CINXE.COM
Search results for: recrystallization
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: recrystallization</title> <meta name="description" content="Search results for: recrystallization"> <meta name="keywords" content="recrystallization"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="recrystallization" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="recrystallization"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 57</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: recrystallization</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">57</span> Recrystallization Microstructure Studies of Cold-Rolled Ta0.5Nb0.5Hf0.5ZrTi1.5 Non-Equiatomic Refractory High Entropy Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Veeresham%20Mokali">Veeresham Mokali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recrystallization microstructure and grain growth studies of Ta₀.₅Nb₀.₅Hf₀.₅ZrTi₁.₅ refractory high entropy alloy have been explored in the present work. The as-cast Ta₀.₅Nb₀.₅Hf₀.₅ZrTi₁.₅ alloy was cold-rolled to 90% in several passes at room temperature and further subjected to annealing treatment for recrystallization at 800°C, 1000°C, 1250°C, and 1400°C temperatures for one hour. However, the characterization of heavily cold-rolled and annealed condition specimens was done using scanning electron microscopy (SEM-EBSD). The cold-rolled specimens showed the development of an inhomogeneous microstructure. Upon annealing, recrystallized microstructures were achieved; in addition to that, the coarsening of microstructure with raising annealing temperature noticed in the range of 800°C – 1400°C annealed temperatures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=refractory%20high%20entropy%20alloys" title="refractory high entropy alloys">refractory high entropy alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=cold-rolling" title=" cold-rolling"> cold-rolling</a>, <a href="https://publications.waset.org/abstracts/search?q=recrystallization" title=" recrystallization"> recrystallization</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/138947/recrystallization-microstructure-studies-of-cold-rolled-ta05nb05hf05zrti15-non-equiatomic-refractory-high-entropy-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138947.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">56</span> Microstructure and Texture Evolution of Cryo Rolled and Annealed Ductile TaNbHfZrTi Refractory High Entropy Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mokali%20Veeresham">Mokali Veeresham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The microstructure and texture evolution of cryo rolled and annealed ductile TaHfNbZrTi refractory high entropy alloy was investigated. To obtain that, the alloy is severely cryo rolled and subsequently annealed for the recrystallization process. The cryo rolled – 90% shows the presence of very fine grains and microstructural heterogeneity. The cryo rolled samples are annealed at a temperature ranging from 800°C to 1400°C, the partial recrystallization is observed at 800°C annealed condition, and at higher annealing temperatures the complete recrystallization process is noticed. The development of ND fiber texture is observed after the annealing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=refractory%20high%20entropy%20alloy" title="refractory high entropy alloy">refractory high entropy alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=cryo-rolling" title=" cryo-rolling"> cryo-rolling</a>, <a href="https://publications.waset.org/abstracts/search?q=annealing" title=" annealing"> annealing</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=texture" title=" texture"> texture</a> </p> <a href="https://publications.waset.org/abstracts/139305/microstructure-and-texture-evolution-of-cryo-rolled-and-annealed-ductile-tanbhfzrti-refractory-high-entropy-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139305.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">55</span> Thermal Hysteresis Activity of Ice Binding Proteins during Ice Crystal Growth in Sucrose Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bercem%20Kiran-Yildirim">Bercem Kiran-Yildirim</a>, <a href="https://publications.waset.org/abstracts/search?q=Volker%20Gaukel"> Volker Gaukel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ice recrystallization (IR) which occurs especially during frozen storage is an undesired process due to the possible influence on the quality of products. As a result of recrystallization, the total volume of ice remains constant, but the size, number, and shape of ice crystals change. For instance, as indicated in the literature, the size of ice crystals in ice cream increases due to recrystallization. This results in texture deterioration. Therefore, the inhibition of ice recrystallization is of great importance, not only for food industry but also for several other areas where sensitive products are stored frozen, like pharmaceutical products or organs and blood in medicine. Ice-binding proteins (IBPs) have the unique ability to inhibit ice growth and in consequence inhibit recrystallization. This effect is based on their ice binding affinity. In the presence of IBP in a solution, ice crystal growth is inhibited during temperature decrease until a certain temperature is reached. The melting during temperature increase is not influenced. The gap between melting and freezing points is known as thermal hysteresis (TH). In literature, the TH activity is usually investigated under laboratory conditions in IBP buffer solutions. In product applications (e.g., food) there are many other solutes present which may influence the TH activity. In this study, a subset of IBPs, so-called antifreeze proteins (AFPs), is used for the investigation of the influence of sucrose solution concentration on the TH activity. For the investigation, a polarization microscope (Nikon Eclipse LV100ND) equipped with a digital camera (Nikon DS-Ri1) and a cold stage (Linkam LTS420) was used. In a first step, the equipment was established and validated concerning the accuracy of TH measurements based on literature data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ice%20binding%20proteins" title="ice binding proteins">ice binding proteins</a>, <a href="https://publications.waset.org/abstracts/search?q=ice%20crystals" title=" ice crystals"> ice crystals</a>, <a href="https://publications.waset.org/abstracts/search?q=sucrose%20solution" title=" sucrose solution"> sucrose solution</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20hysteresis" title=" thermal hysteresis"> thermal hysteresis</a> </p> <a href="https://publications.waset.org/abstracts/100743/thermal-hysteresis-activity-of-ice-binding-proteins-during-ice-crystal-growth-in-sucrose-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100743.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> Critical Conditions for the Initiation of Dynamic Recrystallization Prediction: Analytical and Finite Element Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pierre%20Tize%20Mha">Pierre Tize Mha</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Jahazi"> Mohammad Jahazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Am%C3%A8vi%20Togne"> Amèvi Togne</a>, <a href="https://publications.waset.org/abstracts/search?q=Olivier%20Pantal%C3%A9"> Olivier Pantalé</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Large-size forged blocks made of medium carbon high-strength steels are extensively used in the automotive industry as dies for the production of bumpers and dashboards through the plastic injection process. The manufacturing process of the large blocks starts with ingot casting, followed by open die forging and a quench and temper heat treatment process to achieve the desired mechanical properties and numerical simulation is widely used nowadays to predict these properties before the experiment. But the temperature gradient inside the specimen remains challenging in the sense that the temperature before loading inside the material is not the same, but during the simulation, constant temperature is used to simulate the experiment because it is assumed that temperature is homogenized after some holding time. Therefore to be close to the experiment, real distribution of the temperature through the specimen is needed before the mechanical loading. Thus, We present here a robust algorithm that allows the calculation of the temperature gradient within the specimen, thus representing a real temperature distribution within the specimen before deformation. Indeed, most numerical simulations consider a uniform temperature gradient which is not really the case because the surface and core temperatures of the specimen are not identical. Another feature that influences the mechanical properties of the specimen is recrystallization which strongly depends on the deformation conditions and the type of deformation like Upsetting, Cogging...etc. Indeed, Upsetting and Cogging are the stages where the greatest deformations are observed, and a lot of microstructural phenomena can be observed, like recrystallization, which requires in-depth characterization. Complete dynamic recrystallization plays an important role in the final grain size during the process and therefore helps to increase the mechanical properties of the final product. Thus, the identification of the conditions for the initiation of dynamic recrystallization is still relevant. Also, the temperature distribution within the sample and strain rate influence the recrystallization initiation. So the development of a technique allowing to predict the initiation of this recrystallization remains challenging. In this perspective, we propose here, in addition to the algorithm allowing to get the temperature distribution before the loading stage, an analytical model leading to determine the initiation of this recrystallization. These two techniques are implemented into the Abaqus finite element software via the UAMP and VUHARD subroutines for comparison with a simulation where an isothermal temperature is imposed. The Artificial Neural Network (ANN) model to describe the plastic behavior of the material is also implemented via the VUHARD subroutine. From the simulation, the temperature distribution inside the material and recrystallization initiation is properly predicted and compared to the literature models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20recrystallization" title="dynamic recrystallization">dynamic recrystallization</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20modeling" title=" finite element modeling"> finite element modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title=" artificial neural network"> artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20implementation" title=" numerical implementation"> numerical implementation</a> </p> <a href="https://publications.waset.org/abstracts/166612/critical-conditions-for-the-initiation-of-dynamic-recrystallization-prediction-analytical-and-finite-element-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166612.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">53</span> Excellent Combination of Tensile Strength and Elongation of Novel Reverse Rolled TaNbHfZrTi Refractory High Entropy Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mokali%20Veeresham">Mokali Veeresham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, the high-entropy alloy TaNbHfZrTi was processed at room temperature by each step novel reverse rolling up to a 90% reduction in thickness. The reverse rolled 90% samples subsequently used for annealing at 800°C and 1000°C temperatures for 1h to understand phase stability, microstructure, texture, and mechanical properties. The reverse rolled 90% condition contains BCC single-phase; upon annealing at 800°C temperature, the formation of secondary phase BCC-2 prevailed. The partial recrystallization and complete recrystallization microstructures were developed for annealed at 800°C and 1000°C temperatures, respectively. The reverse rolled condition, and 1000°C annealed temperature exhibit extraordinary room temperature tensile properties with high tensile strength (UTS) 1430MPa and 1556 MPa without compromising loss of ductility consists of an appreciable amount of 21% and 20% elongation, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=refractory%20high%20entropy%20alloys" title="refractory high entropy alloys">refractory high entropy alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=reverse%20rolling" title=" reverse rolling"> reverse rolling</a>, <a href="https://publications.waset.org/abstracts/search?q=recrystallization" title=" recrystallization"> recrystallization</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20properties" title=" tensile properties"> tensile properties</a> </p> <a href="https://publications.waset.org/abstracts/139420/excellent-combination-of-tensile-strength-and-elongation-of-novel-reverse-rolled-tanbhfzrti-refractory-high-entropy-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139420.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> Modeling and Prediction of Hot Deformation Behavior of IN718</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Azarbarmas">M. Azarbarmas</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Cabrera"> J. M. Cabrera</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Calvo"> J. Calvo</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Aghaie-Khafri"> M. Aghaie-Khafri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The modeling of hot deformation behavior for unseen conditions is important in metal-forming. In this study, the hot deformation of IN718 has been characterized in the temperature range 950-1100 and strain rate range 0.001-0.1 s-1 using hot compression tests. All stress-strain curves showed the occurrence of dynamic recrystallization. These curves were implemented quantitatively in mathematics, and then constitutive equation indicating the relationship between the flow stress and hot deformation parameters was obtained successfully. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compression%20test" title="compression test">compression test</a>, <a href="https://publications.waset.org/abstracts/search?q=constitutive%20equation" title=" constitutive equation"> constitutive equation</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20recrystallization" title=" dynamic recrystallization"> dynamic recrystallization</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20working" title=" hot working"> hot working</a> </p> <a href="https://publications.waset.org/abstracts/24327/modeling-and-prediction-of-hot-deformation-behavior-of-in718" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24327.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> The Microstructural Evolution of X45CrNiW189 Valve Steel during Hot Deformation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20H.%20Meysami">A. H. Meysami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the hot compression tests were carried on X45CrNiW189 valve steel (X45) in the temperature range of 1000–1200°C and the strain rate range of 0.004–0.5 s^(-1) in order to study the high temperature softening behavior of the steel. For the exact prediction of flow stress, the effective stress - effective strain curves were obtained from experiments under various conditions. On the basis of experimental results, the dynamic recrystallization fraction (DRX), AGS, hot deformation and activation energy behavior were investigated. It was found that the calculated results were in a good agreement with the experimental flow stress and microstructure of the steel for different conditions of hot deformation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=X45CrNiW189" title="X45CrNiW189">X45CrNiW189</a>, <a href="https://publications.waset.org/abstracts/search?q=valve%20steel" title=" valve steel"> valve steel</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20compression%20test" title=" hot compression test"> hot compression test</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20recrystallization" title=" dynamic recrystallization"> dynamic recrystallization</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20deformation" title=" hot deformation"> hot deformation</a> </p> <a href="https://publications.waset.org/abstracts/10250/the-microstructural-evolution-of-x45crniw189-valve-steel-during-hot-deformation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10250.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> Compare Hot Forming and Cold Forming in Rolling Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Moarrefzadeh">Ali Moarrefzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In metalworking, rolling is a metal forming process in which metal stock is passed through a pair of rolls. Rolling is classified according to the temperature of the metal rolled. If the temperature of the metal is above its recrystallization temperature, then the process is termed as hot rolling. If the temperature of the metal is below its recrystallization temperature, the process is termed as cold rolling. In terms of usage, hot rolling processes more tonnage than any other manufacturing process, and cold rolling processes the most tonnage out of all cold working processes. This article describes the use of advanced tubing inspection NDT methods for boiler and heat exchanger equipment in the petrochemical industry to supplement major turnaround inspections. The methods presented include remote field eddy current, magnetic flux leakage, internal rotary inspection system and eddy current. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hot%20forming" title="hot forming">hot forming</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20forming" title=" cold forming"> cold forming</a>, <a href="https://publications.waset.org/abstracts/search?q=metal" title=" metal"> metal</a>, <a href="https://publications.waset.org/abstracts/search?q=rolling" title=" rolling"> rolling</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation "> simulation </a> </p> <a href="https://publications.waset.org/abstracts/11373/compare-hot-forming-and-cold-forming-in-rolling-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11373.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">529</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">49</span> Microstructure and Mechanical Properties of Boron-Containing AZ91D Mg Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ji%20Chan%20Kim">Ji Chan Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Seok%20Hong%20Min"> Seok Hong Min</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae%20Kwon%20Ha"> Tae Kwon Ha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effect of boron addition on the microstructure and mechanical properties of AZ91D Mg alloy was investigated in this study. Through calculation of phase equilibria, carried out by using FactSage® and FTLite database, solution treatment temperature was decided as 420 °C where supersaturated solid solution can be obtained. Solid solution treatment was conducted at 420 °C for 24 hrs followed by hot rolling at 420 °C and the total reduction was about 60%. Recrystallization heat treatment was followed at 420 °C for 6 hrs to obtain equiaxed microstructure. After recrystallization treatment, aging heat treatment was conducted at temperature of 200 °C for time intervals from 1 min to 200 hrs and hardness of each condition was measured by micro-Vickers method. Peak hardness was observed after 20 hrs. Tensile tests were also conducted on the specimens aged for various time intervals and the results were compared with hardness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AZ91D%20Mg%20alloy" title="AZ91D Mg alloy">AZ91D Mg alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=boron" title=" boron"> boron</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20treatment" title=" heat treatment"> heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a> </p> <a href="https://publications.waset.org/abstracts/62213/microstructure-and-mechanical-properties-of-boron-containing-az91d-mg-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62213.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">48</span> Degradation of Irradiated UO2 Fuel Thermal Conductivity Calculated by FRAPCON Model Due to Porosity Evolution at High Burn-Up</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Roostaii">B. Roostaii</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Kazeminejad"> H. Kazeminejad</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Khakshournia"> S. Khakshournia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The evolution of volume porosity previously obtained by using the existing low temperature high burn-up gaseous swelling model with progressive recrystallization for UO<sub>2</sub> fuel is utilized to study the degradation of irradiated UO<sub>2</sub> thermal conductivity calculated by the FRAPCON model of thermal conductivity. A porosity correction factor is developed based on the assumption that the fuel morphology is a three-phase type, consisting of the as-fabricated pores and pores due to intergranular bubbles whitin UO<sub>2</sub> matrix and solid fission products. The predicted thermal conductivity demonstrates an additional degradation of 27% due to porosity formation at burn-up levels around 120 MWd/kgU which would cause an increase in the fuel temperature accordingly. Results of the calculations are compared with available data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=irradiation-induced%20recrystallization" title="irradiation-induced recrystallization">irradiation-induced recrystallization</a>, <a href="https://publications.waset.org/abstracts/search?q=matrix%20swelling" title=" matrix swelling"> matrix swelling</a>, <a href="https://publications.waset.org/abstracts/search?q=porosity%20evolution" title=" porosity evolution"> porosity evolution</a>, <a href="https://publications.waset.org/abstracts/search?q=UO%E2%82%82%20thermal%20conductivity" title=" UO₂ thermal conductivity"> UO₂ thermal conductivity</a> </p> <a href="https://publications.waset.org/abstracts/65572/degradation-of-irradiated-uo2-fuel-thermal-conductivity-calculated-by-frapcon-model-due-to-porosity-evolution-at-high-burn-up" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65572.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">47</span> Microstructures Evolution of a Nano/Ultrafine Grained Low Carbon Steel Produced by Martensite Treatment Using Accumulative Roll Bonding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Salari">Mehdi Salari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work introduces a new experimental method of martensite treatment contains accumulative roll-bonding used for producing the nano/ultrafine grained structure in low carbon steel. The ARB process up to 4 cycles was performed under unlubricated conditions, while the annealing process was carried out in the temperature range of 450–550°C for 30–100 min. The microstructures of the deformed and annealed specimens were investigated. The results showed that in the annealed specimen at 450°C for 30 or 60 min, recrystallization couldn’t be completed. Decrease in time and temperature intensified the volume fraction of the martensite cell blocks. Fully equiaxed nano/ultrafine grained ferrite was developed from the martensite cell blocks during the annealing at temperature around 500°C for 100 min. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=martensite%20process" title="martensite process">martensite process</a>, <a href="https://publications.waset.org/abstracts/search?q=accumulative%20roll%20bonding" title=" accumulative roll bonding"> accumulative roll bonding</a>, <a href="https://publications.waset.org/abstracts/search?q=recrystallization" title=" recrystallization"> recrystallization</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructure" title=" nanostructure"> nanostructure</a>, <a href="https://publications.waset.org/abstracts/search?q=plain%20carbon%20steel" title=" plain carbon steel"> plain carbon steel</a> </p> <a href="https://publications.waset.org/abstracts/17328/microstructures-evolution-of-a-nanoultrafine-grained-low-carbon-steel-produced-by-martensite-treatment-using-accumulative-roll-bonding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17328.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> Recrystallization Behavior and Microstructural Evolution of Nickel Base Superalloy AD730 Billet during Hot Forging at Subsolvus Temperatures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcos%20Perez">Marcos Perez</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Dumont"> Christian Dumont</a>, <a href="https://publications.waset.org/abstracts/search?q=Olivier%20Nodin"> Olivier Nodin</a>, <a href="https://publications.waset.org/abstracts/search?q=Sebastien%20Nouveau"> Sebastien Nouveau</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nickel superalloys are used to manufacture high-temperature rotary engine parts such as high-pressure disks in gas turbine engines. High strength at high operating temperatures is required due to the levels of stress and heat the disk must withstand. Therefore it is necessary parts made from materials that can maintain mechanical strength at high temperatures whilst remain comparatively low in cost. A manufacturing process referred to as the triple melt process has made the production of cast and wrought (C&W) nickel superalloys possible. This means that the balance of cost and performance at high temperature may be optimized. AD730TM is a newly developed Ni-based superalloy for turbine disk applications, with reported superior service properties around 700°C when compared to Inconel 718 and several other alloys. The cast ingot is converted into billet during either cogging process or open die forging. The semi-finished billet is then further processed into its final geometry by forging, heat treating, and machining. Conventional ingot-to-billet conversion is an expensive and complex operation, requiring a significant amount of steps to break up the coarse as-cast structure and interdendritic regions. Due to the size of conventional ingots, it is difficult to achieve a uniformly high level of strain for recrystallization, resulting in non-recrystallized regions that retain large unrecrystallized grains. Non-uniform grain distributions will also affect the ultrasonic inspectability response, which is used to find defects in the final component. The main aim is to analyze the recrystallization behavior and microstructural evolution of AD730 at subsolvus temperatures from a semi-finished product (billet) under conditions representative of both cogging and hot forging operations. Special attention to the presence of large unrecrystallized grains was paid. Double truncated cones (DTCs) were hot forged at subsolvus temperatures in hydraulic press, followed by air cooling. SEM and EBSD analysis were conducted in the as-received (billet) and the as-forged conditions. AD730 from billet alloy presents a complex microstructure characterized by a mixture of several constituents. Large unrecrystallized grains present a substructure characterized by large misorientation gradients with the formation of medium to high angle boundaries in their interior, especially close to the grain boundaries, denoting inhomogeneous strain distribution. A fine distribution of intragranular precipitates was found in their interior, playing a key role on strain distribution and subsequent recrystallization behaviour during hot forging. Continuous dynamic recrystallization (CDRX) mechanism was found to be operating in the large unrecrystallized grains, promoting the formation intragranular DRX grains and the gradual recrystallization of these grains. Evidences that hetero-epitaxial recrystallization mechanism is operating in AD730 billet material were found. Coherent γ-shells around primary γ’ precipitates were found. However, no significant contribution to the overall recrystallization during hot forging was found. By contrast, strain presents the strongest effect on the microstructural evolution of AD730, increasing the recrystallization fraction and refining the structure. Regions with low level of deformation (ε ≤ 0.6) were translated into large fractions of unrecrystallized structures (strain accumulation). The presence of undissolved secondary γ’ precipitates (pinning effect), prior to hot forging operations, could explain these results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AD730%20alloy" title="AD730 alloy">AD730 alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=continuous%20dynamic%20recrystallization" title=" continuous dynamic recrystallization"> continuous dynamic recrystallization</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20forging" title=" hot forging"> hot forging</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B3%E2%80%99%20precipitates" title=" γ’ precipitates"> γ’ precipitates</a> </p> <a href="https://publications.waset.org/abstracts/98142/recrystallization-behavior-and-microstructural-evolution-of-nickel-base-superalloy-ad730-billet-during-hot-forging-at-subsolvus-temperatures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98142.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> Cellular Automata Modelling of Titanium Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jyoti%20Jha">Jyoti Jha</a>, <a href="https://publications.waset.org/abstracts/search?q=Asim%20Tewari"> Asim Tewari</a>, <a href="https://publications.waset.org/abstracts/search?q=Sushil%20Mishra"> Sushil Mishra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The alpha-beta Titanium alloy (Ti-6Al-4V) is the most common alloy in the aerospace industry. The hot workability of Ti–6Al–4V has been investigated by means of hot compression tests carried out in the 750–950 °C temperature range and 0.001–10s-1 strain rate range. Stress-strain plot obtained from the Gleeble 3800 test results show the dynamic recrystallization at temperature 950 °C. The effect of microstructural characteristics of the deformed specimens have been studied and correlated with the test temperature, total strain and strain rate. Finite element analysis in DEFORM 2D has been carried out to see the effect of flow stress parameters in different zones of deformed sample. Dynamic recrystallization simulation based on Cellular automata has been done in DEFORM 2D to simulate the effect of hardening and recovery during DRX. Simulated results well predict the grain growth and DRX in the deformed sample. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compression%20test" title="compression test">compression test</a>, <a href="https://publications.waset.org/abstracts/search?q=Cellular%20automata" title=" Cellular automata"> Cellular automata</a>, <a href="https://publications.waset.org/abstracts/search?q=DEFORM" title=" DEFORM "> DEFORM </a>, <a href="https://publications.waset.org/abstracts/search?q=DRX" title=" DRX"> DRX</a> </p> <a href="https://publications.waset.org/abstracts/59613/cellular-automata-modelling-of-titanium-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59613.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> Thermo-Mechanical Processing of Armor Steel Plates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taher%20El-Bitar">Taher El-Bitar</a>, <a href="https://publications.waset.org/abstracts/search?q=Maha%20El-Meligy"> Maha El-Meligy</a>, <a href="https://publications.waset.org/abstracts/search?q=Eman%20El-Shenawy"> Eman El-Shenawy</a>, <a href="https://publications.waset.org/abstracts/search?q=Almosilhy%20Almosilhy"> Almosilhy Almosilhy</a>, <a href="https://publications.waset.org/abstracts/search?q=Nader%20Dawood"> Nader Dawood</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The steel contains 0.3% C and 0.004% B, beside Mn, Cr, Mo, and Ni. The alloy was processed by using 20-ton capacity electric arc furnace (EAF), and then refined by ladle furnace (LF). Liquid steel was cast as rectangular ingots. Dilatation test showed the critical transformation temperatures Ac<sub>1</sub>, Ac<sub>3</sub>, M<sub>s</sub> and M<sub>f</sub> as 716, 835, 356, and 218 °C. The ingots were austenitized and soaked and then rough rolled to thin slabs with 80 mm thickness. The thin slabs were then reheated and soaked for finish rolling to 6.0 mm thickness plates. During the rough rolling, the roll force increases as a result of rolling at temperatures less than recrystallization temperature. However, during finish rolling, the steel reflects initially continuous static recrystallization after which it shows strain hardening due to fall of temperature. It was concluded that, the steel plates were successfully heat treated by quenching-tempering at 250 ºC for 20 min. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=armor%20steel" title="armor steel">armor steel</a>, <a href="https://publications.waset.org/abstracts/search?q=austenitizing" title=" austenitizing"> austenitizing</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20transformation%20temperatures%20%28CTTs%29" title=" critical transformation temperatures (CTTs)"> critical transformation temperatures (CTTs)</a>, <a href="https://publications.waset.org/abstracts/search?q=dilatation%20curve" title=" dilatation curve"> dilatation curve</a>, <a href="https://publications.waset.org/abstracts/search?q=martensite" title=" martensite"> martensite</a>, <a href="https://publications.waset.org/abstracts/search?q=quenching" title=" quenching"> quenching</a>, <a href="https://publications.waset.org/abstracts/search?q=rough%20and%20finish%20rolling%20processes" title=" rough and finish rolling processes"> rough and finish rolling processes</a>, <a href="https://publications.waset.org/abstracts/search?q=soaking" title=" soaking"> soaking</a>, <a href="https://publications.waset.org/abstracts/search?q=tempering" title=" tempering"> tempering</a>, <a href="https://publications.waset.org/abstracts/search?q=thermo-mechanical%20processing" title=" thermo-mechanical processing"> thermo-mechanical processing</a> </p> <a href="https://publications.waset.org/abstracts/60271/thermo-mechanical-processing-of-armor-steel-plates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60271.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> Effect of Heat Treatment on Columnar Grain Growth and Goss Texture on Surface in Grain-Oriented Electrical Steels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jungkyun%20Na">Jungkyun Na</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaesang%20Lee"> Jaesang Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Mo%20Koo"> Yang Mo Koo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study to find a replacement for expensive secondary recrystallization in GO electrical steel production, effect of heat treatment on the formation of columnar grain and Goss texture is investigated. The composition of the sample is Fe-2.0Si-0.2C. This process involves repeating of cold rolling and decarburization as a replacement for secondary recrystallization. By cold-rolling shear band is made and Goss grain grows from shear band by decarburization. By doing another cold rolling, some Goss texture is newly formed from the shear band, and some Goss texture is retained in microbands. To determine whether additional heat treatment with H2 atmosphere is needed on decarburization process for growth of Goss texture, comparing between decarburization and heat treatment with H2 atmosphere is performed. Also, to find optimum condition for heat treatment, heat treatment with various time and temperature is performed. It was found that increase in the number of cold rolling and heat treatment increases Goss texture. Both high Goss texture and good columnar structure is achieved at 900℃, and this temperature is within a+r phase region. Heat treatment at a temperature higher than a+r phase region caused carbon diffusion and this made layer with Goss grain decrease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrical%20steel" title="electrical steel">electrical steel</a>, <a href="https://publications.waset.org/abstracts/search?q=Goss%20texture" title=" Goss texture"> Goss texture</a>, <a href="https://publications.waset.org/abstracts/search?q=columnar%20structure" title=" columnar structure"> columnar structure</a>, <a href="https://publications.waset.org/abstracts/search?q=normal%20grain%20growth" title=" normal grain growth"> normal grain growth</a> </p> <a href="https://publications.waset.org/abstracts/74896/effect-of-heat-treatment-on-columnar-grain-growth-and-goss-texture-on-surface-in-grain-oriented-electrical-steels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> Hot Deformation Behavior and Recrystallization of Inconel 718 Superalloy under Double Cone Compression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wang%20%20Jianguo">Wang Jianguo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ding%20Xiao"> Ding Xiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Liu%20Dong"> Liu Dong</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Haiping"> Wang Haiping</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Yanhui"> Yang Yanhui</a>, <a href="https://publications.waset.org/abstracts/search?q=Hu%20Yang"> Hu Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The hot deformation behavior of Inconel 718 alloy was studied by uniaxial compression tests under the deformation temperature of 940~1040℃ and strain rate of 0.001-10s⁻¹. The double cone compression (DCC) tests develop strains range from 30% to the 79% strain including all intermediate values of stains at different temperature (960~1040℃). DCC tests were simulated by finite element software which shown the strain and strain rates distribution. The result shows that the peak stress level of the alloy decreased with increasing deformation temperature and decreasing strain rate, which could be characterized by a Zener-Hollomon parameter in the hyperbolic-sine equation. The characterization method of hot processing window containing recrystallization volume fraction and average grain size was proposed for double cone compression test of uniform coarse grain, mixed crystal and uniform fine grain double conical specimen in hydraulic press and screw press. The results show that uniform microstructures can be obtained by low temperature with high deformation followed by high temperature with small deformation on the hydraulic press and low temperature, medium deformation, multi-pass on the screw press. The two methods were applied in industrial forgings process, and the forgings with uniform microstructure were obtained successfully. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inconel%20718%20superalloy" title="inconel 718 superalloy">inconel 718 superalloy</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20processing%20windows" title=" hot processing windows"> hot processing windows</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20cone%20compression" title=" double cone compression"> double cone compression</a>, <a href="https://publications.waset.org/abstracts/search?q=uniform%20microstructure" title=" uniform microstructure"> uniform microstructure</a> </p> <a href="https://publications.waset.org/abstracts/105454/hot-deformation-behavior-and-recrystallization-of-inconel-718-superalloy-under-double-cone-compression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> Grain Growth in Nanocrystalline and Ultra-Fine Grained Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haiming%20Wen">Haiming Wen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Grain growth is an important and consequential phenomenon that generally occurs in the presence of thermal and/or stress/strain fields. Thermally activated grain growth has been extensively studied and similarly, there are numerous experimental and theoretical studies published describing stress-induced grain growth in single-phase materials. However, studies on grain growth during the simultaneous presence of an elevated temperature and an external stress are very limited, and moreover, grain growth phenomena in materials containing second-phase particles and solute segregation at GBs have received limited attention. This lecture reports on a study of grain growth in the presence of second-phase particles and solute/impurity segregation at grain boundaries (GBs) during high-temperature deformation of an ultra-fine grained (UFG) Al alloy synthesized via consolidation of mechanically milled powders. The mechanisms underlying the grain growth were identified as GB migration and grain rotation, which were accompanied by dynamic recovery and geometric dynamic recrystallization, while discontinuous dynamic recrystallization was not operative. A theoretical framework that incorporates the influence of second-phase particles and solute/impurity segregation at GBs on grain growth in presence of both elevated temperature and external stress is formulated and discussed. The effect of second-phase particles and solute/impurity segregation at GBs on GB migration and grain rotation was quantified using the proposed theoretical framework, indicating that both second-phase particles and solutes/impurities segregated GBs reduce the velocities of GB migration and grain rotation as compared to those in commercially pure Al. Our results suggest that grain growth predicted by the proposed theoretical framework is in agreement with experimental results. Hence, the developed theoretical framework can be applied to quantify grain growth in simultaneous presence of external stress, elevated temperature, GB segregation and second-phase particles, or in presence of one or more of the aforementioned factors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanocrystalline%20materials" title="nanocrystalline materials">nanocrystalline materials</a>, <a href="https://publications.waset.org/abstracts/search?q=ultra-fine%20grained%20materials" title=" ultra-fine grained materials"> ultra-fine grained materials</a>, <a href="https://publications.waset.org/abstracts/search?q=grain%20growth" title=" grain growth"> grain growth</a>, <a href="https://publications.waset.org/abstracts/search?q=grain%20boundary%20migration" title=" grain boundary migration"> grain boundary migration</a>, <a href="https://publications.waset.org/abstracts/search?q=grain%20rotation" title=" grain rotation "> grain rotation </a> </p> <a href="https://publications.waset.org/abstracts/68951/grain-growth-in-nanocrystalline-and-ultra-fine-grained-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68951.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> Thermo-Mechanical Processing Scheme to Obtain Micro-Duplex Structure Favoring Superplasticity in an As-Cast and Homogenized Medium Alloyed Nickel Base Superalloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Sahithya">K. Sahithya</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Balasundar"> I. Balasundar</a>, <a href="https://publications.waset.org/abstracts/search?q=Pritapant"> Pritapant</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Raghua"> T. Raghua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ni-based superalloy with a nominal composition Ni-14% Cr-11% Co-5.8% Mo-2.4% Ti-2.4% Nb-2.8% Al-0.26 % Fe-0.032% Si-0.069% C (all in wt %) is used as turbine discs in a variety of aero engines. Like any other superalloy, the primary processing of the as-cast superalloy poses a major challenge due to its complex alloy chemistry. The challenge was circumvented by characterizing the different phases present in the material, optimizing the homogenization treatment, identifying a suitable thermomechanical processing window using dynamic materials modeling. The as-cast material was subjected to homogenization at 1200°C for a soaking period of 8 hours and quenched using different media. Water quenching (WQ) after homogenization resulted in very fine spherical γꞌ precipitates of sizes 30-50 nm, whereas furnace cooling (FC) after homogenization resulted in bimodal distribution of precipitates (primary gamma prime of size 300nm and secondary gamma prime of size 5-10 nm). MC type primary carbides that are stable till the melting point of the material were found in both WQ and FC samples. Deformation behaviour of both the materials below (1000-1100°C) and above gamma prime solvus (1100-1175°C) was evaluated by subjecting the material to series of compression tests at different constant true strain rates (0.0001/sec-1/sec). An in-detail examination of the precipitate dislocation interaction mechanisms carried out using TEM revealed precipitate shearing and Orowan looping as the mechanisms governing deformation in WQ and FC, respectively. Incoherent/semi coherent gamma prime precipitates in the case of FC material facilitates better workability of the material, whereas the coherent precipitates in WQ material contributed to higher resistance to deformation of the material. Both the materials exhibited discontinuous dynamic recrystallization (DDRX) above gamma prime solvus temperature. The recrystallization kinetics was slower in the case of WQ material. Very fine grain boundary carbides ( ≤ 300 nm) retarded the recrystallisation kinetics in WQ. Coarse carbides (1-5 µm) facilitate particle stimulated nucleation in FC material. The FC material was cogged (primary hot working) 1120˚C, 0.03/sec resulting in significant grain refinement, i.e., from 3000 μm to 100 μm. The primary processed material was subjected to intensive thermomechanical deformation subsequently by reducing the temperature by 50˚C in each processing step with intermittent heterogenization treatment at selected temperatures aimed at simultaneous coarsening of the gamma prime precipitates and refinement of the gamma matrix grains. The heterogeneous annealing treatment carried out, resulted in gamma grains of 10 μm and gamma prime precipitates of 1-2 μm. Further thermo mechanical processing of the material was carried out at 1025˚C to increase the homogeneity of the obtained micro-duplex structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=superalloys" title="superalloys">superalloys</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20material%20modeling" title=" dynamic material modeling"> dynamic material modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel%20alloys" title=" nickel alloys"> nickel alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20recrystallization" title=" dynamic recrystallization"> dynamic recrystallization</a>, <a href="https://publications.waset.org/abstracts/search?q=superplasticity" title=" superplasticity"> superplasticity</a> </p> <a href="https://publications.waset.org/abstracts/121172/thermo-mechanical-processing-scheme-to-obtain-micro-duplex-structure-favoring-superplasticity-in-an-as-cast-and-homogenized-medium-alloyed-nickel-base-superalloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> High-Pressure Polymorphism of 4,4-Bipyridine Hydrobromide </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michalina%20Aniola">Michalina Aniola</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrzej%20Katrusiak"> Andrzej Katrusiak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 4,4-Bipyridine is an important compound often used in chemical practice and more recently frequently applied for designing new metal organic framework (MoFs). Here we present a systematic high-pressure study of its hydrobromide salt. 4,4-Bipyridine hydrobromide monohydrate, 44biPyHBrH₂O, at ambient-pressure is orthorhombic, space group P212121 (phase a). Its hydrostatic compression shows that it is stable to 1.32 GPa at least. However, the recrystallization above 0.55 GPa reveals a new hidden b-phase (monoclinic, P21/c). Moreover, when the 44biPyHBrH2O is heated to high temperature the chemical reactions of this compound in methanol solution can be observed. High-pressure experiments were performed using a Merrill-Bassett diamond-anvil cell (DAC), modified by mounting the anvils directly on the steel supports, and X-ray diffraction measurements were carried out on a KUMA and Excalibur diffractometer equipped with an EOS CCD detector. At elevated pressure, the crystal of 44biPyHBrH₂O exhibits several striking and unexpected features. No signs of instability of phase a were detected to 1.32 GPa, while phase b becomes stable at above 0.55 GPa, as evidenced by its recrystallizations. Phases a and b of 44biPyHBrH2O are partly isostructural: their unit-cell dimensions and the arrangement of ions and water molecules are similar. In phase b the HOH-Br- chains double the frequency of their zigzag motifs, compared to phase a, and the 44biPyH+ cations change their conformation. Like in all monosalts of 44biPy determined so far, in phase a the pyridine rings are twisted by about 30 degrees about bond C4-C4 and in phase b they assume energy-unfavorable planar conformation. Another unusual feature of 44biPyHBrH2O is that all unit-cell parameters become longer on the transition from phase a to phase b. Thus the volume drop on the transition to high-pressure phase b totally depends on the shear strain of the lattice. Higher temperature triggers chemical reactions of 44biPyHBrH2O with methanol. When the saturated methanol solution compound precipitated at 0.1 GPa and temperature of 423 K was required to dissolve all the sample, the subsequent slow recrystallization at isochoric conditions resulted in disalt 4,4-bipyridinium dibromide. For the 44biPyHBrH2O sample sealed in the DAC at 0.35 GPa, then dissolved at isochoric conditions at 473 K and recrystallized by slow controlled cooling, a reaction of N,N-dimethylation took place. It is characteristic that in both high-pressure reactions of 44biPyHBrH₂O the unsolvated disalt products were formed and that free base 44biPy and H₂O remained in the solution. The observed reactions indicate that high pressure destabilized ambient-pressure salts and favors new products. Further studies on pressure-induced reactions are carried out in order to better understand the structural preferences induced by pressure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conformation" title="conformation">conformation</a>, <a href="https://publications.waset.org/abstracts/search?q=high-pressure" title=" high-pressure"> high-pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=negative%20area%20compressibility" title=" negative area compressibility"> negative area compressibility</a>, <a href="https://publications.waset.org/abstracts/search?q=polymorphism" title=" polymorphism"> polymorphism</a> </p> <a href="https://publications.waset.org/abstracts/51916/high-pressure-polymorphism-of-44-bipyridine-hydrobromide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51916.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> Hardness Analysis of Samples of Friction Stir Welded Joints of (Al-Cu)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Upamanyu%20Majumder">Upamanyu Majumder</a>, <a href="https://publications.waset.org/abstracts/search?q=Angshuman%20Das"> Angshuman Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Friction Stir Welding (FSW) is a Solid-State joining process. Unlike fusion welding techniques it does not involve operation above the melting point temperature of metals, but above the re-crystallization temperature. FSW also does not involve fusion of other material. FSW of ALUMINIUM has been commercialized and recent studies on joining dissimilar metals have been studied. Friction stir welding was introduced and patented in 1991 by The Welding Institute. For this paper, a total of nine samples each of copper and ALUMINIUM(Dissimilar metals) were welded using FSW process and Vickers Hardness were conducted on each of the samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=friction%20stir%20welding%20%28FSW%29" title="friction stir welding (FSW)">friction stir welding (FSW)</a>, <a href="https://publications.waset.org/abstracts/search?q=recrystallization%20temperature" title=" recrystallization temperature"> recrystallization temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=dissimilar%20metals" title=" dissimilar metals"> dissimilar metals</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminium-copper" title=" aluminium-copper"> aluminium-copper</a>, <a href="https://publications.waset.org/abstracts/search?q=Vickers%20hardness%20test" title=" Vickers hardness test"> Vickers hardness test</a> </p> <a href="https://publications.waset.org/abstracts/37637/hardness-analysis-of-samples-of-friction-stir-welded-joints-of-al-cu" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37637.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> DNA Intercalating Alkaloids Isolated from Chelidonium majus (Papaveraceae)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Tamer">Mohamed Tamer</a>, <a href="https://publications.waset.org/abstracts/search?q=Wink%20Michael"> Wink Michael</a> </p> <p class="card-text"><strong>Abstract:</strong></p> DNA intercalating agents increase the stability of DNA which can be demonstrated by measuring the melting temperature Tm. Tm can be determined in a spectrophotometer in which the cell temperature is increased gradually. The resulting absorption data comes as a sigmoidal curve from which melting temperature can be determined when half of the DNA has denatured. The current study aims to assess DNA intercalating activities of four pure bioactive isoquinoline alkaloids: sanguinarine, berberine, allocryptopine, and chelerythrine which were isolated from Chelidonium majus (Papaveraceae) by repeated silica gel column chromatography, recrystallization and preparative TLC. The isolated compounds were identified by comparing their physical properties and mass spectra with those of the published data. The results showed that sanguiarine is the most active intercalating agent with Tm value of 83.55 ± 0.49 followed by berberine, chelerythrine, and allocryptopine with Tm values 62.58 ± 0.47, 51.38 ± 0.37 and 50.94 ± 0.65, respectively, relative to 49.78 ± 1.05 of bacteriophage DNA alone and 86.09 ± 0.5 for ethidium bromide as a positive control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkaloids" title="alkaloids">alkaloids</a>, <a href="https://publications.waset.org/abstracts/search?q=Chelidonium%20majus" title=" Chelidonium majus"> Chelidonium majus</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20intercalation" title=" DNA intercalation"> DNA intercalation</a>, <a href="https://publications.waset.org/abstracts/search?q=Tm" title=" Tm"> Tm</a> </p> <a href="https://publications.waset.org/abstracts/32200/dna-intercalating-alkaloids-isolated-from-chelidonium-majus-papaveraceae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32200.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">501</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> Modification of Unsaturated Fatty Acids Derived from Tall Oil Using Micro/Mesoporous Materials Based on H-ZSM-22 Zeolite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xinyu%20Wei">Xinyu Wei</a>, <a href="https://publications.waset.org/abstracts/search?q=Mingming%20Peng"> Mingming Peng</a>, <a href="https://publications.waset.org/abstracts/search?q=Kenji%20Kamiya"> Kenji Kamiya</a>, <a href="https://publications.waset.org/abstracts/search?q=Eika%20Qian"> Eika Qian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Iso-stearic acid as a saturated fatty acid with a branched chain shows a low pour point, high oxidative stability and great biodegradability. The industrial production of iso-stearic acid involves first isomerizing unsaturated fatty acids into branched-chain unsaturated fatty acids (BUFAs), followed by hydrogenating the branched-chain unsaturated fatty acids to obtain iso-stearic acid. However, the production yield of iso-stearic acid is reportedly less than 30%. In recent decades, extensive research has been conducted on branched fatty acids. Most research has replaced acidic clays with zeolites due to their high selectivity, good thermal stability, and renewability. It was reported that isomerization of unsaturated fatty acid occurred mainly inside the zeolite channel. In contrast, the production of by-products like dimer acid mainly occurs at acid sites outside the surface of zeolite. Further, the deactivation of catalysts is attributed to the pore blockage of zeolite. In the present study, micro/mesoporous ZSM-22 zeolites were developed. It is clear that the synthesis of a micro/mesoporous ZSM-22 zeolite is regarded as the ideal strategy owing to its ability to minimize coke formation. Different mesoporosities micro/mesoporous H-ZSM-22 zeolites were prepared through recrystallization of ZSM-22 using sodium hydroxide solution (0.2-1M) with cetyltrimethylammonium bromide template (CTAB). The structure, morphology, porosity, acidity, and isomerization performance of the prepared catalysts were characterized and evaluated. The dissolution and recrystallization process of the H-ZSM-22 microporous zeolite led to the formation of approximately 4 nm-sized mesoporous channels on the outer surface of the microporous zeolite, resulting in a micro/mesoporous material. This process increased the weak Brønsted acid sites at the pore mouth while reducing the total number of acid sites in ZSM-22. Finally, an activity test was conducted using oleic acid as a model compound in a fixed-bed reactor. The activity test results revealed that micro/mesoporous H-ZSM-22 zeolites exhibited a high isomerization activity, reaching >70% selectivity and >50% yield of BUFAs. Furthermore, the yield of oligomers was limited to less than 20%. This demonstrates that the presence of mesopores in ZSM-22 enhances contact between the feedstock and the active sites within the catalyst, thereby increasing catalyst activity. Additionally, a portion of the dissolved and recrystallized silica adhered to the catalyst's surface, covering the surface-active sites, which reduced the formation of oligomers. This study offers distinct insights into the production of iso-stearic acid using a fixed-bed reactor, paving the way for future research in this area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iso-stearic%20acid" title="Iso-stearic acid">Iso-stearic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=oleic%20acid" title=" oleic acid"> oleic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=skeletal%20isomerization" title=" skeletal isomerization"> skeletal isomerization</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%2Fmesoporous" title=" micro/mesoporous"> micro/mesoporous</a>, <a href="https://publications.waset.org/abstracts/search?q=ZSM-22" title=" ZSM-22"> ZSM-22</a> </p> <a href="https://publications.waset.org/abstracts/190252/modification-of-unsaturated-fatty-acids-derived-from-tall-oil-using-micromesoporous-materials-based-on-h-zsm-22-zeolite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190252.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">23</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> The Role of Deformation Strain and Annealing Temperature on Grain Boundary Engineering and Texture Evolution of Haynes 230</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Sanayei">Mohsen Sanayei</a>, <a href="https://publications.waset.org/abstracts/search?q=Jerzy%20Szpunar"> Jerzy Szpunar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study investigates the effects of deformation strain and annealing temperature on the formation of twin boundaries, deformation and recrystallization texture evolution and grain boundary networks and connectivity. The resulting microstructures were characterized using Electron Backscatter Diffraction (EBSD) and X-Ray Diffraction (XRD) both immediately following small amount of deformation and after short time annealing at high temperature to correlate the micro and macro texture evolution of these alloys. Furthermore, this study showed that the process of grain boundary engineering, consisting cycles of deformation and annealing, is found to substantially reduce the mass and size of random boundaries and increase the proportion of low Coincidence Site Lattice (CSL) grain boundaries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coincidence%20site%20lattice" title="coincidence site lattice">coincidence site lattice</a>, <a href="https://publications.waset.org/abstracts/search?q=grain%20boundary%20engineering" title=" grain boundary engineering"> grain boundary engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=electron%20backscatter%20diffraction" title=" electron backscatter diffraction"> electron backscatter diffraction</a>, <a href="https://publications.waset.org/abstracts/search?q=texture" title=" texture"> texture</a>, <a href="https://publications.waset.org/abstracts/search?q=x-ray%20diffraction" title=" x-ray diffraction"> x-ray diffraction</a> </p> <a href="https://publications.waset.org/abstracts/70079/the-role-of-deformation-strain-and-annealing-temperature-on-grain-boundary-engineering-and-texture-evolution-of-haynes-230" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70079.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Micro-Texture Effect on Fracture Location in Carbon Steel during Forming</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarra%20Khelifi">Sarra Khelifi</a>, <a href="https://publications.waset.org/abstracts/search?q=Youcef%20Guerabli"> Youcef Guerabli</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahcene%20Boumaiza"> Ahcene Boumaiza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Advances in techniques for measuring individual crystallographic orientations have made it possible to investigate the role of local crystallography during the plastic deformation of materials. In this study, the change in crystallographic orientation distribution during deformation by deep drawing in carbon steel has been investigated in order to understand their role in propagation and arrest of crack. The results show that the change of grain orientation from initial recrystallization texture components of {111}<112> to deformation orientation {111}<110> incites the initiation and propagation of cracks in the region of {111}<112> small grains. Moreover, the misorientation profile and local orientation are analyzed in detail to discuss the change from {111}<112> to {111}<110>. The deformation of the grain with {111}<110> orientation is discussed in terms of stops of the crack in carbon steel during drawing. The SEM-EBSD technique was used to reveal the change of orientation; XRD was performed for the characterization of the global evolution of texture for deformed samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fracture" title="fracture">fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneity" title=" heterogeneity"> heterogeneity</a>, <a href="https://publications.waset.org/abstracts/search?q=misorientation%20profile" title=" misorientation profile"> misorientation profile</a>, <a href="https://publications.waset.org/abstracts/search?q=stored%20energy" title=" stored energy"> stored energy</a> </p> <a href="https://publications.waset.org/abstracts/126312/micro-texture-effect-on-fracture-location-in-carbon-steel-during-forming" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126312.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Characterization of Potato Starch/Guar Gum Composite Film Modified by Ecofriendly Cross-Linkers </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sujosh%20Nandi">Sujosh Nandi</a>, <a href="https://publications.waset.org/abstracts/search?q=Proshanta%20Guha"> Proshanta Guha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Synthetic plastics are preferred for food packaging due to high strength, stretch-ability, good water vapor and gas barrier properties, transparency and low cost. However, environmental pollution generated by these synthetic plastics is a major concern of modern human civilization. Therefore, use of biodegradable polymers as a substitute for synthetic non-biodegradable polymers are encouraged to be used even after considering drawbacks related to mechanical and barrier properties of the films. Starch is considered one of the potential raw material for the biodegradable polymer, encounters poor water barrier property and mechanical properties due to its hydrophilic nature. That apart, recrystallization of starch molecules occurs during aging which decreases flexibility and increases elastic modulus of the film. The recrystallization process can be minimized by blending of other hydrocolloids having similar structural compatibility, into the starch matrix. Therefore, incorporation of guar gum having a similar structural backbone, into the starch matrix can introduce a potential film into the realm of biodegradable polymer. However, hydrophilic nature of both starch and guar gum, water barrier property of the film is low. One of the prospective solution to enhance this could be modification of the potato starch/guar gum (PSGG) composite film using cross-linker. Over the years, several cross-linking agents such as phosphorus oxychloride, sodium trimetaphosphate, etc. have been used to improve water vapor permeability (WVP) of the films. However, these chemical cross-linking agents are toxic, expensive and take longer time to degrade. Therefore, naturally available carboxylic acid (tartaric acid, malonic acid, succinic acid, etc.) had been used as a cross-linker and found that water barrier property enhanced substantially. As per our knowledge, no works have been reported with tartaric acid and succinic acid as a cross-linking agent blended with the PSGG films. Therefore, the objective of the present study was to examine the changes in water vapor barrier property and mechanical properties of the PSGG films after cross-linked with tartaric acid (TA) and succinic acid (SA). The cross-linkers were blended with PSGG film-forming solution at four different concentrations (4, 8, 12 & 16%) and cast on teflon plate at 37°C for 20 h. From the fourier-transform infrared spectroscopy (FTIR) study of the developed films, a band at 1720cm-1 was observed which is attributed to the formation of ester group in the developed films. On the other hand, it was observed that tensile strength (TS) of the cross-linked film decreased compared to non-cross linked films, whereas strain at break increased by several folds. Moreover, the results depicted that tensile strength diminished with increasing the concentration of TA or SA and lowest TS (1.62 MPa) was observed for 16% SA. That apart, maximum strain at break was also observed for TA at 16% and the reason behind this could be a lesser degree of crystallinity of the TA cross-linked films compared to SA. However, water vapor permeability of succinic acid cross-linked film was reduced significantly, but it was enhanced significantly by addition of tartaric acid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cross%20linking%20agent" title="cross linking agent">cross linking agent</a>, <a href="https://publications.waset.org/abstracts/search?q=guar%20gum" title=" guar gum"> guar gum</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20acids" title=" organic acids"> organic acids</a>, <a href="https://publications.waset.org/abstracts/search?q=potato%20starch" title=" potato starch"> potato starch</a> </p> <a href="https://publications.waset.org/abstracts/112414/characterization-of-potato-starchguar-gum-composite-film-modified-by-ecofriendly-cross-linkers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112414.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Characterization of Chemically Deposited CdS Thin Films Annealed in Different Atmospheres</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Pantoja%20Enr%C3%ADquez">J. Pantoja Enríquez</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20P.%20Hern%C3%A1ndez"> G. P. Hernández</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20I.%20Duharte"> G. I. Duharte</a>, <a href="https://publications.waset.org/abstracts/search?q=X.%20Mathew"> X. Mathew</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Moreira"> J. Moreira</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20J.%20Sebastian"> P. J. Sebastian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cadmium sulfide films were deposited onto glass substrates by chemical bath deposition (CBD) from a bath containing cadmium acetate, ammonium acetate, thiourea, and ammonium hydroxide. The CdS thin films were annealed in air, argon, hydrogen and nitrogen for 1 h at various temperatures (300, 350, 400, 450 and 500 °C). The changes in optical and electrical properties of annealed treated CdS thin films were analyzed. The results showed that, the band-gap and resistivity depend on the post-deposition annealing atmosphere and temperatures. Thus, it was found that these properties of the films, were found to be affected by various processes with opposite effects, some beneficial and others unfavorable. The energy gap and resistivity for different annealing atmospheres was seen to oscillate by thermal annealing. Recrystallization, oxidation, surface passivation, sublimation and materials evaporation were found the main factors of the heat-treatment process responsible for this oscillating behavior. Annealing over 400 °C was seen to degrade the optical and electrical properties of the film. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cds" title="cds">cds</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20films" title=" thin films"> thin films</a>, <a href="https://publications.waset.org/abstracts/search?q=annealing" title=" annealing"> annealing</a>, <a href="https://publications.waset.org/abstracts/search?q=optical" title=" optical"> optical</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20properties" title=" electrical properties"> electrical properties</a> </p> <a href="https://publications.waset.org/abstracts/31251/characterization-of-chemically-deposited-cds-thin-films-annealed-in-different-atmospheres" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31251.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">510</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> A Comparison of Double Sided Friction Stir Welding in Air and Underwater for 6mm S275 Steel Plate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Philip%20Baillie">Philip Baillie</a>, <a href="https://publications.waset.org/abstracts/search?q=Stuart%20W.%20Campbell"> Stuart W. Campbell</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20M.%20Galloway"> Alexander M. Galloway</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20R.%20Cater"> Stephen R. Cater</a>, <a href="https://publications.waset.org/abstracts/search?q=Norman%20A.%20McPherson"> Norman A. McPherson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study compared the mechanical and microstructural properties produced during friction stir welding(FSW) of S275 structural steel in air and underwater. Post weld tests assessed the tensile strength, micro-hardness, distortion, Charpy impact toughness and fatigue performance in each case. The study showed that there was no significant difference in the strength, hardness or fatigue life of the air and underwater specimens. However, Charpy impact toughness was shown to decrease for the underwater specimens and was attributed to a lower degree of recrystallization caused by the higher rate of heat loss experienced when welding underwater. Reduced angular and longitudinal distortion was observed in the underwater welded plate compared to the plate welded in air. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Charpy%20impact%20toughness" title="Charpy impact toughness">Charpy impact toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=distortion" title=" distortion"> distortion</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue" title=" fatigue"> fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20stir%20welding%28FSW%29" title=" friction stir welding(FSW)"> friction stir welding(FSW)</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-hardness" title=" micro-hardness"> micro-hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=underwater" title=" underwater"> underwater</a> </p> <a href="https://publications.waset.org/abstracts/7606/a-comparison-of-double-sided-friction-stir-welding-in-air-and-underwater-for-6mm-s275-steel-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Surface Nanocrystalline and Hardening Effects of Ti–Al–V Alloy by Electropulsing Ultrasonic Shock</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaoxin%20Ye">Xiaoxin Ye</a>, <a href="https://publications.waset.org/abstracts/search?q=Guoyi%20Tang"> Guoyi Tang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of electropulsing ultrasonic shock (EUS) on the surface hardening and microstructure of Ti6Al4V alloy was studied. It was found that electropulsing improved the microhardness dramatically both in the influential depth and maximum value, compared with the only ultrasonic-shocked sample. It’s indicated that refined surface layer with nanocrystalline and improved microhardness were obtained on account of surface severe plastic deformation, dynamic recrystallization (DRX) and phase change, which was implemented at relative low temperature and high strain rate/capacity due to the coupling of the thermal and athermal effects of EUS. It’s different from conventional experiments and theory. It’s discussed that the positive contributions of EPT in the thermodynamics and kinetics of microstructure and properties change were attributed to the reduction of nucleation energy barrier and acceleration of atomic diffusion. Therefore, it’s supposed that EUS is an energy-saving and high-efficiency method of surface treatment technique with the help of high-energy electropulses, which is promising in cost reduction of the surface engineering and energy management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=titanium%20alloys" title="titanium alloys">titanium alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=electropulsing" title=" electropulsing"> electropulsing</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20shock" title=" ultrasonic shock"> ultrasonic shock</a>, <a href="https://publications.waset.org/abstracts/search?q=microhardness" title=" microhardness"> microhardness</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocrystalline" title=" nanocrystalline"> nanocrystalline</a> </p> <a href="https://publications.waset.org/abstracts/15784/surface-nanocrystalline-and-hardening-effects-of-ti-al-v-alloy-by-electropulsing-ultrasonic-shock" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15784.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Effect of Polyethylene Glycol on Physiochemical Properties of Spherical Agglomerates of Pioglitazone Hydrochloride</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20V.%20Patil">S. V. Patil </a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Sahoo"> S. K. Sahoo</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Y.%20Chougule"> K. Y. Chougule</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Patil"> S. S. Patil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spherically agglomerated crystals of Pioglitazone hydrochloride (PGH) with improved flowability and compactibility were successfully prepared by emulsion solvent diffusion method. Plane agglomerates and agglomerates with additives: polyethylene glycol 6000 (PEG), polyvinyl pyrrolidone (PVP) and β cyclodextrin (β-CD) were prepared using methanol, chloroform and water as good solvent, bridging liquid and poor solvent respectively. Particle size, flowability, compactibility and packability of plane, PEG and β-CD agglomerates were preferably improved for direct tableting compared with raw crystals and PVP agglomerates of PGH. These improved properties of spherically agglomerated crystals were due to their large and spherical shape and enhanced fragmentation during compaction which was well supported by increased tensile strength and less elastic recovery of its compact. X-ray powder diffraction and differential scanning calorimetry study were indicated polymorphic transition of PGH from form II to I during recrystallization but not associated with chemical transition indicated by fourier transforms infrared spectra. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spherical%20crystallization" title="spherical crystallization">spherical crystallization</a>, <a href="https://publications.waset.org/abstracts/search?q=pioglitazone%20hydrochloride" title=" pioglitazone hydrochloride"> pioglitazone hydrochloride</a>, <a href="https://publications.waset.org/abstracts/search?q=compactibility" title=" compactibility"> compactibility</a>, <a href="https://publications.waset.org/abstracts/search?q=packability" title=" packability"> packability</a> </p> <a href="https://publications.waset.org/abstracts/6995/effect-of-polyethylene-glycol-on-physiochemical-properties-of-spherical-agglomerates-of-pioglitazone-hydrochloride" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6995.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Residual Stresses and Crystallographic Texture of Magnesium AZ31-C Alloy Welded by Friction Stir Welding (FSW)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Kouadri-Henni">A. Kouadri-Henni</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Barrallier"> L. Barrallier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of the study was to characterize the properties of a magnesium alloy welded by friction stir welding (FSW). The results led to a better understanding of the relationship between this process, the microstructure and anisotropic properties of alloy materials. Welding principally leads to a large reduction in grain size in welded zones due to the phenomenon of dynamic recrystallization. The most remarkable observation was that crystallographic textures changed from a base metal with one texture in two zones: the thermo-mechanically affected and stir welded zones. The latter zone has the peculiarity of possessing a marked texture with two components on the basal plane and the pyramidal plane. These characteristics disappeared in the TMAZ, which had only one component following the basal plane. These modifications have been explained by the nature of the plastic deformation in these zones, which occurs at a moderate temperature in the TMAZ and high temperature in the SWZ. In the same time, we compared this evolution with the nature and the level of the residual stresses obtained by X-ray diffraction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=texture%20christallography" title="texture christallography">texture christallography</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20stresses" title=" residual stresses"> residual stresses</a>, <a href="https://publications.waset.org/abstracts/search?q=FSW%20process" title=" FSW process"> FSW process</a> </p> <a href="https://publications.waset.org/abstracts/28893/residual-stresses-and-crystallographic-texture-of-magnesium-az31-c-alloy-welded-by-friction-stir-welding-fsw" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28893.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recrystallization&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recrystallization&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>