proof glass</a>, <a href="https://publications.waset.org/abstracts/search?q=laminated%20glass" title=" laminated glass"> laminated glass</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20glass" title=" safety glass"> safety glass</a> </p> <a href="https://publications.waset.org/abstracts/6184/the-effect-of-size-thickness-and-type-of-the-bonding-interlayer-on-bullet-proof-glass-as-per-en-1063" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6184.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2908</span> A Failure Criterion for Unsupported Boreholes in Poorly Cemented Granular Formations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sam%20S.%20Hashemi">Sam S. Hashemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The breakage of bonding between sand particles and their dislodgment from the borehole wall are among the main factors resulting in a borehole failure in poorly cemented granular formations. The grain debonding usually precedes the borehole failure and it can be considered as a sign that the onset of the borehole collapse is imminent. Detecting the bonding breakage point and introducing an appropriate failure criterion will play an important role in borehole stability analysis. To study the influence of different factors on the initiation of sand bonding breakage at the borehole wall, a series of laboratory tests was designed and conducted on poorly cemented sand samples. The total absorbed strain energy per volume of material up to the point of the observed particle debonding was computed. The results indicated that the particle bonding breakage point at the borehole wall was reached both before and after the peak strength of the thick-walled hollow cylinder specimens depending on the stress path and cement content. Three different cement contents and two borehole sizes were investigated to study the influence of the bonding strength and scale on the particle dislodgment. Test results showed that the stress path has a significant influence on the onset of the sand bonding breakage. It was shown that for various stress paths, there is a near linear relationship between the absorbed energy and the normal effective mean stress. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=borehole%20stability" title="borehole stability">borehole stability</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20studies" title=" experimental studies"> experimental studies</a>, <a href="https://publications.waset.org/abstracts/search?q=poorly%20cemented%20sands" title=" poorly cemented sands"> poorly cemented sands</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20absorbed%20strain%20energy" title=" total absorbed strain energy"> total absorbed strain energy</a> </p> <a href="https://publications.waset.org/abstracts/59146/a-failure-criterion-for-unsupported-boreholes-in-poorly-cemented-granular-formations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59146.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2907</span> Challenges and Pedagogical Strategies in Teaching Chemical Bonding: Perspectives from Moroccan Educators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sara%20Atibi">Sara Atibi</a>, <a href="https://publications.waset.org/abstracts/search?q=Azzeddine%20Atibi"> Azzeddine Atibi</a>, <a href="https://publications.waset.org/abstracts/search?q=Salim%20Ahmed"> Salim Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Khadija%20El%20Kababi"> Khadija El Kababi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The concept of chemical bonding is fundamental in chemistry education, ubiquitous in school curricula, and essential to numerous topics in the field. Mastery of this concept enables students to predict and explain the physical and chemical properties of substances. However, chemical bonding is often regarded as one of the most complex concepts for secondary and higher education students to comprehend, due to the underlying complex theory and the use of abstract models. Teachers also encounter significant challenges in conveying this concept effectively. This study aims to identify the difficulties and alternative conceptions faced by Moroccan secondary school students in learning about chemical bonding, as well as the pedagogical strategies employed by teachers to overcome these obstacles. A survey was conducted involving 150 Moroccan secondary school physical science teachers, using a structured questionnaire comprising closed, open-ended, and multiple-choice questions. The results reveal frequent student misconceptions, such as the octet rule, molecular geometry, and molecular polarity. Contributing factors to these misconceptions include the abstract nature of the concepts, the use of models, and teachers' difficulties in explaining certain aspects of chemical bonding. The study proposes improvements for teaching chemical bonding, such as integrating information and communication technologies (ICT), diversifying pedagogical tools, and considering students' pre-existing conceptions. These recommendations aim to assist teachers, curriculum developers, and textbook authors in making chemistry more accessible and in addressing students' misconceptions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20bonding" title="chemical bonding">chemical bonding</a>, <a href="https://publications.waset.org/abstracts/search?q=alternative%20conceptions" title=" alternative conceptions"> alternative conceptions</a>, <a href="https://publications.waset.org/abstracts/search?q=chemistry%20education" title=" chemistry education"> chemistry education</a>, <a href="https://publications.waset.org/abstracts/search?q=pedagogical%20strategies" title=" pedagogical strategies"> pedagogical strategies</a> </p> <a href="https://publications.waset.org/abstracts/188546/challenges-and-pedagogical-strategies-in-teaching-chemical-bonding-perspectives-from-moroccan-educators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">24</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2906</span> Optimal Design of Shape for Increasing the Bonding Pressure Drawing of Hot Clad Pipes by Finite Element Method Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seok-Hyeon%20Park">Seok-Hyeon Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Joon-Hong%20Park"> Joon-Hong Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Mok-Tan-Ahn"> Mok-Tan-Ahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Seong-Hun%20Ha"> Seong-Hun Ha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Clad Pipe is made of a different kind of material, which is different from the internal and external materials, for the corrosive crude oil transportation tube. Most of the clad pipes are produced by hot rolling. However, problems arise due to high product prices and excessive process numbers. Therefore, in this study, the hot drawing process with excellent product cost, process number and productivity is applied. Due to the nature of the drawing process, the shape of the mold greatly influences the formability of the material and the bonding pressure of the two materials because it is a process of drawing the material to the die and reducing the cross-sectional area. Also, in case of hot drawing, if the mold shape is not suitable due to the increased fluidity of the material, it may cause problems such as tearing and stretching. Therefore, in this study, we try to find the shape of the mold which suppresses the occurrence of defects in the hot drawing process and maximizes the bonding pressure between the two materials through the mold shape optimization design by FEM analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clad%20pipe" title="clad pipe">clad pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20drawing" title=" hot drawing"> hot drawing</a>, <a href="https://publications.waset.org/abstracts/search?q=bonding%20pressure" title=" bonding pressure"> bonding pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=mold%20shape" title=" mold shape"> mold shape</a> </p> <a href="https://publications.waset.org/abstracts/77162/optimal-design-of-shape-for-increasing-the-bonding-pressure-drawing-of-hot-clad-pipes-by-finite-element-method-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77162.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2905</span> Flip-Chip Bonding for Monolithic of Matrix-Addressable GaN-Based Micro-Light-Emitting Diodes Array</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chien-Ju%20Chen">Chien-Ju Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-Jui%20Yu"> Chia-Jui Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyun-Hao%20Liao"> Jyun-Hao Liao</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-Ching%20Wu"> Chia-Ching Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Meng-Chyi%20Wu"> Meng-Chyi Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A 64 × 64 GaN-based micro-light-emitting diode array (μLEDA) with 20 μm in pixel size and 40 μm in pitch by flip-chip bonding (FCB) is demonstrated in this study. Besides, an underfilling (UF) technology is applied to the process for improving the uniformity of device. With those configurations, good characteristics are presented, operation voltage and series resistance of a pixel in the 450 nm flip chip μLEDA are 2.89 V and 1077Ω (4.3 mΩ-cm²) at 25 A/cm², respectively. The μLEDA can sustain higher current density compared to conventional LED, and the power of the device is 9.5 μW at 100 μA and 0.42 mW at 20 mA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GaN" title="GaN">GaN</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-light-emitting%20diode%20array%28%CE%BCLEDA%29" title=" micro-light-emitting diode array(μLEDA)"> micro-light-emitting diode array(μLEDA)</a>, <a href="https://publications.waset.org/abstracts/search?q=flip-chip%20bonding" title=" flip-chip bonding"> flip-chip bonding</a>, <a href="https://publications.waset.org/abstracts/search?q=underfilling" title=" underfilling"> underfilling</a> </p> <a href="https://publications.waset.org/abstracts/73765/flip-chip-bonding-for-monolithic-of-matrix-addressable-gan-based-micro-light-emitting-diodes-array" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73765.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2904</span> Investigation on Pull-Out-Behavior and Interface Critical Parameters of Polymeric Fibers Embedded in Concrete and Their Correlation with Particular Fiber Characteristics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20Sigruener">Michael Sigruener</a>, <a href="https://publications.waset.org/abstracts/search?q=Dirk%20Muscat"> Dirk Muscat</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicole%20Struebbe"> Nicole Struebbe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fiber reinforcement is a state of the art to enhance mechanical properties in plastics. For concrete and civil engineering, steel reinforcements are commonly used. Steel reinforcements show disadvantages in their chemical resistance and weight, whereas polymer fibers' major problems are in fiber-matrix adhesion and mechanical properties. In spite of these facts, longevity and easy handling, as well as chemical resistance motivate researches to develop a polymeric material for fiber reinforced concrete. Adhesion and interfacial mechanism in fiber-polymer-composites are already studied thoroughly. For polymer fibers used as concrete reinforcement, the bonding behavior still requires a deeper investigation. Therefore, several differing polymers (e.g., polypropylene (PP), polyamide 6 (PA6) and polyetheretherketone (PEEK)) were spun into fibers via single screw extrusion and monoaxial stretching. Fibers then were embedded in a concrete matrix, and Single-Fiber-Pull-Out-Tests (SFPT) were conducted to investigate bonding characteristics and microstructural interface of the composite. Differences in maximum pull-out-force, displacement and slope of the linear part of force vs displacement-function, which depicts the adhesion strength and the ductility of the interfacial bond were studied. In SFPT fiber, debonding is an inhomogeneous process, where the combination of interfacial bonding and friction mechanisms add up to a resulting value. Therefore, correlations between polymeric properties and pull-out-mechanisms have to be emphasized. To investigate these correlations, all fibers were introduced to a series of analysis such as differential scanning calorimetry (DSC), contact angle measurement, surface roughness and hardness analysis, tensile testing and scanning electron microscope (SEM). Of each polymer, smooth and abraded fibers were tested, first to simulate the abrasion and damage caused by a concrete mixing process and secondly to estimate the influence of mechanical anchoring of rough surfaces. In general, abraded fibers showed a significant increase in maximum pull-out-force due to better mechanical anchoring. Friction processes therefore play a major role to increase the maximum pull-out-force. The polymer hardness affects the tribological behavior and polymers with high hardness lead to lower surface roughness verified by SEM and surface roughness measurements. This concludes into a decreased maximum pull-out-force for hard polymers. High surface energy polymers show better interfacial bonding strength in general, which coincides with the conducted SFPT investigation. Polymers such as PEEK or PA6 show higher bonding strength in smooth and roughened fibers, revealed through high pull-out-force and concrete particles bonded on the fiber surface pictured via SEM analysis. The surface energy divides into dispersive and polar part, at which the slope is correlating with the polar part. Only polar polymers increase their SFPT-function slope due to better wetting abilities when showing a higher bonding area through rough surfaces. Hence, the maximum force and the bonding strength of an embedded fiber is a function of polarity, hardness, and consequently surface roughness. Other properties such as crystallinity or tensile strength do not affect bonding behavior. Through the conducted analysis, it is now feasible to understand and resolve different effects in pull-out-behavior step-by-step based on the polymer properties itself. This investigation developed a roadmap on how to engineer high adhering polymeric materials for fiber reinforcement of concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fiber-matrix%20interface" title="fiber-matrix interface">fiber-matrix interface</a>, <a href="https://publications.waset.org/abstracts/search?q=polymeric%20fibers" title=" polymeric fibers"> polymeric fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20reinforced%20concrete" title=" fiber reinforced concrete"> fiber reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20fiber%20pull-out%20test" title=" single fiber pull-out test"> single fiber pull-out test</a> </p> <a href="https://publications.waset.org/abstracts/111301/investigation-on-pull-out-behavior-and-interface-critical-parameters-of-polymeric-fibers-embedded-in-concrete-and-their-correlation-with-particular-fiber-characteristics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111301.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2903</span> Bonding Strength of Adhesive Scarf Joints Improved by Nano-Silica Subjected to Humidity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Paygozar">B. Paygozar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.A.%20Dizaji"> S.A. Dizaji</a>, <a href="https://publications.waset.org/abstracts/search?q=A.C.%20Kandemir"> A.C. Kandemir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the effects of the modified adhesive including different concentrations of Nano-silica are surveyed on the bonding strength of the adhesive scarf joints. The nanoparticles are added in two different concentrations, to an epoxy-based two-component structural adhesive, Araldite 2011, to survey the influences of the nanoparticle weight percentage on the failure load of the joints compared to that of the joints manufactured by the neat adhesive. The effects of being exposure to a moist ambience on the joint strength are also investigated for the joints produced of both neat and modified adhesives. For this purpose, an ageing process was carried out on the joints of both neat and improved kinds with variable immersion periods (20, 40 and 60 days). All the specimens were tested under a quasi-static tensile loading of 2 mm/min speed so as to find the quantities of the failure loads. Outcomes indicate that the failure loads of the joints with modified adhesives are measurably higher than that of the joint with neat adhesive, even while being put for a while under a moist condition. Another result points out that humidity lessens the bonding strength of all the joints of both types as the exposure time increases, which can be attributed to the change in the failure mode. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bonding%20strength" title="bonding strength">bonding strength</a>, <a href="https://publications.waset.org/abstracts/search?q=humidity" title=" humidity"> humidity</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-silica" title=" nano-silica"> nano-silica</a>, <a href="https://publications.waset.org/abstracts/search?q=scarf%20joint" title=" scarf joint"> scarf joint</a> </p> <a href="https://publications.waset.org/abstracts/115145/bonding-strength-of-adhesive-scarf-joints-improved-by-nano-silica-subjected-to-humidity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115145.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2902</span> Robust Control of a Parallel 3-RRR Robotic Manipulator via μ-Synthesis Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Abbasi%20Moshaii">A. Abbasi Moshaii</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Soltan%20Rezaee"> M. Soltan Rezaee</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mohammadi%20Moghaddam"> M. Mohammadi Moghaddam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Control of some mechanisms is hard because of their complex dynamic equations. If part of the complexity is resulting from uncertainties, an efficient way for solving that is robust control. By this way, the control procedure could be simple and fast and finally, a simple controller can be designed. One kind of these mechanisms is 3-<u>R</u>RR which is a parallel mechanism and has three revolute joints. This paper aims to robust control a 3-<u>R</u>RR planner mechanism and it presents that this could be used for other mechanisms. So, a significant problem in mechanisms control could be solved. The relevant diagrams are drawn and they show the correctness of control process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3-RRR" title="3-RRR">3-RRR</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20equations" title=" dynamic equations"> dynamic equations</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanisms%20control" title=" mechanisms control"> mechanisms control</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20uncertainty" title=" structural uncertainty"> structural uncertainty</a> </p> <a href="https://publications.waset.org/abstracts/51492/robust-control-of-a-parallel-3-rrr-robotic-manipulator-via-m-synthesis-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51492.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">557</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2901</span> Effect of Ageing of Laser-Treated Surfaces on Corrosion Resistance of Fusion-bonded Al Joints</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rio%20Hirakawa">Rio Hirakawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Gundlach"> Christian Gundlach</a>, <a href="https://publications.waset.org/abstracts/search?q=Sven%20Hartwig"> Sven Hartwig</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aluminium has been used in a wide range of industrial applications due to its numerous advantages, including excellent specific strength, thermal conductivity, corrosion resistance, workability and recyclability. The automotive industry is increasingly adopting multi-materials, including aluminium in structures and components to improve the mechanical usability and performance of individual components. A common method for assembling dissimilar materials is mechanical joining, but mechanical joining requires multiple manufacturing steps, affects the mechanical properties of the base material and increases the weight due to additional metal parts. Fusion bonding is being used in more and more industries as a way of avoiding the above drawbacks. Infusion bonding, and surface pre-treatment of the base material is essential to ensure the long-life durability of the joint. Laser surface treatment of aluminium has been shown to improve the durability of the joint by forming a passive oxide film and roughening the substrate surface. Infusion bonding, the polymer bonds directly to the metal instead of the adhesive, but the sensitivity to interfacial contamination is higher due to the chemical activity and molecular size of the polymer. Laser-treated surfaces are expected to absorb impurities from the storage atmosphere over time, but the effect of such changes in the treated surface over time on the durability of fusion-bonded joints has not yet been fully investigated. In this paper, the effect of the ageing of laser-treated surfaces of aluminum alloys on the corrosion resistance of fusion-bonded joints is therefore investigated. AlMg3 of 1.5 mm thickness was cut using a water-jet cutting machine, cleaned and degreased with isopropanol and surface pre-treated with a pulsed fiber laser at a wavelength of 1060 nm, maximum power of 70 W and repetition rate of 55 kHz. The aluminum surfaces were then stored in air for various periods of time and their corrosion resistance was assessed by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). For the aluminum joints, induction heating was employed as the fusion bonding method and single-lap shear specimens were prepared. The corrosion resistance of the joints was assessed by measuring the lap shear strength before and after neutral salt spray. Cross-sectional observations by scanning electron microscopy (SEM) were also carried out to investigate changes in the microstructure of the bonded interface. Finally, the corrosion resistance of the surface and the joint were compared and the differences in the mechanisms of corrosion resistance enhancement between the two were discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser%20surface%20treatment" title="laser surface treatment">laser surface treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-treatment" title=" pre-treatment"> pre-treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=bonding" title=" bonding"> bonding</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=durability" title=" durability"> durability</a>, <a href="https://publications.waset.org/abstracts/search?q=interface" title=" interface"> interface</a>, <a href="https://publications.waset.org/abstracts/search?q=automotive" title=" automotive"> automotive</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminium%20alloys" title=" aluminium alloys"> aluminium alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=joint" title=" joint"> joint</a>, <a href="https://publications.waset.org/abstracts/search?q=fusion%20bonding" title=" fusion bonding"> fusion bonding</a> </p> <a href="https://publications.waset.org/abstracts/169563/effect-of-ageing-of-laser-treated-surfaces-on-corrosion-resistance-of-fusion-bonded-al-joints" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169563.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2900</span> First-Principles Study of Inter-Cage Interactions in Inorganic Molecular Crystals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Majid">Abdul Majid</a>, <a href="https://publications.waset.org/abstracts/search?q=Alia%20Jabeen"> Alia Jabeen</a>, <a href="https://publications.waset.org/abstracts/search?q=Nimra%20Zulifqar"> Nimra Zulifqar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The inorganic molecular crystal (IMCs) due to their unusual structure has grabbed a lot of attention due to anisotropy in crystal structure. The IMCs consist of the molecular structures joined together via weak forces. Therefore, a difference between the bonding between the inter-cage and intra-cage interactions exists. To look closely at the bonding and interactions, we investigated interactions between two cages of Sb2O3 structure. The interactions were characterized via Extended Transition State-Natural Orbital for Chemical Valence-method (ETS-NOCV), Natural Bond Orbitals (NBO) and Quantum Theory of Atoms in Molecules (QTAIM). The results revealed strong intra-cage covalent bonding while weak van der Waals (vdWs) interactions along inter-cages exits. This structure cannot be termed as layered material although they have anisotropy in bonding and presence of weak vdWs interactions but its bulk is termed as inorganic layered clusters. This is due to the fact that the free standing sheet/films with these materials are not possible. This type of structures may be the most feasible to be used for the system to deal with high pressures and stress bearing materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inorganic%20molecular%20crystals" title="inorganic molecular crystals">inorganic molecular crystals</a>, <a href="https://publications.waset.org/abstracts/search?q=density%20functional%20theory" title=" density functional theory"> density functional theory</a>, <a href="https://publications.waset.org/abstracts/search?q=cages" title=" cages"> cages</a>, <a href="https://publications.waset.org/abstracts/search?q=interactions" title=" interactions"> interactions</a> </p> <a href="https://publications.waset.org/abstracts/161848/first-principles-study-of-inter-cage-interactions-in-inorganic-molecular-crystals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161848.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2899</span> Surface Modification of Titanium Alloy with Laser Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nassier%20A.%20Nassir">Nassier A. Nassir</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Birch"> Robert Birch</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Rico%20Sierra"> D. Rico Sierra</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20P.%20Edwardson"> S. P. Edwardson</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Dearden"> G. Dearden</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhongwei%20Guan"> Zhongwei Guan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of laser surface treatment parameters on the residual strength of titanium alloy has been investigated. The influence of the laser surface treatment on the bonding strength between the titanium and poly-ether-ketone-ketone (PEKK) surfaces was also evaluated and compared to those offered by titanium foils without surface treatment to optimize the laser parameters. Material characterization using an optical microscope was carried out to study the microstructure and to measure the mean roughness value of the titanium surface. The results showed that the surface roughness shows a significant dependency on the laser power parameters in which surface roughness increases with the laser power increment. Moreover, the results of the tensile tests have shown that there is no significant dropping in tensile strength for the treated samples comparing to the virgin ones. In order to optimize the laser parameter as well as the corresponding surface roughness, single-lap shear tests were conducted on pairs of the laser treated titanium stripes. The results showed that the bonding shear strength between titanium alloy and PEKK film increased with the surface roughness increment to a specific limit. After this point, it is interesting to note that there was no significant effect for the laser parameter on the bonding strength. This evidence suggests that it is not necessary to use very high power of laser to treat titanium surface to achieve a good bonding strength between titanium alloy and the PEKK film. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bonding%20strength" title="bonding strength">bonding strength</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20surface%20treatment" title=" laser surface treatment"> laser surface treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=PEKK" title=" PEKK"> PEKK</a>, <a href="https://publications.waset.org/abstracts/search?q=poly-ether-ketone-ketone" title="poly-ether-ketone-ketone">poly-ether-ketone-ketone</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20alloy" title=" titanium alloy"> titanium alloy</a> </p> <a href="https://publications.waset.org/abstracts/92507/surface-modification-of-titanium-alloy-with-laser-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2898</span> Microstructures Evolution of a Nano/Ultrafine Grained Low Carbon Steel Produced by Martensite Treatment Using Accumulative Roll Bonding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Salari">Mehdi Salari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work introduces a new experimental method of martensite treatment contains accumulative roll-bonding used for producing the nano/ultrafine grained structure in low carbon steel. The ARB process up to 4 cycles was performed under unlubricated conditions, while the annealing process was carried out in the temperature range of 450–550°C for 30–100 min. The microstructures of the deformed and annealed specimens were investigated. The results showed that in the annealed specimen at 450°C for 30 or 60 min, recrystallization couldn’t be completed. Decrease in time and temperature intensified the volume fraction of the martensite cell blocks. Fully equiaxed nano/ultrafine grained ferrite was developed from the martensite cell blocks during the annealing at temperature around 500°C for 100 min. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=martensite%20process" title="martensite process">martensite process</a>, <a href="https://publications.waset.org/abstracts/search?q=accumulative%20roll%20bonding" title=" accumulative roll bonding"> accumulative roll bonding</a>, <a href="https://publications.waset.org/abstracts/search?q=recrystallization" title=" recrystallization"> recrystallization</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructure" title=" nanostructure"> nanostructure</a>, <a href="https://publications.waset.org/abstracts/search?q=plain%20carbon%20steel" title=" plain carbon steel"> plain carbon steel</a> </p> <a href="https://publications.waset.org/abstracts/17328/microstructures-evolution-of-a-nanoultrafine-grained-low-carbon-steel-produced-by-martensite-treatment-using-accumulative-roll-bonding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17328.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2897</span> Investigating Interlayer Bonding in 3D Printing Pressure Vessel Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cam%20Minh%20Tri%20Tien">Cam Minh Tri Tien</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Fenrich"> Richard Fenrich</a>, <a href="https://publications.waset.org/abstracts/search?q=Tristan%20Shelley"> Tristan Shelley</a>, <a href="https://publications.waset.org/abstracts/search?q=Nam%20Mai-Duy"> Nam Mai-Duy</a>, <a href="https://publications.waset.org/abstracts/search?q=Allan%20Malano"> Allan Malano</a>, <a href="https://publications.waset.org/abstracts/search?q=Xuesen%20Zeng"> Xuesen Zeng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since additive manufacturing is a layer-by-layer deposition approach, good bonding quality between adjacent layers is critically important to achieve optimal mechanical performance, including applications in pressure vessels. The need to enhance the strength of printed products, especially in the build direction where layup gaps and voids exist between the printed layers, has garnered significant attention. The proposed research will focus on improving the current Fused Deposition Modelling (FDM) process to produce polymers reinforced with chopped fibers, utilizing a controlled heat zone to enhance the adhesion between printed layers. Energy will be applied to both printed and printing layers to improve the bonding strength between adjacent layers. Through the enhanced FDM process, the mechanical performance of composite parts will experience a substantial improvement, particularly in the build direction, as compared to current FDM methods. A combination of experimental, numerical, and analytical methods will be employed to demonstrate the enhanced performance of heat-controlled 3D printed parts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20Printing" title="3D Printing">3D Printing</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20vessels" title=" pressure vessels"> pressure vessels</a>, <a href="https://publications.waset.org/abstracts/search?q=interlayer%20bonding" title=" interlayer bonding"> interlayer bonding</a>, <a href="https://publications.waset.org/abstracts/search?q=controlled%20heat" title=" controlled heat"> controlled heat</a> </p> <a href="https://publications.waset.org/abstracts/182120/investigating-interlayer-bonding-in-3d-printing-pressure-vessel-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182120.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">51</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2896</span> Mechanical Study Printed Circuit Boards Bonding for Jefferson Laboratory Detector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Noto">F. Noto</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20De%20Persio"> F. De Persio</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Bellini"> V. Bellini</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Costa.%20F.%20Mammoliti"> G. Costa. F. Mammoliti</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Meddi"> F. Meddi</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Sutera"> C. Sutera</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20M.%20Urcioli"> G. M. Urcioli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One plane X and one plane Y of silicon microstrip detectors will constitute the front part of the Super Bigbite Spectrometer that is under construction and that will be installed in the experimental Hall A of the Thomas Jefferson National Accelerator Facility (Jefferson Laboratory), located in Newport News, Virgina, USA. Each plane will be made up by two nearly identical, 300 μm thick, 10 cm x 10.3 cm wide silicon microstrip detectors with 50 um pitch, whose electronic signals will be transferred to the front-end electronic based on APV25 chips through C-shaped FR4 Printed Circuit Boards (PCB). A total of about 10000 strips are read-out. This paper treats the optimization of the detector support structure, the materials used through a finite element simulation. A very important aspect of the study will also cover the optimization of the bonding parameters between detector and electronics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FEM%20analysis" title="FEM analysis">FEM analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=bonding" title=" bonding"> bonding</a>, <a href="https://publications.waset.org/abstracts/search?q=SBS%20tracker" title=" SBS tracker"> SBS tracker</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20structure" title=" mechanical structure"> mechanical structure</a> </p> <a href="https://publications.waset.org/abstracts/67695/mechanical-study-printed-circuit-boards-bonding-for-jefferson-laboratory-detector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67695.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bonding%20mechanisms&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bonding%20mechanisms&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bonding%20mechanisms&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bonding%20mechanisms&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bonding%20mechanisms&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bonding%20mechanisms&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bonding%20mechanisms&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bonding%20mechanisms&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bonding%20mechanisms&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bonding%20mechanisms&page=97">97</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bonding%20mechanisms&page=98">98</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bonding%20mechanisms&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>